Sample records for xray diffraction xrd

  1. Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity

    USDA-ARS?s Scientific Manuscript database

    Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...

  2. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous

  3. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  4. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  5. PyXRD v0.6.7: a free and open-source program to quantify disordered phyllosilicates using multi-specimen X-ray diffraction profile fitting

    NASA Astrophysics Data System (ADS)

    Dumon, M.; Van Ranst, E.

    2016-01-01

    This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.

  6. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  7. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  8. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I

  9. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  10. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO{sub 4}:Dy TL material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik

    2014-09-03

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less

  11. Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data

    DOE Data Explorer

    Nash, Greg; Jones, Clay

    2018-02-07

    This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.

  12. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  13. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  14. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  15. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  16. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  17. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  18. Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones

    PubMed Central

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.

    2003-01-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904

  19. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  20. X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.

    2017-12-01

    X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the

  1. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  2. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  3. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  4. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  5. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  6. Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence

    ERIC Educational Resources Information Center

    Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.

    2007-01-01

    A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…

  7. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    PubMed Central

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  8. Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

    PubMed

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko

    2013-04-26

    Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

  9. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  10. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  11. X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions

    NASA Astrophysics Data System (ADS)

    Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man

    2017-09-01

    In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.

  12. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  13. Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

    DOE PAGES

    Wang, H.; Kirkham, M. J.; Watkins, T. R.; ...

    2016-02-17

    N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubicmore » symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. Ultimately, this knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.« less

  14. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  15. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  16. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    NASA Astrophysics Data System (ADS)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-11-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2 θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2 θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in

  17. An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore

    USGS Publications Warehouse

    Jackson, J.C.; Ericksent, G.E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  18. An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore

    USGS Publications Warehouse

    John, C.; George, J.; Ericksen, E.

    1997-01-01

    Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.

  19. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  20. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  1. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  2. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  3. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    NASA Astrophysics Data System (ADS)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  4. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  5. An Investigation of the Interatomic Bonding Characteristics of a Ti - 51at.% Al Alloy by X-Ray Diffraction

    DTIC Science & Technology

    1991-06-01

    GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence

  6. The first X-ray diffraction measurements on Mars.

    PubMed

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-11-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.

  7. First X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest Aeolian Bedform at Gale Crater

    NASA Technical Reports Server (NTRS)

    Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.; hide

    2013-01-01

    Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.

  8. X-Ray Diffraction of different samples of Swarna Makshika Bhasma.

    PubMed

    Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan

    2015-01-01

    Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.

  9. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  10. Automated X-Ray Diffraction of Irradiated Materials

    DOE PAGES

    Rodman, John; Lin, Yuewei; Sprouster, David; ...

    2017-10-26

    Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less

  11. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  12. Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples

    NASA Astrophysics Data System (ADS)

    Leung, P. L.; Yang, B.

    1999-09-01

    The thermal activation characteristics (TACs) of the sensitivity of the '110°C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible.

  13. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  14. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  15. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a

  16. The Mineralogy of Martian Dust: Design and Analysis Considerations for an X-Ray Diffraction/X-Ray Fluorescence (XRD/XRF) Instrument for Exobiological Studies

    NASA Technical Reports Server (NTRS)

    Blake, David; Vaniman, David; Bish, David; Morrison, David (Technical Monitor)

    1994-01-01

    A principal objective of Mars exploration is the search for evidence of past life which may have existed during an earlier clement period of Mars history. We would like to investigate the history of surface water activity (which is a requirement for all known forms of life) by identifying and documenting the distribution of minerals which require water for their formation or distribution. A knowledge of the mineralogy of the present Martian surface would help to identify areas which, due to the early activity of water, might have harbored ancient life. It would be desirable to establish the presence and characterize the distribution of hydrated minerals such as clays, and of minerals which are primarily of sedimentary origin such as carbonates, silica and evaporites. Mineralogy, which is more critical to exobiological exploration than is simple chemical analysis (absent the detection of organics), will remain unknown or will at best be imprecisely constrained unless a technique sensitive to mineral structure such as powder X-ray diffraction (XRD) is employed. Additional information is contained in the original extended abstract.

  17. On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses

    DOE PAGES

    Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...

    2017-08-30

    Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.

  18. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    PubMed

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  19. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  20. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    PubMed

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  1. In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis

    DOE PAGES

    Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan

    2007-11-10

    In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less

  2. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  3. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  4. Characterization of crystallographic properties of thin films using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zoo, Yeongseok

    2007-12-01

    Silver (Ag) has been recognized as one of promising candidates in Ultra-Large Scale Integrated (ULSI) applications in that it has the lowest bulk electrical resistivity of all pure metals and higher electromigration resistance than other interconnect materials. However, low thermal stability on Silicon Dioxide (Si02) at high temperatures (e.g., agglomeration) is considered a drawback for the Ag metallization scheme. Moreover, if a thin film is attached on a substrate, its properties may differ significantly from that of the bulk, since the properties of thin films can be significantly affected by the substrate. In this study, the Coefficient of Thermal Expansion (CTE) and texture evolution of Ag thin films on different substrates were characterized using various analytical techniques. The experimental results showed that the CTE of the Ag thin film was significantly affected by underlying substrate and the surface roughness of substrate. To investigate the alloying effect for Ag meatallization, small amounts of Copper (Cu) were added and characterized using theta-2theta X-ray Diffraction (XRD) scan and pole figure analysis. These XRD techniques are useful for investigating the primary texture of a metal film, (111) in this study, which (111) is the notation of a specific plane in the orthogonal coordinate system. They revealed that the (111) textures of Ag and Ag(Cu) thin films were enhanced with increasing temperature. Comparison of texture profiles between Ag and Ag(Cu) thin films showed that Cu additions enhanced (111) texture in Ag thin films. Accordingly, the texture enhancement in Ag thin films by Cu addition was discussed. Strained Silicon-On-Insulator (SSOI) is being considered as a potential substrate for Complementary Metal-Oxide-Semiconductor (CMOS) technology since the induced strain results in a significant improvement in device performance. High resolution X-ray diffraction (XRD) techniques were used to characterize the perpendicular and parallel

  5. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    PubMed

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  6. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  7. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  8. Two-photon x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohr, J.

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  9. Two-photon x-ray diffraction

    DOE PAGES

    Stohr, J.

    2017-01-11

    The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less

  10. X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.

    PubMed

    Prandel, Luis V; Melo, Vander de F; Brinatti, André M; Saab, Sérgio da C; Salvador, Fábio A S

    2018-01-01

    Soil vestiges might provide information about a crime scene. The Rietveld method with X-ray diffraction data (RM-XRD) is a nondestructive technique that makes it possible to characterize minerals present in the soils. Soil clays from the metropolitan region of Curitiba (Brazil) were submitted to DCB treatment and analyzed using XRD with CuK α radiation in the step-scan mode (0.02° 2θ/5 s). The GSAS+EXPGUI software was used for RM refinement. The RM-XRD results, together with the principal component analysis (PCA) (52.6% total variance), showed the kaolinite predominance in most analyzed samples and the highest quartz contents in "site 1." Higher anatase, and gibbsite and muscovite contents influenced discrimination, mainly in "site 3" and "site 1," respectively. These results were enough to discriminate clays of four sites and two horizons using a reduced amount of sample showing that the technique can be applied to the investigation into soil vestiges. © 2017 American Academy of Forensic Sciences.

  11. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  12. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  13. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  14. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  15. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  16. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    PubMed

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  17. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  18. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  19. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Pellinen and Michael Griffin

    2009-01-23

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured responsemore » time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.« less

  20. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.

  1. X-ray diffraction and TGA kinetic analyses for chemical looping combustion applications.

    PubMed

    Tijani, Mansour Mohammedramadan; Aqsha, Aqsha; Mahinpey, Nader

    2018-04-01

    Synthesis and characterization of supported metal-based oxygen carriers were carried out to provide information related to the use of oxygen carriers for chemical looping combustion processes. The Cu, Co, Fe, Ni metals supported with Al 2 O 3 , CeO 2 , TiO 2 , ZrO 2 were prepared using the wetness impregnation technique. Then, the X-ray Diffraction (XRD) characterization of oxidized and reduced samples was obtained and presented. The kinetic analysis using Thermogravimetric analyzer (TGA) of the synthesized samples was conducted. The kinetics of reduction reaction of all samples were estimated and explained.

  2. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  3. Uranium oxidation kinetics monitored by in-situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Zalkind, S.; Rafailov, G.; Halevy, I.; Livneh, T.; Rubin, A.; Maimon, H.; Schweke, D.

    2017-03-01

    The oxidation kinetics of U-0.1 wt%Cr at oxygen pressures of 150 Torr and the temperature range of 90-150 °C was studied by means of in-situ X-ray diffraction (XRD). A "breakaway" in the oxidation kinetics is found at ∼0.25 μm, turning from a parabolic to a linear rate law. At the initial stage of oxidation the growth plane of UO2(111) is the prominent one. As the oxide thickens, the growth rate of UO2(220) plane increases and both planes grow concurrently. The activation energies obtained for the oxide growth are Qparabolic = 17.5 kcal/mol and Qlinear = 19 kcal/mol. Enhanced oxidation around uranium carbide (UC) inclusions is clearly observed by scanning electron microscopy (SEM).

  4. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  5. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  6. X-Ray Diffraction on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less

  7. Quantitative x-ray diffraction mineralogy of Los Angeles basin core samples

    USGS Publications Warehouse

    Hein, James R.; McIntyre, Brandie R.; Edwards, Brian D.; Lakota, Orion I.

    2006-01-01

    This report contains X-ray diffraction (XRD) analysis of mineralogy for 81 sediment samples from cores taken from three drill holes in the Los Angeles Basin in 2000-2001. We analyzed 26 samples from Pier F core, 29 from Pier C core, and 26 from the Webster core. These three sites provide an offshore-onshore record across the Southern California coastal zone. This report is designed to be a data repository; these data will be used in further studies, including geochemical modeling as part of the CABRILLO project. Summary tables quantify the major mineral groups, whereas detailed mineralogy is presented in three appendices. The rationale, methodology, and techniques are described in the following paper.

  8. Coherent x-ray diffraction imaging with nanofocused illumination.

    PubMed

    Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C

    2008-08-29

    Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.

  9. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

  10. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  11. Study of Initial Stages of Ball-Milling of Cu Powder Using X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gayathri, N.; Mukherjee, Paramita

    2018-04-01

    The initial stage of size refinement of Cu powder is studied using detailed X-ray diffraction (XRD) analysis to understand the mechanism of formation of nanomaterials during the ball-milling process. The study was restricted to samples obtained for milling time up to 240 min to understand the deformation mechanism at the early stages of ball milling. Various model based approaches for the analysis of the XRD were used to study the evolution of the microstructural parameters such as domain size and microstrain along the different crystallographic planes. It was seen that the domain size saturates at a low value along the (311) plane whereas the size along the (220) and (200) plane is still higher. The r.m.s microstrain showed a non-monotonic change along the different crystallographic directions up to the milling time of 240 min.

  12. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  13. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  14. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  15. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  16. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  17. Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

    NASA Astrophysics Data System (ADS)

    Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.

    2009-12-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  18. In situ study of maize starch gelatinization under ultra-high hydrostatic pressure using X-ray diffraction.

    PubMed

    Yang, Zhi; Gu, Qinfen; Hemar, Yacine

    2013-08-14

    The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction.

    PubMed

    Dankar, Iman; Haddarah, Amira; Omar, Fawaz E L; Pujolà, Montserrat; Sepulcre, Francesc

    2018-09-15

    Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques were used to study the effect of four food additives, agar, alginate, lecithin and glycerol, at three different concentrations, 0.5, 1 and 1.5%, on the molecular structure of potato puree prepared from commercial potato powder. Vibrational spectra revealed that the amylose-amylopectin skeleton present in the raw potato starch was missing in the potato powder but could be fully recovered upon water addition when the potato puree was prepared. FTIR peaks corresponding to water were clearly present in the potato powder, indicating the important structural role of water molecules in the recovery of the initial molecular conformation. None of the studied puree samples presented a crystalline structure or strong internal order. A comparison of the FTIR and XRD results revealed that the additives exerted some effects, mainly on the long-range order of the starch structure via interacting with and changing -OH and hydrogen bond interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    NASA Astrophysics Data System (ADS)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  1. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  2. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure

  3. Dynamic X-ray diffraction sampling for protein crystal positioning

    PubMed Central

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  4. Dynamic X-ray diffraction sampling for protein crystal positioning.

    PubMed

    Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by

  5. Dynamic X-ray diffraction sampling for protein crystal positioning

    DOE PAGES

    Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...

    2017-01-01

    A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure

  6. Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, Matthias; Carlson, David B.; Hunter, Mark

    2014-02-28

    Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less

  7. Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction

    NASA Astrophysics Data System (ADS)

    Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.

    2018-06-01

    Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.

  8. X-ray diffraction imaging with the Multiple Inverse Fan Beam topology: principles, performance and potential for security screening.

    PubMed

    Harding, G; Fleckenstein, H; Kosciesza, D; Olesinski, S; Strecker, H; Theedt, T; Zienert, G

    2012-07-01

    The steadily increasing number of explosive threat classes, including home-made explosives (HMEs), liquids, amorphous and gels (LAGs), is forcing up the false-alarm rates of security screening equipment. This development can best be countered by increasing the number of features available for classification. X-ray diffraction intrinsically offers multiple features for both solid and LAGs explosive detection, and is thus becoming increasingly important for false-alarm and cost reduction in both carry-on and checked baggage security screening. Following a brief introduction to X-ray diffraction imaging (XDI), which synthesizes in a single modality the image-forming and material-analysis capabilities of X-rays, the Multiple Inverse Fan Beam (MIFB) XDI topology is described. Physical relationships obtaining in such MIFB XDI components as the radiation source, collimators and room-temperature detectors are presented with experimental performances that have been achieved. Representative X-ray diffraction profiles of threat substances measured with a laboratory MIFB XDI system are displayed. The performance of Next-Generation (MIFB) XDI relative to that of the 2nd Generation XRD 3500TM screener (Morpho Detection Germany GmbH) is assessed. The potential of MIFB XDI, both for reducing the exorbitant cost of false alarms in hold baggage screening (HBS), as well as for combining "in situ" liquid and solid explosive detection in carry-on luggage screening is outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Diffraction enhanced kinetic depth X-ray imaging

    NASA Astrophysics Data System (ADS)

    Dicken, A.

    An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional

  10. User Guide to RockJock - A Program for Determining Quantitative Mineralogy from X-Ray Diffraction Data

    USGS Publications Warehouse

    Eberl, D.D.

    2003-01-01

    RockJock is a computer program that determines quantitative mineralogy in powdered samples by comparing the integrated X-ray diffraction (XRD) intensities of individual minerals in complex mixtures to the intensities of an internal standard. Analysis without an internal standard (standardless analysis) also is an option. This manual discusses how to prepare and X-ray samples and mineral standards for these types of analyses and describes the operation of the program. Carefully weighed samples containing an internal standard (zincite) are ground in a McCrone mill. Randomly oriented preparations then are X-rayed, and the X-ray data are entered into the RockJock program. Minerals likely to be present in the sample are chosen from a list of standards, and the calculation is begun. The program then automatically fits the sum of stored XRD patterns of pure standard minerals (the calculated pattern) to the measured pattern by varying the fraction of each mineral standard pattern, using the Solver function in Microsoft Excel to minimize a degree of fit parameter between the calculated and measured pattern. The calculation analyzes the pattern (usually 20 to 65 degrees two-theta) to find integrated intensities for the minerals. Integrated intensities for each mineral then are determined from the proportion of each mineral standard pattern required to give the best fit. These integrated intensities then are compared to the integrated intensity of the internal standard, and the weight percentages of the minerals are calculated. The results are presented as a list of minerals with their corresponding weight percent. To some extent, the quality of the analysis can be checked because each mineral is analyzed independently, and, therefore, the sum of the analysis should approach 100 percent. Also, the method has been shown to give good results with artificial mixtures. The program is easy to use, but does require an understanding of mineralogy, of X-ray diffraction practice, and

  11. Single photon energy dispersive x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less

  12. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater.

    PubMed

    Bish, D L; Blake, D F; Vaniman, D T; Chipera, S J; Morris, R V; Ming, D W; Treiman, A H; Sarrazin, P; Morrison, S M; Downs, R T; Achilles, C N; Yen, A S; Bristow, T F; Crisp, J A; Morookian, J M; Farmer, J D; Rampe, E B; Stolper, E M; Spanovich, N

    2013-09-27

    The Mars Science Laboratory rover Curiosity scooped samples of soil from the Rocknest aeolian bedform in Gale crater. Analysis of the soil with the Chemistry and Mineralogy (CheMin) x-ray diffraction (XRD) instrument revealed plagioclase (~An57), forsteritic olivine (~Fo62), augite, and pigeonite, with minor K-feldspar, magnetite, quartz, anhydrite, hematite, and ilmenite. The minor phases are present at, or near, detection limits. The soil also contains 27 ± 14 weight percent x-ray amorphous material, likely containing multiple Fe(3+)- and volatile-bearing phases, including possibly a substance resembling hisingerite. The crystalline component is similar to the normative mineralogy of certain basaltic rocks from Gusev crater on Mars and of martian basaltic meteorites. The amorphous component is similar to that found on Earth in places such as soils on the Mauna Kea volcano, Hawaii.

  13. Time-resolved in situ powder X-ray diffraction reveals the mechanisms of molten salt synthesis.

    PubMed

    Moorhouse, Saul J; Wu, Yue; Buckley, Hannah C; O'Hare, Dermot

    2016-11-24

    We report the first use of high-energy monochromatic in situ X-ray powder diffraction to gain unprecedented insights into the chemical processes occurring during high temperature, lab-scale metal oxide syntheses. During the flux synthesis of the n = 4 Aurivillius phase, Bi 5 Ti 3 Fe 0.5 Cr 0.5 O 15 at 950 °C in molten Na 2 SO 4 we observe the progression of numerous metastable phases. Using sequential multiphase Rietveld refinement of the time-dependent in situ XRD data, we are able to obtain mechanistic understanding of this reaction under a range of conditions.

  14. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  15. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  16. X-ray diffraction on radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.; Roof, R.B.

    1978-01-01

    X-ray diffraction studies on radioactive materials are discussed with the aim of providing a guide to new researchers in the field. Considerable emphasis is placed on the safe handling and loading of not-too-exotic samples. Special considerations such as the problems of film blackening by the gamma rays and changes induced by the self-irradiation of the sample are covered. Some modifications of common diffraction techniques are presented. Finally, diffraction studies on radioactive samples under extreme conditions are discussed, with primary emphasis on high-pressure studies involving diamond-anvil cells.

  17. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  18. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  19. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  20. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  1. Sand sources and transport pathways for the San Francisco Bay coastal system, based on X-ray diffraction mineralogy

    USGS Publications Warehouse

    Hein, James R.; Mizell, Kira; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

  2. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  3. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    PubMed

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  4. Coherent X-ray diffraction imaging of nanoengineered polymeric capsules

    NASA Astrophysics Data System (ADS)

    Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.

    2017-10-01

    For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.

  5. Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.

    PubMed

    Iwamoto, Hiroyuki

    2018-06-13

    X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.

  6. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  7. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  8. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Ma, Wensheng; Yang, Wanfeng; Wang, Jiawei; Niu, Jiazheng; Luo, Fakui; Peng, Zhangquan; Zhang, Zhonghua

    2018-03-01

    Understanding the sodium (Na) chemistry is crucial for development of high-performance sodium ion batteries (SIBs). Nanostructured bismuth (Bi) has shown great potentials as an anode in SIBs, however, the Na storage mechanisms of Bi are still unclear. Herein, the operando X-ray diffraction (XRD) technique was utilized to probe the Na storage mechanisms of three Bi anodes (sputtered Bi film, nanoporous Bi and commercial Bi). Despite different morphologies and sizes, all the Bi anodes follow the same two-step reversible alloying/dealloying mechanisms (Bi ↔ NaBi ↔ Na3Bi) during the discharge/charge processes, associated with two voltage plateaus. As for the intercalation/deintercalation mechanism proposed for nanostructured Bi anodes in SIBs, we rationalize the reason why only the Bi phase is detected in the discharged/charged samples under ex-situ XRD conditions through addressing the stability issue of the Na-Bi system (NaBi and Na3Bi).

  9. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  10. X-ray Diffraction, Big and Small

    NASA Image and Video Library

    2012-10-30

    A conventional X-ray diffraction instrument left is the size of a large refrigerator, in contrast to the compact size of the Chemistry and Mineralogy CheMin instrument on NASA Curiosity rover top right.

  11. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  12. High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation

    NASA Technical Reports Server (NTRS)

    Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.

  13. MUDMASTER: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Środoń, Jan; Nüesch, R.

    1996-01-01

    Particle size may strongly influence the physical and chemical properties of a substance (e.g. its rheology, surface area, cation exchange capacity, solubility, etc.), and its measurement in rocks may yield geological information about ancient environments (sediment provenance, degree of metamorphism, degree of weathering, current directions, distance to shore, etc.). Therefore mineralogists, geologists, chemists, soil scientists, and others who deal with clay-size material would like to have a convenient method for measuring particle size distributions. Nano-size crystals generally are too fine to be measured by light microscopy. Laser scattering methods give only average particle sizes; therefore particle size can not be measured in a particular crystallographic direction. Also, the particles measured by laser techniques may be composed of several different minerals, and may be agglomerations of individual crystals. Measurement by electron and atomic force microscopy is tedious, expensive, and time consuming. It is difficult to measure more than a few hundred particles per sample by these methods. This many measurements, often taking several days of intensive effort, may yield an accurate mean size for a sample, but may be too few to determine an accurate distribution of sizes. Measurement of size distributions by X-ray diffraction (XRD) solves these shortcomings. An X-ray scan of a sample occurs automatically, taking a few minutes to a few hours. The resulting XRD peaks average diffraction effects from billions of individual nano-size crystals. The size that is measured by XRD may be related to the size of the individual crystals of the mineral in the sample, rather than to the size of particles formed from the agglomeration of these crystals. Therefore one can determine the size of a particular mineral in a mixture of minerals, and the sizes in a particular crystallographic direction of that mineral.

  14. Efficient modeling of Bragg coherent x-ray nanobeam diffraction

    DOE PAGES

    Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...

    2015-07-02

    X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less

  15. Simulation study of an X-ray diffraction system for breast tumor detection

    NASA Astrophysics Data System (ADS)

    Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.

    2017-09-01

    X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4 . 8 ṡ 107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.

  16. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Treesearch

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  17. Thermal x-ray diffraction and near-field phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua

    2017-10-01

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  18. Thermal x-ray diffraction and near-field phase contrast imaging

    DOE PAGES

    Li, Zheng; Classen, Anton; Peng, Tao; ...

    2017-12-27

    Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.

  19. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  20. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  1. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  2. Glass transition in ferroic glass K x (ND4)1-x D2PO4: a complete x-ray diffraction line shape analysis

    NASA Astrophysics Data System (ADS)

    Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.

    2016-03-01

    Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.

  3. Studies on X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Huijie

    This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens

  4. Illicit drug detection using energy dispersive x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.

    2009-05-01

    Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.

  5. Diffractive-refractive optics: X-ray splitter.

    PubMed

    Hrdý, Jaromír

    2010-01-01

    The possibility of splitting a thin (e.g. undulator) X-ray beam based on diffraction-refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left-hand part of the roof and the other half impinges on the right-hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel-cut crystals with roof-like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.

  6. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    PubMed

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  7. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  8. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  9. Interface morphology of a Cr(001)/Fe(001) superlattice determined by scanning tunneling microscopy and x-ray diffraction: A comparison

    NASA Astrophysics Data System (ADS)

    Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.

    2001-01-01

    A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.

  10. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    PubMed

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. In situ X-ray powder diffraction studies of the synthesis of graphene oxide and formation of reduced graphene oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storm, Mie Møller, E-mail: mmst@dtu.dk; Johnsen, Rune E.; Norby, Poul

    2016-08-15

    Graphene oxide (GO) and reduced graphene oxide (rGO) are important materials in a wide range of fields. The modified Hummers methods, for synthesizing GO, and subsequent thermal reduction to rGO, are often employed for production of rGO. However, the mechanism behinds these syntheses methods are still unclear. We present an in situ X-ray diffraction study of the synthesis of GO and thermal reduction of GO. The X-ray diffraction revealed that the Hummers method includes an intercalation state and finally formation of additional crystalline material. The formation of GO is observed during both the intercalation and the crystallization stage. During thermalmore » reduction of GO three stages were observed: GO, a disordered stage, and the rGO stage. The appearance of these stages depends on the heating ramp. The aim of this study is to provide deeper insight into the chemical and physical processes during the syntheses. - Graphical abstract: In situ X-ray diffraction results for of the modified Hummers synthesis and the thermal reduction of graphene oxide, revealing three stages for both syntheses as well as new GO diffraction peaks and unidentified crystalline material for the Hummers synthesis and a disordered stage for the thermal reduction of graphene oxide. Display Omitted - Highlights: • Hummers synthesis consists of three stages: dissolution, intercalation and crystal. • GO is produced early on during the synthesis and display new diffraction peaks. • An unidentified triclinic phase is observed for the Hummers synthesis. • Thermal reduction of GO display three stages: GO, a disordered stage and rGO. • In situ XRD indicate reformation of rGO even for fast heated thermal reduction.« less

  12. X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine

    2015-11-01

    The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.

  13. In-situ XRD vs ex-situ vacuum annealing of tantalum oxynitride thin films: Assessments on the structural evolution

    NASA Astrophysics Data System (ADS)

    Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.

    2018-04-01

    The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.

  14. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  15. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  16. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    NASA Astrophysics Data System (ADS)

    Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.

    2016-11-01

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  17. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  18. Determination of indium content of GaAs/(In,Ga)As/(GaAs) core-shell(-shell) nanowires by x-ray diffraction and nano x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Al Hassan, Ali; Lewis, R. B.; Küpers, H.; Lin, W.-H.; Bahrami, D.; Krause, T.; Salomon, D.; Tahraoui, A.; Hanke, M.; Geelhaar, L.; Pietsch, U.

    2018-01-01

    We present two complementary approaches to investigate the In content in GaAs/(In,Ga)As/(GaAs) core-shell-(shell) nanowire (NW) heterostructures using synchrotron radiation. The key advantage of our methodology is that NWs are characterized in their as-grown configuration, i.e., perpendicularly standing on a substrate. First, we determine the mean In content of the (In,Ga)As shell by high-resolution x-ray diffraction (XRD) from NW ensembles. In particular, we disentangle the influence of In content and shell thickness on XRD by measuring and analyzing two reflections with diffraction vector parallel and perpendicular to the growth axis, respectively. Second, we study the In distribution within individual NWs by nano x-ray fluorescence. Both the NW (111) basal plane, that is parallel to the surface of the substrate, and the {10-1} sidewall plane were scanned with an incident nanobeam of 50 nm width. We investigate three samples with different nominal In content of the (In,Ga)As shell. In all samples, the average In content of the shell determined by XRD is in good agreement with the nominal value. For a nominal In content of 15%, the In distribution is fairly uniform between all six sidewall facets. In contrast, in NWs with nominally 25% In content, different sidewall facets of the same NW exhibit different In contents. This effect is attributed to shadowing during growth by molecular beam epitaxy. At the same time, along the NW axis the In distribution is still fairly homogeneous. In NWs with 60% nominal In content and no outer GaAs shell, the In content varies significantly both between different sidewall facets and along the NW axis. This fluctuation is explained by the formation of (In,Ga)As mounds that grow simultaneously with a thinner (In,Ga)As shell. The methodology presented here may be applied also to other core-shell NWs with a ternary shell and paves the way to correlating NW structure with functional properties that depend on the as-grown configuration

  19. Illite polytype quantification using Wildfire© calculated x-ray diffraction patterns

    USGS Publications Warehouse

    Grathoff, Georg H.; Moore, D.M.

    1996-01-01

    Illite polytype quantification allows the differentiation of diagenetic and detrital illite components. In Paleozoic shales from the Illinois Basin, we observe 3 polytypes: 1Md, 1M and 2M1. 1Md and 1M are of diagenetic origin and 2M1 is of detrital origin. In this paper, we compare experimental X-ray diffraction (XRD) traces with traces calculated using WILDFIRE© and quantify mixtures of all 3 polytypes, adjusting the effects of preferred orientation and overlapping peaks. The broad intensity (“illite hump”) around the illite 003, which is very common in illite from shales, is caused by the presence of 1Md illite and mixing of illite polytypes and is not an artifact of sample preparation or other impurities in the sample. Illite polytype quantification provides a tool to extrapolate the K/Ar age and chemistry of the detrital and diagenetic end-members by analysis of different size fractions containing different proportions of diagenetic and detrital illite polytypes.

  20. Three-dimensional x-ray diffraction nanoscopy

    NASA Astrophysics Data System (ADS)

    Nikulin, Andrei Y.; Dilanian, Ruben A.; Zatsepin, Nadia A.; Muddle, Barry C.

    2008-08-01

    A novel approach to x-ray diffraction data analysis for non-destructive determination of the shape of nanoscale particles and clusters in three-dimensions is illustrated with representative examples of composite nanostructures. The technique is insensitive to the x-rays coherence, which allows 3D reconstruction of a modal image without tomographic synthesis and in-situ analysis of large (over a several cubic millimeters) volume of material with a spatial resolution of few nanometers, rendering the approach suitable for laboratory facilities.

  1. In-plane x-ray diffraction for characterization of monolayer and few-layer transition metal dichalcogenide films

    NASA Astrophysics Data System (ADS)

    Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.

    2018-02-01

    There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low

  2. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE PAGES

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  3. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  4. X-Ray Diffraction Profile Analysis for Characterizing Isothermal Aging Behavior of M250 Grade Maraging Steel

    NASA Astrophysics Data System (ADS)

    Mahadevan, S.; Jayakumar, T.; Rao, B. P. C.; Kumar, Anish; Rajkumar, K. V.; Raj, Baldev

    2008-08-01

    X-ray diffraction (XRD) studies were carried out to characterize aging behavior of M250 grade maraging steel samples subjected to isothermal aging at 755 K for varying durations of 0.25, 1, 3, 10, 40, 70, and 100 hours. Earlier studies had shown typical features of precipitation hardening, wherein the hardness increased to a peak value due to precipitation of intermetallics and decreased upon further aging (overaging) due to reversion of martensite to austenite. Intermetallic precipitates, while coherent, are expected to increase the microstrain in the matrix. Hence, an attempt has been made in the present study to understand the microstructural changes in these samples using XRD line profile analysis. The anisotropic broadening with diffraction angle observed in the simple Williamson Hall (WH) plot has been addressed using the modified WH (mWH) approach, which takes into account the contrast caused by dislocations on line profiles, leading to new scaling factors in the WH plot. The normalized mean square strain and crystallite size estimated from mWH have been used to infer early precipitation and to characterize aging behavior. The normalized mean square strain has been used to determine the Avrami exponent in the Johnson Mehl Avrami (JMA) equation, which deals with the kinetics of precipitation. The Avrami exponent thus determined has matched well with values found by other methods, as reported in literature.

  5. Dynamical diffraction imaging (topography) with X-ray synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, M.; Steiner, B. W.; Dobbyn, R. C.

    1989-01-01

    By contrast to electron microscopy, which yields information on the location of features in small regions of materials, X-ray diffraction imaging can portray minute deviations from perfect crystalline order over larger areas. Synchrotron radiation-based X-ray optics technology uses a highly parallel incident beam to eliminate ambiguities in the interpretation of image details; scattering phenomena previously unobserved are now readily detected. Synchrotron diffraction imaging renders high-resolution, real-time, in situ observations of materials under pertinent environmental conditions possible.

  6. Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Liang, Mengning; Harder, Ross; Robinson, Ian

    2007-03-01

    A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.

  7. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  8. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  9. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.

    PubMed

    Beck, L; Rousselière, H; Castaing, J; Duran, A; Lebon, M; Moignard, B; Plassard, F

    2014-11-01

    Study of prehistoric art is playing a major role in the knowledge of human evolution. Many scientific methods are involved in this investigation including chemical analysis of pigments present on artefacts or applied to cave walls. In the past decades, the characterization of coloured materials was carried on by taking small samples. This procedure had two main disadvantages: slight but existing damage of the paintings and limitation of the number of samples. Thanks to the advanced development of portable systems, in-situ analysis of pigment in cave can be now undertaken without fear for this fragile Cultural Heritage. For the first time, a portable system combining XRD and XRF was used in an underground and archaeological environment for prehistoric rock art studies. In-situ non-destructive analysis of black prehistoric drawings and determination of their composition and crystalline structure were successfully carried out. Original results on pigments used 13,000 years ago in the cave of Rouffignac (France) were obtained showing the use of two main manganese oxides: pyrolusite and romanechite. The capabilities of the portable XRD-XRF system have been demonstrated for the characterization of pigments as well as for the analysis of rock in a cave environment. This first in-situ experiment combining X-ray diffraction and X-ray fluorescence open up new horizons and can fundamentally change our approach of rock art studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  11. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging

    DOE PAGES

    Cha, W.; Ulvestad, A.; Allain, M.; ...

    2016-11-23

    Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  12. Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.

    PubMed

    Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O

    2016-11-25

    We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.

  13. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snellings, R., E-mail: ruben.snellings@epfl.ch; Salze, A.; Scrivener, K.L., E-mail: karen.scrivener@epfl.ch

    2014-10-15

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standardmore » addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements.« less

  14. Enhanced model for determining the number of graphene layers and their distribution from X-ray diffraction data

    PubMed Central

    Ademi, Abdulakim; Grozdanov, Anita; Paunović, Perica; Dimitrov, Aleksandar T

    2015-01-01

    Summary A model consisting of an equation that includes graphene thickness distribution is used to calculate theoretical 002 X-ray diffraction (XRD) peak intensities. An analysis was performed upon graphene samples produced by two different electrochemical procedures: electrolysis in aqueous electrolyte and electrolysis in molten salts, both using a nonstationary current regime. Herein, the model is enhanced by a partitioning of the corresponding 2θ interval, resulting in significantly improved accuracy of the results. The model curves obtained exhibit excellent fitting to the XRD intensities curves of the studied graphene samples. The employed equation parameters make it possible to calculate the j-layer graphene region coverage of the graphene samples, and hence the number of graphene layers. The results of the thorough analysis are in agreement with the calculated number of graphene layers from Raman spectra C-peak position values and indicate that the graphene samples studied are few-layered. PMID:26665083

  15. Structural and Electronic Properties Study of Colombian Aurifer Soils by Mössbauer Spectroscopy and X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Bustos Rodríguez, H.; Rojas Martínez, Y.; Oyola Lozano, D.; Pérez Alcázar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.

    2005-02-01

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Nariño (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.

  16. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  17. Biological imaging by soft x-ray diffraction microscopy

    DOE PAGES

    Shapiro, D.; Thibault, P.; Beetz, T.; ...

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore » microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  18. Automated Phase Segmentation for Large-Scale X-ray Diffraction Data Using a Graph-Based Phase Segmentation (GPhase) Algorithm.

    PubMed

    Xiong, Zheng; He, Yinyan; Hattrick-Simpers, Jason R; Hu, Jianjun

    2017-03-13

    The creation of composition-processing-structure relationships currently represents a key bottleneck for data analysis for high-throughput experimental (HTE) material studies. Here we propose an automated phase diagram attribution algorithm for HTE data analysis that uses a graph-based segmentation algorithm and Delaunay tessellation to create a crystal phase diagram from high throughput libraries of X-ray diffraction (XRD) patterns. We also propose the sample-pair based objective evaluation measures for the phase diagram prediction problem. Our approach was validated using 278 diffraction patterns from a Fe-Ga-Pd composition spread sample with a prediction precision of 0.934 and a Matthews Correlation Coefficient score of 0.823. The algorithm was then applied to the open Ni-Mn-Al thin-film composition spread sample to obtain the first predicted phase diagram mapping for that sample.

  19. Characterization of Al-ALLOYS (50xx) by Using Positron Annihilation, X-Ray Diffraction and Vibrating Reed Techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.

    A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.

  20. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  1. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    PubMed Central

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463

  2. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE PAGES

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  3. Characterization of natural puya sand extract of Central Kalimantan by using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Suastika, K. G.; Karelius, K.; Sudyana, I. N.

    2018-03-01

    Start Zircon sand extraction in this study use natural sand material from Kereng Pangi village of Central Kalimantan, also known as Puya sand. There are only three ways to extract the Puya sand. The first is magnetic separation, the second is immersion in HCl, and the third is reaction with NaOH. In addition, sample of each extraction step is analyzed with X-Ray Diffraction (XRD). Then based on the quantitative analysis using X'Pert Highscore Plus software, the samples are identified mostly as zircon (ZrSiO4) and silica (SiO2). Moreover, after the immersion process with HCl, the silica compound goes down and the zircon compound climbs to 74%. In the reaction process with NaOH zircon compound content further to increase to 88%.

  4. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less

  5. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay

  6. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  7. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  8. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  9. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids

    PubMed Central

    2013-01-01

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493

  10. Exploiting the Synergy of Powder X-ray Diffraction and Solid-State NMR Spectroscopy in Structure Determination of Organic Molecular Solids.

    PubMed

    Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M

    2013-06-13

    We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.

  11. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  12. Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Mieszczynski, C.; Kuri, G.; Degueldre, C.; Martin, M.; Bertsch, J.; Borca, C. N.; Grolimund, D.; Delafoy, Ch.; Simoni, E.

    2014-01-01

    Microstructural changes in a set of commercial grade UO2 fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO2 materials and relatively larger grain chromia-doped UO2 fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg-1). The lattice parameters of UO2 in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO2 as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO2 lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO2 crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO2 pellets.

  13. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  14. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  15. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    PubMed Central

    Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.

    2014-01-01

    A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002

  16. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. X-Ray Diffraction and the Discovery of the Structure of DNA

    ERIC Educational Resources Information Center

    Crouse, David T.

    2007-01-01

    A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…

  18. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  19. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  20. In-Line Monitoring of Fab Processing Using X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Gittleman, Bruce; Kozaczek, Kris

    2005-09-01

    As the materials shift that started with Cu continues to advance in the semiconductor industry, new issues related to materials microstructure have arisen. While x-ray diffraction (XRD) has long been used in development applications, in this paper we show that results generated in real time by a unique, high throughput, fully automated XRD metrology tool can be used to develop metrics for qualification and monitoring of critical processes in current and future manufacturing. It will be shown that these metrics provide a unique set of data that correlate to manufacturing issues. For example, ionized-sputtering is the current deposition method of choice for both the Cu seed and TaNx/Ta barrier layers. The alpha phase of Ta is widely used in production for the upper layer of the barrier stack, but complete elimination of the beta phase requires a TaNx layer with sufficient N content, but not so much as to start poisoning the target and generating particle issues. This is a well documented issue, but traditional monitoring by sheet resistance methods cannot guarantee the absence of the beta phase, whereas XRD can determine the presence of even small amounts of beta. Nickel silicide for gate metallization is another example where monitoring of phase is critical. As well being able to qualify an anneal process that gives only the desired NiSi phase everywhere across the wafer, XRD can be used to determine if full silicidation of the Ni has occurred and characterize the crystallographic microstructure of the Ni to determine any effect of that microstructure on the anneal process. The post-anneal nickel silicide phase and uniformity of the silicide microstructure can all be monitored in production. Other examples of the application of XRD to process qualification and production monitoring are derived from the dependence of certain processes, some types of defect generation, and device performance on crystallographic texture. The data presented will show that CMP dishing

  1. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  2. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  3. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    PubMed

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  4. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  5. X-ray diffraction from nonuniformly stretched helical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodanovic, Momcilo; Irving, Thomas C.; Mijailovich, Srboljub M.

    2016-04-18

    The fibrous proteins in living cells are exposed to mechanical forces interacting with other subcellular structures. X-ray fiber diffraction is often used to assess deformation and movement of these proteins, but the analysis has been limited to the theory for fibrous molecular systems that exhibit helical symmetry. However, this approach cannot adequately interpret X-ray data from fibrous protein assemblies where the local strain varies along the fiber length owing to interactions of its molecular constituents with their binding partners. To resolve this problem a theoretical formulism has been developed for predicting the diffraction from individual helical molecular structures nonuniformly strainedmore » along their lengths. This represents a critical first step towards modeling complex dynamical systems consisting of multiple helical structures using spatially explicit, multi-scale Monte Carlo simulations where predictions are compared with experimental data in a `forward' process to iteratively generate ever more realistic models. Here the effects of nonuniform strains and the helix length on the resulting magnitude and phase of diffraction patterns are quantitatively assessed. Examples of the predicted diffraction patterns of nonuniformly deformed double-stranded DNA and actin filaments in contracting muscle are presented to demonstrate the feasibly of this theoretical approach.« less

  6. AUSPEX: a graphical tool for X-ray diffraction data analysis.

    PubMed

    Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N

    2017-09-01

    In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.

  7. Synchrotron X-ray diffraction study of the Ba{sub 1−x}SrSnO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodjosantoso, Anti K., E-mail: Prodjosantoso@yahoo.com; Zhou, Qingdi; Kennedy, Brendan J.

    At room temperature the sequence of phases with increasing amounts of strontium in the stannate perovskite system Ba{sub 1−x}SrSnO{sub 3} has been established from high resolution synchrotron X-ray powder diffraction. The observed sequence orthorhombic (Pbnm), orthorhombic (Ibmm), tetragonal (I4/mcm), and cubic (Pm3-bar m) is a consequence of the sequential introduction of cooperative tilting of the corner sharing SnO{sub 6} octahedra. The cell volume changes smoothly across the series with no obvious discontinuities associated with the phase transitions. - Graphical abstract: Portions of the synchrotron X-ray diffraction profiles (λ=0.82453 Å) from selected Ba{sub 1−x}Sr{sub x}SnO{sub 3} samples together with the resultsmore » of fitting by the Rietveld method. Highlights: ► Structures of the stannate perovskites Ba{sub 1−x}SrSnO{sub 3} refined from synchrotron XRD. ► The sequence Pm3-bar m→I4/mcm→Ibmm→Pbnm results from tilting of the octahedra. ► The tilting maintains optimal bonding of the cations seen from the BVS analysis.« less

  8. XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodi, G.; Pascuta, P.; Dan, V.

    2013-11-13

    X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less

  9. An image focusing means by using an opaque object to diffract x-rays

    DOEpatents

    Sommargren, Gary E.; Weaver, H. Joseph

    1991-01-01

    The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.

  10. Arsenite Oxidation by a Poorly-Crystalline Manganese Oxide 2. Results from X-ray Absorption Spectroscopy and X-ray Diffraction

    PubMed Central

    Lafferty, Brandon J.; Ginder-Vogel, Matthew; Zhu, Mengqiang; Livi, Kenneth J. T.; Sparks, Donald L.

    2010-01-01

    Arsenite (AsIII) oxidation by manganese oxides (Mn-oxides) serves to detoxify and, under many conditions, immobilize arsenic (As) by forming arsenate (AsV). AsIII oxidation by MnIV-oxides can be quite complex, involving many simultaneous forward reactions and subsequent back reactions. During AsIII oxidation by Mn-oxides, a reduction in oxidation rate is often observed, which is attributed to Mn-oxide surface passivation. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data show that MnII sorption on a poorly-crystalline hexagonal birnessite (δ-MnO2) is important in passivation early during reaction with AsIII. Also, it appears that MnIII in the δ-MnO2 structure is formed by conproportionation of sorbed MnII and MnIV in the mineral structure. The content of MnIII within the δ-MnO2 structure appears to increase as the reaction proceeds. Binding of AsV to δ-MnO2 also changes as MnIII becomes more prominent in the δ-MnO2 structure. The data presented indicate that AsIII oxidation and AsV sorption by poorly-crystalline δ-MnO2 is greatly affected by Mn oxidation state in the δ-MnO2 structure. PMID:20977204

  11. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.

    PubMed

    Lazzari, Olivier; Jacques, Simon; Sochi, Taha; Barnes, Paul

    2009-09-01

    Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.

  13. Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.

    2004-01-01

    X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.

  14. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals

    DOE PAGES

    Awel, Salah; Kirian, Richard A.; Wiedorn, Max O.; ...

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  15. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  16. Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.

    PubMed

    Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter

    2011-03-01

    A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.

  17. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  18. Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal-organic framework thin film confirmed by synchrotron X-ray diffraction.

    PubMed

    Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2012-06-13

    Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.

  19. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  20. Development of low temperature and high magnetic field X-ray diffraction facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahee, Aga; Sharma, Shivani; Singh, K.

    2015-06-24

    The current progress of materials science regarding multifunctional materials (MFM) has put forward the challenges to understand the microscopic origin of their properties. Most of such MFMs have magneto-elastic correlations. To investigate the underlying mechanism it is therefore essential to investigate the structural properties in the presence of magnetic field. Keeping this in view low temperature and high magnetic field (LTHM) powder x-ray diffraction (XRD), a unique state-of-art facility in the country has been developed at CSR Indore. This setup works on symmetric Bragg Brentano geometry using a parallel incident x-ray beam from a rotating anode source working at 17more » kW. Using this one can do structural studies at non-ambient conditions i.e. at low- temperatures (2-300 K) and high magnetic field (+8 to −8 T). The available scattering angle ranges from 5° to 115° 2θ with a resolution better than 0.1°. The proper functioning of the setup has been checked using Si sample. The effect of magnetic field on the structural properties has been demonstrated on Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} sample. Clear effect of field induced phase transition has been observed. Moreover, the effect of zero field cooled and field cooled conditions is also observed.« less

  1. Diffraction and Imaging Study of Imperfections of Protein Crystals with Coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Thomas, B. R.; Chernov, A. A.; Chu, Y. S.; Lai, B.

    2004-01-01

    High angular-resolution x-ray diffraction and phase contrast x-ray imaging were combined to study defects and perfection of protein crystals. Imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of a uniformly grown lysozyme crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in diffraction images. X-ray imaging and diffraction characterization of the quality of apoferritin crystals will also be discussed in the presentation.

  2. Amorphous Analogs of Martian Global Soil: Pair Distribution Function Analyses and Implications for Scattering Models of Chemin X-ray Diffraction Data

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Bish, D. L.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Soils on Mars have been analyzed by the Mars Exploration Rovers (MER) and most recently by the Mars Science Laboratory (MSL) rover. Chemical analyses from a majority of soil samples suggest that there is a relatively uniform global soil composition across much of the planet. A soil site, Rocknest, was sampled by the MSL science payload including the CheMin X-ray diffractometer and the Alpha Particle X-ray Spectrometer (APXS). Che- Min X-ray diffraction (XRD) data revealed crystalline phases and a broad, elevated background, indicating the presence of amorphous or poorly ordered materials (Fig 1). Based on the chemical composition of the bulk soil measured by APXS and the composition of crystalline phases derived from unit-cell parameters determined with CheMin data, the percentages of crystalline and amorphous phases were calculated at 51% and 49%, respectively. Attempts to model the amorphous contribution to CheMin XRD patterns were made using amorphous standards and full-pattern fitting methods and show that the broad, elevated background region can be fitted by basaltic glass, allophane, and palagonite. However, the modeling shows only that these phases have scattering patterns similar to that for the soil, not that they represent unique solutions. Here, we use pair distribution function (PDF) analysis to determine the short-range order of amorphous analogs in martian soils and better constrain the amorphous material detected by CheMin.

  3. Buckskin Drill Hole and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" target location, shown at left. X-ray diffraction analysis of the Buckskin sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed the presence of a silica-containing mineral named tridymite. This is the first detection of tridymite on Mars. Peaks in the X-ray diffraction pattern are from minerals in the sample, and every mineral has a diagnostic set of peaks that allows identification. The image of Buckskin at left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera on July 30, 2015, and is also available at PIA19804. http://photojournal.jpl.nasa.gov/catalog/PIA20271

  4. Titration of a Solid Acid Monitored by X-Ray Diffraction

    ERIC Educational Resources Information Center

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  5. Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Dipti V.; Athawale, Anjali A.

    2013-06-01

    The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.

  6. X-ray diffraction microscopy on frozen hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna

    X-rays are excellent for imaging thick samples at high resolution because of their large penetration depth compared to electrons and their short wavelength relative to visible light. To image biological material, the absorption contrast of soft X-rays, especially between the carbon and oxygen K-shell absorption edges, can be utilized to give high contrast, high resolution images without the need for stains or labels. Because of radiation damage and the desire for high resolution tomography, live cell imaging is not feasible. However, cells can be frozen in vitrified ice, which reduces the effect of radiation damage while maintaining their natural hydrated state. X-ray diffraction microscopy (XDM) is an imaging technique which eliminates the limitations imposed by current focusing optics simply by removing them entirely. Far-field coherent diffraction intensity patterns are collected on a pixelated detector allowing every scattered photon to be collected within the limits of the detector's efficiency and physical size. An iterative computer algorithm is then used to invert the diffraction intensity into a real space image with both absorption and phase information. This technique transfers the emphasis away from fabrication and alignment of optics, and towards data processing. We have used this method to image a pair of freeze-dried, immuno-labeled yeast cells to the highest resolution (13 nm) yet obtained for a whole eukaryotic cell. We discuss successes and challenges in working with frozen hydrated specimens and efforts aimed at high resolution imaging of vitrified eukaryotic cells in 3D.

  7. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  8. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.

  9. Diamond-anvil cell for radial x-ray diffraction.

    PubMed

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-06-28

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.

  10. X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.

    2016-02-15

    X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less

  11. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  12. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  13. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  14. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  15. A Practical Guide for the Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (by V. E. Buhrke, R. Jenkins, and D. K. Smith)

    NASA Astrophysics Data System (ADS)

    Rudman, Reuben

    1999-06-01

    Wiley-VCH: New York, 1998. xxiv + 333 pp. ISBN 0-471-19458-1. $79.95. I would have subtitled this book "All You Ever Wanted To Know about ...Sample Preparation". Although its principal thrust is geared towards the analytical chemist in an X-ray diffraction (XRD) or X-ray fluorescence (XRF) service laboratory, this text will be of use primarily as a reference source in all milieus dealing with undergraduate research projects and advanced laboratory courses in physical and analytical chemistry. It contains dozens of suggestions for preparing randomly oriented small samples of nearly anything. For example, rocks and minerals, soft organics and hard ceramics, radioactive and liquid materials, metals and oils are all treated. As the availability of XRD and XRF equipment has increased, so has the use of these techniques in the teaching schedule. Many undergraduate laboratory and research projects utilizing these methods have been described in the literature and are found in laboratory textbooks. Very often, especially with the increasingly common use of automated computer-controlled instrumentation, sample preparation has become the key experimental technique required for successful data collection. However, it is not always easy to prepare the statistically random distribution of small particles (crystallites) that is required by these methods. A multitude of techniques have been developed over the past 70 years, but many of them have been handed down by word of mouth or are scattered throughout the literature. This book represents an attempt to systematically describe the theory and practice of sample preparation. This excellent guide to the intricacies of sample preparation begins with a description of statistical sampling methods and the principles of grinding techniques. After a discussion of XRF specimen preparation, which includes pressing pellets, fusion methods, crucible selection and handling very small samples, detailed descriptions for handling rocks

  16. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  17. Combined X-ray and neutron fibre diffraction studies of biological and synthetic polymers

    NASA Astrophysics Data System (ADS)

    Parrot, I. M.; Urban, V.; Gardner, K. H.; Forsyth, V. T.

    2005-08-01

    The fibrous state is a natural one for polymer molecules which tend to assume regular helical conformations rather than the globular structures characteristic of many proteins. Fibre diffraction therefore has broad application to the study of a wide range of biological and synthetic polymers. The purpose of this paper is to illustrate the general scope of the method and in particular to demonstrate the impact of a combined approach involving both X-ray and neutron diffraction methods. While the flux of modern X-ray synchrotron radiation sources allows high quality datasets to be recorded with good resolution within a very short space of time, neutron studies can provide unique information through the ability to locate hydrogen or deuterium atoms that are often difficult or impossible to locate using X-ray methods. Furthermore, neutron fibre diffraction methods can, through the ability to selectively label specific parts of a structure, be used to highlight novel aspects of polymer structure that can not be studied using X-rays. Two examples are given. The first describes X-ray and neutron diffraction studies of conformational transitions in DNA. The second describes structural studies of the synthetic high-performance polymer poly(p-phenylene terephthalamide) (PPTA), known commercially as Kevlar® or Twaron®.

  18. Ultrafast molecular processes mapped by femtosecond x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Elsaesser, Thomas

    2012-02-01

    X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged

  19. Biological imaging by soft X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  20. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x10 20 cm -2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based onmore » the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  1. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  2. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  3. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  4. Borman effect in resonant diffraction of X-rays

    NASA Astrophysics Data System (ADS)

    Oreshko, A. P.

    2013-08-01

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  5. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE PAGES

    Beetz, T.; Howells, M. R.; Jacobsen, C.; ...

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore » computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  6. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  7. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  8. KOTOBUKI-1 apparatus for cryogenic coherent X-ray diffraction imaging.

    PubMed

    Nakasako, Masayoshi; Takayama, Yuki; Oroguchi, Tomotaka; Sekiguchi, Yuki; Kobayashi, Amane; Shirahama, Keiya; Yamamoto, Masaki; Hikima, Takaaki; Yonekura, Koji; Maki-Yonekura, Saori; Kohmura, Yoshiki; Inubushi, Yuichi; Takahashi, Yukio; Suzuki, Akihiro; Matsunaga, Sachihiro; Inui, Yayoi; Tono, Kensuke; Kameshima, Takashi; Joti, Yasumasa; Hoshi, Takahiko

    2013-09-01

    We have developed an experimental apparatus named KOTOBUKI-1 for use in coherent X-ray diffraction imaging experiments of frozen-hydrated non-crystalline particles at cryogenic temperature. For cryogenic specimen stage with small positional fluctuation for a long exposure time of more than several minutes, we here use a cryogenic pot cooled by the evaporation cooling effect for liquid nitrogen. In addition, a loading device is developed to bring specimens stored in liquid nitrogen to the specimen stage in vacuum. The apparatus allows diffraction data collection for frozen-hydrated specimens at 66 K with a positional fluctuation of less than 0.4 μm and provides an experimental environment to easily exchange specimens from liquid nitrogen storage to the specimen stage. The apparatus was developed and utilized in diffraction data collection of non-crystalline particles with dimensions of μm from material and biological sciences, such as metal colloid particles and chloroplast, at BL29XU of SPring-8. Recently, it has been applied for single-shot diffraction data collection of non-crystalline particles with dimensions of sub-μm using X-ray free electron laser at BL3 of SACLA.

  9. X-ray diffraction diagnostic design for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.

    2013-09-01

    This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.

  10. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  11. Experimental Approaches for Solution X-Ray Scattering and Fiber Diffraction

    PubMed Central

    Irving, T. C.

    2008-01-01

    X-ray scattering and diffraction from non-crystalline systems have gained renewed interest in recent years, as focus shifts from the structural chemistry information gained by high-resolution studies to the context of structural physiology at larger length scales. Such techniques permit the study of isolated macromolecules as well as highly organized macromolecular assemblies as a whole under near-physiological conditions. Time-resolved approaches, made possible by advanced synchrotron instrumentation, add a critical dimension to many of these investigations. This article reviews experimental approaches in non-crystalline x-ray scattering and diffraction that may be used to illuminate important scientific questions such as protein/nucleic acid folding and structure-function relationships in large macromolecular assemblies. PMID:18801437

  12. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    PubMed

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  13. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry.

    PubMed

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-04-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La 3 Ga 5 SiO 14 ) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space-time modulation of an X-ray beam.

  14. In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?

    NASA Astrophysics Data System (ADS)

    Barber, John

    2011-03-01

    In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.

  15. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles

  16. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  17. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  18. A laboratory based system for laue micro x-ray diffraction.

    PubMed

    Lynch, P A; Stevenson, A W; Liang, D; Parry, D; Wilkins, S; Tamura, N

    2007-02-01

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 microm beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the "knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt % Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis.

  19. Correlation of x-ray diffraction and Mössbauer effect measurements with magnetic properties of heat-treated Cu80Co15Fe5 ribbons

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Rubinstein, M.; Das, B. N.; Koon, N. C.

    1994-05-01

    X-ray diffraction (XRD) and Mössbauer Effect (ME) measurements were performed on heat-treated Cu80Co15Fe5 melt-spun ribbons in an attempt to understand the trends in magnetic properties with heat treatment. ME measurements indicate that the majority of Fe atoms (86%) occupy sites in ferromagnetic FCC CoFe clusters after the initial quench. A heat treatment at 900 °C acts to complete the chemical separation of Fe from the Cu matrix. The presence of Co in the Cu matrix, even after high temperature anneals, provides a paramagnetic component that prohibits saturation even at high fields.

  20. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA.

    PubMed

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-05-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.

  1. Data processing software suite SITENNO for coherent X-ray diffraction imaging using the X-ray free-electron laser SACLA

    PubMed Central

    Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi

    2014-01-01

    Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651

  2. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  3. Documenting mudstone heterogeneity by use of principal component analysis of X-ray diffraction and portable X-ray fluorescence data: A case study in the Triassic Shublik Formation, Alaska North Slope

    USGS Publications Warehouse

    Boehlke, Adam; Whidden, Katherine J.; Benzel, William M.

    2017-01-01

    Determining the chemical and mineralogical variability within fine-grained mudrocks poses analytical challenges but is potentially useful for documenting subtle stratigraphic differences in physicochemical environments that may influence petroleum reservoir properties and behavior. In this study, we investigate the utility of combining principal component analysis (PCA) of X-ray diffraction (XRD) data and portable X-ray fluorescence (pXRF) data to identify simplifying relationships within a large number of samples and subsequently evaluate a subset that encompasses the full spectrum or range of mineral and chemical variability within a vertical section. Samples were collected and analyzed from a vertical core of the Shublik Formation, a heterogeneous, phosphate-rich, calcareous mudstone-to-marl unit deposited in the Arctic Alaska Basin (AAB) during the Middle and Late Triassic. The Shublik is a major petroleum source rock in the Alaskan North Slope, and is considered a prime target for continuous self-sourced resource plays.

  4. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the

  5. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  6. Carbon nanohorns under cold compression to 40 GPa: Raman scattering and X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Li, Bo; Nan, Yanli; Zhao, Xiang; Song, Xiaolong; Li, Haining; Wu, Jie; Su, Lei

    2017-11-01

    We report a high-pressure behavior of carbon nanohorns (CNHs) to 40 GPa at ambient temperature by in situ Raman spectroscopy and synchrotron radiation x-ray diffraction (XRD) in a diamond anvil cell. In Raman measurement, multiple structural transitions are observed. In particular, an additional band at ˜1540 cm-1 indicative of sp3 bonding is shown above 35 GPa, but it reverses upon releasing pressure, implying the formation of a metastable carbon phase having both sp2 and sp3 bonds. Raman frequencies of all bands (G, 2D, D + G, and 2D') are dependent upon pressure with respective pressure coefficients, among which the value for the G band is as small as ˜2.65 cm-1 GPa-1 above 10 GPa, showing a superior high-pressure structural stability. Analysis based on mode Grüneisen parameter demonstrates the similarity of high-pressure behavior between CNHs and single-walled carbon nanotubes. Furthermore, the bulk modulus and Grüneisen parameter for the G band of CNHs are calculated to be ˜33.3 GPa and 0.1, respectively. In addition, XRD data demonstrate that the structure of post-graphite phase derives from surface nanohorns. Based on topological defects within conical graphene lattice, a reasonable transformation route from nanohorns to the post-graphite phase is proposed.

  7. The Scherrer equation and the dynamical theory of X-ray diffraction.

    PubMed

    Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos

    2016-05-01

    The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.

  8. Scanning electron microscopy, X-ray diffraction and thermal analysis study of the TiH{sub 2} foaming agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandrino, Djordje, E-mail: djordje.mandrino@imt.si; Paulin, Irena; Skapin, Sreco D.

    2012-10-15

    The decomposition of commercially available TiH{sub 2} was investigated while performing different thermal treatments. TiH{sub 2} powder, which is widely used as a foaming agent, was heat treated at 450 Degree-Sign C for various times, from 15 min to 120 min. Scanning electron microscopy (SEM) images of the surfaces at different magnifications were obtained and interpreted. A Bragg-Brentano X-ray diffractometer was used to measure the X-ray diffraction (XRD) spectra on all five samples. A close examination of the diffraction spectra showed that for an as-received sample and samples undergoing the longest thermal treatment (1 and 2 h) these spectra canmore » be explained as deriving from cubic TiH{sub 1.924}, while for the other two samples they can be explained as deriving from tetragonal TiH{sub 1.924}. A constant-unit-cell-volume phase transition between the cubic and tetragonal phases in TiH{sub 2-y}-type compounds had been described in the literature. The unit-cell parameters obtained from measured spectra confirm that within the measurement uncertainty the unit-cell volume is indeed constant in all five samples. Thermo-gravimetry (TG) and differential thermal analysis (DTA) measurements were performed on all the samples, showing that the intensity of the dehydrogenation depends on the previous treatment of the TiH{sub 2}. After the thermal analysis XRD of the samples was performed again and the material was found to exhibit a Ti-like unit cell, but slightly enlarged due to the unreleased hydrogen. - Highlights: Black-Right-Pointing-Pointer TiH{sub 2} samples were cubic or tetragonal TiH{sub 1.924} Black-Right-Pointing-Pointer Onset of the hydrogen release temperature increases with the pre-treatment time. Black-Right-Pointing-Pointer Thermal dehydrogenation for the as-prepared TiH{sub 2} is a three-step process. Black-Right-Pointing-Pointer After thermal analysis 2 residual hydrogen TiH{sub x} phases, close to {alpha}Ti, appeared.« less

  9. Application of focused-beam flat-sample method to synchrotron powder X-ray diffraction with anomalous scattering effect

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Katsuya, Y.; Matsushita, Y.

    2013-03-01

    The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.

  10. A new method to evaluate the quality of single crystal Cu by an X-ray diffraction butterfly pattern method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhenming; Guo Zhenqi; Li Jianguo

    2004-12-15

    A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less

  11. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  12. Diffraction effects on angular response of X-ray collimators

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Barrus, D. M.; Fenimore, E.

    1976-01-01

    Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.

  13. Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.

    Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less

  14. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    NASA Astrophysics Data System (ADS)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  15. Resonant x-ray diffraction revealing chemical disorder in sputtered L10 FeNi on Si(0 0 1)

    NASA Astrophysics Data System (ADS)

    Frisk, Andreas; Lindgren, Bengt; Pappas, Spiridon D.; Johansson, Erik; Andersson, Gabriella

    2016-10-01

    In the search for new rare earth free permanent magnetic materials, FeNi with a L10 structure is a possible candidate. We have synthesized the phase in the thin film form by sputtering onto HF-etched Si(0 0 1) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house x-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 0 0 1 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.

  16. Resonant x-ray diffraction revealing chemical disorder in sputtered L10 FeNi on Si(0 0 1).

    PubMed

    Frisk, Andreas; Lindgren, Bengt; Pappas, Spiridon D; Johansson, Erik; Andersson, Gabriella

    2016-10-12

    In the search for new rare earth free permanent magnetic materials, FeNi with a L10 structure is a possible candidate. We have synthesized the phase in the thin film form by sputtering onto HF-etched Si(0 0 1) substrates. Monatomic layers of Fe and Ni were alternately deposited on a Cu buffer layer, all of which grew epitaxially on the Si substrates. A good crystal structure and epitaxial relationship was confirmed by in-house x-ray diffraction (XRD). The chemical order, which to some part is the origin of an uniaxial magnetic anisotropy, was measured by resonant XRD. The 0 0 1 superlattice reflection was split in two symmetrically spaced peaks due to a composition modulation of the Fe and Ni layers. Furthermore the influence of roughness induced chemical anti-phase domains on the RXRD pattern is exemplified. A smaller than expected magnetic uniaxial anisotropy energy was obtained, which is partly due to the composition modulations, but the major reason is concluded to be the Cu buffer surface roughness.

  17. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  18. Paleoenvironmental Interpretation of drill core from Tugen Hills, Kenya through X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Minkara, K. E.; Rabideaux, N. M.; Deocampo, D.; Kingston, J.; Cohen, A. S.

    2016-12-01

    Paleoenvironmental reconstruction in regions of significant archeological and paleontological discoveries can be used to help better understand early hominin history in relation to environmental changes. Using X-ray diffraction (XRD) analysis of lacustrine sediments obtained from core material recovered during the Hominin Sites and Paleolakes Drilling Project (HSPDP) campaign at the Tugen Hills drilling site in central Kenya we can reconstruct a high-resolution record of paleoclimate and tectonics from the lake sediments during the Plio-Pleistocene. XRD analysis enables us to identify the mineralogical trends from the 227m core, which can be employed to understand the geochemical evolution of the basin. We want to test whether 23-kyr precessional cyclicity is the primary driver of environmental change at Lake Baringo, and how that change influenced vertebrate and hominin evolution. Our goals are to understand how the paleolake geochemically evolved over time and how the mineralogical characteristics are related to climate change. Preliminary results indicate discrete zones of carbonate and zeolite mineral occurrence, suggesting possible paleoclimate indicators of humidity versus aridity. Geochemical and sedimentological analysis will be required to distinguish primary lacustrine carbonate versus secondary or pedogenic carbonate, which does not carry a lacustrine signal. Quartz-rich intervals and diatomaceous sequences are distinct from zeolitic zones, suggesting variable salinities. Furthermore, hkl reflections of clay-rich bulk samples suggest varying relative abundances of kaolinite and smectite. As we extract clay fractions and analyze the clay mineralogy in further detail, this ratio may provide an indicator of paleoweathering intensity within the basin.

  19. Improving aluminum particle reactivity by annealing and quenching treatments: Synchrotron X-ray diffraction analysis of strain

    DOE PAGES

    McCollum, Jena; Pantoya, Michelle L.; Tamura, Nobumichi

    2015-11-06

    In bulk material processing, annealing and quenching metals such as aluminum (Al) can improve mechanical properties. On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Our study examines the effect of annealing and quenching on the strain of Al particles and the corresponding reactivity of aluminum and copper oxide (CuO) composites. Micron-sized Al particles were annealed and quenched according to treatments designed to affect Al mechanical properties. Furthermore, synchrotron X-ray diffraction (XRD) analysis of the particles reveals that thermal treatment increased the dilatational strain of the aluminum-core, alumina-shell particles. Flame propagation experiments also show thermalmore » treatments effect reactivity when combined with CuO. An effective annealing and quenching treatment for increasing aluminum reactivity was identified. Our results show that altering the mechanical properties of Al particles affects their reactivity.« less

  20. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David K; Lee, Christopher; Dazen, Kevin

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  1. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  2. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori

    2003-01-01

    We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.

  3. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    PubMed

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  4. Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.

    PubMed

    Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria; Barthelmess, Miriam; Longchamp, Jean-Nicolas; Ringler, Philippe; Pardini, Tommaso; Wojtas, David H; Coleman, Matthew A; Dörner, Katerina; Fuglerud, Silje; Hammarin, Greger; Habenstein, Birgit; Langkilde, Annette E; Loquet, Antoine; Meents, Alke; Riek, Roland; Stahlberg, Henning; Boutet, Sébastien; Hunter, Mark S; Koglin, Jason; Liang, Mengning; Ginn, Helen M; Millane, Rick P; Frank, Matthias; Barty, Anton; Chapman, Henry N

    2018-05-09

    Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.

  5. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  6. Evolved Gas Analysis and X-Ray Diffraction of Carbonate Samples from the 2009 Arctic Mars Analog Svalbard Expedition: Implications for Mineralogical Inferences from the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.

    2010-01-01

    The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.

  7. Investigation of Renal Stones by X-ray and Neutron Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeva, M.; Boianova, A.; Beskrovnyi, A. I.

    2007-04-23

    Renal stones were investigated by X-ray diffraction. The obtained results showed only one crystal phase in every sample. With the aim to verify eventual availability of second phase (under 3 volume %) the same renal stones were investigated by neutron diffraction. The neutron spectra proved that additional crystal phase was absent in the renal stones. The obtained results are scientific-practical, in aid of the medicine, especially in the case of renal stone disease.

  8. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.

    PubMed

    Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  9. Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging

    NASA Astrophysics Data System (ADS)

    Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.

    2013-11-01

    X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.

  10. Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment

    NASA Astrophysics Data System (ADS)

    Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.

    2018-02-01

    Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.

  11. XRD analysis of undoped and Fe doped TiO{sub 2} nanoparticles by Williamson Hall method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-08-28

    Undoped and Fe doped titanium dioxide (TiO{sub 2}) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO{sub 2} and Fe doped TiO{sub 2} nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO{sub 2} with Fe doping was observed. The anatase phase of Fe-doped TiO{sub 2} nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size weremore » also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO{sub 2} and tensile strain for Fe-TiO{sub 2} nanoparticles annealed at 500°C.« less

  12. X-ray Diffraction from Membrane Protein Nanocrystals

    PubMed Central

    Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.

    2011-01-01

    Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672

  13. Discovery and development of x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol; Yin, Ming; Datta, Timir

    2013-03-01

    In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.

  14. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  15. Observation of sagittal X-ray diffraction by surface acoustic waves in Bragg geometry1

    PubMed Central

    Vadilonga, Simone; Zizak, Ivo; Roshchupkin, Dmitry; Evgenii, Emelin; Petsiuk, Andrei; Leitenberger, Wolfram; Erko, Alexei

    2017-01-01

    X-ray Bragg diffraction in sagittal geometry on a Y-cut langasite crystal (La3Ga5SiO14) modulated by Λ = 3 µm Rayleigh surface acoustic waves was studied at the BESSY II synchrotron radiation facility. Owing to the crystal lattice modulation by the surface acoustic wave diffraction, satellites appear. Their intensity and angular separation depend on the amplitude and wavelength of the ultrasonic superlattice. Experimental results are compared with the corresponding theoretical model that exploits the kinematical diffraction theory. This experiment shows that the propagation of the surface acoustic waves creates a dynamical diffraction grating on the crystal surface, and this can be used for space–time modulation of an X-ray beam. PMID:28381976

  16. A new theory for X-ray diffraction

    PubMed Central

    Fewster, Paul F.

    2014-01-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the ‘Bragg position’ even if the ‘Bragg condition’ is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many ‘Bragg positions’. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on ‘Bragg-type’ scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the ‘background’. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models. PMID:24815975

  17. A new theory for X-ray diffraction.

    PubMed

    Fewster, Paul F

    2014-05-01

    This article proposes a new theory of X-ray scattering that has particular relevance to powder diffraction. The underlying concept of this theory is that the scattering from a crystal or crystallite is distributed throughout space: this leads to the effect that enhanced scatter can be observed at the `Bragg position' even if the `Bragg condition' is not satisfied. The scatter from a single crystal or crystallite, in any fixed orientation, has the fascinating property of contributing simultaneously to many `Bragg positions'. It also explains why diffraction peaks are obtained from samples with very few crystallites, which cannot be explained with the conventional theory. The intensity ratios for an Si powder sample are predicted with greater accuracy and the temperature factors are more realistic. Another consequence is that this new theory predicts a reliability in the intensity measurements which agrees much more closely with experimental observations compared to conventional theory that is based on `Bragg-type' scatter. The role of dynamical effects (extinction etc.) is discussed and how they are suppressed with diffuse scattering. An alternative explanation for the Lorentz factor is presented that is more general and based on the capture volume in diffraction space. This theory, when applied to the scattering from powders, will evaluate the full scattering profile, including peak widths and the `background'. The theory should provide an increased understanding of the reliability of powder diffraction measurements, and may also have wider implications for the analysis of powder diffraction data, by increasing the accuracy of intensities predicted from structural models.

  18. Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis.

    PubMed

    Toledano, Manuel; Aguilera, Fátima S; López-López, Modesto T; Osorio, Estrella; Toledano-Osorio, Manuel; Osorio, Raquel

    2016-10-01

    The aim of this research was to assess the ability of amalgam restorations to induce amorphous mineral precipitation at the caries-affected dentin substrate. Sound and caries-affected dentin surfaces were subjected to both Zn-free and Zn-containing dental amalgam restorations. Specimens were submitted to thermocycling (100,000 cycles/5°C-55°C, 3 months). Dentin surfaces were studied by atomic force microscopy (nanoroughness), X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive analysis, for physical and morphological surface characterization. Zn-containing amalgam placement reduced crystallinity, crystallite size, and grain size of calcium phosphate crystallites at the dentin surface. Both microstrain and nanoroughness were augmented in caries-affected dentin restored with Zn-containing amalgams. Caries-affected dentin showed the shortest mineral crystallites (11.04 nm), when Zn-containing amalgams were used for restorations, probably leading to a decrease of mechanical properties which might favor crack propagation and deformation. Sound dentin restored with Zn-free amalgams exhibited a substantial increase in length of grain particles (12.44 nm) embedded into dentin crystallites. Zn-containing amalgam placement creates dentin mineralization and the resultant mineral was amorphous in nature. Amorphous calcium phosphate provides a local ion-rich environment, which is considered favorable for in situ generation of prenucleation clusters, promotong further dentin remineralization.

  19. [Macromolecular aromatic network characteristics of Chinese power coal analyzed by synchronous fluorescence and X-ray diffraction].

    PubMed

    Ye, Cui-Ping; Feng, Jie; Li, Wen-Ying

    2012-07-01

    Coal structure, especially the macromolecular aromatic skeleton structure, has a strong influence on coke reactivity and coal gasification, so it is the key to grasp the macromolecular aromatic skeleton coal structure for getting the reasonable high efficiency utilization of coal. However, it is difficult to acquire their information due to the complex compositions and structure of coal. It has been found that the macromolecular aromatic network coal structure would be most isolated if small molecular of coal was first extracted. Then the macromolecular aromatic skeleton coal structure would be clearly analyzed by instruments, such as X-ray diffraction (XRD), fluorescence spectroscopy with synchronous mode (Syn-F), Gel permeation chromatography (GPC) etc. Based on the previous results, according to the stepwise fractional liquid extraction, two Chinese typical power coals, PS and HDG, were extracted by silica gel as stationary phase and acetonitrile, tetrahydrofuran (THF), pyridine and 1-methyl-2-pyrollidinone (NMP) as a solvent group for sequential elution. GPC, Syn-F and XRD were applied to investigate molecular mass distribution, condensed aromatic structure and crystal characteristics. The results showed that the size of aromatic layers (La) is small (3-3.95 nm) and the stacking heights (Lc) are 0.8-1.2 nm. The molecular mass distribution of the macromolecular aromatic network structure is between 400 and 1 130 amu, with condensed aromatic numbers of 3-7 in the structure units.

  20. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    PubMed

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  2. Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro

    2009-06-01

    Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.

  3. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE PAGES

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; ...

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore » using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  4. A study of X-ray multiple diffraction by means of section topography.

    PubMed

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  5. Ion-pairing in aqueous CaCl 2 and RbBr solutions. Simultaneous structural refinement of XAFS and XRD data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thai V.; Fulton, John L.

    2013-01-22

    We present a new methodology involving the simultaneous refinement of both x-ray absorption and x-ray diffraction spectra (X-ray Absorption/Diffraction Structural Refinement,XADSR), to study hydration and ion pair structure of CaCl 2 and RbBr salts in concentrated aqueous solutions. The XADSR analysis includes the XAFS spectra analysis of both the cation and anion as a probe of their short-range structure with an XRD spectral analysis as a probe of the global structural. Together they deliver a comprehensive picture of the cation and anion hydration, the contact ion pair (CIP) structure and the solvent-separated ion pair (SSIP) structure. XADSR analysis of 6.0more » m aqueous CaCl 2 reveals that there are an insignificant number of Ca 2+-Cl- CIP’s, but there are approximately 3.4 SSIP’s separated by about 4.99 Å. In contrast XADSR analysis of aqueous RbBr yields about 0.7 pair CIP at a bond length 3.51 Å. The present work demonstrates a new approach for a direct co-refinement of XRD and XAFS spectra in a simple and reliable fashion, opening new opportunities for analysis in various disordered and crystalline systems. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the U.S. Department of Energy by Battelle.« less

  6. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE PAGES

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    2016-08-09

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  8. Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.

    In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less

  9. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  10. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  11. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  13. Nonlinear dependence of X-ray diffraction peak broadening in In x Ga1‑ x Sb epitaxial layers on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Hoang Huynh, Sa; Ha, Minh Thien Huu; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2018-04-01

    The configuration of the interfacial misfit array at In x Ga1‑ x Sb/GaAs interfaces with different indium compositions and thicknesses grown by metalorganic chemical vapor deposition was systematically analyzed using X-ray diffraction (XRD) reciprocal space maps (RSMs). These analyses confirmed that the epilayer relaxation was mainly contributed to by the high degree of spatial correlation of the 90° misfit array (correlation factors <0.01). The anisotropic peak-broadening aspect ratio was found to have a non-linear composition dependence as well as be thickness-dependent, related to the strain relaxation of the epilayer. However, the peak-broadening behavior in each RSM scan direction had different composition and thickness dependences.

  14. Structural and chemical ordering of Heusler Co xMn yGe z epitaxial films on Ge (111). Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE PAGES

    Collins, B. A.; Chu, Y.; He, L.; ...

    2015-12-14

    We found that epitaxial films of Co xMn yGe z grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co 2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependencemore » of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. Furthermore, the quantitative MEAD analysis reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co 0.5 Mn 0.25 Ge 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  15. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  16. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Data preparation and evaluation techniques for x-ray diffraction microscopy.

    PubMed

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J; Jacobsen, Chris

    2010-08-30

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  18. Time Resolved X-Ray Diffraction Study of Acoustoelectrically Amplified Phonons.

    NASA Astrophysics Data System (ADS)

    Chapman, Leroy Dean

    X-rays diffracted by nearly perfect crystals of n-type InSb have been investigated in the presence of intense acoustoelectrically (A.E.) amplified phonons. The fact that these phonons are nearly monochromatic and have a well defined propagation and polarization direction presents an excellent opportunity to investigate the nature of x -ray photon-phonon scattering in a diffracting crystal. The Debye-Waller factor which accounts for the attenuation of diffracted x-ray intensities due to thermal phonons is reflection dependent owing to its sin (theta)/(lamda) dependence. We have performed experiments comparing the (004) and (008) anomalously transmitted intensities as a function of A.E. amplified flux. The attenuation of both reflections due to the amplified phonons was the same in direct contradiction to an expected sin (theta)/(lamda) dependence. Some possible reasons for this failure are discussed. In a Bragg reflection scattering geometry, the intense monochromatic amplified phonons give rise to satellite peaks symmetrically located about the central elastic Brag peak in a rocking profile. We report in this thesis on the first observation of satellites in a thin crystal Laue transmission geometry. We have theoretically simulated the rocking profiles with some success. The A.E. amplification process in InSb is strongly favored for {110} propagation fast transverse (FT) phonons. In earlier experiments it was found that non-{110} FT phonons were also produced during the amplification process. We have developed a time resolved x-ray counting system which, in conjunction with a spatially resolved x-ray beam and a localized, traveling A.E. phonon distribution, allow the time evolution of the amplified distribution to be followed. We report on time resolved measurements for both the symmetric Bragg and Laue geometries from which we can determine when and where non-{110 } FT flux is generated and restrict the possible mechanisms for its generation.

  19. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens.

    PubMed

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  20. Development of an adaptable coherent x-ray diffraction microscope with the emphasis on imaging hydrated specimens

    NASA Astrophysics Data System (ADS)

    Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong

    2013-11-01

    This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.

  1. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  2. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  3. High resolution X-ray diffraction imaging of lead tin telluride

    NASA Technical Reports Server (NTRS)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  4. Quantitative determination of mineral composition by powder x-ray diffraction

    DOEpatents

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  5. Quantitative determination of mineral composition by powder X-ray diffraction

    DOEpatents

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  6. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  7. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE PAGES

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-19

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  8. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  9. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  10. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  11. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  12. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  13. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  14. Solution to the Phase Problem Using Multibeam X-Ray Diffraction.

    NASA Astrophysics Data System (ADS)

    Shen, Qun

    Multi-beam x-ray diffraction, especially the asymmetry effect in the virtual Bragg scattering case, has been proved to provide useful phase information on the structure factors that are involved in the scattering process. A perturbation theory has been developed to provide an analytical expression for the diffracted wave field in virtual Bragg scattering situations, which explains the physical origin of the asymmetry effect. Two experiments on the (202) reflection of benzil, using 3.5 keV x-rays, have shown that the asymmetry effect is visible in a mosaic non-centrosymmetric organic crystal. The results do not depend on the shape of the crystal, hence proving that the method is universally applicable. A practical method to obtain arbitrary values of the phase triplet, based on the perturbation theory, has been developed and shown to work in the case of non-centrosymmetric crystals like benzil.

  15. Femtosecond X-ray Diffraction: Applications for Laser-Irradiated Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wark, Justin S.

    2009-09-10

    Over the past few years short pulse x-ray diffraction at the nanosecond and picosecond level has become an established technique in many high-power laser laboratories for interrogating the lattice response of laser-perturbed and shocked matter, and is now finding applications in diagnosing the state of crystalline materials subject to quasi-isentropic compression. We review some of the previous results obtained in this area, for example the direct observation of coherent phonons, the first direct confirmation of the alpha-epsilon transition in shocked iron, and recent measurements indicating that the strength of matter can be measured at shock pressures exceeding a Mbar. Themore » majority of sources used to date have been laser-plasma based, with some work being performed using 3{sup rd} generation synchrotron sources. However, the development of 4{sup th} generation x-ray free-electron lasers, such as LCLS, afford many new opportunities, with pulse lengths in the femtosecond regime. The extremely low divergence and monochromatic nature of the LCLS beam make it well suited to study compressed polycrystalline matter, especially samples with small grain sizes. At extremely short pulse lengths, such that the pulse is shorter than an x-ray extinction depth traversal time, the diffraction process itself becomes time-dependent, and in certain cases the full wave-field solution will be required, particularly if the matter itself is being rapidly perturbed, as will occur if the intense x-ray radiation is used to create warm dense matter, as in recent experiments on FLASH at DESY.« less

  16. Neutron and X-Ray Diffraction Studies of Advanced Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong

    2010-01-01

    The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length

  17. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGES

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  19. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong

    2015-06-16

    Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.

  20. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE PAGES

    Fan, D.; Huang, J. W.; Zeng, X. L.; ...

    2016-05-23

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  1. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.« less

  2. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, D.; Huang, J. W.; Zeng, X. L.

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantifymore » lattice deformation and fracture; diffraction peak broadening is largely caused by fracture-induced strain inhomogeneity. Finally, our results demonstrate the potential of such multiscale measurements for revealing and understanding high strain-rate phenomena at dynamic extremes.« less

  3. Synchrotron-based XRD from rat bone of different age groups.

    PubMed

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurementsmore » and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO 2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO 2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.« less

  5. Characterization using XRD of puzzolanic materials from residual sludge from water treatment

    NASA Astrophysics Data System (ADS)

    Barón, G.; Montaño, A. M.; González, C. P.

    2017-12-01

    The goal of this work is to do mechanical and chemical characterization of puzzolanic materials using compressive strength measurements and X-Ray Diffraction (XRD). These materials are composed of red clay and aluminous sludge produced by the treatment of potable water at Planta Algodonal, Ocaña, Norte de Santander, Colombia. Ceramic bricks were sintered to 1100°C and ten were characterized in their physically, mechanically and chemically properties. The results showed that the relationships with which the Colombian standards according to NTC 4017 (100KGF/cm2) for non-structural bricks are maintained for those containing 10% (105Kgf/cm2) and 20% (102.9Kgf/cm2) of sludge with respect to clay.

  6. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Blake, D.; Bish, D. L.; Vaniman, D.; Ming, D. W.; Morris, R. V.; Chipera, S.; Rampe, E. B.; Farmer, J. D.; Treiman, A. H.; Downs, R.; Morrison, S.; Achilles, C.; Des Marais, D. J.; Crisp, J. A.; Sarrazin, P.; Morookian, J.; Grotzinger, J. P.; Team, M.

    2013-12-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent ~150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (~3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of ~20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at ~10A with a slight inflexion at ~12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating >60°C in the presence of water

  7. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  8. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    DOE PAGES

    McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...

    2015-08-11

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less

  9. Influence of neutron irradiation on the microstructure of nuclear graphite: An X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.

    2017-04-01

    Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.

  10. Sequential x-ray diffraction topography at 1-BM x-ray optics testing beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Shvyd’ko, Yuri; Trakhtenberg, Emil

    2016-07-27

    We report progress on implementation and commissioning of sequential X-ray diffraction topography at 1-BM Optics Testing Beamline of the Advanced Photon Source to accommodate growing needs of strain characterization in diffractive crystal optics and other semiconductor single crystals. The setup enables evaluation of strain in single crystals in the nearly-nondispersive double-crystal geometry. Si asymmetric collimator crystals of different crystallographic orientations were designed, fabricated and characterized using in-house capabilities. Imaging the exit beam using digital area detectors permits rapid sequential acquisition of X-ray topographs at different angular positions on the rocking curve of a crystal under investigation. Results on sensitivity andmore » spatial resolution are reported based on experiments with high-quality Si and diamond crystals. The new setup complements laboratory-based X-ray topography capabilities of the Optics group at the Advanced Photon Source.« less

  11. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  12. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  13. X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

    PubMed Central

    Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.

    2016-01-01

    X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076

  14. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  15. Framework for three-dimensional coherent diffraction imaging by focused beam x-ray Bragg ptychography.

    PubMed

    Hruszkewycz, Stephan O; Holt, Martin V; Tripathi, Ash; Maser, Jörg; Fuoss, Paul H

    2011-06-15

    We present the framework for convergent beam Bragg ptychography, and, using simulations, we demonstrate that nanocrystals can be ptychographically reconstructed from highly convergent x-ray Bragg diffraction. The ptychographic iterative engine is extended to three dimensions and shown to successfully reconstruct a simulated nanocrystal using overlapping raster scans with a defocused curved beam, the diameter of which matches the crystal size. This object reconstruction strategy can serve as the basis for coherent diffraction imaging experiments at coherent scanning nanoprobe x-ray sources.

  16. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.

    PubMed

    Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D

    2012-12-01

    Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.

  17. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    NASA Astrophysics Data System (ADS)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  18. SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.

    PubMed

    Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D

    2012-06-01

    To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in

  19. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  20. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  1. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    PubMed

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  2. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    PubMed

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A combined temperature-dependent electron and single-crystal X-ray diffraction study of the fresnoite compound Rb 2V 4+V 25+O 8

    NASA Astrophysics Data System (ADS)

    Withers, Ray L.; Höche, Thomas; Liu, Yun; Esmaeilzadeh, Saeid; Keding, Ralf; Sales, Brian

    2004-10-01

    High-purity Rb2V3O8 has been grown and temperature-dependent electron and single-crystal X-ray diffraction used to carefully investigate its fresnoite-type reciprocal lattice. In contrast to other recently investigated representatives of the fresnoite family of compounds, Rb2V3O8 is not incommensurately modulated with an incommensurate basal plane primary modulation wave vector given by q∼0.3 <110>*. A careful low-temperature electron diffraction study has, however, revealed the existence of weak incommensurate satellite reflections characterized by the primitive primary modulation wave vector q1∼0.16c*. The reciprocal space positioning of these incommensurate satellite reflections, the overall (3+1)-d superspace group symmetry, as well as the shapes of the refined displacement ellipsoids determined from single-crystal XRD refinement, are all consistent with their arising from a distinct type of condensed rigid unit modes (RUMs) of distortion of the Rb2V3O8 parent structure.

  4. Grain rotation and lattice deformation during photoinduced chemical reactions revealed by in situ X-ray nanodiffraction.

    PubMed

    Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei

    2015-07-01

    In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.

  5. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.

    2016-07-27

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less

  6. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  7. Observation of divergent-beam X-ray diffraction from a crystal of diamond using synchrotron radiation.

    PubMed

    Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M

    2004-03-01

    In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.

  8. Quantitative analysis of crystalline pharmaceuticals in tablets by pattern-fitting procedure using X-ray diffraction pattern.

    PubMed

    Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo

    2010-10-15

    A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  10. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  11. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrationalmore » and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.« less

  12. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE PAGES

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  13. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  14. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less

  15. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    PubMed Central

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423

  16. X-ray diffraction study of elemental thulium to 86 GPa

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Romano, Edward; Quine, Zachary; Pravica, Walter

    2006-03-01

    We have studied the structures and equation of state of elemental thulium up to 86 GPa in a diamond anvil cell using angular-dispersive x-ray powder diffraction methods at the Advanced Photon Source. This is part of a study of phase transitions in the lanthanide-series metals using cyclohexane as a quasi-hydrostatic medium. We present evidence of a series of phase transitions that appear to follow the anticipated hcp ->Sm-type -> dhcp -> distorted fcc sequence of transitions and show the equation of state derived from the x-ray fit data.

  17. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  18. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  19. Anomalous x-ray diffraction on InAs/GaAs quantum dot systems

    NASA Astrophysics Data System (ADS)

    Schulli, T. U.; Sztucki, M.; Chamard, V.; Metzger, T. H.; Schuh, D.

    2002-07-01

    Free-standing InAs quantum dots on a GaAs (001) substrate have been investigated using grazing incidence x-ray diffraction. To suppress the strong scattering contribution from the GaAs substrate, we performed anomalous diffraction experiments at the superstructure (200) reflection, showing that the relative intensities from the dots and the substrate undergo a significant change with the x-ray energy below and above the As K edge. Since the signal from the substrate material can essentially be suppressed, this method is ideally suited for the investigation of strain, shape, and interdiffusion of buried quantum dots and quantum dots embedded in heteroepitaxial multilayers. In addition, we show that it can be used as a tool for studying wetting layers.

  20. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D.; Wu, M.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  1. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals thatmore » we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.« less

  2. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  3. Simulating Picosecond X-ray Diffraction from shocked crystals by Post-processing Molecular Dynamics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimminau, G; Nagler, B; Higginbotham, A

    2008-06-19

    Calculations of the x-ray diffraction patterns from shocked crystals derived from the results of Non-Equilibrium-Molecular-Dynamics (NEMD) simulations are presented. The atomic coordinates predicted by the NEMD simulations combined with atomic form factors are used to generate a discrete distribution of electron density. A Fast-Fourier-Transform (FFT) of this distribution provides an image of the crystal in reciprocal space, which can be further processed to produce quantitative simulated data for direct comparison with experiments that employ picosecond x-ray diffraction from laser-irradiated crystalline targets.

  4. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  5. In-situ investigation of stress-induced martensitic transformation in Ti–Nb binary alloys with low Young's modulus [In-situ high-energy X-ray diffraction investigation on stress-induced martensitic transformation in Ti-Nb binary alloys

    DOE PAGES

    Chang, L. L.; Wang, Y. D.; Ren, Y.

    2015-11-04

    Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less

  6. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-ray Diffraction (XRD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q.; Bock, D.; Takeuchi, K. J.

    Development of Li-S batteries is hindered by sluggish kinetics resulting from the intrinsic poor conductivity of sulfur and capacity degradation due to solubility of intermediate lithium polysulfides (LiPS). A strategy for overcoming these issues is to use TiS 2, which is a good electrical conductor and LiPS absorbant, as an additive to sulfur electrodes. Furthemore, from a structural perspective, we probed TiS 2-S composite materials during electrochemical discharge and charge reactions in propylene-oxide based glyme (DPGDME) electrolyte using in-situ XRD, revealing the synergistic effects of TiS 2 and S in the composites. TiS 2 was found to function effectively asmore » a conductive additive and improve the utilization of sulfur. Intercalation of Li + into TiS 2 takes place simultaneously with the sulfur-lithium reaction, and contributes favorably to the total realized capacity.« less

  7. Probing Titanium Disulfide-Sulfur Composite Materials for Li-S Batteries via In Situ X-ray Diffraction (XRD)

    DOE PAGES

    Zhang, Q.; Bock, D.; Takeuchi, K. J.; ...

    2017-03-01

    Development of Li-S batteries is hindered by sluggish kinetics resulting from the intrinsic poor conductivity of sulfur and capacity degradation due to solubility of intermediate lithium polysulfides (LiPS). A strategy for overcoming these issues is to use TiS 2, which is a good electrical conductor and LiPS absorbant, as an additive to sulfur electrodes. Furthemore, from a structural perspective, we probed TiS 2-S composite materials during electrochemical discharge and charge reactions in propylene-oxide based glyme (DPGDME) electrolyte using in-situ XRD, revealing the synergistic effects of TiS 2 and S in the composites. TiS 2 was found to function effectively asmore » a conductive additive and improve the utilization of sulfur. Intercalation of Li + into TiS 2 takes place simultaneously with the sulfur-lithium reaction, and contributes favorably to the total realized capacity.« less

  8. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  9. Structural and chemical ordering of Heusler C o x M n y G e z epitaxial films on Ge (111): Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B. A.; Chu, Y. S.; He, L.

    2015-12-01

    Epitaxial films of CoxMnyGez grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy Co2MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involves analyzing the energy dependence of multiple reflections across each constituent absorptionmore » edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (< 0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry (Co0.5Mn0.25Ge0.25) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  10. Structural and chemical ordering of Heusler C o x M n y G e z epitaxial films on Ge (111): Quantitative study using traditional and anomalous x-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, B. A.; Chu, Y. S.; He, L.

    2015-12-14

    Epitaxial films of C o x M n y G e z grown on Ge (111) substrates by molecular-beam-epitaxy techniques have been investigated as a continuous function of composition using combinatorial synchrotron x-ray diffraction (XRD) and x-ray fluorescence (XRF) spectroscopy techniques. A high-resolution ternary epitaxial phase diagram is obtained, revealing a small number of structural phases stabilized over large compositional regions. Ordering of the constituent elements in the compositional region near the full Heusler alloy C o 2 MnGe has been examined in detail using both traditional XRD and a new multiple-edge anomalous diffraction (MEAD) technique. Multiple-edge anomalous diffraction involvesmore » analyzing the energy dependence of multiple reflections across each constituent absorption edge in order to detect and quantify the elemental distribution of occupation in specific lattice sites. Results of this paper show that structural and chemical ordering are very sensitive to the Co : Mn atomic ratio, such that the ordering is the highest at an atomic ratio of 2 but significantly reduced even a few percent off this ratio. The in-plane lattice is nearly coherent with that of the Ge substrate, while the approximately 2% lattice mismatch is accommodated by the out-of-plane tetragonal strain. The quantitative MEAD analysis further reveals no detectable amount (<0.5%) of Co-Mn site swapping, but instead high levels (26%) of Mn-Ge site swapping. Increasing Ge concentration above the Heusler stoichiometry ( C o 0.5 M n 0.25 G e 0.25 ) is shown to correlate with increased lattice vacancies, antisites, and stacking faults, but reduced lattice relaxation. The highest degree of chemical ordering is observed off the Heusler stoichiometry with a Ge enrichment of 5 at.%.« less

  11. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOEpatents

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  12. Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus

    DOEpatents

    Green, Lanny A.; Heck, Jr., Joaquim L.

    1987-01-01

    A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.

  13. X-ray diffraction and spectroscopy study of nano-Eu 2O 3 structural transformation under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhenhai; Wang, Qinglin; Ma, Yanzhang

    Nanoscale materials exhibit properties that are quite distinct from those of bulk materials because of their size restricted nature. Here, we investigated the high-pressure structural stability of cubic (C-type) nano-Eu2O3 using in situ synchrotron X-ray diffraction (XRD), Raman and luminescence spectroscopy, and impedance spectra techniques. Our high-pressure XRD experimental results revealed a pressure-induced structural phase transition in nano-Eu2O3 from the C-type phase (space group: Ia-3) to a hexagonal phase (A-type, space group: P-3m1). Our reported transition pressure (9.3 GPa) in nano-Eu2O3 is higher than that of the corresponding bulk-Eu2O3 (5.0 GPa), which is contrary to the preceding reported experimental result.more » After pressure release, the A-type phase of Eu2O3 transforms into a new monoclinic phase (B-type, space group: C2/m). Compared with bulk-Eu2O3, C-type and A-type nano-Eu2O3 exhibits a larger bulk modulus. Our Raman and luminescence findings and XRD data provide consistent evidence of a pressure-induced structural phase transition in nano-Eu2O3. To our knowledge, we have performed the first high-pressure impedance spectra investigation on nano-Eu2O3 to examine the effect of the structural phase transition on its transport properties. We propose that the resistance inflection exhibited at ~12 GPa results from the phase boundary between the C-type and A-type phases. Besides, we summarized and discussed the structural evolution process by the phase diagram of lanthanide sesquioxides (Ln2O3) under high pressure.« less

  14. Synchrotron X-ray powder diffraction data of LASSBio-1515: A new N-acylhydrazone derivative compound

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Braz, D.; Ferreira, F. F.; da Silva, T. F.; Barreiro, E. J.; Lima, L. M.; Colaço, M. V.; Kuplich, L.; Barroso, R. C.

    2014-02-01

    In this work, synchrotron X-ray powder diffraction data allowed for a successful indexing of LASSBio-1515 compound, candidate to analgesic and anti-inflammatory activity. X-ray powder diffraction data collected in transmission and high-throughput geometries were used to analyze this compound. The X-ray wavelength of the synchrotron radiation used in this study was determined to be λ=1.55054 Å. LASSBio-1515 was found to be monoclinic with space group P21/c and unit cell parameters a=11.26255(16) Å, b=12.59785(16) Å, c=8.8540(1) Å, β=90.5972(7)° and V=1256.17(3) Å3.

  15. ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES.

    PubMed

    ELBERS, P F; VERVERGAERT, P H

    1965-05-01

    Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.

  16. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  17. Structure of phospholipid-cholesterol membranes: an x-ray diffraction study.

    PubMed

    Karmakar, Sanat; Raghunathan, V A

    2005-06-01

    We have studied the phase behavior of mixtures of cholesterol with dipalmitoyl phosphatidylcholine (DPPC), dimyristoyl phosphatidylcholine (DMPC), and dilauroyl phosphatidylethanolamine (DLPE), using x-ray diffraction techniques. Phosphatidylcholine (PC)-cholesterol mixtures are found to exhibit a modulated phase for cholesterol concentrations around 15 mol % at temperatures below the chain melting transition. Lowering the relative humidity from 98% to 75% increases the temperature range over which it exists. An electron density map of this phase in DPPC-cholesterol mixtures, calculated from the x-ray diffraction data, shows bilayers with a periodic height modulation, as in the ripple phase observed in many PCs in between the main- and pretransitions. However, these two phases differ in many aspects, such as the dependence of the modulation wavelength on the cholesterol content and thermodynamic stability at reduced humidities. This modulated phase is found to be absent in DLPE-cholesterol mixtures. At higher cholesterol contents the gel phase does not occur in any of these three systems, and the fluid lamellar phase is observed down to the lowest temperature studied (5 degrees C).

  18. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  19. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  20. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    PubMed

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cooperative use of VCD and XRD for the determination of tetrahydrobenzoisoquinolines absolute configuration: a reliable proof of memory of chirality and retention of configuration in enediyne rearrangements.

    PubMed

    Mondal, Shovan; Naubron, Jean-Valère; Campolo, Damien; Giorgi, Michel; Bertrand, Michéle P; Nechab, Malek

    2013-12-01

    The absolute configurations (AC) of azaheterocylic compounds resulting from the cascade rearrangement of enediynes involving only light atoms were unambiguously assigned by the joint use of vibrational circular dichroism (VCD) and copper radiation single crystal X-ray diffraction (XRD). These AC determinations proved that the rearrangements of enediynes proceeded with memory of chirality and retention of configuration. © 2013 Wiley Periodicals, Inc.

  2. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uvarov, Vladimir, E-mail: vladimiru@savion.huji.ac.il; Popov, Inna

    2013-11-15

    Crystallite size values were determined by X-ray diffraction methods for 183 powder samples. The tested size range was from a few to about several hundred nanometers. Crystallite size was calculated with direct use of the Scherrer equation, the Williamson–Hall method and the Rietveld procedure via the application of a series of commercial and free software. The results were statistically treated to estimate the significance of the difference in size resulting from these methods. We also estimated effect of acquisition conditions (Bragg–Brentano, parallel-beam geometry, step size, counting time) and data processing on the calculated crystallite size values. On the basis ofmore » the obtained results it is possible to conclude that direct use of the Scherrer equation, Williamson–Hall method and the Rietveld refinement employed by a series of software (EVA, PCW and TOPAS respectively) yield very close results for crystallite sizes less than 60 nm for parallel beam geometry and less than 100 nm for Bragg–Brentano geometry. However, we found that despite the fact that the differences between the crystallite sizes, which were calculated by various methods, are small by absolute values, they are statistically significant in some cases. The values of crystallite size determined from XRD were compared with those obtained by imaging in a transmission (TEM) and scanning electron microscopes (SEM). It was found that there was a good correlation in size only for crystallites smaller than 50 – 60 nm. Highlights: • The crystallite sizes for 183 nanopowders were calculated using different XRD methods • Obtained results were subject to statistical treatment • Results obtained with Bragg-Brentano and parallel beam geometries were compared • Influence of conditions of XRD pattern acquisition on results was estimated • Calculated by XRD crystallite sizes were compared with same obtained by TEM and SEM.« less

  3. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; hide

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  4. Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Mall, Ashish Kumar, E-mail: ashishm@iitk.ac.in; Gupta, Rajeev

    2016-05-06

    Polycrystalline GaFeO{sub 3} (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO{sub 3} ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc2{sub 1}n symmetry over a wide range of temperature 300 K to 600 K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz–5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and acmore » conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.« less

  5. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    PubMed

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  6. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE PAGES

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael; ...

    2018-03-14

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  7. Rapid feedback of chemical vapor deposition growth mechanisms by operando X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Aiden A.; Depond, Philip J.; Bagge-Hansen, Michael

    An operando x-ray diffraction system is presented for elucidating optimal laser assisted chemical vapor deposition growth conditions. The technique is utilized to investigate deposition dynamics of boron-carbon materials using trimethyl borate precursor. Trimethyl borate exhibits vastly reduced toxicological and flammability hazards compared to existing precursors, but has previously not been applied to boron carbide growth. Crystalline boron-rich carbide material is produced in a narrow growth regime on addition of hydrogen during the growth phase at high temperature. Finally, the use of the operando x-ray diffraction system allows for the exploration of highly nonequilibrium conditions and rapid process control, which aremore » not possible using ex situ diagnostics.« less

  8. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE PAGES

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; ...

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore » patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  10. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  11. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    DOE PAGES

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; ...

    2016-06-24

    In this study, we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO 2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  12. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  13. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  14. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  15. Quantitative shock stage assessment in olivine and pyroxene bearing meteorites via in situ micro-XRD

    NASA Astrophysics Data System (ADS)

    McCausland, P. J.; Flemming, R. L.; Izawa, M. R.

    2010-12-01

    Shock metamorphism is observed in most meteorites and impact structures [1]. Qualitative petrographic observations underpin a shock classification system [1-3] based on the deformation features in common silicates and on textural relations such as the development of maskelynite from feldspars, mobility of sulphides and metal in veins and local Fe-reduction in silicates. Shock deformation of minerals produces streaks (mosaicity) rather than discrete spots in 2D X-ray diffraction patterns, representing the progressive disruption of the crystal lattice into a mosaic of rotated domains [4,5]. Here we use in situ micro-XRD [5,6] to measure the mosaicity of olivine and pyroxene in ordinary chondrites of increasing shock stages S1 to S5 and then apply the method to achondrites with qualitatively low to high shock. X-ray diffraction data were collected in situ on polished thin sections and slab cut surfaces using a Bruker D8 Discover micro X-ray diffractometer [5], operated using CuKα radiation generated at 40 kV and 40 mA with a beam diameter of 500 μm. Diffracted X-rays were recorded with a 2D detector, giving images with information in both the 2-theta and chi dimensions, in which each lattice plane (hkl) will have a diffraction spot or streak lying along an arc in chi of radius 2-theta (hkl). Individual reflections can be indexed and then integrated as a function of chi angle, allowing examination of the peak shape and quantitative analysis of the mosaic peak FWHM along chi. We find that both forsterite and enstatite exhibit greater mosaicity in chi with increasing shock stage: Forsterite chi ranges from <1° for S1 to >6° for S5. Enstatite chi values from the same meteorites show a more subdued growth of streak length with shock state, from ~1° to ~4°. A slab of the olivine shergottite DaG 476 exhibits forsterite mosaicity of 6.9°+/-1.1°, indicating that it has experienced shock stage S5, with shock pressures 30-45 GPa [1,4], consistent with the 40-45 GPa shock

  16. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto.

    PubMed

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-12-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27,724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a=74.3, b=49.9, c=56.3 Å, β=95.2°. Diffraction images were processed to a resolution of 1.74 Å with an Rmerge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase.

  17. Study of microstress state of P91 steel using complementary mechanical Barkhausen, magnetoacoustic emission, and X-ray diffraction techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustyniak, Bolesław, E-mail: bolek@mif.pg.gda.pl; Piotrowski, Leszek; Maciakowski, Paweł

    2014-05-07

    The paper deals with assessment of microstress state of martensite P91 steel using three complementary techniques: mechanical Barkhausen emission, magnetoacoustic emission (MAE), and X-ray diffraction (XRD) profile analysis. Magnetic coercivity Hc and microstructure were investigated with inductive magnetometry and magnetic force microscopy (MFM), respectively. Internal stress level of P91 steel was modified by heat treatment. Steel samples were austenitized, quenched, and then tempered at three temperatures (720 °C, 750 °C, and 780 °C) during increasing time (from 15 min up to 240 min). The microstrain level ε{sub i} was evaluated using Williamson–Hall method. It was revealed that during tempering microstrain systematically decreases from ε{sub i} = 2.5more » × 10{sup −3} for as quenched state down to ε{sub i} = 0.3 × 10{sup −3} for well tempered samples. Both mechanical hardness (Vicker's HV) and magnetic hardness (coercivity) decrease almost linearly with decreasing microstrain while the MAE and MBE intensities strongly increase. Tempering leads to evident shift of the MeBN intensity maximum recorded for the first load towards lower applied strain values and to increase of MAE intensity. This indicates that the microstress state deduced by magnetic techniques is correlated with microstrains evaluated with XRD technique.« less

  18. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  19. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples

    DOE PAGES

    Sun, Tao; Fezzaa, Kamel

    2016-06-17

    Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less

  20. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques.

    PubMed

    Gueninchault, N; Proudhon, H; Ludwig, W

    2016-11-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al-Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment.

  1. Nanox: a miniature mechanical stress rig designed for near-field X-ray diffraction imaging techniques

    PubMed Central

    Gueninchault, N.; Proudhon, H.; Ludwig, W.

    2016-01-01

    Multi-modal characterization of polycrystalline materials by combined use of three-dimensional (3D) X-ray diffraction and imaging techniques may be considered as the 3D equivalent of surface studies in the electron microscope combining diffraction and other imaging modalities. Since acquisition times at synchrotron sources are nowadays compatible with four-dimensional (time lapse) studies, suitable mechanical testing devices are needed which enable switching between these different imaging modalities over the course of a mechanical test. Here a specifically designed tensile device, fulfilling severe space constraints and permitting to switch between X-ray (holo)tomography, diffraction contrast tomography and topotomography, is presented. As a proof of concept the 3D characterization of an Al–Li alloy multicrystal by means of diffraction contrast tomography is presented, followed by repeated topotomography characterization of one selected grain at increasing levels of deformation. Signatures of slip bands and sudden lattice rotations inside the grain have been shown by means of in situ topography carried out during the load ramps, and diffraction spot peak broadening has been monitored throughout the experiment. PMID:27787253

  2. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  3. In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

    DOE PAGES

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.; ...

    2017-06-20

    The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements duringmore » the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In 0.32Ga 0.68AsP/In 0.49Ga 0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. As a result, a 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.« less

  4. In-situ curvature monitoring and X-ray diffraction study of InGaAsP/InGaP quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayed, Islam E. H.; Jain, Nikhil; Steiner, Myles A.

    The use of InGaAsP/InGaP quantum well structures is a promising approach for subcells in next generation multi-junction devices due to their tunable bandgap (1.50-1.80 eV) and for being aluminum-free. Despite these potentials, the accumulation of stress during the growth of these structures and high background doping in the quantum well region have previously limited the maximum number of quantum wells and barriers that can be included in the intrinsic region and the sub-bandgap external quantum efficiency to less than 30.0%. In this paper, we report on the use of in-situ curvature monitoring by multi-beam optical stress (MOS) sensor measurements duringmore » the growth of this quantum well structure to monitor the stress evolution in these thin films. A series of In 0.32Ga 0.68AsP/In 0.49Ga 0.51P quantum wells with various arsine to phosphine ratios have been analyzed by in-situ curvature monitoring and X-ray diffraction (XRD) to obtain nearly strain-free lattice matched structures. Sharp interfaces, as indicated by the XRD fringes, have been achieved by using triethyl-gallium and trimethyl-gallium as gallium precursors in InGaAsP and InGaP, respectively, with constant flows of trimethyl-indium and phosphine through the entire quantum well structure. The effect of the substrate miscut on quantum well growth was compared and analyzed using XRD, photoluminescence and time resolved photoluminescence. As a result, a 100 period quantum well device was successfully grown with minimal stress and approximately flat in-situ curvature.« less

  5. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less

  6. Laboratory manual: mineral X-ray diffraction data retrieval/plot computer program

    USGS Publications Warehouse

    Hauff, Phoebe L.; VanTrump, George

    1976-01-01

    The Mineral X-Ray Diffraction Data Retrieval/Plot Computer Program--XRDPLT (VanTrump and Hauff, 1976a) is used to retrieve and plot mineral X-ray diffraction data. The program operates on a file of mineral powder diffraction data (VanTrump and Hauff, 1976b) which contains two-theta or 'd' values, and intensities, chemical formula, mineral name, identification number, and mineral group code. XRDPLT is a machine-independent Fortran program which operates in time-sharing mode on a DEC System i0 computer and the Gerber plotter (Evenden, 1974). The program prompts the user to respond from a time-sharing terminal in a conversational format with the required input information. The program offers two major options: retrieval only; retrieval and plot. The first option retrieves mineral names, formulas, and groups from the file by identification number, by the mineral group code (a classification by chemistry or structure), or by searches based on the formula components. For example, it enables the user to search for minerals by major groups (i.e., feldspars, micas, amphiboles, oxides, phosphates, carbonates) by elemental composition (i.e., Fe, Cu, AI, Zn), or by a combination of these (i.e., all copper-bearing arsenates). The second option retrieves as the first, but also plots the retrieved 2-theta and intensity values as diagrammatic X-ray powder patterns on mylar sheets or overlays. These plots can be made using scale combinations compatible with chart recorder diffractograms and 114.59 mm powder camera films. The overlays are then used to separate or sieve out unrelated minerals until unknowns are matched and identified.

  7. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  8. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    PubMed

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  9. Effect of chlorine in clay-mineral specimens prepared on silver metal-membrane mounts for X-ray powder diffraction analysis

    USGS Publications Warehouse

    Poppe, L.J.; Commeau, J.A.; Pense, G.M.

    1989-01-01

    Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). They are relatively unaffected by organic solvent treatments and specimens can be prepared rapidly. The filter mounts are adaptable to automatic sample changers, have few discrete reflections at higher 20 angles, and, because of the high atomic number of silver, produce a relatively low overall background compared with other membrane filters, such as cellulose (Poppe and Hathaway, 1979). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.

  10. The effect of laser radiation on the diffraction of X-rays in crystals

    NASA Astrophysics Data System (ADS)

    Trushin, V. N.; Chuprunov, E. V.; Khokhlov, A. F.

    1988-10-01

    The effect of laser radiation on the intensity of the X-ray diffraction peaks of KDP, ADP, and CuSO4-5H2O crystals was studied experimentally. This intensity was found to increase as a function of the laser beam power. This result suggests that it is possible to use laser beams to control X-ray intensity in the crystals considered.

  11. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  12. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  13. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  14. Crystallization and preliminary X-ray diffraction analysis of a chitin-binding domain of hyperthermophilic chitinase from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Tsutomu; Ishikawa, Kazuhiko; Hagihara, Yoshihisa

    The expression, purification and preliminary X-ray diffraction studies of a chitin-binding domain of the chitinase from P. furiosus are reported. The crystallization and preliminary X-ray diffraction analysis of the chitin-binding domain of chitinase from a hyperthermophilic archaeon, Pyrococcus furiosus, are reported. The recombinant protein was prepared using an Escherichia coli overexpression system and was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected to 1.70 Å resolution. The crystal belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2. The unit-cell parameters were determined to be a = b = 48.8, c = 85.0 Å.

  15. X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balyan, M. K., E-mail: mbalyan@ysu.am

    The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.

  16. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    PubMed Central

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase is a single polypeptide chain composed of 275 amino acids (molecular weight 27 724) which displays strong fibrinolytic activity. Moreover, it can activate other fibrinolytic enzymes such as pro-urokinase and tissue plasminogen activator. In the present study, native nattokinase from Bacillus subtilis natto was purified using gel-filtration chromatography and crystallized to give needle-like crystals which could be used for X-ray diffraction experiments. The crystals belonged to space group C2, with unit-cell parameters a = 74.3, b = 49.9, c = 56.3 Å, β = 95.2°. Diffraction images were processed to a resolution of 1.74 Å with an R merge of 5.2% (15.3% in the highest resolution shell) and a completeness of 69.8% (30.0% in the highest resolution shell). This study reports the first X-ray diffraction analysis of nattokinase. PMID:21139221

  17. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  18. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee

  19. XRD and XAS structural study of CuAlO2 under high pressure.

    PubMed

    Pellicer-Porres, J; Segura, A; Ferrer-Roca, Ch; Polian, A; Munsch, P; Kim, D

    2013-03-20

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO(2) under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO(6) octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  20. XRD and XAS structural study of CuAlO2 under high pressure

    NASA Astrophysics Data System (ADS)

    Pellicer-Porres, J.; Segura, A.; Ferrer-Roca, Ch; Polian, A.; Munsch, P.; Kim, D.

    2013-03-01

    We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice parameters when Al is substituted by other trivalent cations. Both experiments evidence the existence of an irreversible phase transition that clearly manifests at 35 ± 2 GPa. The structure of the high-pressure polymorph could not be determined, but it implies a change of the Cu environment, which remains anisotropic. Precursor effects are observed from the lowest pressures, which are possibly related to crystal breaking at a submicroscopic scale with partial reorientation of the crystallites.

  1. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL

  2. Big Sky and Greenhorn Drill Holes and CheMin X-ray Diffraction

    NASA Image and Video Library

    2015-12-17

    The graph at right presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Big Sky" and "Greenhorn" target locations, shown at left. X-ray diffraction analysis of the Greenhorn sample inside the rover's Chemistry and Mineralogy (CheMin) instrument revealed an abundance of silica in the form of noncrystalline opal. The broad hump in the background of the X-ray diffraction pattern for Greenhorn, compared to Big Sky, is diagnostic of opal. The image of Big Sky at upper left was taken by the rover's Mars Hand Lens Imager (MAHLI) camera the day the hole was drilled, Sept. 29, 2015, during the mission's 1,119th Martian day, or sol. The Greenhorn hole was drilled, and the MAHLI image at lower left was taken, on Oct. 18, 2015 (Sol 1137). http://photojournal.jpl.nasa.gov/catalog/PIA20272

  3. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.

  4. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  5. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    PubMed

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  6. Cryogenic X-Ray Diffraction Microscopy for Biological Samples

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Wiegart, Lutz; Pernot, Petra; Howells, Malcolm; Timmins, Joanna; Zontone, Federico; Madsen, Anders

    2009-11-01

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  7. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  8. Twin density of aragonite in molluscan shells characterized using X-ray diffraction and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Kogure, Toshihiro; Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Checa, Antonio G.; Sasaki, Takenori; Nagasawa, Hiromichi

    2014-07-01

    {110} twin density in aragonites constituting various microstructures of molluscan shells has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM), to find the factors that determine the density in the shells. Several aragonite crystals of geological origin were also investigated for comparison. The twin density is strongly dependent on the microstructures and species of the shells. The nacreous structure has a very low twin density regardless of the shell classes. On the other hand, the twin density in the crossed-lamellar (CL) structure has large variation among classes or subclasses, which is mainly related to the crystallographic direction of the constituting aragonite fibers. TEM observation suggests two types of twin structures in aragonite crystals with dense {110} twins: rather regulated polysynthetic twins with parallel twin planes, and unregulated polycyclic ones with two or three directions for the twin planes. The former is probably characteristic in the CL structures of specific subclasses of Gastropoda. The latter type is probably related to the crystal boundaries dominated by (hk0) interfaces in the microstructures with preferred orientation of the c-axis, and the twin density is mainly correlated to the crystal size in the microstructures.

  9. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  10. [Identification of Dens Draconis and Os Draconis by XRD method].

    PubMed

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  11. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  12. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  13. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  14. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE PAGES

    Popp, David; Loh, N. Duane; Zorgati, Habiba; ...

    2017-06-02

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  15. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, David; Loh, N. Duane; Zorgati, Habiba

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  16. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  17. Simultaneous X-ray and neutron diffraction Rietveld refinements of nanophase iron substituted hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kyriacou, Andreas

    The effect of Fe substitution on the crystal structure of hydroxyapatite (HAp) is studied by applying simultaneous Rietveld refinements of powder x-ray and neutron diffraction patterns. Fe is one of the trace elements replacing Ca in HAp, which is the major mineral phase in bones and teeth. The morphology and magnetic properties of the Fe-HAp system are also studied by transmission electron microscopy and magnetization measurements. Samples of Ca(5-x)Fex(PO4)3OH with 0 ≤ x ≤ 0.3 were prepared. Single phase HAp was identified in x-ray diffraction patterns (XRD) of samples with x < 0.1 inferring that the solubility limits are less than 0.1. Hematite (alpha-Fe2O3) is identified as a secondary phase for higher Fe content. The refined parameters show that Fe is incorporated in the HAp structure by replacing Ca in the two crystallographic sites with a preference at the Ca2 site. This preference explains the small effect of the Fe substitution on the lattice constants of HAp. The overall decrease of the lattice constants is explained by the ionic size difference of Ca and Fe. The increasing trend of the a-lattice constant with x in the Fe substituted samples is attributed to a lattice relaxation caused by the substitution of the 4- and 6-fold Fe at the 7- and 9-fold Ca1 and Ca2 sites. This Ca local geometry reduction is indicated by a slight increase of the Ca1-O3 and Ca2-O1 bond lengths. Above the solubility limit x = 0.05, the Fe is partitioned in and out of the HAp structure with increasing nominal Fe content x. The excess Fe is oxidized to hematite. The TEM analysis and magnetic measurements support the results of the simultaneous Rietveld refinements. The TEM images show no significant effect on the morphology and size of the HAp particles upon Fe incorporation. The particles are either spheres or short rods of dimensions 20--60 nm. Hematite particles are imaged in the samples with x exceeding the solubility limit. These particles are spheres, about 15 nm in

  18. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging.

    PubMed

    Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong

    2014-05-02

    Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.

  19. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  20. X-Ray Diffraction Study of Elemental Erbium to 65 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pravica, M.G.; Lipinska-Kalita, K.; Quine, Z.

    2006-02-02

    We have investigated phase transitions in elemental erbium in a diamond anvil cell up to 65 GPa using x-ray powder diffraction methods. We present preliminary evidence of a series of phase transitions that appear to follow the expected hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc sequence. In particular, we believe that we have evidence for the predicted dhcp {yields} distorted fcc transition between 43 GPa and 65 GPa.

  1. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  2. Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.

    2018-04-01

    The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.

  3. Investigation of composition and structure of spongy and hard bone tissue using FTIR spectroscopy, XRD and SEM

    NASA Astrophysics Data System (ADS)

    Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.

    2018-02-01

    Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.

  4. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    PubMed

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  5. Crystalline phases involved in the hydration of calcium silicate-based cements: Semi-quantitative Rietveld X-ray diffraction analysis.

    PubMed

    Grazziotin-Soares, Renata; Nekoofar, Mohammad H; Davies, Thomas; Hübler, Roberto; Meraji, Naghmeh; Dummer, Paul M H

    2017-08-30

    Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca 3 SiO 5 ) calcium hydroxide (Ca(OH) 2 ) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca 3 SiO 5 and formation of Ca(OH) 2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca 3 SiO 5 and no formation of Ca(OH) 2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine. © 2017 Australian Society of Endodontology Inc.

  6. Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite

    DOE PAGES

    Laanait, Nouamane; Saenrang, Wittawat; Zhou, Hua; ...

    2017-03-21

    In this study, X-ray diffraction imaging is rapidly emerging as a powerful technique by which one can capture the local structure of crystalline materials at the nano- and meso-scale. Here, we present investigations of the dynamic structure of epitaxial monodomain BiFeO 3 thin-films using a novel full-field Bragg diffraction imaging modality. By taking advantage of the depth penetration of hard X-rays and their exquisite sensitivity to the atomic structure, we imaged in situ and in operando, the electric field-driven structural responses of buried BiFeO 3 epitaxial thin-films in micro-capacitor devices, with sub-100 nm lateral resolution. These imaging investigations were carriedmore » out at acquisition frame rates that reached up to 20 Hz and data transfer rates of 40 MB/s, while accessing diffraction contrast that is sensitive to the entire three-dimensional unit cell configuration. We mined these large datasets for material responses by employing matrix decomposition techniques, such as independent component analysis. We found that this statistical approach allows the extraction of the salient physical properties of the ferroelectric response of the material, such as coercive fields and transient spatiotemporal modulations in their piezoelectric response, and also facilitates their decoupling from extrinsic sources that are instrument specific.« less

  7. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase

  8. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  9. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  10. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  11. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser

    PubMed Central

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-01-01

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the “diffract and destroy” approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems. PMID:27659203

  12. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser.

    PubMed

    Fan, Jiadong; Sun, Zhibin; Wang, Yaling; Park, Jaehyun; Kim, Sunam; Gallagher-Jones, Marcus; Kim, Yoonhee; Song, Changyong; Yao, Shengkun; Zhang, Jian; Zhang, Jianhua; Duan, Xiulan; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya; Fan, Chunhai; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun; Earnest, Thomas; Jiang, Huaidong

    2016-09-23

    High-resolution imaging offers one of the most promising approaches for exploring and understanding the structure and function of biomaterials and biological systems. X-ray free-electron lasers (XFELs) combined with coherent diffraction imaging can theoretically provide high-resolution spatial information regarding biological materials using a single XFEL pulse. Currently, the application of this method suffers from the low scattering cross-section of biomaterials and X-ray damage to the sample. However, XFELs can provide pulses of such short duration that the data can be collected using the "diffract and destroy" approach before the effects of radiation damage on the data become significant. These experiments combine the use of enhanced coherent diffraction imaging with single-shot XFEL radiation to investigate the cellular architecture of Staphylococcus aureus with and without labeling by gold (Au) nanoclusters. The resolution of the images reconstructed from these diffraction patterns were twice as high or more for gold-labeled samples, demonstrating that this enhancement method provides a promising approach for the high-resolution imaging of biomaterials and biological systems.

  13. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.

    PubMed

    Gicquel, Yannig; Schubert, Robin; Kapis, Svetlana; Bourenkov, Gleb; Schneider, Thomas; Perbandt, Markus; Betzel, Christian; Chapman, Henry N; Heymann, Michael

    2018-04-24

    This protocol describes fabricating microfluidic devices with low X-ray background optimized for goniometer based fixed target serial crystallography. The devices are patterned from epoxy glue using soft lithography and are suitable for in situ X-ray diffraction experiments at room temperature. The sample wells are lidded on both sides with polymeric polyimide foil windows that allow diffraction data collection with low X-ray background. This fabrication method is undemanding and inexpensive. After the sourcing of a SU-8 master wafer, all fabrication can be completed outside of a cleanroom in a typical research lab environment. The chip design and fabrication protocol utilize capillary valving to microfluidically split an aqueous reaction into defined nanoliter sized droplets. This loading mechanism avoids the sample loss from channel dead-volume and can easily be performed manually without using pumps or other equipment for fluid actuation. We describe how isolated nanoliter sized drops of protein solution can be monitored in situ by dynamic light scattering to control protein crystal nucleation and growth. After suitable crystals are grown, complete X-ray diffraction datasets can be collected using goniometer based in situ fixed target serial X-ray crystallography at room temperature. The protocol provides custom scripts to process diffraction datasets using a suite of software tools to solve and refine the protein crystal structure. This approach avoids the artefacts possibly induced during cryo-preservation or manual crystal handling in conventional crystallography experiments. We present and compare three protein structures that were solved using small crystals with dimensions of approximately 10-20 µm grown in chip. By crystallizing and diffracting in situ, handling and hence mechanical disturbances of fragile crystals is minimized. The protocol details how to fabricate a custom X-ray transparent microfluidic chip suitable for in situ serial crystallography

  14. Crystallization and X-ray diffraction analysis of a catalytic domain of hyperthermophilic chitinase from Pyrococcus furiosus

    PubMed Central

    Mine, Shouhei; Nakamura, Tsutomu; Hirata, Kunio; Ishikawa, Kazuhiko; Hagihara, Yoshihisa; Uegaki, Koichi

    2006-01-01

    The crystallization and preliminary X-ray diffraction analysis of a catalytic domain of chitinase (PF1233 gene) from the hyperthermophilic archaeon Pyrococcus furiosus is reported. The recombinant protein, prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. An X-ray diffraction data set was collected at the undulator beamline BL44XU at SPring-8 to a resolution of 1.50 Å. The crystals belong to space group P212121, with unit-cell parameters a = 90.0, b = 92.8, c = 107.2 Å. PMID:16880559

  15. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  16. Molybdenum cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori

    2004-03-01

    We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.

  17. Comparative analysis of ex-situ and operando X-ray diffraction experiments for lithium insertion materials

    NASA Astrophysics Data System (ADS)

    Brant, William R.; Li, Dan; Gu, Qinfen; Schmid, Siegbert

    2016-01-01

    A comparative study of ex-situ and operando X-ray diffraction techniques using the fast lithium ion conductor Li0.18Sr0.66Ti0.5Nb0.5O3 is presented. Ex-situ analysis of synchrotron X-ray diffraction data suggests that a single phase material exists for all discharges to as low as 0.422 V. For samples discharged to 1 V or lower, i.e. with higher lithium content, it is possible to determine the lithium position from the X-ray data. However, operando X-ray diffraction from a coin cell reveals that a kinetically driven two phase region occurs during battery cycling below 1 V. Through monitoring the change in unit cell dimension during electrochemical cycling the dynamics of lithium insertion are explored. A reduction in the rate of unit cell expansion of 22(2)% part way through the first discharge and 13(1)% during the second discharge is observed. This reduction may be caused by a drop in lithium diffusion into the bulk material for higher lithium contents. A more significant change is a jump in the unit cell expansion by 60(2)% once the lithium content exceeds one lithium ion per vacant site. It is suggested that this jump is caused by damping of octahedral rotations, thus establishing a link between lithium content and octahedral rotations.

  18. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    PubMed Central

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  19. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  20. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    DOE PAGES

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...

    2016-08-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less

  1. High-temperature X-ray diffraction study of crystallization and phase segregation on spinel-type lithium manganese oxides

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Ikemoto, Sachi

    2010-01-01

    To study crystallization process of spinel-type Li 1+xMn 2-xO 4, in-situ high-temperature X-ray diffraction technique (HT-XRD) was utilized for the mixture consisting of Li 2CO 3 and Mn 2O 3 as starting material in the temperature range of 25-700 °C. In-situ HT-XRD analysis directly revealed that crystallization process of Li 1+xMn 2-xO 4 was significantly affected by the difference in the Li/Mn molar ratio in the precursor. Single phase of stoichiometric LiMn 2O 4 formed at 700 °C. The formation of single phase of spinel was achieved at the lower temperature than the stoichiometric sample as Li/Mn molar ratio in the precursor increased. Lattice parameter of the stoichiometric LiMn 2O 4 at 25 °C was 8.24 Å and expanded to 8.31 Å at 700 °C, which corresponds to the approximately 3% expansion in the unit cell volume. From the slope of the lattice parameter change as a function of temperatures, linear thermal expansion coefficient of the stoichiometric LiMn 2O 4 was calculated to be 1.2×10 -5 °C -1 in this temperature range. When the Li/Mn molar ratio in Li 1+xMn 2-xO 4 increased ( x > 0.1), the spinel phase segregated into the Li 1+yMn 2-yO 4 ( x > y) and Li 2MnO 3 during heating, which involved the oxygen loss from the materials. During the cooling process from 700 °C, and the segregated phase merged into Li 1+xMn 2-xO 4 with oxygen incorporation. Such trend directly observed by in-situ HT-XRD was supported by thermal gravimetric analysis as reversible weight (oxygen) loss/gain at higher temperature (500-700 °C).

  2. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  3. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.

    PubMed

    Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro

    2013-11-01

    Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.

  5. Theoretical study of the properties of X-ray diffraction moiré fringes. I

    PubMed Central

    Yoshimura, Jun-ichi

    2015-01-01

    A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general. PMID:25970298

  6. Synchrotron Radial X-ray Diffraction Studies of Deformation of Polycrystalline MgO

    NASA Astrophysics Data System (ADS)

    Girard, J.; Tsujino, N.; Mohiuddin, A.; Karato, S. I.

    2016-12-01

    X-ray diffraction analyses have been used for decades to study mechanical properties of polycrystalline samples during in-situ high-pressure deformation. When polycrystalline materials are deformed, stresses develop in grains and lead to lattice distortion. Using X-ray diffraction we can estimate the lattice strain for each (hkl) diffraction plans and calculate the applied stress for each (hkl), using [Singh, 1993] relation. However, this method doesn't take into account plastic anisotropy. As a results of plastic anisotropy present in the material, stress estimated from this method can be largely differ depending on (hkl) diffraction planes [Karato, 2009]. Studying the stress estimate for each (hkl) plane, might help us distinguish dominant deformation mechanisms activated during deformation such as diffusion (we will observe small stress variation as a function of (hkl) diffraction planes) or dislocation creep (we will observe a stress variation as a function of (hkl) diffraction planes that could also give us clues on potential slip system activity). In this study we observed stress evolution in MgO polycrystalline samples deformed under mantle pressure and temperature for (200) and (220) diffraction planes. Using a range MgO grain sizes we were able to control the active deformation mechanism (for e.g. diffusion creep or dislocation creep). For coarse-grained specimens, we observed strong (hkl) dependence of radial strain indicating the operation of dislocation creep. The observed (hkl) dependence changes with pressure suggesting a change in the slip system: at pressures higher than 27 GPa, (200) shows larger stress estimate than (220). In contrast, at lower pressures, (220) shows larger stress estimate than (200). This might indicate a slip system transition in MgO occurring under lower mantle conditions. From {110} plane to {100} plane. This is in good agreement with theoretical predictions and numerical calculation [Amodeo et al., 2012] and has an important

  7. Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques

    PubMed Central

    González, Gabriela B.

    2012-01-01

    Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010

  8. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  9. Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses.

    PubMed

    Yuan, Kai-Jun; Bandrauk, André D

    2017-10-04

    Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.

  10. Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.

    2018-06-01

    Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.

  11. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  12. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  13. Density of bunched threading dislocations in epitaxial GaN layers as determined using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Barchuk, M.; Holý, V.; Rafaja, D.

    2018-04-01

    X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.

  14. Water Structure and Dynamics in Smectites: X-ray Diffraction and 2 H NMR Spectroscopy of Mg–, Ca–, Sr–, Na–, Cs–, and Pb–Hectorite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, U. Venkateswara; Bowers, Geoffrey M.; Loganathan, Narasimhan

    2016-04-06

    Variable-temperature X-ray diffraction and 2H NMR spectroscopy of the smectite mineral, hectorite, containing interlayer Na +, K +, Cs +, Mg 2+, Ca 2+, Sr 2+, and Pb 2+ equilibrated at 43% relative humidity (RH) and mixed with 2H 2O to form a paste provide a comprehensive picture of the structural environments and dynamics of interlayer 2H 2O and the relationships of these properties to interlayer hydration state, the hydration energy and polarizability of the cation, temperature, and the formation of ice-1h in the interparticle pores. The variation in basal spacing shown by the XRD data correlates well with themore » 2H NMR behavior, and the XRD data show for the first time in hectorites that crystallization of interparticle ice-1h causes a decrease in the interlayer spacing, likely due to removal of interlayer 2H 2O. The variation of the 2H NMR behavior of all the samples with decreasing temperature reflects decreasing frequencies of motion for the rotation of the 2H 2O molecules around their dipoles, reorientation of the 2H 2O molecules, and exchange of the 2H 2O molecules between interlayer sites coordinated to and not coordinated to the cations.« less

  15. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  16. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  17. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  18. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  19. X-Ray Diffraction Studies on Metal Deposition in Group D Streptococci

    PubMed Central

    Tucker, Fayne L.; Thomas, John W.; Appleman, Milo D.; Goodman, Stewart H.; Donohue, Jerry

    1966-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John W. Thomas, Milo D. Appleman, Stewart H. Goodman, and Jerry Donohue. X-ray diffraction studies on metal deposition in group D streptococci. J. Bacteriol. 92:1311–1314. 1966.—Streptococcus faecalis N83 and S. faecium K6A reduced several compounds of Group VI elements to the elemental form, but reduced none of several compounds tested containing elements of other groups. The elemental tellurium deposited by S. faecium K6A was in general of a larger particle size than that deposited by S. faecalis N83 as judged from X-ray diffraction analysis. The particle size of the deposited tellurium was correlated with the blackness of the precipitate produced by cells growing in the presence of tellurite. A black and gray variation was observed in S. faecium K6A which was considered to be due to particle size, the amount of tellurium present, and the location of the deposited tellurium. The gray color of S. faecium K6A was not due to the presence of any oxidized tellurium products. PMID:4958879

  20. Application of vibrational spectroscopy, thermal analyses and X-ray diffraction in the rapid evaluation of the stability in solid-state of ranitidine, famotidine and cimetidine.

    PubMed

    Jamrógiewicz, Marzena; Ciesielski, Aleksander

    2015-03-25

    This paper reports the study on applicability of Fourier transform infrared (FTIR), near-infrared (NIR) and Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) for the estimation of the chemical stability and photostability of histamine H2-receptor antagonist substances. Ranitidine hydrochloride (RAN), famotidine (FAM) and cimetidine (CIM) were tested and differences in sensitivity were measured via soft independence modeling of class analogies (Simca) model. The low values of variations for FAM and CIM and high variations obtained for RAN using FTIR and NIR techniques indicated that these methods were suitable and applicable to classify the degradation of RAN. Examined methods are recommendable in the first technological stage of drug production, and the preclinical and clinical development of pharmaceuticals or their quality control. Copyright © 2015 Elsevier B.V. All rights reserved.