Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don
2012-08-01
Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.
Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF
NASA Technical Reports Server (NTRS)
Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.
2001-01-01
X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.
Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones
Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.
2003-01-01
Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904
Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.
2004-01-01
Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.
[Study of the phase transformation of TiO2 with in-situ XRD in different gas].
Ma, Li-Jing; Guo, Lie-Jin
2011-04-01
TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.
NASA Technical Reports Server (NTRS)
Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.
2004-01-01
A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less
Classification of crystal structure using a convolutional neural network
Park, Woon Bae; Chung, Jiyong; Sohn, Keemin; Pyo, Myoungho
2017-01-01
A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds. PMID:28875035
Classification of crystal structure using a convolutional neural network.
Park, Woon Bae; Chung, Jiyong; Jung, Jaeyoung; Sohn, Keemin; Singh, Satendra Pal; Pyo, Myoungho; Shin, Namsoo; Sohn, Kee-Sun
2017-07-01
A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN architecture was obtained that allowed determination of the crystal system, extinction group and space group. In sharp contrast with the traditional use of powder XRD pattern analysis, the CNN never treats powder XRD patterns as a deconvoluted and discrete peak position or as intensity data, but instead the XRD patterns are regarded as nothing but a pattern similar to a picture. The CNN interprets features that humans cannot recognize in a powder XRD pattern. As a result, accuracy levels of 81.14, 83.83 and 94.99% were achieved for the space-group, extinction-group and crystal-system classifications, respectively. The well trained CNN was then used for symmetry identification of unknown novel inorganic compounds.
NASA Astrophysics Data System (ADS)
Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.
2018-04-01
The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.
[Identification of Dens Draconis and Os Draconis by XRD method].
Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong
2012-04-01
To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.
Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.
2016-10-01
Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.
Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi
2009-01-01
A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.
USDA-ARS?s Scientific Manuscript database
Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI) from the X-ray diffraction (XRD) measurement, in its present state XRD procedure can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous po...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less
Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces
NASA Technical Reports Server (NTRS)
Blake, David F.; DeVincenzi, D. (Technical Monitor)
1999-01-01
The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.
Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium
NASA Astrophysics Data System (ADS)
Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua
2016-07-01
A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.
MultiLaue: A Technique to Extract d-spacings from Laue XRD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
MultiLaue: A Technique to Extract d-spacings from Laue XRD
Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...
2016-07-25
We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less
Residual stresses in continuous graphite fiber Al metal matrix composites
NASA Technical Reports Server (NTRS)
Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.
1988-01-01
The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.
Chung, Frank H
2017-05-01
For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.
Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter
2007-03-28
MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.
Synthesis and structural characterization of polyaniline/cobalt chloride composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, E-mail: arana5752@gmail.com; Goyal, Sneh Lata; Kishore, Nawal
2016-05-23
Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.
X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments
NASA Astrophysics Data System (ADS)
Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.
2011-12-01
The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.
Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng
2010-04-15
In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.
Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo
2011-01-01
Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.
In situ X-ray diffraction analysis of (CF x) n batteries: signal extraction by multivariate analysis
Rodriguez, Mark A.; Keenan, Michael R.; Nagasubramanian, Ganesan
2007-11-10
In this study, (CF x) n cathode reaction during discharge has been investigated using in situ X-ray diffraction (XRD). Mathematical treatment of the in situ XRD data set was performed using multivariate curve resolution with alternating least squares (MCR–ALS), a technique of multivariate analysis. MCR–ALS analysis successfully separated the relatively weak XRD signal intensity due to the chemical reaction from the other inert cell component signals. The resulting dynamic reaction component revealed the loss of (CF x) n cathode signal together with the simultaneous appearance of LiF by-product intensity. Careful examination of the XRD data set revealed an additional dynamicmore » component which may be associated with the formation of an intermediate compound during the discharge process.« less
Growth and characterization of hexamethylenetetramine crystals grown from solution
NASA Astrophysics Data System (ADS)
Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.
2014-06-01
Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).
2016-05-01
limited to X-ray diffraction ( XRD ) and scanning electron microscopy (SEM). The alloy was reported to contain two bcc phases with similar lattice...it appears that the interface between the two phases is fairly coherent. Interestingly, the XRD study described in [8] suggested that there were two...line-scan shown in (h). 3 Distribution A. Approved for public reledifference in lattice parameter measurements realized in bulk samples ( XRD ) vs
2010-12-01
in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA
Drits, Victor A.; Środoń, Jan; Eberl, D.D.
1997-01-01
The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good agreement with estimates of the mean thickness of fundamental particles obtained both from TEM measurements and from fixed cations content, up to a mean value of 20 layers. Correction for instrumental broadening under the conditions employed here is unnecessary for this range of thicknesses.
Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Pellinen and Michael Griffin
2009-01-23
The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured responsemore » time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.« less
Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.
We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less
Elucidation of reaction mechanism involved in the formation of LaNiO3 from XRD and TG analysis
NASA Astrophysics Data System (ADS)
Dharmadhikari, Dipti V.; Athawale, Anjali A.
2013-06-01
The present work is focused on the synthesis and elucidation of reaction mechanism involved in the formation of LaNiO3 with the help of X-ray diffraction (XRD) and thermogravimetric (TG) analysis. LaNiO3 was synthesized by hydrothermal method by heating at 160°C under autogenous pressure for 6h. Pure phase product was obtained after calcining the hydrothermally activated product for 6h at 700°C. The various phases of the product obtained after hydrothermal treatment and calcination followed by the formation of pure phase nanocrystalline lanthanum nickel oxide could be determined from XRD analysis of the samples. The reaction mechanism and phase formation temperature has been interpreted by thermogravimetric analysis of the hydrothermally synthesized product and XRD analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, John S.; Coyle, Christopher A.; Bonnett, Jeff F.
2018-01-28
Anode-supported SOFCs with LSCF-6428 cathodes were operated at various temperatures for hundreds of hours in dry or humid (~3% water) cathode air with continuous cathode XRD. Additionally, one cell in dry air was held at OCV and another had 12% CO2 added to the humid air. Long cumulative XRD count times allowed identification of minor phases at <0.1 wt%. In humid air, performance improved during the first couple of hundred hours and Fe-rich Fe,Co spinel XRD peaks gradually shifted to lower angles while nano-nodules formed on LSCF surfaces. With 12% CO2 added, performance degraded after initial activation, unlike without CO2,more » where stability followed activation. In CO2, LSCF XRD peaks shifted indicating gradual decomposition. In dry air, fast initial degradation that decelerated over time occurred at constant current while the cell at OCV was stable. At OCV and 750°C or at constant current and 700°C in dry air, Fe-rich spinel XRD peaks shifted more slowly than in humid air tests; Co-rich Fe,Co spinel peaks shifted to higher angles; and SEM discovered smaller nano-nodules on LSCF than after humid air tests. At constant current at 750°C and 800°C in dry air, no nano-nodules or gradual changes in the XRD patterns were discovered.« less
Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, David K; Lee, Christopher; Dazen, Kevin
2015-07-04
Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less
Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra
2015-01-01
Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
Eberl, D.D.; Nüesch, R.; Šucha, Vladimír; Tsipursky, S.
1998-01-01
The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swelling and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weight of 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydrothermal and low-grade metamorphic I-S indicate that there are at least 2 types of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertant-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small differences in layer thicknesses) generally has a Gaussian distribution in the log-normal-type illites, but is often absent in the asymptotic-type illites.
Dynamic XRD, Shock and Static Compression of CaF2
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav
2017-06-01
The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.
The effect of doped zinc on the structural properties of nano-crystalline (Se0.8Te0.2)100-xZnx
NASA Astrophysics Data System (ADS)
Kumar, Arun; Singh, Harkawal; Gill, P. S.; Goyal, Navdeep
2016-05-01
The effect of metallic zinc (Zn) on the structural properties of (Se0.8Te0.2)1-XZnX (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.
NASA Astrophysics Data System (ADS)
Ostrooumov, M.
2016-08-01
The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.
Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao
2016-01-01
Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409
Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin
2016-01-01
Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30 μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.
Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan
1998-01-01
A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.
NASA Astrophysics Data System (ADS)
Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.
2015-06-01
Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.
Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont
Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.
2009-01-01
Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.
Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix
Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.
2014-01-01
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248
Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays
NASA Astrophysics Data System (ADS)
Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.
2018-05-01
The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.
Micro-X-ray diffraction assessment of shock stage in enstatite chondrites
NASA Astrophysics Data System (ADS)
Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.
2011-05-01
A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffraction (μXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two-dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 < 0.7°, S2 = 0.7-1.2°, S3 = 1.2-2.3°, S4 = 2.3-3.5°, S5 > 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene-bearing rocks.
X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.
NASA Astrophysics Data System (ADS)
Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.
2017-12-01
X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the "colors" of each Laue spot, which enable phase identification. The concept was demonstrated with prototypes and dedicated crystallographic software was developed for identification the minerals responsible for the Laue patterns. High TRL subsystems are under development for future deployment opportunities of these new XRD instruments.
Effect of solvent on the synthesis of SnO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Virender; Singh, Karamjit; Singh, Kulwinder
Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.
High temperature XRD of Cu2.1Zn0.9SnSe4
NASA Astrophysics Data System (ADS)
Chetty, Raju; Mallik, Ramesh Chandra
2014-04-01
Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Simple X-ray diffraction algorithm for direct determination of cotton crystallinity
USDA-ARS?s Scientific Manuscript database
Traditionally, XRD had been used to study the crystalline structure of cotton celluloses. Despite considerable efforts in developing the curve-fitting protocol to evaluate the crystallinity index (CI), in its present state, XRD measurement can only provide a qualitative or semi-quantitative assessme...
NASA Astrophysics Data System (ADS)
Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.
2017-08-01
An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.
Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A
2017-08-01
An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.
Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.;
2014-01-01
To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.
High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in
2014-04-24
Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Structural analysis of emerging ferrite: Doped nickel zinc ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj
2015-08-28
Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.
NASA Astrophysics Data System (ADS)
Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.
2018-05-01
This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.
NASA Astrophysics Data System (ADS)
Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.
2018-02-01
Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2009-01-01
A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.
The Effect of Compaction Force on the Transition to Hydrate of Anhydrous Aripiprazole.
Togo, Taichiro; Taniguchi, Toshiya; Nakata, Yoshitaka
2018-01-01
Aripiprazole (APZ) is used to treat schizophrenia and is administered as a tablet containing the anhydrous form of APZ. In this study, the effect of compaction force on the crystal form transition was investigated. The crystalline state was observed by X-ray diffraction (XRD). APZ Anhydrous Form II was compacted into tablets. The XRD intensity of anhydrous APZ became lower with higher compressive force. The degree of crystallinity decreased with the compaction force. The powder and the compacted tablets of anhydrous APZ were stored for one week under 60°C and 75% relative humidity. The powder showed no crystal form transition after storage. For the tablets, however, XRD peaks of APZ hydrate were observed after storage. The tablets compacted with higher force showed the higher XRD diffraction intensity of hydrate form. We concluded that the crystallinity reduction of APZ Anhydrous Form II by compaction caused and accelerated the transition to hydrate under high temperature and humidity conditions. In order to manufacture crystallographically stable tablets containing anhydrous APZ, it is important to prevent this crystallinity reduction during compaction.
Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.
Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S
2014-09-01
The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.
Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L
2012-01-30
This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.
Study the oxidation kinetics of uranium using XRD and Rietveld method
NASA Astrophysics Data System (ADS)
Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing
2010-03-01
The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.
NASA Astrophysics Data System (ADS)
Schmidt, C. M.; Bürgler, D. E.; Schaller, D. M.; Meisinger, F.; Güntherodt, H.-J.; Temst, K.
2001-01-01
A Cr(001)/Fe(001) superlattice with ten bilayers grown by molecular beam epitaxy on a Ag(001) substrate is studied by in situ scanning tunneling microscopy (STM) and ex situ x-ray diffraction (XRD). Layer-resolved roughness parameters determined from STM images taken in various stages of the superlattice fabrication are compared with average values reported in the literature or obtained from the fits of our XRD data. Good agreement is found for the rms roughnesses describing vertical roughness and for the lateral correlation lengths characterizing correlated as well as uncorrelated interface roughness if peculiarities of STM and XRD are taken into account. We discuss in detail (i) the possible differences between the STM topography of a free surface and the morphology of a subsequently formed interface, (ii) contributions due to chemical intermixing at the interfaces, (iii) the comparison of XRD parameters averaged over all interfaces versus layer-resolved STM parameters, and (iv) the question of the coherent field of view for the determination of rms values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, I.; Tippabhotla, S. K.; Tamura, N.
2016-10-21
Synchrotron x-ray microdiffraction (μXRD) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, μXRD is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the μXRD technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of μXRD in microelectronicsmore » will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. Here, the approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.« less
X-Ray Diffraction of different samples of Swarna Makshika Bhasma.
Gupta, Ramesh Kumar; Lakshmi, Vijay; Jha, Chandra Bhushan
2015-01-01
Shodhana and Marana are a series of complex procedures that identify the undesirable effects of heavy metals/minerals and convert them into absorbable and assimilable forms. Study on the analytical levels is essential to evaluate the structural and chemical changes that take place during and after following such procedures as described in major classical texts to understand the mystery behind these processes. X-Ray Diffraction (XRD) helps to identify and characterize minerals/metals and fix up the particular characteristics pattern of prepared Bhasma. To evaluate the chemical changes in Swarna Makshika Bhasma prepared by using different media and methods. In this study, raw Swarna Makshika, purified Swarna Makshika and four types of Swarna Makshika Bhasma prepared by using different media and methods were analyzed by XRD study. XRD study of different samples revealed strongest peaks of iron oxide in Bhasma. Other phases of Cu2O, FeS2, Cu2S, FeSO4, etc., were also identified in many of the samples. XRD study revealed that Swarna Makshika Bhasma prepared by Kupipakwa method is better, convenient, and can save time.
Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina
2017-06-01
The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation
Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon
2018-01-01
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728
In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films
NASA Astrophysics Data System (ADS)
Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.
2017-08-01
In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.
Thermal analysis of calcium sulfate dihydrate sources used to manufacture gypsum wallboard
Engbrecht, Dick C.; Hirschfeld, Deidre A.
2016-07-27
Gypsum wallboard has been used for over 100 years as a barrier to the spread of fire in residential and commercial structures. The gypsum molecule, CaSO 4·2H 2O, provides two crystalline waters that are released upon heating providing an endothermic effect. Manufacturers have recognized that the source of the gypsum ore is a factor that affects all aspects of its performance; thus, it is hypothesized that the impurities present in the gypsum ore are the causes of the performance differences. Differential Thermal Analysis/Thermogravimetric Analysis (DTA/TGA) and X-ray Diffraction (XRD) were used in this paper to compare and characterize samples ofmore » gypsum ore representing sources of natural, synthetic from a Flue Gas Desulfurization process (FGD) and blends thereof. The hemihydrate phase of representative natural, FGD, and reagent grade calcium sulfate were rehydrated with distilled water and evaluated by DTA/TGA. Analysis of the data shows distinct areas of similarity separated by the conversion to anhydrite ~250 °C. Compositional reconstructions based on DTA/TGA and XRD data were compared and although, the results were comparable, the DTA/TGA suggests thermally active compounds that were not detected by XRD. Anhydrite, silica and halite were reported by XRD but were not thermally reactive in the temperature range evaluated by DTA/TGA (ambient to 1050 °C). Finally, the presence of carbonate compounds (e.g., calcite and dolomite) were indicated by XRD and estimated from the thermal decomposition reaction ~700 °C.« less
Laser-induced breakdown spectroscopy is a reliable method for urinary stone analysis
Mutlu, Nazım; Çiftçi, Seyfettin; Gülecen, Turgay; Öztoprak, Belgin Genç; Demir, Arif
2016-01-01
Objective We compared laser-induced breakdown spectroscopy (LIBS) with the traditionally used and recommended X-ray diffraction technique (XRD) for urinary stone analysis. Material and methods In total, 65 patients with urinary calculi were enrolled in this prospective study. Stones were obtained after surgical or extracorporeal shockwave lithotripsy procedures. All stones were divided into two equal pieces. One sample was analyzed by XRD and the other by LIBS. The results were compared by the kappa (κ) and Spearman’s correlation coefficient (rho) tests. Results Using LIBS, 95 components were identified from 65 stones, while XRD identified 88 components. LIBS identified 40 stones with a single pure component, 20 stones with two different components, and 5 stones with three components. XRD demonstrated 42 stones with a single component, 22 stones with two different components, and only 1 stone with three different components. There was a strong relationship in the detection of stone types between LIBS and XRD for stones components (Spearman rho, 0.866; p<0.001). There was excellent agreement between the two techniques among 38 patients with pure stones (κ index, 0.910; Spearman rho, 0.916; p<0.001). Conclusion Our study indicates that LIBS is a valid and reliable technique for determining urinary stone composition. Moreover, it is a simple, low-cost, and nondestructive technique. LIBS can be safely used in routine daily practice if our results are supported by studies with larger numbers of patients. PMID:27011877
Hein, James R.; Mizell, Kira; Barnard, Patrick L.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.
2015-01-01
The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.
Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I
2008-11-01
Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.
X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond
NASA Astrophysics Data System (ADS)
Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid
2010-05-01
Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay phyllosilicates, serpentine, zircon, a hydrous carbonate and an unidentified zeolite. Many of these phases are deuteric, replacing high-T, high-P micas and carbonates that precipitate from the fluid in the diamond stability field. The ongoing XRD study will (1) elucidate the mineralogy of fluid inclusions in diamonds from Wawa, (2) compare XRD analyses to distinguish between diamonds with carbonatitic versus saline fluid compositions, and (3) reveal whether carbonates occur as crystalline phases or as dissolved or amorphous material in fibrous diamond.
Deposition of dual-layer coating on Ti6Al4V
NASA Astrophysics Data System (ADS)
Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.
2017-03-01
Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.
Synthesis and characterization of nanostructured titanium carbide for fuel cell applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet
2016-04-13
Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used formore » high temperature applications.« less
NASA Astrophysics Data System (ADS)
Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.
2012-06-01
Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.
NASA Astrophysics Data System (ADS)
Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming
2014-01-01
The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.
NASA Astrophysics Data System (ADS)
Kumari, Mukesh; Bhatnagar, Mukesh Chander
2018-05-01
Cobalt ferrite (CFO) has been synthesized in the form of nanoparticles (NPs) through sol-gel auto-combustion method. The prepared NPs of CFO were sintered for four hours at various temperatures from 300°C to 900°C. The physical properties of the sintered samples have been optimized using X-ray diffraction (XRD), Raman spectroscopy and physical properties measurement system (PPMS). The XRD and Raman studies have confirmed the cubic spinel phase formation of CFO NPs. XRD results showed that as we increase the sintering temperature the crystallite size of particles increases. Whereas the magnetic studies revealed that the saturation magnetization (MS) increases while the coercivity (HC) of nanoparticles decreases with increase of sintering temperature.
Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill
2017-01-01
Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2016-04-07
Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less
NASA Astrophysics Data System (ADS)
Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken
2018-05-01
We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.
2013-01-01
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1H and 13C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1H and 13C chemical shifts for directly bonded 13C–1H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure. PMID:24386493
Sethi, Sapna; Kothiyal, N C; Nema, Arvind K
2012-07-01
Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.
Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao
2014-12-01
Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.
NASA Technical Reports Server (NTRS)
Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Sarrazin, P.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Downs, R. T.; Morrison, S. M.;
2013-01-01
Numerous orbital and landed observations of the martian surface suggest a reasonably uniform martian soil composition, likely as a result of global aeolian mixing [1, 2]. Chemical data for martian soils are abundant [e.g., 2, 3], and phase information has been provided by lander thermal emission and Moessbauer spectroscopic measurements [3, 4, 5, 6]. However, until now no X-ray diffraction (XRD) data were available for martian soil nor has XRD ever been used on another body apart from Earth. XRD is generally considered the most definitive method for determining the crystalline phases in solid samples, and it is the method of choice for determining mineralogy. CheMin s first XRD analysis on Mars coincided with the 100th anniversary of the discovery of X-ray diffraction by von Laue. Curiosity delivered scooped samples of loose, unconsolidated material ("soil") acquired from an aeolian bedform at the Rocknest locality to instruments in the body of the rover (the laboratory). Imaging shows that the soil has a range of particle sizes, of 1-2 mm and smaller, presumably representing contributions from global, regional, and local sources.
Meza-Contreras, Juan C; Manriquez-Gonzalez, Ricardo; Gutiérrez-Ortega, José A; Gonzalez-Garcia, Yolanda
2018-05-22
The production and crystallinity of 13 C bacterial cellulose (BC) was examined in static culture of Komagataeibacter xylinus with different chemical and physical stimuli: the addition of NaCl or cloramphenicol as well as exposure to a magnetic field or to UV light. Crystalline BC biosynthesized under each stimulus was studied by XRD and solid state 13 C NMR analyses. All treatments produced BC with enhanced crystallinity over 90% (XRD) and 80% (NMR) compared to the control (83 and 76%, respectively) or to Avicel (77 and 62%, respectively). The XRD data indicated that the crystallite size was 80-85 Å. Furthermore, changes on the allomorphs (I α and I β ) ratio tendency of BC samples addressed to the stimuli were estimated using the C4 signal from 13 C NMR data. These results showed a decrease of the allomorph I α (3%) when BC was biosynthesized with UV light and chloramphenicol compared to control (58.79%). In contrast, the BC obtained with NaCl increased up to 60.31% of the I α allomorph ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dudenko, Dmytro V; Williams, P Andrew; Hughes, Colan E; Antzutkin, Oleg N; Velaga, Sitaram P; Brown, Steven P; Harris, Kenneth D M
2013-06-13
We report a strategy for structure determination of organic materials in which complete solid-state nuclear magnetic resonance (NMR) spectral data is utilized within the context of structure determination from powder X-ray diffraction (XRD) data. Following determination of the crystal structure from powder XRD data, first-principles density functional theory-based techniques within the GIPAW approach are exploited to calculate the solid-state NMR data for the structure, followed by careful scrutiny of the agreement with experimental solid-state NMR data. The successful application of this approach is demonstrated by structure determination of the 1:1 cocrystal of indomethacin and nicotinamide. The 1 H and 13 C chemical shifts calculated for the crystal structure determined from the powder XRD data are in excellent agreement with those measured experimentally, notably including the two-dimensional correlation of 1 H and 13 C chemical shifts for directly bonded 13 C- 1 H moieties. The key feature of this combined approach is that the quality of the structure determined is assessed both against experimental powder XRD data and against experimental solid-state NMR data, thus providing a very robust validation of the veracity of the structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Shiyang; Song, Peng; Pei, Wenbing
2013-09-15
Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)
2017-01-01
An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.
X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.
2017-05-01
Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S
2018-01-01
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.
Structural analysis of the industrial grade calcite
NASA Astrophysics Data System (ADS)
Shah, Rajiv P.; Raval, Kamlesh G.
2017-05-01
The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries
Structural properties and electrochemistry of α-LiFeO2
NASA Astrophysics Data System (ADS)
Abdel-Ghany, A. E.; Mauger, A.; Groult, H.; Zaghib, K.; Julien, C. M.
2012-01-01
In this work, we study the physico-chemistry and electrochemistry of lithium ferrite synthesized by solid-state reaction. Characterization included X-ray diffraction (XRD), scanning electronic microscopy (SEM), Raman scattering (RS), Fourier transform infrared spectroscopy (FTIR), and SQUID magnetometry. XRD peaks gradually sharpen with increasing firing temperature; all the diffraction peaks can be indexed to the cubic α-LiFeO2 phase (Fm3m space group) with the refined cell parameter a = 4.155 Å. RS and FTIR spectra show the vibrational modes due to covalent Fe-O bonds and the Li-cage mode at low-frequency. The electrochemical properties of Li/LiFeO2 are revisited along with the post-mortem analysis of the positive electrode material using XRD and Raman experiments.
Roosevelt Hot Springs, Utah FORGE X-Ray Diffraction Data
Nash, Greg; Jones, Clay
2018-02-07
This dataset contains X-ray diffraction (XRD) data taken from wells and outcrops as part of the DOE GTO supported Utah FORGE project located near Roosevelt Hot Springs. It contains an Excel spreadsheet with the XRD data, a text file with sample site names, types, and locations in UTM, Zone 12, NAD83 coordinates, and a GIS shapefile of the sample locations with attributes.
Subbarao, Udumula; Rayaprol, Sudhindra; Dally, Rebecca; Graf, Michael J; Peter, Sebastian C
2016-01-19
The compounds RECuGa3 (RE = La-Nd, Sm-Gd) were synthesized by various techniques. Preliminary X-ray diffraction (XRD) analyses at room temperature suggested that the compounds crystallize in the tetragonal system with either the centrosymmetric space group I4/mmm (BaAl4 type) or the non-centrosymmetric space group I4mm (BaNiSn3 type). Detailed single-crystal XRD, neutron diffraction, and synchrotron XRD studies of selected compounds confirmed the non-centrosymmetric BaNiSn3 structure type at room temperature with space group I4mm. Temperature-dependent single-crystal XRD, powder XRD, and synchrotron beamline measurements showed a structural transition between centro- and non-centrosymmetry followed by a phase transition to the Rb5Hg19 type (space group I4/m) above 400 K and another transition to the Cu3Au structure type (space group Pm3̅m) above 700 K. Combined single-crystal and synchrotron powder XRD studies of PrCuGa3 at high temperatures revealed structural transitions at higher temperatures, highlighting the closeness of the BaNiSn3 structure to other structure types not known to the RECuGa3 family. The crystal structure of RECuGa3 is composed of eight capped hexagonal prism cages [RE4Cu4Ga12] occupying one rare-earth atom in each ring, which are shared through the edge of Cu and Ga atoms along the ab plane, resulting in a three-dimensional network. Resistivity and magnetization measurements demonstrated that all of these compounds undergo magnetic ordering at temperatures between 1.8 and 80 K, apart from the Pr and La compounds: the former remains paramagnetic down to 0.3 K, while superconductivity was observed in the La compound at T = 1 K. It is not clear whether this is intrinsic or due to filamentary Ga present in the sample. The divalent nature of Eu in EuCuGa3 was confirmed by magnetization measurements and X-ray absorption near edge spectroscopy and is further supported by the crystal structure analysis.
Andrews, John T.; Kristjansdottir, Greta B.; Eberl, Dennis D.; Jennings, Anne E.
2013-01-01
This paper re-evaluates how well quantitative x-ray diffraction (qXRD) can be used as an exploratory method of the weight percentage (wt%) of volcaniclastic sediment, and to identify tephra events in marine cores. In the widely used RockJock v6 software programme, qXRD tephra and glass standards include the rhyodacite White River tephra (Alaska), a rhyolitic tephra (Hekla-4) and the basaltic Saksunarvatn tephra. Experiments of adding known wt% of tephra to felsic bedrock samples indicated that additions ≥10 wt% are accurately detected, but reliable estimates of lesser amounts are masked by amorphous material produced by milling. Volcaniclastic inputs range between 20 and 50 wt%. Primary tephra events are identified as peaks in residual qXRD glass wt% from fourth-order polynomial fits. In cores where tephras have been identified by shard counts in the > 150 µm fraction, there is a positive correlation (validation) with peaks in the wt% glass estimated by qXRD. Geochemistry of tephra shards confirms the presence of several Hekla-sourced tephras in cores B997-317PC1 and -319PC2 on the northern Iceland shelf. In core B997-338 (north-west Iceland), there are two rhyolitic tephras separated by ca. 100 cm with uncorrected radiocarbon dates on articulated shells of around 13 000 yr B.P. These tephras may be correlatives of the Borrobol and Penifiler tephras found in Scotland. The number of Holocene tephra events per 1000 yr was estimated from qXRD on 16 cores and showed a bimodal distribution with an increased number of events in both the late and early Holocene.
NASA Astrophysics Data System (ADS)
Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper
2018-02-01
Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.
Revisiting the hydration structure of aqueous Na +
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galib, M.; Baer, M. D.; Skinner, L. B.
In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na +. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å –1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å –1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, g NaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Åmore » (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–O avg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less
Revisiting the hydration structure of aqueous Na +
Galib, M.; Baer, M. D.; Skinner, L. B.; ...
2017-02-27
In this paper, a combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na +. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å –1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å –1. Both provide an accurate measure of the shape and position of the first peak in the Na–O pair distribution function, g NaO(r). The measured Na–O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Åmore » (EXAFS) are in excellent agreement. These measurements show a much shorter Na–O distance than generally reported in the experimental literature (Na–O avg ~ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na–O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na–O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (–D3 and –D2) significantly worsens the agreement with experiment by further increasing the Na–O distance by 0.07 Å. In contrast, the use of a classical Na–O Lennard-Jones potential with SPC/E water accurately predicts the Na–O distance as 2.39 Å although the Na–O peak is over-structured with respect to experiment.« less
Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka
2010-09-01
The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...
2018-01-24
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less
In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.
Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian
2017-06-12
The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.
A study of tantalum pentoxide Ta 2O 5 structures up to 28 GPa
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...
2017-05-02
In this study, tantalum pentoxide Ta 2O 5 with the orthorhombic L-Ta 2O 5 structure has been experimentally studied up to 28.3 GPa (at ambient temperature) using synchrotron angle-dispersive powder X-ray diffraction (XRD). The ambient pressure phase remains stable up to 25 GPa where with increased pressure a crystalline to amorphous phase transition occurs. A detailed equation of state (EOS), including pressure dependent lattice parameters, is reported. The results of this study were compared with a previous high-pressure XRD study by Li et al. A clear discrepancy between the ambient-pressure crystal structures and, consequently, the reported EOSs between the twomore » studies was revealed. Finally, he origin of this discrepancy is attributed to two different crystal structures used to index the XRD patterns.« less
NASA Astrophysics Data System (ADS)
Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno
2015-11-01
This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.
Thermal behaviour and microanalysis of coal subbituminus
NASA Astrophysics Data System (ADS)
Heriyanti; Prendika, W.; Ashyar, R.; Sutrisno
2018-04-01
Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) is used to study the thermal behaviour of sub-bituminous coal. The DSC experiment was performed in air atmosphere up to 125 °C at a heating rate of 25 °C min1. The DSC curve showed that the distinct transitional stages in the coal samples studied. Thermal heating temperature intervals, peak and dissociation energy of the coal samples were also determined. The XRD analysis was used to evaluate the diffraction pattern and crystal structure of the compounds in the coal sample at various temperatures (25-350 °C). The XRD analysis of various temperatures obtained compounds from the coal sample, dominated by quartz (SiO2) and corundum (Al2O3). The increase in temperature of the thermal treatment showed a better crystal formation.
Adsorption of vitamin E on mesoporous titania nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.
2010-07-15
Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less
Andrews, John T.; Eberl, D.D.; Kristjansdottir, G.B.
2006-01-01
Tephras, mainly from Iceland, are becoming increasingly important in interpreting leads and lags in the Holocene climate system across NW Europe. Here we demonstrate that Quantitative Phase Analysis of x-ray diffractograms of the 150 um fraction and identify these same peaks in XRD scans - two of these correlate geochemically and chronologically with Hekla 1104 and 3. At a distal site to the WNW of Iceland, on the East Greenland margin (core MD99-2317), the weight% of volcanic glass reaches values of 11% at about the time of the Saksunarvatn tephra. The XRD method identifies the presence of volcanic glass but not its elemental composition; hence it will assist in focusing attention on specific sections of sediment cores for subsequent geochemical fingerprinting of tephras. ?? 2006 SAGE Publications.
1991-06-01
GROUP SUBGROUP X-ray Diffraction, XRD, TiAI, titanium , aluminum, bonding characteristics, titanium aluminides , Debye-Waller temperature factor...XRD Powder Particles (575X) .............. 47 viii I. INTRODUCTION Titanium aluminides are recognized for their high specific strength, particularly at...bonding characteristics of binary titanium aluminides . Upon the introduction of a third element to the system, a rearrangement of the valence
Guide to U.S. Atmospheric Nuclear Weapon Effects Data
1993-12-01
biological warfare agents, and radiation dosimeters . XRD- 163 identifies the test location of each 4-6 biological sample. Reports containing the results...along with position of the animals at the time of the detonation. Vycor Glass Gamma Ray Dosimeters XRD-176 A rugged new dosimeter capable of measuring...gamma doses on animals exposed to high levels of radiation was employed during Able. Dosimeter readings, locations, and animal condition are reported
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates.
Silva, Chinthaka M; Rosseel, Thomas M; Kirkegaard, Marie C
2018-03-19
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18 , 4 × 10 19 , and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2 , with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.
Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, D.; Acharya, B. S.; Panda, N. R., E-mail: nihar@iitbbs.ac.in
2016-05-06
The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIRmore » studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.« less
NASA Technical Reports Server (NTRS)
Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.
2017-01-01
X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.
Quantitative XRD analysis of {110} twin density in biotic aragonites.
Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro
2012-12-01
{110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.
Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.
Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol
2011-12-01
The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.
Time dependence of carbon film deposition on SnO{sub 2}/Si using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfiadi, H., E-mail: yudi@fi.itb.ac.id; Aji, A. S., E-mail: yudi@fi.itb.ac.id; Darma, Y., E-mail: yudi@fi.itb.ac.id
Carbon deposition on SnO{sub 2} layer has been demonstrated at low temperature using DC unbalanced magnetron-sputtering technique for various time depositions. Before carbon sputtering process, SnO{sub 2} thin layer is grown on silicon substrate by thermal evaporation method using high purity Sn wire and then fully oxidizes by dry O{sub 2} at 225°C. Carbon sputtering process was carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature of 300 °C for sputtering deposition time of 1 to 4 hours. The properties of SnO{sub 2}/Si structure and carbon thin film on SnO{sub 2} is characterized using SEM, EDAX,more » XRD, FTIR, and Raman Spectra. SEM images and XRD spectra show that SnO2 thin film has uniformly growth on Si substrate and affected by annealing temperature. Raman and FTIR results confirm the formation of carbon-rich thin film on SnO{sub 2}. In addition, XRD spectra indicate that some structural change occur by increasing sputtering deposition time. Furthermore, the change of atomic structure due to the thermal annealing is analized by XRD spectra and Raman spectroscopy.« less
Effect of oxygen partial pressure on oxidation of Mo-metal
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.
2018-05-01
This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.
Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)
NASA Astrophysics Data System (ADS)
Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin
2013-06-01
The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.
The first X-ray diffraction measurements on Mars.
Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert
2014-11-01
The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.
Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro
Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, C K
To date a global kinetic rate law has not been written to accurately describe solid-solid phase transformations of HMX and TATB where contributions from grain size effects, binder contents, and impurity levels are explicitly defined. Our recent work presented at the 2001 SCCM topical APS meeting, Atlanta, GA, demonstrated one can not confidently use the second harmonic generation (SHG) diagnostic to study energetic material phase transitions where non-uniform grain size distributions are present. For example, in HMX, the early arrival of SHG before the XRD in the SHG/XRD simultaneous high temperature experiment clearly indicates the partial molecular conversion from centrosymmetricmore » to non-centrosymmetric without any structural changes as exhibit by the XRD pattern. This conversion is attributed to the changes of the surface molecules due to the differences in potential between the surface and the bulk. The present paper reports on accurate XRD measurements following changes of {beta}-HMX to {delta}-HMX at elevated temperature. The results are compared for sample with 2 different grain sizes for HMX. We report accurate temperature dependent lattice parameters and hence volume and linear thermal expansion coefficients along each crystallographic axis. We have also conducted kinetic studies of the behavior of 2 grain-sizes of HMX and concluded that their kinetics, are drastically different.« less
Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko
2013-01-01
Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188
Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy
NASA Astrophysics Data System (ADS)
Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.
2017-11-01
Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.
Asymmetric flavone-based liquid crystals: synthesis and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timmons, Daren J.; Jordan, Abraham J.; Kirchon, Angelo A.
2017-02-01
A series of flavones (n-F) substituted at the 4', and 6 positions was prepared, characterised by NMR (1H,13C), HRMS, and studied for liquid crystal properties. The 4'-alkoxy,6-methoxyflavones (4-F–16-F) exhibit varying ranges of nematic and smectic A phases as evidenced by polarised optical microscopy and differential scanning calorimetry (DSC). As the tail length is increased, the smectic phase becomes more prevalent. Smectic phases for (8-F–16-F) were further analysed by powder X-ray diffraction (XRD), and the rate of structural transformations was explored by combined DSC/XRD studies. Flavonol 6-F–OH was also prepared but no mesogenic behaviour was observed. The molecular structures of 6-Fmore » and 6-F–OH were determined by single-crystal XRD and help to explain the differences in material properties. Additionally, fluorescence and electrochemical studies were conducted on solutions of n-F.« less
Stability of fluorite-type La 2Ce 2O 7 under extreme conditions
Zhang, F. X.; Tracy, C. L.; Lang, M.; ...
2016-03-03
Here, the structural stability of fluorite-type La 2Ce 2O 7 was studied at pressure up to ~40 GPa and under hydrothermal conditions (~1 GPa, 350 °C), respectively, using synchrotron x-ray diffraction (XRD) and Raman scattering measurements. XRD measurements indicated that fluorite-type La 2Ce 2O 7 is not stable at pressures greater than 22.6 GPa and slowly transforms to a high-pressure phase. The high-pressure phase is not stable and changes back to the fluorite-type structure when pressure is released. The La 2Ce 2O 7 fluorite is also not stable under hydrothermal conditions and begins to react with water at 200~250 °C.more » Both Raman and XRD results suggest that lanthanum hydroxide La(OH) 3 and La 3+-doped CeO 2 fluorite are the dominant products after hydrothermal treatment.« less
Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.
Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; Difiore, Dörte; Milathianaki, Despina; Fry, Alan R; Miahnahri, Alan; Schafer, Donald W; Messerschmidt, Marc; Seibert, M Marvin; Koglin, Jason E; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J; Grosse-Kunstleve, Ralf W; Zwart, Petrus H; White, William E; Glatzel, Pieter; Adams, Paul D; Bogan, Michael J; Williams, Garth J; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K; Yachandra, Vittal K; Bergmann, Uwe; Yano, Junko
2013-04-26
Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw
2016-10-26
Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.
Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L
2015-12-05
Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.
Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F
2016-04-28
Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.
Cu-doped Cd1- x Zn x S alloy: synthesis and structural investigations
NASA Astrophysics Data System (ADS)
Yadav, Indu; Ahlawat, Dharamvir Singh; Ahlawat, Rachna
2016-03-01
Copper doped Cd1- x Zn x S ( x ≤ 1) quantum dots have been synthesized using chemical co-precipitation method. Structural investigation of the synthesized nanomaterials has been carried out by powder XRD method. The XRD results have confirmed that as-prepared Cu-doped Cd1- x Zn x S quantum dots have hexagonal structure. The average nanocrystallite size was estimated in the range 2-12 nm using Debye-Scherrer formula. The lattice constants, lattice plane, d-spacing, unit cell volume, Lorentz factor and dislocation density were also calculated from XRD data. The change in particle size was observed with the change in Zn concentration. Furthermore, FTIR spectra of the prepared samples were observed for identification of COO- and O-H functional groups. The TEM study has also reported the same size range of nanoparticles. The increase in agglomeration has been observed with the increase in Zn concentration in the prepared samples.
Effect of substrate temperature in the synthesis of BN nanostructures
NASA Astrophysics Data System (ADS)
Sajjad, M.; Zhang, H. X.; Peng, X. Y.; Feng, P. X.
2011-06-01
Boron nitride (BN) nanostructures were grown on molybdenum discs at different substrate temperatures using the short-pulse laser plasma deposition technique. Large numbers of randomly oriented nanorods of fiber-like structures were obtained. The variation in the length and diameter of the nanorods as a function of the substrate temperature was systematically studied. The surface morphologies of the samples were studied using scanning electron microscopy. Energy dispersive x-ray spectroscopy confirmed that both the elements boron and nitrogen are dominant in the nanostructure. The x-ray diffraction (XRD) technique was used to analyse BN phases. The XRD peak that appeared at 26° showed the presence of hexagonal BN phase, whereas the peak at 44° was related to cubic BN content in the samples. Raman spectroscopic analysis showed vibrational modes of sp2- and sp3-type bonding in the sample. The Raman spectra agreed well with XRD results.
Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming
2015-06-01
This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.
Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.
Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E
2011-01-01
Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.
A study on micro-structural and optical parameters of InxSe1-x thin film
NASA Astrophysics Data System (ADS)
Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.
2018-04-01
Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in
Scattering on a multi-level atomic system has dominant contributions from resonance and Raman scattering. While initial and final levels are the same for resonance scattering, they are different for Raman scattering. The frequency redistribution for resonance scattering is described by the usual partial frequency redistribution functions of Hummer, while that for Raman scattering is described by cross-redistribution (XRD) function. In the present paper, we investigate the importance of XRD on linear polarization profiles of {sup 3}P−{sup 3}S triplets of Mg i and Ca i formed in an isothermal one-dimensional atmosphere. We show that XRD produces significant effects on the linearmore » polarization profiles when the wavelength separations between the line components of the multiplet are small, like in the cases of Mg i b and Ca i triplets.« less
Nanoparticles of ZrPO4 for green catalytic applications
NASA Astrophysics Data System (ADS)
Sreenivasulu, Peta; Pendem, Chandrasekhar; Viswanadham, Nagabhatla
2014-11-01
Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure).Here we report the successful room temperature synthesis of zirconium phosphate nanoparticles (ZPNP) using the P123 tri-co-block polymer for the first time. The samples were characterized by SEM, TEM, XRD, TPD, and BET and were employed for fixation of CO2 on aniline to produce pharmaceutically important acetanilide under mild reaction conditions (150 °C and 150 Psi CO2 pressure). Electronic supplementary information (ESI) available: Experimental details, wide angle XRD, EDX, IR spectra, GC data etc. See DOI: 10.1039/c4nr03209h
Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed
2012-11-01
New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.
NASA Astrophysics Data System (ADS)
Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez
2012-03-01
Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.
NASA Astrophysics Data System (ADS)
Shokuhi Rad, A.; Ebrahimi, D.
2017-07-01
The effects of electron beam irradiation and presence of clay on the mechanical properties and thermal stability of montmorillonite clay-modified polyvinyl alcohol nanocomposites were studied. By using the X-ray diffraction (XRD) and transmission electron microscopy (TEM), the microstructure of the nanocomposites was investigated. The results obtained from TEM and XRD tests showed that montmorillonite clay nanoparticles were located in the polyvinyl alcohol phase. The XRD analysis confirmed the formation of an exfoliated structure in nanocomposites samples. Increasing the amount of clay to 20 wt.% increased the tensile strength and modulus of the nanocomposite. Irradiation up to an absorbed dose of 100 kGy increased its mechanical properties and thermal stability, but at higher irradiation levels, the mechanical strength and thermal stability declined. The sample with 20 wt.% of the nanofiller, exposed to 100 kGy, showed the highest mechanical strength and thermal stability.
Classification-free threat detection based on material-science-informed clustering
NASA Astrophysics Data System (ADS)
Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.
2017-05-01
X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.
Influence of supercritical CO(2) pressurization on the phase behavior of mixed cholesteryl esters.
Huang, Zhen; Feng, Mei; Su, Junfeng; Guo, Yuhua; Liu, Tie-Yan; Chiew, Yee C
2010-09-15
Evidences indicating the presence of phase transformations in the mixed cholesteryl benzoate (CBE) and cholesteryl butyrate (CBU) under the supercritical CO(2) pressurization, by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD), are presented in this work. These include (1) the DSC heating curve of pure CBU; (2) the DSC heating curves of CBU/CBE mixtures; (3) the XRD spectra of pure CBU; (4) the XRD spectra of CBU/CBE mixtures; (5) CBU and CBE are miscible in either solid phase or liquid phase over the whole composition range. As a result of the presence of these phase transformations induced by pressurization, it could be deduced that a solid solution of the CBU/CBE mixture might have formed at the interfaces under supercritical conditions, subsequently influencing their dissolving behaviors in supercritical CO(2). Copyright 2010 Elsevier B.V. All rights reserved.
Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L
2007-03-01
A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.
NASA Astrophysics Data System (ADS)
Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.
2013-12-01
A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite difficult to quantify in mixtures with high concentration of gypsum. Dolomite has been detected in some locations at dune 3 as high as 80 wt.%. Gypsum-quartz mixtures: The intensity of the main diffraction peak of quartz at 2θ≈31 deg. decreases progressively with the decrease of the amount of quartz in the mixtures. Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6 wt.% respectively . [1] Blake et al. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9905-1. [2] King et al. (2013) AGU, submitted. [3] Langevin et al. (2005). Science 307, 1584-1586.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.
In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.
Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)
NASA Astrophysics Data System (ADS)
Sangamithirai, D.; Narayanan, V.; Stephen, A.
2014-04-01
Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.
Electric-field responsive contrast agent based on liquid crystals and magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Mair, Lamar O.; Martinez-Miranda, Luz J.; Kurihara, Lynn K.; Nacev, Aleksandar; Hilaman, Ryan; Chowdhury, Sagar; Jafari, Sahar; Ijanaten, Said; da Silva, Claudian; Baker-McKee, James; Stepanov, Pavel Y.; Weinberg, Irving N.
2018-05-01
The properties of liquid crystal-magnetic nanoparticle composites have potential for sensing in the body. We study the response of a liquid crystal-magnetic nanoparticle (LC-MNP) composite to applied potentials of hundreds of volts per meter. Measuring samples using X-ray diffraction (XRD) and imaging composites using magnetic resonance imaging (MRI), we demonstrate that electric potentials applied across centimeter scale LC-MNP composite samples can be detected using XRD and MRI techniques.
Compression Freezing Kinetics of Water to Ice VII
Gleason, A. E.; Bolme, C. A.; Galtier, E.; ...
2017-07-11
Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.
Coupling Graphene Sheets with Magnetic Nanoparticles for Energy Storage and Microelectronics
2015-08-13
sheets obtained from three different synthetic methods: (i) electrochemical exfoliation of highly oriented pyrolytic graphite ( HOPG ) [8], (ii...Figure 8d, the characteristic lattice fringes of ɤ-Fe2O3 nanoparticles in graphene sheet is shown. Typical X-ray diffraction ( XRD ) patterns of the HOPG ...pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG , exfoliated graphene, PyDop1
Compression Freezing Kinetics of Water to Ice VII
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleason, A. E.; Bolme, C. A.; Galtier, E.
Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.
XRD and 29Si MAS-NMR spectroscopy across the β-Lu 2Si 2O 7- β-Y 2Si 2O 7 solid solution
NASA Astrophysics Data System (ADS)
Becerro, Ana I.; Escudero, Alberto
2005-01-01
Samples in the system Lu 2-xY xSi 2O 7 (0⩽ x⩽2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu 2Si 2O 7 and Y 2Si 2O 7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y 2Si 2O 7 in β-Lu 2Si 2O 7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu 2Si 2O 7-Y 2Si 2O 7 and the results compare favorably with the values obtained experimentally.
Zhu, Yu-Min; Zhang, Hua; Fan, Shi-Suo; Wang, Si-Jia; Xia, Yi; Shao, Li-Ming; He, Pin-Jing
2014-07-15
Due to the heterogeneity of metal distribution, it is challenging to identify the speciation, source and fate of metals in solid samples at micro scales. To overcome these challenges single particles of air pollution control residues were detected in situ by synchrotron microprobe after each step of chemical extraction and analyzed by multivariate statistical analysis. Results showed that Pb, Cu and Zn co-existed as acid soluble fractions during chemical extraction, regardless of their individual distribution as chlorides or oxides in the raw particles. Besides the forms of Fe2O3, MnO2 and FeCr2O4, Fe, Mn, Cr and Ni were closely associated with each other, mainly as reducible fractions. In addition, the two groups of metals had interrelations with the Si-containing insoluble matrix. The binding could not be directly detected by micro-X-ray diffraction (μ-XRD) and XRD, suggesting their partial existence as amorphous forms or in the solid solution. The combined method on single particles can effectively determine metallic multi-associations and various extraction behaviors that could not be identified by XRD, μ-XRD or X-ray absorption spectroscopy. The results are useful for further source identification and migration tracing of heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.
Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro; ...
2018-06-12
Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less
Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito
2017-01-01
Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075
XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.
Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F
2013-12-01
The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.
[NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].
Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu
2015-01-01
The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Fulanovic, Lovro
Changes to the crystal structure of 0.70Pb(Mg 1/3Nb 2/3)O 3–0.30PbTiO 3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic Cm at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF resultsmore » show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. Furthermore, this study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-xPT piezoceramics.« less
Crystallization processes in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Roman, E-mail: roman.svoboda@upce.cz; Bezdička, Petr; Gutwirth, Jan
2015-01-15
Highlights: • Crystallization kinetics of Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass was studied in dependence on particle size by DSC. • All studied fractions were described in terms of the SB autocatalytic model. • Relatively high amount of Te enhances manifestation of bulk crystallization mechanisms. • XRD analysis of samples crystallized under different conditions showed correlation with DSC data. • XRD analysis revealed a new crystallization mechanism indistinguishable by DSC. - Abstract: Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis were used to study crystallization in Ge{sub 2}Sb{sub 2}Se{sub 4}Te glass under non-isothermal conditions as a function of the particlemore » size. The crystallization kinetics was described in terms of the autocatalytic Šesták–Berggren model. An extensive discussion of all aspects of a full-scale kinetic study of a crystallization process was undertaken. Dominance of the crystallization process originating from mechanically induced strains and heterogeneities was confirmed. Substitution of Se by Te was found to enhance the manifestation of the bulk crystallization mechanisms (at the expense of surface crystallization). The XRD analysis showed significant dependence of the crystalline structural parameters on the crystallization conditions (initial particle size of the glassy grains and applied heating rate). Based on this information, a new microstructural crystallization mechanism, indistinguishable by DSC, was proposed.« less
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
2018-03-07
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandhu, A.; Sutradhar, S.; Mukherjee, S.
Highlights: • Maghemite nanoparticles were prepared by a modified co-precipitation method. • Nanoparticles were then successfully coated with pepsin for bio-functionlization. • XRD and Mössbauer spectra confirmed the maghemite phase of the nanoparticles. • Magnetic data were analysed to evaluate particle size, anisotropy etc. - Abstract: Maghemite nanoparticles (γ-Fe{sub 2}O{sub 3}) are prepared by co-precipitation method. To obtain bio-functionalized magnetic nanoparticles for magnetically controlled drug delivery, the prepared nanoparticles are successfully coated with pepsin, a bio-compatible polymer and digestive enzyme. Crystallographic phase of the nanoparticles is confirmed by X-ray diffractograms (XRD), high resolution transmission electron microscopy (HRTEM) and {sup 57}Femore » Mössbauer spectrometry. The average size of nanoparticles/nanocrystallites is estimated from the (3 1 1) peak of the XRD pattern using Debye–Scherrer formula. Results of HRTEM of coated and bare samples are in good agreement with those extracted from the XRD analysis. The dynamic magnetic properties are observed and different quantities viz., coercive field, magnetization, remanence, hysteresis losses etc., are estimated, which confirmed the presence of superparamagnetic relaxation of nanoparticles. Mössbauer spectra of the samples recorded at both 300 and 77 K, confirmed that the majority of particles are maghemite together with a very small fraction of magnetite nanoparticles.« less
Evolution of the substructure of a novel 12% Cr steel under creep conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk
2016-05-15
In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Fulanovic, Lovro; Vrabelj, Marko; Otonicar, Mojca; Ursic, Hana; Malic, Barbara; Levin, Igor; Jones, Jacob L.
2018-06-01
Changes to the crystal structure of 0.70 Pb (M g1 /3N b2 /3 ) O3-0.30 PbTi O3 (PMN-0.30PT) piezoceramic under application of electric fields at the long-range and local scale are revealed by in situ high-energy x-ray diffraction (XRD) and pair-distribution function (PDF) analyses, respectively. The crystal structure of unpoled samples is identified as monoclinic C m at both the long-range and local scale. In situ XRD results suggest that field-induced polarization rotation and phase transitions occur at specific field strengths. A polarization rotation pathway is proposed based on the Bragg-peak behaviors and the Le Bail fitting results of the in situ XRD patterns. The PDF results show systematic changes to the structures at the local scale, which is in agreement with the changes inferred from the in situ XRD study. More importantly, our results prove that polarization rotation can be detected and determined in a polycrystalline relaxor ferroelectric. This study supports the idea that multiple contributions, specifically ferroelectric-ferroelectric phase transition and polarization rotation, are responsible for the high piezoelectric properties at the morphotropic phase boundary of PMN-x PT piezoceramics.
Is Tridymite at Gale Crater Evidence for Silicic Volcanism on Mars?
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Vaniman, David T.; Ming, Douglas W.; Graff, Trevor G.; Downs, Robert T.; Fendrich, Kim; Mertzman, Stanley A.
2016-01-01
The X-ray diffraction (XRD) instrument (CheMin) onboard the MSL rover Curiosity detected 17 wt% of the SiO2 polymorph tridymite (relative to bulk sample) for the Buckskin drill sample (73 wt% SiO2) obtained from sedimentary rock in the Murray formation at Gale Crater, Mars. Other detected crystalline materials are plagioclase, sanidine, cristobalite, cation-deficient magnetite, and anhydrite. XRD amorphous material constitutes approx. 60 wt% of bulk sample, and the position of its broad diffraction peak near approx. 26 deg. 2-theta is consistent with opal-A. Tridymite is a lowpressure, high-temperature mineral (approx. 870 to 1670 deg. C) whose XRD-identified occurrence on the Earth is usually associated with silicic (e.g., rhyolitic) volcanism. High SiO2 deposits have been detected at Gale crater by remote sensing from martian orbit and interpreted as opal-A on the basis H2O and Si-OH spectral features. Proposed opal-A formation pathways include precipitation of silica from lake waters and high-SiO2 residues of acid-sulfate leaching. Tridymite is nominally anhydrous and would not exhibit these spectral features. We have chemically and spectrally analyzed rhyolitic samples from New Mexico and Iwodake volcano (Japan). The glassy (by XRD) NM samples have H2O spectral features similar to opal-A. The Iwodake sample, which has been subjected to high-temperature acid sulfate leaching, also has H2O spectral features similar to opal-A. The Iwodake sample has approx. 98 wt% SiO2 and 1% wt% TiO2 (by XRF), tridymite (>80 wt.% of crystalline material without detectable quartz by XRD), and H2O and Si-OH spectral features. These results open the working hypothesis that the opal-A-like high-SiO2 deposits at Gale crater detected from martian orbit are products of alteration associated with silicic volcanism. The presence or absence of tridymite will depend on lava crystallization temperatures (NM) and post crystallization alteration temperatures (Iwodake).
NASA Astrophysics Data System (ADS)
Dumon, M.; Van Ranst, E.
2016-01-01
This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.
Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj
2004-01-01
The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate. Glancing angle XRD enabled us to quantify and thereby profile phase transformations as a function of compact depth. The technique has potential utility in monitoring surface reactions, both chemical decomposition and physical transformations, in pharmaceutical systems.
A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.
2018-04-01
Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.
NASA Astrophysics Data System (ADS)
Chubarov, Mikhail; Choudhury, Tanushree H.; Zhang, Xiaotian; Redwing, Joan M.
2018-02-01
There is significant interest in the growth of single crystal monolayer and few-layer films of transition metal dichalcogenides (TMD) and other 2D materials for scientific exploration and potential applications in optics, electronics, sensing, catalysis and others. The characterization of these materials is crucial in determining the properties and hence the applications. The ultra-thin nature of 2D layers presents a challenge to the use of x-ray diffraction (XRD) analysis with conventional Bragg-Brentano geometry in analyzing the crystallinity and epitaxial orientation of 2D films. To circumvent this problem, we demonstrate the use of in-plane XRD employing lab scale equipment which uses a standard Cu x-ray tube for the analysis of the crystallinity of TMD monolayer and few-layer films. The applicability of this technique is demonstrated in several examples for WSe2 and WS2 films grown by chemical vapor deposition on single crystal substrates. In-plane XRD was used to determine the epitaxial relation of WSe2 grown on c-plane sapphire and on SiC with an epitaxial graphene interlayer. The evolution of the crystal structure orientation of WS2 films on sapphire as a function of growth temperature was also examined. Finally, the epitaxial relation of a WS2/WSe2 vertical heterostructure deposited on sapphire substrate was determined. We observed that WSe2 grows epitaxially on both substrates employed in this work under all conditions studied while WS2 exhibits various preferred orientations on sapphire substrate which are temperature dependent. In contrast to the sapphire substrate, WS2 deposited on WSe2 exhibits only one preferred orientation which may provide a route to better control the orientation and crystal quality of WS2. In the case of epitaxial graphene on SiC, no graphene-related peaks were observed in in-plane XRD while its presence was confirmed using Raman spectroscopy. This demonstrates the limitation of the in-plane XRD technique for characterizing low electron density materials.
Mondal, Shovan; Naubron, Jean-Valère; Campolo, Damien; Giorgi, Michel; Bertrand, Michéle P; Nechab, Malek
2013-12-01
The absolute configurations (AC) of azaheterocylic compounds resulting from the cascade rearrangement of enediynes involving only light atoms were unambiguously assigned by the joint use of vibrational circular dichroism (VCD) and copper radiation single crystal X-ray diffraction (XRD). These AC determinations proved that the rearrangements of enediynes proceeded with memory of chirality and retention of configuration. © 2013 Wiley Periodicals, Inc.
Laser sintered thin layer graphene and cubic boron nitride reinforced nickel matrix nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Tong, Guoquan
2015-10-01
Laser sintered thin layer graphene (Gr)-cubic boron nitride (CBN)-Ni nanocomposites were fabricated on AISI 4140 plate substrate. The composites fabricating process, composites microstructure and mechanical properties were studied. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were employed to study the micro structures and composition of the composites. XRD and Raman tests proved that graphene and CBN were dispersed in the nanocomposites. Nanoindentation test results indicate the significant improvements were achieved in the composites mechanical properties.
CdZnO coated film: A material for photovoltaic applications
NASA Astrophysics Data System (ADS)
Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.
2018-06-01
The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.
2016-07-11
composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3
FT-IR and Zeta potential measurements on TiO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jaiveer; Rathore, Ravi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk
2016-05-23
In the present investigation, ultrafine TiO particles have been synthesized successfully by thermal decomposition method. The sample was characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. As-synthesized TiO nanoparticles have a cubic structure as characterized by power X-ray diffraction (XRD), which shows that TiO nanoparticles have narrow size distribution with particle size 11.5 nm. FTIR data shows a strong peak at 1300 cm{sup −1}, assignable to the Ti-O stretching vibrations mode.
Dielectric properties of A- and B-site doped BaTiO 3: Effect of La and Ga
NASA Astrophysics Data System (ADS)
Gulwade, Devidas; Gopalan, Prakash
2009-06-01
Extremely small amounts of La and Ga doping on the A- and B-site of BaTiO 3, respectively, resulting in a solid solution of the type Ba 1-3xLa 2xTi 1-3yGa 4yO 3 have been investigated. The present work dwells on the influence of the individual dopants, namely La and Ga, on the dielectric properties of BaTiO 3. The compositions have been prepared by solid-state reaction. X-ray diffraction (XRD) reveals the presence of tetragonal (P4/mmm) phase. The XRD data has been analyzed using FULLPROF, a Rietveld refinement package. The microstructure have been studied by orientation imaging microscopy (OIM). The compositions have been characterized by dielectric spectroscopy between room temperature and 250 °C. Further, the nature of phase transition has been studied using high temperature XRD. The resulting compounds exhibit high dielectric constant, enhanced diffuseness and low temperature coefficient of capacitance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, Nelia, E-mail: nelia.castro@ntnu.no; Sorensen, Bjorn E.; Broekmans, Maarten A.T.M.
The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data frommore » PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.« less
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
A comparative study: Effect of plasma on V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Singh, Megha; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.
2016-05-01
Vanadium pentoxide nanostructured thin films (NSTs) have been studied to analyze the effect of plasma on nanostructures grown and morphology of films deposited using sublimation process. Nanostructured thin films were deposited on glass substrates, one in presence of oxygen plasma and other in oxygen environment (absence of plasma). Films were characterized using XRD, Raman spectroscopy, SEM and HRTEM. XRD studies revealed α-V2O5 films (orthorhombic phase) with good crystallinity. However, film deposited in presence of plasma have higher peak intensities as compared to those deposited in absence of plasma. Raman studies also support these finding following same trends of considerable increase in intensity in case of film deposited in presence of plasma. SEM micrographs makes the difference more visible, as film deposited in plasma have well defined plate like structures whereas other film have not-clearly-defined petal-like structures. HRTEM results show orthorhombic phase with 0.39 nm interplanar spacing, as reported by XRD. Results are hereby in good agreement with each other.
Sullivan, William R; Hughes, Jeff G; Cockman, Russell W; Small, Darryl M
2017-08-01
Resistant starch (RS) can form during storage of foods, thereby bestowing a variety of potential health benefits. The purpose of the current study has been to determine the influence of storage temperature and time on the crystallinity and RS content of bread. Loaves of white bread were baked and stored at refrigeration, frozen and room temperatures with analysis over a period of zero to seven days. RS determination and X-ray diffraction (XRD) were used to evaluate the influence of storage temperature and time on total crystallinity and RS content. The rate of starch recrystallisation was affected by storage temperature and time, where refrigeration temperatures accelerated RS formation and total crystallinity more than storage time at both frozen and room temperature. A strong statistical model has been established between RS formation in bread and XRD patterns, having a 96.7% fit indicating the potential of XRD to measure RS concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.
2014-01-01
The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffraction (µXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced. PMID:24365942
Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
Gleason, A. E.; Bolme, C. A.; Lee, H. J.; Nagler, B.; Galtier, E.; Milathianaki, D.; Hawreliak, J.; Kraus, R. G.; Eggert, J. H.; Fratanduono, D. E.; Collins, G. W.; Sandberg, R.; Yang, W.; Mao, W. L.
2015-01-01
Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. PMID:26337754
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Runguang; Xie, Qingge; Wang, Yan-Dong
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
NASA Astrophysics Data System (ADS)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik
2014-09-01
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.
X-ray Diffraction and Rietveld Refinement in Deferrified Clays for Forensic Science.
Prandel, Luis V; Melo, Vander de F; Brinatti, André M; Saab, Sérgio da C; Salvador, Fábio A S
2018-01-01
Soil vestiges might provide information about a crime scene. The Rietveld method with X-ray diffraction data (RM-XRD) is a nondestructive technique that makes it possible to characterize minerals present in the soils. Soil clays from the metropolitan region of Curitiba (Brazil) were submitted to DCB treatment and analyzed using XRD with CuK α radiation in the step-scan mode (0.02° 2θ/5 s). The GSAS+EXPGUI software was used for RM refinement. The RM-XRD results, together with the principal component analysis (PCA) (52.6% total variance), showed the kaolinite predominance in most analyzed samples and the highest quartz contents in "site 1." Higher anatase, and gibbsite and muscovite contents influenced discrimination, mainly in "site 3" and "site 1," respectively. These results were enough to discriminate clays of four sites and two horizons using a reduced amount of sample showing that the technique can be applied to the investigation into soil vestiges. © 2017 American Academy of Forensic Sciences.
Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu{sub 2}O{sub 3} thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep; Prakash, Ram, E-mail: rpgiuc@gmail.com; Choudhary, R.J.
2015-10-15
Highlights: • Growth of Fe doped Eu{sub 2}O{sub 3} thin films by PLD. • XRD and Raman’s spectroscopy used for structure confirmation. • The electronic states of Eu and Fe are confirmed by XPS. • Magnetic properties reveals room temperature magnetic ordering in deposited film. - Abstract: Fe (4 at.%) doped europium (III) oxide thin film was deposited on silicon (1 0 0) substrate by pulsed laser deposition technique. Structural, spectral and magnetic properties were studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and magnetization measurements. XRD and Raman spectroscopy reveal that the grown film is singlemore » phased and belongs to the cubic structure of Eu{sub 2}O{sub 3}. XPS study of the Eu{sub 1.92}Fe{sub 0.08}O{sub 3} film shows that Fe exists in Fe{sup 3+} ionic state in the film. The film exhibits magnetic ordering at room temperature.« less
Mechanochromic behavior of a luminescent silicone rubber under tensile deformation
NASA Astrophysics Data System (ADS)
Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon
2016-09-01
A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.
NASA Astrophysics Data System (ADS)
Yousif, A.; Duvenhage, M. M.; Ntwaeaborwa, O. M.; Swart, H. C.
2018-04-01
Y3(Al,Ga)5O12:Tb thin films (70 nm) have been prepared by pulsed laser deposition on a Si (100) substrate at the substrate temperature of 300 °C. The effect of annealing time on the structural, morphological and luminescence properties of Y3(Al,Ga)5O12:Tb thin films at 800 °C were studied. The crystal structure of the samples was studied by X- ray diffraction (XRD) and showed shifts in the peak positions to lower diffraction angles for the annealed film compared to the XRD peak positions of the commercial Y3(Al,Ga)5O12:Tb powder. A new excitation band different from the original Y3(Al,Ga)5O12:Tb powder was also observed for the annealed films. The shift in the XRD pattern and the new excitation band for the annealed film suggested that the films were enriched with Ga after annealing.
Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2
Gleason, A. E.; Bolme, C. A.; Lee, H. J.; ...
2015-09-04
Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueationmore » of stishovite appears to be kinetically limited to 1.4 ± 0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.« less
Boron-doped diamond synthesized at high-pressure and high-temperature with metal catalyst
NASA Astrophysics Data System (ADS)
Shakhov, Fedor M.; Abyzov, Andrey M.; Kidalov, Sergey V.; Krasilin, Andrei A.; Lähderanta, Erkki; Lebedev, Vasiliy T.; Shamshur, Dmitriy V.; Takai, Kazuyuki
2017-04-01
The boron-doped diamond (BDD) powder consisting of 40-100 μm particles was synthesized at 5 GPa and 1500-1600 °C from a mixture of 50 wt% graphite and 50 wt% Ni-Mn catalyst with an addition of 1 wt% or 5 wt% boron powder. The size of crystal domains of doped and non-doped diamond was evaluated as a coherent scattering region by X-ray diffraction (XRD) and using small-angle neutron scattering (SANS), being ≥180 nm (XRD) and 100 nm (SANS). Magnetic impurities of NiMnx originating from the catalyst in the synthesis, which prevent superconductivity, were detected by magnetization measurements at 2-300 K. X-ray photoelectron spectroscopy, the temperature dependence of the resistivity, XRD, and Raman spectroscopy reveal that the concentration of electrically active boron is as high as (2±1)×1020 cm-3 (0.1 at%). To the best of our knowledge, this is the highest boron content for BDD synthesized in high-pressure high-temperature process with metal catalysts.
Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang
2014-01-01
X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J
2014-06-01
Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...
2017-12-28
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less
NASA Technical Reports Server (NTRS)
Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)
2000-01-01
Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.
NASA Astrophysics Data System (ADS)
Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.
2014-01-01
Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.
Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure
NASA Astrophysics Data System (ADS)
Mohd, S. M.; Abd, M. Z.; Abd, A. N.
2010-03-01
The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.
The functionalization and characterization of multi-walled carbon nanotubes (MWCNTs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Mohd Pauzi; Center of Water Analysis and Research; Zulkepli, Siti Aminah
2015-09-25
Functionalization is the process of introducing chemical functional groups on the surface of the material. In this study, a multi-walled carbon nanotube (MWCNTs) was functionalized by oxidation treatment using concentrated nitric acid. The functionalized and pristine MWCNTs were analyzed by using Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The XRD patterns exhibit the graphitic properties for all samples. Besides, the XRD results also demonstrate that the percent of crystallinity of MWCNTs increases as the duration of acid treatment increases. The percent of crystallinity increases from 66% to 80% when the pristine MWCNT treated for 12 hours with additionalmore » 12 hours reflux process with nitric acid. The IR spectrum for the 12 hours-treated MWCNTs shows the formation of carboxyl functional group. Additional 12 hours reflux process with nitric acid on the 12 hours-treated MWCNTs have shown the loss of existing carboxyl group and only hydroxyl group formed.« less
NASA Astrophysics Data System (ADS)
Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Bhuvanesh, N.
2014-10-01
We have studied the self-catalyzed Knoevenagel condensation, spectral characterization, DPPH radical scavenging activity, cytotoxicity, and molecular properties of 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones using single crystal XRD and DFT techniques. In the absence of any catalyst, a series of novel 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones were synthesized using Meldrum’s acid and formylphenoxyaliphatic acid(s) in water. These molecules are arranged in the dimer form through intermolecular H-bonding in the single crystal XRD structure. Compounds have better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The optimized molecular structure, natural bond orbital analysis, electrostatic potential map, HOMO-LUMO energies, molecular properties, and atomic charges of these molecules have been studied by performing DFT/B3LYP/3-21G(*) level of theory in gas phase.
NASA Astrophysics Data System (ADS)
Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid
2017-04-01
The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.
Otsubo, Kazuya; Haraguchi, Tomoyuki; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2012-06-13
Fabrication of a crystalline ordered thin film based on the porous metal-organic frameworks (MOFs) is one of the practical applications of the future functional nanomaterials. Here, we report the creation of a highly oriented three-dimensional (3-D) porous pillared-layer-type MOF thin film on a metal substrate using a step-by-step approach based on liquid-phase epitaxy. Synchrotron X-ray diffraction (XRD) study clearly indicates that the thin film is crystalline and its orientation is highly controlled in both horizontal and vertical directions relative to the substrate. This report provides the first confirmation of details of not only the crystallinity but also the orientation of 3-D MOF thin film using synchrotron XRD. Moreover, we also demonstrate its guest adsorption/desorption behavior by using in situ XRD measurements. The results presented here would promise useful insights for fabrication of MOF-based nanodevices in the future.
NASA Astrophysics Data System (ADS)
Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.
2018-02-01
Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.
Portable X-ray powder diffractometer for the analysis of art and archaeological materials
NASA Astrophysics Data System (ADS)
Nakai, Izumi; Abe, Yoshinari
2012-02-01
Phase identification based on nondestructive analytical techniques using portable equipment is ideal for the analysis of art and archaeological objects. Portable(p)-XRF and p-Raman are very widely used for this purpose, yet p-XRD is relatively rare despite its importance for the analysis of crystalline materials. This paper overviews 6 types of p-XRD systems developed for analysis of art and archaeological materials. The characteristics of each system are compared. One of the p-XRD systems developed by the authors was brought to many museums as well as many archeological sites in Egypt and Syria to characterize the cultural heritage artifacts, e.g., amulet made of Egyptian blue, blue painted pottery, and Islamic pottery from Egypt, jade from China, variscite from Syria, a Japanese classic painting drawn by Korin Ogata, and oil paintings drawn by Taro Okamoto. Practical application data are shown to demonstrate the potential ability of the method for analysis of various art and archaeological materials.
Dopant concentration dependent growth of Fe:ZnO nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Anshuman; Goswami, Navendu, E-mail: navendugoswami@gmail.com
2016-05-23
Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn{sub 1-x}Fe{sub x}O along withmore » secondary phases of ZnFe{sub 2}O{sub 4} and Fe{sub 2}O{sub 3} were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.« less
Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction
Li, Runguang; Xie, Qingge; Wang, Yan-Dong; Liu, Wenjun; Wang, Mingguang; Wu, Guilin; Li, Xiaowu; Zhang, Minghe; Lu, Zhaoping; Geng, Chang; Zhu, Ting
2018-01-01
Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial−temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials. PMID:29284751
NASA Astrophysics Data System (ADS)
Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman
2014-11-01
Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.
Spectroscopic investigations on oxidized multi-walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed
2016-05-06
The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.; ...
2017-12-27
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Anna M.; Richardson, Peter W.; Price, Stephen W. T.
In situ EXAFS and XRD have been used to study the electrochemical formation of hydride phases, H abs, in 0.5 M H 2SO 4 for a Pd/C catalyst and a series of Pd@Pt core-shell catalysts with varying Pt shell thickness, from 0.5 to 4 monolayers. Based on the XRD data a 3% lattice expansion is observed for the Pd/C core catalyst upon hydride formation at 0.0 V. In contrast, the expansion was ≤0.6% for all of the core-shell catalysts. The limited extent of the lattice expansion observed suggests that hydride formation, which may occur during periodic active surface area measurementsmore » conducting during accelerated aging tests or driven by H 2 crossover in PEM fuel cells, is unlikely to contribute significantly to the degradation of Pd@Pt core-shell electrocatalysts in contrast to the effects of oxide formation.« less
Influences of Co doping on the structural and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.
2010-07-01
Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.
Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.
Kempgens, Pierre; Britton, Jonathan
2016-05-01
Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr = 2 kHz for TiN, ZrN, and GaN; νr = 1 kHz for InN) and 'high speed' (νr = 15 kHz for TiN; νr = 5 kHz for ZrN; νr = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.
Yang, X; Yang, L; Lin, J; Zhou, R
2016-01-28
Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.
NASA Astrophysics Data System (ADS)
Poralan, G. M., Jr.; Gambe, J. E.; Alcantara, E. M.; Vequizo, R. M.
2015-06-01
Biological hydroxyapatite (BHAp) derived from thermally-treated fish bones was successfully produced. However, the obtained biological HAp was amorphous and thus making it unfavorable for medical application. Consequently, this research exploits and engineers the crystallinity of BHAp powders by addition of CaCO3 and investigates its degree of crystallinity using XRD and IR spectroscopy. On XRD, the HAp powders with [Ca]/[P] ratios 1.42, 1.46, 1.61 and 1.93 have degree of crystallinity equal to 58.08, 72.13, 85.79, 75.85% and crystal size equal to 0.67, 0.74, 0.75, 0.72 nm, respectively. The degree of crystallinity and crystal size of the obtained calcium deficient biological HAp powders increase as their [Ca]/[P] ratio approaches the stoichiometric ratio by addition of CaCO3 as source of Ca2+ ions. These results show the possibility of engineering the crystallinity and crystal size of biological HAp by addition of CaCO3. Moreover, the splitting factor of PO4 vibration matches the result with % crystallinity on XRD. Also, the area of phosphate-substitution site of PO4 vibration shows linear relationship (R2 = 0.994) with crystal size calculated from XRD. It is worth noting that the crystallinity of the biological HAp with [Ca]/[P] ratios 1.42 and 1.48 fall near the range 60-70% for highly resorbable HAp used in the medical application.
Moseke, Claus; Gelinsky, Michael; Groll, Jürgen; Gbureck, Uwe
2013-04-01
A model system for the precipitation of hydroxyapatite (HA) from saturated solutions at basic pH was utilized to investigate the effects of V, Co, and Cu ions on crystallography and stoichiometry of the produced apatites. X-ray diffraction (XRD) was applied to analyze phase composition and crystallinity of powders obtained with different metal ion concentrations and annealed at different sintering temperatures. This procedure used the temperature-dependent phase transitions and decompositions of calcium phosphates to analyze the particular influences of the metal ions on apatite mineralization. Comparative XRD measurements showed that all metal ion species reduced crystallinity and crystallite size of the produced apatites. Furthermore the transformation of amorphous calcium phosphate (ACP) to HA was partially inhibited, as was deduced from the formation of α-tricalcium phosphate (α-TCP) peaks in XRD patterns of the heated powders as well as from the reduced intensity of the OH stretch vibration in FTIR spectra. The thermally induced formation of β-TCP indicated a significantly reduced Ca/P ratio as compared to stoichiometric HA. This effect was more pronounced with rising metal ion content. In addition, the appearance of metal oxides in the XRD patterns of samples heated to higher temperatures indicated the incorporation of metal ions in the precipitated apatites. Peak shifts showed that both the apatitic as well as the β-TCP phase apparently had incorporated metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural and thermal properties of silk fibroin - Silver nanoparticles composite films
NASA Astrophysics Data System (ADS)
Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.
2018-05-01
In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, S. M.; Triches, D. M.; Poffo, C. M.
2011-01-01
Nanocrystalline Bi{sub 2}Te{sub 3} was produced by mechanical alloying and its properties were investigated by differential scanning calorimetry (DSC) x-ray diffraction (XRD), Raman spectroscopy (RS), and photoacoustic spectroscopy (PAS). Combining the XRD and RS results, the volume fraction of the interfacial component in as-milled and annealed samples was estimated. The PAS results suggest that the contribution of the interfacial component to the thermal diffusivity of nanostructured Bi{sub 2}Te{sub 3} is very significant.
Final Report for X-ray Diffraction Sample Preparation Method Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ely, T. M.; Meznarich, H. K.; Valero, T.
WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.
Preparation and Characterization of Natural Rubber/Organophilic Clay Nanocomposites
NASA Astrophysics Data System (ADS)
Gonzales-Fernandes, M.; Esper, F. J.; Silva-Valenzuela, M. G.; Martín-Cortés, G. R.; Valenzuela-Diaz, F. R.; Wiebeck, H.
Natural rubber/organophilic clay nanocomposites were prepared and characterized. A brown bentonite from Paraiba's State, Brazil was modified with a sodium salt and treated with quaternary ammonium salt hexadecyltrimethyl ammonium chloride. The clay in its natural state, after cation exchange with sodium and after organophilization was characterized by XRD, IR, SEM, thermal analysis. Nanocomposite samples were prepared containing 10 resin percent of organophilic clay. The vulcanized samples were analyzed by XRD, SEM. The nanocomposites obtained showed improvement in their mechanical properties in comparison with samples without clay.
NASA Technical Reports Server (NTRS)
Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Christoffersen, R.
2018-01-01
Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.
Govindhan, R; Karthikeyan, B
2017-10-01
The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.
Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J
2014-04-24
A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
The structural and Raman spectral studies on Ni0.5Cu0.5Fe2O4 ferrite
NASA Astrophysics Data System (ADS)
Somani, M.; Saleem, M.
2018-05-01
Spinel ferrite Ni0.5Cu0.5Fe2O4 has been successfully prepared via solid state reaction. The crystal structure studies using XRD technique revealed cubic structure of the sample. The XRD spectra was further refined via Retvield Refinement and all the parameters regarding structure were obtained which confirmed cubic structure. The assigned space group was found to be Fd-3m. Particle size was calculated to be 56 nm. The Raman Spectra revealed five active Raman modes which confirmed spinel structure.
Coupling Graphene Sheets with Iron Oxide Nanoparticles for Energy Storage and Microelectronics
2015-08-13
of highly oriented pyrolytic graphite ( HOPG ) flake. Two electrode system containing platinum as counter electrode and HOPG as working electrode is... XRD ) patterns of the HOPG , exfoliated graphene, PyDop1-ɤ-Fe2O3 and PyDop1-ɤ-Fe2O3-graphene are given in Figure 1e. HOPG show a very sharp diffraction...atoms arranged in hexagonal pattern in honey comb crystal lattice, (c) TEM (d) HRTEM image of graphene- PyDop1-MNP hybrid, (e) XRD pattern of the HOPG
Synthesis and characterization of nano-hydroxyapatite using Sapindus Mukorossi extract
NASA Astrophysics Data System (ADS)
Subha, B.; Prasath, P. Varun; Abinaya, R.; Kavitha, R. J.; Ravichandran, K.
2015-06-01
Nano-Hydroxyapatite (HAP) powders were successfully synthesised by hydrothermal method using Sapindus Mukorossi extract as an additive. The structural and morphological analyses of thus synthesised powders were carried out using FT-IR, XRD and FESEM/EDX. The FT-IR spectra confirm the presence of phosphate and hydroxyl groups corresponding to HAP. The XRD analysis reveals the formation of HAP phase and found to reduce the crystallite size with addition of Sapindus Mukorossi extract. The morphology changes from sphere to flake shape by the influence of extract.
Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films
NASA Astrophysics Data System (ADS)
Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.
2002-06-01
The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.
Structural and optical properties of electrospun MoO3 nanowires
NASA Astrophysics Data System (ADS)
Das, Arnab Kumar; Modak, Rajkumar; Srinivasan, Ananthakrishnan
2018-05-01
Nanofibers of polyvinyl alcohol (PVA) containing ammonium molybdate were prepared by a combination of sol-gel and electrospinning techniques. Heat treatment of the as-spun composite nanofibers at 500 °C yielded MoO3 nanowires with a diameter of ˜180 nm. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. XRD and Raman spectra of the heat nanowires clearly show the formation of orthorhombic single phase MoO3 structure without any impurity phases.
Synthesis and Properties of Ortho-Nitro-Fe Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, A.; Mishra, Niyati; Sharma, R.
2011-07-15
Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.
Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires
NASA Astrophysics Data System (ADS)
Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.
Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.
Shen, Chong-Heng; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Wang, Qin; Su, Hang; Fu, Fang; Zheng, Xiao-Mei
2014-08-13
Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 was prepared by an aqueous solution-evaporation route. X-ray powder diffraction (XRD) showed that the as-synthesized material was a solid solution consisting of layered α-NaFeO2-type LiMO2 (M = Ni, Co, Mn) and monoclinic Li2MnO3. The superlattice spots in the selected area electron diffraction pattern indicated the ordering of lithium ions with transition metal (TM) ions in TM layers in this Li-rich layered oxide. Electrochemical performance testing showed that the as-synthesized material could deliver an initial discharge capacity of 267.7 mAh/g, with a capacity retention of 88.5% after 33 cycles. A new combination technique, multipotential step in situ XRD (MPS in situ XRD) measurement, was applied for the first time to investigate the Li-rich layered oxide. Using this approach, the relationships between kinetics and structural variations can be obtained simutaneously. In situ XRD results showed that the c parameter decreased from 3.70 to 4.30 V and increased from 4.30 to 4.70 V, whereas the a parameter underwent a decrease above 4.30 V during the first charge process. Below 3.90 V during the first discharge process, a slight decrease in the c parameter was found along with an increase in the a parameter. During the first charge process, the value of the coefficient of diffusion for lithium ions (DLi+) decreased to its mininum at 4.55 V, which might be associated with Ni(2+) migration, as indicated by both Ni occupancy in 3b sites (Ni3b%) in the Li(+) layers and complicated chemical reactions. Remarkably, a lattice distortion might occur within the local domain in the host stucture during the first discharge process, indicated by a slight splitting of the (003) diffraction peak at 3.20 V.
NASA Astrophysics Data System (ADS)
Black, Sarah R.; Hynek, Brian M.
2018-06-01
Interpretation of Martian geology relies heavily on our understanding of terrestrial analog deposits and our ability to obtain comprehensive and accurate mineralogical compositions. Many previous studies of terrestrial hydrothermal deposits relied on limited datasets and/or did not use instruments analogous to those deployed on Mars. We analyzed 100 hydrothermally altered basalts from Costa Rica, Nicaragua, and Iceland with Mars analog Visible to Short Wave Infrared (VSWIR) spectroscopy, X-ray Diffraction (XRD), and Raman laser spectrometry. Alteration mineralogy consisted of amorphous and crystalline SiO2 (cristobalite, tridymite, quartz), Ca/Al/Fe/Mg-sulfates (gypsum, anhydrite, alunite, jarosite, hexahydrite, alunogen), Fe-, Ti-, and Mg-oxides/hydroxides (hematite, goethite, anatase/brookite, brucite), elemental sulfur, and phyllosilicates (montmorillonite, kaolinite). Results indicate VSWIR is best suited for identification of X-ray amorphous materials such as hydrated SiO2 and phyllosilicates, while XRD is best utilized for highly ordered crystalline materials such as sulfates, crystalline SiO2 polymorphs, elemental sulfur, and Mg-hydroxides identification. Surprisingly, XRD had the lowest identification rates for Fe-oxides/hydroxides (42% compared to 61% and 75% for VNIR and Raman, respectively), and nearly equal identification rates as VSWIR for kaolinite (76% for VSWIR, 71% for XRD). Identification of phyllosilicates in XRD, while possible, is not as effective as VSWIR without extensive sample preparation. Our observed identification rates may be attributed to the relative abundance of materials-Fe-oxides/hydroxides being present as surface coatings, the presence of large amounts of kaolinite in some samples, and an increased particle size for kaolinite relative to other clays. Elemental sulfur and Fe- and Ti-oxides/hydroxides were more readily identified with Raman. With NASA's current focus on habitability, hydrothermally altered areas-which we know to host a wide range of microbial life here on Earth-are of high interest and it is likely that future rovers will encounter similar mineral assemblages. Therefore, future rovers would benefit from using a combination of these methods and expanding the VSWIR sampling range to the full 300-2500 nm to conduct a comprehensive mineralogical investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090
2017-02-15
The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scalemore » and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.« less
NASA Astrophysics Data System (ADS)
Piga, Giampaolo; Brunetti, Antonio; Lasio, Barbara; Malfatti, Luca; Galobart, Àngel; Dalla Vecchia, Fabio M.; Enzo, Stefano
2015-02-01
We have addressed an X-ray fluorescence (XRF) and X-ray diffraction (XRD) on a collection of thirteen fossil bone belonging to the Molí del Baró 1 paleontological site located near Sant Romà d'Abella (Isona i Conca Dellà Municipality, Lleida Province, Spain, dated to about 66.5 Ma, to investigate the fossilization occurred in this site in terms of physico-chemical properties. As a general behaviour, the XRD patterns showed the bioapatite mineral at a varying level of percentage, and accordingly, the correspondent XRF spectra turned out to be mainly dominated by the presence of Ca, obviously accompanied by phosphorus. Simultaneously, other elements such as Sr, Fe, Ba and Zn were found at non-negligible concentration levels and helped to assign the phase components in the XRD spectra. In three specimens, it was observed by XRD the rather unusual case where the original bioapatite bone mineral was completely substituted for by other mineralogical phases. In addition to this, celestite was also found as an important phase in ten specimens out of the thirteen examined. The occurrence of celestite in the bone structure appears a rather unusual observation within the literature of bones diagenesis. Its provenance is generally ascribed to marine vertebrate organisms, but the presence in the fossil bones of this site, where no evidence of marine environment exists, can be reconciled with occurrence of refluxing processes involving diagenetically altered fluids which were discharged into beds containing strontium sulphate-rich waters.
[Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].
Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong
2014-07-01
The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.
Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong
2014-08-01
The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.
XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vincentis, N.S., E-mail: devincentis@ifir-conic
The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less
NASA Technical Reports Server (NTRS)
McAdam, A. C.; Mahaffy, P. R.; Blake, D. F.; Ming, D. W.; Franz, H. B.; Eigenbrode, J. L.; Steele, A.
2010-01-01
The 2009 Arctic Mars Analog Svalbard Expedition (AMASE) investigated several geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). AMASE-related research comprises both analyses conducted during the expedition and further analyses of collected samples using laboratory facilities at a variety of institutions. The Sample Analysis at Mars (SAM) instrument suite, which will be part of the Analytical Laboratory on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser spectrometer (TLS). An Evolved Gas Analysis Mass Spectrometer (EGA-MS) was used during AMASE to represent part of the capabilities of SAM. The other instrument included in the MSL Analytical Laboratory is CheMin, which uses X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) to perform quantitative mineralogical characterization of samples. Field-portable versions of CheMin were used during the AMASE 2009. Here, we discuss the preliminary interpretation of EGA and XRD analyses of selected AMASE carbonate samples and implications for mineralogical interpretations from MSL. Though CheMin will be the primary mineralogical tool on MSL, SAM EGA could be used to support XRD identifications or indicate the presence of volatile-bearing minerals which may be near or below XRD detection limits. Data collected with instruments in the field and in comparable laboratory setups (e.g., the SAM breadboard) will be discussed.
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pakharukova, V.P., E-mail: verapakh@catalysis.ru; Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk; Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol–gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, includingmore » anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor. - Graphical abstract: Pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. - Highlights: • Silica-doped boehmites were prepared by sol–gel method with supercritical drying. • Ultrathin two-dimensional crystallites of pseudoboehmite were obtained. • Changes in structure and morphology upon calcination were studied. • Simulation of XRD patterns was performed with use of the Debye Scattering Equation. • Thermal stability of alumina depended on morphology inherited from pseudoboehmite.« less
Structure and morphology evolution of silica-modified pseudoboehmite aerogels during heat treatment
NASA Astrophysics Data System (ADS)
Pakharukova, V. P.; Shalygin, A. S.; Gerasimov, E. Yu.; Tsybulya, S. V.; Martyanov, O. N.
2016-01-01
Silica-modified pseudoboehmite aerogels (0, 10, 20 at% of Si) were prepared by sol-gel method followed by supercritical drying. The phase transformations, changes in structure and morphology upon calcination were thoroughly investigated by advanced X-Ray diffraction (XRD) techniques and high-resolution transmission electron microscopy (HRTEM). Obtained pseudoboehmite samples had specific nanostructure: ultrathin two-dimensional (2D) crystallites were loosely packed. The silica dopant drastically enhanced the crystallite anisotropy. Thus, the aerogel with Al:Si atomic ratio of 9:1 consisted of the pseudoboehmite nanosheets with thickness of one unit cell (average dimensions of 14.0×1.2×14.5 nm). The specific nanostructure caused remarkable features of experimental XRD patterns, including anisotropic peak broadening and appearance of forbidden reflection. Direct simulation of XRD patterns with using the Debye Scattering Equation allowed the size and morphology of pseudoboehmite crystallites to be determined. The silica addition strongly delayed formation of γ-alumina and further phase transformations upon calcinaton. Thermal stability of alumina was suggested to be affected by the particle morphology inherited from the pseudoboehmite precursor.
NASA Astrophysics Data System (ADS)
Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong
2018-04-01
In this paper, GaN-based yellow light-emitting diodes (LEDs) were homoepitaxially grown on free-standing (0001) GaN substrates by metal-organic chemical vapor deposition. X-ray diffraction (XRD), photoluminescence (PL), and electroluminescence (EL) measurements were conducted to investigate the structural, optical, and electrical properties of the yellow LED. The XRD measurement results showed that the InGaN/GaN multiple quantum wells (MQWs) in the LED structure have good periodicity because the distinct MQWs related higher order satellite peaks can be clearly observed from the profile of 2θ-ω XRD scan. The low temperature (10 K) and room temperature PL measurement results yield an internal quantum efficiency of 16% for the yellow LED. The EL spectra of the yellow LED present well Gaussian distribution with relatively low linewidth (47-55 nm), indicating the homogeneous In-content in the InGaN quantum well layers in the yellow LED structure. It is believed that this work will aid in the future development of GaN on GaN LEDs with long emission wavelength.
Debye–Waller coefficient of heavily deformed nanocrystalline iron1
Abdellatief, M.
2017-01-01
Synchrotron radiation X-ray diffraction (XRD) patterns from an extensively ball-milled iron alloy powder were collected at 100, 200 and 300 K. The results were analysed together with those using extended X-ray absorption fine structure, measured on the same sample at liquid nitrogen temperature (77 K) and at room temperature (300 K), to assess the contribution of static disorder to the Debye–Waller coefficient (B iso). Both techniques give an increase of ∼20% with respect to bulk reference iron, a noticeably smaller difference than reported by most of the literature for similar systems. Besides good quality XRD patterns, proper consideration of the temperature diffuse scattering seems to be the key to accurate values of the Debye–Waller coefficient. Molecular dynamics simulations of nanocrystalline iron aggregates, mapped on the evidence provided by XRD in terms of domain size distribution, shed light on the origin of the observed B iso increase. The main contribution to the static disorder is given by the grain boundary, while line and point defects have a much smaller effect. PMID:28381974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik
2014-09-03
This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less
An, Yan-Fei; Zhong, Li-li; Zhou, Yang-Zhang; Chen, Qing; Li, Xing-yuan
2014-06-01
Some granite samples from Pozaiying molybdenite deposits in the west of Guangdong were retrieved to characterize the spectral signature of XRD, FT-NIR and Raman. The results show that compared to the Porphyry granite and granite in the far zone, the signal of XRD and Raman of granite in near zone is weaker while the signal of FT-NIR is stronger. The authors' analyses indicate that the FWHM of quartz (101) peak in XRD, Sericite peak (4 529 cm(-1)) in FT-NIR and quartz peak in Raman shift from the latter are higher than those of former two. Those spectral characteristics indicate that compared with other samples, the content of petrogenetic mineral in samples from near zone is lower while the content of alteration mineral is higher, and its crystallinity and crystallization temperatures are both lower. The authors' studies suggest that there may be an alteration zone, embracing the granite-porphyry, which comprised low temperature mineral, and the quartz-porphyry which related to molybdenite mineralization belongs to the zone near Guanshanzhang mass.
Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite
NASA Astrophysics Data System (ADS)
Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan
2017-12-01
Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.
Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines
NASA Astrophysics Data System (ADS)
Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel
2012-03-01
The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.
Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method
NASA Astrophysics Data System (ADS)
Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza
2017-08-01
In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.
Dubina, E; Korat, L; Black, L; Strupi-Šuput, J; Plank, J
2013-07-01
Micro-Raman spectroscopy has been used to follow the reaction of free lime (CaO) exposed for 24h to moist air at 80 °C under conditions of different relative humidities (10-80% RH). X-ray diffraction and SEM imaging were applied as complementary techniques. The conversion of lime to calcium hydroxide and its subsequent carbonation to various calcium carbonate polymorphs was found to strongly depend on the relative humidity. At low RH (10-20%), only Raman spectroscopy revealed the formation of early amorphous CaCO3 which in the XRD patterns was detected only at ≥40% RH. However, XRD analysis could identify the crystalline polymorphs formed at higher relative humidities. Thus, between 20 and 60% RH, all three CaCO3 polymorphs (calcite, aragonite and vaterite) were observed via XRD whereas at high relative humidity (80%), calcite was the predominant reaction product. The results demonstrate the usefulness of Raman spectroscopy in the study of minor cement constituents and their reaction products on air, especially of amorphous character. Copyright © 2013 Elsevier B.V. All rights reserved.
Mineralogical Approaches to Sourcing Pipes and Figurines from the Eastern Woodlands, U.S.A.
Wisseman, S.U.; Moore, D.M.; Hughes, R.E.; Hynes, M.R.; Emerson, T.E.
2002-01-01
Provenance studies of stone artifacts often rely heavily upon chemical techniques such as neutron activation analysis. However, stone specimens with very similar chemical composition can have different mineralogies (distinctive crystalline structures as well as variations within the same mineral) that are not revealed by multielemental techniques. Because mineralogical techniques are often cheap and usually nondestructive, beginning with mineralogy allows the researcher to gain valuable information and then to be selective about how many samples are submitted for expensive and somewhat destructive chemical analysis, thus conserving both valuable samples and funds. Our University of Illinois team of archaeologists and geologists employs Portable Infrared Mineral Analyzer (PIMA) spectroscopy, X-ray diffraction (XRD), and Sequential acid dissolution/XRD/Inductively coupled plasma (SAD-XRD-ICP) analyses. Two case studies of Hopewellian pipes and Mississippian figurines illustrate this mineralogical approach. The results for both studies identify sources relatively close to the sites where the artifacts were recovered: Sterling, Illinois (rather than Ohio) for the (Hopewell) pipes and Missouri (rather than Arkansas or Oklahoma) for the Cahokia figurines. ?? 2002 Wiley Periodicals, Inc.
Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A
2015-01-25
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hou, Shang-Chieh; Su, Yuh-Fan; Chang, Chia-Chin; Hu, Chih-Wei; Chen, Tsan-Yao; Yang, Shun-Min; Huang, Jow-Lay
2017-05-01
The submicro-sized and nanostructured Si aggregated powder is prepared by combinational routes of high energy mechanical milling (HEMM) and wet milling. Milled Si powder is investigated by particle size analyzer, SEM, TEM, XPS and XRD as well as the control ones. Its electrode is also investigated by in situ XRD and electrochemical performance. Morphology reveals that combining the high energy mechanical milling and wet milling not only fracture primary Si particles but also form submicro-sized Si aggregates constructed by amorphous and nanocrystalline phases. Moreover, XPS shows that wet milling in ethanol trigger Sisbnd Osbnd CH2CH3 bonding on Si surface might enhance the SEI formation. In situ XRD analysis shows negative electrode made of submicro-sized Si aggregated powder can effectively suppress formation of crystalline Li15Si4 during lithiation and delithiation due to amorphous and nanocrystalline construction. Thus, the submicro-sized Si powder with synergistic effects combining the high energy mechanical milling and wet milling in ethanol as negative electrode performs better capacity retention.
Synthesis and characterization of mangan oxide coated sand from Capkala kaolin
NASA Astrophysics Data System (ADS)
Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya
2017-03-01
Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.
A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarin, P.; Haggerty, R; Yoon, W
2009-01-01
The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less
Application of glucose as a green capping agent and reductant to fabricate CuI micro/nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Ghanbari, Davood
Graphical abstract: - Highlights: • CuI nanostructures were prepared via a simple precipitation method. • Glucose as a green capping agent and reductant was applied. • The effect of glucose concentration on the morphology of CuI was investigated. • According to XRD results, pure cubic phase CuI have been formed by using glucose. - Abstract: In this work, CuI micro/nanostructures have been successfully prepared via a simple precipitation route at room temperature. By using glucose as a clean reducing agent with different concentrations, CuI micro/nanostructures with various morphologies were obtained. Besides glucose, Na{sub 2}SO{sub 3}, KBH{sub 4} and N{sub 2}H{submore » 4}·H{sub 2}O have been applied as reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy, X-ray energy dispersive spectroscopy (EDS) and Fourier transformed infrared (FT-IR) spectroscopy were used to characterize the as-produced CuI micro/nanostructures. According to the XRD results, it was found that pure cubic phase CuI have been formed by using glucose.« less
NASA Astrophysics Data System (ADS)
Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-06-01
We have investigated the structural and magnetic properties of Nd0.67Ba0.33MnO3 manganite and partial replacement of Mn with Fe and Cu compounds followed by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and vibrating sample magnetometer (VSM). The Rietveld refinement of XRD indicates orthorhombic crystal structure with I-mma space group for all the compounds and thus obtained lattice parameters confirm the presence of co-operative Jahn-Teller effect. XRD and XAS spectra results suggests the existence of Fe3+ in Fe-substituted compound where as a mixed state of Cu2+ and Cu3+ ions in the Cu-substituted compound. The ferromagnetic (FM) to paramagnetic (PM) transition and magnetic moment is found to decrease upon the substitution of Fe and Cu atoms because of the suppression of double exchange interaction. The theoretically obtained and experimentally determined values of effective PM moment and saturation magnetic moment confirms the presence of inhomogeneous magnetic states containing FM and antiferromagnetic clusters in all the studied compounds.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.;
2015-01-01
We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.
NASA Astrophysics Data System (ADS)
Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam
2018-06-01
We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Debye–Waller coefficient of heavily deformed nanocrystalline iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scardi, P.; Rebuffi, L.; Abdellatief, M.
2017-02-17
Synchrotron radiation X-ray diffraction (XRD) patterns from an extensively ball-milled iron alloy powder were collected at 100, 200 and 300 K. The results were analysed together with those using extended X-ray absorption fine structure, measured on the same sample at liquid nitrogen temperature (77 K) and at room temperature (300 K), to assess the contribution of static disorder to the Debye–Waller coefficient (B iso). Both techniques give an increase of ~20% with respect to bulk reference iron, a noticeably smaller difference than reported by most of the literature for similar systems. Besides good quality XRD patterns, proper consideration of themore » temperature diffuse scattering seems to be the key to accurate values of the Debye–Waller coefficient. Molecular dynamics simulations of nanocrystalline iron aggregates, mapped on the evidence provided by XRD in terms of domain size distribution, shed light on the origin of the observedB isoincrease. The main contribution to the static disorder is given by the grain boundary, while line and point defects have a much smaller effect.« less
Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications
NASA Astrophysics Data System (ADS)
Latha, H. K. E.; Lalithamba, H. S.
2018-03-01
Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.
Flower-like morphology of blue and greenish-gray ZnCoxAl2-xO4 nanopigments
NASA Astrophysics Data System (ADS)
Wahba, Adel Maher; Imam, N. G.; Mohamed, Mohamed Bakr
2016-02-01
In the present work, ZnCoxAl2 - xO4 (x = 0.00-1.50) nanosized pigments were synthesized for the first time by citrate-precursor autocombustion method and heat treatment at 900 °C. In this new nanopigment system the vacancies participate in the spinel structure since the divalent cobalt ions substitute the trivalent Al ions. Structural, microstructural and optical properties were investigated using XRD, FTIR, TEM, HRSEM, XRF, and PL techniques. XRD and FTIR spectra proved the formation of a pure cubic spinel phase. Size of the synthesized nano-crystals ranges from 15 to 60 nm, which is further confirmed with TEM micrographs. HRSEM confirms the microporous nature with flower-like morphology of the prepared nanopigments. Cation distribution has been suggested for the whole samples that matches quite well with XRD and IR experimental data. PL results show that the ZnCoxAl2 - xO4 pigments have good potential for use as a yellow-orange phosphor for displays and/or white light-emitting diodes.
Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika
2005-06-01
It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.
NASA Astrophysics Data System (ADS)
Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo
2018-03-01
Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.
In situ SAXS study on size changes of platinum nanoparticles with temperature
NASA Astrophysics Data System (ADS)
Wang, W.; Chen, X.; Cai, Q.; Mo, G.; Jiang, L. S.; Zhang, K.; Chen, Z. J.; Wu, Z. H.; Pan, W.
2008-09-01
Poly(vinylpyrrolidone) (PVP)-coated platinum (Pt) nanoparticles were prepared in methanol-water reduction method. In situ small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) techniques were used to probe the size change of particles and crystallites with temperature. Tangent-by-tangent (TBT) method of SAXS data analysis was improved and used to get the particle size distribution (PSD) from SAXS intensity. Scherrer’s equation was used to derive the crystallite size from XRD pattern. Combining SAXS and XRD results, a step-like characteristic of the Pt nanoparticle growth has been found. Three stages (diffusion, aggregation, and agglomeration) can be used to describe the growth of the Pt nanoparticles and nanocrystallites. Aggregation was found to be the main growth mode of the Pt nanoparticles during heating. The maximum growth rates of Pt nanoparticles and Pt nanocrystallites, as well as the maximum aggregation degree of Pt nanocrystallites were found, respectively, at 250 °C, 350 °C and 300 °C. These results are helpful to understanding the growth mode of nanoparticles, as well as controlling the nanoparticle size.
Structural and magnetic properties of nanocomposite iron-containing SiCxNy films
NASA Astrophysics Data System (ADS)
Pushkarev, R. V.; Fainer, N. I.; Maurya, K. K.
2017-02-01
New ferromagnetic films with composition SiCxNyFez were synthesized using chemical vapor deposition technique. Films were deposited using ferrocene, 1,1,1,3,3,3-hexamethyldisilazane (HMDS) and hydrogen gaseous mixture. Chemical and phase composition of the films were studied by FTIR, Raman spectroscopy and X-ray diffraction with grazing incidence (GI-XRD). FTIR spectra analysis confirmed the existence of Si-C and Si-N bonds. Graphite inclusions and amorphous carbon were determined by Raman spectra analysis. The surface of the SiCxNyFez films studied by SEM is covered by nanocrystallites of iron oxide Fe3O4 phase. The main purpose of GI-XRD analysis is to describe the layered structure of the films in detail. It was shown by GI-XRD study, that phase composition of the SiCxNyFez films varies from iron oxide Fe3O4 to iron silicide Fe3Si and silicon carbide SiC with the deposition temperature growing. It was established, that SiCxNyFez films are perspective for application in the spintronic field.
Microstructures of Pd-containing dispersants for admixed dental amalgams.
Chern Lin, J H; Greener, E H
1991-10-01
Blended Pd-containing dispersants were developed by the utilization of a Ag-Cu eutectic into which Pd was substituted for Ag or Cu in concentrations of up to 20 wt%. Compositions were melted either in argon-filled sealed vycor tubes or in a graphite-linked carbon crucible of an induction furnace with an argon blanket. Ingots of approximately 1.5 cm in diameter were sectioned to 0.2 cm in thickness and polished through standard metallographic polishing procedures. The possible compounds were identified by XRD. The microstructures of the alloys were examined by SEM/EDS. XRD analysis of the alloys revealed the preferential dissolution of Pd in Cu when the Pd concentration was less than or equal to 10 wt%. When the Pd concentration exceeded 20 wt%, Pd was found to be dissolved in both Ag and Pd. No Cu3Pd x-ray diffraction peaks were found for alloys with Pd concentration of up to 20 wt%. SEM/EDS analysis confirmed XRD results; lamellae of Ag and Cu-Pd were found in alloys with Pd concentration less than or equal to 10 wt%.
Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D
2013-01-01
The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.
NASA Astrophysics Data System (ADS)
Kulkarni, S. S.; Belavi, P. B.; Khadke, U. V.
2018-05-01
In this paper we report the method of synthesis of ferroelectric polymer Polyvinyldene fluoride (PVDF) and Barium Titanate (BaTiO3) composite self supporting thin films and its dielectric response. BaTiO3 was synthesized by solid state reaction method. The PVDF - BaTiO3 polymer composites with various concentrations were synthesized by solution mixing method using Dimethylformadide (DMF) as a solvent. The phase transformation and surface methodology of the prepared composites were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) respectively. The XRD pattern confirms the formation of tetragonal pervoskite structure of ferroelectric phase. The XRD pattern shows the proper mixing of BaTiO3 particles intestinally and found to be improving its crystallinity with increase of BaTiO3 composition in the PVDF matrix. The dielectric properties of the composites as a function of frequency were computed using impedance analyzer. The dielectric constant decreases with increase of frequency shows the Maxwell - Wagner type of interfacial polarization in accordance with Koop's phenomenological theory.
Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia
Singh, A. K.; Nakate, Umesh T.
2014-01-01
We report synthesis of ZrO2 nanoparticles (NPs) using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission) and a relatively weak peak at 475 and 562 nm. PMID:24578628
2011-01-01
composition: 97% Al2O3 and 3% SiO2] fibers. In both cases, the fibers were chopped with a razor blade into 5 cm lengths. Mixing of the powder and...the presence of XRD amorphous Ti- aluminides (see below) or other phases cannot be ruled out at this juncture. When the XRD spectrum of the as-received...not shown). No peaks belonging to any Ti- aluminide were found suggesting them to be amorphous or at most nano-crystalline. A typical TEM micrograph of
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmad, Arham S.
2018-05-01
The nanocrystallites of pure and Fe doped Nickel Oxide (NiO) were synthesized by the cost effective co-precipitation method using nickel nitrate as the initial precursor. The synthesized nickel oxide nanoparticles were characterized by X-Ray Diffraction (XRD), Photoluminiscence Spectroscopy (PL), LCR meter. The crystallite size of synthesized pure Nickel Oxide nanoparticles obtained by XRD using Debye Scherer's formula was found to be 21.8nm and the size decreases on increasing the dopant concentration. The optical properties were analyzed by PL and dielectric ones by using LCR meter.
Preparation of Cu-doped nickel oxide thin films and their properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gowthami, V.; Meenakshi, M.; Anandhan, N.
2014-04-24
Copper doped Nickel oxide film was preferred on glass substrate by simple nebulizer technique keeping the substrate temperature at 350°C and characterized by X-ray diffraction (XRD), Photoluminescence (PL) and Four probe resistivity measurements. XRD studies indicated cubic structure and the crystallites are preferentially oriented along the [111] direction. Interesting results have been obtained from the study of PL spectra. A peak corresponding to 376nm in the emission spectra for 0%, 5% and 10% copper doped samples. The samples show sharp and strong UV emission corresponding to the near band edge emission under excitation of 275nm.
NASA Astrophysics Data System (ADS)
Saini, Dinesh; Singh, Satyavir; Banerjee, M. K.; Sachdev, K.
2017-05-01
Mechanical alloying route has been employed for preparation of a single phase Ni50Mn41Cu4Sn5 (atomic %) Heusler alloy. Use of high energy planetary ball mill enables successful preparation of the same as authenticated by detailed X-ray diffraction (XRD) study. Microstructural study is carried out by optical and scanning electron microscopic techniques. XRD results reveal that increasing milling time leads to reduction in crystallite size and concurrent increase in lattice strain. Microstructural results indicate formation of self-assembled martensite twins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason
Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.
Preparation and characterization of Fe50Co50 nanostructured alloy
NASA Astrophysics Data System (ADS)
Yepes, N.; Orozco, J.; Caamaño, Z.; Mass, J.; Pérez, G.
2014-04-01
Nanostructured Fe50Co50 alloy was prepared by mechanical alloying of Fe and Co powders in a planetary high energy ball milling. The microstructure and structural evolution of the alloy have been investigated as a function of milling time (0 h, 8 h, 20 h and 35 h) by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) characterization techniques. SEM micrographs showed different powder particles morphologies during the mechanical alloying stages. By XRD analysis it could be identified the structural phases of the alloy and the crystallite size was calculated as a function of the milling time.
Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com; Tripathi, S. K.
2015-06-24
Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.
NASA Technical Reports Server (NTRS)
Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David;
2013-01-01
The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help determine the types and abundances of amorphous phases in the martian rocks and sand shadow. These models suggest that the rocks and sand shadow are composed of approx 30% amorphous phases. Sulfate-adsorbed allophane and ferrihydrite were measured by EGA to further understand the speciation of the sulfur present in the amorphous component. These data indicate that sulfate adsorbed onto the surfaces of amorphous phases could explain a portion of the SO2 evolution in the Rocknest SAM data. The additional constraints placed on the mineralogy and chemistry of the aqueous alteration phases through our laboratory measurements can help us better understand the nature of the fluids that affected the different samples and devise a history of aqueous alteration for the Sheepbed Member of the Yellowknife Bay Fm. at Gale crater.
Widdifield, Cory M; Nilsson Lill, Sten O; Broo, Anders; Lindkvist, Maria; Pettersen, Anna; Svensk Ankarberg, Anna; Aldred, Peter; Schantz, Staffan; Emsley, Lyndon
2017-06-28
The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13 C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR ( 1 H, 13 C, 15 N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13 C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13 C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13 C shift tensors and the observation of residual dipolar coupling between 13 C and 14 N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at room temperature, although dynamic disorder is present on the NMR timescale. Of the CSP-generated structures, 2 are found to be fully consistent with the SSNMR and pXRD data; within this pair, they are found to be structurally very similar (RMSD 16 = 0.30 Å). We establish that the CSP structure in best agreement with the NMR data possesses the highest degree of structural similarity with the scXRD-determined structure (RMSD 16 = 0.17 Å), and has the lowest DFT-calculated energy amongst all CSP-generated structures with Z' = 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos
Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnatedmore » sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.« less
Simulation study of an X-ray diffraction system for breast tumor detection
NASA Astrophysics Data System (ADS)
Marticke, F.; Montémont, G.; Paulus, C.; Michel, O.; Mars, J. I.; Verger, L.
2017-09-01
X-ray diffraction (XRD) is a powerful technique used to determine the molecular structure of biological tissues. In breast tissues for example, the scattering signatures of dense fibroglandular tissue and carcinoma have been shown to be significantly different. In this study, XRD was used as a second control level when conventional mammography results were unclear, for instance because of overly high breast density. A system optimized for this issue, called multifocal XRD, was developed combining energy dispersive spectral information at different scattering angles. This system allows depth-imaging in one go but needs an x,y-direction scan to image the region conventional mammography identified as suspect. The scan-time for about 10 cm3 with an incident flux of about 4 . 8 ṡ 107 photons per second would be around 2 s. For this study, breast phantoms with and without cancerous nodule were simulated to assess the separation power of the method and to determine the radiation dose required to obtain nearly ideal separation. For tumors situated in the center of the breast, the required dose was only about 0.3 mGy, even for breasts with high density. The tumor position was shown to have a low impact on detectability provided it remained in a zone where the system was sufficiently sensitive. The influence of incident spectrum maximum energy was also studied. The required dose remained very low with any of the incident spectra tested. Finally, an image slice was reconstructed in the x-direction and showed that the system can detect the presence of a small tumor (4 mm). Hence, XRD is a very promising tool to reduce the number of unnecessary invasive breast biopsies.
NASA Astrophysics Data System (ADS)
Gullu, Bahattin; Kadioglu, Yusuf Kagan
2017-08-01
Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.
Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.
Cianconi, L; Palopoli, P; Campanella, V; Mancini, M
2016-12-01
The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.
Gullu, Bahattin; Kadioglu, Yusuf Kagan
2017-08-05
Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of 50 MeV Li3 + irradiation on structural and electrical properties of Mn-doped ZnO
NASA Astrophysics Data System (ADS)
Neogi, S. K.; Chattopadhyay, S.; Banerjee, Aritra; Bandyopadhyay, S.; Sarkar, A.; Kumar, Ravi
2011-05-01
The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn1 - xMnxO-type system. Zn1 - xMnxO (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li3 + ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn0.98Mn0.02O, whereas for the Zn0.96Mn0.04O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn0.98Mn0.02O, the observed sharp decrease in room temperature resistivity (ρRT) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn0.96Mn0.04O, ρRT decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn0.98Mn0.02O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn0.96Mn0.04O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.
Effect of 50 MeV Li3+ irradiation on structural and electrical properties of Mn-doped ZnO.
Neogi, S K; Chattopadhyay, S; Banerjee, Aritra; Bandyopadhyay, S; Sarkar, A; Kumar, Ravi
2011-05-25
The present work aims to study the effect of ion irradiation on structural and electrical properties and their correlation with the defects in the Zn(1 - x)Mn(x)O-type system. Zn(1 - x)Mn(x)O (x = 0.02, 0.04) samples have been synthesized by the solid-state reaction method and have been irradiated with 50 MeV Li(3+) ions. The concomitant changes have been probed by x-ray diffraction (XRD), temperature-dependent electrical resistivity and positron annihilation lifetime (PAL) spectroscopy. The XRD result shows a single-phase wurtzite structure for Zn(0.98)Mn(0.02)O, whereas for the Zn(0.96)Mn(0.04)O sample an impurity phase has been found, apart from the usual peaks of ZnO. Ion irradiation removes this impurity peak. The grain size of the samples is found to be uniform. For Zn(0.98)Mn(0.02)O, the observed sharp decrease in room temperature resistivity (ρ(RT)) with irradiation is consistent with the lowering of the full width at half maximum of the XRD peaks. However, for Zn(0.96)Mn(0.04)O, ρ(RT) decreases for the initial fluence but increases for a further increase in fluence. All the irradiated Zn(0.98)Mn(0.02)O samples show a metal-semiconductor transition in temperature-dependent resistivity measurements at low temperature. But all the irradiated Zn(0.96)Mn(0.04)O samples show a semiconducting nature in the whole range of temperatures. Results of room temperature resistivity, XRD and PAL measurements are consistent with each other.
In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors
NASA Astrophysics Data System (ADS)
Takahasi, Masamitu
2018-05-01
The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.
Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals
NASA Astrophysics Data System (ADS)
Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.
2017-10-01
Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.
Physicochemical characterization of point defects in fluorine doped tin oxide films
NASA Astrophysics Data System (ADS)
Akkad, Fikry El; Joseph, Sudeep
2012-07-01
The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (FO) in presence of high concentration of oxygen vacancies (VO) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the VO concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the FO concentration and a decrease in both n and VO concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO2 matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine FO and tin vacancy VSn defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a VSn through the migration of SnSn host atom to the fluoride phase is approximately 0.45 eV.
Eberl, D.D.; Blum, A.E.; Serravezza, M.
2011-01-01
The illite layer content of mixed-layer illite/smectite (I/S) in a 2.5 m thick, zoned, metabentonite bed from Montana decreases regularly from the edges to the center of the bed. Traditional X-ray diffraction (XRD) pattern modeling using Markovian statistics indicated that this zonation results from a mixing in different proportions of smectite-rich R0 I/S and illite-rich R1 I/S, with each phase having a relatively constant illite layer content. However, a new method for modeling XRD patterns of I/S indicates that R0 and R1 I/S in these samples are not separate phases (in the mineralogical sense of the word), but that the samples are composed of illite crystals that have continuous distributions of crystal thicknesses, and of 1 nm thick smectite crystals. The shapes of these distributions indicate that the crystals were formed by simultaneous nucleation and growth. XRD patterns for R0 and R1 I/S arise by interparticle diffraction from a random stacking of the crystals, with swelling interlayers formed at interfaces between crystals from water or glycol that is sorbed on crystal surfaces. It is the thickness distributions of smectite and illite crystals (also termed fundamental particles, or Nadeau particles), rather than XRD patterns for mixed-layer I/S, that are the more reliable indicators of geologic history, because such distributions are composed of well-defined crystals that are not affected by differences in surface sorption and particle arrangements, and because their thickness distribution shapes conform to the predictions of crystal growth theory, which describes their genesis.
NASA Astrophysics Data System (ADS)
Brown, J. William; Ramesh, P. S.; Geetha, D.
2018-02-01
We report fabrication of mesoporous Fe doped CuS nanocomposites with uniform mesoporous spherical structures via a mild hydrothermal method employing copper nitrate trihydrate (Cu (NO3).3H2O), Thiourea (Tu,Sc(NH2)2 and Iron tri nitrate (Fe(No3)3) as initial materials with cationic surfactant cetyltrimethylamoniame bromide (CTAB) as stabilizer/size controller and Ethylene glycol as solvent at 130 °C temperature. The products were characterized by XRD, SEM/EDX, TEM, FTIR and UV analysis. X-ray diffraction (XRD) spectra confirmed the Fe doped CuS nanocomposites which are crystalline in nature. EDX and XRD pattern confirmed that the product is hexagonal CuS phase. Fe doped spherical structure of CuS with grain size of 21 nm was confirmed by XRD pattern. Fe doping was identified by energy dispersive spectrometry (EDS). The Fourier-transform infrared (FTIR) spectroscopy results revealed the occurrence of active functional groups required for the reduction of copper ions. Studies showed that after a definite time relining on the chosen copper source, the obtained Fe-CuS nanocomposite shows a tendency towards self-assembly and creating mesoporous like nano and submicro structures by TEM/SAED. The achievable mechanism of producing this nanocomposite was primarily discussed. The electrochemical study confirms the pseudocapacitive nature of the CuS and Fe-CuS electrodes. The CuS and Fe-CuS electrode shows a specific capacitance of about 328.26 and 516.39 Fg-1 at a scan rate of 5 mVs-1. As the electrode in a supercapacitor, the mesoporous nanostructured Fe-CuS shows excellent capacitance characteristics.
NASA Astrophysics Data System (ADS)
Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei
2011-02-01
Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.
NASA Astrophysics Data System (ADS)
Wang, Jian; Shen, Siqing; Xie, Jianjun; Shi, Ying; Ai, Fei
2010-10-01
Tb3+-doped Lu3Al5O12(hereinafter referred to as LuAG:Tb) films were successfully prepared by Pechini sol-gel process and spin-coating technique on carefully cleaned (111) silicon wafer. The microstructure and optical properties of the LuAG:Tb films were studied by X-ray diffraction (XRD), atomic force microscopy(AFM), as well as photoluminescence (PL) spectra. The XRD results showed that the precursor films started to crystallize at about 900°C. All as-calcined LuAG:Tb films showed the Tb3+ characteristic emission bands.
Green synthesis of silver nanoparticles using tannins
NASA Astrophysics Data System (ADS)
Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah
2014-09-01
Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.
Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili
2018-01-01
A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.
Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation
NASA Astrophysics Data System (ADS)
Zhou, Ruimin; Wu, Xinfeng; Hao, Xufeng; Zhou, Fei; Li, Hongbin; Rao, Weihong
2008-02-01
Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibraheam, A. S.; Al-Douri, Y., E-mail: yaldouri@yahoo.com; Hashim, U.
The study report novel sensing plat of extended quinternart materials, Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures were fabricated onto oxidized silicon substrate by sol-gel method and characterized were synthesized by X-ray diffraction (XRD). The XRD peaks were shifted towered the lower angle side with increasing cadmium content. The practical size average of the Cu{sub 2}Zn{sub 1-x}d{sub x}SnS{sub 4} quinternary alloy nanostructures between 34.55 to 63.30 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa
2016-05-06
Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.
Xie, Yingying; Wang, Hong; Xu, Guiliang; ...
2016-09-02
In operando XRD and TXM-XANES approaches demonstrate that structure evolution in NaNi 1/3Fe 1/3Mn 1/3O 2 during cycling follows a continuous change, and the formation of a nonequilibrium solid solution phase in the existence of two phases. Here, an O3' and P3' monoclinic phase occur, and redox couples of Ni 3+/Ni 4+ and Fe 3+/Fe 4+ are mainly responsible in the charge voltage range from 4.0 to 4.3 V.
The Structure and Infrastructure of the Global Nanotechnology Literature
2005-01-01
transmiss.electron.microscopi 1.3%, morpholog 1.2%, zn 1.0%, cd 1.0%, microscopi 1.0%, synthesi 0.9%, diffract.xrd 0.8%, electron 0.8%, powder 0.8%, surfact 0.8...film 2.3%, product 2.3%, hydrotherm 1.1%, tem 1.0%, synthes 0.9%, reaction 0.9%, xrd 0.9%, layer 0.8%, zn 0.8%, surfac 0.7%, cd 0.7%, magnet 0.7...0.5%, sol.gel 0.5%, thick 0.5%, materi 0.5%, laser 0.5%, reaction 0.5%, capac 0.4%, synthesi 0.4%, thin 0.4%, surfac 0.4%, nanowir 0.4%, nanoparticl
In search of the elusive IrB 2: Can mechanochemistry help?
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; ...
2015-10-20
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
Sb:SnO2 thin films-synthesis and characterization
NASA Astrophysics Data System (ADS)
Bhadrapriya B., C.; Varghese, Anitta Rose; Amarendra, G.; Hussain, Shamima
2018-04-01
Transparent thin films of antimony doped SnO2 have been synthesized and characterized using optical spectroscopy, XRD, RAMAN and FESEM. The band gap of Sb doped tin oxide thin film samples were found to vary from 3.26 eV to 3.7 eV. The XRD peaks showed prominent rutile SnO2 peaks with diminished intensity due to antimony doping. A wide band in the range 550-580 cm-1 was observed in raman spectra and is a feature of nano-sized SnO2. SEM images showed flower-like structures on thin film surface, a characteristic feature of antimony.
XRD and SEM study of alumina silicate porcelain insulator
NASA Astrophysics Data System (ADS)
Duddi, Dharmender; Singh, G. P.; Kalra, Swati; Shekhawat, M. S.; Tak, S. K.
2018-05-01
Higher strength electrical porcelain is a requirement of industry. This will be achieved by a specific composition of raw materials, which is consisted of clays and feldspars. Water absorption, particle size and insulating properties are of special interest now a day. China clay, Ball clay and Quartz are widely used by ceramic industries in Bikaner district of Rajasthan. Sample for present study were prepared by mixing of above clay, feldspar with MnO2, then shrinkage is observed. Bar shaped samples were prepared and heated up to a temperature of about 1185° C to observe shrinkage. For phase study of XRD and SEM are observed.
Study of defects and vacancies in structural properties of Mn, co-doped oxides: ZnO
NASA Astrophysics Data System (ADS)
Kumar, Harish; Kaushik, A.; Alvi, P. A.; Dalela, B.; Dalela, S.
2018-05-01
The paper deals with the Structural properties on Mn, Co doped oxides ZnO samples using XRD, Positron Annihilation Lifetime (PAL) Spectra and Raman Spectra. The Mn, Co doped ZnO samples crystallize in a wurtzite structure without any impurity phases in XRD Spectra. The defect state of these samples has been investigated by using positron annihilation lifetime (PAL) spectroscopy technique in which all the relevant lifetime parameters are measured for all the spectra. The results are explained in the direction of doping concentration in these samples in terms of defects structure on Zn lattice site VZn and oxygen defects Vo.
Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique
NASA Astrophysics Data System (ADS)
Suriani, S.; Kamisah, M. M.
2002-12-01
Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.
Analytical electron microscopy of Mg-SiO smokes - A comparison with infrared and XRD studies
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.; Nuth, J. A.; Mackinnon, I. D. R.
1986-01-01
Analytical electron microscopy conducted for Mg-SiO smokes (experimentally obtained from samples previously characterized by IR spectroscopy) indicates that the microcrystallinity content of unannealed smokes increases with increased annealing for up to 30 hr. The growth of forsterite microcrystallites in the initially nonstoichiometric smokes may give rise to the contemporaneous growth of the SiO polymorph tridymite and MgO; after 4 hr of annealing, these react to form enstatite. It is suggested that XRD analysis and IR spectroscopy should be conducted in conjunction with detailed analytical electron microscopy for the detection of emerging crystallinity in vapor-phase condensates.
NASA Technical Reports Server (NTRS)
Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.
Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-01
In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
NASA Astrophysics Data System (ADS)
Kondracki, Łukasz; Kulka, Andrzej; Świerczek, Konrad; Ziąbka, Magdalena; Molenda, Janina
2017-11-01
In this work a detailed operando XRD investigations of structural properties of LixMn2O4 manganese spinel are shown to be a complementary, successful method of determination of diffusion coefficient D and surface exchange coefficient k in the working electrode. Kinetics of lithium ions transport are estimated on the basis of rate of structural changes of the cathode material during a relaxation stage after a high current charge, i.e. during structural relaxation of the material. The presented approach seems to be applicable as a complementary method of determination of transport coefficients for all intercalation-type electrode materials.
NASA Astrophysics Data System (ADS)
Anilkumar, T.; Naik, Adarsh Ajith; Ramesan, M. T.
2017-06-01
Here we report the preparation of nitromercurated styrene butadiene rubber (NMSBR)/silver doped zinc oxide nanocomposite by inexpensive and ecofriendly two roll mill mixing. The composites were characterized by UV, FTIR, XRD, SEM, TGA and conductivity measurements. UV and FTIR spectrum indicated the interfacial interaction between the polymer and nanoparticles.XRD and SEM images showed the uniform arrangement of nanoparticles within the macromolecular chain. TGA study indicated the better thermal resistance of the composite. The dielectric properties and AC conductivity ofnanocomposites were much greater than nitromercurated SBR and they may be used as multifunctional materials for nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Jasna, V. C.; Ramesan, M. T.
2017-06-01
Nanocomposites based on SBR with different content of manganous tungstate nanoparticles were prepared and characterized by FTIR, UV-visible spectroscopy, XRD, SEM, TGA, DSC and impedance analysis. The interaction between nanoparticles and the elastomer was clear from the shift in peaks of UV and FTIR. XRD and SEM analysis showed the uniform arrangement of nanoparticles in SBR matrix. Glass transition temperature, thermal stability and dielectric properties of composites were enhanced by the addition of nanoparticles. Sorption studies of nanocomposites were done in aromatic solvents at different temperature. Sorption data obtained were used to estimate the thermodynamic properties.
In search of the elusive IrB 2: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina
We produced hexagonal ReB 2-type IrB 2 diboride and orthorhombic IrB monoboride phases, that were previously unknown and saw them produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. Additionally, scanning electron microscopy and transmission electron microscopy were employed, along with XRD, to further characterize the microstructure of the phases produced.
Polymethacrylic acid as a new precursor of CuO nanoparticles
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick
2012-11-01
Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.
Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish
In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.
Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices
NASA Astrophysics Data System (ADS)
Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng
2018-01-01
Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.
Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id
Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.
On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses
Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...
2017-08-30
Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.
Iron sand - ZnO based materials of natural origin for dye decolorization under sunlight irradiation
NASA Astrophysics Data System (ADS)
Salprima Yudha, S.; Angasa, Eka; Fitriani, Dyah; Falahudin, Aswin
2017-03-01
A mixed iron sand - ZnO materials was prepared by heating a mixture of natural iron sand and ZnO at 900 °C for 5 hours. XRD study of the sample revealed that, in the mixed iron sand - ZnO present some minor peaks that similar with XRD pattern of γ-Fe2O3 and/or Fe3O4. Observation of the sample using SEM, showed a compact morpholgy and almost homogenenous in particles size. In purpose to evaluate the ability of this materials for textile dying wastewater treatment, a study on rhodamine B decolorization was carried out as a reperesentative.
NASA Astrophysics Data System (ADS)
Sid, Assia; Messai, Amel; Parlak, Cemal; Kazancı, Nadide; Luneau, Dominique; Keşan, Gürkan; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai
2016-10-01
The structure of 1-formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline synthesized as single crystal was investigated by FTIR, NMR, XRD. Experimental data were complemented by quantum mechanical calculations. XRD data show that the compound crystallizes in the triclinic system (P-1) via trans isomer (a = 6.4267(4) Å, b = 10.9259(12) Å, c = 12.4628(9) Å and α = 102.894(8)°, β = 102.535(6)°, γ = 101.633(7)°). Anti-microbial screening results indicate that the compound shows promising activity. The theoretically predicted and experimentally obtained parameters reveal further insight into pyrazoline systems.
Structural changes concurrent with ferromagnetic transition
NASA Astrophysics Data System (ADS)
Yang, Sen; Bao, Hui-Xin; Zhou, Chao; Wang, Yu; Ren, Xiao-Bing; Song, Xiao-Ping; Yoshitaka, Matsushita; Yoshio, Katsuya; Masahiko, Tanaka; Keisuke, Kobayashi
2013-04-01
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry, as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD). However, the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure. With the development of high-resolution synchrotron XRD, more and more magnetic transitions have been found to be accompanied by simultaneous structural changes. In this article, we review our recent progress in understanding the structural change at a ferromagnetic transition, including synchrotron XRD evidence of structural changes at the ferromagnetic transition, a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions, new insight into magnetic morphotropic phase boundaries (MPB) and so on. Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here. In short, this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition, which may provide new insight for developing highly magneto-responsive materials.
NASA Astrophysics Data System (ADS)
Sampath, Sujatha; Jones, Justin; Harris, Thomas; Lewis, Randolph
2015-03-01
With a combination of high strength and extensibility, spider silk's (SS) mechanical properties surpass those of any man made fiber. The superior properties are due to the primary protein composition and the complex hierarchical structural organization from nanoscale to macroscopic length scales. Considerable progress has been made to synthetically mimic the production of fibers based on SS proteins. We present synchrotron x-ray micro diffraction (SyXRD) results on new fibers and gels (hydrogels, lyogels) from recombinant SS protein water-soluble dopes. Novelty in these materials is two-fold: water based rather than widely used HFIP acid synthesis, makes them safe in medical applications (replacement for tendons & ligaments). Secondly, hydrogels morphology render them as excellent carriers for targeted drug delivery biomedical applications. SyXRD results reveal semi-crystalline structure with ordered beta-sheets and relatively high degree of axial orientation in the fibers, making them the closest yet to natural spider silks. SyXRD on the gels elucidate the structural transformations during the self-recovery process through mechanical removal and addition of water. Studies correlating the observed structural changes to mechanical properties are underway.
Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3
Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun; ...
2018-01-17
Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less
NASA Technical Reports Server (NTRS)
Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.
2013-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.
Modeling and measurements of XRD spectra of extended solids under high pressure
NASA Astrophysics Data System (ADS)
Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.
2017-06-01
We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.
Radiation-induced changes in electrical conductivity and structure of BaPbO3 after γ-irradiation
NASA Astrophysics Data System (ADS)
Shan, Qing; Cai, Pingkun; Zhang, Xinlei; Li, Jiatong; Chu, Shengnan; Jia, Wenbao
2015-11-01
Several barium plumbate (BaPbO3) solid samples, made from PbO and BaCO3 powder by chemistry liquid-phase coprecipitation, were investigated before and after γ-irradiation. The solid samples were irradiated by a 60Co γ-irradiation source whose dose rate is about 0.7 kGy per hour. The irradiation times were 0, 72, 144, 216, 288 and 360 h. Then, the four-probe method, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to indicate the changes in electrical conductivity and microstructure of BaPbO3 after γ-irradiation. The XRD results indicated that the content of PbO was reduced as the irradiation dose was increased and eventually vanished from the surface of samples. However, there was no new obvious substance phase found from the XRD atlas. It seems that the PbO transformed into nearly amorphous Pb5O8. The conjecture could be proved by the results of annealing experiment and SEM. The XPS results seem to show that the microstructure of BaPbO3 was slightly changed.
XRD and FTIR structural investigation of gadolinium-zinc-borate glass ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borodi, G.; Pascuta, P.; Dan, V.
2013-11-13
X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy measurements have been employed to investigate the (Gd{sub 2}O{sub 3}){sub x}⋅(B{sub 2}O{sub 3}){sub (60−x)}⋅(ZnO){sub 40} glass ceramics system, with 0 ≤ x ≤ 15 mol%. After heat treatment applied at 860 °C for 2 h, some structural changes were observed and new crystalline phases appeared in the structure of the samples. In these glass ceramics four crystalline phases were identified using powder diffraction files (PDF 2), namely ZnB{sub 4}O{sub 7}, Zn{sub 4}O(B{sub 6}O{sub 12}), Zn{sub 3}(BO{sub 3}){sub 2} and GdBO{sub 3}. From the XRD data, the average unit-cell parameter and themore » quantitative ratio of the crystallographic phases in the studied samples were evaluated. FTIR data revealed that the BO{sub 3}, BO{sub 4} and ZnO{sub 4} are the main structural units of these glass ceramics network. The compositional dependence of the different structural units which appear in the studied samples was followed.« less
NASA Astrophysics Data System (ADS)
Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.
2018-03-01
XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.
Tensile stress effect on epitaxial BiFeO 3 thin film grown on KTaO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, In-Tae; Ichinose, Tomohiro; Han, Myung-Geun
Comprehensive crystal structural study is performed for BiFeO 3 (BFO) film grown on KTaO 3 (KTO) substrate using transmission electron microscopy (TEM) and x-ray diffraction (XRD). Nano beam electron diffraction (NBED) combined with structure factor calculation and high resolution TEM images clearly reveal that the crystal structure within BFO thin film is rhombohedral BFO, i.e., bulk BFO phase. Epitaxial relationship found by NBED indicates the BFO film grows in a manner that minimizes lattice mismatch with KTO. It further suggests BFO film is under slight biaxial tensile stress (~0.35%) along in-plane direction. XRD reveals BFO lattice is under compressive stressmore » (~1.6%), along out-of-plane direction as a result of the biaxial tensile stress applied along in-plane direction. This leads to Poisson’s ratio of ~0.68. In addition, we demonstrate (1) why hexagonal notation rather than pseudocubic one is required for accurate BFO phase evaluation and (2) a new XRD method that shows how rhombohedral BFO can readily be identified among other phases by measuring a rhombohedral specific Bragg’s peak.« less
Dissolution enhancement of tadalafil by liquisolid technique.
Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian
2017-02-01
This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.
Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis.
Stein, Helge Sören; Jiao, Sally; Ludwig, Alfred
2017-01-09
A challenge in combinatorial materials science remains the efficient analysis of X-ray diffraction (XRD) data and its correlation to functional properties. Rapid identification of phase-regions and proper assignment of corresponding crystal structures is necessary to keep pace with the improved methods for synthesizing and characterizing materials libraries. Therefore, a new modular software called htAx (high-throughput analysis of X-ray and functional properties data) is presented that couples human intelligence tasks used for "ground-truth" phase-region identification with subsequent unbiased verification by an algorithm to efficiently analyze which phases are present in a materials library. Identified phases and phase-regions may then be correlated to functional properties in an expedited manner. For the functionality of htAx to be proven, two previously published XRD benchmark data sets of the materials systems Al-Cr-Fe-O and Ni-Ti-Cu are analyzed by htAx. The analysis of ∼1000 XRD patterns takes less than 1 day with htAx. The proposed method reliably identifies phase-region boundaries and robustly identifies multiphase structures. The method also addresses the problem of identifying regions with previously unpublished crystal structures using a special daisy ternary plot.
NASA Astrophysics Data System (ADS)
Debastiani, Rafaela; Simon, Rolf; Goettlicher, Joerg; Heissler, Stefan; Steininger, Ralph; Batchelor, David; Fiederle, Michael; Baumbach, Tilo
2016-10-01
Roman mural green pigment painting fragments from three Roman sites in the north of the Roman province Germania Superior: Koblenz Stadtwald Remstecken (KOSR), Weißenthurm " Am guten Mann" (WEIS) and Mendig Lungenkärchen (MELU), dating from second and third centuries AD were analyzed. The experiments were performed nondestructively using synchrotron-based scanning macro-X-ray fluorescence (SR-MA-XRF), synchrotron-based scanning micro-X-ray fluorescence (SR-μ-XRF), synchrotron-based X-ray diffraction (SR-XRD) and Raman spectroscopy. Correlation between SR-MA-XRF, SR-μ-XRF elemental map distributions and optical images of scanned areas was mainly found for the elements Ca, Fe and K. With XRF, Fe and K were identified correlated with green pigment, but in samples from two sites, Mendig Lungenkärchen and Weißenthurm " Am guten Mann", also Cu was detected in minor concentration. The results of SR-XRD and Raman spectroscopy were limited to one sample from Weißenthurm " Am guten Mann". In this sample, green earth and calcium carbonate were identified by SR-XRD and, additionally, malachite by Raman spectroscopy.
Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.
Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S
2013-12-01
A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.
Habibi, Mohammad Hossein; Parhizkar, Janan
2015-11-05
Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.
2007-01-01
A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.
NASA Astrophysics Data System (ADS)
Roohani, Ebrahim; Arabi, Hadi; Sarhaddi, Reza
2018-01-01
In this research, SrFe12-xNixO19 (x = 0 - 1) hexagonal ferrites were prepared by sol-gel auto-combustion method. Effect of Ni substitution on structural, morphological and magnetic properties of nanoparticles was investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM), respectively. The XRD results confirmed that all samples with x ≤ 0.5 have single phase M-type strontium ferrite structure, whereas for the SrFe12-xNixO19 samples with x > 0.5, the spinel NiFe2O4 phase has also appeared. The lattice parameters and crystallite sizes of the powders were concluded from the XRD data and Williamson-Hall method. Magnetic analyses showed that the coercivity of powders decreased from 5672 Oe to 639 Oe while the saturation magnetization increased from 74 emu/g to 81 emu/g with nickel substitution. The results of this study suggest that the strontium hexaferrites doped with Ni are suitable for applications in high density magnetic recording media as well as microwave devices because of their promising magnetic properties.
Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol
Artem, L. M.; Santos, D. M.; De Andrade, A. R.; Kokoh, K. B.; Ribeiro, J.
2012-01-01
This work consisted in the preparation of platinum-based catalysts supported on carbon (Vulcan XC-72) and investigation of their physicochemical and electrochemical properties. Catalysts of the C/Pt-Ni-Sn-Me (Me = Ru or Ir) type were prepared by the Pechini method at temperature of 350°C. Four different compositions were homemade: C/Pt60Sn10Ni30, C/Pt60Sn10Ni20Ru10, C/Pt60Sn10Ni10Ru20, and C/Pt60Sn10Ni10Ir20. These catalysts were electrochemically and physically characterized by cyclic voltammetry (CV), chronoamperometry (CA) in the presence of glycerol 1.0 mol dm−3, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HRTEM). XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and HRTEM experiments were close to values ranging from 3 to 8.5 nm. The CV results indicate behavior typical of Pt-based catalysts in acid medium. The CV and CA data reveal that quaternary catalysts present the highest current density for the electrooxidation of glycerol. PMID:22623905
CoO doping effects on the ZnO films through EBPDV technique
NASA Astrophysics Data System (ADS)
Inês Basso Bernardi, Maria; Queiroz Maia, Lauro June; Antonelli, Eduardo; Mesquita, Alexandre; Li, Maximo Siu; Gama, Lucianna
2014-03-01
Nanometric Zn1-xCo xO (x = 0.020, 0.025 and 0.030 in mol.%) nanopowders were obtained from low temperature calcination of a resin prepared using the Pechini's method. Firing the Zn1-xCoxO resin at 400 °C/2 h a powder with hexagonal structure was obtained as measured by X-ray diffraction (XRD). The powder presented average particle size of 40 nm observed by field emission scanning electronic microscopy (FE-SEM) micrographs and average crystallite size of 10 nm calculated from the XRD using Scherrer's equation. Nanocrystalline Zn1-xCo xO films with good homogeneity and optical quality were obtained with 280-980 nm thicknesses by electron beam physical vapour deposition (EBPVD) under vacuum onto silica substrate at 25 °C. Scanning electron microscopy with field emission gun showed that the film microstructure is composed by spherical grains and some needles. In these conditions of deposition the films presented only hexagonal phase observed by XRD. The UV-visible-NIR and diffuse reflectance properties of the films were measured and the electric properties were calculated using the reflectance and transmittance spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawai, U. P.; Dole, B. N.; Khawal, H. A.
Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn{sub 1−x}Ag{sub x}O nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIRmore » spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm{sup −1}.« less
Carbon film deposition on SnO{sub 2}/Si(111) using DC unbalanced magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, A. S.; Darma, Y.
In this paper, carbon deposition on SnO{sub 2} layer using DC unbalanced magnetron-sputtering technique at low temperature has been systematically studied. Sputtering process were carried out at pressure of 4.6×10{sup −2} Torr by keeping the substrate temperature at 300 °C. SnO{sub 2} were growth on silicon (111) substrate using thermal evaporation and continuing with dry oxidation of Sn at 225 °C. Thermal evaporation for high purity Sn was conducted by maintain the current source as high as 40 ampere. The quality of SnO{sub 2} on Si(111) and the characteristic of carbon thin film on SnO{sub 2} were analized by meanmore » XRD, FTIR and Raman spectra. XRD analysis shows that SnO{sub 2} film is growth uniformly on Si(111). FTIR and Raman spectra confirm the formation of thin film carbon on SnO{sub 2}. Additionally, thermal annealing for some sample series have been performed to study their structural stability. The change of atomic structure due to thermal annealing were analized by Raman and XRD spectra.« less
Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application
NASA Astrophysics Data System (ADS)
Deraman, M.; Sazali, N. E. S.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Hamdan, E.; Suleman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Noor, A. M.; Jasni, M. R. M.
2016-08-01
Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ~(1-3%), ~85% and ~30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ~4400 to ~3400 m2/g, corresponding to the specific capacitance between ~500 to ~400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature.
Structural, magnetic and electronic structural properties of Mn doped CeO2 nanoparticles
NASA Astrophysics Data System (ADS)
Kumari, Kavita; Vij, Ankush; Hashim, Mohd.; Chae, K. H.; Kumar, Shalendra
2018-05-01
Nanoparticles of Ce1-xMnxO2, (x=0.0, 0.01, and 0.05) have been synthesized by using co-precipitation method, and then characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), near edge x-ray absorption fine structure (NEXAFS) spectroscopy and dc magnetization measurements. XRD results clearly showed that the all the samples have single phase nature and exclude the presence of any secondary phase. The average particle size calculated using XRD TEM measurements found to decrease with increase in Mn doping in the range of 4.0 - 9.0 nm. The structural parameters such as strain, interplaner distance and lattice parameter is observed to decrease with increase in doping. The morphology of Ce1-xMnxO2 nanoparticles measured using TEM micrographs indicate that nanoparticle have spherical shape morphology. Magnetic hysteresis curve for Ce1-xMnxO2, (x = 0.0, 0.01, and 0.05) confirms the ferromagnetic ordering room temperature. The value of saturation magnetization is observed to decrease with increase in temperature from 10 K to 300 K. The NEXAFS spectra measured at Ce M4,5 edge reveals that Ce-ions are in +4 valance state.
NASA Astrophysics Data System (ADS)
Awan, M. S.; Maqsood, M.; Mirza, S. A.; Yousaf, M.; Maqsood, A.
1995-02-01
(Bi1-xPbx:)2Sr2Ca2Cu3Oy ( x = 0.3) high critical transition temperature ( T c) superconductors are synthesized by the solid-state reaction method in polycrystalline form. X-ray diffraction (XRD) studies, direct current (dc) electrical resistivity measurements, scanning electron microscopic (SEM) studies, critical current density measurements, and zero-field alternating current (ac) susceptibility measurements are performed to investigate the physical changes, structural changes, and magnetic behavior of the superconducting samples. X-ray diffraction studies show that a high T c phase exists with orthorhombic symmetry in the specimen. According to the XRD data, the lattice parameters of the high T c phase were determined as a = 0.537(1) nm, b = 0.539(1) nm, and c = 3.70(1) nm. The compound exhibits a superconducting transition at 106 ±1 K for zero resistance. The ac susceptibility measurements in zero field confirm the dc electrical resistivity results; hence both support the XRD results. The particle size and structural changes as a function of the cold-pressing and aging effect are also reported.
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirai, Hisako, E-mail: hirai@sci.ehime-u.ac.jp; Kadobayashi, Hirokazu; Hirao, Naohisa
The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With themore » sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.« less
Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak
2018-04-01
Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.
X-ray characterization of indium during melting
NASA Astrophysics Data System (ADS)
Gondi, P.; Montanari, R.; Costanza, G.
During melting of Indium the structure of solid and liquid phases have been investigated by X-ray diffractometry (XRD) in 1-g conditions. At the melting point T M a re-orientation of crystalline grains occurs in the solid phase. The texture change, unusually rapid for a thermally activated process, is attributed to an abnormal increase of vacancy concentration. This explanation is in agreement with the observed shifts of XRD peaks towards lower angles. As a consequence of the texture change, the lattice planes facing the first formed liquid are (002) and (101) planes, i.e. those planes allocating 1st and 2nd neighbours around a given atom with shell radii very close to the mean distance of nearest neighbours in liquid as obtained from the radial distribution function (RDF). Convective motions in the liquid can be eliminated by repeating the same XRD measurements in μ-g. To get the best experimental conditions it is discussed the possibility to use thin oxide films grown on the external surface of samples as containers during melting. This technique was already successfully tested by present investigators in the experiment ES 311 A-B carried out during the mission SPACELAB-1.
Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles
NASA Astrophysics Data System (ADS)
Swapna, P.; Venkatramana Reddy, S.
2018-02-01
We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.
Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis
NASA Astrophysics Data System (ADS)
Koteswara Reddy, G.; Yarakkula, Kiran
2017-11-01
The purpose of the study was to investigate the major minerals present in granite mining waste and agricultural soils near and away from mining areas. The mineral exploration of representative sub-soil samples are identified by X-Ray Diffractometer (XRD) pattern data analysis. The morphological features and quantitative elementary analysis was performed by Scanning Electron Microscopy-Energy Dispersed Spectroscopy (SEM-EDS).The XRD pattern data revealed that the major minerals are identified as Quartz, Albite, Anorthite, K-Feldspars, Muscovite, Annite, Lepidolite, Illite, Enstatite and Ferrosilite in granite waste. However, in case of agricultural farm soils the major minerals are identified as Gypsum, Calcite, Magnetite, Hematite, Muscovite, K-Feldspars and Quartz. Moreover, the agricultural soils neighbouring mining areas, the minerals are found that, the enriched Mica group minerals (Lepidolite and Illite) the enriched Orthopyroxene group minerals (Ferrosilite and Enstatite). It is observed that the Mica and Orthopyroxene group minerals are present in agricultural farm soils neighbouring mining areas and absent in agricultural farm soils away from mining areas. The study demonstrated that the chemical migration takes place at agricultural farm lands in the vicinity of the granite mining areas.
NASA Astrophysics Data System (ADS)
Mahadevan, S.; Manojkumar, R.; Jayakumar, T.; Das, C. R.; Rao, B. P. C.
2016-06-01
17-4 PH (precipitation hardening) stainless steel is a soft martensitic stainless steel strengthened by aging at appropriate temperature for sufficient duration. Precipitation of copper particles in the martensitic matrix during aging causes coherency strains which improves the mechanical properties, namely hardness and strength of the matrix. The contributions to X-ray diffraction (XRD) profile broadening due to coherency strains caused by precipitation and crystallite size changes due to aging are separated and quantified using the modified Williamson-Hall approach. The estimated normalized mean square strain and crystallite size are used to explain the observed changes in hardness. Microstructural changes observed in secondary electron images are in qualitative agreement with crystallite size changes estimated from XRD profile analysis. The precipitation kinetics in the age-hardening regime and overaged regime are studied from hardness changes and they follow the Avrami kinetics and Wilson's model, respectively. In overaged condition, the hardness changes are linearly correlated to the tempering parameter (also known as Larson-Miller parameter). Similar linear variation is observed between the normalized mean square strain (determined from XRD line profile analysis) and the tempering parameter, in the incoherent regime which is beyond peak microstrain conditions.
NASA Astrophysics Data System (ADS)
Garip, Y.; Ozdemir, O.
2018-06-01
In this study, Ti-48Al and Ti-48Al-2Cr (at. pct) intermetallic alloys were produced by electric current activated sintering (ECAS). In order to characterize the phase formation and microstructures of these alloys, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analysis were used. The XRD result shows that the intermetallic alloys are composed of γ-TiAl and α 2-Ti3Al phases. The microstructure is dense with a low amount of porosity. The hot corrosion behavior of intermetallic alloys was carried out in a salt mixture of 25 wt pct K2SO4 and 75 wt pct Na2SO4 at 700 °C for 180 hours. The morphology of corroded surfaces was observed by SEM-EDS and XRD. Corrosion phases were identified as TiO2 and Al2O3. Well-adhering oxide scale was detected on the corroded sample surface at the end of 180 hours, and no spallation was observed. In addition, a parabolic curve was obtained at the weight change rate vs time.
NASA Astrophysics Data System (ADS)
Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.
2017-12-01
The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the orientational relationships between the low- and high-pressure phases that can be interpreted to provide information about transformation pathways between tetrahedral and octahedral coordination structures. We acknowledge support for this work from SLAC National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory.
NASA Technical Reports Server (NTRS)
Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.
2003-01-01
A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.
NASA Astrophysics Data System (ADS)
Beckerman, Laura Grace
The Mars Science Laboratory (MSL) Curiosity rover is equipped with CheMin, the first x-ray diffraction (XRD) instrument on Mars, for in situ mineralogy as part of its mission to seek evidence of past habitability at Gale Crater. Detection and characterization of hydrated minerals like clays and sulfates provides crucial insight into Mars' early geochemistry. For example, clays are often interpreted as having formed in lacustrine environments at neutral pHs, while sulfates such as jarosite are evidence of acid sulfate alteration. However, CheMin's inability to remove non-clay minerals and to preferentially orient samples may pose significant challenges to clay detection and characterization at Gale Crater. To evaluate the effect of particle size separation (<0.2 microm), removal of non-clay minerals, preferred orientation, and ethylene glycol solvation on XRD analyses of clays, we used both a CheMin analog instrument and a traditional laboratory XRD to identify clays in acid sulfate altered basalt from Mars analog sites in Costa Rica. We detected kaolinite in four of the fourteen samples studied, one of which also contained montmorillonite. Kaolinite was not detected in two samples with the analog instrument prior to clay isolation. These results suggest that CheMin may miss detection of some clays at Gale Crater, which could affect interpretations of early Mars' habitability. Mistaking iron-rich natroalunite (Na[Al,Fe]3(SO4) 2(OH)6) for jarosite (KFe3(SO4) 2(OH)6) could also impact interpretations of early Mars, as natroalunite can form over a broader range of pH, water:rock ratios, and redox conditions than can jarosite. To determine if iron-rich natroalunite is a common alteration product at Mars analog sites, we assessed iron content in natroalunite from Costa Rica. We detected up to 30% iron substitution in natroalunite at diverse geochemical settings. We also evaluated the feasibility of using XRD or Raman spectroscopy for in situ iron-rich natroalunite detection, and determined that CheMin on Curiosity and the Raman Laser Spectrometer on the upcoming ExoMars rover could detect natroalunite with ≥25% iron substitution. Distinguishing between iron-rich natroalunite and jarosite with CheMin could aid in interpreting geochemical conditions and habitability at Gale Crater.
Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.
2017-12-01
Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.
Spectral properties of Dy3+ doped ZnAl2O4 phosphor
NASA Astrophysics Data System (ADS)
Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.
2018-05-01
Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.
OMVPE Growth of Quaternary (Al,Ga,In)N for UV Optoelectronics (title change from A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
HAN,JUNG; FIGIEL,JEFFREY J.; PETERSEN,GARY A.
We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GrdnN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.
NASA Astrophysics Data System (ADS)
Ramesan, M. T.; Abdu Raheem V., P.; Jayakrishnan, P.; Pradyumnan, P. P.
2014-10-01
Nanocomposites of NBR with manganous-tungstate nanoparticles were prepared through vulcanization process. The extent of interaction of nanoparticles with the polymer was studied by FTIR, SEM, XRD, TGA and AC conductivity. FTIR and XRD ascertain the interaction of NBR with MnWO4 nanoparticles. SEM analysis established that the nanopartilces were well dispersed in the macromolecular chain of NBR. The mechanical properties of the nanocomposites were studied as a function of filler loading. The nanocomposites exhibited enhanced thermal stability as seen in TGA. Conductivity and dielectric properties of nanocomposites increase with increase in concentration of MnWO4 nanoparticles (7phr) and thereafter the value decreases.
NASA Astrophysics Data System (ADS)
Ginil Mon, S.; Jaya Vinse Ruban, Y.; Vetha Roy, D.
2011-09-01
In the large field of nanotechnology, polymer matrix-based nanocomposites have become a prominent area of current research and development. Exfoliated clay-based nanocomposites have dominated the polymer world with excellent characteristics. EPDM rubber composites have been synthesized by solution-intercalation using the easily available kaolinite as filler. The composite structure has been elucidated by X-ray diffraction (XRD), Fourier transform IR, and scanning electron microscope studies. The molecular level dispersion of clay layers has been verified by the disappearance of basal XRD peak of kaolinite in the EPDM/kaolinite composites. The mechanical properties showed significant improvement of EPDM/kaolinite composites with respect to neat EPDM.
Electrodeposition of Zn-doped α-nickel hydroxide with flower-like nanostructure for supercapacitors
NASA Astrophysics Data System (ADS)
You, Zheng; Shen, Kui; Wu, Zhicheng; Wang, Xiaofeng; Kong, Xianghua
2012-08-01
Zn-doped α-nickel hydroxide materials with flower-like nanostructures are synthesized by electrochemical deposition method. The samples are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and electrochemical measurements. XRD spectra indicate nickel hydroxide doped with Zn is α-Ni(OH)2 with excellent crystallization. The SEM observation shows that the formation of Zn-doped Ni(OH)2 includes two steps: a honeycomb-like film forms on the substrate first, then flower-like particles forms on the films. The nickel hydroxide doped with 5% Zn can maintain a maximum specific capacitance of 860 F g-1, suggesting its potential application in electrochemical capacitors.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
NASA Astrophysics Data System (ADS)
Singh, Bikramjeet; Singh, Paviter; Kumar, Manjeet; Thakur, Anup; Kumar, Akshay
2015-05-01
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H3BO3). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT).
Structure of chitosan thermosensitive gels containing graphene oxide
NASA Astrophysics Data System (ADS)
Tylman, Michał; Pieklarz, Katarzyna; Owczarz, Piotr; Maniukiewicz, Waldemar; Modrzejewska, Zofia
2018-06-01
The supramolecular hydrogels of chitosan and graphene oxide (GO) have been prepared at temperature of the human body, by controlling the concentration of GO and ratio of chitosan to GO. During the preparation of gels the sodium β-glycerophosphate (Na-β-GP) was used as a neutralizing agent. The structure of obtained gels was determined on the basis of FTIR spectra and XRD diffraction patterns. The results of structural studies have been referenced to gels without graphene oxide. It was found that the gels crystalline structure after the addition of GO does not change. The XRD diffraction patterns are characterized by a number of peaks associated with precipitated NaCl during drying and presence of sodium β-glycerophosphate.
The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.
Han, Xiumei; Feng, Xu; Qi, Xiwei; Wang, Xiaoqiang; Li, Mingya
2014-05-01
Bi3+, Eu3+, Dy3+ activated Y2O3 phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The XRD patterns show the refined crystal structure of Y2O3. The energy transfer processes of Bi(3+)-Eu3+ occurred in the host lattices. The thermal stability of Y2O3:Bi3+, Eu3+, Dy3+ phosphors was studied. Under short wavelength UV excitation, the phosphors show excellent characteristic red, blue, and yellow emission with medium intensity.
Inhibition and quenching effect on positronium formation in metal salt doped polymer blend
NASA Astrophysics Data System (ADS)
Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.
2018-04-01
Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.
Identification of Breast Cancer-Associated Lipids in Scalp Hair
Mistry, Dharmica A.H.; Haklani, Joseph; French, Peter W.
2012-01-01
A correlation between the presence of breast cancer and a change in the synchrotron-generated X-ray diffraction (XRD) pattern of hair has been reported in several publications by different groups, and on average XRD-based assays detect around 75% of breast cancer patients in blinded studies. To date, the molecular mechanisms leading to this alteration are largely unknown. We have determined that the alteration is likely to be due to the presence of one or more breast cancer-associated phospholipids. Further characterization of these lipids could be used to develop a novel, sensitive and specific screening test for breast cancer, based on hair initially, and potentially extendable to other biological samples. PMID:22872787
Zeta-potential and particle size studies of silver sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.
Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterrose, M.; Lucas, M; Yue, A
Synchrotron x-ray diffraction (XRD) measurements, nuclear forward scattering (NFS) measurements, and density functional theory (DFT) calculations were performed on L12-ordered Pd3Fe. Measurements were performed at 300 K at pressures up to 33 GPa, and at 7 GPa at temperatures up to 650 K. The NFS revealed a collapse of the 57Fe magnetic moment between 8.9 and 12.3 GPa at 300 K, coinciding with a transition in bulk modulus found by XRD. Heating the sample under a pressure of 7 GPa showed negligible thermal expansion from 300 to 523 K, demonstrating Invar behavior. Zero-temperature DFT calculations identified a ferromagnetic ground statemore » and showed several antiferromagnetic states had comparable energies at pressures above 20 GPa.« less
The Synthesis and Photoluminescent Properties of CaMoO₄:Eu³⁺ Nanocrystals by a Soft Chemical Route.
Li, Fuhai; Yu, Lixin; Sun, Jiaju; Li, Songchu; Wei, Shuilin
2017-04-01
In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.
NASA Astrophysics Data System (ADS)
Murali, N.; Margarette, S. J.; Madhuri Sailaja, J.; Kondala Rao, V.; Himakar, P.; Kishore Babu, B.; Veeraiah, V.
2018-02-01
Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of α-NaFeO2 layered structure with R\\bar 3m space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 µm. These materials show some changes in the local ion environment, as examined by FT-IR studies.
Nano sized La2Co2O6 double perovskite synthesized by sol gel method
NASA Astrophysics Data System (ADS)
Solanki, Neha; Lodhi, Pavitra Devi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
We report here the synthesis of double perovskite La2Co2O6 (LCO) compound by a sol gel route method. The double perovskite structure of LCO system was confirmed via X-ray diffraction (XRD) analysis. Further, the lattice parameter, unit cell volume and bond length were refined by means of rietveld analysis using the full proof software. Debye Scherer formula was used to determine the particle size. The compound crystallized in triclinic structure with space group P-1 in ambient condition. We also obtained Raman modes from XRD spectra of poly-crystalline LCO sample. These results were interpreted for the observation of phonon excitations in this compound.
Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.
2018-05-01
In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.
NASA Astrophysics Data System (ADS)
Gupta, Jhalak; Ahmed, Arham S.
2018-05-01
The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.
Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig
2012-01-01
The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721
The luminescence properties of nanocrystalline phosphors Mg2SiO4:Eu3+
NASA Astrophysics Data System (ADS)
Kolomytsev, A. Y.; Mamonova, D. V.; Manshina, A. A.; Kolesnikov, I. E.
2017-11-01
Nanocrystalline Eu3+-doped Mg2SiO4 powders were prepared with combined Pechini-solid phase synthesis. The structural properties were investigated with XRD, SEM and Raman spectroscopy. XRD pattern indicated that Mg2SiO4:Eu3+ were obtained with formation of other phase: MgO. Raman spectrum revealed good homogeneity and crystallinity of synthesized nanopowders. The luminescence properties were studied with measurement of excitation and emission spectra and decay curves. The effect of Eu3+ concentration on 5D0 level lifetime was studied. Most probably, the observed shortening of 5D0 level lifetime with Eu3+ concentration is caused by increase of nonradiative process probability.
High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software
NASA Astrophysics Data System (ADS)
Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.
2013-08-01
GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.
Fabrication of high-k dielectric Calcium Copper Titanate (CCTO) target by solid state route
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2016-02-01
CaCu3Ti4O12 (CCTO) ceramic pellet of 10mm diameter has been synthesized by adopting solid state route. The structural and morphological characterization of the ceramics sample was carried out by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. XRD pattern revealed the CCTO phase formation, where as SEM micrograph shows the sample consisting of well defined grain and grain boundaries. The room temperature dielectric constant of the sample was found to be ∼ 5000 at 1kHz. After successful preparation of CCTO pellet, a 2 inch diameter CCTO sputtering target is also fabricated in order to deposit CCTO thin films for microelectronic applications.
Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Kumar, Ravi; Sreenivas, K.
2013-02-01
Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.
NASA Astrophysics Data System (ADS)
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-04-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-01-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the “soft” SU8 bonding in comparison to the “hard” bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers. PMID:28522879
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-04-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.
NASA Astrophysics Data System (ADS)
Aradi, E.; Naidoo, S. R.; Billing, D. G.; Wamwangi, D.; Motochi, I.; Derry, T. E.
2014-07-01
The vibrational mode for the cubic symmetry of boron nitride (BN) has been produced by boron ion implantation of hexagonal boron nitride (h-BN). The optimum fluence at 150 keV was found to be 5 × 1014 ions/cm2. The presence of the c-BN phase was inferred using glancing incidence XRD (GIXRD) and Fourier Transform Infrared Spectroscopy (FTIR). After implantation, Fourier Transform Infrared Spectroscopy indicated a peak at 1092 cm-1 which corresponds to the vibrational mode for nanocrystalline BN (nc-BN). The glancing angle XRD pattern after implantation exhibited c-BN diffraction peaks relative to the implantation depth of 0.4 μm.
DSC and Raman studies of silver borotellurite glasses
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando
2016-05-01
Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.
Ellipsometric study of Si(0.5)Ge(0.5)/Si strained-layer superlattices
NASA Technical Reports Server (NTRS)
Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.
1993-01-01
An ellipsometric study of two Si(0.5)Ge(0.5)/Si strained-layer super lattices grown by MBE at low temperature (500 C) is presented, and results are compared with x ray diffraction (XRD) estimates. Excellent agreement is obtained between target values, XRD, and ellipsometry when one of two available Si(x)Ge(1-x) databases is used. It is shown that ellipsometry can be used to nondestructively determine the number of superlattice periods, layer thicknesses, Si(x)Ge(1-x) composition, and oxide thickness without resorting to additional sources of information. It was also noted that we do not observe any strain effect on the E(sub 1) critical point.
NASA Astrophysics Data System (ADS)
Zhao, Junjie; Dong, Xiaochen; Bian, Mengmeng; Zhao, Junfeng; Zhang, Yao; Sun, Yue; Chen, JianHua; Wang, XuHong
2014-09-01
Hydroxyapatite (HAP), fluorapatite (Fap) and chlorapatite (Clap) were prepared by solution combustion method with further annealing at 800 °C. The characterization and structural features of the synthesized powders were evaluated by the powder X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. Characterization results from XRD and Rietveld analysis revealed that OH- in the HAP lattice were gradually substituted with the increase of F- and Cl- content and totally substituted at the molar concentration of 0.28 and 0.6, respectively. The results from FI-IR have also confirmed the incorporation of substituted anions in the apatite structure.
Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices
NASA Astrophysics Data System (ADS)
Thakur, Shashi; Gathania, Arvind K.
2015-10-01
YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.
NASA Astrophysics Data System (ADS)
Dey, Ranajit; Bajpai, P. K.
2018-04-01
Implanted Au5+-ion-induced modification in structural and phonon properties of phase pure BiFeO3 (BFO) ceramics prepared by sol-gel method was investigated. These BFO samples were implanted by 15.8 MeV ions of Au5+ at various ion fluence ranging from 1 × 1014 to 5 × 1015 ions/cm2. Effect of Au5+ ions' implantation is explained in terms of structural phase transition coupled with amorphization/recrystallization due to ion implantation probed through XRD, SEM, EDX and Raman spectroscopy. XRD patterns show broad diffuse contributions due to amorphization in implanted samples. SEM images show grains collapsing and mounds' formation over the surface due to mass transport. The peaks of the Raman spectra were broadened and also the peak intensities were decreased for the samples irradiated with 15.8 MeV Au5+ ions at a fluence of 5 × 1015 ion/cm2. The percentage increase/decrease in amorphization and recrystallization has been estimated from Raman and XRD data, which support the synergistic effects being operative due to comparable nuclear and electronic energy losses at 15.8 MeV Au5+ ion implantation. Effect of thermal treatment on implanted samples is also probed and discussed.
Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds
NASA Astrophysics Data System (ADS)
Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos
1995-09-01
Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.
NASA Astrophysics Data System (ADS)
Priyono, Slamet; Triwibowo, Joko; Prihandoko, Bambang
2016-02-01
The effect of 0.025 Al-doped Li4Ti5O12 as anode material for Lithium Ion battery had been studied. The pure and 0.025 Al-doped Li4Ti5O12 were synthesized through solid state process in air atmosphere. Physical characteristics of all samples were observed by XRD, FTIR, and PSA. The XRD analysis revealed that the obtained particle was highly crystalline and had a face-centered cubic spinel structure. The XRD pattern also showed that the 0.025 Al-doped on the Li4Ti5O12 did not change crystal structure of Li4Ti5O12. FTIR analysis confirmed that the spinel structure in fingerprint region was unchanged when the structure was doped by 0.025 Al. However the doping of 0.025 Al increased particle size significantly. The electrochemical performance was studied by using cyclic voltammetry (CV) and charge-discharge (CD) curves. Electrochemical analysis showed that pure Li4Ti5O12 has higher capacity than 0.025 Al-doped Li4Ti5O12 had. But 0.025 Al-doped Li4Ti5O12 possesses a better cycling stability than pure Li4Ti5O12.
Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites
NASA Astrophysics Data System (ADS)
Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan
2015-12-01
Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.
Pressure-induced kinetics of the α to ω transition in zirconium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K.; Velisavljevic, N., E-mail: nenad@lanl.gov; Sinogeikin, S. V.
Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less
NASA Astrophysics Data System (ADS)
Subhapriya, S.; Gomathipriya, P.
2018-06-01
In this study, Titania nanorods were synthesised from aqueous extract of Turbinaria conoides (brown seaweeds) (TiO2NRs-TC) under surfactant free medium. The photocatalytic activity of the synthesised nanorods was tested towards the photocatalytic decolourization using simulated dye wastewater containing Navy Blue HER (NBHER). The synthesised Titania nanorods were characterized by using x-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), Scanning Electron Microscopy (SEM), Energy Dispersive Spectrophotometer (EDS) and Transmission Electron Microscopy (TEM). XRD pattern confirms the anatase phase formation and HR-SEM micrograph shows the presence of rod like structure with the size of about 50 nm. TEM analysis proves the rod like structure with a size of 45–50 nm which was in agreement with the XRD analysis and HR-SEM images. EDS and XDS confirmed the formation of Titania nanoparticles. The formation of TiO2NRs-TC has a beneficial influence on the dye Navy blue HER photodegradation. TiO2-TC nano rods also show superior photocatalytic ability in hydrogen generation (2.1 mmol/h‑1g‑1). The antibacterial activity of the synthesised nanoparticles was examined using disc diffusion method which showed diverse susceptibility of microorganisms to the Titania nanoparticles.
NASA Astrophysics Data System (ADS)
Jang, J. J. H.; Kim, S.; Burton, H.; Knox, J.; Marrs, C.; Sisk-Scott, C.
2017-12-01
The long-term effectiveness of an underground waste repository relies on understanding the chemical reaction products between intrusive brine and the reactive media in the repository. One such component of the stored media, iron, forms mineral precipitates in brine through anoxic corrosion. Chukanovite, Fe2CO3(OH)2(s), could be one of the precipitates and not much is known regarding its formation and thermodynamic stability. Thus, we have investigated eight mixtures of FeCl2 and NaHCO3 with NaOH for the synthesis of chukanovite in an anoxic glovebox. X-ray diffraction (XRD) scans of ten-month aged samples showed the paragenesis of three ferrous iron minerals in all tested conditions; siderite (FeCO3(s)), ferrous iron hydroxide (Fe(OH)2(s)), and chukanovite. Chukanovite was present alongside the two other minerals in between the pH values of 6 and 11. Comparison of relative intensities of major XRD peak heights of three minerals illustrated that the highest phase purity of chukanovite was achieved when the solution pH was approximately 9. XRD and solubility analysis will be performed periodically to determine when the experiments in the eight conditions reach steady state. Solid samples will be further characterized using Mossbauer and Raman spectroscopy.
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay
2018-04-01
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.
Microwave assisted scalable synthesis of titanium ferrite nanomaterials
NASA Astrophysics Data System (ADS)
Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.
2018-04-01
Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.
NASA Astrophysics Data System (ADS)
Shen, Huaxiang; Zhu, Guo-Zhen; Botton, Gianluigi A.; Kitai, Adrian
2015-03-01
The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality ( 0002 ) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by ( 0002 ) oriented wurtzite GaN and { 111 } oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H2 into Ar and/or N2 during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H2 into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted { 3 3 ¯ 02 } orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H2 into N2 due to the complex reaction between H2 and N2.
NASA Astrophysics Data System (ADS)
Alver, Özgür; Dikmen, Gökhan
2016-03-01
Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.
Template-assisted fabrication of tin and antimony based nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian
2012-10-01
Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.
NASA Astrophysics Data System (ADS)
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-01
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Nitin; Payzant, E Andrew; Jothimurugesan, K
2011-01-01
A 10% Co 4% Re/(2% Zr/SiO2) catalyst was prepared by co-impregnation using a silica support modified by 2% Zr. The catalyst was characterized by temperature programmed reduction (TPR), in situ XRD and in situ XANES analysis where it was simultaneously exposed to H2 using a temperature programmed ramp. The results showed the two step reduction of large crystalline Co3O4 with CoO as an intermediate. TPR results showed that the reduction of highly dispersed Co3O4 was facilitated by reduced rhenium by a H2-spillover mechanism. In situ XRD results showed the presence of both, Co-hcp and Co-fcc phases in the reduced catalystmore » at 400 C. However, the Co-hcp phase was more abundant, which is thought to be the more active phase as compared to the Co-fcc phase for CO hydrogenation. CO hydrogenation at 270 C and 5 bar pressure produces no detectable change in the phases during the time of experiment. In situ XANES results showed a decrease in the metallic cobalt in the presence of H2/CO, which can be attributed due to oxidation of the catalyst by reaction under these conditions.« less
NASA Astrophysics Data System (ADS)
Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine
2015-11-01
The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.
Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Kalita, Amarjyoti; Kalita, Manos P. C.
2017-08-01
We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shivani; Shahee, Aga; Singh, Kiran
2016-05-23
The temperature (T) dependent x-ray diffraction (XRD) and resistivity measurements of La{sub 0.175}Pr{sub 0.45}Ca{sub 0.375}MnO{sub 3-δ} (LPCMO) have been performed down to 2 K to understand the structural and transport properties. From room temperature down to 220 K, LPCMO exists in orthorhombic phase with Pnma structure and at T~220 K, it transforms to charge ordered (CO) monoclinic phase with P2{sub 1}/m structure and remains as it is down to 2 K. The CO phase is evident from the occurrence of weak but well defined superlattice peaks in the XRD pattern. This structural transformation is of first order in nature asmore » evident from the phase coexistence across the transition region. These results thus clearly illustrate that LPCMO undergoes a first order structural phase transition from charge disordered orthorhombic phase to CO monoclinic phase at ~220 K, consistent with temperature dependent resistivity results. Our structural analysis of T dependent XRD data using Rietveld refinement infers that below 220 K, LPCMO forms commensurate CO monoclinic P2{sub 1}/m structure with four times structural modulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, R.N., E-mail: rn_rai@yahoo.co.in; Kant, Shiva; Reddi, R.S.B.
Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB andmore » UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheth, Jay; Karan, Naba K.; Abraham, Daniel P.
2016-01-01
Real time monitoring of stress evolution in electrodes during electrochemical cycling can help quantify the driving forces that dictate their mechanical degradation. In the present work, in-situ stress evolution in thin films of spinel Li 1+x Mn 2 O 4 (LMO) was measured by monitoring the change in the elastic substrate curvature during electrochemical cycling in a specially designed beaker cell in the 3.5–4.3 V (vs. Li/Li+) voltage range. The LMO thin films were prepared using a solution deposition technique and their structures and morphologies were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The stressmore » evolution in the early part of the first delithiation cycle (<4.05 V) was consistent with the XRD data. However, stress evolution during later stages of the first delithiation cycle (>4.05 V) was not consistent with the XRD results, and showed irreversible behavior, suggesting irreversible changes in the electrode. Beyond the first delithiation cycle, the stress evolution was reversible, with a steady buildup of compressive and tensile stress during lithium insertion and extraction, respectively. Measurements on LMO films of varying thicknesses suggest that the first cycle irreversibility in stress response arises primarily from the electrode bulk.« less
Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.; Bowring, Andrea R.
2015-01-01
We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1–x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics. PMID:28706629
Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E
2014-09-01
The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.
The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD.
Nosenko, Valentyna; Vorona, Igor; Grachev, Valentyn; Ishchenko, Stanislav; Baran, Nikolai; Becherikov, Yurii; Zhuk, Anton; Polishchuk, Yuliya; Kladko, Vasyl; Selishchev, Alexander
2016-12-01
The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn 2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5-7 μm, 50-200 nm, 7-10 μm, and 5-7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn 2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.
Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil
2017-11-01
In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Habibi, Mohammad Hossein; Mardani, Maryam
2015-02-25
Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.
An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments
NASA Technical Reports Server (NTRS)
Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.
1993-01-01
By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.
Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia
2018-06-15
The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L
2013-10-15
An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.
DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys
NASA Astrophysics Data System (ADS)
Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp
2017-09-01
In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.
Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations
Montazeri, N; Jahandideh, R; Biazar, Esmaeil
2011-01-01
In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417
Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.
Srivastava, Shaili; Thakur, Indu Shekhar
2012-01-01
A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.
Pressure-induced kinetics of the α to ω transition in zirconium
Jacobsen, M. K.; Velisavljevic, N.; Sinogeikin, S. V.
2015-07-13
Diamond anvil cells (DAC) coupled with x-ray diffraction (XRD) measurements are one of the primary techniques for investigating structural stability of materials at high pressure-temperature (P-T) conditions. DAC-XRD has been predominantly used to resolve structural information at set P-T conditions and, consequently, provides P-T phase diagram information on a broad range of materials. With advances in large scale synchrotron x-ray facilities and corresponding x-ray diagnostic capabilities, it is now becoming possible to perform sub-second time resolved measurements on micron sized DAC samples. As a result, there is an opportunity to gain valuable information about the kinetics of structural phase transformationsmore » and extend our understanding of material behavior at high P-T conditions. Using DAC-XRD time resolved measurements, we have investigated the kinetics of the α to ω transformation in zirconium. We observe a clear time and pressure dependence in the martensitic α-ω transition as a function of pressure-jump, i.e., drive pressure. The resulting data are fit using available kinetics models, which can provide further insight into transformation mechanism that influence transformation kinetics. Our results help shed light on the discrepancies observed in previous measurements of the α-ω transition pressure in zirconium.« less
Effect of aging temperature on formation of sol-gel derived fluor-hydroxyapatite nanoparticles.
Joughehdoust, S; Behnamghader, A; Jahandideh, R; Manafi, S
2010-04-01
Synthetic hydroxyapatite (HA) has been recognized as one of the most important bone substitute materials in orthopaedics and dentistry over past few decades because of its chemical and biological similarity to the mineral phase of human bone. One solution for reduction the solubility of HA in biological environments is replacing F- by OH in HA structure and forming fluor-hydroxyapatite (FHA) solid solution. In this paper, FHA nanoparticles were successfully synthesized by a sol-gel method. Also, the influence of aging temperature on formation of FHA powder was studied. Equimolar solutions of calcium nitrate tetrahydrate, triethyl phosphite and ammonium fluoride in ethanol were used as Ca, P and F precursors. After aging at different temperatures, the synthesized powders were heat treated at 550 degrees C. The powders were investigated with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), selected area electron diffraction pattern (SAED), energy dispersive analysis of X-ray (EDAX) and zetasizer measurement. The results of XRD proved the presence of fluorapatite (FA) and HA in all samples. In addition, the formation of FHA was confirmed by FT-IR results. XRD studies also showed that the crystallites were in nanometric scale. At the same time, this result was in good agreement with the result of zetasizer analysis.
Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics
NASA Astrophysics Data System (ADS)
Murtaza, Tahir; Ali, Javid; Khan, M. S.
2018-07-01
The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.
In search of the elusive IrB{sub 2}: Can mechanochemistry help?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Zhilin; Blair, Richard G.; Department of Physics, University of Central Florida, Orlando, FL 32816
The previously unknown hexagonal ReB{sub 2}-type IrB{sub 2} diboride and orthorhombic IrB monoboride phases were produced by mechanochemical syntheses. High energy ball milling of elemental Ir and B powder for 30 h, followed by annealing of the powder at 1050 °C for 48 h, resulted in the formation of the desired phases. Both traditional laboratory and high resolution synchrotron X-ray diffraction (XRD) analyses were used for phase identification of the synthesized powder. In addition to XRD, scanning electron microscopy and transmission electron microscopy were employed to further characterize the microstructure of the phases produced. - Graphical abstract: ReB{sub 2}-type IrB{submore » 2} and a new IrB have been successfully synthesized for the first time using mechanochemical method. Crystal structures of IrB{sub 2} and IrB were studied by synchrotron X-ray diffraction. Microstructures of the new phases were characterized by SEM and TEM. - Highlights: • ReB{sub 2}-type IrB{sub 2} and a new IrB have been synthesized by mechanochemical method. • Crystal structures of IrB{sub 2} and IrB were studied by synchrotron XRD. • Microstructures of the new phases were characterized by SEM and TEM.« less
Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition
NASA Astrophysics Data System (ADS)
Bidier, Shaker A.; Hashim, M. R.; Al-Diabat, Ahmad M.; Bououdina, M.
2017-04-01
Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD. Increase the growth time causes an erosion in lateral side -(100) direction XRD- and enhances the axial direction -(002), XRD.
NASA Astrophysics Data System (ADS)
Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.
2010-06-01
The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.
NASA Astrophysics Data System (ADS)
Chen, D. G.; Tang, X. G.; Wu, J. B.; Zhang, W.; Liu, Q. X.; Jiang, Y. P.
2011-06-01
Ni 0.5Zn 0.5Fe 2O 4 (NZFO) spinel-type nanoparticles were directly fabricated by the chemical co-precipitation process using metal nitrate and acetate as precursors since nitrogen and carbon would be taken away in the forms of oxynitride and oxycarbide, respectively, after the precursors were annealed and then investigated in detail by employing X-ray diffraction (XRD), magnetic measurement and Raman spectroscopy. XRD analysis indicates that the as-prepared nanocrystals are all of a pure cubic spinel structure with their sizes ranging from 20.8 to 53.3 nm, as well as peaks of some samples shifting to lower angles due to lattice expansion. Calculations from the derived XRD data indicate that the activation energy is 30.83 kJ/mol. The magnetic measurements show that these samples are superparamagnetic. The saturation magnetization increases with annealing temperature, which may be explained by super-exchange interactions of Fe ions occurring at A- and B-sites. The variation of coercivity with particle size is interpreted on the basis of domain structure and crystal anisotropy. Furthermore, these nanoparticles exhibit a redshift phenomenon at lower temperatures seen in the Raman spectra, which could be related to ionic substitution.
X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts
NASA Astrophysics Data System (ADS)
Beale, Andrew M.; Jacques, Simon D. M.; Di Michiel, Marco; Mosselmans, J. Frederick W.; Price, Stephen W. T.; Senecal, Pierre; Vamvakeros, Antonios; Paterson, James
2017-11-01
The imaging of catalysts and other functional materials under reaction conditions has advanced significantly in recent years. The combination of the computed tomography (CT) approach with methods such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) now enables local chemical and physical state information to be extracted from within the interiors of intact materials which are, by accident or design, inhomogeneous. In this work, we follow the phase evolution during the initial reduction step(s) to form Co metal, for Co-containing particles employed as Fischer-Tropsch synthesis (FTS) catalysts; firstly, working at small length scales (approx. micrometre spatial resolution), a combination of sample size and density allows for transmission of comparatively low energy signals enabling the recording of `multimodal' tomography, i.e. simultaneous XRF-CT, XANES-CT and XRD-CT. Subsequently, we show high-energy XRD-CT can be employed to reveal extent of reduction and uniformity of crystallite size on millimetre-sized TiO2 trilobes. In both studies, the CoO phase is seen to persist or else evolve under particular operating conditions and we speculate as to why this is observed. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Fathollahi, Mostafa; Rostamizadeh, Shahnaz; Amani, Ali M
2018-01-01
The present study has developed an efficient and eco-friendly protocol for the synthesis of aryl-14-H-dibenzo[a,j] xanthenes through a one-pot condensation reaction of 2-naphthol and arylaldehydes in aqueous media using the nanocatalytic MCM-41-SO3H under ultrasonic illumination. Using SEM and XRD analyses, MCM-41-SO3H nanoparticles were characterized. Therefore, for high magnification, taking the SEM image, the mesoporous surface of MCM-41-SO3H nanoparticles coated with gold for 2 minutes was characterized. Moreover, at a scan rate of 0.02° (2θ)/sec, XRD analysis from 1.5° (2θ) to 10.0° (2θ) was performed. For our considered sample, some well-ordered XRD patterns with one main peak as well as three minor peaks equal to those of MCM-41 materials were observed. The suggested route demonstrates very promising properties like higher yields, decrease in the time of reaction (5-10 min), mild and straightforward conditions, low level of toxicity, and inclusion of a cost-efficient and ecofriendly catalyst having considerable reusability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.
Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P
2015-03-05
Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.
Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.
2014-01-01
Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.
Synthesis of AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulik, Ornov; Kumar, Vinod, E-mail: vkt.meta@mnit.ac.in; Adjunct Faculty, Materials Research Centre, Malaviya National Institute of Technology, Jaipur 302017
2015-12-15
Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7 mol) high-entropy alloys (HEAs) were synthesized by mechanical alloying. The effect of Mg content on the phase evolution of HEAs was investigated using X-Ray diffractometry (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) pattern analysis. The particle morphology and composition of HEAs were investigated by scanning electron microscopy (SEM). Thermodynamic parameters were calculated and analyzed to explain the formation of a solid solution. XRD analysis revealed BCC as major phase and FCC as a minor phase in as-milled AlFeCuCr and AlFeCuCrMg{sub 0.5} HEAs. Also, XRD analysis of as-milledmore » AlFeCuCrMg, AlFeCuCrMg{sub 1.7} confirmed the formation of two BCC phases (BCC 1 and BCC 2). TEM–SAED analysis of AlFeCuCrMg{sub x} HEAs concurred with XRD results. Microstructural features and mechanism for solid solution formation have been conferred in detail. Phase formation of the present HEAs has been correlated with calculated thermodynamic parameters. Differential thermal analysis (TGA-DTA) of these alloys confirmed that there is no substantial phase change up to 500 °C. - Highlights: • Novel AlFeCuCrMg{sub x} (x = 0, 0.5, 1, 1.7) HEAs were prepared by mechanical alloying. • Phase evolution and lattice parameter were studied by X-Ray Diffraction. • Crystallite size and lattice microstrain calculated failed to obey the Williamson–Hall method. • Criterions for formation of simple solid solution were compared to the thermodynamic parameters of the present HEAs. • Increase in the Mg concentration in AlMg{sub x}FeCuCr (x = 0, 0.5, 1, 1.7) HEAs supports the formation of BCC phase.« less
Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin.
Yoshihara, Kumiko; Nagaoka, Noriyuki; Hayakawa, Satoshi; Okihara, Takumi; Yoshida, Yasuhiro; Van Meerbeek, Bart
2018-04-28
Although the functional monomer glycero-phosphate dimethacrylate (GPDM) has since long been used in several dental adhesives and more recently in self-adhesive composite cements and restoratives, its mechanism of chemical adhesion to hydroxyapatite (HAp) is still unknown. We therefore investigated the chemical interaction of GPDM with HAp using diverse chemical analyzers and ultra-structurally characterized the interface of a GPDM-based primer formulation with dentin. HAp particles were added to a GPDM solution for various periods, upon which they were thoroughly washed with ethanol and water prior to being air-dried. As control, 10-methacryloyloxydecyl dihydrogen phosphate (MDP) was used. The molecular interaction of GPDM with HAp was analyzed using X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (NMR) spectroscopy. Crystal formation upon application of GPDM onto dentin was analyzed using thin-film XRD (TF-XRD). Its hydrophobicity was measured using contact-angle measurement. The interaction of GPDM with dentin was characterized using transmission electron microscopy (TEM). XRD revealed the deposition of dicalcium phosphate dihydrate (DCPD: CaHPO 4 ·2H 2 O) on HAp after 24h. NMR confirmed the adsorption of GPDM onto HAp. However, GPDM was easily removed after washing with water, unlike MDP that remained adhered to HAp. Dentin treated with GPDM appeared more hydrophilic compared to dentin treated with MDP. TEM disclosed exposed collagen in the hybrid layer produced by the GPDM-based primer formulation. Although GPDM adsorbed to HAp, it did not form a stable calcium salt. The bond between GPDM and HAp was weak, unlike the strong bond formed by MDP to HAp. Due to its high hydrophilicity, GPDM might be an adequate monomer for an etch-and-rinse adhesive, but appears less appropriate for a 'mild' self-etch adhesive that besides micro-retention ionically interacts with HAp, or for a self-adhesive restorative material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Moo-Chin; Hon, Min-Hsiung; Chen, Hui-Ting; Yen, Feng-Lin; Hung, I.-Ming; Ko, Horng-Huey; Shih, Wei-Jen
2013-07-01
The effects of process parameters on the crystallization and morphology of hydroxyapatite (Ca10(PO4)6(OH)2, HA) powders synthesized from dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) using a hydrolysis method have been investigated. X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) were used to characterize the synthesized powders. When DCPD underwent hydrolysis in 2.5 NaOH solution (Na(aq)) at 303 K to 348 K (30 °C to 75 °C) for 1 hour, the XRD results revealed that HA was obtained for all the as-dried samples. The SEM morphology of the HA powders for DCPD hydrolysis produced at 348 K (75 °C) shows regular alignment and a short rod shape with a size of 200 nm in length and 50 nm in width. With DCPD hydrolysis in 2.5 M NaOH(aq) holding at 348 K (75 °C) for 1 to 24 hours, XRD results demonstrated that all samples were HA and no other phases could be detected. Moreover, the XRD results also show that all the as-dried powders still maintained the HA structure when DCPD underwent hydrolysis in 0.1 to 5 M NaOH(aq) at 348 K (75 °C) for 1 hour. Otherwise, the full transformation from HA to octa-calcium phosphate (OCP, Ca8H2(PO4)6·5H2O) occurred when hydrolysis happened in 10 M NaOH(aq). FT-IR spectra analysis revealed that some carbonated HA (Ca10(PO4)6(CO3), CHA) had formed. The SEM morphology results show that the 60 to 65 nm width of the uniformly long rods with regular alignment formed in the HA powder aggregates when DCPD underwent hydrolysis in 2.5 M NaOH(aq) at 348 K (75 °C) for 1 hour.
NASA Astrophysics Data System (ADS)
Hunter, Allen H.
Novel high-strength high-toughness alloys strengthened by precipitation are investigated for use in naval applications. The mechanical properties of an experimental steel alloy, NUCu-140, are evaluated and are not suitable for the naval requirements due to poor impact toughness at -40°C. An investigation is conducted to determine optimum processing conditions to restore toughness. A detailed aging study is conducted at 450, 500, and 550°C to determine the evolution of the microstructure and mechanical properties. A combination of transmission electron microscopy (TEM), synchrotron X-ray Diffraction (XRD), and Local electrode atom probe (LEAP) tomography are used to measure the evolution of the Cu precipitates, austenite, NbC, and cementite phases during aging. The evolution of the Cu precipitates significantly affects the yield strength of the steel, but low temperature toughness is controlled by the cementite precipitates. Extended aging is effective at improving the impact toughness but the yield strength is also decreased due to coarsening of the Cu precipitates. To provide a foundation for successful welding of NUCu-140 steel, an investigation of the effects of gas metal arc welding (GMAW) are performed. The microstructures in the base metal (BM), heat affected zone (HAZ), and fusion zone (FZ) of a GMAW sample are analyzed to determine the effects of the welding thermal cycle. Weld simulation samples with known thermal histories are prepared and analyzed by XRD and LEAP tomography. A significant loss in microhardness is observed as a result of dissolution of the Cu precipitates after the weld thermal cycle. The cooling time is too rapid to allow significant precipitation of Cu. In addition to the NUCu-140 alloy, a production HSLA-115 steel alloy is investigated using TEM, XRD, and LEAP tomography. The strength of the HSLA-115 is found to be derived primarily from Cu precipitates. The volume fractions of cementite, austenite, and NbC are measured by XRD. Austenite precipitates are observed at martensite lath boundaries using TEM.
Grathoff, Georg H.; Moore, D.M.
2002-01-01
The Waukesha Illite is an excellent example of the illites found in argillaceous rocks, typical for Paleozoic shales that have undergone significant burial diagenesis during their geologic history. It consists of a mixture of detrital 2M1, interpreted to be a residuum of karstification within Silurian carbonates, and diagenetic 1M and 1Md illite. The chemistry and the age of the illite polytypes are different. Extrapolating to 100%, the 1M and 1Md polytypes have an apparent diagenetic age between 295 and 325 Ma. The chemistry of the 1M polytype could not be determined because of its low abundance. The approximate chemical composition of the 1Md polytype is 0.67 K, 3.6 Si, and 1.9 Al per half unit cell. The 2M1 polytype has an apparent detrital age between 440 and 520 Ma, and an approximate chemical composition per half unit cell of 0.78 K, 3.4 Si, and 2.1 Al, all within our margin of error. X-ray diffraction (XRD) results of both random powder and oriented preparations both indicate that the Waukesha Illite consists of a mixture of illites. The XRD patterns of the random powder preparation indicate it is a physical mixture of three different illite polytypes. This result was confirmed using 3 different methods: (1) by measuring illite polytype-specific reflections; (2) by mixing illite polytype reference samples; and (3) by mixing WILDFIRE calculated XRD patterns. Decomposition of the illite 001 XRD peak from oriented preparations also indicates mixtures of illites. However, the proportions of the three illitic components derived from the oriented 001 peak decomposition differ from those results derived from the analysis of the random powder data. Therefore, the shape of the 001 reflection of the Waukesha Illite cannot be explained by mixing the three different illite polytypes.
Montazeri, Mahbobeh; Karbasi, Saeed; Foroughi, Mohammad Reza; Monshi, Ahmad; Ebrahimi-Kahrizsangi, Reza
2015-02-01
One of the major challenges facing researchers of tissue engineering is scaffold design with desirable physical and mechanical properties for growth and proliferation of cells and tissue formation. In this research, firstly, nano-bioglass powder with grain sizes of 55-56 nm was prepared by melting method of industrial raw materials at 1,400 °C. Then the porous ceramic scaffold of bioglass with 30, 40 and 50 wt% was prepared by using the polyurethane sponge replication method. The scaffolds were coated with poly-3-hydroxybutyrate (P3HB) for 30 s and 1 min in order to increase the scaffold's mechanical properties. XRD, XRF, SEM, FE-SEM and FT-IR were used for phase and component studies, morphology, particle size and determination of functional groups, respectively. XRD and XRF results showed that the type of the produced bioglass was 45S5. The results of XRD and FT-IR showed that the best temperature to produce bioglass scaffold was 600 °C, in which Na2Ca2Si3O9 crystal is obtained. By coating the scaffolds with P3HB, a composite scaffold with optimal porosity of 80-87% in 200-600 μm and compression strength of 0.1-0.53 MPa was obtained. According to the results of compressive strength and porosity tests, the best kind of scaffold was produced with 30 wt% of bioglass immersed for 1 min in P3HB. To evaluate the bioactivity of the scaffold, the SBF solution was used. The selected scaffold (30 wt% bioglass/6 wt% P3HB) was maintained for up to 4 weeks in this solution at an incubation temperature of 37 °C. The XRD, SEM EDXA and AAS tests were indicative of hydroxyapatite formation on the surface of bioactive scaffold. This scaffold has some potential to use in bone tissue engineering.
Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K
2018-06-07
X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uvarov, Vladimir, E-mail: vladimiru@savion.huji.ac.il; Popov, Inna
2013-11-15
Crystallite size values were determined by X-ray diffraction methods for 183 powder samples. The tested size range was from a few to about several hundred nanometers. Crystallite size was calculated with direct use of the Scherrer equation, the Williamson–Hall method and the Rietveld procedure via the application of a series of commercial and free software. The results were statistically treated to estimate the significance of the difference in size resulting from these methods. We also estimated effect of acquisition conditions (Bragg–Brentano, parallel-beam geometry, step size, counting time) and data processing on the calculated crystallite size values. On the basis ofmore » the obtained results it is possible to conclude that direct use of the Scherrer equation, Williamson–Hall method and the Rietveld refinement employed by a series of software (EVA, PCW and TOPAS respectively) yield very close results for crystallite sizes less than 60 nm for parallel beam geometry and less than 100 nm for Bragg–Brentano geometry. However, we found that despite the fact that the differences between the crystallite sizes, which were calculated by various methods, are small by absolute values, they are statistically significant in some cases. The values of crystallite size determined from XRD were compared with those obtained by imaging in a transmission (TEM) and scanning electron microscopes (SEM). It was found that there was a good correlation in size only for crystallites smaller than 50 – 60 nm. Highlights: • The crystallite sizes for 183 nanopowders were calculated using different XRD methods • Obtained results were subject to statistical treatment • Results obtained with Bragg-Brentano and parallel beam geometries were compared • Influence of conditions of XRD pattern acquisition on results was estimated • Calculated by XRD crystallite sizes were compared with same obtained by TEM and SEM.« less
The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain;
2013-01-01
Drill fines of mudstone (targets John Klein and Cumberland) from the Sheepbed unit at Yel-lowknife Bay were analyzed by MSL payload elements including the Chemistry and Mineralogy (CheMin), APXS (Alpha Particle X-Ray Spectrometer), and Sample Analysis at Mars (SAM) instruments. CheMin XRD results show a variety of crystalline phases including feldspar, pyroxene, olivine, oxides, oxyhydroxides, sulfates, sulfides, a tri-octahedral smectite, and XRD amorphous material. The drill fines are distinctly different from corresponding analyses of the global soil (target Rocknest) in that the mudstone samples contained detectable phyllosilicate. Here we focus on John Klein and combine CheMin and APXS data to calculate the chemical composition and concentration of the amorphous component. The chemical composition of the amorphous plus smectite component for John Klein was calculated by subtracting the abundance-weighted chemical composition of the individual XRD crystalline components from the bulk composition of John Kline as measured by APXS. The chemical composition of individual crystalline components was determined either by stoichiometry (e.g., hematite and magnetite) or from their unit cell parameters (e.g., feldspar, olivine, and pyroxene). The chemical composition of the amorphous + smectite component (approx 71 wt.% of bulk sample) and bulk chemical composition are similar. In order to calculate the chemical composition of the amorphous component, a chemical composition for the tri-octahedral smectite must be assumed. We selected two tri-octahedral smectites with very different MgO/(FeO + Fe2O3) ratios (34 and 1.3 for SapCa1 and Griffithite, respectively). Relative to bulk sample, the concentration of amorphous and smectite components are 40 and 29 wt.% for SapCa1 and 33 and 36 wt.% for Griffithite. The amount of smectite was calculated by requiring the MgO concentration to be approx 0 wt.% in the amorphous component. Griffithite is the preferred smectite because the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.
NASA Astrophysics Data System (ADS)
Munro, L. E.; Longstaffe, F. J.; White, C. D.
2003-04-01
Stable oxygen isotopic compositions of phosphate from mammal bones are commonly used in palaeoenvironmental reconstructions. However, preservation of the primary bone oxygen isotopic composition is of concern during post-mortem alteration. Particularly in studies of archaeological interest, bone samples are often obtained from contexts where they have been heated, either in middens, or near hearths. Hence, in addition to alteration resulting from natural diagenetic processes, burning may also have contributed to modification of the primary oxygen isotopic signal. Various techniques can be employed to evaluate the degree of preservation of bone during burning. Anthropologists commonly use colour comparisons (Munsell Colour Chart) to assess the temperature of burning. Recrystallization of the carbonated hydroxyapatite, i.e., bioapatite, in bone is more rigorously assessed using X-ray diffraction and infra-red spectroscopy. In this study, freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned, incrementally burned, colour-typed, ground to a standardized grain-size (45<63mm), and analysed using differential thermal analysis (DTA), thermogravimetric analysis (TGA), rotating anode X-ray diffraction (XRD), and Fourier transform infra-red spectroscopy (FTIR). Heating temperatures ranged from 25 to 900^oC, increasing in intervals of 25^oC. Two major stages of weight loss were recorded in the DTA/TGA data, 25-260^oC representing dehydration, and 270-600^oC reflecting incineration of organic matter. The end-product (900^oC) resembled pure hydroxyapatite. XRD patterns of the bioapatite remained virtually unchanged from 25-250^oC, after which peak intensity, sharpness and the XRD crystallinity index (XRD CI) increased from 0.80 at 250^oC to 1.26 at 900^oC. FTIR patterns showed analogous behaviour, demonstrating minimal fluctuations in the FTIR crystallinity index (FTIR CI) from 2.86 at 25^oC to 2.56 at 250^oC, and then an overall increasing trend from 2.54 at 275^oC to a maximum of 4.72 at 825^oC as v4PO4 peak splitting intensified. Initial results show that the δ18O (VSMOW) values of bioapatite phosphate decreased from 15.0 ppm at 300^oC to 10.6 ppm at 750^oC. These data suggest that primary phosphate oxygen isotopic compositions can be significantly altered during burning, even when only modest changes in crystallinity are indicated by XRD or FTIR.
In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence
NASA Technical Reports Server (NTRS)
Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)
1996-01-01
Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a pinhole camera (transmission geometry, flat two-dimensional detector perpendicular to the direct beam), the instrument (which we call CHEMIN, for Chemistry and Mineralogy) uses an X-ray sensitive CCD detector which will allow concurrent positional and energy-dispersive analysis of collected photons. Thus XRF (energy) and XRD (geometry) analysis of transmitted X-rays will be performed at the same time. Tests performed with single minerals and simple mixtures give promising results. Refinements of the prototype promise interpretable results on complex samples.
TOMOX : An X-rays tomographer for planetary exploration
NASA Astrophysics Data System (ADS)
Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone
2017-04-01
The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines excited with 109Cd. 55Fe will be primarily dedicated to XRD measurements, as it has been already tested for the MARS-XRD development. 109Cd will be used to reinforce the efficiency of 55Fe source in the production of fluorescent X-rays generated in the sample as a consequence of irradiation and to extend the analytical range of elements. Two different detectors will be used in order to increase the total amount of events collected and allow the spatial distribution of events to be recorded as well. The detectors we plan to use are SDD (Silicon Drift Detector) and stand-alone CCD (Coupled Charge Detector). SDD has higher count rate and stability and has been successfully used for XRF applications. CCD is able to record the spatial position of each event of X-ray emission, together with its energy. Therefore, we plan to dedicate this detector to XRD measurements, where the spatial position of the event is directly correlated to the type of crystal through the Bragg's law. A prototype of the instrument will be likely completed by the end of this year.
NASA Astrophysics Data System (ADS)
Tosolin, A.; Souček, P.; Beneš, O.; Vigier, J.-F.; Luzzi, L.; Konings, R. J. M.
2018-05-01
PuF3 was synthetized by hydro-fluorination of PuO2 and subsequent reduction of the product by hydrogenation. The obtained PuF3 was analysed by X-Ray Diffraction (XRD) and found phase-pure. High purity was also confirmed by the melting point analysis using Differential Scanning Calorimetry (DSC). PuF3 was then used for thermodynamic assessment of the PuF3-LiF system. Phase equilibrium points and enthalpy of fusion of the eutectic composition were measured by DSC. XRD analyses of selected samples after DSC measurement confirm that after solidification from the liquid, the system returns to a mixture of LiF and PuF3.
Influence of Te and Se doping on ZnO films growth by SILAR method
NASA Astrophysics Data System (ADS)
Güney, Harun; Duman, Ćaǧlar
2016-04-01
The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness of the material varied with Se and/or Te and varying concentrations.
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Qin-Jian; Shi, Yan-Chao; Li, Jia-Jun; Li, Hong; Lu, Fan-Xiu; Chen, Guang-Chao
2014-08-01
A nano-crystlline diamond film is grown by the dc arcjet chemical vapor deposition method. The film is characterized by scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), x-ray diffraction (XRD) and Raman spectra, respectively. The nanocrystalline grains are averagely with 80 nm in the size measured by XRD, and further proven by Raman and HRTEM. The observed novel morphology of the growth surface, pineapple-like morphology, is constructed by cubo-octahedral growth zones with a smooth faceted top surface and coarse side surfaces. The as-grown film possesses (100) dominant surface containing a little amorphous sp2 component, which is far different from the nano-crystalline film with the usual cauliflower-like morphology.
NASA Astrophysics Data System (ADS)
Yanti; Nurhayati, T.; Royani, I.; Widayani; Khairurrijal
2016-08-01
In this study, molecularly-imprinted polymer (MIP) was prepared by using a D-glucose template and a methacrylic acid (MAA) functional monomer. The obtained MIP was characterized using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques to study the template imprinting results. For comparison, similar characterizations were also carried out for the respective non imprinted polymer (NIP). It was found that the polymer has semicrystalline structure, with crystallinity degree of the unleached- polymer, the NIP, and the MIP is 62.40%, 62.97%, and 63.47%, respectively. XRD patterns showed that the intensity peaks increases as D-glucose content decreases. The FTIR spectra of the MIP indicate the detail interaction of template and functional monomer.
NASA Astrophysics Data System (ADS)
Hameed, M. Shahul; Princice, J. Joseph; Babu, N. Ramesh; Zahirullah, S. Syed; Deshmukh, Sampat G.; Arunachalam, A.
2018-05-01
Transparent conductive Sn doped ZnO nanorods have been deposited at various doping level by spray pyrolysis technique on glass substrate. The structural, surface morphological and optical properties of these films have been investigated with the help of X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM) and UV-Vis spectrophotometer respectively. XRD patterns revealed a successful high quality growth of single crystal ZnO nanorods with hexagonal wurtzite structure having (002) preferred orientation. The scanning electron microscope (SEM) image of the prepared films exposed the uniform distribution of Sn doped ZnO nanorod shaped grains. All these films were highly transparent in the visible region with average transmittance of 90%.
Influence of Te and Se doping on ZnO films growth by SILAR method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Güney, Harun, E-mail: harunguney25@hotmail.com; Duman, Çağlar, E-mail: caglarduman@erzurum.edu.tr
2016-04-18
The AIP Successive ionic layer adsorption and reaction (SILAR) is an economic and simple method to growth thin films. In this study, SILAR method is used to growth Selenium (Se) and Tellurium (Te) doped zinc oxide (ZnO) thin films with different doping rates. For characterization of the films X-ray diffraction (XRD), absorbance and scanning electron microscopy (SEM) are used. XRD results are showed well-defined strongly (002) oriented crystal structure for all samples. Also, absorbance measurements show, Te and Se concentration are proportional and inversely proportional with band gap energy, respectively. SEM measurements show that the surface morphology and thickness ofmore » the material varied with Se and/or Te and varying concentrations.« less
Characterization using XRD of puzzolanic materials from residual sludge from water treatment
NASA Astrophysics Data System (ADS)
Barón, G.; Montaño, A. M.; González, C. P.
2017-12-01
The goal of this work is to do mechanical and chemical characterization of puzzolanic materials using compressive strength measurements and X-Ray Diffraction (XRD). These materials are composed of red clay and aluminous sludge produced by the treatment of potable water at Planta Algodonal, Ocaña, Norte de Santander, Colombia. Ceramic bricks were sintered to 1100°C and ten were characterized in their physically, mechanically and chemically properties. The results showed that the relationships with which the Colombian standards according to NTC 4017 (100KGF/cm2) for non-structural bricks are maintained for those containing 10% (105Kgf/cm2) and 20% (102.9Kgf/cm2) of sludge with respect to clay.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winterrose, M.L.; Lucas, M.S.; Yue, A.F.
Synchrotron x-ray diffraction (XRD) measurements, nuclear forward scattering (NFS) measurements, and density functional theory (DFT) calculations were performed on L1{sub 2}-ordered Pd{sub 3}Fe. Measurements were performed at 300 K at pressures up to 33 GPa, and at 7 GPa at temperatures up to 650 K. The NFS revealed a collapse of the Fe57 magnetic moment between 8.9 and 12.3 GPa at 300 K, coinciding with a transition in bulk modulus found by XRD. Heating the sample under a pressure of 7 GPa showed negligible thermal expansion from 300 to 523 K, demonstrating Invar behavior. Zero-temperature DFT calculations identified a ferromagneticmore » ground state and showed several antiferromagnetic states had comparable energies at pressures above 20 GPa.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com
2015-06-24
Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less
NASA Astrophysics Data System (ADS)
Wang, P.; Yang, L.; Dai, B.; Yang, Z.; Guo, S.; Zhu, J.
2017-07-01
Vertically-aligned WO3 nanoplates on transparent conducting fluorine-doped tin oxide (FTO) glass were prepared by a facile template-free crystal-seed-assisted hydrothermal method. The effects of the hydrothermal temperature and reaction time on the crystal structure and morphology of the products were investigated by XRD and SEM. The XRD results showed that the as-prepared thin films obtained below 150∘C comprised orthorhombic WO3 ṡ H2O and completely converted to monoclinic WO3 at 180∘C. It was also noted that there was a phase transformation from orthorhombic to monoclinic by increasing the reaction time from 1 to 12 h. SEM analysis revealed that WO3 thin films are composed of plate-like nanostructures.
Magnetic and dielectric behavior of chromium substituted Co-Mg ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Jadoun, Priya; Jyoti, Prashant, B. L.; Dolia, S. N.; Bhatnagar, D.; Saxena, V. K.
2016-05-01
The chromium doped Co-Mg ferrite with composition Co0.5Mg0.5Cr0.2Fe1.8O4 has been synthesized using sol-gel auto combustion method. The crystal structure has been analyzed by X-ray diffraction (XRD) technique. XRD pattern reveals the formation of single phase cubic spinel structure. The magnetic measurements show ferromagnetic behavior at room temperature and large coercivity is observed on cooling down the temperature to 20 K. Dielectric constant (ɛ') and dielectric loss tangent (tan δ) have been determined at room temperature as a function of frequency in the frequency range 75 kHz to 80 MHz. The decrease in dielectric constant with increasing frequency attributes to Maxwell Wagner model and conduction mechanism in ferrites.
X-ray peak profile analysis of zinc oxide nanoparticles formed by simple precipitation method
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick Joaquin; Magdaluyo, Eduardo
2017-12-01
Zinc oxide (ZnO) nanoparticles were successfully synthesized by a simple precipitation method using zinc acetate and tetramethylammonium hydroxide. The synthesized ZnO nanoparticles were characterized by X-ray Diffraction analysis (XRD) and Transmission Electron Microscopy (TEM). The XRD result revealed a hexagonal wurtzite structure for the ZnO nanoparticles. The TEM image showed spherical nanoparticles with an average crystallite size of 6.70 nm. For x-ray peak analysis, Williamson-Hall (W-H) and Size-Strain Plot (SSP) methods were applied to examine the effects of crystallite size and lattice strain on the peak broadening of the ZnO nanoparticles. Based on the calculations, the estimated crystallite sizes and lattice strains obtained are in good agreement with each other.
Reentrant behaviour in polyvinyl alcohol-borax hydrogels
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2018-01-01
Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.
An X-ray diffraction method for semiquantitative mineralogical analysis of Chilean nitrate ore
Jackson, J.C.; Ericksent, G.E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
An x-ray diffraction method for semiquantitative mineralogical analysis of chilean nitrate ore
John, C.; George, J.; Ericksen, E.
1997-01-01
Computer analysis of X-ray diffraction (XRD) data provides a simple method for determining the semiquantitative mineralogical composition of naturally occurring mixtures of saline minerals. The method herein described was adapted from a computer program for the study of mixtures of naturally occurring clay minerals. The program evaluates the relative intensities of selected diagnostic peaks for the minerals in a given mixture, and then calculates the relative concentrations of these minerals. The method requires precise calibration of XRD data for the minerals to be studied and selection of diffraction peaks that minimize inter-compound interferences. The calculated relative abundances are sufficiently accurate for direct comparison with bulk chemical analyses of naturally occurring saline mineral assemblages.
Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects
Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.
1999-01-01
The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.
Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-23
In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael
2018-06-01
The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.
NASA Astrophysics Data System (ADS)
Singh, Jarnail; Verma, Vikram; Kumar, Ravi
2018-04-01
We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.
2015-06-24
Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
Particle size distribution control of Pt particles used for particle gun
NASA Astrophysics Data System (ADS)
Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.
2017-07-01
The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.
NASA Astrophysics Data System (ADS)
Jarabana, Kanaka M.; Mishra, Ashutosh; Bisen, Supriya
2016-10-01
Polycrystalline BaTiO3 (BTO) and SrTiO3 (STO) were synthesized by solid state route method and properties of made polycrystalline were characterized by X-Ray diffraction (XRD), Raman Spectroscopy & FTIR Spectroscopy. XRD analysis shows that samples are crystalline in nature. In Raman Spectroscopy measurement, the experiment has been done with the help of JOBIN-YOVN HORIBA LABRAM HR800 single monochromator, which is coupled with a “peltier cooled” charge coupled device (CCD). Raman Spectroscopy at low temperature measurement shows the phase transition above & below the curie temperature in samples. Fourier transform Infrared spectroscopy was used to determine the Ti-O bond length position.
The PM2.5 capture of poly (lactic acid)/nano MOFs eletrospinning membrane with hydrophilic surface
NASA Astrophysics Data System (ADS)
Wang, Yating; Dai, Xiu; Li, Xu; Wang, Xinlong
2018-03-01
In this article, metal organic frameworks (MOFs) material is introduced in the poly (lactic acid) (PLA) by electrospinning to fabricate the nanocomposite membrane. The acrylic acid (AA) is grafted onto the membrane under UV light. The prepared membrane is studied by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetry (TG), contact angle test and tensile strength test. The SEM image and XRD indicate that nano MOFs particles adhere to the membrane. Contact angle test shows that grafting AA on the composite fiber membrane improves its hydrophilicity effectively. TG analyses show that the particulate matter (PM) capture capacity of PLA membrane with 2 wt% ZIF-8 content is 22%, which rises to 37% after grafting.
Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.
Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi
2011-04-01
The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.
Structural and morphological study of chemically synthesized CdSe thin films
NASA Astrophysics Data System (ADS)
Agrawal, P.; Singh, Randhir; Sharma, Jeewan; Sachdeva, M.; Singh, Anupinder; Bhargava, A.
2018-05-01
Nanocrystalline CdSe thin films were prepared by Chemical Bath Deposition (CBD) method using potassium nitrilo-triacetic acid cadmium complex and sodium selenosulphite. The as deposited films were red in color, uniform and well adherent to the glass substrate. These films were strongly dependent on the deposition parameters such as bath composition, deposition temperature and time. Films were annealed at 350 °C for four hours. The morphological, structural and optical properties were studied using X-ray diffraction (XRD), UV-VIS spectrophotometer measurements, scanning electron microscopy and atomic force microscopy. The XRD analysis confirmed that films are predominantly in hexagonal phase. Scanning electron micrograph shows that the grains are uniformly spread all over the film and each grain contains many nanocrystals with spherical shapes.
Single step synthesis of nanostructured boron nitride for boron neutron capture therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com
2015-05-15
Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications asmore » well boron neutron capture therapy (BNCT)« less
Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum
2015-05-15
In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.
DSC and Raman studies of silver borotellurite glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Amandeep; Khanna, Atul, E-mail: atul.phy@gndu.ac.in; Gonzàlez, Fernando
2016-05-23
Silver borotellurite glasses of composition: xAg{sub 2}O-yB{sub 2}O{sub 3}-(100-x-y)TeO{sub 2} (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B{sub 2}O{sub 3} content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B{sub 2}O{sub 3} due to the transformation of TeO{sub 4} into TeO{sub 3} units.
Au-Ag-Cu nano-alloys: tailoring of permittivity
NASA Astrophysics Data System (ADS)
Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki
2016-04-01
Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.
Synthesis and characterization of Ni doped ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.
2018-05-01
In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.
Compressional residual stress in Bastogne boudins revealed by synchrotron X-ray microdiffraction
Chen, Kai; Kunz, Martin; Li, Yao; ...
2016-06-22
Lattice distortions in crystals can be mapped at the micron scale using synchrotron X-ray Laue microdiffraction (μXRD). From lattice distortions the shape and orientation of the elastic strain tensor can be derived and interpreted in terms of residual stress. We apply the new method to vein quartz from the original boudinage locality at Bastogne, Belgium. Furthermore, a long-standing debate surrounds the kinematics of the Bastogne boudins. The μXRD measurements reveal a shortening residual elastic strain, perpendicular to the vein wall, corroborating the model that the Bastogne boudins formed by layer-parallel shortening and not by layer-parallel extension, as is in themore » geological community generally inferred by the process of boudinage.« less
Corrosion Properties of SAC305 Solder in Different Solution of HCl and NaCl
NASA Astrophysics Data System (ADS)
Nurwahida, M. Z.; Mukridz, M. M.; Ahmad, A. M.; Muhammad, F. M. N.
2018-03-01
Potentiodynamic polarization was used to studied the corrosion properties of SAC305 solder in different solution of 1.0 M HCl and 3.5 wt.% NaCl using the same scanning rate of 1.0 mV/s. The polarization curves indicated that corrosion in NaCl was less severe than in HCl solution based on corrosion current and passivation behavior obtained. Morphology and phases obtained after corrosion using SEM and XRD were analyzed. Microstructure analysis shows the present of compact corrosion product with presence of larger flake for polarization in NaCl compared to HCl. Phases present in XRD analysis confirmed the present of SnO and SnO2 corrosion product for sample from both solutions.
Synthesis of TiN/a-Si3N4 thin film by using a Mather type dense plasma focus system
NASA Astrophysics Data System (ADS)
Hussain, T.; R., Ahmad; Khalid, N.; A. Umar, Z.; Hussnain, A.
2013-05-01
A 2.3 kJ Mather type pulsed plasma focus device was used for the synthesis of a TiN/a-Si3N4 thin film at room temperature. The film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The XRD pattern confirms the growth of polycrystalline TiN thin film. The XPS results indicate that the synthesized film is non-stoichiometric and contains titanium nitride, silicon nitride, and a phase of silicon oxy-nitride. The SEM and AFM results reveal that the surface of the synthesized film is quite smooth with 0.59 nm roughness (root-mean-square).
Simple method for the growth of 4H silicon carbide on silicon substrate
NASA Astrophysics Data System (ADS)
Asghar, M.; Shahid, M. Y.; Iqbal, F.; Fatima, K.; Nawaz, Muhammad Asif; Arbi, H. M.; Tsu, R.
2016-03-01
In this study we report thermal evaporation technique as a simple method for the growth of 4H silicon carbide on p-type silicon substrate. A mixture of Si and C60 powder of high purity (99.99%) was evaporated from molybdenum boat. The as grown film was characterized by XRD, FTIR, UV-Vis Spectrophotometer and Hall Measurements. The XRD pattern displayed four peaks at 2Θ angles 28.550, 32.700, 36.100 and 58.900 related to Si (1 1 1), 4H-SiC (1 0 0), 4H-SiC (1 1 1) and 4H-SiC (2 2 2), respectively. FTIR, UV-Vis spectrophotometer and electrical properties further strengthened the 4H-SiC growth.
Structural, morphological and optical studies of F doped SnO2 thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla
2018-05-01
Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.
Structural and optical properties of nanostructured nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, J., E-mail: jaiveer24singh@gmail.com; Pandey, J.; Gupta, R.
2016-05-06
Metal nanoparticles are attractive because of their special structure and better optical properties. Nickel nanoparticles (Ni-Np) have been synthesized successfully by thermal decomposition method in the presence of trioctyl phosphine (TOP) and oleylamine (OAm). The samples were characterized by X-ray diffraction (XRD), Zetapotential measurement and Fourier transforms infrared (FTIR) spectroscopy. The size of Ni nanoparticles can be readily tuned from 13.86 nm. As-synthesized Ni nanoparticles have hexagonal closed pack (hcp) cubic structure as characterized by power X-ray diffraction (XRD) prepared at 280°C. The possible formation mechanism has also been phenomenological proposed for as synthesized Ni-Np. The value of Zeta potential wasmore » found 12.25 mV.« less
Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian
2018-03-15
The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.
Electro–optical properties of poly(vinyl acetate)/polyindole composite film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R.; Bajaj, N. S.
2016-05-06
In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DCmore » plot.« less
Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid
NASA Astrophysics Data System (ADS)
Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.
2018-03-01
Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.
Alternative approaches used to assess structural changes of natural zircon caused by heat treatment
NASA Astrophysics Data System (ADS)
Huong, L. T. T.; Thuyet, N. T. M.; Phan, T. L.; Tran, N.; Toan, D. N.; Thang, P. D.; Huy, B. T.
2018-03-01
It is known that large changes in the crystal structure of zircon (ZrSiO4) can be assessed through the linewidth of the characteristic Raman mode (Δν3) at 1008 cm-1. However, the use of Δν3 to assess small changes caused by heat treatment at temperatures below its decomposition temperature of 1670 °C is difficult. The present work points out that the combination of X-ray diffraction (XRD) analyses, and photoluminescence (PL) and Raman (RS) measurements with different excitation wavelengths is an effective approach to solve the above problem. In this context, we have selected natural zircon containing some rare-earth (RE) impurities, and then studied the changes in its crystal structure caused by heat treatment at temperatures Tan=400-1600 °C. XRD analyses reveal that small modifications of the unit-cell parameters occur as Tan>600 °C. Taking the intensity ratios of the ν3 mode to RE-related emissions (Iν3/IRE) or the PL intensity ratios between RE-related emissions into consideration, the similar results in good agreement with the XRD analyses are also found. We believe that the small structural changes are related to the migration and redistribution of defects and impurities, and re-crystallization of zircon. This could be further confirmed though the relation between paramagnetic and ferromagnetic signals when Tan changes.
NASA Astrophysics Data System (ADS)
Zhang, Runchun; Zhao, Beiji; Huang, Kai; You, Tiangui; Jia, Qi; Lin, Jiajie; Zhang, Shibin; Yan, Youquan; Yi, Ailun; Zhou, Min; Ou, Xin
2018-05-01
Heterogeneous integration of materials pave a new way for the development of the microsystem with miniaturization and complex functionalities. Two types of hybrid silicon on insulator (SOI) structures, i.e., Si (100)-on-Si (111) and Si (111)-on-Si (100), were prepared by the smart-cut technique, which is consist of ion-slicing and wafer bonding. The precise calculation of the lattice strain of the transferred films without the epitaxial matching relationship to the substrate was demonstrated based on X-ray diffraction (XRD) measurements. The XRD and Raman measurement results suggest that the transferred films possess single crystalline quality. With a chemical mechanical polishing (CMP) process, the surface roughness of the transferred thin films can be reduced from 5.57 nm to 0.30 nm. The 4-inch GaN thin film epitaxially grown on the as-prepared hybrid SOI of Si (111)-on-Si (100) by metalorganic chemical vapor deposition (MOCVD) is of improved quality with a full width at half maximum (FWHM) of 672.54 arcsec extracted from the XRD rocking curve and small surface roughness of 0.40 nm. The wafer-scale GaN on Si (111)-on-Si (100) can serve as a potential platform for the one chip integration of GaN-based high electron mobility transistors (HEMT) or photonics with the Si (100)-based complementary metal oxide semiconductor (CMOS).
Determination of layer-charge characteristics of smectites
Christidis, G.E.; Eberl, D.D.
2003-01-01
A new method for calculation of layer charge and charge distribution of smectites is proposed. The method is based on comparisons between X-ray diffraction (XRD) patterns of K-saturated, ethylene glycol-solvated, oriented samples and calculated XRD patterns for three-component, mixed-layer systems. For the calculated patterns it is assumed that the measured patterns can be modeled as random interstratifications of fully expanding 17.1 Å layers, partially expanding 13.5 Å layers and non-expanding 9.98 Å layers. The technique was tested using 29 well characterized smectites. According to their XRD patterns, smectites were classified as group 1 (low-charge smectites) and group 2 (high-charge smectites). The boundary between the two groups is at a layer charge of −0.46 equivalents per half unit-cell. Low-charge smectites are dominated by 17.1 Å layers, whereas high-charge smectites contain only 20% fully expandable layers on average. Smectite properties and industrial applications may be dictated by the proportion of 17.1 Å layers present. Non-expanding layers may control the behavior of smectites during weathering, facilitating the formation of illite layers after subsequent cycles of wetting and drying. The precision of the method is better than 3.5% at a layer charge of −0.50; therefore the method should be useful for basic research and for industrial purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azarang, Majid, E-mail: azarangmajid@gmail.com, E-mail: azarang@phys.usb.ac.ir; Department of Physics, University of Sistan and Baluchestan, 98135-674 Zahedan; Shuhaimi, Ahmad
2014-08-28
The effects of different concentrations of graphene oxide (GO) on the structure and optical properties of ZnO nanoparticles (NPs) were investigated. The nanocomposites were synthesized via the sol-gel method in a gelatin medium. X-ray diffraction patterns (XRD) and Fourier transform infrared spectroscopy indicated that the GO sheets were reduced and changed to reduced GO (RGO) during the calcination of the nanocomposites at 400 °C. In addition, the XRD patterns of the NPs indicated a hexagonal (wurtzite) structure for all the products. Microscopic studies showed that the NPs were decorated and dispersed on the RGO sheets very well. However, these studies revealedmore » that the RGO concentration had an effect on the crystal growth process for the ZnO NPs. Furthermore, these studies showed that the NPs could be grown with a single crystal quality in an optimum RGO concentration. According to the XRD results that were obtained from pure ZnO NPs, the calcinations temperature was decreased by the RGO. UV–vis and room temperature photoluminescence studies showed that the optical properties of the ZnO/RGO nanocomposite were affected by the RGO concentration. Finally, the obtained ZnO/RGO nanocomposite was used to generate a photocurrent. Observations showed that the photocurrent intensity of the nanocomposite was significantly increased by increasing the RGO, with an optimum RGO concentration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Van-Thai; Fulton, John L.
2016-06-21
In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5more » pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.« less
Quantitative analysis of tridymite and cristobalite crystallized in rice husk ash by heating.
Shinohara, Yasushi; Kohyama, Norihiko
2004-04-01
The quantities of two forms of crystalline silica, tridymite and cristobalite, in heated rice husk ash (RHA) samples were determined by X-ray diffraction (XRD) and chemical methods. Two RHA samples, containing 93% SiO2 and 2-3% K2O, were prepared from charcoaled rice husk products and heated to above 900 degrees C. The crystalline silica made up over 60-80% of the total silica in the heated RHA samples based on the XRD analysis. The crystalline phases in the two samples were somewhat different: The sample heated in the temperature range of 900 to 1,200 degrees C contained 52-62% cristobalite and 10-17% tridymite, but the other sample heated at a comparable temperature, above 1,100 degrees C, contained 46-66% tridymite and 37-16% cristobalite. Based on a correlation of lower tridymite crystallization temperature with higher potassium content, it was concluded that higher potassium levels were responsible for this difference. The pyrophosphoric acid analysis did not give exact results in the evaluation of total crystalline silica content in these RHA samples. As the combustion of rice husk was considered to cover the demands for energy and silica resource in Asian countries, cristobalite and tridymite crystallized in RHA by burning of rice husk should be assessed precisely by XRD analysis and the airborne dust in relevant workplace be controlled.
Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro
Shi, Xinchang
2017-01-01
Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178
Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André
2015-04-14
Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Muchlis, Khairanissa; Aini Fauziyah, Nur; Soontaranon, Siriwat; Limpirat, Wanwisa; Pratapa, Suminar
2017-01-01
In this study, we have investigated polymorphic silica (SiO2) powders using, Wide Angle X-ray Scattering (WAXS) and X-Ray Absorption Near Edge Spectroscopy (XANES), laboratory X-Ray Diffraction (XRD) instruments. The WAXS and XANES spectra were collected using synchrotron radiation at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand. The silica powders were obtained by processing silica sand from Tanah Laut, South Kalimantan, Indonesia. Purification process of silica sand was done by magnetic separation and immersion with HCl. The purification step was needed to reduce impurity or undesirable non Si elements. Three polymorphs of silica were produced, i.e. amorphous phase (A), quartz (B), and cristobalite (C). WAXS profile for each phase was presented in terms of intensity vs. 2θ prior to analyses. Both XRD (λCuKα=1.54056 Å) and WAXS (λ=1.09 Å) patttern show that (1) A sample contains no crystallites, (2) B sample is monophasic, contains only quartz, and (3) C sample contains cristobalite and trydimite. XRD quantitative analysis using Rietica gave 98,8 wt% cristobalite, while the associated WAXS data provided 98.7 wt% cristobalite. Si K-edge XANES spectra were measured at energy range 1840 to 1920 eV. Qualitatively, the pre-edge and edge features for all phases are similar, but their main peaks in the post-edge region are different.
Effect of lattice strain on structural and magnetic properties of Ca substituted barium hexaferrite
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Supriya, Sweety; Pandey, Rabichandra; Pradhan, Lagen Kumar; Singh, Rakesh Kumar; Kar, Manoranjan
2018-07-01
The calcium (Ca2+) substituted M-type barium hexaferrite (Ba1-xCaxFe12O19) for Ca2+ (x = 0.00, 0.025, 0.050, 0.075, 0.100, 0.150, and 0.200) have been synthesized by the citrate sol-gel method. The X-ray diffraction (XRD) patterns with Rietveld refinement reveal the formation of hexagonal crystal structure with P63/mmc space group. The lattice parameters a = b and c decrease, whereas lattice strain found to increase with the increase in Ca concentration in the samples. The analysis of Raman spectra well supports the XRD patterns analysis. The average particle size is obtained from the FE-SEM (Field Emission Scanning Electron Microscopy) micrographs and these are similar to that of crystallite size obtained from the XRD pattern analysis. The saturation magnetization and magnetocrystalline anisotropy have been obtained by employing the "Law of Approach (LA) to Saturation magnetization" technique at room temperature. The saturation magnetization and magnetocrystalline anisotropy constant are maximum for 5% Ca substitution in barium hexaferrite. It could be due to lattice strain mediated magnetism. However, these magnetic properties decrease for more than the 5% Ca substitution in barium hexaferrite. It could be due to decrease of magnetic exchange interaction (Fe-O-Fe) in the sample. A correlation between magnetic interaction and lattice strain has been observed in Ca2+ substituted M-type barium hexaferrite.
Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores
NASA Astrophysics Data System (ADS)
Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.
2008-08-01
Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.
Paganoto, Giordano T.; Santos, Deise M.; Guimarães, Marco C. C.; Carneiro, Maria Tereza W. D.
2017-01-01
This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C. PMID:28466065
NASA Astrophysics Data System (ADS)
Li, Li; Zhang, Xiaoxiao; Chen, Renjie; Zhao, Taolin; Lu, Jun; Wu, Feng; Amine, Khalil
2014-03-01
Li-rich layered oxide Li1.2Co0.13Ni0.13Mn0.54O2 has been successfully re-synthesized using the ascorbic acid leaching solution of spent lithium-ion batteries as the raw materials. A combination of oxalic acid co-precipitation, hydrothermal and calcination processes was applied to synthesize this material. For comparison, a fresh sample with the same composition has been also synthesized from the commercial raw materials using the same method. X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements are carried out to characterize these samples. XRD results indicate that both samples have the layered α-NaFeO2 structures with a space group of R 3 bar m. No other crystalline phase was detected by XRD. The electrochemical results show that the re-synthesized and fresh-synthesized sample can deliver discharge capacities as high as 258.8 and 264.2 mAh g-1 at the first cycle, respectively. After 50 cycles, discharge capacities of 225.1 and 228 mAh g-1 can be obtained with capacity retention of 87.0 and 86.3%, respectively. This study suggests that the leaching solution from spent lithium ion batteries can be recycled to synthesize Li-rich cathode materials with good electrochemical performance.
Hydrometallurgical Extraction of Zinc and Copper A 57Fe-Mössbauer and XRD Approach
NASA Astrophysics Data System (ADS)
Mulaba-Bafubiandi, A. F.; Waanders, F. B.
2005-02-01
The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate roast leach electro winning process. In the present investigation a zinc copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Mössbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900°C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Mössbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.
Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Shalendra, E-mail: shailuphy@gmail.com; Vats, Prashant; Gautam, S.
Highlights: • XRD, and HR-TEM results show the single phase nature of Ni doped ZnO nanoparticles. • dc magnetization results indicate the RT-FM in Ni doped ZnO nanoparticles. • Ni L{sub 3,2} edge NEXAFS spectra infer that Ni ions are in +2 valence state. • O K edge NEXAFS spectra show that O vacancy increases with Ni doping in ZnO. - Abstract: We report structural, magnetic and electronic structural properties of Ni doped ZnO nanoparticles prepared by auto-combustion method. The prepared nanoparticles were characterized by using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), near edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, and dc magnetization measurements. The XRD and HR-TEM results indicate that Ni doped ZnO nanoparticles have single phase nature with wurtzite lattice and exclude the presence of secondary phase. NEXAFS measurements performed at Ni L{sub 3,2}-edges indicates that Ni ions are in +2 valence state and exclude the presence of Ni metal clusters. O K-edge NEXAFS spectra indicate an increase in oxygen vacancies with Ni-doping, while Zn L{sub 3,2}-edge show the absence of Zn-vacancies. The magnetization measurements performed at room temperature shows that pure and Ni doped ZnO exhibits ferromagnetic behavior.« less
Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.
Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj
2011-04-01
Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.
2011-03-01
FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
The effect of Fe-Rh alloying on CO hydrogenation to C 2+ oxygenates
Palomino, Robert; Magee, Joseph W.; Llorca, Jordi; ...
2015-05-20
A combination of reactivity and structural studies using X-ray diffraction (XRD), pair distribution function (PDF), and transmission electron microscopy (TEM) was used to identify the active phases of Fe-modified Rh/TiO 2 catalysts for the synthesis of ethanol and other C 2+ oxygenates from CO hydrogenation. XRD and TEM confirm the existence of Fe–Rh alloys for catalyst with 1–7 wt% Fe and ~2 wt% Rh. Rietveld refinements show that FeRh alloy content increases with Fe loading up to ~4 wt%, beyond which segregation to metallic Fe becomes favored over alloy formation. Catalysts that contain Fe metal after reduction exhibit some carburizationmore » as evidenced by the formation of small amounts of Fe 3C during CO hydrogenation. Analysis of the total Fe content of the catalysts also suggests the presence of FeO x also increased under reaction conditions. Reactivity studies show that enhancement of ethanol selectivity with Fe loading is accompanied by a significant drop in CO conversion. Comparison of the XRD phase analyses with selectivity suggests that higher ethanol selectivity is correlated with the presence of Fe–Rh alloy phases. As a result, the interface between Fe and Rh serves to enhance the selectivity of ethanol, but suppresses the activity of the catalyst which is attributed to the blocking or modifying of Rh active sites.« less