Sample records for xrd field emission

  1. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    NASA Astrophysics Data System (ADS)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  2. Growth and field emission properties of globe-like diamond microcrystalline-aggregate

    NASA Astrophysics Data System (ADS)

    Gao, Jin-hai; Zhang, Lan; Zhao, Limin; Hao, Haoshan

    2009-02-01

    The globe-like diamond microcrystalline-aggregates were fabricated by microwave plasma chemical vapor deposition (MPCVD) method. The ceramic with a Ti mental layer was used as substrate. The fabricated diamond was evaluated by Raman scattering spectroscopy, X-ray diffraction spectrum (XRD), and scanning electron microscope (SEM). The field emission properties were tested by using a diode structure in a vacuum. A phosphor-coated indium tin oxide (ITO) anode was used for observing and characterizing the field emission. It was found that the globe-like diamond microcrystalline-aggregates exhibited good electron emission properties. The turn-on field was only 0.55 V/μm, and emission current density as high as 11 mA/cm 2 was obtained under an applied field of 2.9 V/μm for the first operation. The growth mechanism and field emission properties of the globe-like diamond microcrystalline-aggregates are discussed relating to microstructure and electrical conductivity.

  3. Field emission and photoluminescence of ZnO nanocombs

    NASA Astrophysics Data System (ADS)

    Wang, B.; Wu, H. Y.; Zheng, Z. Q.; Yang, Y. H.

    2013-11-01

    Three kinds of new comb-shape nanostructures of ZnO have been grown on single silicon substrates without catalyst-assisted thermal evaporation of Zn and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The growth mechanism of the ZnO nanocombs can be explained on the basis of the vapor-solid (VS) processes. In nanocombs 1 and nanocombs 2, the comb teeth grow along [0001] and the comb stem grows along [], while in nanocombs 3, nanoteeth grow along [] and stem grows along [0001]. The photoluminescence and field-emission properties of ZnO nanocombs 1-3 have been investigated. The turn-on electric field of ZnO nanocombs 1-3, which is defined as the field required to producing a current density of 10 μA/cm2, is 9, 7.7 and 7.1 V/μm, respectively. The field-emission performance relies not only on the tip’s radius of curvature and field enhancement factor, but also on the factor evaluating the degree of the screening effect.

  4. Facile synthesis of ZnPc nanocubes: An electron emitting material for field emission display devices

    NASA Astrophysics Data System (ADS)

    Samanta, M.; Ghorai, U. K.; Mukherjee, M.; Howli, P.; Chattopadhyay, K. K.

    2017-05-01

    A simple low temperature water chemical route for synthesizing Zinc Phthalocyanine (ZnPc) nanostructures were reported here. The as-prepared samples were well analysed by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) technique. The plausible formation mechanism of cube like nanostructures was also explained here. Cold cathode emission properties of ZnPc nanocubes were studied by using an indigenously designed high vacuum system at anode to cathode distance 130 µm. The turn on field and enhancement factor is found to be 5.0 V/μm @ 1µA/cm2 and 1757 respectively. Cold cathode emission properties were further investigated theoretically by finite element method using ANSYS Maxwell simulation package. The obtained results strongly professed that ZnPc nanocubes can act as potential candidate for electron emitter for field emission display devices and many more.

  5. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  6. Field emission chemical sensor

    DOEpatents

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  7. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.

    PubMed

    Ahmad, Mashkoor; Sun, Hongyu; Zhu, Jing

    2011-04-01

    Vertically oriented well-aligned Indium doped ZnO nanowires (NWs) have been successfully synthesized on Au-coated Zn substrate by controlled thermal evaporation. The effect of indium dopant on the optical and field-emission properties of these well-aligned ZnO NWs is investigated. The doped NWs are found to be single crystals grown along the c-axis. The composition of the doped NWs is confirmed by X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and X-ray photospectroscopy (XPS). The photoluminescence (PL) spectra of doped NWs having a blue-shift in the UV region show a prominent tuning in the optical band gap, without any significant peak relating to intrinsic defects. The turn-on field of the field emission is found to be ∼2.4 V μm(-1) and an emission current density of 1.13 mA cm(-2) under the field of 5.9 V μm(-1). The field enhancement factor β is estimated to be 9490 ± 2, which is much higher than that of any previous report. Furthermore, the doped NWs exhibit good emission current stability with a variation of less than 5% during a 200 s under a field of 5.9 V μm(-1). The superior field emission properties are attributed to the good alignment, high aspect ratio, and better crystallinity of In-doped NWs. © 2011 American Chemical Society

  8. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    PubMed

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work

  10. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  11. Morphology-controlled synthesis of grass-like GO-CdSe nanocomposites with excellent optical properties and field emission properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Pei, E-mail: peipeixie@163.com; Xue, Shaolin, E-mail: slxue@dhu.edu.cn; Wei, Jia, E-mail: Jojo.1125@hotmail.com

    2016-02-15

    Four different morphologies of the CdSe semiconductor nanograss have been successfully grown on graphene oxide (GO) sheets via hydrothermal method at 220 °C for 12 h. The morphologies, structures, chemical compositions and optical properties of the as-obtained GO-CdSe nanocomposites were characterized by XRD, SEM, TEM, EDS, XPS and Raman spectra. It was found that the EDTA/Cd{sup 2+} molar ratio is important for the formation of morphology of GO-CdSe nanocomposites. The results of XRD revealed that all the as-obtained GO-CdSe nanocomposites have zinc blend structure. Room temperature photoluminescence (PL) showed that the sample emits red light under different excitation wavelengths. Themore » results of Raman spectra, EDS and XPS showed that the CdSe nanograss is grown on GO sheets. The results showed that GO-CdSe nanocomposites composed of nanorods have best field emission (FE) properties with a low turn-on electric field of 4.14 V μm{sup −1} and a high field enhancement factor of 3315 among all the samples. - Graphical abstract: SEM images of as-synthesized CdSe nanograss grown on GO sheets. Room temperature PL emission spectra of the as-synthesized CdSe nanograss grown on GO sheets. Field emission J–E curve of the as-synthesized CdSe nanograss grown on GO sheets. - Highlights: • Novel CdSe nanograsses are grown on graphene oxide sheets by hydrothermal method. • The morphology of CdSe nanograsses is controlled by adjusting EDTA/Cd{sup 2+} molar ratio. • The FE performance of sample is investigated. • Optimum morphology for FE performance is CdSe nanograsses composed of nanorods on GO.« less

  12. Junction-based field emission structure for field emission display

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  13. Field Emission and Nanostructure of Carbon Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded.more » However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.« less

  14. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    NASA Astrophysics Data System (ADS)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  15. Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO{sub 2} nanotube arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Shang-Chao, E-mail: schung99@gmail.com; Chen, Yu-Jyun

    2016-07-15

    Highlights: • Graphene nanoribbons (GNBs) slanted on aggregate TiO{sub 2} nanotube (A-TNTs) as field-emitters. • Turn-on electric field and field enhancement factor β are dependent on the substrate morphology. • Various quantities of GNRs are deposited on top of A-TNTs (GNRs/A-TNTs) with different morphologies. • With an increase of GNBs compositions, the specimens' turn-on electric field is reduced to 2.8 V/μm. • The field enhancement factor increased rapidly to about 1964 with the addition of GNRs. - Abstract: Graphene nanoribbons (GNRs) slanted on aggregate TiO{sub 2} nanotube arrays (A-TNTs) with various compositions as field-emitters are reported. The morphology, crystalline structure,more » and composition of the as-obtained specimens were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and Raman spectrometry. The dependence of the turn-on electric field and the field enhancement factor β on substrate morphology was studied. An increase of GNRs reduces the specimens’ turn-on electric field to 2.8 V/μm and the field enhancement factor increased rapidly to about 1964 with the addition of GNRs. Results show a strong dependence of the field emission on GNR composition aligned with the gradient on the top of the A-TNT substrate. Enhanced FE properties of the modified TNTs can be mainly attributed to their improved electrical properties and rougher surface morphology.« less

  16. Investigation of the temperature dependent field emission from individual ZnO nanowires for evidence of field-induced hot electrons emission.

    PubMed

    Chen, Yicong; Zhang, Zhipeng; Li, Zhi-Bing; She, Juncong; Deng, Shaozhi; Xu, Ning-Sheng; Chen, Jun

    2018-06-27

    ZnO nanowires as field emitters have important applications in flat panel display and X-ray source. Understanding the intrinsic field emission mechanism is crucial for further improving the performance of ZnO nanowire field emitters. In this article, the temperature dependent field emission from individual ZnO nanowires was investigated by an in-situ measurement in ultra-high vacuum. The divergent temperature-dependent Fowler-Nordheim plots is found in the low field region. A field-induced hot electrons emission model that takes into account penetration length is proposed to explain the results. The carrier density and temperature dependence of the field-induced hot electrons emission current are derived theoretically. The obtained results are consistent with the experimental results, which could be attributed to the variation of effective electron temperature. All of these are important for a better understanding on the field emission process of semiconductor nanostructures. © 2018 IOP Publishing Ltd.

  17. Polypyrrole nanostructures and their field emission investigations

    NASA Astrophysics Data System (ADS)

    Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.

    2015-03-01

    Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.

  18. Carbon nanotube emitters and field emission triode

    NASA Astrophysics Data System (ADS)

    Fan, Zhiqin; Zhang, Binglin; Yao, Ning; Zhang, Lan; Ma, Huizhong; Deng, Jicai

    2006-05-01

    Based on our study on field emission from multi-walled carbon nanotubes (MWNTs), we experimentally manufactured field emission display (FED) triode with a MWNTs cold cathode, and demonstrated an excellent performance of MWNTs as field emitters. The measured luminance of the phosphor screens was 1.8*10^(3) cd/m2 for green light. The emission is stable with a fluctuation of only 1.5% at an average current of 260 'mu'A.

  19. Field emission from isolated individual vertically aligned carbon nanocones

    NASA Astrophysics Data System (ADS)

    Baylor, L. R.; Merkulov, V. I.; Ellis, E. D.; Guillorn, M. A.; Lowndes, D. H.; Melechko, A. V.; Simpson, M. L.; Whealton, J. H.

    2002-04-01

    Field emission from isolated individual vertically aligned carbon nanocones (VACNCs) has been measured using a small-diameter moveable probe. The probe was scanned parallel to the sample plane to locate the VACNCs, and perpendicular to the sample plane to measure the emission turn-on electric field of each VACNC. Individual VACNCs can be good field emitters. The emission threshold field depends on the geometric aspect ratio (height/tip radius) of the VACNC and is lowest when a sharp tip is present. VACNCs exposed to a reactive ion etch process demonstrate a lowered emission threshold field while maintaining a similar aspect ratio. Individual VACNCs can have low emission thresholds, carry high current densities, and have long emission lifetime. This makes them very promising for various field emission applications for which deterministic placement of the emitter with submicron accuracy is needed.

  20. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  1. As-pyrolyzed sugarcane bagasse possessing exotic field emission properties

    NASA Astrophysics Data System (ADS)

    Krishnia, Lucky; Yadav, Brajesh S.; Palnitkar, Umesh; Satyam, P. V.; Gupta, Bipin Kumar; Koratkar, Nikhil A.; Tyagi, Pawan K.

    2018-06-01

    The present study aims to demonstrate the application of sugarcane bagasse as an excellent field emitter. Field emission property of as-pyrolyzed sugarcane bagasse (p-SBg) before and after the plasma treatment has been investigated. It has been observed that electronic nature of p-SBg transformed from semiconducting to metallic after plasma treatment. Maximum current and turn-on field defined at 10 μA/cm2 was found to be 800 μA/cm2 and 2.2 V/μm for as-pyrolyzed sugarcane bagasse (p-SBg) and 25 μA/cm2 and 8.4 V/μm for H2-plasma treated p-SBg. These values are found to be better than the reported values for graphene and activated carbon. In this report, pyrolysis of bagasse has been carried in a thermal chemical vapor deposition (Th-CVD) system in inert argon atmosphere. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) have been used to study the structure of both pre and post plasma-treated p-SBg bagasse's sample. HRTEM study reveals that carbonaceous structures such as 3D-nanographene oxide (3D-NGO), graphite nanodots (GNDs), carbon nanotubes (CNTs), and carbon onions are present in both pre-treated and plasma-treated p-SBg. Hence, we envision that the performed study will be a forwarding step to facilitate the application of p-SBg in display devices.

  2. Soil emissivity and reflectance spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobrino, Jose A.; Mattar, Cristian; Pardo, Pablo

    We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14 {mu}m with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff's law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer andmore » converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.« less

  3. Scanned-probe field-emission studies of vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.

    2001-02-01

    Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.

  4. Field-emission from quantum-dot-in-perovskite solids

    PubMed Central

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-01-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission. PMID:28337981

  5. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model

  6. Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubenko, Oksana; Baturin, Stanislav S.; Kovi, Kiran K.

    One of the common problems in case of field emission from polycrystalline diamond films, which typically have uniform surface morphology, is uncertainty in determining exact location of electron emission sites across the surface. Although several studies have suggested that grain boundaries are the main electron emission source, it is not particularly clear what makes some sites emit more than the others. It is also practically unclear how one could quantify the actual electron emission area and therefore field emission current per unit area. In this paper we study the effect of actual, locally resolved, field emission (FE) area on electronmore » emission characteristics of uniform planar highly conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. It was routinely found that field emission from as-grown planar (N)UNCD films is always confined to a counted number of discrete emitting centers across the surface which varied in size and electron emissivity. It was established that the actual FE area critically depends on the applied electric field, as well as that the actual FE area and the overall electron emissivity improve with sp2 fraction present in the film irrespectively of the original substrate roughness and morphology. To quantify the actual FE area and its dependence on the applied electric field, imaging experiments were carried out in a vacuum system in a parallel-plate configuration with a specialty anode phosphor screen. Electron emission micrographs were taken concurrently with I-V characteristics measurements. In addition, a novel automated image processing algorithm was developed to process extensive imaging datasets and calculate emission area per image. By doing so, it was determined that the emitting area was always significantly smaller than the FE cathode surface area. Namely, the actual FE area would change from 5×10-3 % to 1.5 % of the total cathode area with the applied electric field increased. Finally

  7. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  8. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  9. Field Emission Cold Cathode Devices Based on Eutectic Systems

    DTIC Science & Technology

    1981-07-01

    8217RADC-TR-811-170 ’,Final Technical Report July 1981 FIELD EMISSION COLD CATHODE DEVICES BASED ON EUTECTIC SYSTEMS Fulmer Research Institute Ltd...and identify by block numrber) Field Emission Eutectic Systems Cold Cathode Rod Eutectics Electron Emitter Array Directionally Solidified Eutectics...Identify by block number) A survey has been made of the performance as field emission cold cathodes of selected refractory materials fabricated as

  10. Density functional theory for field emission from carbon nano-structures.

    PubMed

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  11. Can dust emission mechanisms be determined from field measurements?

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Webb, Nicholas; Gill, Thomas E.; Van Pelt, Scott; Okin, Gregory

    2017-04-01

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sediment supply- and transport-limited conditions. This variability, which is caused by heterogeneity of the surface and the atmosphere, cannot be fully captured in either field measurements or models. However, uncertainty in dust emission modeling can be reduced through more detailed observational data on the dust emission mechanism itself. To date, most measurements do not provide enough information to allow for a determination of the mechanisms leading to dust emission and often focus on a small variety of soil and atmospheric settings. Additionally, data sets are often not directly comparable due to different measurement setups. As a consequence, the calibration of dust emission schemes has so far relied on a selective set of observations, which leads to an idealization of the emission process in models and thus affects dust budget estimates. Here, we will present results of a study which aims to decipher the dust emission mechanism from field measurements as an input for future model development. Detailed field measurements are conducted, which allow for a comparison of dust emission for different surface and atmospheric conditions. Measurements include monitoring of the surface, loose erodible material, transported sediment, and meteorological data, and are conducted in different environmental settings in the southwestern United States. Based on the field measurements, a method is developed to differentiate between the different dust emission mechanisms.

  12. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  13. Experimental Development of Low-emittance Field-emission Electron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueangaranwong, A.; Buzzard, C.; Divan, R.

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  14. Field emission properties of different forms of carbon

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.; Kang, Sukill

    2001-06-01

    The results of field emission (FE) studies are reported for three different forms of carbon: smooth amorphous carbon (a-C) films with both low and high sp 3 content prepared by pulsed-laser deposition (PLD), nanostructured carbon prepared by hot-filament chemical-vapor deposition (HFCVD), and vertically aligned carbon nanofibers (VACNFs). The studies reveal that smooth PLD carbon films are poor field emitters regardless of their sp 3 content. Conditioning of the films, which resulted in films' modification, was required to draw FE current and the emission turn-on fields were relatively high. In contrast, HFCVD carbon films exhibit very good FE properties, including low-emission turn-on fields, relatively high emission site density, and excellent durability. Finally, VACNFs also were found to possess quite promising FE properties that compete with those of HFCVD films. We believe that the latter two forms of carbon are among the most promising candidates for use as cold cathodes in commercial devices.

  15. Field emission properties of SiO2-wrapped CNT field emitter.

    PubMed

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-05

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO 2 -wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO 2 -wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO 2 -wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm -1 to achieve FE current density of 22 mA cm -2 ; whereas SiO 2 -wrapped field emitter requires 8.5 V μm -1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO 2 , as obtained from the electric field simulation. Nevertheless, SiO 2 -wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO 2 -wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO 2 -wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  16. Field emission properties of SiO2-wrapped CNT field emitter

    NASA Astrophysics Data System (ADS)

    Lim, Yu Dian; Hu, Liangxing; Xia, Xin; Ali, Zishan; Wang, Shaomeng; Tay, Beng Kang; Aditya, Sheel; Miao, Jianmin

    2018-01-01

    Carbon nanotubes (CNTs) exhibit unstable field emission (FE) behavior with low reliability due to uneven heights of as-grown CNTs. It has been reported that a mechanically polished SiO2-wrapped CNT field emitter gives consistent FE performance due to its uniform CNT heights. However, there are still a lack of studies on the comparison between the FE properties of freestanding and SiO2-wrapped CNTs. In this study, we have performed a comparative study on the FE properties of freestanding and SiO2-wrapped CNT field emitters. From the FE measurements, freestanding CNT field emitter requires lower applied voltage of 5.5 V μm-1 to achieve FE current density of 22 mA cm-2 whereas SiO2-wrapped field emitter requires 8.5 V μm-1 to achieve the same current density. This can be attributed to the lower CNT tip electric field of CNTs embedded in SiO2, as obtained from the electric field simulation. Nevertheless, SiO2-wrapped CNTs show higher consistency in FE current than freestanding CNTs. Under repeated FE measurement, SiO2-wrapped CNT field emitter achieves consistent FE behavior from the 1st voltage sweep, whereas freestanding field emitter only achieved consistent FE performance after 3rd voltage sweep. At the same time, SiO2-wrapped CNTs exhibit better emission stability than freestanding CNTs over 4000 s continuous emission.

  17. Study of thermal-field emission properties and investigation of temperature dependent noise in the field emission current from vertical carbon nanotube emitters

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.

    2017-10-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.

  18. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  19. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  20. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    NASA Astrophysics Data System (ADS)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements

  1. Deducing dust emission mechanisms from field measurements

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to both develop and test theories on dust emission for use in global modeling systems. The mechanism of dust emission (aerodynamic entrainment, saltation bombardment, aggregate disintegration) and the amount and particle-size distribution of emitted dust may vary under ...

  2. Electron emission from chemical vapor deposited diamond and amorphous carbon films observed with a simple field emission device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Z.; Brown, I.G.; Ager, J.W. III

    Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the field strength range +10 to {minus}10 MVm{sup {minus}1} was studied, and the field emission source was confirmed by a diode characteristic of the {ital I}-{ital V} curve, a straight line in the Fowler--Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was {similar_to}5 MVm{sup {minus}1}, which was similar for both kinds of carbon films.more » The highest current density for diamond films, observed at a field strength of 10 MVm{sup {minus}1}, was {similar_to}15 {mu}A cm{sup {minus}2}. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.« less

  3. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  4. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Field Emission Enhancement and the Field-Screening Effect Reduction using Carbon Nanopipettes as Cold Cathodes

    NASA Astrophysics Data System (ADS)

    Safir, Abdelilah; Mudd, David; Yazdanpanah, Mehdi; Dobrokhotov, Vladimir; Sumanasekera, Gamini; Cohn, Robert

    2008-03-01

    In this work, we report a recent experimental study of high emission current densities exceeding 10mA/cm^2 and breakdown electric field lower than 5Volts/μm from novel cold cathodes such as conical shaped carbon nanopipettes (CNP). CNP were grown by CVD on Pt wire and have apex as sharp as 10nm with length between 3-6μm. The emission experiments were conducted under vacuum in a scanning electron microscope for individual CNP and in a dedicated chamber for bulk samples. CNP's conical bases and low density contribute significantly to the reduction of the screening effect and to the field emission enhancement. The experimental value for the field enhancement factor, γ, was about 867. Comparing emission results taken from CNP and aligned multiwall carbon nanotubes (MWNT) show that the ratio between γCNP and γMWNT is ˜1.6 which contributes to the reduction of screening effect. The emission from multilayers of graphene was also studied. High emission current (20μA) demonstrates promising emission properties of graphene.

  6. Stability of field emission current from porous n-GaAs(110)

    NASA Astrophysics Data System (ADS)

    Tondare, V. N.; Naddaf, M.; Bhise, A. B.; Bhoraskar, S. V.; Joag, D. S.; Mandale, A. B.; Sainkar, S. R.

    2002-02-01

    Field electron emission from porous GaAs has been investigated. The emitter was prepared by anodic etching of n-GaAs (110) in 0.1 M HCl solution. The as-etched porous GaAs shows nonlinear Fowler-Nordheim (FN) characteristics, with a low onset voltage. The emitter, after operating for 6 h at the residual gas pressure of 1×10-8 mbar, shows a linear FN characteristics with a relatively high onset voltage and poor field emission current stability as compared to the as-etched emitter. The change in the behavior was attributed to the residual gas ion bombardment during field electron emission. X-ray photoelectron spectroscopic investigations were carried out on as-etched sample and the one which was studied for field emission. The studies indicate that the as-etched surface contains As2O3 and the surface after field electron emission for about 6 h becomes gallium rich. The presence of As2O3 seems to be a desirable feature for the stable field emission current.

  7. Field emission chemical sensor for receptor/binder, such as antigen/antibody

    DOEpatents

    Panitz, John A.

    1986-01-01

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  8. High-Performance Field Emission from a Carbonized Cork.

    PubMed

    Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup

    2017-12-20

    To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.

  9. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  10. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  11. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  12. Enhanced field emission from hexagonal rhodium nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.

    2008-06-23

    Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.

  13. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  14. Improvement of carbon nanotube field emission properties by ultrasonic nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei

    2008-12-01

    Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.

  15. Positional control of plasmonic fields and electron emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R., E-mail: rkoe@pdx.edu

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  16. Superior Field Emission Properties of Layered WS2-RGO Nanocomposites

    PubMed Central

    Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.

    2013-01-01

    We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504

  17. Growth and field emission properties of tubular carbon cones.

    PubMed

    Li, J J; Wang, Q; Gu, C Z

    2007-09-01

    New forms of tubular carbon cone (TCC) were grown on gold wires by hot-filament chemical vapor deposition (HFCVD). They have a long-cone-shaped appearance with a herringbone hollow interior, surrounded by helical sheets of graphite that are coiled around it. It is considered that TCC formation results because the size of the catalyst particle located in the top of the TCC decreases continuously during growth, due to etching effects in the CVD plasma, reflecting competition between the growth and etching processes in the plasma. In addition, field emission measurements show that TCCs have a very low-threshold field of 0.27 V/microm, and that a stable macroscopic emitting current density of 1 mA/cm2 can be obtained at only 0.5 V/microm. TCCs have good field emission properties, compared to other forms of carbon field emitter, and may be good candidates for use in field emission display devices.

  18. Field Enhancement Properties of Nanotubes in a Field Emission Set-Up

    NASA Technical Reports Server (NTRS)

    Adessi, Ch.; Devel, M.

    2001-01-01

    This slide presentation reviews the mechanisms of emission of nanotubes. The field enhancement properties of carbon nanotubes, involved in the emission of electrons, is investigated theoretically for various single-wall (SWNT) and multi-wall nanotubes (MWNT). The presentation points out big differences between (n,0) and (n,n) nanotubes, and propose phenomenological laws for the variations of the enhancement factor with length and diameter

  19. Field Emission in Superconducting Accelerators: Instrumented Measurements for Its Understanding and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Freyberger, Arne P.; Legg, Robert A.

    Several new accelerator projects are adopting superconducting accelerator technology. When accelerating cavities maintain high RF gradients, field emission, the emission of electrons from cavity walls, can occur and may impact operational cavity gradient, radiological environment via activated components, and reliability. In this talk, we will discuss instrumented measurements of field emission from the two 1.1 GeV superconducting continuous wave (CW) linacs in CEBAF. The goal is to improve the understanding of field emission sources originating from cryomodule production, installation and operation. Such basic knowledge is needed in guiding field emission control, mitigation, and reduction toward high gradient and reliable operationmore » of superconducting accelerators.« less

  20. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  1. On the early history of field emission including attempts of tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Kleint, C.

    1993-04-01

    Field emission is certainly one of the oldest surface science techniques, its roots reaching back about 250 years to the time of enlightenment. An account of very early studies and of later work is given but mostly restricted to Leipzig and to pre-Müllerian investigations. Studies of field emission from metal tips were carried out in the 18th century by Johann Heinrich Winkler who used vacuum pumps built by Jacob Leupold, a famous Leipzig mechanic. A short account of the career of Winkler will be given and his field emission experiments are illustrated. Field emission was investigated again in Leipzig much later by Julius Edgar Lilienfeld who worked on the improvement of X-ray tubes. He coined the terms ‘autoelektronische Entladung’ of ‘Äona-Effekt’ in 1922, and developed degassing procedures which are very similar to modern ultra-high vacuum processing. A pre-quantum mechanical explanation of the field emission phenomena was undertaken by Walter Schottky. Cunradi (1926) tried to measure temperature changes during field emission. Franz Rother, in a thesis (1914) suggested by Otto Wiener, dealt with the distance dependence of currents in vacuum between electrodes down to 20 nm. His habilitation in 1926 was an extension of his early work but now with field emission tips as a cathode. We might look at his measurements of the field emission characteristics in dependence on distance as a precursor to modern tunneling spectroscopy as well.

  2. Marigold-like nanocrystals: controllable synthesis, field emission, and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Song, Changqing; Yu, Ke; Yin, Haihong; Zhang, Yuanyuan; Li, Shouchuan; Wang, Yang; Zhu, Ziqiang

    2014-06-01

    Cubic marigold-like Cu2S nanostructures were synthesized from a facile hydrothermal process without using any additives or surfactants. After thermal annealed at different condition, monoclinic Cu2S and tetragonal Cu1.81S nanostructures were obtained for the first time, maintaining the marigold-like morphology undestroyed. Field emission (FE) properties of these three types of nanostructures were investigated for the first time. The results indicated that the tetragonal Cu1.81S nanostructures had excellent field emission performance with turn-on field of and threshold field of . Moreover, their photocatalytic properties of the three nanostructures were also investigated by photodegradating methylene blue (MB). The results showed that the tetragonal Cu1.81S nanostructures may be a competitive material in both field emission and photocatalytic applications.

  3. Effect of CO on the field emission properties of tetrapod zinc oxide cathode.

    PubMed

    Wang, Jinchan; Zhang, Xiaobing; Lei, Wei; Mao, Fuming; Cui, Yunkang; Xiao, Mei

    2012-08-01

    Tetrapod zinc oxide (T-ZnO), being a kind of nano-material, has large specific surface area and surface binding energy, which will make it sensitive to the ambient gas condition. So the field emission properties will be influenced by the gas adsorption when being applied as the cathode materials of field emission devices. Carbon monoxide is the main residual gas in T-ZnO field emission devices. In this paper, carbon monoxide was introduced into a field emission device with T-ZnO emitters. The field emission currents of tetrapod ZnO were compared before and after exposure to CO.

  4. Disentangling dust emission mechanisms – a field study

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to both develop and test theories on dust emission for use in global modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary un...

  5. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  6. Electron emission phenomena controlled by a transverse electric field in compound emitters

    NASA Astrophysics Data System (ADS)

    Olesik, Jadwiga; Calusinski, Bogdan; Olesik, Zygmunt

    1996-09-01

    Influence of an inner electric field on such emission phenomena like: secondary emission, photoemission and field emission has been investigated. The applied sample-emitter was a glass wafer (thickness 0.2 mm) covered on both sides by semiconducting films In2O3:Sn. A voltage (in the interval -2000V divided by 0V) generating transverse electric field was applied to one of the films. This film had a thickness of about 200 nm. The second film (emitting electrons) had a thickness 100 nm or 10 nm. The secondary emission measurements were made by the retarding field method using four grid retarding potential analyzer. It was found that the secondary emission coefficient changes non- monotonically with increasing field intensity. Electron emission measurements without using a primary electron beam were made with the electron multiplier cooperating with a multichannel pulse amplitude analyzer. The measurements were performed in the vacuum of about 2 multiplied by 10-6 Pa. Influence of film thickness on the intensity of field controlled emission and field controlled photoemission was also studied. It was also found that the frequency of counts (generated by electrons in the electron multiplier) depends on the polarizing voltage approximately in an exponential way. Some departures from this dependence can be observed at higher Upol voltages (above 1000 V). Thus, at an appropriate high voltage Upol conditions for a cascade emission are created. At lower voltages the conditions correspond to a semiconductor with a negative electron affinity.

  7. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holder, A. L.; Gullett, B. K.; Urbanski, S. P.; Elleman, R.; O'Neill, S.; Tabor, D.; Mitchell, W.; Baker, K. R.

    2017-10-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models, and emission inventories. Batch measurements of PM2.5, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs), and continuous measurements of black carbon (BC), particle mass by size, CO, CO2, CH4, and aerosol characteristics were taken at ground level, on an aerostat-lofted instrument package, and from an airplane. Biomass samples gathered from the field were burned in a laboratory combustion facility for comparison with these ground and aerial field measurements. Emission factors for PM2.5, organic carbon (OC), CH4, and CO measured in the field study platforms were typically higher than those measured in the laboratory combustion facility. Field data for Kentucky bluegrass suggest that biomass residue loading is directly proportional to the PM2.5 emission factor; no such relationship was found with the limited wheat data. CO2 and BC emissions were higher in laboratory burn tests than in the field, reflecting greater carbon oxidation and flaming combustion conditions. These distinctions between field and laboratory results can be explained by measurements of the modified combustion efficiency (MCE). Higher MCEs were recorded in the laboratory burns than from the airplane platform. These MCE/emission factor trends are supported by 1-2 min grab samples from the ground and aerostat platforms. Emission factors measured here are similar to other studies measuring comparable fuels, pollutants, and combustion conditions. The size distribution of refractory BC (rBC) was single modal with a log-normal shape, which was

  8. Excellent field emission properties of vertically oriented CuO nanowire films

    NASA Astrophysics Data System (ADS)

    Feng, Long; Yan, Hui; Li, Heng; Zhang, Rukang; Li, Zhe; Chi, Rui; Yang, Shuaiyu; Ma, Yaya; Fu, Bin; Liu, Jiwen

    2018-04-01

    Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE) properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge), indicating that the samples are promising candidates for field emission applications.

  9. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  10. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  11. Comparing the field and laboratory emission cell (FLEC) with traditional emissions testing chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roache, N.F.; Guo, Z.; Fortmann, R.

    1996-12-31

    A series of tests was designed to evaluate the performance of the field and laboratory emission cell (FLEC) as applied to the testing of emissions from two indoor coating materials, floor wax and latex paint. These tests included validation of the repeatability of the test method, evaluation of the effect of different air velocities on source emissions, and a comparison of FLEC versus small chamber characterization of emissions. The FLEC exhibited good repeatability in characterization of emissions when applied to both sources under identical conditions. Tests with different air velocities showed significant effects on the emissions from latex paint, yetmore » little effect on emissions from the floor wax. Comparisons of data from the FLEC and small chamber show good correlation for measurements involving floor wax, but less favorable results for emissions from latex paint. The procedures and findings are discussed; conclusions are limited and include emphasis on the need for additional study and development of a standard method.« less

  12. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lagmore » the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.« less

  13. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less

  14. Multi-barrier field-emission behavior in PBTTT thin films at low temperatures

    PubMed Central

    Kang, Evan S. H.; Kim, Eunseong

    2015-01-01

    We investigated the low-temperature transport mechanism for poly[2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene] (PBTTT). The temperature-dependent transport behavior was studied by varying the drain–source electric field and gate bias. The results suggest that low-temperature charge transport is dominated by direct tunneling at low electric fields, while field emission is prevailing for high electric fields with high carrier densities. However, the obtained barrier heights are remarkably greater than expected in a conventional field emission. We propose a simplified model of field emission through quasi-one-dimensional path with multiple barriers which shows good agreement with the results more clearly. Field emission across the domain boundaries may assist in overcoming the transport barriers induced by the interchain disorder, which results in the weak temperature dependence of conductivities and nonlinear current–voltage relation at low temperatures. PMID:25670532

  15. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  16. Modeling and simulation for the field emission of carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.

    2005-12-01

    To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.

  17. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  18. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  19. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  20. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    PubMed

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  1. Formation of nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.

    2000-01-01

    A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.

  2. Effect of magnetic and electric coupling fields on micro- and nano- structure of carbon films in the CVD diamond process and their electron field emission property

    NASA Astrophysics Data System (ADS)

    Wang, Yijia; Li, Jiaxin; Hu, Naixiu; Jiang, Yunlu; Wei, Qiuping; Yu, Zhiming; Long, Hangyu; Zhu, Hekang; Xie, Youneng; Ma, Li; Lin, Cheng-Te; Su, Weitao

    2018-03-01

    In this paper, both electric field and magnetic field were used to assist the hot filament chemical vapor deposition (HFCVD) and we systematically investigated the effects of which on the (1) phase composition, (2) grain size, (3) thickness and (4) preferred orientation of diamond films through SEM, Raman and XRD. The application of magnetic field in electric field, so called ‘the magnetic and electric coupling fields’, enhanced the graphitization and refinement of diamond crystals, slowed down the decrease of film thickness along with the increase of bias current, and suppressed diamond (100) orientation. During the deposition process, the electric field provided additional energy to HFCVD system and generated large number of energetic particles which might annihilate at the substrate and lose kinetic energy, while the Lorentz force, provided by magnetic field, could constrict charged particles (including electrons) to do spiral movement, which prolonged their moving path and life, thus the system energy increased. With the graphitization of diamond films intensified, the preferred orientation of diamond films completely evolved from (110) to (100), until the orientation and diamond phase disappeared, which can be attributed to (I) the distribution and concentration ratio of carbon precursors (C2H2 and CH3) and (II) graphitization sequence of diamond crystal facets. Since the electron field emission property of carbon film is sensitive to the phase composition, thickness and preferred orientation, nano- carbon cones, prepared by the negative bias current of 20 mA and magnetic field strength of 80 Gauss, exhibited the lowest turn-on field of 6.1 V -1 μm-1.

  3. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  4. Can dust emission mechanisms be determined from field measurements?

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  5. Low-threshold field emission in planar cathodes with nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.

    2016-12-01

    Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.

  6. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, A.F.; Hayes, J.P.

    1998-05-05

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.

  7. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    NASA Astrophysics Data System (ADS)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  8. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  9. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.

    PubMed

    Yates, S R; Ashworth, D J

    2018-04-15

    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  10. Seismicity triggered by the olivine-spinel transition: New insights from combined XRD and acoustic emission monitoring during deformation experiments in Mg2GeO4

    NASA Astrophysics Data System (ADS)

    Schubnel, A. J.; Hilairet, N.; Gasc, J.; Héripré, E.; Brunet, F.; Wang, Y.

    2010-12-01

    Polycrystalline Mg2GeO4-olivine has been deformed (strain rates from 2.10-4/s to 10-5/s) in the deformation-DIA in 13-BM-D at GSECARS (Advanced Photon Source) at ca. 2 GPa confining pressure for temperatures between 973 and 1573 K (i.e., in the Mg2GeO4-ringwoodite field). Stress, advancement of transformation, and strain were measured in-situ using X-ray diffraction (XRD) and imaging, and acoustic emissions (AE) full waveforms were recorded simultaneously. When differential stress is applied (ca. 1- to 2 GPa) and temperature is increased, the very beginning of the transformation to the ringwoodite structure (as evidenced by in situ XRD) is accompanied by AE bursts which locate within the sample. At high strain rates (>10-4/s) and low temperatures (800-900 degrees C), the number of AEs is comparable, if not larger, to that observed during the cold compression of quartz grains. The largest events always occur at a temperature slightly below that of appearance of the ringwoodite-structure phase on the XRD images patterns. This suggests that AEs are generated while the transition is still nucleation controlled (pseudo-martensitic stage). During stress-relaxation periods, the rate of AE triggering decreases, but does not completely vanish. The AE production rate increases again as soon as deformation is started again. Importantly, we still observed very large AEs at strain rates as low as approx. 10-5/ s. At these early stages of the transformation, the samples did not show any macroscopic rheological weakening. Focal mechanism analysis of the largest AEs showed that they are all of shear type, some being even pure double couple. They radiate about the same amount of energy as typically recorded during fast crack propagation in amorphous glass material. This suggests that they cannot only originate from the martensitic nucleation of oriented spinel-lamellae within a single germanium olivine crystal. Preliminary microstructural analysis (SEM and EBSD) highlights the

  11. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  12. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  13. Field emission from optimized structure of carbon nanotube field emitter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to bemore » 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.« less

  14. Long time stability of lamps with nanostructural carbon field emission cathodes

    NASA Astrophysics Data System (ADS)

    Kalenik, J.; Firek, P.; Szmidt, J.; Czerwosz, E.; Kozłowski, M.; Stepińska, I.; Wódka, T.

    2017-08-01

    A luminescent lamp with field emission cathode was constructed and tested. Phosphor excited by electrons from field emission cathode is the source of light. The cathode is covered with nickel-carbon film containing multilayer carbon nanotubes that enhance electron emission from the cathode. Results of luminance stability measurements are presented. Luminance of elaborated luminance lamp is high enough for lighting application. Long term stability (1000 hours) is satisfactory for mass lamp application. Initial short time decrease of luminance is still too high and it needs reduction.

  15. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  16. Optical Emissions of Sprite Streamers in Weak Electric Fields

    NASA Astrophysics Data System (ADS)

    Liu, N.; Pasko, V. P.

    2004-12-01

    Sprites commonly consist of large numbers of needle-shaped filaments of ionization [e.g., Gerken and Inan, JASTP, 65, 567, 2003] and typically initiate at altitudes 70-75 km in a form of upward and downward propagating streamers [Stanley et al., GRL, 26, 3201, 1999; Stenbaek-Nielsen et al., GRL, 27, 3829, 2000; McHarg et al., JGR, 107, 1364, 2002; Moudry et al., JASTP, 65, 509, 2003]. The strong electric fields E exceeding the conventional breakdown threshold field Ek are needed for initiation of sprite streamers from single electron avalanches and recent modeling studies indicate that streamers propagating in fields E>Ek experience strong acceleration and expansion in good agreement with the above cited observations [Liu and Pasko, JGR, 109, A04301, 2004]. The initiated streamers are capable of propagating in fields substantially lower than Ek [Allen and Ghaffar, J. Phys. D: Appl. Phys., 28, 331, 1995] and it is expected that a significant part of sprite optical output comes from regions with Eemission bands arising from the excited electronic states of neutral and ionized molecular nitrogen have been extensively discussed in the existing literature [e.g., Armstrong et al., GRL, 27, 653, 2000; Takahashi et al., Adv. Space Res., 26, 1205, 2000; Morrill et al., GRL, 29, 100, 2002; Pasko and George, 107, 1458, 2002; Chern et al., JASTP, 65, 647, 2003; Miyasato et al., JASTP, 65, 573, 2003] and understanding of optical emissions produced by streamers propagating in weak electric fields represents an important component of related studies needed for correct interpretation of the existing experimental data. In this talk we will report results on application of time dependent optical emission model developed in [Liu and Pasko, 2004] to studies of sprite streamers in weak electric fields (E

  17. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications.

    PubMed

    Banerjee, Arghya Narayan; Joo, Sang W

    2011-09-07

    Field emission properties of CuAlO(2) nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm(-1) and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

  18. Low-macroscopic field emission properties of wide bandgap copper aluminium oxide nanoparticles for low-power panel applications

    NASA Astrophysics Data System (ADS)

    Narayan Banerjee, Arghya; Joo, Sang W.

    2011-09-01

    Field emission properties of CuAlO2 nanoparticles are reported for the first time, with a low turn-on field of approximately 2 V µm - 1 and field enhancement factor around 230. The field emission process follows the standard Fowler-Nordheim tunnelling of cold electron emission. The emission mechanism is found to be a combination of low electron affinity, internal nanostructure and large field enhancement at the low-dimensional emitter tips of the nanoparticles. The field emission properties are comparable to the conventional carbon-based field emitters, and thus can become alternative candidate for field emission devices for low-power panel applications.

  19. Self-aligned gated field emission devices using single carbon nanofiber cathodes

    NASA Astrophysics Data System (ADS)

    Guillorn, M. A.; Melechko, A. V.; Merkulov, V. I.; Hensley, D. K.; Simpson, M. L.; Lowndes, D. H.

    2002-11-01

    We report on the fabrication and operation of integrated gated field emission devices using single vertically aligned carbon nanofiber (VACNF) cathodes where the gate aperture has been formed using a self-aligned technique based on chemical mechanical polishing. We find that this method for producing gated cathode devices easily achieves structures with gate apertures on the order of 2 mum that show good concentric alignment to the VACNF emitter. The operation of these devices was explored and field emission characteristics that fit well to the Fowler-Nordheim model of emission was demonstrated.

  20. Discrete space charge affected field emission: Flat and hemisphere emitters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil; Shiffler, Donald A.; Tang, Wilkin

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surfacemore » roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.« less

  1. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  2. Microchannel plate for high-efficiency field emission display

    NASA Astrophysics Data System (ADS)

    Yi, Whikun; Jin, Sunghwan; Jeong, Taewon; Lee, Jeonghee; Yu, SeGi; Choi, Yongsoo; Kim, J. M.

    2000-09-01

    The efficiency of a field emission display was improved significantly with a newly developed microchannel plate. The key features of this unit and its fabrication are summarized as follows: (a) bulk alumina is used as a substrate material, (b) channel location is defined by a programed-hole puncher, and (c) thin film deposition is conducted by electroless plating followed by a sol-gel process. With the microchannel plate between the cathode and the anode of a field emission display, the brightness of luminescent light increases three- to fourfold by electron multiplication through an array of pores in the device. In addition, the fabricated microchannel plate prevents spreading of electrons emitted from the cathode tips, thus improving both display resolution and picture quality.

  3. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  4. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  5. Strong-field approximation in a rotating frame: High-order harmonic emission from p states in bicircular fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Jiménez-Galán, Álvaro

    2017-12-01

    High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium and a larger one in neon and argon, where the emission is carried out by p -shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the p + orbital that corotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s -shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism.

  6. Field electron emission from diamond and related films synthesized by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Xianfeng

    The focus of this thesis is the study of the field electron emission (FEE) of diamond and related films synthesized by plasma enhanced chemical vapor deposition. The diamond and related films with different morphologies and compositions were prepared in a microwave plasma-enhanced chemical vapor deposition (CVD) reactor and a hot filament CVD reactor. Various analytical techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy were employed to characterize the surface morphology and chemical composition. The influence of surface morphology on the field electron emission property of diamond films was studied. The emission current of well-oriented microcrystalline diamond films is relatively small compared to that of randomly oriented microcrystalline diamond films. Meanwhile, the nanocrystalline diamond film has demonstrated a larger emission current than microcrystalline diamond films. The nanocone structure significantly improves the electron emission current of diamond films due to its strong field enhancement effect. The sp2 phase concentration also has significant influence on the field electron emission property of diamond films. For the diamond films synthesized by gas mixture of hydrogen and methane, their field electron emission properties were enhanced with the increase of methane concentration. The field electron emission enhancement was attributed to the increase of sp2 phase concentration, which increases the electrical conductivity of diamond films. For the diamond films synthesized through graphite etching, the growth rate and nucleation density of diamond films increase significantly with decreasing hydrogen flow rate. The field electron emission properties of the diamond films were also enhanced with the decrease of hydrogen flow rate. The field electron emission enhancement can be also attributed to the increase of the sp 2 phase concentration. In addition, the deviation of the experimental

  7. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  8. A field-emission based vacuum device for the generation of THz waves

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Chieh

    2005-03-01

    Terahertz waves have been used to characterize the electronic, vibrational and compositional properties of solid, liquid and gas phase materials during the past decade. More and more applications in imaging science and technology call for the well development of THz wave sources. Amplification and generation of a high frequency electromagnetic wave are a common interest of field emission based devices. In the present work, we propose a vacuum electronic device based on field emission mechanism for the generation of THz waves. To verify our thinking and designs, the cold tests and the hot tests have been studied via the simulation tools, SUPERFISH and MAGIC. In the hot tests, two types of electron emission mechanisms are considered. One is the field emission and the other is the explosive emission. The preliminary design of the device is carried out and tested by the numerical simulations. The simulation results show that an electronic efficiency up to 4% can be achieved without employing any magnetic circuits.

  9. Application of vitreous and graphitic large-area carbon surfaces as field-emission cathodes

    NASA Astrophysics Data System (ADS)

    Hunt, Charles E.; Wang, Yu

    2005-09-01

    Numerous carbon bulk or thin-film materials have been used as field-emission cathodes. Most of these can be made into large-area and high-current field-emission cathodes without the use of complex IC fabrication techniques. Some of these exhibit low-extraction field, low work-function, high ruggedness, chemical stability, uniform emission, and low-cost manufacturability. A comparison of all of these materials is presented. Two viable cathode materials, reticulated vitreous carbon (RVC) and graphite paste are examined here and compared.

  10. Electric field distribution and current emission in a miniaturized geometrical diode

    NASA Astrophysics Data System (ADS)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  11. Investigation of field emission properties of laser irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Rafique, Muhammad Shahid; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm2. Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I- V characteristics and plotting corresponding electric field ( E) versus emission current density ( J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/µm, 1300 to 3490 and 107 to 350 µA/cm2, respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences.

  12. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  13. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  14. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  15. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  16. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  17. Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon

    NASA Astrophysics Data System (ADS)

    Chacon, Judith Rebecca

    Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.

  18. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  19. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    PubMed

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  20. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  1. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  2. Electrostatic properties of graphene edges for electron emission under an external electric field

    NASA Astrophysics Data System (ADS)

    Gao, Yanlin; Okada, Susumu

    2018-04-01

    Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.

  3. Field emission from amorphous carbon films grown by electrochemical deposition using methanol liquid

    NASA Astrophysics Data System (ADS)

    Kiyota, H.; Higashi, M.; Kurosu, T.; Iida, M.

    2006-05-01

    The field emission from an amorphous carbon (a-C) film grown by electrochemical deposition has been studied. The deposition of the a-C film was accomplished by applying a direct-current potential to a substrate that was immersed in methanol. Both scanning electron microscopy and Raman results indicate that smooth and homogeneous a-C films are grown on specific substrates such as Ti and Al. Field emission measurements demonstrate excellent emission properties such as threshold fields as low as 5 V/μm. Enhancement factors are estimated to be in the range of 1300-1500; these are attributed to local field enhancements around sp2 carbon clusters that are embedded in the a-C films. Emission properties of a-C films grown on Si exhibit a current saturation under higher applied fields. These saturation characteristics are explained by effects of a potential barrier at the interface between the a-C film and the substrate. The interface barrier is reduced by formation of the Ti interfacial layer, suggesting that the formation of TiC decreases the contact resistance between the substrate and the a-C film. Therefore, an approach to use carbide formation at the interface is verified as useful to improve the emission properties of a-C films.

  4. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  5. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  6. Review on peculiar issues of field emission in vacuum nanoelectronic devices

    NASA Astrophysics Data System (ADS)

    Filip, Valeriu; Filip, Lucian Dragoş; Wong, Hei

    2017-12-01

    Some of the modern aspects of field emission based electron sources have been collated in a short and comprehensive review. The usually overlooked peculiar aspects in this research field have been particularly emphasized in order to increase the interest in further fundamental studies and technological applications. The vast material was roughly split in two main branches which occasionally overlap: the electron emission devices based on chemically homogeneous nanostructured surfaces and the more complex nanocomposite emitting surfaces.

  7. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  8. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  9. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  10. Fine particulate matter emissions inventories: comparisons of emissions estimates with observations from recent field programs.

    PubMed

    Simon, Heather; Allen, David T; Wittig, Ann E

    2008-02-01

    Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.

  11. Field-Emission Staggered Structure Based on Diamond-Graphite Clusters

    NASA Astrophysics Data System (ADS)

    Davidovich, M. V.; Yafarov, R. K.

    2018-02-01

    We have proposed and designed a vacuum field-emission triode structure with high-resistivity semiconducting or insulating micrometer-size right parallelepipeds deposited in the staggered order on the conducting substrate (cathode), as well as a structure with a nanofilm on the cathode, which is formed by evaporated diamond-graphite clusters. It has been shown theoretically and experimentally that the emissivity of these structures is much higher than that of an uncoated cathode.

  12. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field beingmore » estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  13. Modeling global annual N2O and NO emissions from fertilized fields

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Boumans, L. J. M.; Batjes, N. H.

    2002-12-01

    Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was used to describe the influence of various factors regulating emissions from mineral soils in models for calculating global N2O and NO emissions. Only those factors having a significant influence on N2O and NO emissions were included in the models. For N2O these were (1) environmental factors (climate, soil organic C content, soil texture, drainage and soil pH); (2) management-related factors (N application rate per fertilizer type, type of crop, with major differences between grass, legumes and other annual crops); and (3) factors related to the measurements (length of measurement period and frequency of measurements). The most important controls on NO emission include the N application rate per fertilizer type, soil organic-C content and soil drainage. Calculated global annual N2O-N and NO-N emissions from fertilized agricultural fields amount to 2.8 and 1.6 Mtonne, respectively. The global mean fertilizer-induced emissions for N2O and NO amount to 0.9% and 0.7%, respectively, of the N applied. These overall results account for the spatial variability of the main N2O and NO emission controls on the landscape scale.

  14. Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.

    PubMed

    Al-Heniti, Saleh; Umar, Ahmad

    2013-01-01

    In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).

  15. Field emission investigations of single crystal LaB6 FEA fabricated by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Li, Yuancheng; Xiao, Yixin; Zhang, Wei; Zhang, Jiu-Xing

    2018-04-01

    The femtosecond laser direct writing method has been used to fabricate the single crystal lanthanum hexaboride (LaB6) field-emission tip arrays (FEAs). The morphologies, structure phase, and field emission of the single crystal LaB6 FEAs are systematically studied. The nanostructures on the surface of tips with the LaB6 phase were formed, resulting in favor of improving field emission, particularly for samples with the nanohill shaped bulges having the size of about 100 nm. The produced single crystal LaB6 FEAs have a uniform structure and a controllable curvature radius of about 0.5-3.0 μm. The FEAs with a curvature radius of about 0.5 μm as field emitters have the best field emission performance, which the field emission turns on and the threshold electric fields are as low as 2.2 and 3.8 V/μm with an emission current of 1.0 A/cm2 at 8.0 V/μm, and the emission current exhibits high stability. These indicate that the processed LaB6 FEAs have a good prospect applied in vacuum microelectronic devices and the simple femtosecond laser direct writing method could lead to an approach for the development of electron sources.

  16. Low threshold field emission from high-quality cubic boron nitride films

    NASA Astrophysics Data System (ADS)

    Teii, Kungen; Matsumoto, Seiichiro

    2012-05-01

    Field emission performance of materials with mixed sp2/sp3 phases often depends upon the phase composition at the surface. In this study, the emission performance of high-quality cubic boron nitride (cBN) films is studied in terms of phase purity. Thick cBN films consisting of micron-sized grains are prepared from boron trifluoride gas by chemical vapor deposition in a plasma jet and an inductively coupled plasma. Both the bulk and surface phase purities as well as crystallinities of cBN evaluated by visible and ultraviolet Raman spectroscopy, glancing-angle x-ray diffraction, and x-ray photoelectron spectroscopy are the highest when the film is deposited in a plasma jet under an optimized condition. The emission turn-on field decreases with increasing the phase purity, down to around 5 V/μm for the highest cBN purity, due to the larger field enhancement, while it is higher than 14 V/μm without cBN (sp2-bonded hexagonal BN only). The results indicate that the total field enhancement for the high phase purity film is governed by the internal field amplification related to the surface coverage of more conductive cBN, rather than the external one related to the surface topology or roughness.

  17. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    PubMed

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  18. Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions

    NASA Astrophysics Data System (ADS)

    Otto, Krickis

    2017-10-01

    The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.

  19. Nucleon-nucleon scattering in a strong external magnetic field and the neutrino emissivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavarsad, E.; Mohammadi, R.; Haghighat, M.

    The nucleon-nucleon scattering in a large magnetic background is considered to find its potential to change the neutrino emissivity of the neutron stars. For this purpose, we consider the one-pion-exchange approximation to find the nucleon-nucleon (NN) cross section in a background field as large as 10{sup 15}-10{sup 18} G. We show that the NN cross section in neutron stars with temperatures in the range 0.1-5 MeV can be changed up to the 1 order of magnitude with respect to the one in the absence of the magnetic field. In the limit of the soft neutrino emission, the neutrino emissivity canmore » be written in terms of the NN-scattering amplitude; therefore, the large magnetic fields can dramatically change the neutrino emissivity of the neutron stars as well.« less

  20. The role of Hurst exponent on cold field electron emission from conducting materials: from electric field distribution to Fowler-Nordheim plots

    PubMed Central

    de Assis, T. A.

    2015-01-01

    This work considers the effects of the Hurst exponent (H) on the local electric field distribution and the slope of the Fowler-Nordheim (FN) plot when considering the cold field electron emission properties of rough Large-Area Conducting Field Emitter Surfaces (LACFESs). A LACFES is represented by a self-affine Weierstrass-Mandelbrot function in a given spatial direction. For 0.1 ≤ H < 0.5, the local electric field distribution exhibits two clear exponential regimes. Moreover, a scaling between the macroscopic current density () and the characteristic kernel current density (), , with an H-dependent exponent , has been found. This feature, which is less pronounced (but not absent) in the range where more smooth surfaces have been found (), is a consequence of the dependency between the area efficiency of emission of a LACFES and the macroscopic electric field, which is often neglected in the interpretation of cold field electron emission experiments. Considering the recent developments in orthodox field emission theory, we show that the exponent must be considered when calculating the slope characterization parameter (SCP) and thus provides a relevant method of more precisely extracting the characteristic field enhancement factor from the slope of the FN plot. PMID:26035290

  1. Top-down constraints of regional emissions for KORUS-AQ 2016 field campaign

    NASA Astrophysics Data System (ADS)

    Bae, M.; Yoo, C.; Kim, H. C.; Kim, B. U.; Kim, S.

    2017-12-01

    Accurate estimations of emission rates form local and international sources are essential in regional air quality simulations, especially in assessing the relative contributions from international emission sources. While bottom-up constructions of emission inventories provide detailed information on specific emission types, they are limited to cover regions with rapid change of anthropogenic emissions (e.g. China) or regions without enough socioeconomic information (e.g. North Korea). We utilized space-borne monitoring of major pollutant precursors to construct a realistic emission inputs for chemistry transport models during the KORUS-AQ 2016 field campaign. Base simulation was conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 (Asian countries) and CAPSS 2013 (South Korea) emissions inventories. NOx, SO2 and VOC model emissions are adjusted using the column density comparisons ratios (between modeled and observed NO2, SO2 and HCHO column densities) and emission-to-density conversion ratio (from model). Brute force perturbation method was used to separate contributions from North Korea, China and South Korea for flight pathways during the field campaign. Backward-Tracking Model Analyzer (BMA), based on NOAA HYSPLIT trajectory and dispersion model, are also utilized to track histories of chemical processes and emission source apportionment. CMAQ simulations were conducted over East Asia (27-km) and over South and North Korea (9-km) during KORUS-AQ campaign (1st May to 10th June 2016).

  2. Continuous measurements of N2O emissions from arable fields

    NASA Astrophysics Data System (ADS)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  3. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    PubMed

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  4. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.; Filuk, A. B.

    1999-09-01

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.

  5. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    PubMed

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  6. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  7. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.

    2009-09-15

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio,more » single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.« less

  8. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Daradkeh, Samer

    2018-02-01

    Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images

  9. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    Treesearch

    A. L. Holder; B. K. Gullett; S. P. Urbanski; R. Elleman; S. O' Neill; D. Tabor; W. Mitchell; K. R. Baker

    2017-01-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models,...

  10. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  11. Particle sensing with confined optical field enhanced fluorescence emission (Cofefe).

    PubMed

    Kenison, John P; Fast, Alexander; Matthews, Brandon M; Corn, Robert M; Potma, Eric Olaf

    2018-05-14

    We describe the development and performance of a new type of optical sensor suitable for registering the binding/dissociation of nanoscopic particles near a gold sensing surface. The method shares similarities with surface plasmon resonance microscopy but uses a completely different optical signature for reading out binding events. This new optical read-out mechanism, which we call confined optical field enhanced fluorescence emission (Cofefe), uses pulsed surface plasmon polariton fields at the gold/liquid interface that give rise to confined optical fields upon binding of the target particle to the gold surface. The confined near-fields are sufficient to induce two-photon absorption in the gold sensor surface near the binding site. Subsequent radiative recombination of the electron-hole pairs in the gold produces fluorescence emission, which can be captured by a camera in the far-field. Bound nanoparticles show up as bright confined spots against a dark background on the camera. We show that the Cofefe sensor is capable of detecting gold and silicon nanoparticles, as well as polymer nanospheres and sub-μm lipid droplets in a label-free manner with average illumination powers of less than 10 μW/μm 2 .

  12. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    EPA Science Inventory

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  13. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, V.L.; Filuk, A.B.

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less

  14. Field emission and explosive electron emission process in focused ion beam fabricated platinum and tungsten three-dimensional overhanging nanostructure

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar

    2018-06-01

    Three-dimensional platinum and tungsten overhanging nanogap (∼70 nm) electrodes are fabricated on a glass substrate using focused ion beam milling and chemical vapour deposition processes. Current-voltage (I-V) characteristics of the devices measured at a pressure of ∼10-6 mbar shows space-charge emission followed by the Fowler-Nordheim (F-N) field emission. After the F-N emission, the system enters into an explosive emission process, at a higher voltage generating a huge current. We observe a sharp and abrupt rise in the emission current which marks the transition from the F-N emission to the explosive emission state. The explosive emission process is destructive in nature and yields micro-/nano-size spherical metal particles. The chemical compositions and the size-distribution of such particles are performed.

  15. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  16. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third

  17. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  18. Surface morphology correlated with field emission properties of laser irradiated nickel

    NASA Astrophysics Data System (ADS)

    Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.

    2017-08-01

    The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.

  19. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  20. Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Flechard, Chris; Fauvel, Yannick; Häni, Christoph; Sintermann, Jörg; Jocher, Markus; Menzi, Harald; Hensen, Arjan; Neftel, Albrecht

    2017-05-01

    Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to clean patches on the field was also simulated, allowing both net and gross emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where hotspots of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30-40 %.Emission factors can be expressed as 6 ± 2 g NH3 cow-1 day-1, or 9 ± 3 % of excreted urine-N emitted as NH3, when deposition is not simulated and 7 ± 2 g NH3 cow-1 day-1, or 10 ± 3 % of excreted urine-N emitted as NH3, when deposition is included in the gross emission

  1. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  2. Molecular modeling of field-driven ion emission from ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; He, Yadong; Qiao, Rui

    2017-11-01

    Traditionally, operating electrosprays in the purely ionic mode is challenging, but recent experiments confirmed that such operation can be achieved using room-temperature ionic liquids as working electrolytes. Such electrosprays have shown promise in applications including chemical analysis, nanomanufacturing, and space propulsion. The mechanistic and quantitative understanding of such electrosprays at the molecular level, however, remain limited at present. In this work, we simulated ion emission from EMIM-PF6 ionic liquid films using the molecular dynamics method. We show that, when the surface electric field is smaller than 1.5V/nm, the ion emission current predicted using coarse-grained ionic liquid model observes the classical scaling law by J. V. Iribarne and B. A. Thomson, i.e., ln(Je/ σ) En1/2. These simulations, however, cannot capture the co-emission of cations and anions from ionic liquid surface observed in some experiments. Such co-emission was successfully captured when united-atom models were adopted for the ionic liquids. By examining the co-emission events with picosecond, sub-angstrom resolution, we clarified the origins of the co-emission phenomenon and delineate the molecular events leading to ion emission.

  3. Field emission properties of a DWCNT bundle and a single MWCNT

    NASA Astrophysics Data System (ADS)

    Fujishige, Masatsugu; Wongwiriyapan, Winadda; Muramatsu, Hiroyuki; Takeuchi, Kenji; Arai, Susumu

    2018-02-01

    The field emission properties of a bundle of double-walled carbon nanotubes (DWCNTs) and a single multiwalled carbon nanotube (MWCNT) were investigated. A DWCNT bundle or a single MWCNT was attached to the head of sharpened tip of tungsten by electrophoresis; the tungsten tip was dipped into a drop of a carbon nanotube/1,2-dichloroethane suspension on a stainless plate, and a high-frequency AC voltage (20 V peak to peak with a frequency of 15 MHz) was applied between the tungsten tip and the stainless steel plate. The turn-on fields of the DWCNT and MWCNT tips for 1 nA/cm2 were 0.05 and 0.48 V/μm, respectively. From the Fowler-Nordheim plots, the field enhancement factor (β) of the tips was estimated to be 109,600 (DWCNT) and 6780 (MWCNT). The present DWCNT emitter is characterized by a very small turn-on field and large β. The field emission performance is discussed in terms of the sizes of the bundle of DWCNTs and a single MWCNT.

  4. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  5. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current.more » The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.« less

  6. Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films

    NASA Astrophysics Data System (ADS)

    Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.

    2002-11-01

    Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.

  7. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  8. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with themore » time-dependent Particle In Cell (PIC) code WARP.« less

  9. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Chang, Yongqin; Wang, Mingwei; Chen, Xihong; Ni, Saili; Qiang, Weijing

    2007-05-01

    Large-area ZnS nanowires were synthesized through a vapor phase deposition method. X-ray diffraction and electron microscopy results show that the products are composed of single crystalline ZnS nanowires with a cubic structure. The nanowires have sharp tips and are distributed uniformly on silicon substrates. The diameter of the bases is in the range of 320-530 nm and that of the tips is around 20-30 nm. The strong ultraviolet emission in the photoluminescence spectra also demonstrates that the ZnS nanowires are of high crystalline perfection. Field emission measurements reveal that the ZnS nanowires have a fairly low threshold field, which may be ascribed to their very sharp tips, rough surfaces and high crystal quality. The perfect field emission ability of the ZnS nanowires makes them a promising candidate for the fabrication of flexible cold cathodes.

  10. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  11. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  12. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  13. [Identification of Dens Draconis and Os Draconis by XRD method].

    PubMed

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  14. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less

  15. Effect of an alternating electric field on the polluting emission from propane flame.

    NASA Astrophysics Data System (ADS)

    Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.

    2001-12-01

    The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.

  16. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  17. Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.

    2017-11-01

    Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.

  18. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Crystalline multiwall carbon nanotubes and their application as a field emission electron source.

    PubMed

    Liu, Peng; Zhou, Duanliang; Zhang, Chunhai; Wei, Haoming; Yang, Xinhe; Wu, Yang; Li, Qingwei; Liu, Changhong; Du, Bingchu; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2018-05-18

    Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.

  20. Comparability between various field and laboratory wood-stove emission-measurement methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrillis, R.C.; Jaasma, D.R.

    1991-01-01

    The paper compares various field and laboratory woodstove emission measurement methods. In 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). Over the past several years, a number of field studies have been undertaken to determine the actual level of emission reduction achieved by new technology woodstoves in everyday use. The studies have required the development and use of particulate and gaseous emission sampling equipment compatible with operation in private homes. Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatorymore » methods and the inhouse equipment. Two inhouse sampling systems have been used most widely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparing Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less

  1. Pre-flare association of magnetic fields and millimeter-wave radio emission

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; White, K. P., III

    1976-01-01

    Observations of radio emission at 3.3 mm wavelength associated with magnetic fields in active regions are reported. Results of more than 200 regions during the years 1967-1968 show a strong correlation between peak enhanced millimeter emission, total flux of the longitudinal component of photospheric magnetic fields and the number of flares produced during transit of active regions. For magnetic flux greater than (10 to the 21st power) maxwells flares will occur and for flux of (10 to the 23rd power) maxwells the sum of the H-alpha flare importance numbers is about 40. The peak millimeter enhancement increases with magnetic flux for regions which subsequently flared. Estimates of the magnetic energy available and the correlation with flare production indicate that the photospheric fields and probably chromospheric currents are responsible for the observed pre-flare heating and provide the energy of flares.

  2. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  3. Forced vibration of a carbon nanotube with emission currents in an electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.

    2017-11-01

    The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.

  4. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkattraman, Ayyaswamy

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less

  5. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    NASA Astrophysics Data System (ADS)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  6. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    NASA Astrophysics Data System (ADS)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  7. Reducing CH4 emission from rice paddy fields by altering water management

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2010-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were

  8. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  9. Probe-Hole Field Emission Microscope System Controlled by Computer

    NASA Astrophysics Data System (ADS)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  10. Dark field photoelectron emission microscopy of micron scale few layer graphene

    NASA Astrophysics Data System (ADS)

    Barrett, N.; Conrad, E.; Winkler, K.; Krömker, B.

    2012-08-01

    We demonstrate dark field imaging in photoelectron emission microscopy (PEEM) of heterogeneous few layer graphene (FLG) furnace grown on SiC(000-1). Energy-filtered, threshold PEEM is used to locate distinct zones of FLG graphene. In each region, selected by a field aperture, the k-space information is imaged using appropriate transfer optics. By selecting the photoelectron intensity at a given wave vector and using the inverse transfer optics, dark field PEEM gives a spatial distribution of the angular photoelectron emission. In the results presented here, the wave vector coordinates of the Dirac cones characteristic of commensurate rotations of FLG on SiC(000-1) are selected providing a map of the commensurate rotations across the surface. This special type of contrast is therefore a method to map the spatial distribution of the local band structure and offers a new laboratory tool for the characterisation of technically relevant, microscopically structured matter.

  11. Emission Factors of Nitrous Oxide by Organic Manure Fertilizers in Japanese Upland Fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.

    2011-12-01

    Preliminary data of field experiments which were conducted to estimate emission factors of nitrous oxide by organic manure fertilizers in 10 Japan-wide experiment sites, 2010 was reported. We compared nitrous oxide emission from urea as chemical fertilizers and cow manure as organic applications, in 1o Japanese prefectures of Yamagata, Fukushima, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto and Kagoshima. Same amounts of nitrogen were applied in organic and inorganic fertilizers in each field. In each site, 3 replication plots were organized in randomized block design with zero-nitrogen application plots. N2O gas fluxes were measured every one week or more during cultivation seasons. We also measured several soil physical and chemical parameters of inorganic nitrogen species, soil moisture contents or WFPS (Water Filled Pore Space), soil temperatures, bulk densities etc. Gas fluxes ware measured by automated Shimadzu GC-2014 ECD gas chromatograph. Soil moistures were measured by Camplel's Hydrosense in each site. Vegetation of conducting fields were cabbage in 7 fields, wheat in 1, pear orchard and onion in 1. Microorganisms' abundance was also considered to clarify N2O emission processes by the PCR-DGGE method.

  12. First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-Province (PR China)

    NASA Astrophysics Data System (ADS)

    Wassmann, R.; Wang, M. X.; Shangguan, X. J.; Xie, X. L.; Shen, R. X.; Wang, Y. S.; Papen, H.; Rennenberg, H.; Seiler, W.

    Fertilizer effects on methane emission from Chinese rice fields were investigated by a praxis-oriented approach applying balanced amendments of N, P and K. The data set obtained covered the emission rates of app. one month in early rice and one month in late rice 1991. An intercomparison between the 4 treatments showed pronounced differences in the magnitudes of methane emission rates. The combined organic/mineral fertilizer application, commonly used as local farming practice, resulted in relatively high seasonal averages of methane emission rates (26.5 mg CH4 m-2 h-1 in early rice and 50.1 mg CH4 m-2 h-1 in late rice). The lowest emission rates were observed in the plot with pure mineral fertilization (6.5 mg CH4 m-2 h-1 in early rice and 14.3 mg CH4 m-2 h-1 in late rice). Pure organic fertilizers by unfermented substances yielded the highest methane emission rates of all field trials (38.6 mg CH4 m-2 h-1 in early rice and 56.2 CH4 m-2 h-1 in late rice). The fertilization with fermented material derived from biogas generators resulted in substantially lower emission rates than the other trials with organic amendments, the seasonal averages corresponded to 15.9 mg CH4 m-2 h-1 (early rice) and 22.5 mg CH4 m-2 h-1 (late rice). Interpretation of the results can be obtained from the different potentials of these fertilizers for methane production. Based on this concept the different methane emission rates observed with organic/mineral, pure mineral and pure unfermented-organic fertilizers could directly be attributed to the different quantities of organic matter incorporated into the soil. The low methane emission from the plot treated with fermented material could be explained by a depletion of potential methane precursors resulting from the preceding fermentation. The results of this investigation provide evidence that the extensive use of specific chemical fertilizers and the application of sludge from the operation of biogas generators could lead to a net

  13. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  14. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  15. [Effects of diurnal warming on soil N2O emission in soybean field].

    PubMed

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  16. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    PubMed

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Graphene enhanced field emission from InP nanocrystals.

    PubMed

    Iemmo, L; Di Bartolomeo, A; Giubileo, F; Luongo, G; Passacantando, M; Niu, G; Hatami, F; Skibitzki, O; Schroeder, T

    2017-12-08

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  18. Graphene enhanced field emission from InP nanocrystals

    NASA Astrophysics Data System (ADS)

    Iemmo, L.; Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Passacantando, M.; Niu, G.; Hatami, F.; Skibitzki, O.; Schroeder, T.

    2017-12-01

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  19. Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion.

    PubMed

    Ayari, Anthony; Vincent, Pascal; Perisanu, Sorin; Choueib, May; Gouttenoire, Vincent; Bechelany, Mikhael; Cornu, David; Purcell, Stephen T

    2007-08-01

    We report the observation of self-oscillations in a bottom-up nanoelectromechanical system (NEMS) during field emission driven by a constant applied voltage. An electromechanical model is explored that explains the phenomenon and that can be directly used to develop integrated devices. In this first study, we have already achieved approximately 50% dc/ac (direct to alternating current) conversion. Electrical self-oscillations in NEMS open up a new path for the development of high-speed, autonomous nanoresonators and signal generators and show that field emission (FE) is a powerful tool for building new nanocomponents.

  20. Multiple-year nitrous oxide emissions from a greenhouse vegetable field in China: Effects of nitrogen management.

    PubMed

    Zhang, Jing; Li, Hu; Wang, Yingchun; Deng, Jia; Wang, Ligang

    2018-03-01

    The greenhouse vegetable (GV) field is an important agricultural system in China. It may also be a hot spot of nitrous oxide (N 2 O) emissions. However, knowledge on N 2 O emission from GV fields and its mitigation are limited due to considerable variations of N 2 O emissions. In this study, we performed a multi-year experiment at a GV field in Beijing, China, using the static opaque chamber method, to quantify N 2 O emissions from GV fields and evaluated N 2 O mitigation efficiency of alternative nitrogen (N) managements. The experiment period spanned three rotation periods and included seven vegetable growing seasons. We measured N 2 O emissions under four treatments, including no N fertilizer use (CK), farmers' conventional fertilizer application (FP), reduced N fertilizer rate (R), and R combined with the nitrification inhibitor "dicyandiamide (DCD)" (R+DCD). The seasonal cumulative N 2 O emissions ranged between 2.09 and 19.66, 1.13 and 11.33, 0.94 and 9.46, and 0.15 and 3.27kgNha -1 for FP, R, R+DCD, and CK, respectively. The cumulative N 2 O emissions of three rotational periods varied from 18.71 to 26.58 (FP), 9.58 to 15.96 (R), 7.11 to 13.42 (R+DCD), and 1.66 to 3.73kgNha -1 (CK). The R and R+DCD treatments significantly (P<0.05) reduced the N 2 O emissions under FP by 38.1% to 48.8% and 49.5% to 62.0%, across the three rotational periods, although their mitigation efficiencies were highly variable among different vegetable seasons. This study suggests that GV fields associated with intensive N application and frequent flooding irrigation may substantially contribute to the N 2 O emissions and great N 2 O mitigations can be achieved through reasonably reducing the N-fertilizer rate and/or applying a nitrification inhibitor. The large variations in the N 2 O emission and mitigation across different vegetable growing seasons and rotational periods stress the necessity of multi-year observations for reliably quantifying and mitigating N 2 O emissions for GV

  1. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    PubMed

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  2. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  3. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.

  4. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    NASA Astrophysics Data System (ADS)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  5. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  6. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  7. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  8. Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Javerzac-Galy, Clément; Kumar, Anshuman; Schilling, Ryan D.; Piro, Nicolas; Khorasani, Sina; Barbone, Matteo; Goykhman, Ilya; Khurgin, Jacob B.; Ferrari, Andrea C.; Kippenberg, Tobias J.

    2018-05-01

    We present quantum yield measurements of single layer $\\textrm{WSe}_2$ (1L-$\\textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($\\eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $\\textrm{QY}_\\textrm{c}\\sim10^{-3}$, consistent with operation in the \\textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.

  9. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.

    2015-10-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.

  10. Field-testing a portable wind tunnel for fine dust emissions

    USDA-ARS?s Scientific Manuscript database

    A protable wind tunnel has been developed to allow erodibility and dust emissions testing of soil surfaces with the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study we report on the field-testing ...

  11. XRD and mineralogical analysis of gypsum dunes at White Sands National Monument, New Mexico and applications to gypsum detection on Mars

    NASA Astrophysics Data System (ADS)

    Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.

    2013-12-01

    A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite

  12. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  13. Field Emission Characteristics of Carbon Nanotubes and Their Applications in Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Vaseashta, Ashok

    2003-03-01

    FIELD EMISSION CHARACTERISTICS OF CARBON NANOTUBES AND THEIR APPLICATIONS IN SENSORS AND DEVICES A. Vaseashta, C. Shaffer, M. Collins, A. Mwuara Dept of Physics, Marshall University, Huntington, WV V. Pokropivny Institute for Materials Sciences of NASU, Kiev, Ukraine. D. Dimova-Malinovska Bulgarian Academy of Sciences, Sofia, Bulgaria. The dimensionality of a system has profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems, such as carbon nanotubes (CNTs). Carbon nanotubes are especially promising candidate for cold cathode field emitter because of their electrical properties, high aspect ratio, and small radius of curvature at the tips. Electron emission from the carbon nanotubes was investigated. Based upon the field emission investigation of carbon nanotubes, several prototype devices have been suggested that operate with low swing voltages with sufficient high current densities. Characteristics that allow improved current stability and long lifetime operation for electrical and opto-electronics devices are presented. The aim of this brief overview is to illustrate the useful characteristics of carbon nanotubes and its possible application.

  14. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  15. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  16. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  17. Field evaluation of a new plastic film (vapor safe) to reduce fumigant emissions and improve distribution in soil.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Sullivan, David; Wang, Dong; Hanson, Bradley D

    2011-01-01

    Preplant soil fumigation is an important pest management practice in coastal California strawberry production regions. Potential atmospheric emissions of fumigants from field treatment, however, have drawn intensive environmental and human health concerns; increasingly stringent regulations on fumigant use have spurred research on low-emission application techniques. The objectives of this research were to determine the effects of a new low-permeability film, commonly known as totally impermeable film (TIF), on fumigant emissions and on fumigant distribution in soil. A 50/50 mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) was shank-applied at 314 kg ha in two location-separate field plots (0.4 ha each) in Ventura County, California, in fall 2009. One plot was surface-covered with standard polyethylene (PE) film, and the other was covered with TIF immediately after fumigant application. Data collection included emissions, soil-gas phase concentration profile, air concentration under the film, and soil residuals of the applied fumigants. Peak emission flux of 1,3-D and CP from the TIF field was substantially lower than from the PE field. Total through-film emission loss was 2% for 1,3-D and <1% for CP from the TIF field during a 6-d film covering period, compared with 43% for 1,3-D and 12% for CP from the PE field. However, on film-cutting, greater retention of 1,3-D in the TIF field resulted in a much higher emission surge compared with the PE field, while CP emissions were fairly low in both fields. Higher concentrations and a more uniform distribution in the soil profile for 1,3-D and CP were observed under the TIF compared with the PE film, suggesting that the TIF may allow growers to achieve satisfactory pest control with lower fumigant rates. The surging 1,3-D emissions after film-cutting could result in high exposure risks to workers and bystanders and must be addressed with additional mitigation measures. Copyright © by the American Society of

  18. Leakage and field emission in side-gate graphene field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current densitymore » as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.« less

  19. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingdi; Averitt, Richard D., E-mail: xinz@bu.edu, E-mail: raveritt@ucsd.edu; Department of Physics, Boston University, Boston, Massachusetts 02215

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm{sup −1}, THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits amore » linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light.« less

  20. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  1. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    NASA Astrophysics Data System (ADS)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  2. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menaka; Patra, Rajkumar; Ghosh, Santanu

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating.more » It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.« less

  3. Mitigating Nitrous Oxide Emissions from Tea Field Soil Using Bioaugmentation with a Trichoderma viride Biofertilizer

    PubMed Central

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha−1 yr−1 fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha−1 and 58.7 kg N ha−1. Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha−1 yr−1 significantly reduced N2O emissions by 33.3%–71.8% and increased the tea yield by 16.2%–62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields. PMID:24955418

  4. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    NASA Astrophysics Data System (ADS)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  5. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    PubMed

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  6. Unique visible-light-assisted field emission of tetrapod-shaped ZnO/reduced graphene-oxide core/coating nanocomposites

    PubMed Central

    Wu, Chaoxing; Kim, Tae Whan; Guo, Tailiang; Li, Fushan

    2016-01-01

    The electronic and the optoelectronic properties of graphene-based nanocomposites are controllable, making them promising for applications in diverse electronic devices. In this work, tetrapod-shaped zinc oxide (T-ZnO)/reduced graphene oxide (rGO) core/coating nanocomposites were synthesized by using a hydrothermal-assisted self-assemble method, and their optical, photoelectric, and field-emission properties were investigated. The ZnO, an ideal ultraviolet-light-sensitive semiconductor, was observed to have high sensitivity to visible light due to the rGO coating, and the mechanism of that sensitivity was investigated. We demonstrated for the first time that the field-emission properties of the T-ZnO/rGO core/coating nanocomposites could be dramatically enhanced under visible light by decreasing the turn-on field from 1.54 to 1.41 V/μm and by increasing the current density from 5 to 12 mA/cm2 at an electric field of 3.5 V/μm. The visible-light excitation induces an electron jump from oxygen vacancies on the surface of ZnO to the rGO layer, resulting in a decrease in the work function of the rGO and an increase in the emission current. Furthermore, a field-emission light-emitting diode with a self-enhanced effect was fabricated making full use of the photo-assisted field-emission process. PMID:27941822

  7. Gas cluster ion beam surface treatments for reducing field emission and breakdown of electrodes and SRF cavities

    NASA Astrophysics Data System (ADS)

    Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.

    2007-08-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O2, or NF3 + O2 clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.

  8. Emissions from Prescribed Burning of Agricultural Fields in the Pacific Northwest

    EPA Science Inventory

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide...

  9. Mechanical Modulation of Phonon-Assisted Field Emission in a Silicon Nanomembrane Detector for Time-of-Flight Mass Spectrometry

    PubMed Central

    Park, Jonghoo; Blick, Robert H.

    2016-01-01

    We demonstrate mechanical modulation of phonon-assisted field emission in a free-standing silicon nanomembrane detector for time-of-flight mass spectrometry of proteins. The impacts of ion bombardment on the silicon nanomembrane have been explored in both mechanical and electrical points of view. Locally elevated lattice temperature in the silicon nanomembrane, resulting from the transduction of ion kinetic energy into thermal energy through the ion bombardment, induces not only phonon-assisted field emission but also a mechanical vibration in the silicon nanomembrane. The coupling of these mechanical and electrical phenomenon leads to mechanical modulation of phonon-assisted field emission. The thermal energy relaxation through mechanical vibration in addition to the lateral heat conduction and field emission in the silicon nanomembrane offers effective cooling of the nanomembrane, thereby allowing high resolution mass analysis. PMID:26861329

  10. Polarisation of the Balmer-α emission in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thorman, Alex

    2018-03-01

    An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.

  11. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    PubMed

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  13. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  14. Grain-size-dependent diamond-nondiamond composite films: characterization and field-emission properties.

    PubMed

    Pradhan, Debabrata; Lin, I Nan

    2009-07-01

    Diamond films with grain sizes in the range of 5-1000 nm and grain boundaries containing nondiamond carbon are deposited on a silicon substrate by varying the deposition parameters. The overall morphologies of the as-deposited diamond-nondiamond composite films are examined by scanning electron microscopy and atomic force microscopy, which show a decrease in the surface roughness with a decrease in the diamond grain size. Although the Raman spectra show predominately nondiamond carbon features in the diamond films with smaller grain sizes, glancing-angle X-ray diffraction spectra show the absence of graphitic carbon features and the presence of very small amorphous carbon diffraction features. The CH4 percentage (%) in Ar and H2 plasma during deposition plays a crucial role in the formation of diamond films with different grain sizes and nondiamond carbon contents, which, in turn, determines the field-emission behavior of the corresponding diamond films. The smaller the grain size of the diamond, the lower is the turn-on field for electron emission. A lower turn-on field is obtained from the diamond films deposited with 2-5% CH4 than from the films deposited with either 1% or 7.5% CH4 in the Ar medium. A current density greater than 1 mA/cm2 (at 50 V/microm) is obtained from diamond films deposited with a higher percentage of CH4. A model is suggested for the field-emission mechanism from the diamond-nondiamond composite films with different diamond grain sizes and nondiamond contents.

  15. Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion

    DTIC Science & Technology

    2010-09-27

    Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission

  16. Thermionic field emission in gold nitride Schottky nanodiodes

    NASA Astrophysics Data System (ADS)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  17. Work function measurements by the field emission retarding potential method

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Strayer, R. W.; Mackie, W. A.

    1971-01-01

    Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.

  18. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  19. Molecular dynamics simulations of field emission from a planar nanodiode

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  20. Application of highly ordered carbon nanotubes templates to field-emission organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Chi-Shing; Su, Shui-Hsiang; Chi, Hsiang-Yu; Yokoyama, Meiso

    2009-01-01

    An anodic aluminum oxide (AAO) template was formed by a two-step anodization process. Carbon nanotubes (CNTs) were successfully synthesized along with AAO pores and the diameters of CNTs equaled those of AAO pores. The lengths of CNTs during a chemical vapor deposition synthesized process on the AAO template were effectively controlled. These AAO-CNTs exhibit excellent field emission with a low turn-on field (0.7 V/μm) and a low threshold field (1.4 V/μm). The field enhancement factor, calculated from the non-saturated region of the Fowler-Nordheim (F-N) plot, is about 8237. A novel field-emission organic light-emitting diode (FEOLED) combining AAO-CNTs cathodes as electron source with organic electroluminescent (EL) light-emitting layers coated on indium-tin-oxide (ITO) is produced. The uniform and dense luminescence image is obtained in the FEOLEDs. Organic EL light-emitting materials have lower working voltage than inorganic phosphor-coated fluorescent screens.

  1. N2O emission characteristics and its affecting factors in rain-fed potato fields in Wuchuan County, China

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Wang, Cheng; Pan, Zhihua; Xu, Hui; Gao, Lin; Zhao, Peiyi; Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, hui

    2017-05-01

    Representing an important greenhouse gas, nitrous oxide (N2O) emission from cultivated land is a hot topic in current climate change research. This study examined the influences of nitrogen fertilisation, temperature and soil moisture on the ammonia monooxygenase subunit A ( amoA) gene copy numbers and N2O emission characteristics. The experimental observation of N2O fluxes was based on the static chamber-gas chromatographic method. The ammonia-oxidising bacteria (AOB) and ammonia-oxidising archaea (AOA) gene copy numbers in different periods were measured by real-time polymerase chain reaction (PCR). The results indicated that rain-fed potato field was a N2O source, and the average annual N2O emission was approximately 0.46 ± 0.06 kgN2O-N/ha/year. N2O emissions increased significantly with increase in fertilisation, temperatures below 19.6 °C and soil volumetric water content under 15%. Crop rotation appreciably decreases N2O emissions by 34.4 to 52.4% compared to continuous cropping in rain-fed potato fields. The significant correlation between N2O fluxes and AOB copy numbers implied that N2O emissions were primarily controlled by AOB in rain-fed potato fields. The research has important theoretical and practical value for understanding N2O emissions from rain-fed dry farmland fields.

  2. N2O emission characteristics and its affecting factors in rain-fed potato fields in Wuchuan County, China.

    PubMed

    Wang, Liwei; Wang, Cheng; Pan, Zhihua; Xu, Hui; Gao, Lin; Zhao, Peiyi; Dong, Zhiqiang; Zhang, Jingting; Cui, Guohui; Wang, Sen; Han, Guolin; Zhao, Hui

    2017-05-01

    Representing an important greenhouse gas, nitrous oxide (N 2 O) emission from cultivated land is a hot topic in current climate change research. This study examined the influences of nitrogen fertilisation, temperature and soil moisture on the ammonia monooxygenase subunit A (amoA) gene copy numbers and N 2 O emission characteristics. The experimental observation of N 2 O fluxes was based on the static chamber-gas chromatographic method. The ammonia-oxidising bacteria (AOB) and ammonia-oxidising archaea (AOA) gene copy numbers in different periods were measured by real-time polymerase chain reaction (PCR). The results indicated that rain-fed potato field was a N 2 O source, and the average annual N 2 O emission was approximately 0.46 ± 0.06 kgN 2 O-N/ha/year. N 2 O emissions increased significantly with increase in fertilisation, temperatures below 19.6 °C and soil volumetric water content under 15%. Crop rotation appreciably decreases N 2 O emissions by 34.4 to 52.4% compared to continuous cropping in rain-fed potato fields. The significant correlation between N 2 O fluxes and AOB copy numbers implied that N 2 O emissions were primarily controlled by AOB in rain-fed potato fields. The research has important theoretical and practical value for understanding N 2 O emissions from rain-fed dry farmland fields.

  3. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less

  4. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  5. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  6. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications.

    PubMed

    Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2018-05-29

    In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  7. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  8. Electronic field emission models beyond the Fowler-Nordheim one

    NASA Astrophysics Data System (ADS)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  9. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China.

    PubMed

    Yi, Qiong; Tang, Shuanghu; Fan, Xiaolin; Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi

    2017-01-01

    Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China.

  11. Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China

    PubMed Central

    Zhang, Mu; Pang, Yuwan; Huang, Xu; Huang, Qiaoyi

    2017-01-01

    Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China. PMID:28419127

  12. Modeled nitrous oxide emissions from corn fields in Iowa based on county level data

    USDA-ARS?s Scientific Manuscript database

    The US Corn Belt area has the capacity to generate high nitrous oxide (N2O) emissions due to medium to high annual precipitation, medium to heavy textured soils rich in organic matter, and high nitrogen (N) application rates. The purpose of this work was to estimate field N2O emissions from cornfiel...

  13. Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike

    Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flatmore » samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.« less

  14. 2D/3D image charge for modeling field emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  15. 2D/3D image charge for modeling field emission

    DOE PAGES

    Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...

    2017-03-01

    Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less

  16. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    NASA Astrophysics Data System (ADS)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  17. Band-to-Band Tunneling-Dominated Thermo-Enhanced Field Electron Emission from p-Si/ZnO Nanoemitters.

    PubMed

    Huang, Zhizhen; Huang, Yifeng; Xu, Ningsheng; Chen, Jun; She, Juncong; Deng, Shaozhi

    2018-06-13

    Thermo-enhancement is an effective way to achieve high performance field electron emitters, and enables the individually tuning on the emission current by temperature and the electron energy by voltage. The field emission current from metal or n-doped semiconductor emitter at a relatively lower temperature (i.e., < 1000 K) is less temperature sensitive due to the weak dependence of free electron density on temperature, while that from p-doped semiconductor emitter is restricted by its limited free electron density. Here, we developed full array of uniform individual p-Si/ZnO nanoemitters and demonstrated the strong thermo-enhanced field emission. The mechanism of forming uniform nanoemitters with well Si/ZnO mechanical joint in the nanotemplates was elucidated. No current saturation was observed in the thermo-enhanced field emission measurements. The emission current density showed about ten-time enhancement (from 1.31 to 12.11 mA/cm 2 at 60.6 MV/m) by increasing the temperature from 323 to 623 K. The distinctive performance did not agree with the interband excitation mechanism but well-fit to the band-to-band tunneling model. The strong thermo-enhancement was proposed to be benefit from the increase of band-to-band tunneling probability at the surface portion of the p-Si/ZnO nanojunction. This work provides promising cathode for portable X-ray tubes/panel, ionization vacuum gauges and low energy electron beam lithography, in where electron-dose control at a fixed energy is needed.

  18. The effect of water regime and soil management on methane (CH4) emission of rice field

    NASA Astrophysics Data System (ADS)

    Naharia, O.; Setyanto, P.; Arsyad, M.; Burhan, H.; Aswad, M.

    2018-05-01

    Mitigation of CH4 emission of rice field is becoming a serious issue. The Agricultural Environment Preservation Research Station in Central Java conducted a field study to investigate the effect of water regime and soil tillage on CH4 emission from paddy fields. Treatments consisted of two factors. The first factor was water regime, e.g., 1) continuously flooded 5 cm, 2) intermittent irrigation and 3) saturated water condition at 0-1 cm water level. The second factor was soil management, e.g., 1) normal tillage, 2) zero tillage + 3 sulfosate ha-1 and 3) zero tillage + 3 L paraquat ha-1. Most of treatments gave a significant reduction of total CH4 emission between 34 – 85% during the wet season crop as compared to normal rice cropping practice, while in the dry season the CH4 reduction ranged between 16 – 92%. No-tillage with non-selective herbicides combined with intermittent/saturated irrigation system significantly reduced methane emission without significantly affecting rice productivity as compared to normal tillage with continuous flooding (farmers practice)

  19. Exploring a suitable nitrogen fertilizer rate to reduce greenhouse gas emissions and ensure rice yields in paddy fields.

    PubMed

    Zhong, Yiming; Wang, Xiaopeng; Yang, Jingping; Zhao, Xing; Ye, Xinyi

    2016-09-15

    The application rate of nitrogen fertilizer was believed to dramatically influence greenhouse gas (GHG) emissions from paddy fields. Thus, providing a suitable nitrogen fertilization rate to ensure rice yields, reducing GHG emissions and exploring emission behavior are important issues for field management. In this paper, a two year experiment with six rates (0, 75, 150, 225, 300, 375kgN/ha) of nitrogen fertilizer application was designed to examine GHG emissions by measuring carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) flux and their cumulative global warming potential (GWP) from paddy fields in Hangzhou, Zhejiang in 2013 and 2014. The results indicated that the GWP and rice yields increased with an increasing application rate of nitrogen fertilizer. Emission peaks of CH4 mainly appeared at the vegetative phase, and emission peaks of CO2, and N2O mainly appeared at reproductive phase of rice growth. The CO2 flux was significantly correlated with soil temperature, while the CH4 flux was influenced by logging water remaining period and N2O flux was significantly associated with nitrogen application rates. This study showed that 225kgN/ha was a suitable nitrogen fertilizer rate to minimize GHG emissions with low yield-scaled emissions of 3.69 (in 2013) and 2.23 (in 2014) kg CO2-eq/kg rice yield as well as to ensure rice yields remained at a relatively high level of 8.89t/ha in paddy fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Ashworth, D. J.; Zheng, W.; Knuteson, J.; van Wesenbeeck, I. J.

    2016-07-01

    Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m-2 s-1 for 1,3-D and 0.22-3.2 μg m-2 s-1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23-41 kg ha-1, or 15-27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2-24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.

  1. Comparing field investigations with laboratory models to predict landfill leachate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellner, Johann; Doeberl, Gernot; Allgaier, Gerhard

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore watermore » participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.« less

  2. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoping, E-mail: wxpchina64@aliyun.com, E-mail: wxpchina@sohu.com; Shanghai Key Laboratory of Modern Optical System, Shanghai 200093; Wang, Jinye

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibitsmore » the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm{sup 2} at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.« less

  3. Carbon nanotube nanoradios: The field emission and transistor configurations

    NASA Astrophysics Data System (ADS)

    Vincent, Pascal; Ayari, Anthony; Poncharal, Philippe; Barois, Thomas; Perisanu, Sorin; Gouttenoire, V.; Purcell, Stephen T.

    2012-06-01

    In this article, we explore and compare two distinct configurations of the "nanoradio" concept where individual carbon nanotube resonators are the central electromechanical element permitting signal demodulation. The two configurations of singly-clamped field emitters and doubly-clamped field effect transistors are examined which at first glance are quite different, but in fact involve quite similar physical concepts. Amplitude, frequency and digital demodulation are demonstrated and the analytical formulae describing the demodulation are derived as functions of the system parameters. The crucial role played by the mechanical resonance in demodulation is clearly demonstrated. For the field emission configuration we particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance and show that amplitude demodulation results in the best transmitted signal. For the transistor configuration the important aspect is the variation of the nanotube conductance as a function of its distance to the gate. In this case frequency demodulation is much more effective and digital signal processing was achieved. The respective strengths and weaknesses of each configuration are discussed throughout the article.

  4. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    NASA Astrophysics Data System (ADS)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  5. MGS-TES Phase Effects and Thermal Infrared Directional Emissivity Field Measurements of Martian Analog Sites

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Bandfield, J. L.; Wolff, M. J.

    2006-03-01

    We present a set of on- and off-nadir thermal IR field and laboratory emissivity spectra for three undisturbed Mars terrain analog sites and analyze them for presence or absence of directional emissivity effects. Comparisons to moderate and low albedo surface MGS-TES EPF sequences are discussed.

  6. Molecular dynamics simulations of field emission from a planar nanodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid likemore » model is also developed and its results are in qualitative agreement with the simulations.« less

  7. Emission and transport of 1,3-dichloropropene and chloropicrin in a large field tarped with VaporSafe TIF.

    PubMed

    Gao, Suduan; Ajwa, Husein; Qin, Ruijun; Stanghellini, Michael; Sullivan, David

    2013-01-02

    Tarping fumigated fields with low permeability films such as commercial Totally Impermeable Film (TIF) can significantly reduce emissions, but it can also increase fumigant residence time in the soil such that extended tarp-covering durations may be required to address potential exposure risks during tarp-cutting and removal. In an effort to develop safe practices for using TIF, a large field study was conducted in the San Joaquin Valley of California. Comprehensive data on emissions (measured with dynamic flux chambers), fate, and transport of 1,3-dichloropropene and chloropicrin were collected in a 3.3 ha field fumigated with Pic-Clor 60 via broadcast shank application. Low emission flux (below 15 μg m(-2) s(-1)) was observed from the tarped field throughout the tarp-covering period of 16 days with total emission loss of <8% of total applied for both chemicals. Although substantially higher flux was measured at tarp edges (up to 440 μg m(-2) s(-1)), the flux was reduced to below 0.5 μg m(-2) s(-1) beyond 2 m of tarp edge where total mass loss was estimated to be ≤ 1% of total applied to the field. Emission flux increased following tarp-cutting, but was much lower compared to 5 or 6 d tarp-covering periods determined in other fields. This study demonstrated the ability of TIF to significantly reduce fumigant emissions with supporting data on fumigant movement in soil. Proper management on use of the tarp, such as extending tarp-covering period, can reduce negative impact on the environment and help maintain the beneficial use of soil fumigants for agricultural productions.

  8. Controlled growth of well-aligned GaS nanohornlike structures and their field emission properties.

    PubMed

    Sinha, Godhuli; Panda, Subhendu K; Datta, Anuja; Chavan, Padmakar G; Shinde, Deodatta R; More, Mahendra A; Joag, D S; Patra, Amitava

    2011-06-01

    Here, we report the synthesis of vertically aligned gallium sulfide (GaS) nanohorn arrays using simple vapor-liquid-solid (VLS) method. The morphologies of GaS nano and microstructures are tuned by controlling the temperature and position of the substrate with respect to the source material. A plausible mechanism for the controlled growth has been proposed. It is important to note that the turn-on field value of GaS nanohorns array is found to be the low turn-on field 4.2 V/μm having current density of 0.1 μA/cm(2). The striking feature of the field emission behavior of the GaS nanohorn arrays is that the average emission current remains nearly constant over long time without any degradation. © 2011 American Chemical Society

  9. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It

  10. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It

  11. A model for microwave emission from vegetation-covered fields

    NASA Technical Reports Server (NTRS)

    Mo, T.; Choudhury, B. J.; Schmugge, T. J.; Wang, J. R.; Jackson, T. J.

    1982-01-01

    The measured brightness temperatures over vegetation-covered fields are simulated by a radiative transfer model which treats the vegetation as a uniform canopy with a constant temperature, over a moist soil which emits polarized microwave radiation. The analytic formula for the microwave emission has four parameters: roughness height, polarization mixing factor, effective canopy optical thickness, and single scattering albedo. A good representation has been obtained with the model for both the horizontally and vertically polarized brightness temperatures at 1.4 and 5 GHz frequencies, over fields covered with grass, soybean and corn. A directly proportional relation is found between effective canopy optical thickness and the amount of water present in the vegetation canopy. The effective canopy single scattering albedo depends on vegetation type.

  12. Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

    Treesearch

    Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu

    2016-01-01

    Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...

  13. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1994-01-01

    The magnetic field geometries of Uranus and Neptune are superficially similar, and are similarly unlike those of other planets: the field strengths are similar, and they contain extraordinarily large non-dipolar components. As a corollary, the best dipolar field models of each of the two planets comprises a dipole that is considerably offset from the planetary center and tilted away from the rotational axis. However, in other respects the best field models of the two planets are quite different. Uranus has a quadrupole model in which all the terms are well determined and in which none of the higher order terms is determined. To represent the magnetometer data acquired during Voyager's Neptune encounter requires a model of order 8 (instead of Uranus' order 2), yet many of the coefficients are poorly determined. A second model, an octupole model comprising the terms up to order three of the order 8 model, has been suggested by the magnetometer team as being useful; its use, however, is limited only to the region outside of about 2R(exp N), whereas planetary radio emissions have their sources well inside this surface. Computer code has been written that permits an analysis of the detailed motion of low energy charged particles moving in general planetary magnetic fields. At Uranus, this code reveals the existence of an isolated region of the inner magnetosphere above the day side in which particles may be trapped, separate from the more general magnetospheric trapping. An examination of the so-call ordinary mode uranian radio emissions leads us to believe that these emissions are in fact extraordinary mode emissions coming from particles trapped in this isolated region. A similar attempt to discover trapping regions at Neptune has proved, unfortunately, to be impossible. This arises from three factors: (1) the computation needed to track particles in an eighth order field is more than an order of magnitude greater than that needed to perform a similar calculation in a

  14. Rice emissions during field flooding and air pollution feedbacks across South Korea

    NASA Astrophysics Data System (ADS)

    So, C.; Diskin, G. S.; DiGangi, J. P.; Choi, Y.; Rana, M.; Hughes, S.; Blake, D. R.; Nault, B.; Schroeder, J.; Campuzano Jost, P.; Jimenez, J. L.; Kim, M. J.; Teng, A.; Crounse, J. D.; Wenneberg, P.; Kaser, L.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Pusede, S. E.

    2017-12-01

    Nitrous oxide (N2O) and methane (CH4) are important long-lived greenhouse gases. Known anthropogenic sources of these gases include rice cultivation, which represents anywhere between 5% and 20% of methane emissions globally. Other volatile molecules are also produced by soil biogeochemistry when rice fields are flooded, including small organic oxygenates. Here, we use recent aircraft measurements from the KORUS-AQ experiment to describe controls over rice emissions of N2O and CH4 at regional-scales across the South Korean Peninsula. We also investigate potential emissions of molecular hydrogen and volatile alcohols and organic acids and consider the effect of aerosol nitrate and sulfate deposition on rice soil biogeochemistry on paddies downwind of polluted urban areas.

  15. The MUSE Hubble Ultra Deep Field Survey. VII. Fe II* emission in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Finley, Hayley; Bouché, Nicolas; Contini, Thierry; Paalvast, Mieke; Boogaard, Leindert; Maseda, Michael; Bacon, Roland; Blaizot, Jérémy; Brinchmann, Jarle; Epinat, Benoît; Feltre, Anna; Marino, Raffaella Anna; Muzahid, Sowgat; Richard, Johan; Schaye, Joop; Verhamme, Anne; Weilbacher, Peter M.; Wisotzki, Lutz

    2017-11-01

    Non-resonant Fe II* (λ2365, λ2396, λ2612, λ2626) emission can potentially trace galactic winds in emission and provide useful constraints to wind models. From the 3.15' × 3.15' mosaic of the Hubble Ultra Deep Field (UDF) obtained with the VLT/MUSE integral field spectrograph, we identify a statistical sample of 40 Fe II* emitters and 50 MgIII (λλ2796,2803) emitters from a sample of 271 [O II]λλ3726,3729 emitters with reliable redshifts from z = 0.85-1.50 down to 2 × 10-18 (3σ) ergs s-1 cm-2 (for [O II]), covering the M⋆ range from 108-1011 M⊙. The Fe II* and Mg II emitters follow the galaxy main sequence, but with a clear dichotomy. Galaxies with masses below 109 M⊙ and star formation rates (SFRs) of ≲ 1 M⊙ yr-1 have MgIII emission without accompanying Fe II* emission, whereas galaxies with masses above 1010 M⊙ and SFRs ≳ 10 M⊙ yr-1 have Fe II* emission without accompanying MgIII emission. Between these two regimes, galaxies have both MgIII and Fe II* emission, typically with MgIII P Cygni profiles. Indeed, the MgIII profile shows a progression along the main sequence from pure emission to P Cygni profiles to strong absorption, due to resonant trapping. Combining the deep MUSE data with HST ancillary information, we find that galaxies with pure MgIII emission profiles have lower SFR surface densities than those with either MgIII P Cygni profiles or Fe II* emission. These spectral signatures produced through continuum scattering and fluorescence, MgIII P Cygni profiles and Fe II* emission, are better candidates for tracing galactic outflows than pure MgIII emission, which may originate from HIII regions. We compare the absorption and emission rest-frame equivalent widths for pairs of FeIII transitions to predictions from outflow models and find that the observations consistently have less total re-emission than absorption, suggesting either dust extinction or non-isotropic outflow geometries.

  16. Green-house gas emissions from rice fields under different water management

    NASA Astrophysics Data System (ADS)

    Lagomarsino, Alessandra; Elio Agnelli, Alessandro; Ferrara, Rossana Monica; Adviento-Borbe, Maria Arlene; Linquist, Bruce; Gavina, Giacomo; Ravaglia, Stefano

    2013-04-01

    During 2012 season, two rice fields have been selected in Italy (Cantaglia farm, Bologna province) and subjected to different water management: one under continuous flooding (WET) and the other under alternate wetting and drying (AWD). In AWD, re-flushing occurred in order to maintain water field capacity over 60 %. Two rice varieties (one commonly cultivated in Italy and one variety from the S.I.S. germoplasm collection) have been considered under WET treatment (Gladio and Zhen Long 13 - abbreviated as ZL13), while only Gladio under AWD. Green house gases (GHGs) sampling have been performed weekly or bi-weekly throughout the growing season. Soluble organic carbon (C), soluble nitrogen (N) and nitrates have been collected through piezometers. Soil sampling have been performed at the beginning and at the end of the growing season and total organic C (TOC), total N (TN), C/N ratio of soil organic matter (SOM), bulk density and water holding capacity were measured. At the end of the growing season rice above- and below-ground biomass have been sampled and C and N content of stem, grain and roots were measured. Methane (CH4) emissions showed a clear trend, following water availability in soils. An initial peak after the first flooding was observed in all soils, while after the second flooding CH4 was emitted only in the WET treatment. Further flooding events in AWD soil did not determine CH4 emissions during the vegetative season. Overall, in 2012 growing season a 98 % reduction of CH4 emissions in AWD soil was observed. In the WET treatment, no significant variations were observed between the two varieties, although on average ZL13 showed lower rates of CH4 emissions. Two peaks of nitrous oxide (N2O) emissions were observed: the first after the initial flooding in all soils; the second one, much greater, 14 days after the fertilization only in AWD soils. These two peaks accounted for 92 % of total N2O emissions in 2012 rice season. Overall, in 2012 growing season N2O

  17. Evaluating the Field Emission Characteristics of Aluminum for DC High Voltage Photo-Electron Guns

    NASA Astrophysics Data System (ADS)

    Taus, Rhys; Poelker, Matthew; Forman, Eric; Mamun, Abdullah

    2014-03-01

    High current photoguns require high power laser light, but only a small portion of the laser light illuminating the photocathode produces electron beam. Most of the laser light (~ 65%) simply serves to heat the photocathode, which leads to evaporation of the chemicals required to create the negative electron affinity condition necessary for photoemission. Photocathode cooling techniques have been employed to address this problem, but active cooling of the photocathode is complicated because the cooling apparatus must float at high voltage. This work evaluates the field emission characteristics of cathode electrodes manufactured from materials with high thermal conductivity: aluminum and copper. These electrodes could serve as effective heat sinks, to passively cool the photocathode that resides within such a structure. However, literature suggests ``soft'' materials like aluminum and copper are ill suited for photogun applications, due to excessive field emission when biased at high voltage. This work provides an evaluation of aluminum and copper electrodes inside a high voltage field emission test stand, before and after coating with titanium nitride (TiN), a coating that enhances surface hardness. National Science Foundation Award Number: 1062320 and the Department of Defence ASSURE program.

  18. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    NASA Astrophysics Data System (ADS)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  19. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  20. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures.

    PubMed

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi(2)/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi(2) conducting interlayer. The results show that the main emission properties were modified by varying the CoSi(2) thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi(2) interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi(2) layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays.

  1. Multiobjective optimization model of intersection signal timing considering emissions based on field data: A case study of Beijing.

    PubMed

    Kou, Weibin; Chen, Xumei; Yu, Lei; Gong, Huibo

    2018-04-18

    Most existing signal timing models are aimed to minimize the total delay and stops at intersections, without considering environmental factors. This paper analyzes the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. First, considering the different operating modes of cruising, acceleration, deceleration, and idling, field data of emissions and Global Positioning System (GPS) are collected to estimate emission rates for heavy-duty and light-duty vehicles. Second, multiobjective signal timing optimization model is established based on a genetic algorithm to minimize delay, stops, and emissions. Finally, a case study is conducted in Beijing. Nine scenarios are designed considering different weights of emission and traffic efficiency. The results compared with those using Highway Capacity Manual (HCM) 2010 show that signal timing optimized by the model proposed in this paper can decrease vehicles delay and emissions more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development. Vehicle emissions are heavily at signal intersections in urban area. The multiobjective signal timing optimization model is proposed considering the trade-off between vehicle emissions and traffic efficiencies on the basis of field data. The results indicate that signal timing optimized by the model proposed in this paper can decrease vehicle emissions and delays more significantly. The optimization model can be applied in different cities, which provides supports for eco-signal design and development.

  2. Effects of Magnetic Field Geometry on the Broadband Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Joshi, Manasvita; Marscher, Alan; Boettcher, Markus

    2018-01-01

    The knowledge of the structure of the magnetic field inside a blazar jet, as deduced from polarization observations at radio to opticalwavelengths, is closely related to the formation and propagation of relativistic jets that result from accretion onto supermassive blackholes. However, a largely unexplored aspect of the theoretical understanding of radiation transfer physics in blazar jets has beenthe magnetic field geometry as revealed by the polarized emission and the connection between the variability in polarization and flux acrossthe spectrum.Here, we explore the effects of various magnetic geometries that can exist inside a blazar jet: parallel, transverse, oblique, toroidal,helical, and tangled. We investigate the effects of changing the orientation of the magnetic field, according to the above-mentionedgeometries, on the resulting high-energy spectral energy distributions (SEDs) and spectral variability patterns (SVPs) of a typicalblazar. We use the MUlti-ZOne Radiation Feedback (MUZORF) model to carry out this study and to relate the geometry of the field to the observed SEDs. One of the goals of the study is to address the issue of the reason for the appearance of some of the gamma-ray "orphan flares" observed in a few blazars. This can be associated with the directionality of the magnetic field, which creates a difference in the radiation field as seen by an observer versus that seen by the electrons in the emission region.This research was supported in part by NASA through Fermi grants NNX10AO59G, NNX08AV65G, and NNX08AV61G, NASA through Swift grants NNX09AR11G, NNX10AL13G, and NNX10AF88G, and by NSF grant AST-0907893.

  3. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  4. Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Qin, Shengchun; Bai, Shuai; Yue, Hongwei; Li, Yali; Chen, Qiang; Li, Junshuai; He, Deyan

    2016-09-01

    In this paper, we explored synthesis of vertical graphene nanosheets (VGNs) by thermal chemical vapor deposition (CVD). Through optimizing the experimental condition, growth of well aligned VGNs with uniform morphologies on nickel-coated stainless steel (SS) was realized for the first time by thermal CVD. In the meantime, influence of growth parameters on the VGN morphology was understood based on the balancing between the concentration and kinetic energy of carbon-containing radicals. Structural characterizations demonstrate that the achieved VGNs are normally composed of several graphene layers and less corrugated compared to the ones synthesized by other approaches, e.g. plasma enhanced (PE) CVD. The field emission measurement indicates that the VGNs exhibit relatively stable field emission and a field enhancement factor of about 1470, which is comparable to the values of VGNs prepared by PECVD can be achieved.

  5. Secondary electron emission from a dielectric film subjected to an electric field. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Quoc-Nguyen, N.

    1977-01-01

    An electric field in the range of 0.3,3.3 kV/mm is created normal to a thin film FEP teflon sample which accumulates potential of up to 8.8, 13.7 or 18.3 kV when exposed to an electron beam having energy of 10.0, 15.0 or 20.0 kV, respectively. It is found that the secondary electron emission from the charged sample varies with field. The threshold voltage, at which the secondary electron emission coefficient sigma is unity, drops down from a low field value of 13.73 kV to a high field value of 13.11 kV for a 15.0 kV beam. A computational technique was developed that generates equipotential lines or contours and field vectors above a plane where potential is known. The utilization of conformal transformations allows the extension of the technique to configurations which map into a plane.

  6. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  7. Factors Related with CH4 and N2O Emissions from a Paddy Field: Clues for Management implications

    PubMed Central

    Wang, Chun; Lai, Derrick Y. F.; Sardans, Jordi; Wang, Weiqi; Zeng, Congsheng; Peñuelas, Josep

    2017-01-01

    Paddy fields are major sources of global atmospheric greenhouse gases, including methane (CH4) and nitrous oxide (N2O). The different phases previous to emission (production, transport, diffusion, dissolution in pore water and ebullition) despite well-established have rarely been measured in field conditions. We examined them and their relationships with temperature, soil traits and plant biomass in a paddy field in Fujian, southeastern China. CH4 emission was positively correlated with CH4 production, plant-mediated transport, ebullition, diffusion, and concentration of dissolved CH4 in porewater and negatively correlated with sulfate concentration, suggesting the potential use of sulfate fertilizers to mitigate CH4 release. Air temperature and humidity, plant stem biomass, and concentrations of soil sulfate, available N, and DOC together accounted for 92% of the variance in CH4 emission, and Eh, pH, and the concentrations of available N and Fe3+, leaf biomass, and air temperature 95% of the N2O emission. Given the positive correlations between CH4 emission and DOC content and plant biomass, reduce the addition of a carbon substrate such as straw and the development of smaller but higher yielding rice genotypes could be viable options for reducing the release of greenhouse gases from paddy fields to the atmosphere. PMID:28081161

  8. Carbon dioxide emissions and energy balance closure before, during, and after biomass burning in mid-South rice fields

    NASA Astrophysics Data System (ADS)

    Fong, B.; Adviento-Borbe, A.; Reba, M. L.; Runkle, B.; Suvocarev, K.

    2017-12-01

    Biomass burning or field burning is a crop management practice that removes rice straw, reduces tillage, controls pests and releases nutrients for the next cropping season. Current field burning emissions are not included in agricultural field annual emissions largely because of the lack of studies, especially on the field scale. Field burning measurements are important for greenhouse gas emission inventories and quantifying the annual carbon footprint of rice. Paired eddy covariance systems were used to measure energy balance, CO2 fluxes, and H2O fluxes in mid-South US rice fields (total area of 25 ha) before, during and after biomass burning for 20 days after harvest. During the biomass burning, air temperatures increased 29°C, while ambient CO2 concentration increased from 402 to 16,567 ppm and H2O concentrations increased from 18.73 to 25.62 ppt. For the burning period, 67-86 kg CO2 ha-1 period-1 was emitted calculated by integrating fluxes over the biomass burning event. However, the estimated emission using aboveground biomass and combustion factors was calculated as 11,733 kg CO2 ha-1 period-1. Part of the difference could be attributed to sensor sensitivity decreasing 80% during burning for two minutes due to smoke. Net ecosystem exchange (NEE) increased by a factor of two, 1.14 before burning to 2.44 μmol m-2 s-1 possibly due to greater reduction of plant material and photosynthesis following burning. This study highlights the contribution of rice straw burning to total CO2 emissions from rice production.

  9. The Relationship between Ultraviolet Line Emission and Magnetic Field Strength in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Howell, Steve B.; Cash, Jennifer; Mason, Keith O.; Herzog, Adrienne E.

    1999-02-01

    We present the first UV spectral observations of six magnetic cataclysmic variables discovered by the ROSAT Wide Field Camera (WFC). Using the^ International Ultraviolet Explorer (IUE), 1200-3400 Å spectra were obtained of the AM Herculis stars RE 0531-46, RE 1149+28, RE 1844-74, QS Tel (RE 1938-46), and HU Aqr (RE 2107-05) and the DQ Herculis star PQ Gem (RE 0751+14). The high-state UV spectra are dominated by strong emission lines. Continuum flux distributions for these stars (from 100 to 5500 Å) reveal that over this entire range, none of the spectral energy distributions can be fitted by a single-valued blackbody. Our new UV observations and additional archival IUE spectra were used to discover a correlation between the strength of the high-state UV emission lines and the strength of the white dwarf magnetic field. Model spectral results are used to confirm the production of the UV emission lines by photoionization from X-ray and EUV photons.

  10. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures

    PubMed Central

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi2/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi2 conducting interlayer. The results show that the main emission properties were modified by varying the CoSi2 thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi2 interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi2 layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays. PMID:23082241

  11. Measurement and potential barrier evolution analysis of cold field emission in fracture fabricated Si nanogap

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    Cold field emission characteristics of a fracture fabricated Si nanogap (˜100 nm) were investigated with an ascending electric field (voltage) sweep. The nanogap was formed by controlled fracture of a free-standing silicon micro-beam along <111> direction by a microelectromechanical device, which results in flat, smooth, and conformal electrode pairs. This facilitates simultaneous large area emission, which gives rise to a significant current at low bias voltage, which usually remains indiscernible in nanogaps of this size. The measured emission current-voltage (I-V) characteristics clearly depict two distinct regimes: a linear (I ∝ V) regime at low bias voltage and a nonlinear [ln(I/V 2) ∝ V -1] regime at high bias voltage, separated by a transition point. We propose that the linear regime is owed to direct tunneling of electrons, whereas the nonlinear regime is due to Fowler-Nordheim type emission. This proposition essentially implies that the tunneling potential barrier gradually evolved from a rectangular shape to a triangular shape with increasing field (V). This type of evolution is usually observed in molecular size gaps. We have attempted to correlate the I-V curves acquired through the experiments with the electric field induced barrier shape evolution by numerical calculations involving standard quantum mechanics. The observed linear regime at low bias voltage (<5 V) in a relatively large size gap (˜100 nm) is attributed to the fabrication method adopted in this study. The reported study and the fabricated device are significant for developing a futuristic thermotunneling refrigerator that will find a wide range of application in nanoelectronic devices.

  12. Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance and Emissivity

    NASA Technical Reports Server (NTRS)

    Casey, Kimberly Ann; Kaab, Andreas

    2012-01-01

    We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.

  13. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  14. Methane emissions estimate from airborne measurements over a western United States natural gas field

    NASA Astrophysics Data System (ADS)

    Karion, Anna; Sweeney, Colm; PéTron, Gabrielle; Frost, Gregory; Michael Hardesty, R.; Kofler, Jonathan; Miller, Ben R.; Newberger, Tim; Wolter, Sonja; Banta, Robert; Brewer, Alan; Dlugokencky, Ed; Lang, Patricia; Montzka, Stephen A.; Schnell, Russell; Tans, Pieter; Trainer, Michael; Zamora, Robert; Conley, Stephen

    2013-08-01

    (CH4) emissions from natural gas production are not well quantified and have the potential to offset the climate benefits of natural gas over other fossil fuels. We use atmospheric measurements in a mass balance approach to estimate CH4 emissions of 55 ± 15 × 103 kg h-1 from a natural gas and oil production field in Uintah County, Utah, on 1 day: 3 February 2012. This emission rate corresponds to 6.2%-11.7% (1σ) of average hourly natural gas production in Uintah County in the month of February. This study demonstrates the mass balance technique as a valuable tool for estimating emissions from oil and gas production regions and illustrates the need for further atmospheric measurements to determine the representativeness of our single-day estimate and to better assess inventories of CH4 emissions.

  15. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  16. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  17. Visible properties of Sm{sup 3+} ions in chloro-fluoro-borate glasses for reddish - orange emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Venkata, E-mail: drvenkataraok@gmail.com; Babu, S.; Ratnakaram, Y. C.

    2016-05-23

    Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm{sup 3+} doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting application in the field of optics.

  18. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Avshish; Parveen, Shama; Husain, Samina

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current densitymore » of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.« less

  19. Field emission properties and strong localization effect in conduction mechanism of nanostructured perovskite LaNiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in; Department of Physics, College of Engineering, Pune 411005, Maharashtra; Tanty, Narendra

    2016-08-22

    We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.

  20. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    NASA Astrophysics Data System (ADS)

    Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Wang, A.; Zang, Y. F.; Horton, R.

    2010-06-01

    Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, M slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.78 and 1.98 kg N2O ha-1 increases, while manure + phosphorous offset 0

  1. Nitrous oxide emission from highland winter wheat field after long-term fertilization

    NASA Astrophysics Data System (ADS)

    Wei, X. R.; Hao, M. D.; Xue, X. H.; Shi, P.; Horton, R.; Wang, A.; Zang, Y. F.

    2010-10-01

    Nitrous oxide (N2O) is an important greenhouse gas. N2O emissions from soils vary with fertilization and cropping practices. The response of N2O emission to fertilization of agricultural soils plays an important role in global N2O emission. The objective of this study was to assess the seasonal pattern of N2O fluxes and the annual N2O emissions from a rain-fed winter wheat (Triticum aestivum L.) field in the Loess Plateau of China. A static flux chamber method was used to measure soil N2O fluxes from 2006 to 2008. The study included 5 treatments with 3 replications in a randomized complete block design. Prior to initiating N2O measurements the treatments had received the same fertilization for 22 years. The fertilizer treatments were unfertilized control (CK), manure (M), nitrogen (N), nitrogen + phosphorus (NP), and nitrogen + phosphorus + manure (NPM). Soil N2O fluxes in the highland winter wheat field were highly variable temporally and thus were fertilization dependent. The highest fluxes occurred in the warmer and wetter seasons. Relative to CK, m slightly increased N2O flux while N, NP and NPM treatments significantly increased N2O fluxes. The fertilizer induced increase in N2O flux occurred mainly in the first 30 days after fertilization. The increases were smaller in the relatively warm and dry year than in the cold and wet year. Combining phosphorous and/or manure with mineral N fertilizer partly offset the nitrogen fertilizer induced increase in N2O flux. N2O fluxes at the seedling stage were mainly controlled by nitrogen fertilization, while fluxes at other plant growth stages were influenced by plant and environmental conditions. The cumulative N2O emissions were always higher in the fertilized treatments than in the non-fertilized treatment (CK). Mineral and manure nitrogen fertilizer enhanced N2O emissions in wetter years compared to dryer years. Phosphorous fertilizer offset 0.50 and 1.26 kg N2O-N ha-1 increases, while manure + phosphorous offset 0

  2. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires

    PubMed Central

    Wang, Guojing; Li, Zhengcao; Li, Mingyang; Chen, Chienhua; Lv, Shasha; Liao, Jiecui

    2016-01-01

    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed that ZnO-ZnS NWAs have the lowest turn-on field (3.0 Vμm−1), compared with ZnO-CdS NWAs (6.3 Vμm−1) and ZnO-Ag2S NWAs (5.0 Vμm−1). This may be associated with the pyramid-like ZnS shell which increases the number of emission nanotips. Moreover, the Fowler-Nordheim (F-N) plot displays a nonlinear relationship in the low and high electric field regions caused by the double well potential effect of the heterojunction structures. PMID:27387653

  3. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  4. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-09-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10-12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m-2 measured with chambers and EC respectively). The differences may be a result of the combined effect of

  5. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.

  6. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  7. A field wind tunnel study of fine dust emissions in sandy soils

    USDA-ARS?s Scientific Manuscript database

    A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...

  8. Effect of catalyst type on field emission properties of nanostructured carbon films grown by a modified hot-filament chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Kang, Sukill; Lowndes, Douglas H.; Ellis, Darren

    2001-03-01

    Nanostructured carbon films have been grown on uncatalysed n-type Si using a modified HF-CVD process and catalytic decomposition of ethylene (C_2H_4). Various metal catalyst wires such as Ni, Co, Fe and a NiFe composite were placed within the windings of a tungsten filament and the assembly was placed in close proximity ( ~7 mm) to the unheated substrate. Radiative heating of the substrate by the filament results in a substrate temperature of ~ 500^oC after 7 min. Films grown using the Ni catalyst showed a field emission turn-on field that varied from 9 to 15 V/μm and was stable for 30-50 hours (1-10 A/cm^2 emission current density), a result that is comparable to carbon nanotube- and carbon nanofiber-based structures. In this contribution, we present results from field emission scanning electron microscopy, transmission electron microscopy, and electron field emission measurements that elucidate the relationship between field emission properties, film morphology, and type of catalyst.

  9. An analysis of field-aged diesel particulate filter performance: particle emissions before, during, and after regeneration.

    PubMed

    Barone, Teresa L; Storey, John M E; Domingo, Norberto

    2010-08-01

    A field-aged, passive diesel particulate filter (DPF) used in a school bus retrofit program was evaluated for emissions of particle mass and number concentration before, during, and after regeneration. For the particle mass measurements, filter samples were collected for gravimetric analysis with a partial flow sampling system, which sampled proportionally to the exhaust flow. A condensation particle counter and scanning mobility particle sizer measured total number concentration and number-size distributions, respectively. The results of the evaluation show that the number concentration emissions decreased as the DPF became loaded with soot. However, after soot removal by regeneration, the number concentration emissions were approximately 20 times greater, which suggests the importance of the soot layer in helping to trap particles. Contrary to the number concentration results, particle mass emissions decreased from 6 +/- 1 mg/hp-hr before regeneration to 3 +/- 2 mg/hp-hr after regeneration. This indicates that nanoparticles with diameters less than 50 nm may have been emitted after regeneration because these particles contribute little to the total mass. Overall, average particle emission reductions of 95% by mass and 10,000-fold by number concentration after 4 yr of use provided evidence of the durability of a field-aged DPF. In contrast to previous reports for new DPFs in which elevated number concentrations occurred during the first 200 sec of a transient cycle, the number concentration emissions were elevated during the second half of the heavy-duty Federal Test Procedure (FTP) when high speed was sustained. This information is relevant for the analysis of mechanisms by which particles are emitted from field-aged DPFs.

  10. A field experimental study on non-methane hydrocarbon (NMHC) emissions from a straw-returned maize cropping system.

    PubMed

    Zhang, Shuangqi; Deng, Mengsi; Shan, Ming; Zhou, Chuang; Liu, Wei; Xu, Xiaoqiu; Yang, Xudong

    2018-04-28

    Non-methane hydrocarbons (NMHCs) play an important role in the atmospheric environment. However, NMHC emissions from agricultural fields, especially their variations with straw return, are poorly understood. Therefore, a field study comprising two treatments, i.e., (1) S0 (straw removal) and (2) S1 (incorporation of maize straw at a rate of 9000 kg ha -1 ), was conducted in a straw-returned maize cropping system to characterize NMHC emissions as well as to estimate the effect of straw return on those emissions. Using a Gas Chromatography-Mass Spectrometer (GC-MS) method, 28 types of NMHCs were identified. The total NMHC emission from S0 was 2018 g ha -1 , where 1-methyl-3-propyl-benzene, (1-methylethyl)-benzene, and toluene were obviously predominant, whereas the total NMHC emission from S1 was 1903 g ha -1 , where 1-methyl-3-propyl-benzene, 2-methyl-pentane, and (1-methylethyl)-benzene were the main species. The results showed that straw return had opposing effects on NMHC emissions, ranging from -55.4% to 478.6%. Overall, the total NMHC emission with returned straw alone decreased by 2963 ng kg straw -1  h -1 . Furthermore, NMHC fluxes had higher correlations with soil temperature than with soil moisture or pH. Notably, the higher correlations of NMHC fluxes with 10 cm soil temperature than with 5 cm soil temperature indicate that soil in the deeper layer might play a more important role in NMHC fluxes. The results also suggest that more field study is needed to accurately estimate the effect of straw return on NMHC emissions from agroecosystems and fully understand its underlying mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Phonon-assisted field emission in silicon nanomembranes for time-of-flight mass spectrometry of proteins.

    PubMed

    Park, Jonghoo; Aksamija, Zlatan; Shin, Hyun-Cheol; Kim, Hyunseok; Blick, Robert H

    2013-06-12

    Time-of-flight (TOF) mass spectrometry has been considered as the method of choice for mass analysis of large intact biomolecules, which are ionized in low charge states by matrix-assisted-laser-desorption/ionization (MALDI). However, it remains predominantly restricted to the mass analysis of biomolecules with a mass below about 50,000 Da. This limitation mainly stems from the fact that the sensitivity of the standard detectors decreases with increasing ion mass. We describe here a new principle for ion detection in TOF mass spectrometry, which is based upon suspended silicon nanomembranes. Impinging ion packets on one side of the suspended silicon nanomembrane generate nonequilibrium phonons, which propagate quasi-diffusively and deliver thermal energy to electrons within the silicon nanomembrane. This enhances electron emission from the nanomembrane surface with an electric field applied to it. The nonequilibrium phonon-assisted field emission in the suspended nanomembrane connected to an effective cooling of the nanomembrane via field emission allows mass analysis of megadalton ions with high mass resolution at room temperature. The high resolution of the detector will give better insight into high mass proteins and their functions.

  12. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    NASA Astrophysics Data System (ADS)

    Longtin, Rémi; Sanchez-Valencia, Juan Ramon; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-02-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.

  13. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less

  14. Modeled nitrous oxide emissions from corn fields in iowa based on county level data.

    PubMed

    Jarecki, Marek K; Hatfield, Jerry L; Barbour, Wiley

    2015-03-01

    The U.S. Corn Belt area has the capacity to generate high nitrous oxide (NO) emissions due to medium to high annual precipitation, medium- to heavy-textured soils rich in organic matter, and high nitrogen (N) application rates. The purpose of this work was to estimate NO emissions from cornfields in Iowa at the county level using the DeNitrification-DeComposition (DNDC) model and to compare the DNDC NO emission estimates with available results from field experiments. All data were acquired for 2007 to 2011. Weather Underground Network and the Iowa State University Iowa Soil Properties and Interpretation Database 7.3 were the data sources for DNDC inputs and for computing county soil parameters. The National Agriculture Statistic Service 5-yr averages for corn yield data were used to establish ex post fertilizer N input at the county level. The DNDC output suggested county-wide NO emissions in Iowa ranged from 2.2 kg NO-N ha yr in south-central to 4.6 to 4.7 kg NO-N ha yr in north-central and eastern Iowa counties. In northern districts, the average direct NO emissions were 3.2, 4.4, and 3.6 kg NO-N ha yr for west, central, and east, respectively. In central districts, average NO emissions were 3.5, 3.9, and 3.4 kg NO-N ha yr for west, central, and east, respectively. For southern districts, NO emissions were 3.5, 2.6, and 3.1 kg NO-N ha yr for west, central, and east, respectively. Direct NO emissions estimated by the DNDC model were 1.93% of N fertilizer input to corn fields in Iowa, with values ranging from 1.66% in the northwest cropping district to 2.25% in the north-central cropping district. These values are higher than the average 1% loss rate used in the IPCC Tier 1 approach. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Emissions of N2O and NO from fertilized fields: Summary of available measurement data

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Boumans, L. J. M.; Batjes, N. H.

    2002-12-01

    Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was summarized to assess the influence of various factors regulating emissions from mineral soils. The data indicate that there is a strong increase of both N2O and NO emissions accompanying N application rates, and soils with high organic-C content show higher emissions than less fertile soils. A fine soil texture, restricted drainage, and neutral to slightly acidic conditions favor N2O emission, while (though not significant) a good soil drainage, coarse texture, and neutral soil reaction favor NO emission. Fertilizer type and crop type are important factors for N2O but not for NO, while the fertilizer application mode has a significant influence on NO only. Regarding the measurements, longer measurement periods yield more of the fertilization effect on N2O and NO emissions, and intensive measurements (≥1 per day) yield lower emissions than less intensive measurements (2-3 per week). The available data can be used to develop simple models based on the major regulating factors which describe the spatial variability of emissions of N2O and NO with less uncertainty than emission factor approaches based on country N inputs, as currently used in national emission inventories.

  16. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  17. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    PubMed Central

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-01-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  18. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    NASA Astrophysics Data System (ADS)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  19. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  20. Field emission analysis of band bending in donor/acceptor heterojunction

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Li, Shuai; Wang, Guiwei; Zhao, Tianjiao; Zhang, Gengmin

    2016-06-01

    The donor/acceptor heterojunction plays an important role in organic solar cells. An investigation of band bending in the donor/acceptor heterojunction is helpful in analysis of the charge transport behavior and for the improvement of the device performance. In this work, we report an approach for detection of band bending in a donor/acceptor heterojunction that has been prepared on a small and sharp tungsten tip. In situ field emission measurements are performed after the deposition process, and a linear Fowler-Nordheim plot is obtained from the fresh organic film surface. The thickness-dependent work function is then measured in the layer-by-layer deposited heterojunction. Several different types of heterojunction (zinc phthalocyanine (ZnPc)/C60, copper phthalocyanine (CuPc)/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, and CuPc/C60) are fabricated and analyzed. The different charge transfer directions in the heterojunctions are distinguished by field emission measurements. The calculation method used to determine the band bending is then discussed in detail. A triple layer heterojunction (C60/ZnPc/CuPc) is also analyzed using this method. A small amount of band bending is measured in the outer CuPc layer. This method provides an independent reference method for determination of the band bending in an organic heterojunction that will complement photoemission spectroscopy and current-voltage measurement methods.

  1. Simulated management effects on ammonia emissions from field applied manure.

    PubMed

    Smith, E; Gordon, R; Bourque, C; Campbell, A; Génermont, S; Rochette, P; Mkhabela, M

    2009-06-01

    A need exists to improve the utilization of manure nutrients by minimizing NH(3) emissions from land application of manure. Management strategies to reduce NH(3) emissions are available; however, few have been validated under Canadian conditions. A well tested and accurate simulation model, however, can help overcome this challenge by determining appropriate management strategies for a given set of field conditions. The Volt'Air simulation model was utilized to estimate NH(3) volatilization from manure spreading for various manure spreading considerations under a range of atmospheric conditions typically encountered in eastern Canada. Considerations included: (i) soil liming, (ii) time of day of manure spreading, (iii) rainfall (timing and amount) and (iv) manure incorporation (timing, depth and manure coverage). Results demonstrated that liming to increase soil pH, increased NH(3) emissions by 3.3 kg ha(-1) for each increment of 0.1 pH (up to a 1.5 total increase), over no liming at 34.6 kg ha(-1). For each hour delay in manure spreading past 0800 h, NH(3) losses were reduced by 1.5 kg ha(-1). Rainfall (10mm) at least 20 h after manure application reduced losses, with increased reductions at higher rainfall amounts. Incorporation soon (1h) after application was best for NH(3) mitigation. Increasing the depth of incorporation by 5c m reduced NH(3) emissions by 4.4 kg ha(-1); also increasing manure coverage by incorporation reduced losses by 2 kg ha(-1) for each 10% increase in coverage, compared to surface application at 34.6 kg ha(-1). This investigation using Volt'Air yielded valuable information about simulating manure management strategies and the magnitude of their effects on NH(3) emissions.

  2. All-optical signatures of strong-field QED in the vacuum emission picture

    NASA Astrophysics Data System (ADS)

    Gies, Holger; Karbstein, Felix; Kohlfürst, Christian

    2018-02-01

    We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3 +1 -dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.

  3. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    PubMed

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  4. On stabilization of field emission and increase in the current density of planar nanostructures with DLC films

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.

    2018-04-01

    The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.

  5. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably

  6. Field emission from carbon nanotube fibers in varying anode-cathode gap with the consideration of contact resistance

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Fairchild, S. B.; Back, T. C.; Luo, Yi

    2017-12-01

    This paper studies field emission (FE) from a single carbon nanotube (CNT) fiber with different anode-cathode (AK) gap distances. It is found that the field enhancement factor depends strongly on the finite AK gap distance, due to the combination of geometrical effects and possible fiber morphology change. The geometrical effects of AK gap distance on the field enhancement factor are confirmed using COMSOL simulations. The slope drop in the Fowler-Northeim (FN) plot of the FE data in the high voltage is related to the electrical contact resistance between the CNT fiber and the substrate. It is found that even a small series resistance to the field emitter (<30% of the emission gap impedance) can strongly modify the FE characteristics in the high voltage regime, inducing a strong deviation from the linear FN plot.

  7. Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance

    PubMed Central

    Longtin, Rémi; Ramon Sanchez-Valencia, Juan; Shorubalko, Ivan; Furrer, Roman; Hack, Erwin; Elsener, Hansrudolf; Gröning, Oliver; Greenwood, Paul; Rupesinghe, Nalin; Teo, Kenneth; Leinenbach, Christian; Gröning, Pierangelo

    2015-01-01

    The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag–Cu–Ti alloy and at 880 °C with a Cu–Sn–Ti–Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 μA was drawn from the brazed nanotubes at an applied electric field of 0.6 V μm−1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected. PMID:27877755

  8. Molecular dynamics simulations of field emission from a prolate spheroidal tip

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2016-12-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with a spherical approximation, which is good around the top of the tip, i.e., region where the current is generated.

  9. Far field emission profile of pure wurtzite InP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less

  10. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-06-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  11. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-05-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  12. Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

    USDA-ARS?s Scientific Manuscript database

    Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic and highly volatile which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-di...

  13. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  14. Calibrated Passive Sampling--Multi-plot Field Measurements of NH3 Emissions with a Combination of Dynamic Tube Method and Passive Samplers.

    PubMed

    Pacholski, Andreas

    2016-03-21

    Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha(-1)). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from

  15. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO4:Dy TL material

    NASA Astrophysics Data System (ADS)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Hamid, Muhammad Azmi Abdul; Dollah, Mohd Taufik

    2014-09-01

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO4) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO4 with average crystallite size of 74 nm with orthorhombic crystal system. The TL behavior of produced CaSO4:Dy was studied using a TLD reader after exposure to gamma ray by Co60 source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.

  16. Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties.

    PubMed

    Lin, Jing; Huang, Yang; Bando, Yoshio; Tang, Chengchun; Li, Chun; Golberg, Dmitri

    2010-04-27

    We report on the synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures via a simple catalyst-free method. A typical heterostructure, where an In2O3 nanowire forms a sort of a "dorsal fin" on the Ga2O3 nanobelt, exhibits the T-shaped cross-section. The structure, electrical porperties, and field-emission properties of this material are systematically investigated. The heterostructures possess a typical n-type semiconducting behavior with enhanced conductivity. Field-emission measurements show that they have a low turn-on field (approximately 1.31 V/microm) and a high field-enhancement factor (over 4000). The excellent field-emission characteristics are attributed to their special geometry and good electrical properties. The present In2O3-decorated Ga2O3 heterostructures are envisaged to be decent field-emitters useful in advanced electronic and optoelectronic nanodevices.

  17. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    PubMed

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  19. Analysis of Biogenic VOCs Emissions During the MAPS-Seoul Aircraft Field Campaign

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Woo, J. H.; Kim, Y.; Bu, C.; Kim, J.; Kim, H. K.; Lee, M. H.; Eo, Y.

    2016-12-01

    The MAPS-Seoul (Megacity Air Pollution Studies-Seoul) aircraft mission was conducted in May - June 2016 to understand atmospheric environment over the South Korea. BVOCs emissions forecasting, along with other components, were conducted daily in support of the aircraft mission planning. The biogenic emissions as well as anthropogenic ones were very important factor to model and analyze atmospheric environment since more than 80% of global VOCs emission comes from biogenic sources. This also could be true for South Korea, since more than 70% of its land area are vegetated such as forest, cropland. For modeling-based BVOC emission estimation, geographical distribution of PFT (plant functional type) and LAI (Leaf Area Index) are considered as very important driving variables. Most of cases, PFTs and LAI were derived from the low-resolution satellite-based information which are not quite ideal for relatively small area like South Korea. In this study, we developed the more reliable Korean PFT and LAI cover derived from Korean landcover maps and modeled satellite images. The WRF-MEGAN modeling framework over South Korea for the period of May to June 2016 was used to estimate re-analysis BVOCs emission field. Analysis of different PFT and LAI inputs affected local and national biogenic emission estimations will be presented at site. Acknowledgements : This subject is supported by Korea Ministry of Environment as "Climate Change Correspondence Program". This work was supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea.

  20. Fabrication of tantalum and nitrogen codoped ZnO (Ta, N-ZnO) thin films using the electrospay: twin applications as an excellent transparent electrode and a field emitter.

    PubMed

    Mahmood, Khalid; Park, Seung Bin; Sung, Hyung Jin

    2013-05-01

    The realization of stable p-type nitrogen-doped ZnO thin films with durable and controlled growth is important for the fabrication of nanoscale electronic and optoelectronic devices. ZnO thin films codoped with tantalum and nitrogen (Ta, N-ZnO) were fabricated by using the electrospraying method at an atmospheric pressure. X-ray diffraction (XRD) studies demonstrated that all the prepared films were polycrystalline in nature with hexagonal wurtzite structure. In addition, a shift in the XRD patterns was observed, and the crystal orientation was changed at a certain amount of nitrogen (>6 at.%) in the starting solution. Analysis of X-ray diffraction patterns and X-ray photoelectron spectra revealed that nitrogen which was combined with the zinc atom (N-Zn) was successfully doped into the ZnO crystal lattice. It was also observed that 2 at.% tantalum and 6 at.% nitrogen (2 at.% Ta and 6 at.% N) were the optimal dopant amounts to achieve the minimum resistivity of about 9.70 × 10(-5) Ω cm and the maximum transmittance of 98% in the visible region. Consequently, the field-emission characteristics of such a Ta, N-ZnO emitter can exhibit the higher current density of 1.33 mA cm(-2), larger field-enhancement factor (β) of 4706, lower turn-on field of 2.6 V μm(-1), and lower threshold field of 3.5 V μm(-1) attributed to the enhanced conductivity and better crystallinity of films. Moreover, the obtained values of resistivity were closest to the lowest resistivity values among the doped ZnO films as well as to the indium tin oxide (ITO) resistivity values that were previously studied. We confirmed that the tantalum and nitrogen atoms substitution in the ZnO lattice induced positive effects in terms of enhancing the free carrier concentration which will further improve the electrical, optical, and field-emission properties. The proposed electrospraying method was well suitable for the fabrication of Ta, N-ZnO thin films at optimum conditions with superior electrical

  1. Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis

    1998-10-01

    Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.

  2. Vertically aligned carbon nanopillars with size and spacing control for a transparent field emission display.

    PubMed

    Lee, Seok Woo; Lee, Chang Hwa; Lee, Jung A; Lee, Seung S

    2013-01-18

    A top-down fabrication method is presented for vertically aligned carbon nanopillars (CNPs) using photolithography and pyrolysis. The modified backside exposure method of photolithography fabricates vertically aligned polymer (SU-8) nanopillars. The pyrolysis process, which transforms the polymer to amorphous carbon, reliably produces vertically aligned CNPs with widths ranging from 100 to 400 nm. The CNPs can be used as a transparent field emission cathode for a transparent display and light emission is observed.

  3. Coherent infrared emission from myoglobin crystals: An electric field measurement

    PubMed Central

    Groot, Marie-Louise; Vos, Marten H.; Schlichting, Ilme; van Mourik, Frank; Joffre, Manuel; Lambry, Jean-Christophe; Martin, Jean-Louis

    2002-01-01

    We introduce coherent infrared emission interferometry as a χ(2) vibrational spectroscopy technique and apply it to studying the initial dynamics upon photoactivation of myoglobin (Mb). By impulsive excitation (using 11-fs pulses) of a Mb crystal, vibrations that couple to the optical excitation are set in motion coherently. Because of the order in the crystal lattice the coherent oscillations of the different proteins in the crystal that are associated with charge motions give rise to a macroscopic burst of directional multi-teraHertz radiation. This radiation can be detected in a phase-sensitive way by heterodyning with a broad-band reference field. In this way both amplitude and phase of the different vibrations can be obtained. We detected radiation in the 1,000–1,500 cm−1 frequency region, which contains modes sensitive to the structure of the heme macrocycle, as well as peripheral protein modes. Both in carbonmonoxy-Mb and aquomet-Mb we observed emission from six modes, which were assigned to heme vibrations. The phase factors of the modes contributing to the protein electric field show a remarkable consistency, taking on values that indicate that the dipoles are created “emitting” at t = 0, as one would expect for impulsively activated modes. The few deviations from this behavior in Mb-CO we propose are the result of these modes being sensitive to the photodissociation process and severely disrupted by it. PMID:11818575

  4. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  5. Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Weiner, B. R.; Morell, G.

    2002-06-01

    Results are reported on the electron field emission properties of sulfur (S)-incorporated nanocrystalline carbon (n-C:S) thin films grown on molybdenum (Mo) substrates by hot-filament chemical vapor deposition (HFCVD) technique. In addition to the conventionally used methane (CH4) as carbon precursor with high hydrogen (H2) dilution, hydrogen sulfide-hydrogen (H2)S/H2 premix gas was used for sulfur incorporation. The field emission properties for the S-incorporated films were investigated systematically as a function of substrate temperature (TS) and sulfur concentration. Lowest turn-on field achieved was observed at around 4.0 V/mum for the n-C:S sample grown at TS of 900 degC with 500 ppm of H2S. These results are compared with those films grown without sulfur (n-C) at a particular TS. The turn-on field was found to be almost half for the S-assisted film thus demonstrating the effect of sulfur addition to the chemical vapor deposition process. An inverse relation between turn-on field (EC), growth temperature and sulfur concentration was found. The S incorporation also causes significant microstructural changes, as characterized with non-destructive complementary ex situ techniques: scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman spectroscopy (RS). S-assisted films show relatively smoother and finer-grained surfaces than those grown without it. These findings are discussed in terms of the dual role of sulfur in enhancing the field emission properties by controlling the sp2 C cluster size and introducing substantial structural defects through its incorporation. The in-plane correlation length (La) of sp2 C cluster was determined from the intensity ratio of the D- and G-bands I(D)/I(G) in the visible RS as a function of deposition temperature and sulfur concentration using a phenomenological model. The turn-on field was found to decrease with increasing sp2 C cluster size in general ranging from 0.8 to 1.4 nm. The films having sp2 C

  6. Sealing rice field boundaries in Bangladesh: a pilot study demonstrating reductions in water use, arsenic loading to field soils, and methane emissions from irrigation water.

    PubMed

    Neumann, Rebecca B; Pracht, Lara E; Polizzotto, Matthew L; Badruzzaman, A Borhan M; Ali, M Ashraf

    2014-08-19

    Irrigation of rice fields in Bangladesh with arsenic-contaminated and methane-rich groundwater loads arsenic into field soils and releases methane into the atmosphere. We tested the water-savings potential of sealing field bunds (raised boundaries around field edges) as a way to mitigate these negative outcomes. We found that, on average, bund sealing reduced seasonal water use by 52 ± 17% and decreased arsenic loading to field soils by 15 ± 4%; greater savings in both water use and arsenic loading were achieved in fields with larger perimeter-to-area ratios (i.e., smaller fields). Our study is the first to quantify emission of methane from irrigation water in Bangladesh, a currently unaccounted-for methane source. Irrigation water applied to unsealed fields at our site emits 18 to 31 g of methane per square-meter of field area per season, potentially doubling the atmospheric input of methane from rice cultivation. Bund sealing reduced the emission of methane from irrigation water by 4 to 19 g/m(2). While the studied outcomes of bund sealing are positive and compelling, widespread implementation of the technique should consider other factors, such as effect on yields, financial costs, and impact on the hydrologic system. We provide an initial and preliminary assessment of these implementation factors.

  7. Low-noise cold-field emission current obtained between two opposed carbon cone nanotips during in situ transmission electron microscope biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoop, L. de; Gatel, C.; Houdellier, F.

    2015-06-29

    A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.

  8. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Daly, Edward; Drury, Michael

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carriedmore » out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.« less

  9. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    NASA Astrophysics Data System (ADS)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  10. The smooth transition from field emission to a self-sustained plasma in microscale electrode gaps at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan

    2016-06-01

    We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.

  11. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    NASA Astrophysics Data System (ADS)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  12. Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Street, Rachel A.; Duckham, S. Craig; Hewitt, C. Nicholas

    1996-10-01

    Isoprene and monoterpene emission rates were measured from Sitka spruce (Picea sitchensis Bong.) with a dynamic flow-through branch enclosure, both in the laboratory and in the field in the United Kingdom. In the laboratory, emission rates of isoprene comprised over 94% of the identified VOC species, and were exponentially related to temperature over a period of 1 day. This exponential relationship broke down at ˜33°C. Field measurements were taken on five sampling days in 1992 and 1993, in Grizedale Forest, Cumbria. Total emission rates were in the range 36-3771 ng g-1 h-1. Relative emissions were more variable than suggested by laboratory measurements, with monoterpenes contributing at least 64% to the total emissions in most cases. There was a significant variation in the basal emission rate both across the growing season and between different ages of vegetation, the causes of which are as yet unknown. Total emission rates, in July 1993, were estimated to be between 0.01 and 0.27% of assimilated carbon.

  13. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    PubMed

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis of carbon nanofibres from waste chicken fat for field electron emission applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suriani, A.B., E-mail: absuriani@yahoo.com; Department of Physics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim, Perak 35900; Dalila, A.R.

    Highlights: • Waste chicken fat is used as a starting material to produce CNFs via TCVD method. • High heating rate applied resulted in aggregation of catalyst particles. • Aggregated catalyst produced sea urchin-like CNFs with amorphous nature. • The as-grown CNFs presented a potential for field electron emission applications. - Abstract: Carbon nanofibres (CNFs) with sea urchin-like morphology were synthesised from waste chicken fat precursor via catalytic thermal chemical vapour deposition method at 750 °C. The CNFs showed amorphous structures under high-resolution transmission electron microscopy, micro-Raman spectroscopy and X-ray diffraction examination. X-ray photoelectron spectroscopy analysis confirmed that the coremore » of the sea urchin-like CNFs was composed of Fe{sub 3}C formed within the first 20 min of synthesis time. The growth of amorphous CNFs from agglomerated Fe{sub 3}C particles was favourable due to the high heating rate applied during the synthesis. Field electron emission examination of the CNFs indicated turn-on and threshold field values of 5.4 and 6.6 V μm{sup −1} at current density of 1 and 10 μA cm{sup −2}, respectively. This study demonstrates that waste chicken fat, a low-cost and readily available resource, can be used as an inexpensive carbon source for the production of CNFs with a potential application in field electron emitters.« less

  15. Methane emission from a paddy field with pre-germinated system in Brazilian Southeast

    NASA Astrophysics Data System (ADS)

    Lima, M. A.; Luiz, A. J. B.; Villela, O. V.

    2017-12-01

    Methane is a major gas of greenhouse effect from agricultural activities, and the flooded paddy field is one of its sources. Methane production in the soil, under this cultivation, varies over the cropping season, due to plant physiological changes, climatic conditions, crop handling and local soil conditions, factors that, together, influence methane emissions and their amplitudes. Local measurements of CH4 emissions are essential for the improvement of national and regional gas emission inventories. Most part of the studies has been carried out in temperate and subtropical climate regions. This study aimed to determine the accumulated CH4 emission from a rice field with two different rice varieties under tropical climate. The CH4 emission assessments were held in the experimental area maintained by APTA (Agricultural Technology State Agency) in Pindamonhangaba, State of São Paulo (22°55' S, 45°30' W), Brazil, in two growing seasons (2013/4 and 2014/5). The soil is a Gleysol with clayey or loamy-clayey texture. The experiment had two varieties (IAC-105 and Epagri-106) in four blocks using pre-germinated system under continuously flooding management with addition of urea (80 kg N ha-1) as fertilizer. Gas efflux determination used the chamber-based method. The chambers (60 x 60 cm) of aluminum and insulating material were composed by permanent anchors, extensors and lids equipped with temperature sensor, fans and septum for sampling. The gas was sampled each five minutes till 25 minutes by using 60 mL BD plastic syringes and transferred to evacuated 12 mL LABCO vials. Gas sampling occurred once to twice a week and samples were analyzed using a Shimadzu GC-2014 gas chromatograph. Seasonal CH4 flux has varied from 3.1 to 11.8 g CH4 m-2. We have carried out a similar experiment in 2015/6 and 2016/2017 seasons and further analysis of all data will be done for assessment of the relation gas flux/productivity.

  16. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    DOEpatents

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas H.; Whealton, John H.; Whitson, John C.; Wilgen, John B.

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  17. Powder XRD and dielectric studies of gel grown calcium pyrophosphate crystals

    NASA Astrophysics Data System (ADS)

    Parekh, Bharat; Parikh, Ketan; Joshi, Mihir

    2013-06-01

    Formation of calcium pyrophosphate dihydrate (CPPD) crystals in soft tissues such as cartilage, meniscus and synovial tissue leads to CPPD deposition diseases. The appearance of these crystals in the synovial fluid can give rise to an acute arthritic attack with pain and inflammation of the joints, a condition called pseudo-gout. The growth of CPP crystals has been carried out, in the present study, using the single diffusion gel growth technique, which can broadly mimic in vitro the condition in soft tissues. The crystals were characterized by different techniques. The FTIR study revealed the presence of various functional groups. Powder XRD study was also carried out to verify the crystal structure. The dielectric study was carried out at room temperature by applying field of different frequency from 500 Hz to 1 MHz. The dielectric constant, dielectric loss and a.c. resistivity decreased as frequency increased, whereas the a.c. conductivity increased as frequency increased.

  18. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  19. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less

  20. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  1. Evaluation of fumigation and surface seal methods on fumigant emissions in an orchard replant field.

    PubMed

    Gao, Suduan; Trout, Thomas J; Schneider, Sally

    2008-01-01

    Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.

  2. Modelling emission turbulence-radiation interaction by using a hybrid flamelet/stochastic Eulerian field method

    NASA Astrophysics Data System (ADS)

    Consalvi, Jean-Louis

    2017-01-01

    The time-averaged Radiative Transfer Equation (RTE) introduces two unclosed terms, known as `absorption Turbulence Radiation Interaction (TRI)' and `emission TRI'. Emission TRI is related to the non-linear coupling between fluctuations of the absorption coefficient and fluctuations of the Planck function and can be described without introduction any approximation by using a transported PDF method. In this study, a hybrid flamelet/ Stochastic Eulerian Field Model is used to solve the transport equation of the one-point one-time PDF. In this formulation, the steady laminar flamelet model (SLF) is coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities and the PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. Soot production is modeled by a semi-empirical model and the spectral dependence of the radiatively participating species, namely combustion products and soot, are computed by using a Narrow Band Correlated-k (NBCK) model. The model is applied to simulate an ethylene/methane turbulent jet flame burning in an oxygen-enriched environment. Model results are compared with the experiments and the effects of taken into account Emission TRI on flame structure, soot production and radiative loss are discussed.

  3. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the

  5. Calibrated Passive Sampling - Multi-plot Field Measurements of NH3 Emissions with a Combination of Dynamic Tube Method and Passive Samplers

    PubMed Central

    Pacholski, Andreas

    2016-01-01

    Agricultural ammonia (NH3) emissions (90% of total EU emissions) are responsible for about 45% airborne eutrophication, 31% soil acidification and 12% fine dust formation within the EU15. But NH3 emissions also mean a considerable loss of nutrients. Many studies on NH3 emission from organic and mineral fertilizer application have been performed in recent decades. Nevertheless, research related to NH3 emissions after application fertilizers is still limited in particular with respect to relationships to emissions, fertilizer type, site conditions and crop growth. Due to the variable response of crops to treatments, effects can only be validated in experimental designs including field replication for statistical testing. The dominating ammonia loss methods yielding quantitative emissions require large field areas, expensive equipment or current supply, which restricts their application in replicated field trials. This protocol describes a new methodology for the measurement of NH3 emissions on many plots linking a simple semi-quantitative measuring method used in all plots, with a quantitative method by simultaneous measurements using both methods on selected plots. As a semi-quantitative measurement method passive samplers are used. The second method is a dynamic chamber method (Dynamic Tube Method) to obtain a transfer quotient, which converts the semi-quantitative losses of the passive sampler to quantitative losses (kg nitrogen ha-1). The principle underlying this approach is that passive samplers placed in a homogeneous experimental field have the same NH3 absorption behavior under identical environmental conditions. Therefore, a transfer co-efficient obtained from single passive samplers can be used to scale the values of all passive samplers used in the same field trial. The method proved valid under a wide range of experimental conditions and is recommended to be used under conditions with bare soil or small canopies (<0.3 m). Results obtained from

  6. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    NASA Astrophysics Data System (ADS)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2013-10-01

    Plants emit significant amounts of monoterpenes into the Earth's atmosphere where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror images forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR. The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  7. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block

    PubMed Central

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315

  8. Comparison of Field Measurements to Methane Emissions ...

    EPA Pesticide Factsheets

    Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la

  9. Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. S.; Chen, J.; Liu, T. Q.; Cao, C. G.; Li, C. F.

    2016-11-01

    The effects of nitrogen (N) fertilizer sources and tillage practices on greenhouse gas (GHG) emission have been well elucidated separately. However, it is still remained unclear regarding the combined effects of N fertilization and tillage practices on the global warming potential (GWP) and net ecosystem economic budget (NEEB) in paddy fields. In this paper, a 2-year field experiment was performed to investigate the effects of N fertilizer sources (N0, no N; IF, 100% N from chemical fertilizer; SRIF, 50% N from slow-release fertilizer and 50% N from chemical fertilizer; OF, 100% N from organic fertilizer; OFIF, 50% N from organic fertilizer and 50% N from chemical fertilizer) and tillage practices (CT, conventional intensive tillage; NT, no-tillage) on the emissions of methane (CH4) and nitrous oxide (N2O), GWP, greenhouse gas intensity (GHGI), and NEEB in paddy fields of central China. Compared with N0 treatment, IF, SRIF, OF and OFIF treatments greatly enhanced the cumulative seasonal CH4 emissions (by 54.7%, 41.7%, 51.1% and 66.0%, respectively) and N2O emissions (by 164.5%, 93.4%, 130.2% and 251.3%, respectively). NT treatment significantly decreased the GWP and GHGI compared with CT treatment. On the other hand, NT treatment significantly decreased CH4 emissions by 8.5-13.7%, but did not affect N2O emissions relative to CT treatment. Application of N fertilizers significantly increased GWP and GHGI. It was worth noting that the combined treatment of OFIF and NT resulted in the second-highest GWP and GHGI and the largest NEEB among all treatments. Therefore, our results suggest that OFIF combined with NT is an eco-friendly strategy to optimize the economic and environmental benefits of paddy fields in central China. Although the treatment of SRIF plus NT showed the lowest GWP and GHGI and the highest grain yield among all treatments, it led to the lowest NEEB due to its highest fertilizer cost. These results indicate that the government should provide

  10. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    PubMed

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  11. Pulsar Emission Geometry and Accelerating Field Strength

    DTIC Science & Technology

    2011-11-01

    ar X iv :1 11 1. 03 25 v1 [ as tr o- ph .H E ] 1 N ov 2 01 1 2011 Fermi Symposium, Roma., May. 9-12 1 Pulsar Emission Geometry and Accelerating...observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems. The high...the Vela and CTA 1 pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission

  12. Investigation of Electron Transport Across Vertically Grown CNTs Using Combination of Proximity Field Emission Microscopy and Scanning Probe Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, Shashikant P.; Yoo, Ji-Beom; Dharmadhikari, Chandrakant V.

    2018-03-01

    Field emission from nanostructured films is known to be dominated by only small number of localized spots which varies with the voltage, electric field and heat treatment. It is important to develop processing methods which will produce stable and uniform emitting sites. In this paper we report a novel approach which involves analysis of Proximity Field Emission Microscopic (PFEM) images using Scanning Probe Image Processing technique. Vertically aligned carbon nanotube emitters have been deposited on tungsten foil by water assisted chemical vapor deposition. Prior to the field electron emission studies, these films were characterized by scanning electron microscopy, transmission electron microscopy, and Atomic Force Microscopy (AFM). AFM images of the samples show bristle like structure, the size of bristle varying from 80 to 300 nm. The topography images were found to exhibit strong correlation with current images. Current-Voltage (I-V) measurements both from Scanning Tunneling Microscopy and Conducting-AFM mode suggest that electron transport mechanism in imaging vertically grown CNTs is ballistic rather than usual tunneling or field emission with a junction resistance of 10 kΩ. It was found that I-V curves for field emission mode in PFEM geometry vary initially with number of I-V cycles until reproducible I-V curves are obtained. Even for reasonably stable I-V behavior the number of spots was found to increase with the voltage leading to a modified Fowler-Nordheim (F-N) behavior. A plot of ln(I/V3) versus 1/V was found to be linear. Current versus time data exhibit large fluctuation with the power spectral density obeying 1/f2 law. It is suggested that an analogue of F-N equation of the form ln(I/Vα) versus 1/V may be used for the analysis of field emission data, where α may depend on nanostructure configuration and can be determined from the dependence of emitting spots on the voltage.

  13. Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.

    2011-02-01

    We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.

  14. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment.

  15. Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prepared by reactive ion beam etching

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Qin, Shi-Qiao; Zhang, Xue-Ao; Chang, Sheng-Li; Li, Hui-Hui; Yuan, Ji-Ren

    2016-05-01

    Homogeneous diamond-like carbon (DLC) films were deposited on Si supports by a pulsed filtered cathodic vacuum arc deposition system. Using DLC films masked by Ni nanoparticles as precursors, highly aligned diamond-like carbon nanorod (DLCNR) arrays were fabricated by the etching of inductively coupled radio frequency oxygen plasma. The as-prepared DLCNR arrays exhibit excellent field emission properties with a low turn-on field of 2.005 V μm-1 and a threshold field of 4.312 V μm-1, respectively. Raman spectroscopy and x-ray photoelectron spectroscopy were employed to determine the chemical bonding structural change of DLC films before and after etching. It is confirmed that DLC films have good connection with Si supports via the formation of the SiC phase, and larger conductive sp2 domains are formed in the as-etched DLC films, which play essential roles in the enhanced field emission properties for DLCNR arrays.

  16. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  17. Aberration corrected 1.2-MV cold field-emission transmission electron microscope with a sub-50-pm resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akashi, Tetsuya; Takahashi, Yoshio; Tanigaki, Toshiaki, E-mail: toshiaki.tanigaki.mv@hitachi.com

    2015-02-16

    Atomic-resolution electromagnetic field observation is critical to the development of advanced materials and to the unveiling of their fundamental physics. For this purpose, a spherical-aberration corrected 1.2-MV cold field-emission transmission electron microscope has been developed. The microscope has the following superior properties: stabilized accelerating voltage, minimized electrical and mechanical fluctuation, and coherent electron emission. These properties have enabled to obtain 43-pm information transfer. On the bases of these performances, a 43-pm resolution has been obtained by correcting lens aberrations up to the third order. Observations of GaN [411] thin crystal showed a projected atomic locations with a separation of 44 pm.

  18. In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels.

    PubMed

    Hübner, C; Boos, R; Prey, T

    2005-01-01

    Within this project the emissions into the atmosphere of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) of 30 domestic heating appliances in Austrian households were tested. The appliances were single stoves (kitchen stove, continuous burning stove and tiled stove) and central heating boilers for solid fuels up to a nominal heat input of 50 kW. A main objective of this survey was to determine the PCDD/F emissions of domestic heating units under routine conditions. Therefore, the habitual combustion conditions used by the operators were not influenced. The original fuels and lightning supports were used and the operation of the units was carried out by the householders according to their usual practice. The data obtained were used to calculate in-field PCDD/F-emission factors. Most of the appliances have shown PCDD/F emissions within a concentration range of 0.01-0.3 ng TEQ/MJ. Modern fan-assisted wood heating boilers with afterburning and units for continuously burning of wood chips and wood pellets had the lowest emissions. High emissions were caused by unsuitable heating habits such as combustion of wastes and inappropriate operation of the appliances. There were only small differences between single stoves and central heating boilers or between wood and coal-fired appliances. The emission factors calculated are higher than those cited in literature, which are mainly derived from trials on test stands under laboratory conditions.

  19. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields.

    PubMed

    Liu, Gang; Yu, Haiyang; Ma, Jing; Xu, Hua; Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  1. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  2. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulanov, Alexey V., E-mail: a-bulanov@me.com; V.I. Il’ichev Pacific Oceanological Institute, Vladivostok, Russia 690041; Nagorny, Ivan G., E-mail: ngrn@mail.ru

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission inmore » fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.« less

  3. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  4. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  5. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    NASA Astrophysics Data System (ADS)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  6. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory.

    PubMed

    Rao, Sujaya; Cossé, Allard A; Zilkowski, Bruce W; Bartelt, Robert J

    2003-09-01

    The previously identified, male-specific compound of the cereal leaf beetle (CLB, Chrysomelidae; Oulema melanopus), (E)-8-hydroxy-6-methyl-6-octen-3-one, was studied further with respect to field activity and emission rate from male beetles. In a 5-week field experiment in Oregon, the compound was shown to function as an aggregation pheromone in attracting male and female CLBs migrating from overwintering sites in spring. Traps baited with the synthetic compound (500 microg per rubber septum) caught 3.3 times more CLBs than control traps. Lower doses of the pheromone (50 and 150 microg) were less attractive than the 500 microg dose. One relatively abundant, volatile compound from the host plant (oats), (Z)-3-hexenyl acetate, that elicited responses from beetle antennae was not attractive, either by itself or as a synergist of the pheromone. Both sexes were captured about equally for all treatments. We also measured daily pheromone emission by male beetles in the laboratory. Individual males feeding on oat seedlings under greenhouse conditions emitted as much as 6 microg per day, which is about 500 times higher than had been previously observed under incubator conditions. The pheromone emission rate was at least five times higher during the day than at night, and in one male, emission spanned a period of 28 d. The release rate of synthetic pheromone from the 500 microg septa was very similar to the maximum from single males; thus, future experiments should evaluate even higher doses. The field results indicate that the pheromone has potential as a monitoring tool for early detection of CLBs as they move from their overwintering sites into newly planted cereal crops in spring.

  7. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  8. Direct synthesis of Cu{sub 2}O-RGO nanocomposite on Cu foil by thermal evaporation method and its field emission study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansode, Sanjeewani; Khare, Ruchita; Harpale, Kashmira

    2015-06-24

    In this work, a facile one step thermal evaporation method for deposition of Cu{sub 2}O nanoparticles on RGO sheets to form Cu{sub 2}O-RGO nanocomposite is discussed. To the best of our knowledge, this is the first report on Cu{sub 2}O-RGO nanocomposite, directly grown on Cu foil by a simple thermal evaporation route. The as –prepared nanocomposite exhibits well dispersed Cu{sub 2}O nanoparticles distributed all over the graphene sheet. Field emission properties of the nanocomposite were investigated at a base pressure of 1*10{sup −8} torr. The turn on field, required to draw emission current density of 0.1µA/cm2, was found to bemore » 3.8V/µm with a maximum emission current density of 80 µA/cm2 at an applied field of 6.8 V/µm. Moreover, the nanocomposite shows fairly good emission stability without significant degradation of emission current. The FE results seem to be encouraging, indicative of potential candidature of the Cu{sub 2}O-RGO nanocomposite emitter as an electron source for practical applications in vacuum nanoelectronic devices.« less

  9. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  10. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    NASA Astrophysics Data System (ADS)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  11. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    PubMed

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  12. Prominent blue emission through Tb3+ doped La2O3 nano-phosphors for white LEDs

    NASA Astrophysics Data System (ADS)

    Jain, Neha; Singh, Rajan Kr; Srivastava, Amit; Mishra, S. K.; Singh, Jai

    2018-06-01

    In this article, we report the tunable luminescence emission of Tb3+ doped La2O3 nanophosphors synthesized by a facile and effective Polyol method. The structural and surface morphological studies have been carried out by employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD studies elucidate the proper phase formation and the results emanate from Raman spectroscopy of the as synthesized nanophosphor affirms it. The optical properties of the as fabricated nanoparticles have been investigated by Raman and photoluminescence (PL) spectroscopy. The PL spectroscopy shows the occurrence of excitation peaks at 305, 350 and 375 nm for 543 nm emissions, correspond to transition 5D4 →7F5. Emission spectra with 305 nm excitation exhibits characteristic emission peaks of Tb3+ion at 472, 487, 543 and 580 nm. The intensity of emission increases with Tb3+ concentration and is most prominent for 7 at% Tb3+ ion. The characteristic emissions of Tb3+ ion owes to the transition in which intensities of blue and green emission are prominent. The dominant intensity has been found for 472 nm (for blue emission). Commission international d 'Eclairage (CIE) co-ordinates have found in the light blue to green region. The research work provides a new interesting insight dealing with tunable properties with Tb3+ doping in La2O3 nanophosphors, to be useful for display devices, solar cells, LEDs and optoelectronic devices.

  13. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  14. A morphological filter for removing 'Cirrus-like' emission from far-infrared extragalactic IRAS fields

    NASA Technical Reports Server (NTRS)

    Appleton, P. N.; Siqueira, P. R.; Basart, J. P.

    1993-01-01

    The presence of diffuse extended IR emission from the Galaxy in the form of the so called 'Galactic Cirrus' emission has hampered the exploration of the extragalactic sky at long IR wavelengths. We describe the development of a filter based on mathematical morphology which appears to be a promising approach to the problem of cirrus removal. The method of Greyscale Morphology was applied to a 100 micron IRAS image of the M81 group of galaxies. This is an extragalactic field which suffers from serious contamination from foreground Galactic 'cirrus'. Using a technique called 'sieving', it was found that the cirrus emission has a characteristic behavior which can be quantified in terms of an average spatial structure spectrum or growth function. This function was then used to attempt to remove 'cirrus' from the entire image. The result was a significant reduction of cirrus emission by an intensity factor of 15 compared with the original input image. The method appears to preserve extended emission in the spatially extended IR disks of M81 and M82 as well as distinguishing fainter galaxies within bright regions of galactic cirrus. The techniques may also be applicable to IR databases obtained with the Cosmic Background Explorer.

  15. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  16. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    NASA Astrophysics Data System (ADS)

    Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.

    2011-12-01

    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10-12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m-2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the

  17. Detection and Analysis of the Magnetic Field Component of Electromagnetic Radiation Emission from Macroscopic Fracturing of Cement-Bound Granular Material

    NASA Astrophysics Data System (ADS)

    Maquiling, J. T.; Ceralde, P. I. B.

    2016-12-01

    Countries most prone to earthquake damage have been in pursuit of a possible earthquake precursor. This study aims to detect and measure the magnetic field component of the Electromagnetic Radiation (EMR) emitted by quasi-brittle materials that undergo macroscopic fracturing. Cement-Bound Granular Materials (CBGM) were prepared by mixing cement, sand and gravel in a beam mold. Additional aggregates in the form of saw dust were added to produce variable CBGM samples. A concrete beam holder was designed and fabricated such that induced cracks from impact loading would form at the center of the beam. Six Vernier software magnetic field sensors were used to detect the magnetic field (MF) component of the EMR emission. Initial calibration was done to minimize noise in the laboratory. The magnetic field sensors were set at a low amplification range (±6.4x10-3 T) setting with 0.0002 mT precision at 20-50 Hz. Sensor locations and orientations were specified and fixed throughout the experiment. The impact loading process was repeated until concrete failure. The time of drop was determined through the occurrence of peak sound levels (dB) induced by the collision noise using a sound level meter at fast time weighting. Magnetic field fluctuations manifesting near the occurrence of sound level impulses were recorded. Peak magnetic field values within ±200ms from the recorded time of impact were considered to be originating from the concrete fracture. Concrete samples consisting of cement, sand and gravel produced magnetic field emissions measuring 0.58-1.07 μT while the same concrete mixture added with dispersed fine sawdust released 0.55-1.28 μT. A more dispersed set of values of magnetic field emissions were observed for concrete with sawdust. Comparison between the average number of drops done before failure occurs between the two concrete mixtures also indicated that the addition of dispersed sawdust resulted to weaker CBGM samples. Upon increasing input energy from

  18. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David K; Lee, Christopher; Dazen, Kevin

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  19. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  20. CO2 diffuse emission from maar lake: An example in Changbai volcanic field, NE China

    NASA Astrophysics Data System (ADS)

    Sun, Yutao; Guo, Zhengfu; Liu, Jiaqi; Du, Jianguo

    2018-01-01

    Numerous maars and monogenetic volcanic cones are distributed in northeast China, which are related to westward deep subduction of the Pacific Ocean lithosphere, comprising a significant part of the "Pacific Ring of Fire". It is well known that diffuse CO2 emissions from monogenetic volcanoes, including wet (e.g., maar lake) and dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.), may contribute to budget of globally nature-derived greenhouse gases. However, their relationship between wet (e.g., maar lake) and concomitant dry degassing systems (e.g., soil diffuse emission, fault degassing, etc.) related to monogenetic volcanic field is poorly understood. Yuanchi maar, one of the typical monogenetic volcanic systems, is located on the eastern flank of Tianchi caldera in Changbai volcanic field of northeast China, which displays all of three forms of CO2 degassing including the maar lake, soil micro-seepage and fault degassing. Measurements of efflux of CO2 diffusion from the Yuanchi maar system (YMS) indicate that the average values of CO2 emissions from soil micro-seepage, fault degassing and water-air interface diffusion are 24.3 ± 23.3 g m- 2 d- 1, 39.2 ± 22.4 g m- 2 d- 1 and 2.4 ± 1.1 g m- 2 d- 1, respectively. The minimum output of CO2 diffuse emission from the YMS to the atmosphere is about 176.1 ± 88.3 ton/yr, of which 80.4% results from the dry degassing system. Degassing from the fault contributes to the most of CO2 emissions in all of the three forms of degassing in the YMS. Contributions of mantle, crust, air and organic CO2 to the soil gas are 0.01-0.10%, 10-20%, 32-36% and 48-54%, respectively, which are quantitatively constrained by a He-C isotope coupling calculation model. We propose that CO2 exsolves from the upper mantle melting beneath the Tianchi caldera, which migrates to the crustal magma chamber and further transports to the surface of YMS along the deep fault system. During the transportation processes, the emission

  1. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  2. Recent Progress in Silicon-Based MEMS Field Emission Thrusters

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin

    2005-02-01

    The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster

  3. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  4. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Pellinen and Michael Griffin

    2009-01-23

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured responsemore » time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.« less

  5. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    PubMed

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  6. Investigation of bandgap modulation, field emission and dielectric properties of cadmium doped CaCu3 Ti4O12

    NASA Astrophysics Data System (ADS)

    Maitra, S.; Mitra, R.; Bera, K. P.; Nath, T. K.

    2017-05-01

    We have prepared cadmium doped CCTO (Ca1-xCdxCu3Ti4O12 where x = 0.01, 0.02, 0.03, 0.04, 0.05) by Molten Salt Synthesis technique. It has exhibited high level of crystallinity and a well defined micrometre sized grains with uniform cubic morphology, as confirmed by a combination of X-ray diffraction and field emission scanning electron microscopy. Thereby we have found the modulation of its semiconducting bandgap as a function of doping from recorded UV-Vis reflectance spectra using Kubelka Munk (KM) method where with increasing Cadmium doping content the bandgap is found to increase. We have also carried out investigation on the field emission properties of CCTO crystals and it has exhibited poor field emission characteristics. Finally, we have investigated the dielectric properties of CCTO as a function of temperature. It has exhibited a giant dielectric property with low loss over a considerable temperature regime (50-300°C) and is found to exhibit Maxwell Wagner type dielectric relaxation.

  7. Thermoluminescence (TL) properties and x-ray diffraction (XRD) analysis of high purity CaSO{sub 4}:Dy TL material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamarudin, Nadira; Abdullah, Wan Saffiey Wan; Dollah, Mohd Taufik

    2014-09-03

    This paper presents the characterization and TL properties of dysprosium (Dy) doped calcium sulfate (CaSO{sub 4}) TL material produced by co-precipitation technique with 0.5mol% concentration of dopant. The morphology of the produced TL material was studied using scanning electron microscope (SEM) and the micrograph shows that rectangular parallelepiped shaped crystal with the average of 150 μm in length were produced. The crystallinity of the produced powder was studied using x-ray powder diffraction (XRD). The XRD spectra show that the TL material produced is high purity anhydrite CaSO{sub 4} with average crystallite size of 74 nm with orthorhombic crystal system. Themore » TL behavior of produced CaSO{sub 4}:Dy was studied using a TLD reader after exposure to gamma ray by Co{sup 60} source with the doses of 1,5 and 10 Gy. The glow curve shows linear response with glow peak around 230°C which is desired development in the field of radiation dosimetry.« less

  8. Excellent Field Emission Properties of Short Conical Carbon Nanotubes Prepared by Microwave Plasma Enhanced CVD Process

    PubMed Central

    2008-01-01

    Randomly oriented short and low density conical carbon nanotubes (CNTs) were prepared on Si substrates by tubular microwave plasma enhanced chemical vapor deposition process at relatively low temperature (350–550 °C) by judiciously controlling the microwave power and growth time in C2H2 + NH3gas composition and Fe catalyst. Both length as well as density of the CNTs increased with increasing microwave power. CNTs consisted of regular conical compartments stacked in such a way that their outer diameter remained constant. Majority of the nanotubes had a sharp conical tip (5–20 nm) while its other side was either open or had a cone/pear-shaped catalyst particle. The CNTs were highly crystalline and had many open edges on the outer surface, particularly near the joints of the two compartments. These films showed excellent field emission characteristics. The best emission was observed for a medium density film with the lowest turn-on and threshold fields of 1.0 and 2.10 V/μm, respectively. It is suggested that not only CNT tip but open edges on the body also act as active emission sites in the randomly oriented geometry of such periodic structures.

  9. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  10. Field test of available methods to measure remotely SOx and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  11. Theoretical modeling of the plasma-assisted catalytic growth and field emission properties of graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Suresh C.; Gupta, Neha

    2015-12-15

    A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, numbermore » density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations.« less

  12. Characterization of external potential for field emission resonances and its applications on nanometer-scale measurements

    NASA Astrophysics Data System (ADS)

    Lu, Shin-Ming; Chan, Wen-Yuan; Su, Wei-Bin; Pai, Woei Wu; Liu, Hsiang-Lin; Chang, Chia-Seng

    2018-04-01

    The form of the external potential (FEP) for generating field emission resonance (FER) in a scanning tunneling microscopy (STM) junction is usually assumed to be triangular. We demonstrate that this assumption can be examined using a plot that can characterize FEP. The plot is FER energies versus the corresponding distances between the tip and sample. Through this energy–distance relationship, we discover that the FEP is nearly triangular for a blunt STM tip. However, the assumption of a triangular potential form is invalid for a sharp tip. The disparity becomes more severe as the tip is sharper. We demonstrate that the energy–distance plot can be exploited to determine the barrier width in field emission and estimate the effective sharpness of an STM tip. Because FERs were observed on Pb islands grown on the Cu(111) surface in this study, determination of the tip sharpness enabled the derivation of the subtle expansion deformation of Pb islands due to electrostatic force in the STM junction.

  13. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines.

    PubMed

    Gadde, Butchaiah; Bonnet, Sébastien; Menke, Christoph; Garivait, Savitri

    2009-05-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed.

  14. Emissions of CH4 and N2O under Different Tillage Systems from Double-Cropped Paddy Fields in Southern China

    PubMed Central

    Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu

    2013-01-01

    Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NT

  15. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China.

    PubMed

    Zhang, Hai-Lin; Bai, Xiao-Lin; Xue, Jian-Fu; Chen, Zhong-Du; Tang, Hai-Ming; Chen, Fu

    2013-01-01

    Understanding greenhouse gases (GHG) emissions is becoming increasingly important with the climate change. Most previous studies have focused on the assessment of soil organic carbon (SOC) sequestration potential and GHG emissions from agriculture. However, specific experiments assessing tillage impacts on GHG emission from double-cropped paddy fields in Southern China are relatively scarce. Therefore, the objective of this study was to assess the effects of tillage systems on methane (CH4) and nitrous oxide (N2O) emission in a double rice (Oryza sativa L.) cropping system. The experiment was established in 2005 in Hunan Province, China. Three tillage treatments were laid out in a randomized complete block design: conventional tillage (CT), rotary tillage (RT) and no-till (NT). Fluxes of CH4 from different tillage treatments followed a similar trend during the two years, with a single peak emission for the early rice season and a double peak emission for the late rice season. Compared with other treatments, NT significantly reduced CH4 emission among the rice growing seasons (P<0.05). However, much higher variations in N2O emission were observed across the rice growing seasons due to the vulnerability of N2O to external influences. The amount of CH4 emission in paddy fields was much higher relative to N2O emission. Conversion of CT to NT significantly reduced the cumulative CH4 emission for both rice seasons compared with other treatments (P<0.05). The mean value of global warming potentials (GWPs) of CH4 and N2O emissions over 100 years was in the order of NT

  16. Construction and characterization of the fringe field monochromator for a field emission gun

    PubMed

    Mook; Kruit

    2000-04-01

    Although some microscopes have shown stabilities sufficient to attain below 0.1 eV spectral resolution in high-resolution electron energy loss spectroscopy, the intrinsic energy width of the high brightness source (0.3-0.6 eV) has been limiting the resolution. To lower the energy width of the source to 50 meV without unnecessary loss of brightness, a monochromator has been designed consisting of a short (4 mm) fringe field Wien filter and a 150 nm energy selection slit (nanoslit) both to be incorporated in the gun area of the microscope. A prototype has been built and tested in an ultra-high-vacuum setup (10(-9) mbar). The monochromator, operating on a Schottky field emission gun, showed stable and reproducible operation. The nanoslits did not contaminate and the structure remained stable. By measuring the current through the slit structure a direct image of the beam in the monochromator could be attained and the monochromator could be aligned without the use of a microscope. Good dispersed imaging conditions were found indicating an ultimate resolution of 55 meV. A Mark II fringe field monochromator (FFM) was designed and constructed compatible with the cold tungsten field emitter of the VG scanning transmission microscope. The monochromator was incorporated in the gun area of the microscope at IBM T.J. Watson research center, New York. The monochromator was aligned on 100 kV and the energy distribution measured using the monochromator displayed a below 50 meV filtering capability. The retarding Wien filter spectrometer was used to show a 61 meV EELS system resolution. The FFM is shown to be a monochromator which can be aligned without the use of the electron microscope. This makes it directly applicable for scanning transmission microscopy and low-voltage scanning electron microscopy, where it can lower the resolution loss which is caused by chromatic blur of the spot.

  17. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  18. Magnetic composites from minerals: study of the iron phases in clay and diatomite using Mössbauer spectroscopy, magnetic measurements and XRD

    NASA Astrophysics Data System (ADS)

    Cabrera, M.; Maciel, J. C.; Quispe-Marcatoma, J.; Pandey, B.; Neri, D. F. M.; Soria, F.; Baggio-Saitovitch, E.; de Carvalho, L. B.

    2014-01-01

    Magnetic particles as matrix for enzyme immobilization have been used and due to the enzymatic derivative can be easily removed from the reaction mixture by a magnetic field. This work presents a study about the synthesis and characterization of iron phases into magnetic montmorillonite clay (mMMT) and magnetic diatomaceous earth (mDE) by 57Fe Mössbauer spectroscopy (MS), magnetic measurements and X-ray diffraction (XRD). Also these magnetic materials were assessed as matrices for the immobilization of invertase via covalent binding. Mössbauer spectra of the magnetic composites performed at 4.2 K showed a mixture of magnetite and maghemite about equal proportion in the mMMT, and a pure magnetite phase in the sample mDE. These results were verified using XRD. The residual specific activity of the immobilized invertase on mMMT and mDE were 83 % and 92.5 %, respectively. Thus, both magnetic composites showed to be promising matrices for covalent immobilization of invertase.

  19. Polarized x-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization.

    PubMed

    Lai, Dong; Ho, Wynn C G

    2003-08-15

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  20. Polarized X-Ray Emission from Magnetized Neutron Stars: Signature of Strong-Field Vacuum Polarization

    NASA Astrophysics Data System (ADS)

    Lai, Dong; Ho, Wynn C.

    2003-08-01

    In the atmospheric plasma of a strongly magnetized neutron star, vacuum polarization can induce a Mikheyev-Smirnov-Wolfenstein type resonance across which an x-ray photon may (depending on its energy) convert from one mode into the other, with significant changes in opacities and polarizations. We show that this vacuum resonance effect gives rise to a unique energy-dependent polarization signature in the surface emission from neutron stars. The detection of polarized x rays from neutron stars can provide a direct probe of strong-field quantum electrodynamics and constrain the neutron star magnetic field and geometry.

  1. Strong-Field Emission From High Aspect Ratio Si Emitter Arrays

    NASA Astrophysics Data System (ADS)

    Keathley, Phillip; Swanwick, Michael; Sell, Alexander; Putnam, William; Guerrera, Stephen; Velásquez-García, Luis; Kärtner, Franz

    2013-03-01

    We discuss photoelectron emission from an arrays of high aspect ratio, sharp Si emitters both experimentally and theoretically. The structures are prepared from highly doped single-crystal silicon having a pencil-like shape with end radii of curvature of around 10 nm. The tips were illuminated at a grazing incidence of roughly 84deg.with a laser pulse having a center wavelength of 800 nm, and a pulse duration of 35 fs from a regenerative amplifier system. Native oxide coated Si tips were characterized using a time of flight (TOF) electron energy spectrometer. An annealing process was observed, resulting in a red shift of the energy spectra along with an increased electron yield. Total current yield from samples having the oxide stripped were also studied. Apeak total emission of 0.68 pC/bunch, corresponding to around 1.5x103 electrons/tip/pulse was observed at a DC bias of 70 V. Both spectral and current characterization results are consistent with a stong-field photoemission process at the surface of the tip apex. This work was funded by Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office and the Space and Naval Warfare Systems Center (SPAWAR) under contract N66001-11-1-4192.

  2. An array of Eiffel-tower-shape AlN nanotips and its field emission properties

    NASA Astrophysics Data System (ADS)

    Tang, Yongbing; Cong, Hongtao; Chen, Zhigang; Cheng, Huiming

    2005-06-01

    An array of Eiffel-tower-shape AlN nanotips has been synthesized and assembled vertically with Si substrate by a chemical vapor deposition method at 700 °C. The single-crystalline AlN nanotips along [001] direction, including sharp tips with 10-100 nm in diameter and submicron-sized bases, are distributed uniformly with density of 106-107tips/cm2. Field emission (FE) measurements show that its turn on field is 4.7 V/μm, which is comparable to that of carbon nanotubes, and the fluctuation of FE current is as small as 0.74% for 4 h. It is revealed this nanostructure is available to optimize the FE properties and make the array a promising field emitter.

  3. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China.

    PubMed

    Dong, Wenjun; Guo, Jia; Xu, Lijun; Song, Zhifeng; Zhang, Jun; Tang, Ao; Zhang, Xijuan; Leng, Chunxu; Liu, Youhong; Wang, Lianmin; Wang, Lizhi; Yu, Yang; Yang, Zhongliang; Yu, Yilei; Meng, Ying; Lai, Yongcai

    2018-02-01

    Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH 4 ) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The N 2 O emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH 4 emissions at low level (75kgN/ha). But both CH 4 and N 2 O emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields. Copyright © 2017. Published by Elsevier B.V.

  4. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  5. Wet-season spatial variability of N2O emissions from a tea field in subtropical central China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Liu, X.; Li, Y.; Shen, J.; Wang, Y.; Zou, G.; Li, H.; Song, L.; Wu, J.

    2015-01-01

    Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability of N2O emissions from a red-soil tea field in Hunan province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10-10.30 a.m.) ranged from -1.73 to 1659.11 g N ha-1 d-1 and were positively skewed with an average flux of 102.24 g N ha-1 d-1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt), total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r=0.57-0.71, p<0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r= 0.74 and RMSE =1.18) outperformed ordinary kriging (r= 0.18 and RMSE =1.74), regression kriging with the sample position as a predictor (r= 0.49 and RMSE =1.55) and cokriging with SOCt as a covariable (r= 0.58 and RMSE =1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of the 4.0 ha tea field ranged from 148.2 to 208.1 g N d-1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea

  6. Wet-season spatial variability in N2O emissions from a tea field in subtropical central China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Liu, X.; Li, Y.; Shen, J.; Wang, Y.; Zou, G.; Li, H.; Song, L.; Wu, J.

    2015-06-01

    Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability in N2O emissions from a red-soil tea field in Hunan Province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10:00-10:30 a.m.) ranged from -1.73 to 1659.11 g N ha-1 d-1 and were positively skewed with an average flux of 102.24 g N ha-1 d-1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt) and total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r = 0.57-0.71, p < 0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r = 0.74 and RMSE = 1.18) outperformed ordinary kriging (r = 0.18 and RMSE = 1.74), regression kriging with the sample position as a predictor (r = 0.49 and RMSE = 1.55) and cokriging with SOCt as a covariable (r = 0.58 and RMSE = 1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of 4.0 ha tea field ranged from 148.2 to 208.1 g N d-1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern

  7. Measurements of neutral hydrogen profiles on the EXTRAP-T2 reversed-field pinch from time-resolved ? line emission

    NASA Astrophysics Data System (ADS)

    Sallander, J.; Hedqvist, A.; Rachlew-Källne, E.

    1998-09-01

    The investigations of the radial distributions of 0953-4075/31/17/015/img2 emission from the EXTRAP-T2 reversed-field pinch (RFP) plasma show that the emission profile varies a lot, even during one plasma discharge. At central electron temperatures of about 150 eV it was expected that the 0953-4075/31/17/015/img2 emission should emerge from the plasma centre. In comparison, 0953-4075/31/17/015/img4 is always observed to radiate from the centre. Our measurements of 0953-4075/31/17/015/img2 emission have, however, shown that this is not always the case, the emission often comes from the plasma edge. The analysis of the measurements has led us to conclude that the edge emission comes from charge-exchange recombination with neutral hydrogen near the carbon first wall. These observations provide a way to estimate the change in neutral hydrogen density during local plasma-wall interaction.

  8. Field emission luminescence of nanodiamonds deposited on the aligned carbon nanotube array

    NASA Astrophysics Data System (ADS)

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Kanygin, M. A.; Gorodetskiy, D. V.; Asanov, I. P.; Vyalikh, D. V.; Puzyr, A. P.; Bondar, V. S.

    2015-03-01

    Detonation nanodiamonds (NDs) were deposited on the surface of aligned carbon nanotubes (CNTs) by immersing a CNT array in an aqueous suspension of NDs in dimethylsulfoxide (DMSO). The structure and electronic state of the obtained CNT-ND hybrid material were studied using optical and electron microscopy and Infrared, Raman, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy. A non-covalent interaction between NDs and CNT and preservation of vertical orientation of CNTs in the hybrid were revealed. We showed that current-voltage characteristics of the CNT-ND cathode are changed depending on the applied field; below ~3 V/µm they are similar to those of the initial CNT array and at the higher field they are close to the ND behavior. Involvement of the NDs in field emission process resulted in blue luminescence of the hybrid surface at an electric field higher than 3.5 V/µm. Photoluminescence measurements showed that the NDs emit blue-green light, while blue luminescence prevails in the CNT-ND hybrid. The quenching of green luminescence was attributed to a partial removal of oxygen-containing groups from the ND surface as the result of the hybrid synthesis.

  9. Development of a Robust, High Current, Low Power Field Emission Electron Gun for a Spaceflight Reflectron Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Southard, Adrian E.; Getty, Stephanie A.; Feng, Steven; Glavin, Daniel P.; Auciello, Orlando; Sumant, Anirudha

    2012-01-01

    Carbon materials, including carbon nanotubes (CNTs) and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD), have been of considerable interest for field emission applications for over a decade. In particular, robust field emission materials are compelling for space applications due to the low power consumption and potential for miniaturization. A reflectron time-of-flight mass spectrometer (TOF-MS) under development for in situ measurements on the Moon and other Solar System bodies uses a field emitter to generate ions from gaseous samples, using electron ionization. For these unusual environments, robustness, reliability, and long life are of paramount importance, and to this end, we have explored the field emission properties and lifetime of carbon nanotubes and nitrogen-incorporated ultrananocrystalline diamond (N-UNCD) thin films, the latter developed and patented by Argonne National Laboratory. We will present recent investigations of N-UNCD as a robust field emitter, revealing that this material offers stable performance in high vacuum for up to 1000 hours with threshold voltage for emission of about 3-4 V/lJm and current densities in the range of tens of microA. Optimizing the mass resolution and sensitivity of such a mass spectrometer has also been enabled by a parallel effort to scale up a CNT emitter to an array measuring 2 mm x 40 mm. Through simulation and experiment of the new extended format emitter, we have determined that focusing the electron beam is limited due to the angular spread of the emitted electrons. This dispersion effect can be reduced through modification of the electron gun geometry, but this reduces the current reaching the ionization region. By increasing the transmission efficiency of the electron beam to the anode, we have increased the anode current by two orders of magnitude to realize a corresponding enhancement in instrument sensitivity, at a moderate cost to mass resolution. We will report recent experimental and

  10. Bright and durable field emission source derived from refractory taylor cones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Gregory

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less

  11. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  12. Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel

    NASA Astrophysics Data System (ADS)

    Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit

    2017-06-01

    We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.

  13. Emissions of PCDD and PCDF from combustion of forest fuels and sugarcane: a comparison between field measurements and simulations in a laboratory burn facility.

    PubMed

    Black, R R; Meyer, C P; Touati, A; Gullett, B K; Fiedler, H; Mueller, J F

    2011-05-01

    Release of PCDD and PCDF from biomass combustion such as forest and agricultural crop fires has been nominated as an important source for these chemicals despite minimal characterisation. Available emission factors that have been experimentally determined in laboratory and field experiments vary by several orders of magnitude from <0.5 μg TEQ (t fuel consumed)(-1) to >100 μg TEQ (t fuel consumed)(-1). The aim of this study was to evaluate the effect of experimental methods on the emission factor. A portable field sampler was used to measure PCDD/PCDF emissions from forest fires and the same fuel when burnt over a brick hearth to eliminate potential soil effects. A laboratory burn facility was used to sample emissions from the same fuels. There was very good agreement in emission factors to air (EF(Air)) for forest fuel (Duke Forest, NC) of 0.52 (range: 0.40-0.79), 0.59 (range: 0.18-1.2) and 0.75 (range: 0.27-1.2) μg TEQ(WHO2005) (t fuel consumed)(-1) for the in-field, over a brick hearth, and burn facility experiments, respectively. Similarly, experiments with sugarcane showed very good agreement with EF(Air) of 1.1 (range: 0.40-2.2), 1.5 (range: 0.84-2.2) and 1.7 (range: 0.34-4.4) μg TEQ (t fuel consumed)(-1) for in-field, over a brick hearth, open field and burn facility experiments respectively. Field sampling and laboratory simulations were in good agreement, and no significant changes in emissions of PCDD/PCDF could be attributed to fuel storage and transport to laboratory test facilities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Rotational Sweepback of Magnetic Field Lines in Geometrical Models of Pulsar Radio Emission

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.

    2004-01-01

    We study the rotational distortions of the vacuum dipole magnetic field in the context of geometrical models of the radio emission from pulsars. We find that at low altitudes the rotation deflects the local direction of the magnetic field by at most an angle of the order of r(sup 2 sub n), where r(sub n) = r/R(sub lc), r is the radial distance and R(sub lc) is the light cylinder radius. To the lowest (i.e. second) order in r(sub n) this distortion is symmetrical with respect to the plane containing the dipole axis and the rotation axis ((Omega, mu) plane). The lowest order distortion which is asymmetrical with respect to the (Omega, mu) plane is third order in r(sub n). These results confirm the common assumption that the rotational sweepback has negligible effect on the position angle (PA) curve. We show, however, that the influence of the sweep back on the outer boundary of the open field line region (open volume) is a much larger effect, of the order of r(sup 1/2 sub n). The open volume is shifted backwards with respect to the rotation direction by an angle delta(sub o nu) approx. 0.2 sin alpha r(sup 1/2 sub n) where alpha is the dipole inclination with respect to the rotation axis. The associated phase shift of the pulse profile Delta phi(sub o nu) approx. 0.2 r(sup 1/2 sub n) can easily exceed the shift due to combined effects of aberration and propagation time delays (approx. 2r(sub n)). This strongly affects the misalignment of the center of the PA curve and the center of the pulse profile, thereby modifying the delay radius relation. Contrary to intuition, the effect of sweepback dominates over other effects when emission occurs at low altitudes. For r(sub n) < or approx. 3 x 10(exp -3) the shift becomes negative, i.e. the center of the position angle curve precedes the profile center. With the sweepback effect included, the modified delay-radius relation predicts larger emission radii and is in much better agreement with the other methods of determining r

  15. A Platform to Optimize the Field Emission Properties of Carbon Nanotube Based Fibers (Postprint)

    DTIC Science & Technology

    2016-08-25

    University of Dayton Research Institute 300 College Park Ave., Dayton, OH 45469 6) AFRL /RD, Kirtland AFB, Albuquerque, NM 8717... AFRL -RX-WP-JA-2017-0351 A PLATFORM TO OPTIMIZE THE FIELD EMISSION PROPERTIES OF CARBON-NANOTUBE-BASED FIBERS (POSTPRINT) Steven B...Fairchild AFRL /RX M. Cahay and W. Zhu University of Cincinnati K.L. Jensen Naval Research Laboratory R.G. Forbes University of Surrey

  16. Theoretical analysis of field emission from a metal diamond cold cathode emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, P.; Cutler, P.H.; Miskovsky, N.M.

    Recently, Geis {ital et al.} [J. Vac. Sci. Technol. B {bold 14}, 2060 (1996)] proposed a cold cathode emitter based on a Spindt-type design using a diamond film doped by substitutional nitrogen. The device is characterized by high field emission currents at very low power. Two properties, the rough surface of the metallic injector and the negative electron affinity of the (111) surface of the diamond are essential for its operation. We present a first consistent quantitative theory of the operation of a Geis{endash}Spindt diamond field emitter. Its essential features are predicated on nearly {ital zero-field conditions} in the diamondmore » beyond the depletion layer, {ital quasiballistic transport} in the conduction band, and applicability of a modified {ital Fowler{endash}Nordheim equation} to the transmission of electrons through the Schottky barrier at the metal-diamond interface. Calculated results are in good qualitative and quantitative agreement with the experimental results of Geis {ital et al.} {copyright} {ital 1997 American Vacuum Society.}« less

  17. Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron)jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Growth of single-crystalline cobalt silicide nanowires and their field emission property.

    PubMed

    Lu, Chi-Ming; Hsu, Han-Fu; Lu, Kuo-Chang

    2013-07-03

    In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters.

  20. Growth of single-crystalline cobalt silicide nanowires and their field emission property

    PubMed Central

    2013-01-01

    In this work, cobalt silicide nanowires were synthesized by chemical vapor deposition processes on Si (100) substrates with anhydrous cobalt chloride (CoCl2) as precursors. Processing parameters, including the temperature of Si (100) substrates, the gas flow rate, and the pressure of reactions were varied and studied; additionally, the physical properties of the cobalt silicide nanowires were measured. It was found that single-crystal CoSi nanowires were grown at 850°C ~ 880°C and at a lower gas flow rate, while single-crystal Co2Si nanowires were grown at 880°C ~ 900°C. The crystal structure and growth direction were identified, and the growth mechanism was proposed as well. This study with field emission measurements demonstrates that CoSi nanowires are attractive choices for future applications in field emitters. PMID:23819795

  1. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  2. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    EPA Science Inventory

    An emission sensor/sampler system was coupled to a NASA hexacopter unmanned aerial system (UAS) to characterize gases and particles in the plume emitted from open burning of military ordnance. The UAS/sampler was tested at two field sites resulting in 33 flights at Radford, VA a...

  3. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  4. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  5. In-situ XRD vs ex-situ vacuum annealing of tantalum oxynitride thin films: Assessments on the structural evolution

    NASA Astrophysics Data System (ADS)

    Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.

    2018-04-01

    The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.

  6. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  7. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field

    NASA Astrophysics Data System (ADS)

    Gruening, Carsten; Meijide, Ana; Manca, Giovanni; Goded, Ignacio; Seufert, Guenther; Cescatti, Alessandro

    2016-04-01

    Rice paddy fields are one of the biggest anthropogenic sources of methane (CH4), the second most important greenhouse gas (GHG) after carbon dioxide (CO2). Therefore most studies on greenhouse gases (GHG) in these agricultural systems focus on the evaluation of CH4 production. However, there are other GHGs such as CO2 and nitrous oxide (N2O) also exchanged within the atmosphere. Since each of the GHGs has its own radiative forcing effect, the total GHG budget of rice cultivation and its global warming potential (GWP) must be assessed. For this purpose a field experiment was carried out in a Mediterranean rice paddy field in the Po Valley (Italy), the largest rice producing region in Europe. Ecosystem CO2 and CH4 fluxes were assessed using the eddy covariance technique, while soil respiration and soil CH4 and N2O fluxes were measured with closed chambers for two complete years. Combining all GHGs measured, the rice paddy field acted as a sink of -368 and -828 g CO2 eq m-2 year-1 in the first and second years respectively. Both years, it was a CO2 sink and a CH4 source, while the N2O contribution to the GWP was relatively small. Differences in the GHG budget between the two years of measurements were mainly caused by the greater CH4 emissions in the first year (37.4 g CH4 m-2 compared to 21.03 g CH4 m-2 in the second year), probably as a consequence of the drainage of the water table in the middle of the growing season during the second year, which resulted in lower CH4 emissions without significant increases of N2O and CO2 fluxes. However, midseason drainage also resulted in small decreases of yield, indicating that GHG budget studies from agricultural systems should consider carbon exports through the harvest. The balance between net GWP and carbon yield indicated a loss of carbon equivalents from the system, which was more than 30-fold higher in the first year. Our results therefore suggest that an adequate management of the water table has the potential to be an

  8. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  9. Drainage and tillage practices in the winter fallow season mitigate CH4 and N2O emissions from a double-rice field in China

    NASA Astrophysics Data System (ADS)

    Zhang, Guangbin; Yu, Haiyang; Fan, Xianfang; Yang, Yuting; Ma, Jing; Xu, Hua

    2016-09-01

    Traditional land management (no tillage, no drainage, NTND) during the winter fallow season results in substantial CH4 and N2O emissions from double-rice fields in China. A field experiment was conducted to investigate the effects of drainage and tillage during the winter fallow season on CH4 and N2O emissions and to develop mitigation options. The experiment had four treatments: NTND, NTD (drainage but no tillage), TND (tillage but no drainage), and TD (both drainage and tillage). The study was conducted from 2010 to 2014 in a Chinese double-rice field. During winter, total precipitation and mean daily temperature significantly affected CH4 emission. Compared to NTND, drainage and tillage decreased annual CH4 emissions in early- and late-rice seasons by 54 and 33 kg CH4 ha-1 yr-1, respectively. Drainage and tillage increased N2O emissions in the winter fallow season but reduced it in early- and late-rice seasons, resulting in no annual change in N2O emission. Global warming potentials of CH4 and N2O emissions were decreased by 1.49 and 0.92 t CO2 eq. ha-1 yr-1, respectively, and were reduced more by combining drainage with tillage, providing a mitigation potential of 1.96 t CO2 eq. ha-1 yr-1. A low total C content and high C / N ratio in rice residues showed that tillage in the winter fallow season reduced CH4 and N2O emissions in both early- and late-rice seasons. Drainage and tillage significantly decreased the abundance of methanogens in paddy soil, and this may explain the decrease of CH4 emissions. Greenhouse gas intensity was significantly decreased by drainage and tillage separately, and the reduction was greater by combining drainage with tillage, resulting in a reduction of 0.17 t CO2 eq. t-1. The results indicate that drainage combined with tillage during the winter fallow season is an effective strategy for mitigating greenhouse gas releases from double-rice fields.

  10. Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy.

    PubMed

    Haralampus-Grynaviski, N M; Lamb, L E; Simon, J D; Krogmeier, J R; Dunn, R C; Pawlak, A; Rózanowska, M; Sarna, T; Burke, J M

    2001-08-01

    The emission spectra of single lipofuscin granules are examined using spectrally resolved confocal microscopy and near-field scanning optical microscopy (NSOM). The emission spectrum varies among the granules examined revealing that individual granules are characterized by different distributions of fluorophores. The range of spectra observed is consistent with in vivo spectra of human retinal pigment epithelium cells. NSOM measurements reveal that the shape of the spectrum does not vary with position within the emissive regions of single lipofuscin granules. These results suggest that the relative distribution of fluorophores within the emissive regions of an individual granule is homogeneous on the spatial scale approximately 150 nm.

  11. Interplay of dust alignment, grain growth, and magnetic fields in polarization: lessons from the emission-to-extinction ratio

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Boulanger, F.; Jones, A. P.

    2017-06-01

    Context. Polarized extinction and emission from dust in the interstellar medium (ISM) are hard to interpret, as their dependence on dust optical properties, grain alignment, and magnetic field orientation is complex. This is particularly true in molecular clouds. The aforementioned phenomena are usually considered independently in polarization studies, while it is likely that they all contribute and their effects have yet to be disentangled. Aims: The data available today are not yet used to their full potential. The combination of emission and extinction, in particular, provides information not available from either of them alone. We combine data from the scientific literature on polarized dust extinction with Planck data on polarized emission, and we use them to constrain the possible variations in dust and environmental conditions inside molecular clouds, and especially translucent lines of sight, taking the magnetic field orientation into account. Methods: We focused on the dependence between λmax (the wavelength of maximum polarization in extinction) and other observables such as the extinction polarization, the emission polarization, and the ratio between the two. We set out to reproduce these correlations using Monte Carlo simulations in which we varied the relevant quantities in a dust model, which are grain alignment, size distribution, and magnetic field orientation, to mimic the diverse conditions that are expected inside molecular clouds. Results: None of the quantities we chose can explain the observational data on their own: the best results are obtained when all quantities vary significantly across and within clouds. However, some of the data, most notably the stars with a low ratio of polarization in emission to polarization in extinction, are not reproduced by our simulation. Conclusions: Our results suggest not only that dust evolution is necessary to explain polarization in molecular clouds, but that a simple change in size distribution is not

  12. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    PubMed

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Modeling the effect of doping on the catalyst-assisted growth and field emission properties of plasma-grown graphene sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Neha; Sharma, Suresh C.; Sharma, Rinku

    A theoretical model describing the effect of doping on the plasma-assisted catalytic growth of graphene sheet has been developed. The model accounts the charging rate of the graphene sheet, kinetics of all the plasma species, including the doping species, and the growth rate of graphene nuclei and graphene sheet due to surface diffusion, and accretion of ions on the catalyst nanoparticle. Using the model, it is observed that nitrogen and boron doping can strongly influence the growth and field emission properties of the graphene sheet. The results of the present investigation indicate that nitrogen doping results in reduced thickness andmore » shortened height of the graphene sheet; however, boron doping increases the thickness and height of the graphene sheet. The time evolutions of the charge on the graphene sheet and hydrocarbon number density for nitrogen and boron doped graphene sheet have also been examined. The field emission properties of the graphene sheet have been proposed on the basis of the results obtained. It is concluded that nitrogen doped graphene sheet exhibits better field emission characteristics as compared to undoped and boron doped graphene sheet. The results of the present investigation are consistent with the existing experimental observations.« less

  14. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each <2 wt% of the crystalline component) include sanidine, magnetite, quartz, anhydrite, hematite and ilmenite. Significantly, about a third of the sample is amorphous or poorly ordered in XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to

  15. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  16. Study of high field side/low field side asymmetry in the electron temperature profile with electron cyclotron emission

    NASA Astrophysics Data System (ADS)

    Gugliada, V. R.; Austin, M. E.; Brookman, M. W.

    2017-10-01

    Electron cyclotron emission (ECE) provides high resolution measurements of electron temperature profiles (Te(R , t)) in tokamaks. Calibration accuracy of this data can be improved using a sawtooth averaging technique. This improved calibration will then be utilized to determine the symmetry of Te profiles by comparing low field side (LFS) and high field side (HFS) measurements. Although Te is considered constant on flux surfaces, cases have been observed in which there are pronounced asymmetries about the magnetic axis, particularly with increased pressure. Trends in LFS/HFS overlap are examined as functions of plasma pressure, MHD mode presence, heating techniques, and other discharge conditions. This research will provide information on the accuracy of the current two-dimensional mapping of flux surfaces in the tokamak. Findings can be used to generate higher quality EFITs and inform ECE calibration. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER549698.

  17. Status review of field emission displays

    NASA Astrophysics Data System (ADS)

    Ghrayeb, Joseph; Daniels, Reginald

    2001-09-01

    Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.

  18. Combining Linear Polarization Measurements of both Forbidden/Permitted Coronal Emission Lines for measuring the Vector Magnetic Field in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Mickey, D.

    2014-12-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for

  19. CO2 and N2O emissions from Lou soils of greenhouse tomato fields under aerated irrigation

    NASA Astrophysics Data System (ADS)

    Hou, Huijing; Chen, Hui; Cai, Huanjie; Yang, Fan; Li, Dan; Wang, Fangtong

    2016-05-01

    The change of O2 content in soil caused by aerated irrigation (AI) must inevitably affect the production and emissions of CO2 and N2O from soils. This paper described in-situ observation of CO2 and N2O emissions from AI soils with static chamber-GC technique, in order to reveal the effects of AI on CO2 and N2O emissions from soils of greenhouse tomato fields in autumn-winter season. CO2 and N2O emissions from AI soils mainly concentrated in the blooming and fruit setting period compared to other periods. AI increased cumulative emissions of CO2 and N2O by 11.8% (p = 0.394) and 10.0% (p = 0.480), respectively, compared to the control. The integrative global warming potential of CO2 and N2O on a 100-year horizon for the AI treatment was 6430.60 kg ha-1, increased by 11.7% compared with that for the control (p = 0.356). Both the emissions of CO2 and N2O from AI soils had the exponential positive correlation with soil water-filled pore space (WFPS). The highest peak of CO2 and N2O fluxes from AI soils was observed at 46.7% and 47.5% WFPS, with WFPS ranging from 43.3% to 51.5% and from 45.6% to 52.3% during the whole growth stage, respectively. In addition, the average yield for the AI treatment (34.52 t ha-1) was significantly greater (17.4%) compared with that of the control (p = 0.018). These results suggest that AI do not significantly increase the integrative greenhouse effect caused by CO2 and N2O from soils of greenhouse tomato fields, but significantly increase the tomato yield. The research results provide certain theoretical foundation and scientific basis for accurately evaluating the farmland ecological effect of AI technique.

  20. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  1. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  2. Shallow tillage generates higher N2O emissions: results of continuous chamber-based measurement in a winter wheat field.

    NASA Astrophysics Data System (ADS)

    Broux, François; Lognoul, Margaux; Theodorakopoulos, Nicolas; Hiel, Marie-Pierre; Bodson, Bernard; Heinesch, Bernard; Aubinet, Marc

    2017-04-01

    Agriculture is one of the most important contributors to GHG emission, notably through fertilized croplands. Though, few publications have studied simultaneously and through continuous measurement the N2O and CO2 emissions in cultivated lands. We conducted this study to assess the effect of farming practices and climate on both N2O and CO2 emissions from a winter wheat crop. The experiment was held in an experimental field in the loamy region in Belgium from March 2016 till crop harvest in August 2016. The fluxes were measured on two nearby parcels in a winter wheat field with restitution of the residues from previous crop. For the past 8 years, one parcel was subjected to a shallow tillage (ST, 10 cm depth) and the other one to a conventional tillage (CT, 25 cm depth). On each parcel, the emissions are assessed with homemade automated closed chambers. Measurement continuity and good temporal resolution (one mean flux every 4 hours) of the system allowed a fine detection and quantification of the emission peaks which usually represent the major part of N2O fluxes. In addition to gas fluxes, soil water content and temperature were measured continuously. Soil samples were taken regularly to determine soil pH, soil organic carbon and nitrogen pools (total, NO3- and NH4+) and study microbial diversity and nitrification/denitrification gene expression. Unexpectedly, results showed N2O emissions twice as large in the ST parcel as in the CT parcel. On the contrary, less important CO2 emissions were observed under ST. Several emission peaks of N2O were observed during the measurement period. The peaks occurred after fertilization events and seemed to be triggered by an elevation of soil water content. Interesting links could be made between soil NH4-N and NO3-N pools and N2O emissions. Nitrification being the main process originating the fluxes was suggested on the one hand by the temporal evolution of nitrogen pools and N2O emissions and on the other hand by the relation

  3. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  4. Synchronizing flash-melting in a diamond cell with synchrotron X ray diffraction (XRD)

    NASA Astrophysics Data System (ADS)

    Karandikar, Amol; Boehler, Reinhard; Meng, Yue; Rod, Eric; Shen, Guoyin

    2013-06-01

    The major challenges in measuring melting temperatures in laser heated diamond cells are sample instability, thermal runaway and chemical reactions. To circumvent these problems, we developed a ``flash heating'' method using a modulated CW fiber laser and fast X ray detection capability at APS (Pilatus 1M detector). As an example, Pt spheres of 5 micron diameter were loaded in a single crystal sapphire encapsulation in the diamond cell at 65 GPa and heated in a single flash heating event for 20 ms to reach a desired temperature. A CCD spectrometer and the Pilatus were synchronized to measure the temperature and the XRD signal, respectively, when the sample reached the thermal steady state. Each successive flash heating was done at a higher temperature. The integrated XRD pattern, collected during and after (300 K) each heating, showed no chemical reaction up to 3639 K, the highest temperature reached in the experiment. Pt111 and 200 peak intensity variation showed gradual recrystalization and complete diminishing at about 3600 K, indicating melting. Thus, synchronized flash heating with novel sample encapsulation circumvents previous notorious problems and enables accurate melting temperature measurement in the diamond cell using synchrotron XRD probe. Affiliation 2: Geowissenschaeften, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt a.M., Germany.

  5. Emission factors from aerial and ground measurements of field and laboratory forest burns in the southeastern US: PM2.5, black and brown carbon, VOC, and PCDD/PCDF.

    PubMed

    Aurell, Johanna; Gullett, Brian K

    2013-08-06

    Aerial- and ground-sampled emissions from three prescribed forest burns in the southeastern U.S. were compared to emissions from laboratory open burn tests using biomass from the same locations. A comprehensive array of emissions, including PM2.5, black carbon (BC), brown carbon (BrC), carbon dioxide (CO2), volatile organic compounds (VOCs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were sampled using ground-based and aerostat-lofted platforms for determination of emission factors. The PM2.5 emission factors ranged from 14 to 47 g/kg biomass, up to three times higher than previously published studies. The biomass type was the primary determinant of PM2.5, rather than whether the emission sample was gathered from the laboratory or the field and from aerial- or ground-based sampling. The BC and BrC emission factors ranged from 1.2 to 2.1 g/kg biomass and 1.0 to 1.4 g/kg biomass, respectively. A decrease in BC and BrC emission factors with decreased combustion efficiency was found from both field and laboratory data. VOC emission factors increased with decreased combustion efficiency. No apparent differences in averaged emission factors were observed between the field and laboratory for BC, BrC, and VOCs. The average PCDD/PCDF emission factors ranged from 0.06 to 4.6 ng TEQ/kg biomass.

  6. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.

  7. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    PubMed

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  8. VIMOS integral field spectroscopy of blue compact galaxies. I. Morphological properties, diagnostic emission-line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P. M.

    2015-05-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-luminosity, low-metallicity systems that undergo a violent burst of star formation. These galaxies offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopic study of a sample of BCGs, with the aim of probing the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium. Methods: Eight BCGs were observed with the VIMOS integral field unit at the Very Large Telescope using blue and orange grisms in high-resolution mode. At a spatial sampling of 0''&dotbelow;67 per spaxel, we covered about 30″ × 30″ on the sky, with a wavelength range of 4150...7400 Å. Emission lines were fitted with a single Gaussian profile to measure their wavelength, flux, and width. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines, as well as diagnostic line ratios, extinction, and kinematic maps. Results: An atlas has been produced with the following: emission-line fluxes and continuum emission; ionization, interstellar extinction, and electron density maps from line ratios; velocity and velocity dispersion fields. From integrated spectroscopy, it includes tables of the extinction corrected line fluxes and equivalent widths, diagnostic-line ratios, physical parameters, and the abundances for the brightest star-forming knots and for the whole galaxy. Based on observations made with ESO Telescopes at the Paranal Observatory under program ID 079.B-0445.The reduced datacubes and their error maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  9. Vertically aligned carbon nanotubes from natural precursors by spray pyrolysis method and their field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ghosh, Pradip; Soga, T.; Tanemura, M.; Zamri, M.; Jimbo, T.; Katoh, R.; Sumiyama, K.

    2009-01-01

    Vertically aligned carbon nanotubes have been synthesized from botanical hydrocarbons: Turpentine oil and Eucalyptus oil on Si(100) substrate using Fe catalyst by simple spray pyrolysis method at 700°C and at atmospheric pressure. The as-grown carbon nanotubes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and Raman spectroscopy. It was observed that nanotubes grown from turpentine oil have better degree of graphitization and field emission performance than eucalyptus oil grown carbon nanotubes. The turpentine oil and eucalyptus oil grown carbon nanotubes indicated that the turn-on field of about 1.7 and 1.93 V/μm, respectively, at 10 μA/cm2. The threshold field was observed to be about 2.13 and 2.9 V/μm at 1 mA/cm2 of nanotubes grown from turpentine oil and eucalyptus oil respectively. Moreover, turpentine oil grown carbon nanotubes show higher current density in relative to eucalyptus oil grown carbon nanotubes. The maximum current density of 15.3 mA/cm2 was obtained for ˜3 V/μm corresponding to the nanotubes grown from turpentine oil. The improved field emission performance was attributed to the enhanced crystallinity, fewer defects, and greater length of turpentine oil grown carbon nanotubes.

  10. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Treesearch

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  11. Predicting Coupled Emissions of N2O, CO2 and CH4 from Arable Fields in Ireland Using the ECOSSE Model

    NASA Astrophysics Data System (ADS)

    Khalil, M. I.; Smith, J.; Abdalla, M.; O'Brien, P.; Smith, P.; Müller, C.

    2011-12-01

    Agriculture and associated land-use changes contribute a significant portion to global greenhouse gas (GHG) emissions; mainly as N2O, CO2 and CH4. Improved modelling of soil processes will greatly enhance the value of national inventories, both in terms of more accurate reporting and better mitigation policy options. In Ireland, Agriculture and Land Use, Land Use Change and Forestry, is currently a priority research focus, aimed at reducing uncertainty in estimates of GHG emissions and sinks. The ECOSSE model has several advantages, including limited meteorological and soil data requirements, compared to other models. It can simulate the impacts of land-use, management and climate change on C and N emissions and stocks for both mineral and organic soils at field and national scales. In this study, ECOSSE has been used to predict GHG emissions and SOC changes in arable lands cropped with spring barley receiving different rates of N application. The simulated outputs are evaluated against measured data available from a two-year field study. The modelled responses of N2O fluxes are found to be consistent with the measured values. The bias in the total difference between measured values and the corresponding modelled N2O fluxes was large due to the impact of a few unexpected measurements. In the fertilized fields, significant correlation between modelled and measured N2O fluxes was observed, with correlation coefficients of 0.54-0.60 and root mean square errors of 18.6-20.8 g N ha-1 d-1. The measured seasonal (crop growth period) N2O losses (integrated) were 0.41 and 0.50% of the N applied at rates of 70-79 and 140-159 kg ha-1, respectively. As a further comparison, the simulated values for the dates when measurements were taken were similarly integrated. The corresponding simulated seasonal N2O losses were 0.69 and 1.11% of the added N, suggesting an overestimation by 70-123% of the measured values. However, this could be due to missed emissions associated with the

  12. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  13. Toluene emissions from plants

    NASA Astrophysics Data System (ADS)

    Heiden, A. C.; Kobel, K.; Komenda, M.; Koppmann, R.; Shao, M.; Wildt, J.

    The emission of toluene from different plants was observed in continuously stirred tank reactors and in field measurements. For plants growing without stress, emission rates were low and ranged from the detection limit up to 2·10-16 mol·cm-2·s-1. Under conditions of stress, the emission rates exceeded 10-14 mol·cm-2·s-1. Exposure of sunflower (Helianthus annuus L. cv. Gigantheus) to 13CO2 resulted in 13C-labeling of the emitted toluene on a time scale of hours. Although no biochemical pathway for the production of toluene is known, these results indicate that toluene is synthesized by the plants. The emission rates of toluene from sunflower are dependent on nutrient supply and wounding. Since α-pinene emission rates are also influenced by these factors, toluene and α-pinene emissions show a high correlation. During pathogen attack on Scots pines (Pinus sylvestris L.) significant toluene emissions were observed. In this case emissions of toluene and α-pinene also show a good correlation. Toluene emissions were also found in field experiments with pines using branch enclosures.

  14. Correlation of black smoke and nitrogen oxides emissions through field testing of in-use diesel vehicles.

    PubMed

    Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting

    2006-05-01

    Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The

  15. Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil.

    PubMed

    Liu, Zhihong; Zhang, Hui; Wang, Lei; Yang, Deren

    2008-09-17

    Nickel silicide nanowire arrays have been achieved by the decomposition of SiH(4) on Ni foil at 650 °C. It is indicated that the nickel silicide nanowires consist of roots with diameter of about 100-200 nm and tips with diameter of about 10-50 nm. A Ni diffusion controlled mechanism is proposed to explain the formation of the nickel silicide nanowires. Field emission measurement shows that the turn-on field of the nickel silicide nanowire arrays is low, at about 3.7 V µm(-1), and the field enhancement factor is as high as 4280, so the arrays have promising applications as emitters.

  16. Mitigation options for methane emissions from rice fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less

  17. What can we learn from field experiments about the development of SOC and GHG emissions under different management practices?

    NASA Astrophysics Data System (ADS)

    Spiegel, Heide; Lehtinen, Taru; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2015-04-01

    Successful agricultural management practices are required to maintain or enhance soil quality; at the same time climate change mitigation is becoming increasingly important. Within the EU project CATCH-C we analysed the effects of different agricultural practices not only on crop productivity, but also on soil quality indicators (e.g. soil organic carbon (SOC)) and climate change (CC) mitigation indicators (e.g. CO2, CH4, N2O emissions). European data sets and associated literature, mainly from long-term experiments were evaluated. This evaluation of agricultural management practices was carried out comparing a set of improved ("best") and often applied ("current") management practices. Positive and negative effects occurred when best management practices are adopted. As expected, none of the investigated practices could comply with all objectives simultaneously, i.e. maintaining high yields, mitigating climate change and improving chemical, physical and biological soil quality. The studied soil management practices "non-inversion tillage", "organic fertilisation" (application of farm yard manure, slurry, compost) and "incorporation of crop residues" represent important management practices for farmers to increase SOC, thus improving soil quality. However, CO2 and, especially, N2O emissions may rise as well. The evaluation of CC mitigation is often limited by the lack of data from - preferably - continuous GHG emission measurements. Thus, more long-term field studies are needed to better assess the CO2, CH4 and, especially, N2O emissions following the above mentioned favorably rated MPs. Only if SOC and GHG emissions are measured in the same field experiments, it will be possible to compute overall balances of necessary CO2-C equivalent emissions. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies, Agriculture & Food. (Grant Agreement N° 289782).

  18. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics

    PubMed Central

    2013-01-01

    Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075

  19. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  20. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; ...

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  1. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  2. Effect of boron on enhancing infrared emissivity of Ni-Cr system coating

    NASA Astrophysics Data System (ADS)

    Li, Yongjia; Ouyang, Taoyuan; Wang, Xiaohuan; Li, Shuhao; Mao, Jiawei; Cheng, Xudong

    2018-03-01

    High infrared emissivity coating possesses great value in practical application, whether in the military or civilian areas. In this study, B-NiCr precursor powder containing NiO, Cr2O3 and ZrB2 was calcined at 1300 °C and then used to prepare a high infrared emissivity B-NiCr coating via atmospheric plasma spraying. A large number of test methods were employed to analyze the powder and coating, including TG-DSC, XRD, FE-SEM, infrared spectrometer and so on. The result of infrared emissivity measurement indicates that the coating possesses maximum infrared emissivity of 0.908 at 1000 °C while the infrared emissivity is 0.901 after thermal shock test. Comparing with NiCr coating, Ni2CrO2(BO3) formed during calcination may be the main factor to improve the infrared emissivity of B-NiCr coating. The B-NiCr coating possesses good thermal shock resistance and can withstand 50 times thermal shock at least without falling off, from 800 °C to room temperature.

  3. A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhi-yuan; Wei, Zhi-gang; Wen, Zhi-ping; Dong, Wen-jie; Li, Zhen-chao; Wen, Xiao-hang; Zhu, Xian; Chen, Chen; Hu, Shan-shan

    2018-02-01

    Land surface emissivity is a significant variable in energy budgets, land cover assessments, and environment and climate studies. However, the assumption of an emissivity constant is being used in Gobi broadband emissivity (GbBE) parameterization scheme in numerical models because of limited knowledge surrounding the spatiotemporal variation characteristics of GbBE. To address this issue, we analyzed the variation characteristics of GbBE and possible impact factor-surface soil moisture based on long-term continuous and high temporal resolution field observational experiments over a typical Gobi underlying surface in arid and semiarid areas in northwestern China. The results indicate that GbBE has obvious daily and diurnal variation features, especially diurnal cycle characteristics. The multi-year average of the daily average of GbBE is in the range of 0.932 to 0.970 with an average of 0.951 ± 0.008, and the average diurnal GbBE is in the range of 0.880 to 0.940 with an average of 0.906 ± 0.018. GbBE varies with surface soil moisture content. We observed a slight decrease in GbBE with an increase in soil moisture, although this change was not very obvious because of the low soil moisture in this area. Nevertheless, we think that soil moisture must be one of the most significant impact factors on GbBE in arid and semiarid areas. Soil moisture must be taken into account into the parameterization schemes of bare soil broadband emissivity in land surface models. Additional field experiments and studies should be carried out in order to clarify this issue.

  4. Greenhouse Gas Emissions from Cotton Field under Different Irrigation Methods and Fertilization Regimes in Arid Northwestern China

    PubMed Central

    Guo, Wei; Feng, Jinfei; Li, Lanhai; Yang, Haishui; Wang, Xiaohua; Bian, Xinmin

    2014-01-01

    Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (P < 0.01). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased N2O emissions. PMID:25133229

  5. Emission characteristics of NOx, CO, NH3 and VOCs from gas-fired industrial boilers based on field measurements in Beijing city, China

    NASA Astrophysics Data System (ADS)

    Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng

    2018-07-01

    In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.

  6. Laser induced surface structuring of Cu for enhancement of field emission properties

    NASA Astrophysics Data System (ADS)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  7. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy.

    PubMed Central

    Yaffee, M; Walter, P; Richter, C; Müller, M

    1996-01-01

    When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576

  8. BRIEF COMMUNICATION: Calculation of a magnetic field effect on emission spectra of light diatomic molecules for diagnostic application to fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.

    2009-12-01

    A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.

  9. Database of in-situ field measurements for estimates of fuel consumption and fire emissions in Siberia

    NASA Astrophysics Data System (ADS)

    Kukavskaya, Elena; Conard, Susan; Buryak, Ludmila; Ivanova, Galina; Soja, Amber; Kalenskaya, Olga; Zhila, Sergey; Zarubin, Denis; Groisman, Pavel

    2016-04-01

    Wildfires show great variability in the amount of fuel consumed and carbon emitted to the atmosphere. Various types of models are used to calculate global or large scale regional fire emissions. However, in the databases used to estimate fuel consumptions, data for Russia are typically under-represented. Meanwhile, the differences in vegetation and fire regimes in the boreal forests in North America and Eurasia argue strongly for the need of regional ecosystem-specific data. For about 15 years we have been collecting field data on fuel loads and consumption in different ecosystem types of Siberia. We conducted a series of experimental burnings of varying fireline intensity in Scots pine and larch forests of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions. In addition, we examined wildfire behavior and effects in different vegetation types including Scots pine, Siberian pine, fir, birch, poplar, and larch-dominated forests; evergreen coniferous shrubs; grasslands, and peats. We investigated various ecosystem zones of Siberia (central and southern taiga, forest-steppe, steppe, mountains) in the different subjects of the Russian Federation (Krasnoyarsk Kray, Republic of Khakassia, Republic of Buryatia, Tuva Republic, Zabaikalsky Kray). To evaluate the impact of forest practices on fire emissions, burned and unburned logged sites and forest plantations were examined. We found large variations of fuel consumption and fire emission rates among different vegetation types depending on growing conditions, fire behavior characteristics and anthropogenic factors. Changes in the climate system result in an increase in fire frequency, area burned, the number of extreme fires, fire season length, fire season severity, and the number of ignitions from lightning. This leads to an increase of fire-related emissions of carbon to the atmosphere. The field measurement database we compiled is required for improving accuracy of existing

  10. Combined use of FE-SEM+EDS, ToF-SIMS, XPS, XRD and OM for the study of ancient gilded artefacts

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; Riccucci, C.; Pascucci, M.; Messina, E.; Giuliani, C.; Biocca, P.; Tortora, L.; Fierro, G.; Di Carlo, G.

    2018-07-01

    Gilded brooches dating back to 16th-17th centuries CE were investigated by means of integrated and complementary analytical techniques such as high spatial resolution field emission scanning electron microscopy coupled with energy dispersive X-ray spectrometry (FE-SEM+EDS), time of flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and optical microscopy (OM). The results reveal in detail the surface and subsurface morphology and the chemical features of the micrometric decorative Au layer that has been deposited by means of the so-called fire-gilding technique based on the use of an amalgam. Moreover, the results allow to recognise chlorine, sulphur and phosphorous species as the main degradation agents and to identify the corrosion products naturally formed during the long-term interaction with the burial soil constituents. The findings show also that the galvanic coupling between the two dissimilar metals, i.e. Cu and Au, lead to enhancement of corrosion phenomena causing the spalling of the gold thin film and the disfigurement of the object. From a conservation point of view, the results suggest a targeted use of low-toxic inhibitors to hinder the detrimental role of chlorine as possible responsible of future further severe degradation phenomena. In conclusions, the micro and nano-chemical, structural and morphological investigations in a depth range from a few nanometers to micrometers have revealed the complex nature of corroded surface of ancient gold coated artefacts, highlighting some specific aspects related to their peculiar degradation mechanisms thus extending the scientific relevance of the tailored use of complementary and integrated surface and subsurface analytical techniques for the investigation of ancient coated artefacts.

  11. Far-field emission characteristics and linewidth measurements of surface micro-machined MEMS tunable VCSELs

    NASA Astrophysics Data System (ADS)

    Paul, Sujoy; Gierl, Christian; Gründl, Tobias; Zogal, Karolina; Meissner, Peter; Amann, Markus-Christian; Küppers, Franko

    2013-03-01

    In this paper, we demonstrate for the first time the far-field experimental results and the linewidth characteris- tics for widely tunable surface-micromachined micro-electro-mechanical system (MEMS) vertical-cavity surface- emitting lasers (VCSELs) operating at 1550 nm. The fundamental Gaussian mode emission is confirmed by optimizing the radius of curvature of top distributed Bragg reflector (DBR) membrane and by choosing an ap- propriate diameter of circular buried tunnel junctions (BTJs) so that only the fundamental Gaussian mode can sustain. For these VCSELs, a mode-hop free continuous tuning over 100 nm has already been demonstrated, which is achieved by electro-thermal tuning of the MEMS mirror. The fiber-coupled optical power of 2mW over the entire tuning range has been reported. The singlemode laser emission has more than 40 dB of side-mode suppression ratio (SMSR). The smallest linewidth achieved with these of MEMS tunable VCSELs is 98MHz which is one order of magnitude higher than that of fixed-wavelength VCSELs.

  12. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samplesmore » from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.« less

  13. Radio emission from the X-ray pulsar Her X-1: a jet launched by a strong magnetic field neutron star?

    NASA Astrophysics Data System (ADS)

    van den Eijnden, J.; Degenaar, N.; Russell, T. D.; Miller-Jones, J. C. A.; Wijnands, R.; Miller, J. M.; King, A. L.; Rupen, M. P.

    2018-01-01

    Her X-1 is an accreting neutron star (NS) in an intermediate-mass X-ray binary. Like low-mass X-ray binaries (LMXBs), it accretes via Roche lobe overflow, but similar to many high-mass X-ray binaries containing a NS; Her X-1 has a strong magnetic field and slow spin. Here, we present the discovery of radio emission from Her X-1 with the Very Large Array. During the radio observation, the central X-ray source was partially obscured by a warped disc. We measure a radio flux density of 38.7 ± 4.8 μJy at 9 GHz but cannot constrain the spectral shape. We discuss possible origins of the radio emission, and conclude that coherent emission, a stellar wind, shocks and a propeller outflow are all unlikely explanations. A jet, as seen in LMXBs, is consistent with the observed radio properties. We consider the implications of the presence of a jet in Her X-1 on jet formation mechanisms and on the launching of jets by NSs with strong magnetic fields.

  14. Effect of different agronomic management practices on greenhouse gas emissions and nutrient cycling in a long-term field trial

    NASA Astrophysics Data System (ADS)

    Koal, Philipp; Schilling, Rolf; Gerl, Georg; Pritsch, Karin; Munch, Jean Charles

    2015-04-01

    In order to achieve a reduction of greenhouse gas emissions, modern agronomic management practices need to be established. Therefore, to assess the effect of different farming practices on greenhouse gas emissions, reliable data are required. The experiment covers and compares two main aspects of agricultural management for a better implementation of sustainable land use. The focus lies on the determination and interpretation of greenhouse gas emissions, however, regarding in each case a different agricultural management system, namely an organic farming system and an integrated farming system where the effect of diverse tillage systems and fertilisation practices are observed. In addition, with analysis of the alterable biological, physical and chemical soil properties a link between the impact of different management systems on greenhouse gas emissions and the observed cycle of matter in the soil, especially the nitrogen and carbon cycle, will be enabled. Measurements have been carried out on long-term field trials at the Research Farm Scheyern located in a Tertiary hilly landscape approximately 40 km north of Munich (South Germany). The long-term field trials of the organic and integrated farming system were started in 1992. Since then parcels of land (each around 0.2-0.4 ha) with a particular interior plot set-up have been conducted with the same crop rotation, tillage and fertilisation practice referring to organic and integrated farming management. Thus, the management impacts on the soil of more than 20 years are being examined. Fluxes of CH4, N2O and CO2 have been monitored since 2007 for the integrated farming system trial and since 2012 for the organic farming system trial using an automated system which consists of chambers (0.4 m2 area) with a motor-driven lid, an automated gas sampling unit, an on-line gas chromatographic analysis system, and a control and data logging unit. Precipitation and temperature data have been observed for each experimental

  15. Electric-Field-Induced Energy Tuning of On-Demand Entangled-Photon Emission from Self-Assembled Quantum Dots.

    PubMed

    Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G

    2017-01-11

    We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.

  16. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  17. Controlling the emission profile of an H2 discharge lamp to simulate interstellar radiation fields

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Paardekooper, D. M.; Chuang, K.-J.; Both, M. L.; Cruz-Diaz, G. A.; van Helden, J. H.; Linnartz, H.

    2015-12-01

    Context. Microwave discharge hydrogen-flow lamps have been used for more than half a century to simulate interstellar ultraviolet radiation fields in the laboratory. Recent discrepancies between identical measurements in different laboratories, as well as clear wavelength dependent results obtained in monochromatic (synchrotron) experiments, hint at a more elaborate dependence on the exact discharge settings than assumed so far. Aims: We have investigated systematically two lamp geometries in full dependence of a large number of different running conditions and the spectral emission patterns are characterized for the first time with fully calibrated absolute flux numbers. Methods: A sophisticated plasma lamp calibration set-up has been used to record the vacuum-ultraviolet emission spectra with a spectral resolution of 0.5 nm and bandwidth of 1.6 nm in the 116-220 nm region. Spectra are compared with the output of a calibrated D2-lamp which allows a derivation of absolute radiance values. Results: The general findings of over 200 individual measurements are presented, illustrating how the lamp emission pattern depends on i) microwave power; ii) gas and gas mixing ratios; iii) discharge lamp geometry; iv) cavity positioning; and v) gas pressure.

  18. Field Emission Properties of Carbon Nanotube Fibers and Sheets for a High Current Electron Source

    NASA Astrophysics Data System (ADS)

    Christy, Larry

    Field emission (FE) properties of carbon nanotube (CNT) fibers from Rice University and the University of Cambridge have been studied for use within a high current electron source for a directed energy weapon. Upon reviewing the performance of these two prevalent CNT fibers, cathodes were designed with CNT fibers from the University of Cincinnati Nanoworld Laboratory. Cathodes composed of a single CNT fiber, an array of three CNT fibers, and a nonwoven CNT sheet were investigated for FE properties; the goal was to design a cathode with emission current in excess of 10 mA. Once the design phase was complete, the cathode samples were fabricated, characterized, and then analyzed to determine FE properties. Electrical conductivity of the CNT fibers was characterized with a 4-probe technique. FE characteristics were measured in an ultra-high vacuum chamber at Wright-Patterson Air Force Base. The arrayed CNT fiber and the enhanced nonwoven CNT sheet emitter design demonstrated the most promising FE properties. Future work will include further analysis and cathode design using this nonwoven CNT sheet material to increase peak current performance during electron emission.

  19. WOODSTOVE EMISSION MEASUREMENT METHODS COMPARISON AND EMISSION FACTORS UPDATE

    EPA Science Inventory

    This paper compares various field and laboratory woodstove emission measurement methods. n 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). ver the past several years, a number of field studies have been undertaken to determine the a...

  20. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less