Sample records for xrd n2 adsorption

  1. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  2. Adsorption of Lysine on Na-Montmorillonite and Competition with Ca(2+): A Combined XRD and ATR-FTIR Study.

    PubMed

    Yang, Yanli; Wang, Shengrui; Liu, Jingyang; Xu, Yisheng; Zhou, Xiaoyun

    2016-05-17

    Lysine adsorption at clay/aqueous interfaces plays an important role in the mobility, bioavailability, and degradation of amino acids in the environment. Knowledge of these interfacial interactions facilitates our full understanding of the fate and transport of amino acids. Here, X-ray diffraction (XRD) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) measurements were used to explore the dynamic process of lysine adsorption on montmorillonite and the competition with Ca(2+) at the molecular level. Density functional theory (DFT) calculations were employed to determine the peak assignments of dissolved lysine in the solution phase. Three surface complexes, including dicationic, cationic, and zwitterionic structures, were observed to attach to the clay edge sites and penetrate the interlayer space. The increased surface coverage and Ca(2+) competition did not affect the interfacial lysine structures at a certain pH, whereas an elevated lysine concentration contributed to zwitterionic-type coordination at pH 10. Moreover, clay dissolution at pH 4 could be inhibited at a higher surface coverage with 5 and 10 mM lysine, whereas the inhibition effect was inconspicuous or undetected at pH 7 and 10. The presence of Ca(2+) not only could remove a part of the adsorbed lysine but also could facilitate the readsorption of dissolved Si(4+) and Al(3+) and surface protonation. Our results provide new insights into the process of lysine adsorption and its effects on montmorillonite surface sites.

  3. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  4. Molecular and Dissociative Adsorption of Water on (TiO 2 ) n Clusters, n = 1–4

    DOE PAGES

    Chen, Mingyang; Straatsma, Tjerk P.; Dixon, David A.

    2015-10-20

    In the low energy structures of the (TiO 2) n(H 2O) m (n ≤ 4, m ≤ 2n) and (TiO 2) 8(H 2O) m (m = 3, 7, 8) clusters were predicted using a global geometry optimization approach, with a number of new lowest energy isomers being found. Water can molecularly or dissociatively adsorb on pure and hydrated TiO 2 clusters. Dissociative adsorption is the dominant reaction for the first two H 2O adsorption reactions for n = 1, 2, and 4, for the first three H 2O adsorption reactions for n = 3, and for the first four Hmore » 2O adsorption reactions for n = 8. As more H 2O’s are added to the hydrated (TiO 2)n cluster, dissociative adsorption becomes less exothermic as all the Ti centers become 4-coordinate. Furthermore two types of bonds can be formed between the molecularly adsorbed water and TiO 2 clusters: a Lewis acid–base Ti–O(H 2) bond or an O···H hydrogen bond. The coupled cluster CCSD(T) results show that at 0 K the H 2O adsorption energy at a 4-coordinate Ti center is ~15 kcal/mol for the Lewis acid–base molecular adsorption and ~7 kcal/mol for the H-bond molecular adsorption, in comparison to that of 8–10 kcal/mol for the dissociative adsorption. The cluster size and geometry independent dehydration reaction energy, ED, for the general reaction 2(-TiOH) → -TiOTi– + H 2O at 4-coordinate Ti centers was estimated from the aggregation reaction of nTi(OH) 4 to form the monocyclic ring cluster (TiO 3H 2) n + nH 2O. E D is estimated to be -8 kcal/mol, showing that intramolecular and intermolecular dehydration reactions are intrinsically thermodynamically allowed for the hydrated (TiO 2) n clusters with all of the Ti centers 4-coordinate, which can be hindered by cluster geometry changes caused by such processes. Finally by bending force constants for the TiOTi and OTiO bonds are determined to be 7.4 and 56.0 kcal/(mol·rad 2). Infrared vibrational spectra were calculated using density functional theory, and the new bands appearing upon water adsorption

  5. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2.

    PubMed

    Kim, Sangil; Ida, Junichi; Guliants, Vadim V; Lin, Jerry Y S

    2005-04-07

    Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.

  7. Adsorption of vitamin E on mesoporous titania nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less

  8. Titanium-incorporated organic–inorganic hybrid adsorbent for improved CO{sub 2} adsorption performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyun; Qin, Hongyan; Zhang, Sisi

    2015-02-15

    Highlights: • Titanium-incorporated organic–inorganic hybrid adsorbent was prepared. • The incorporation of Ti to the adsorbent showed significant effect. • The sorbent shows high CO{sub 2} capture capacity both in pure and diluted CO{sub 2} at RT. • The sorbent exhibits a high recycling stability after 15 cycling runs. - Abstract: The CO{sub 2} adsorption performance of acrylonitrile (AN)–tetraethylenepentamine (TEPA) adduct (hereafter referred to as TN) impregnated adsorbent was greatly enhanced by introduction of Titanium atom into the silica matrix. The adsorbents were characterized by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption/desorption, UV–vismore » spectroscopy, Fourier transform infrared (FTIR) spectroscopy. The adsorption experiments together with the physicochemical characterization demonstrated that these adsorbents containing an optimal amount of Titanium (Ti/Si ≈ 0.1) remarkably reinforced the CO{sub 2} adsorption capacity and recycling stability. The highest CO{sub 2} uptakes reached 4.65 and 1.80 mmol CO{sub 2}/g adsorbent at 25 °C under 90% CO{sub 2} (CO{sub 2}/N{sub 2}, 90:10 V/V) and 1% CO{sub 2} (CO{sub 2}/N{sub 2}, 1:99 V/V) conditions for sample Ti(0.1)-DMS-TN, respectively. Repeated adsorption/desorption cycles revealed that the Ti-incorporated adsorbent showed only a tiny decrease in adsorption capacity (1.778 mmol CO{sub 2}/g adsorbent after 15 cycles, decreased by 0.95%), significantly enhanced the adsorbent recycling stability.« less

  9. UiO-66-NH2/GO Composite: Synthesis, Characterization and CO2 Adsorption Performance

    PubMed Central

    Cao, Yan; Zhang, Hongmei; Song, Fujiao; Huang, Tao; Ji, Jiayu; Zhong, Qin; Chu, Wei; Xu, Qi

    2018-01-01

    In this work, a new composite materials of graphene oxide (GO)-incorporated metal-organic framework (MOF)(UiO-66-NH2/GO) were in-situ synthesized, and were found to exhibit enhanced high performances for CO2 capture. X-ray diffraction (XRD), scanning electron microscope (SEM), N2 physical adsorption, and thermogravimetric analysis (TGA) were applied to investigate the crystalline structure, pore structure, thermal stability, and the exterior morphology of the composite. We aimed to investigate the influence of the introduction of GO on the stability of the crystal skeleton and pore structure. Water, acid, and alkali resistances were tested for physical and chemical properties of the new composites. CO2 adsorption isotherms of UiO-66, UiO-66-NH2, UiO-66/GO, and UiO-66-NH2/GO were measured at 273 K, 298 K, and 318 K. The composite UiO-66-NH2/GO exhibited better optimized CO2 uptake of 6.41 mmol/g at 273 K, which was 5.1% higher than that of UiO-66/GO (6.10 mmol/g). CO2 adsorption heat and CO2/N2 selectivity were then calculated to further evaluate the CO2 adsorption performance. The results indicated that UiO-66-NH2/GO composites have a potential application in CO2 capture technologies to alleviate the increase in temperature of the earth’s atmosphere. PMID:29641476

  10. The fabrication of porous N-doped carbon from widely available urea formaldehyde resin for carbon dioxide adsorption.

    PubMed

    Liu, Zhen; Du, Zhenyu; Song, Hao; Wang, Chuangye; Subhan, Fazle; Xing, Wei; Yan, Zifeng

    2014-02-15

    N-doped carbon material constitutes abundant of micropores and basic nitrogen species that have potential implementation for CO2 capture. In this paper, porous carbon material with high nitrogen content was simply fabricated by carbonizing low cost and widely available urea formaldehyde resin, and then followed by KOH activation. CO2 capture experiment showed high adsorption capacity of 3.21 mmol g(-1) at 25 °C under 1 atm for UFCA-2-600. XRD, SEM, XPS and FT-IR analysis confirmed that a graphitic-like structure was retained even after high temperature carbonization and strong base activation. Textural property analysis revealed that narrow micropores, especially below 0.8 nm, were effective for CO2 adsorption by physical adsorption mechanism. Chemical evolved investigation revealed that graphitic-like embedded basic nitrogen groups are generated from bridged and terminal amines of urea formaldehyde resin from thermal carbonization and KOH activation treatment, which is responsible for the enrichment of CO2 capacity by chemical adsorption mechanism. The relationship between CO2 adsorption capacity and pore size or basic N species was also studied, which turned out that both of them played crucial role by physical and chemical adsorption mechanism, respectively. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The inconsistency in adsorption properties and powder XRD data of MOF-5 is rationalized by framework interpenetration and the presence of organic and inorganic species in the nanocavities.

    PubMed

    Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter

    2007-03-28

    MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.

  12. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules

    NASA Astrophysics Data System (ADS)

    Fan, Yaming; Zhuo, Yuqun; Li, Liangliang

    2017-10-01

    SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.

  13. Adsorption properties and photocatalytic activity of TiO2/activated carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Yao, Shuhua; Song, Shuangping; Shi, Zhongliang

    2014-06-01

    Photocatalysts of titanium dioxide (TiO2) and TiO2/activated carbon fiber (TiO2/ACF) composite were prepared by sol-gel method, followed by calcining the pure TiO2 sols and the TiO2/ACF sols at 500°C for 2 h in a N2 atmosphere, respectively. These photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms measurement. Batch experiments were conducted to study the adsorption property of TiO2/ACF composite using methylene blue as adsorbate. The adsorption data obtained from different batch experiments were analyzed using pseudo-second-order kinetic model, the experimental data can be adequately described by the pseudo-second-order equation. The photodecomposition behavior of TiO2/ACF was investigated in aqueous solution using methylene blue as target pollutant. It was found that methylene blue could be removed rapidly from water by TiO2/ACF, the photocatalytic decomposition was obviously improved when the photocatalyst was used. Kinetics analysis revealed that the photocatalytic decomposition reaction can be described well by a first-order rate equation.

  14. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions on microporous titanosilicate ETS-10.

    PubMed

    Lv, Lu; Hor, Mei Peng; Su, Fabing; Zhao, X S

    2005-07-01

    In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.

  15. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    PubMed

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  16. Study of CO2 adsorption capacity of mesoporous carbon and activated carbon modified by triethylenetetramine (TETA)

    NASA Astrophysics Data System (ADS)

    Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.

    2017-04-01

    Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.

  17. Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method

    PubMed Central

    Chen, Guohui; Lu, Shuangfang; Zhang, Junfang; Xue, Qingzhong; Han, Tongcheng; Xue, Haitao; Tian, Shansi; Li, Jinbu; Xu, Chenxi; Pervukhina, Marina; Clennell, Ben

    2016-01-01

    Understanding the adsorption mechanisms of CO2 and N2 in illite, one of the main components of clay in shale, is important to improve the precision of the shale gas exploration and development. We investigated the adsorption mechanisms of CO2 and N2 in K-illite with varying pore sizes at the temperature of 333, 363 and 393 K over a broad range of pressures up to 30 MPa using the grand canonical Monte Carlo (GCMC) simulation method. The simulation system is proved to be reasonable and suitable through the discussion of the impact of cation dynamics and pore wall thickness. The simulation results of the excess adsorption amount, expressed per unit surface area of illite, is in general consistency with published experimental results. It is found that the sorption potential overlaps in micropores, leading to a decreasing excess adsorption amount with the increase of pore size at low pressure, and a reverse trend at high pressure. The excess adsorption amount increases with increasing pressure to a maximum and then decreases with further increase in the pressure, and the decreasing amount is found to increase with the increasing pore size. For pores with size greater larger than 2 nm, the overlap effect disappears. PMID:27897232

  18. CO adsorption on N2-precovered NaY faujasite: a FTIR analysis of the resulting adsorbed species.

    PubMed

    Cairon, Olivier

    2013-08-26

    To productively complete the information regarding the reversible adsorption of a gas mixture on the micropores of cationic zeolites, the adsorption of the two gases N2 and CO on NaY faujasite is taken as a model case study. We analyze herein CO adsorption (77 K) on two distinct N2-precovered NaY sets (low and medium). We outline the continuous desorption of N2 adducts during CO admittance to full N2 desorption for the highest CO loadings. These features contrast with preceding results obtained for N2 loading on CO-precovered NaY. By comparing these results with the sole CO admission and combining both studies regarding the co-adsorption sets, we demonstrate the influence of the basic strength of the two gases regarding the nature of the surface-adsorbed species formed. We also propose and discuss a hypothesis regarding the formation of adsorbed mixed species having both N2 and CO as ligands. These new findings strengthen the statistical response of IR signatures as a helpful proposal for analyzing adsorbed species and their assignments. This survey completes the molecular understanding of gas-mixture adsorption that lacks experimental data to date. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  20. DFT study on stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters

    NASA Astrophysics Data System (ADS)

    Liu, Xuejing; Tian, Dongxu; Meng, Changgong

    2013-03-01

    The stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters were studied by density functional theory with GGA-PW91 functional. The stability order for four Pd substitution types is face > mid-edge > corner > edge, and the stability is improved with increasing Pd content. In contrast with the stability order, H2 adsorption activity is corner ≈ edge > mid-edge > face. The Au36Pd43 (3) with Au:Pd ≈ 1:1 ratio and twenty-four Pd substitutions at (1 1 1) facets and nineteen Pd substitutions at subshell sites shows high stability and H2 non-activated dissociation activity. The partial density of d-states and d band center revealed that the electronic properties are closely associated with the geometric characteristic and adsorption activity. Correlating the d band center ɛd and the adsorption energies, the ɛd order agrees with the adsorption activity that the Pd substitution at edge and corner sites are more active than at face and mid-edge sites.

  1. Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Zhang; Bandaru, Sateesh; Liu, Jin; Li, Li-Li; Wang, Zhenling

    2018-02-01

    Motivated by the photocatalytic reactions of small molecules on g-C3N4 by these insights, we sought to explore the adsorption of H2O and CO2 molecules on the graphene side and H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side of hybrid g-C3N4/graphene nanocomposite using first-principles calculations. The atomic structure and electronic properties of hybrid g-C3N4/graphene nanocomposite is explored. The adsorption of small molecules on graphene/g-C3N4 nanocomposite is thoroughly investigated. The computational studies revels that all small molecules on graphene/g-C3N4 nanocomposite are the physisorption. The adsorption characteristics of H2O and CO2 molecules on the graphene side are similar to that on graphene. The adsorption of H2O, H2, O2, CO, NO, and CO2 molecules on the g-C3N4 side always leads to a buckle structure of graphene/g-C3N4 nanocomposite. Graphene as a substrate can significantly relax the buckle degree of g-C3N4 in g-C3N4/graphene nanocomposite.

  2. Characterization of N3 dye adsorption on TiO2 using quartz-crystal microbalance with dissipation monitoring

    NASA Astrophysics Data System (ADS)

    Wayment-Steele, Hannah K.; Johnson, Lewis E.; Dixon, Matthew C.; Johal, Malkiat S.

    2013-09-01

    Understanding the kinetics of dye adsorption on semiconductors is crucial for designing dye-sensitized solar cells (DSSCs) with enhanced efficiency. Harms et al. recently applied the Quartz-Crystal Microbalance with Dissipation Monitoring (QCM-D) to study in situ dye adsorption on flat TiO2 surfaces. QCM-D measures adsorption in real time and therefore allows one to determine the kinetics of the process. In this work, we characterize the adsorption of N3, a commercial RuBipy dye, using the native oxide layer of a titanium sensor to simulate the TiO2 substrate of a DSSC. We report equilibrium constants that are in agreement with previous absorbance studies of N3 adsorption, and therefore demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption.

  3. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  4. Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts

    NASA Astrophysics Data System (ADS)

    Xue, Q.; Shuo, Q.; Chen, H.

    2016-12-01

    Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.

  5. Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Deligeer, W.; Gao, Y. W.; Asuha, S.

    2011-02-01

    Mesoporous γ-Fe2O3/SiO2 nanocomposite containing 30 mol% of γ-Fe2O3 was prepared by a template-free sol-gel method, and its removal ability for methyl orange (MO) was investigated. The nanocomposite was characterized using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), Fourier transform infrared (FTIR) absorption measurements, nitrogen adsorption-desorption measurements, and magnetic measurements. The synthesized γ-Fe2O3/SiO2 nanocomposite has a mesoporous structure with an average pore size of 3.5 nm and a specific surface area of 245 m2/g, and it exhibits ferrimagnetic characteristics with the maximum saturation magnetization of 20.9 emu/g. The adsorption of MO on the nanocomposite reaches the maximum adsorbed percentage of ca. 80% within a few minutes, showing that most of MO can be removed in a short time. The MO adsorption data fit well with both Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity of MO is estimated to be 476 mg/g.

  6. Study on adsorption of rhodamine B onto Beta zeolites by tuning SiO2/Al2O3 ratio.

    PubMed

    Cheng, Zhi-Lin; Li, Yan-Xiang; Liu, Zan

    2018-02-01

    The exploration of the relationship between zeolite composition and adsorption performance favored to facilitate its better application in removal of the hazardous substances from water. The adsorption capacity of rhodamine B (RB) onto Beta zeolite from aqueous solution was reported. The relationship between SiO 2 /Al 2 O 3 ratio and adsorption capacity of Beta zeolite for RB was explored. The structure and physical properties of Beta zeolites with various SiO 2 /Al 2 O 3 ratios were determined by XRD, FTIR, TEM, BET, UV-vis and so on characterizations. The adsorption behavior of rhodamine B onto Beta zeolite matched to Langmuir adsorption isotherm and more suitable description for the adsorption kinetics was a pseudo-second-order reaction model. The maximum adsorption capacity of the as-prepared Beta zeolite with SiO 2 /Al 2 O 3 = 18.4 was up to 27.97mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. I. Adsorption on iron terminated α-Fe{sub 2}O{sub 3} (0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less

  8. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  9. Adsorption characteristics of hexavalent chromium on HCB/TiO2

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhang, Yonggang

    2014-10-01

    Sol-gel method was adopted to prepare HCB/TiO2 and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO2 was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pHpzc) characteristics of the surface of HCB/TiO2 which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25-45 °C, so Cr(VI) adsorption by HCB/TiO2 is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g-1 in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  10. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    PubMed

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption.

    PubMed

    Habish, Amal Juma; Lazarević, Slavica; Janković-Častvan, Ivona; Jokić, Bojan; Kovač, Janez; Rogan, Jelena; Janaćković, Đorđe; Petrović, Rada

    2017-01-01

    Natural (SEP) and partially acid-activated (AAS) sepiolites were used to prepare composites with nanoscale zerovalent iron (nZVI) at different (SEP or AAS)/nZVI ratios in order to achieve the best nZVI dispersibility and the highest adsorption capacity for Cd 2+ . Despite the higher surface area and pore volume of AAS, better nZVI dispersibility was achieved by using SEP as the support. On the other hand, a lower oxidation degree was achieved during the synthesis using AAS. X-ray photoelectron spectroscopy (XPS) analysis of the composite with the best nZVI dispersibility, before and after Cd 2+ adsorption, confirmed that the surface of the nZVI was composed of oxidized iron species. Metallic iron was not present on the surface, but it was detected in the subsurface region after sputtering. The content of zerovalent iron decreased after Cd 2+ adsorption as a result of iron oxidation during Cd 2+ adsorption. The XPS depth profile showed that cadmium was present not only at the surface of the composite but also in the subsurface region. The adsorption isotherms for Cd 2+ confirmed that the presence of SEP and AAS decreased the agglomeration of the nZVI particles in comparison to the pure nZVI, which provided a higher adsorption capacity. The results showed that the prevention of both aggregation and oxidation during the synthesis was necessary for obtaining an SEP/AAS-nZVI composite with a high adsorption capacity, but oxidation during adsorption was beneficial for Cd 2+ removal. The formation of strong bonds between Cd 2+ and the adsorbents sites of different energy until monolayer formation was proposed according to modeling of the adsorption isotherms.

  12. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    NASA Astrophysics Data System (ADS)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  13. Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new pore size distribution (PSD) model is developed to readily describe PSDs of microporous materials with an analytical expression. Results from this model can be used to calculate the corresponding adsorption isotherm to compare the calculated isotherm to the experimental isotherm. This aspect of the model provides another check on the validity of the model's results. The model is developed on the basis of a 3-D adsorption isotherm equation that is derived from statistical mechanical principles. Least-squares error minimization is used to solve the PSD without any preassumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers a relatively realistic PSD description for select reference materials, including activated-carbon fibers. N2 and CH4 adsorption is correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms at 296 K based on N2 adsorption at 77 K are in reasonable agreement with experimental CH4 isotherms. Use of the model is also described for characterizing PSDs of tire-derived activated carbons and coal-derived activated carbons for air-quality control applications.

  14. Fabrication of carbon/SiO2 composites from the hydrothermal carbonization process of polysaccharide and their adsorption performance.

    PubMed

    Li, Yinhui; Li, Kunyu; Su, Min; Ren, Yanmei; Li, Ying; Chen, Jianxin; Li, Liang

    2016-11-20

    In this work, carbon/SiO2 composites, using amylose and tetraethyl orthosilicate (TEOS) as raw materials, were successfully prepared by a facial hydrothermal carbonization process. The carbon/SiO2 composites were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive Spectroscopy (EDS), transmission electron microscope (TEM), N2 adsorption and Thermogravimetric (TG) analysis. The composites, which were made up of amorphous SiO2 and amorphous carbon, were found to have hierarchical porous structures. The mass ratios of amylose and SiO2 and the hydrothermal carbonization time had significant effects on the morphology of the composites, which had three shapes including monodispersed spheres, porous pieces and the nano-fibers combined with nano-spheres structures. The adsorption performance of the composites was studied using Pb(2+) as simulated contaminants from water. When the mass ratio of amylose and SiO2 was 9/1, the hydrothermal time was 30h and the hydrothermal temperature was 180°C, the adsorption capacity of the composites achieved to 52mg/g. Experimental data show that adsorption kinetics of the carbon/SiO2 composites can be fitted well by the Elovich model, while the isothermal data can be perfectly described by the Langmuir adsorption model and Freundlich adsorption model. The maximum adsorption capacity of the carbon/SiO2 composites is 56.18mgg(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis of Zeolite-X from Bottom Ash for H2 Adsorption

    NASA Astrophysics Data System (ADS)

    Kurniawan, R. Y.; Romadiansyah, T. Q.; Tsamarah, A. D.; Widiastuti, N.

    2018-01-01

    Zeolite-X was synthesized from bottom ash power plant waste using fusion method on air atmosphere. The fused product dissolved in demineralized water and aluminate solution was added to adjust the SiO2/Al2O3 molar ratio gel prior hydrothermal process. The synthesis results were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infrared (FTIR). The results showed that the zeolite-X has a high crystallinity with octahedral particle. The pure-form zeolite-X then was characterized and tested for H2 gas adsorption by gravimetric method to determine the H2 gas adsorption capacity of zeolite-X from bottom ash and it was compared to synthetic zeolite-X.

  16. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    PubMed

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  17. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  18. Ab initio molecular dynamics determination of competitive O 2 vs. N 2 adsorption at open metal sites of M 2 (dobdc)

    DOE PAGES

    Parkes, Marie V.; Greathouse, Jeffery A.; Hart, David B.; ...

    2016-04-04

    The separation of oxygen from nitrogen using metal–organic frameworks (MOFs) is of great interest for potential pressure-swing adsorption processes for the generation of purified O 2 on industrial scales. This study uses ab initio molecular dynamics (AIMD) simulations to examine for the first time the pure-gas and competitive gas adsorption of O 2 and N 2 in the M 2(dobdc) (M = Cr, Mn, Fe) MOF series with coordinatively unsaturated metal centers. Effects of metal, temperature, and gas composition are explored. Lastly, this unique application of AIMD allows us to study in detail the adsorption/desorption processes and to visualize themore » process of multiple guests competitively binding to coordinatively unsaturated metal sites of a MOF.« less

  19. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. The Effect of Pluronic 123 Surfactant concentration on The N2 Adsorption Capacity of Mesoporous Silica SBA-15: Dubinin-Astakhov Adsorption Isotherm Analysis

    NASA Astrophysics Data System (ADS)

    Dhaneswara, Donanta; Siti Agustina, A. A. A.; Dewantoro Adhy, P.; Delayori, Farhan; Fajar Fatriansyah, Jaka

    2018-04-01

    Mesoporous SBA-15 has been successfully synthesized at various concentration of Pluronic 123 surfactant (7mM, 50 mM, 54 mM, 60 mM and 66 mM) and the effect of these various concentrations on the N2 adsorption capacity has been investigated. The adsorption analysis was conducted using Dubinin-Astakhov isotherm model for multilayer adsorption phenomenon. It was found that etryat low concentration of Pluronic 123, the system exhibits type I adsorption isotherm while at high concentration, the system exhibits type IV adsorption with H1 hysteresis curve which indicates the existence of pores with cylindrical geometry, relatively uniform pore size and possibility of pore network effects. It also was found that, by using D-A isotherm model fitting, at 60 mM concentration of Pluronic 123, SBA-15 has the highest adsorption capacity which stands at 421 cm3/gram.

  1. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution.

    PubMed

    Kazak, Omer; Eker, Yasin Ramazan; Akin, Ilker; Bingol, Haluk; Tor, Ali

    2017-10-01

    This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pH pzc ) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L) -1/n ] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  2. Predicting CH4 adsorption capacity of microporous carbon using N2 isotherm and a new analytical model

    USGS Publications Warehouse

    Sun, Jielun; Chen, S.; Rostam-Abadi, M.; Rood, M.J.

    1998-01-01

    A new analytical pore size distribution (PSD) model was developed to predict CH4 adsorption (storage) capacity of microporous adsorbent carbon. The model is based on a 3-D adsorption isotherm equation, derived from statistical mechanical principles. Least squares error minimization is used to solve the PSD without any pre-assumed distribution function. In comparison with several well-accepted analytical methods from the literature, this 3-D model offers relatively realistic PSD description for select reference materials, including activated carbon fibers. N2 and CH4 adsorption data were correlated using the 3-D model for commercial carbons BPL and AX-21. Predicted CH4 adsorption isotherms, based on N2 adsorption at 77 K, were in reasonable agreement with the experimental CH4 isotherms. Modeling results indicate that not all the pores contribute the same percentage Vm/Vs for CH4 storage due to different adsorbed CH4 densities. Pores near 8-9 A?? shows higher Vm/Vs on the equivalent volume basis than does larger pores.

  3. Enhancement of p-nitrophenol adsorption capacity through N2-thermal-based treatment of activated carbons

    NASA Astrophysics Data System (ADS)

    Álvarez-Torrellas, S.; Martin-Martinez, M.; Gomes, H. T.; Ovejero, G.; García, J.

    2017-08-01

    In this work several activated carbons showing different textural and chemical properties were obtained by chemical and physical activation methods, using a lignocellulosic material (peach stones) as precursor. The activated carbon resulting from the chemical activation, namely as CAC, revealed the best textural properties (SBET = 1521 m2 g-1, pore volume = 0.90 cm3 g-1) and an acidic character. It was found that the activated carbon obtained at 300 °C (under air atmosphere, PAC_air), and those synthesized at 750 °C in presence of N2 flow with bubbling of water/12 M H3PO4 solution (PAC_N2(H2O)/PAC_N2(H3PO4)), respectively, revealed worse textural properties, compared to CAC. Two functionalization treatments, by using sulphuric acid at boiling temperature (PACS) and nitric acid-urea-N2 heating at 800 °C (PAC-NUT), were applied to PAC_air, in order to enhance the adsorption ability of the carbon material. Several techniques were carried out to characterize the physical and chemical properties of the obtained carbon materials. The modification treatments had influence on the carbon surface properties, since the nitric acid-urea-N2 heating treatment led to a carbon material with highly-improved properties (SBET = 679 m2 g-1, pHIEP = 5.3). Accordingly, the original and modified-carbon materials were tested as adsorbents to remove 4-nitrophenol (4-NP), assessing batch and fixed-bed column adsorption tests. PAC-NUT carbon offered the best adsorption behavior (qe = 234 mg g-1), showing a high ability for the removal of 4-NP from water.

  4. Adsorptive features of polyacrylamide-apatite composite for Pb2+, UO(2)2+ and Th4+.

    PubMed

    Ulusoy, Ulvi; Akkaya, Recep

    2009-04-15

    Micro-composite of polyacrylamide (PAA) and apatite (Apt) was prepared by direct polymerization of acrylamide in a suspension of Apt and characterized by means of FT-IR, XRD, SEM and BET analysis. The adsorptive features of PAA-Apt and Apt were then investigated for Pb(2+), UO(2)(2+) and Th(4+) in view of dependency on ion concentration, temperature, kinetics, ion selectivity and reusability. Experimentally obtained isotherms were evaluated with reference to Langmuir, Freundlich and Dubinin-Radushkevich (DR) models. Apt in PAA-Apt had higher adsorption capacity (0.81, 1.27 and 0.69 mol kg(-1)) than bare Apt (0.28, 0.41 and 1.33 mol kg(-1)) for Pb(2+) and Th(4+), but not for UO(2)(2+). The affinity to PAA-Apt increased for Pb(2+) and UO(2)(2+) but not changed for Th(4+). The values of enthalpy and entropy changed were positive for all ions for both Apt and PAA-Apt. Free enthalpy change was DeltaG<0. Well compatibility of adsorption kinetics to the pseudo-second-order model predicated that the rate-controlling step was a chemical sorption. This was consistent with the free energy values derived from DR model. The reusability tests for Pb(2+) for five uses proved that the composite was reusable to provide a mean adsorption of 53.2+/-0.7% from 4x10(-3)M Pb(2+) solution and complete recovery of the adsorbed ion was possible (98+/-1%). The results of this investigation suggested that the use of Apt in the micro-composite form with PAA significantly enhanced the adsorptive features of Apt.

  5. Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.

    PubMed

    Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin

    2017-02-08

    We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.

  6. Adsorption and Desorption Characteristics of Cd2+ and Pb2+ by Micro and Nano-sized Biogenic CaCO3

    PubMed Central

    Liu, Renlu; Guan, Yong; Chen, Liang; Lian, Bin

    2018-01-01

    The purpose of this study was to elucidate the characteristics and mechanisms of adsorption and desorption for heavy metals by micro and nano-sized biogenic CaCO3 induced by Bacillus subtilis, and the pH effect on adsorption was investigated. The results showed that the adsorption characteristics of Cd2+ and Pb2+ are well described by the Langmuir adsorption isothermal equation, and the maximum adsorption amounts for Cd2+ and Pb2+ were 94.340 and 416.667 mg/g, respectively. The maximum removal efficiencies were 97% for Cd2+, 100% for Pb2+, and the desorption rate was smaller than 3%. Further experiments revealed that the biogenic CaCO3 could maintain its high adsorption capability for heavy metals within wide pH ranges (3–8). The FTIR and XRD results showed that, after the biogenic CaCO3 adsorbed Cd2+ or Pb2+, it did not produce a new phase, which indicated that biogenic CaCO3 and heavy metal ions were governed by a physical adsorption process, and the high adsorptive capacity of biogenic CaCO3 for Cd2+ and Pb2+ were mainly attributed to its large total specific surface area. The findings could improve the state of knowledge about biogenic CaCO3 formation in the environment and its potential roles in the biogeochemical cycles of heavy metals. PMID:29434577

  7. Functionalized SBA-15 materials for bilirubin adsorption

    NASA Astrophysics Data System (ADS)

    Tang, Tao; Zhao, Yanling; Xu, Yao; Wu, Dong; Xu, Jun; Deng, Feng

    2011-05-01

    To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH 3-SBA-15 (MS), NH 2-SBA-15 (AS), and CH 3/NH 2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m 2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N 2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.

  8. A one-step thermal decomposition method to prepare anatase TiO2 nanosheets with improved adsorption capacities and enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Li, Wenting; Shang, Chunli; Li, Xue

    2015-12-01

    Anatase TiO2 nanosheets (NSs) with high surface area have been prepared via a one-step thermal decomposition of titanium tetraisopropoxide (TTIP) in oleylamine (OM), and their adsorption capacities and photocatalytic activities are investigated by using methylene blue (MB) and methyl orange (MO) as model pollutants. During the synthesis procedure, only one type of surfactant, oleylamine (OM), is used as capping agents and no other solvents are added. Structure and properties of the TiO2 NSs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption analysis, UV-vis spectrum, X-ray photoelectron spectroscopy (XPS) and Photoluminescence (PL) methods. The results indicate that the TiO2 NSs possess high surface area up to 378 m2 g-1. The concentration of capping agents is found to be a key factor controlling the morphology and crystalline structure of the product. Adsorption and photodegradation experiments reveal that the prepared TiO2 NSs possess high adsorption capacities of model pollutants MB and high photocatalytic activity, showing that TiO2 NSs can be used as efficient pollutant adsorbents and photocatalytic degradation catalysts of MB in wastewater treatment.

  9. The adsorption of Run (n = 1-4) on γ-Al2O3 Surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Guo, Yafei; Chen, Yu; Shen, Rong

    2018-05-01

    The density functional theory (DFT) was adopted to study the adsorption and growth of Run (n = 1-4) clusters on γ-Al2O3 surface, which is of great significances for the design of many important catalysts, especially for carbon dioxide methanation. It is found that both the Rusbnd Ru bond length and adsorption energy Eads of Ru clusters with the surface increase with the Run clusters increasing. The growth ability of the supported Run cluster is weaker than the gas phase Run clusters through comparing their respective growth process, which ascribes to the stabilization of γ-Al2O3 support. An interesting discovery is that the basin structure was supposed to be the most favorable adsorption geometry for Run clusters. Additionally, the distances between Ru atoms in the adsorbed clusters are longer than that in their isolated counterparts. Bader charge analysis was conducted for the most stable configurations of Run (n = 1-4) clusters on γ-Al2O3 surface as well. And the results suggest that Run (n = 1-4) clusters serve as the electron donators. The result of projected density of states (PDOS) shows that strong adsorption of Ru atom on the γ-Al2O3 surface correlates with strong interaction between d orbital of Ru atom and p orbital of Al or O atom of the Al2O3 support.

  10. Simultaneous adsorption of Cu2+ and Acid fuchsin (AF) from aqueous solutions by CMC/bentonite composite.

    PubMed

    Gong, Ning; Liu, Yanping; Huang, Ruihua

    2018-04-21

    Carboxymethyl-chitosan (CMC)/bentonite composite was prepared by the method of membrane-forming, and characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) techniques. The simultaneous adsorption of Cu 2+ and Acid fuchsin (AF) applying CMC/bentonite composite as an adsorbent in single or binary systems was investigated. The adsorption study was conducted systematically by varying the ratio of CMC to bentonite, adsorbent dosage, initial pH value, initial Cu 2+ (or AF) concentration, contact time and the interaction of two components in binary solutions. The results showed that the presence of Cu 2+ hindered the adsorption of AF, while the presence of AF almost had no influence on the adsorption of Cu 2+ in binary systems. The adsorption data of Cu 2+ and AF were both suitable for Langmuir isotherm model, and the maximum adsorption capacities of CMC/bentonite composite, according to the Langmuir isotherm model were 81.4 mg/g for Cu 2+ and 253.2 mg/g for AF at 298 K. The pseudo-second-order model could better describe the adsorption process of Cu 2+ and AF. Thermodynamic constant values illustrated that the adsorption of Cu 2+ was endothermic, while the adsorption process of AF was exothermic. Copyright © 2018. Published by Elsevier B.V.

  11. The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.

    PubMed

    Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia

    2017-08-11

    To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.

  12. Competitive adsorption behaviors of carbon dioxide and n-dodecane mixtures in 13X molecular sieve

    NASA Astrophysics Data System (ADS)

    Zhu, Chaofan; Dong, Mingzhe; Gong, Houjian

    2018-01-01

    The CO2 cyclic injection has been proven to be effective to enhance tight oil recovery under constant reservoir temperature and down hole pressure conditions. However, the enhance tight oil recovery mechanism was unclear, especially the adsorption of the CO2 and alkane in the surface. Therefore, it is great important to study the adsorption mechanism of CO2 and alkane mixtures in tight oil. In this study, a new experimental method and apparatus have been designed to test the change of the mole fraction of CO2 and n-C12 before and after the adsorption equilibrium. Then, the adsorption amount of CO2 and n-C12 was obtained by a mathematical method. Moreover, the adsorption character of CO2 and n-C12 mixtures in 13X molecular sieve and the effect of pressure on the adsorption and amount were studied. The results show that the adsorption of CO2 and the desorption of n-C12 follow the Langmuir adsorption. This study provides a straightforward method to experimentally determine the adsorption properties of the tight oil, which can be used to evaluate enhanced tight oil recovery by CO2 injection.

  13. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system.

    PubMed

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis, structural and vibrational investigation on 2-phenyl-N-(pyrazin-2-yl)acetamide combining XRD diffraction, FT-IR and NMR spectroscopies with DFT calculations.

    PubMed

    Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A

    2015-01-25

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe{sub 2}O{sub 3}(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less

  16. Adsorption of Pb2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48

    NASA Astrophysics Data System (ADS)

    Taba, P.; Mustafa, R. D. P.; Ramang, L. M.; Kasim, A. H.

    2018-03-01

    Modification of mesoporous silica, MCM-48, by using 3- mercaptopropyltrimethoxysilane has been successfully conducted. MCM-48 and SH-MCM-48 were characterized using XRD and FTIR. SH-MCM-48 was used as an adsorbent of Pb2+ ions from solution. A number of Pb2+ ions adsorbed were studied as the function of time, pH, and concentration. The concentration of the ions after adsorption was determined by an Atomic Absorption Spectrophotometer. The removal of the adsorbed ions from the SH-MCM-48 was also studied using several desorbing agents. The result showed that the optimum time was 20 minutes and optimum pH was 4. The adsorption of Pb(II) ion followed the pseudo-second-order with the rate constant of 0,2632 g•mg-1•min-1. Adsorption of Pb(II) ion fitted the Langmuir isotherm with the adsorption capacity of 0,1088 mmol/g. The best desorbing agent to remove the adsorbed ion from SH-MCM-48 was 0.3 M HCl solution with the desorption percentage of 58.6%.

  17. Adsorption properties of AlN on Si(111) surface: A density functional study

    NASA Astrophysics Data System (ADS)

    Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting

    2018-04-01

    In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.

  18. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.

    PubMed

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2017-12-18

    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  19. New Insights into CO2 Adsorption on Layered Double Hydroxide (LDH)-Based Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tang, Nian; He, Tingyu; Liu, Jie; Li, Li; Shi, Han; Cen, Wanglai; Ye, Zhixiang

    2018-02-01

    The interlamellar spacing of layered double hydroxides (LDHs) was enlarged by dodecyl sulfonate ions firstly, and then, (3-aminopropyl)triethoxysilane (APS) was chemically grafted (APS/LDHs). The structural characteristics and thermal stability of these prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), reflectance Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), and elemental analysis (EA) respectively. The CO2 adsorption performance was investigated adopting TG and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results presented that the CO2 adsorption capacity on APS/LDHs was as high as 90 mg/g and showed no obvious reduction during a five cyclic adsorption-desorption test, indicating its superior performance stability. The DRIFTS results showed that both carbamates and weakly bounded CO2 species were generated on APS/LDHs. The weakly adsorbed species was due to the different local chemical environment for CO2 capture provided by the surface moieties of LDHs like free silanol and hydrogen bonds.

  20. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    PubMed

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of

  1. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    PubMed

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Molecular adsorption of hydrogen peroxide on N- and Fe-doped titania nanoclusters

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Dashti, Nasimeh Lari

    2017-06-01

    Titanium dioxide (titania) nanoparticles have been extensively investigated for photocatalytic applications such as the decomposition and adsorption of pollutant and undesirable compound in air and waste water. In this context, the present article reports the molecular adsorption of hydrogen peroxide on the surface of doped titania clusters. Density functional theory calculations were performed to investigate the structures and electronic properties of two nanoscale (TiO2)n clusters (n = 5,6) modified by nitrogen and iron dopants. The relative stability of all possible N-doped and Fe-doped isomers has been compared with each other and with the parent cluster. It was found that the Fe-doped clusters are in general more stable than the N-doped counterparts. Moreover, after N/Fe doping an enhanced in the magnetization of the clusters is observed. In the second part, we have investigated different modes of H2O2 adsorption on the lowest-energy isomers of doped clusters. In almost all the cases, the adsorptions on the doped clusters are found to be less exothermic than on the corresponding undoped parent cluster. Our results highlight the essential role of charge transfer into the interaction between H2O2 and doped (TiO2)n clusters, especially for Fe-doped clusters.

  3. Production of silica gel from Tunisian sands and its adsorptive properties

    NASA Astrophysics Data System (ADS)

    Lazaar, K.; Hajjaji, W.; Pullar, R. C.; Labrincha, J. A.; Rocha, F.; Jamoussi, F.

    2017-06-01

    Thanks to its highly absorbent character, silica gel is used in several applications, such as air moisture removal, as a treatment agent for effluents. In this study, silica gels were synthesised from Tunisian sands, collected from the Fortuna and Sidi Aich Formations in northern and central Tunisia. The collected quartz sand raw materials, as well as the prepared silica gels, were characterised by different techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). XRD patterns of quartz sands showed quartz as main phase (86.1-98%), with lower contents of potassic feldspars, along with kaolinite and calcite. These quartz sands presented relatively small quantities of Fe2O3 (0.3%-0.5%) and TiO2 (0.1%-0.6%). The synthesised silica gels exhibited pore diameters exceeding 20 Å and surface areas up to 194 m2/g, comparable with those described in the literature and commercial silica gel. N2 adsorption isotherms showed that the silica gels prepared from Tunisian sands are mesoporous materials with high adsorption capacities. To understand better their adsorbent properties and applicability on an industrial scale, these gels were tested for methylene blue (MB) absorption. Maximum decolourisation rates (up to 96% after a contact time of 180 min) occurred with products synthesised at pH 3. The adsorption mechanism fitted better with a Langmuir model, revealing a monolayer coverage process of MB molecules over the gel surface, and the adsorption kinetics of the dye on these materials is well described by the second order model. The corresponding equilibrium adsorption capacities obtained from experimental data (Qexp = 292-214 mg/g) were close to the estimated maximum adsorption capacities (Qe = 333-250 mg/g), and to that of an industrial silica gel (250 mg/g).

  4. Synthesis, characterization and study of arsenate adsorption from aqueous solution by {alpha}- and {delta}-phase manganese dioxide nanoadsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mandeep; Thanh, Dong Nguyen, E-mail: Dong.Nguyen.Thanh@vscht.c; Ulbrich, Pavel

    2010-12-15

    Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V)more » from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2

  5. Monitoring N3 dye adsorption and desorption on TiO2 surfaces: a combined QCM-D and XPS study.

    PubMed

    Wayment-Steele, Hannah K; Johnson, Lewis E; Tian, Fangyuan; Dixon, Matthew C; Benz, Lauren; Johal, Malkiat S

    2014-06-25

    Understanding the kinetics of dye adsorption and desorption on semiconductors is crucial for optimizing the performance of dye-sensitized solar cells (DSSCs). Quartz crystal microbalance with dissipation monitoring (QCM-D) measures adsorbed mass in real time, allowing determination of binding kinetics. In this work, we characterize adsorption of the common RuBipy dye N3 to the native oxide layer of a planar, sputter-coated titanium surface, simulating the TiO2 substrate of a DSSC. We report adsorption equilibrium constants consistent with prior optical measurements of N3 adsorption. Dye binding and surface integrity were also verified by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy (XPS). We further study desorption of the dye from the native oxide layer on the QCM sensors using tetrabutylammonium hydroxide (TBAOH), a commonly used industrial desorbant. We find that using TBAOH as a desorbant does not fully regenerate the surface, though little ruthenium or nitrogen is observed by XPS after desorption, suggesting that carboxyl moieties of N3 remain bound. We demonstrate the native oxide layer of a titanium sensor as a valid and readily available planar TiO2 morphology to study dye adsorption and desorption and begin to investigate the mechanism of dye desorption in DSSCs, a system that requires further study.

  6. Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2(dobpdc)

    DOE PAGES

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; ...

    2017-10-26

    Alkyldiamine-functionalized variants of the metal–organic framework Mg 2(dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behaviormore » likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2(dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2(dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2(pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg 2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new

  7. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution.

    PubMed

    Yu, Wenchao; Lian, Fei; Cui, Guannan; Liu, Zhongqi

    2018-02-01

    N-doping was successfully employed to improve the adsorption capacity of biochar (BC) for Cu 2+ and Cd 2+ by direct annealing of crop straws in NH 3 . The surface N content of BC increased more than 20 times by N-doping; meanwhile the content of oxidized-N was gradually diminished but graphitic-N was formed and increased with increasing annealing temperature and duration time. After N-doping, a high graphitic-N percentage (46.4%) and S BET (418.7 m 2 /g) can be achieved for BC. As a result, the N-doped BC exhibited an excellent adsorption capacity for Cu 2+ (1.63 mmol g -1 ) and Cd 2+ (1.76 mmol g -1 ), which was up to 4.0 times higher than that of the original BC. Furthermore, the adsorption performance of the N-doped BC remained stable even at acidic conditions. A positive correlation can be found between adsorption capacity with the graphitic N content on BC surface. The surface chemistry of N-doped BC before and after the heavy metal ions adsorption was carefully examined by XPS and FTIR techniques, which indicated that the adsorption mechanisms mainly included cation-π bonding and complexation with graphitic-N and hydroxyl groups of carbon surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2.

    PubMed

    Hartmann, Martin; Kunz, Sebastian; Himsl, Dieter; Tangermann, Oliver; Ernst, Stefan; Wagener, Alex

    2008-08-19

    The metal organic framework material Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate) has been synthesized using different routes: under solvothermal conditions in an autoclave, under atmospheric pressure and reflux, and by electrochemical reaction. Although the compounds display similar structural properties as evident from the powder X-ray diffraction (XRD) patterns, they differ largely in specific surface area and total pore volume. Thermogravimetric and chemical analysis support the assumption that pore blocking due to trimesic acid and/or methyltributylammoniummethylsulfate (MTBS) which has been captured in the pore system during reaction is a major problem for the electrochemically synthesized samples. Isobutane and isobutene adsorption has been studied for all samples at different temperatures in order to check the potential of Cu3(BTC)2 for the separation of small hydrocarbons. While the isobutene adsorption isotherms are of type I according to the IUPAC classification, the shape of the isobutane isotherm is markedly different and closer to type V. Adsorption experiments at different temperatures show that a somewhat higher amount of isobutene is adsorbed as compared to isobutane. Nevertheless, the differential enthalpies of adsorption are only different by about 5 kJ/mol, indicating that a strong interaction between the copper centers and isobutene does not drive the observed differences in adsorption capacity. The calculated breakthrough curves of isobutene and isobutane reveal that a low pressure separation is preferred due to the peculiar shape of the isobutane adsorption isotherms. This has been confirmed by preliminary breakthrough experiments using an equimolar mixture of isobutane and isobutene.

  9. Arsenate adsorption mechanisms at the allophane - Water interface

    USGS Publications Warehouse

    Arai, Y.; Sparks, D.L.; Davis, J.A.

    2005-01-01

    We investigated arsenate (As(V)) reactivity and surface speciation on amorphous aluminosilicate mineral (synthetic allophane) surfaces using batch adsorption experiments, powder X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). The adsorption isotherm experiments indicated that As(V) uptake increased with increasing [As(V)]0 from 50 to 1000 ??M (i.e., Langmuir type adsorption isotherm) and that the total As adsorption slightly decreased with increasing NaCl concentrations from 0.01 to 0.1 M. Arsenate adsorption was initially (0-10 h) rapid followed by a slow continuum uptake, and the adsorption processes reached the steady state after 720 h. X-ray absorption spectroscopic analyses suggest that As(V) predominantly forms bidentate binuclear surface species on aluminum octahedral structures, and these species are stable up to 11 months. Solubility calculations and powder XRD analyses indicate no evidence of crystalline AI-As(V) precipitates in the experimental systems. Overall, macroscopic and spectroscopic evidence suggest that the As(V) adsorption mechanisms at the allophane-water interface are attributable to ligand exchange reactions between As(V) and surface-coordinated water molecules and hydroxyl and silicate ions. The research findings imply that dissolved tetrahedral oxyanions (e.g., H2PO42- and H2AsO42-) are readily retained on amorphous aluminosilicate minerals in aquifer and soils at near neutral pH. The innersphere adsorption mechanisms might be important in controlling dissolved arsenate and phosphate in amorphous aluminosilicate-rich low-temperature geochemical environments. ?? 2005 American Chemical Society.

  10. Mechanism of tyramine adsorption on Ca-montmorillonite.

    PubMed

    Chang, Po-Hsiang; Jiang, Wei-Teh; Li, Zhaohui

    2018-06-10

    Tyramine (TY) adsorption on a Ca-montmorillonite (SAz-2) was investigated with batch experiments and complementary analyses utilizing ultra-high performance liquid chromatography, ion chromatography, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetry (TG). The adsorption reached equilibrium in 8 h, complying with the pseudo-second-order rate equation, and came to an adsorption capacity of 682 mmol kg -1 at pH 6-8.1, utilizing the Langmuir isotherm model. The adsorption of TY and desorption of exchangeable cations exhibited a linear relationship with a slope of 0.9, implying that the adsorption was largely influenced by a cation exchange mechanism. The effective adsorption was further verified by the characteristic TY bands in the FTIR spectra and the signals of mass loss due to TY decomposition in the TG measurements of the clay after adsorption experiments. Intercalation of hydrated TY into the clay interlayer was confirmed by XRD and TG analyses of the heated samples loaded with TY. The adsorption reached only 0.57 cation exchange capacity of the clay which was probably limited by the low charge density of TY as compared to the negative charge density of the clay surface and by the steric effects arising from the hydration of TY that increased its molecular size. Adsorption of TY on montmorillonite can make TY more resistant to thermal decomposition and possibly better preserved in aquatic and soil environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66).

    PubMed

    Abid, Hussein Rasool; Ang, Ha Ming; Wang, Shaobin

    2012-05-21

    Several zirconium-based metal-organic frameworks (Zr-MOFs) have been synthesized using ammonium hydroxide as an additive in the synthesis process. Their physicochemical properties have been characterized by N(2) adsorption/desorption, XRD, SEM, FTIR, and TGA, and their application in CO(2) adsorption was evaluated. It was found that addition of ammonium hydroxide produced some effects on the structure and adsorption behavior of Zr-MOFs. The pore size and pore volume of Zr-MOFs were enhanced with the additive, however, specific surface area of Zr-MOFs was reduced. Using an ammonium hydroxide additive, the crystal size of Zr-MOF was reduced with increasing amount of the additive. All the samples presented strong thermal stability. Adsorption tests showed that capacity of CO(2) adsorption on the Zr-MOFs under standard conditions was reduced due to decreased micropore fractions. However, modified Zr-MOFs had significantly lower adsorption heat. The adsorption capacity of carbon dioxide was increased at high pressure, reaching 8.63 mmol g(-1) at 987 kPa for Zr-MOF-NH(4)-2.

  12. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    PubMed

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  13. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.

    PubMed

    Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei

    2017-06-01

    More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic

  14. Application of a High-Throughput Analyzer in Evaluating Solid Adsorbents for Post-Combustion Carbon Capture via Multicomponent Adsorption of CO2, N-2, and H2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, JA; McDonald, TM; Bae, TH

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N-2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporousmore » silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N-2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg-2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 +/- 0.2 mmol/g (16 wt %) at 0.1 bar and 40 degrees C in the presence of a high partial pressure of H2O.« less

  15. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O.

    PubMed

    Mason, Jarad A; McDonald, Thomas M; Bae, Tae-Hyun; Bachman, Jonathan E; Sumida, Kenji; Dutton, Justin J; Kaye, Steven S; Long, Jeffrey R

    2015-04-15

    Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 ± 0.2 mmol/g (16 wt %) at 0.1 bar and 40 °C in the presence of a high partial pressure of H2O.

  16. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    PubMed

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  17. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    NASA Astrophysics Data System (ADS)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  18. Adsorption of lead over Graphite Oxide

    PubMed Central

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M.; Oki, Aderemi

    2014-01-01

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb2+ was found to be 98, 91 and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. PMID:24152870

  19. Pentaethylenehexamine-Loaded Hierarchically Porous Silica for CO2 Adsorption

    PubMed Central

    Ji, Changchun; Huang, Xin; Li, Lei; Xiao, Fukui; Zhao, Ning; Wei, Wei

    2016-01-01

    Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO2 adsorption-desorption dynamics. To overcome this issue, hierarchical porous silica with interparticle macropores and long-range ordering mesopores was prepared and impregnated with pentaethylenehexamine. The pore structure and amino functional group content of the modified silicas were analyzed by scanning electron microscope, transmission electron microscope, N2 adsorption, X-ray powder diffraction, and Fourier transform infrared spectra. Moreover, the effects of the pore structure as well as the amount of PEHA loading of the samples on the CO2 adsorption capacity were investigated in a fixed-bed adsorption system. The CO2 adsorption capacity reached 4.5 mmol CO2/(g of adsorbent) for HPS−PEHA-70 at 75 °C. Further, the adsorption capacity for HPS-PEHA-70 was steady after a total of 15 adsorption-desorption cycles. PMID:28773956

  20. Adsorption of CO2 on amine-functionalised MCM-41: experimental and theoretical studies.

    PubMed

    dos Santos, Thiago Custódio; Bourrelly, Sandrine; Llewellyn, Philip L; Carneiro, José Walkimar de M; Ronconi, Célia Machado

    2015-04-28

    Adsorption of CO2 on MCM-41 functionalised with [3-(2-aminoethylamino)propyl]trimethoxysilane (MCM-41-N2), N(1)-(3-trimethoxysilylpropyl)diethylenetriamine (MCM-41-N3), 4-aminopyridine (MCM-41-aminopyridine), 4-(methylamino)pyridine (MCM-41-methylaminopyridine) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (MCM-41-guanidine) was investigated. The amine-functionalised materials were characterised by (29)Si and (13)C solid-state nuclear magnetic resonance, N2 adsorption/desorption isotherms, X-ray diffraction and transmission electron microscopy. CO2 adsorption at 1.0 bar and 30 °C showed that the amount of CO2 (nads/mmol g(-1)) adsorbed on MCM-41-N2 and MCM-41-N3 is approximately twice the amount adsorbed on MCM-41. For MCM-41-aminopyridine, MCM-41-methylaminopyridine and MCM-41-guanidine, the CO2 adsorption capacity was smaller than that of MCM-41 at the same conditions. The proton affinity (computed with wB97x-D/6-311++G(d,p)) of the secondary amino groups is higher than that of the primary amino groups; however, the relative stabilities of the primary and secondary carbamates are similar. The differential heat of adsorption decreases as the number of secondary amino groups increases.

  1. Adsorption of acetanilide herbicides on soil and its components. II. Adsorption and catalytic hydrolysis of diethatyl-ethyl on saturated Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite.

    PubMed

    Liu, W P; Fang, Z; Liu, H J; Yang, W C

    2001-04-01

    Adsorption and catalytic hydrolysis of the herbicide diethatyl-ethyl [N-chloroacetyl-N-(2,6-diethylphenyl)glycine ethyl ester] on homoionic Na(+)-, K(+)-, Ca(2+)-, and Mg(2+)-montmorillonite clays were investigated in water solution. The Freundlich adsorption coefficient, Ki, got from isotherms on clay followed the order of Na+ approximately K+ > Mg2+ approximately Ca2+. Analysis of FT-IR spectra of diethatyl-ethyl adsorbed on clay suggests probable bonding at the carboxyl and amide carbonyl groups of the herbicide. The rate of herbicide hydrolysis in homoionic clay suspensions followed the same order as that for adsorption, indicating that adsorption may have preceded and thus caused hydrolysis. Preliminary product identification showed that hydrolysis occurred via nucleophilic substitution at the carboxyl carbon, causing the cleavage of the ester bond and formation of diethatyl and its dechlorinated derivative, and at the amide carbon, yielding an ethyl ester derivative and its acid. These pathways also suggest that hydrolysis of diethatyl-ethyl was catalyzed by adsorption on the clay surface.

  2. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters.

    PubMed

    He, Shuran; Li, Yongtao; Weng, Liping; Wang, Jinjin; He, Jinxian; Liu, Yonglin; Zhang, Kun; Wu, Qihong; Zhang, Yulong; Zhang, Zhen

    2018-10-01

    In present study, the feasibility of applying a natural adsorbent with Fe 3+ modification (Fe 3+ -modified argillaceous limestone, FAL) on the competitive adsorption of heavy metals (i.e., Cd 2+ , Pb 2+ and Ni 2+ ) was evaluated. The current results revealed an efficient adsorption on Cd 2+ , Pb 2+ and Ni 2+ in mono-metal system. Further experiments demonstrated a high selectivity of Pb 2+ during the competitive adsorption of Cd 2+ , Pb 2+ and Ni 2+ . The adsorption selectivity of the metal ions followed the order of Pb ≫ Cd > Ni. In addition, both pH and ionic strength are important factors affecting the metal adsorptions. It is interestingly that various NOMs (i.e., humic acid (HA) and glycine (Gly)) exerted different effects on the adsorption behaviors, probably due to the different affinities for Pb 2+ , Cd 2+ and Ni 2+ and the redistribution of newly-formed metal-DOM complexes. X-ray photoelectron spectroscopy (XPS) analysis together with X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analysis revealed that the metal adsorptions were mainly regulated via the synergistic mechanisms of ion exchange by Na + , Ca 2+ , and Al 3+ , precipitation to form CdCO 3 and Pb 2 (OH) 2 (CO 3 ) 2 , as well as complexes of FAL-OPb and FAL-ONi by hydroxyl groups on the surface of FAL. The application of FAL would be a promising option in leading to an efficient heavy metal removal. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun

    2018-04-01

    To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.

  4. Adsorptive potential of cationic Basic Yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: Mass transfer analysis, kinetic and equilibrium profile

    NASA Astrophysics Data System (ADS)

    Öztürk, A.; Malkoc, E.

    2014-04-01

    In this work, natural untreated clay (NUC) was studied for the removal of Basic Yellow 2 (BY2) from aqueous solution in batch system. The effects of initial BY2 concentration, contact time, solution temperature and solution pH on BY2 adsorption were investigated. Nitrogen sorption measurements were employed to investigate the variation in surface and pore properties after dye adsorption. The adsorbent was characterized by means of FTIR, PSD, TEM, XRD and BET analysis. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Scatchard isotherm models. The maximum monolayer adsorption capacity was found to be 833.33 mg/g at 25 °C (at room temperature). The pseudo-second-order kinetic model provided the best fit to the experimental datas compared with pseudo-first-order kinetic adsorption models. To explain mass transfer mechanism of BY2 adsorption, obtained experimental datas were applied Weber and Morris model, Body and Frusawa and Smith models. The results show that the adsorption process is controlled by film diffusion. The thermodynamic parameters such as, Gibbs free energy changes (ΔG°), standard enthalpy change (ΔH°) and standard entropy change (ΔS°) were determined. Adsorption of BY2 on NUC is exothermic and spontaneous in nature. The calculated activation energy of adsorption was found to be 5.24 kJ/mol for BY2. This value indicates that the adsorption process is a physisorption.

  5. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Mao, Dongsen; Guo, Xiaoming; Yu, Jun

    2015-05-01

    The influence of TiO2, ZrO2, and TiO2-ZrO2 mixed oxide on the catalytic performance of CuO-ZnO catalyst in the methanol synthesis from CO2 hydrogenation was studied. The catalysts were prepared by oxalate co-precipitation method and characterized by TGA, N2 adsorption, XRD, reactive N2O adsorption, XPS, H2-TPR, H2-TPD, and CO2-TPD techniques. Characterization results reveal that all the additives improve the CuO dispersion in the catalyst body and increase the Cu surface area and adsorption capacities of CO2 and H2. The results of catalytic test reveal that the additives increase both the CO2 conversion and methanol selectivity, and TiO2-ZrO2 mixed oxide is more effective than single components of TiO2 or ZrO2. Moreover, the activity of methanol synthesis is correlated directly with CO2 adsorption capacity over the catalysts.

  6. Following the movement of Cu ions in a SSZ-13 zeolite during dehydration, reduction and adsorption: a combined in situ TP-XRD, XANES/DRIFTS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Varga, Tamas; Peden, Charles HF

    2014-05-05

    Cu-SSZ-13 has been shown to possess high activity and superior N2 formation selectivity in the selective catalytic reduction of NOx under oxygen rich conditions. Here, a combination of synchrotron-based (XRD and XANES) and vibrational (DRIFTS) spectroscopy tools have been used to follow the changes in the location and coordination environment of copper ions in a Cu-SSZ-13 zeolite during calcinations, reduction with CO, and adsorption of CO and H2O. XANES spectra collected during these procedures provides critical information not only on the variation in the oxidation state of the copper species in the zeolite structure, but also on the changes inmore » the coordination environment around these ions as they interact with the framework, and with different adsorbates (H2O and CO). Time-resolved XRD data indicate the movement of copper ions and the consequent variation of the unit cell parameters during dehydration. DRIFT spectra provide information about the adsorbed species present in the zeolite, as well as the oxidation states of and coordination environment around the copper ions. A careful analysis of the asymmetric T-O-T vibrations of the CHA framework perturbed by copper ions in different coordination environments proved to be especially informative. The results of this study will aid the identification of the location, coordination and oxidation states of copper ions obtained during in operando catalytic studies. Financial support was provided by the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Part of this work (sample preparation) was performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility supported by the US DOE, Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the US DOE by Battelle. All of the spectroscopy work reported here

  7. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  8. Adsorption of NH4+-N on Chinese loess: Non-equilibrium and equilibrium investigations.

    PubMed

    Xie, Haijian; Wang, Shaoyi; Qiu, Zhanhong; Jiang, Jianqun

    2017-11-01

    NH 4 + -N is a crucial pollutant in landfill leachate and can be in high concentrations for a long period of time due to anaerobic condition of landfills. The adsorption properties of NH 4 + -N on the Chinese loess were investigated using Batch test. The influences of ammonium concentration, temperature, reaction time, slurry concentration, and pH on the adsorption process are evaluated. Adsorption kinetics and isotherm behaviors were studied by applying different models to the test data to determine the adsorption parameters. The equilibrating duration was shown to be less than 60 min. The data on adsorption kinetics can be well fitted by the pseudo-second-order kinetics model. According to the Langmuir isotherm model, the adsorption capacity of Chinese loess about NH 4 + -N was predicted to be 72.30 mg g -1 . The uptake of NH 4 + -N by Chinese loess was considered to be the type of physical adsorption on the basis of D-R isotherm analysis. The optimal pH and slurry concentration are 4 and 2 g/50 ml, respectively. According to the calculated values of free energy, enthalpy and entropy change, the adsorption process is determined to be exothermic. The disorder of the system appeared lowest at temperature of 308.15 K. The predicted Gibb's free energies also indicate the adsorption process is endothermic and spontaneous. The FTIR spectrum and EDX analysis showed the adsorption process of NH 4 + involves cation exchange and dissolution of calcite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study on the enhanced adsorption properties of lysozyme on polyacrylic acid modified TiO2 nano-adsorbents

    NASA Astrophysics Data System (ADS)

    Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia

    2018-01-01

    The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.

  10. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  11. Adsorption of Pb2+ ions on novel ternary nanocomposite of tin, iron and titania

    NASA Astrophysics Data System (ADS)

    Rehman, Mahfooz ur; Rehman, Wajid; Waseem, Muhammad; Haq, Sirajul; Hussain Shah, Khizar; Kang, Peng

    2018-02-01

    In this study, ternary nanocomposite (TNC) was synthesized by microemulsion method by taking Sn, Ti and Fe in (1:1:1) molar ratio. The BET surface area and pore size were measured by nitrogen adsorption method. The morphological features of TNC like particle size, elemental percentage and crystallite size were studied by scanning electron microscopy (SEM), energy dispersive x-rays (EDX) and x-rays diffraction (XRD) respectively, whereas the surface functional groups were detected by Fourier Transform Infrared (FTIR) spectroscopy. The crystallite size was found to be 11 nm, calculated from FWHM of diffraction peak with relative intensity 100%. For the thermal stability of TNC, thermogravimetric analysis (TGA) was performed. Batch adsorption tests were used for the removal of Pb2+ ions from aqueous solutions. The maximum adsorption capacity in this study was found to be 79.56 mg g-1 at 40 °C which is promising than the values reported in the literature. Based on the regression coefficient (r 2), the adsorption data was found well fitted to the Langmuir as compared to Freundlich model. The exchange of a single proton with every Pb2+ ion was calculated. Thermodynamic parameters were indicative for the sorption process to be endothermic and spontaneous.

  12. First-principles investigation of CO adsorption on pristine, C-doped and N-vacancy defected hexagonal AlN nanosheets

    NASA Astrophysics Data System (ADS)

    Ouyang, Tianhong; Qian, Zhao; Ahuja, Rajeev; Liu, Xiangfa

    2018-05-01

    The optimized atomic structures, energetics and electronic structures of toxic gas CO adsorption systems on pristine, C-doped and N-vacancy defected h-AlN nanosheets respectively have been investigated using Density functional theory (DFT-D2 method) to explore their potential gas detection or sensing capabilities. It is found that both the C-doping and the N-vacancy defect improve the CO adsorption energies of AlN nanosheet (from pure -3.847 eV to -5.192 eV and -4.959 eV). The absolute value of the system band gap change induced by adsorption of CO can be scaled up to 2.558 eV or 1.296 eV after C-doping or N-vacancy design respectively, which is evidently larger than the value of 0.350 eV for pristine material and will benefit the robustness of electronic signals in potential gas detection. Charge transfer mechanisms between CO and the AlN nanosheet have been presented by the Bader charge and differential charge density analysis to explore the deep origin of the underlying electronic structure changes. This theoretical study is proposed to predict and understand the CO adsorption properties of the pristine and defected h-AlN nanosheets and would help to guide experimentalists to develop better AlN-based two-dimensional materials for efficient gas detection or sensing applications in the future.

  13. Adsorption and separation of binary and ternary mixtures of SO2, CO2 and N2 by ordered carbon nanotube arrays: grand-canonical Monte Carlo simulations.

    PubMed

    Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian

    2016-02-07

    The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.

  14. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features.

    PubMed

    Lu, Zhiwei; Huangfu, Changxin; Wang, Yanying; Ge, Hongwei; Yao, Yao; Zou, Ping; Wang, Guangtu; He, Hua; Rao, Hanbing

    2015-01-01

    The effect of the surface topography on protein adsorption process is of great significance for designing hydroxyapatite (HA) ceramic material surfaces. In this work, three different topographies of HA materials HA-sheet, HA-rod, and HA-whisker were synthesized and testified by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Brunauer-Emmett-Teller (BET) and a field emission scanning electron microscopy (FE-SEM). We have systematically investigated the adsorption kinetics and thermodynamics of bone morphogenetic proteins (BMP-2) on the three different topography surfaces of HA, respectively. The results showed that the maximum adsorption capacities of HA-sheet, HA-rod and HA-whisker were (219.96 ± 10.18), (247.13 ± 12.35), and (354.67 ± 17.73) μg · g(-1), respectively. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated as well as discussed. It demonstrated that the adsorption of BMP-2 onto HA could be described by the pseudo second-order equation. Adsorption of BMP-2 onto HA followed the Langmuir isotherm. It confirmed that compared with other samples HA-whisker had more adsorption sites for its high specific surface area which could provide more opportunities for protein molecules. The adsorption processes were endothermic (ΔH > 0), spontaneous (ΔG < 0) and entropy increasing (ΔS > 0). A possible adsorption mechanism has been proposed. In addition, the BMP-2 could be adsorbed to the surface which existed slight conformational changes by FT-IR. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Adsorption Characteristics of Bixin on Acid- and Alkali-Treated Kaolinite in Aprotic Solvents

    PubMed Central

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin

    2018-01-01

    The adsorption of bixin in aprotic solvents onto acid- and alkali-treated kaolinite was investigated. Kaolinite was treated three times, for 6 h each, with 8 M HCl or 5 M KOH. The adsorbents were characterized by XRD, FT-IR, EDS, and BET-N2. The effects of contact time and dye concentration on adsorption capacity and kinetics, electronic transition of bixin before and after adsorption, and also mechanism of bixin-kaolinite adsorption were investigated. Dye adsorption followed pseudo-second order kinetics and was faster in acetone than in dimethyl carbonate. The best adsorption results were obtained for KOH-treated kaolinite. In both of the solvents, the adsorption isotherm followed the Langmuir model and adsorption capacity was higher in dimethyl carbonate (q m = 0.43 mg/g) than in acetone (0.29 mg/g). The adsorption capacity and kinetics of KOH-treated kaolinite (q m = 0.43 mg/g, k 2 = 3.27 g/mg·min) were better than those of HCl-treated kaolinite (q m = 0.21 mg/g, k 2 = 0.25 g/mg·min) and natural kaolinite (q m = 0.18 mg/g, k 2 = 0.32 g/mg·min). There are shift in the band position of maximum intensity of bixin after adsorption on this adsorbent. Adsorption in this system seemed to be based essentially on chemisorption due to the electrostatic interaction of bixin with the strong basic and reducing sites of kaolinite. PMID:29581720

  16. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance.

    PubMed

    Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl

    2017-07-01

    A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.

  17. Adsorption mechanism of 2,4-dichlorophenoxyacetic acid onto nitric-acid-modified activated carbon fiber.

    PubMed

    Li, Qun; Sun, Jie; Ren, Tianhao; Guo, Lin; Yang, Zhilin; Yang, Qi; Chen, Hai

    2018-04-01

    Adsorption by carbon materials is one of the relatively fast methods in present research, which is widely used in emergency events. Activated carbon fiber (ACF) modified by nitric acid (N-ACF) was studied in this research to determine the adsorption performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Subsequently, influence factors, adsorption isotherm models, kinetics and thermodynamic were investigated in a batch system to realize this adsorption. Experimental results showed that ACF modified by 0.1M nitric acid had a better removal ability than 2,4-D. Removal rate of 2,4-D by N-ACF was greatly influenced by pH with the optimum pH at 2. The superiority of the Langmuir isotherm model in describing the adsorption equilibrium was revealed by correlation coefficients R2 (R 2  ≥ 0.997). Furthermore, adsorption kinetics was well described by pseudo-second-order model. The results of thermodynamic showed that adsorption was a spontaneous, endothermic process with randomness increasing. Additionally, surface structure properties of adsorbent were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy, Specific surface area analysis of Brunauer, Emmett and Teller and Boehm's titration. It turned out that the micropore structure and functional groups on N-ACF all can contribute to the removal of 2,4-D.

  18. Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC)

    NASA Astrophysics Data System (ADS)

    Chen, Jinghuan; Cao, Feifei; Chen, Songze; Ni, Mingjiang; Gao, Xiang; Cen, Kefa

    2014-10-01

    Ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC) were prepared using evaporation-induced self-assembly (EISA) method and used to adsorb NO. N2 sorption, X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to confirm their structures. The results showed that the ordered and uniform structures were successfully synthesized and with the introduction of cerium pore properties were not significantly changed. The NO adsorption capacity of OMC was two times larger than that of activated carbon (AC). With the introduction of cerium both the adsorption capacity and the adsorption rate were improved. The effects of residence time and oxygen concentration on NO adsorption were also investigated. Oxygen played an important role in the NO adsorption (especially in the form of chemisorption) and residence time had small influence on the NO adsorption capacity. The NO adsorption kinetics was analyzed using pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion models. The results indicated that the NO adsorption process can be divided into rapid adsorption period, slow adsorption period, and equilibrium adsorption period. The pseudo-second-order model was the most suitable model for NO adsorption on OMC and Ce-OMC. The rate controlling step was the intraparticle diffusion together with the adsorption reaction.

  19. Molecular simulation of CH4/CO2/H2O competitive adsorption on low rank coal vitrinite.

    PubMed

    Yu, Song; Bo, Jiang; Wu, Li

    2017-07-21

    The competitive adsorptions of CH 4 /CO 2 /H 2 O on coal vitrinite (DV-8, C 214 H 180 O 24 N 2 ) were computed based on density function theory (DFT) and grand canonical Monte Carlo (GCMC). The adsorption process reaches the saturation state after adsorbing 17 CH 4 s, 22 CO 2 s, and 35 H 2 Os per C 214 H 180 O 24 N 2 respectively. The optimal configurations of CH 4 -vitrinite, CO 2 -vitrinite, and H 2 O-vitrinite respectively manifest as aromatic 1 /T 2 /rT 3 (1 adsorption location, 2 adsorption sites and T here represents sites above the carbon atom and the heteroatom, 3 adsorption orientation and rT here means the orientations of three hydrogen atoms pointing to vitrinite), aromatic/T/v (v represents the orientations perpendicular to the plane of vitrinite), and aromatic/rV/T (rV represents an oxygen atom pointing to the vitrinite surface). The GCMC results show that high temperature is not conducive to the vitrinite's adsorption of adsorbates and the adsorption capacity order is H 2 O > CO 2 > CH 4 (263-363 K) in the one-component, binary, and ternary adsorbate systems. The optimal configurations of vitrinite are similar to graphite/graphene, while ΔE is significantly lower than graphite/graphene. Simulation data are in good agreement with the experimental results.

  20. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    PubMed

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  1. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    PubMed

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  2. Carbon Dioxide Adsorption Behavior of Modified HKUST-1

    NASA Astrophysics Data System (ADS)

    Ma, Lan; Tang, Huamin; Zhou, Chaohua; Zhang, Hongpeng; Yan, Chunxiao; Hu, Xiaochun; Yang, Yang; Yang, Weiwei; Li, Yuming; He, Dehua

    2014-12-01

    A kind of typical metal-organic frameworks (MOFs) material, HKUST-1 was prepared by hydrothermal method and characterized by XRD and SEM. The results of characterizations manifested that HKUST-1 showed a regular octahedral crystal structure. The as-prepared HKUST-1 was modified by several kinds of organic base materials and the CO2 adsorption behaviors of modified HKUST-1 materials were evaluated. The CO2 adsorption capacities of different base modified HKUST-1 varied with the base intensity of modified organic base materials.

  3. Methylamine adsorption and decomposition on B12N12 nanocage: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-08-01

    Density functional theory calculations are performed to investigate the adsorption and decomposition of methylamine (CH3NH2) on the surface of a B12N12 fullerene-like nanocage. Two adsorption types and two reaction channels are identified. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3NH2. The pathways of CH3NH2 decomposition via bond scission of the Csbnd N and Nsbnd H bonds are examined. The results indicate that Nsbnd H bond scission is the most favorable pathway on the B12N12 surface. The side reaction that generates CH3 and NH2 fragments is endothermic by 15.6 kcal/mol with an energy-barrier height of 81.5 kcal/mol. For the CH3NH2 decomposition on the B12N12 surface, the rate-determining step appears to be as the following reaction: CH3NH → CH3N + H.

  4. Influence of N2 annealing on TiO2 tubes structure and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoxiang; Pan, Zhanchang; Yu, Ke; Xiao, Jun; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng; Hu, Guanghui; Xu, Yanbin

    2018-02-01

    In this work, the TiO2 tubes (TBs) were prepared by solvothermal method. The morphology and phase structure of TiO2 TBs is significantly affected by N2 annealing temperature. XRD was used to characterize the phase structure of the as-prepared samples. The morphology and surface areas were characterized by SEM and N2 adsorption-desorption, which show that the tubes were assembled with about 100-nm nanosheets and small ball particles under 400 and 600 °C N2 annealing; when temperature reached 800 °C, the surface of tubes appeared a lot of collapse and many large holes. In addition, the surface areas of 400 °C TiO2, 600 °C TiO2, and 800 °C TiO2 TBs were significantly affected by N2 annealing. Most importantly, the UV-vis and electrochemical tests demonstrate 600 °C TiO2 TBs exhibit higher absorption intensity and photocurrent; thus, it possess on better photocatalytic activity. Therefore, the photocatalytic performance for TiO2 TBs is significantly co-affected by surface area and mix-phase. [Figure not available: see fulltext.

  5. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  6. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  7. Adsorption Studies of Gadolinium ion on Graphitic Carbon Nitride

    NASA Astrophysics Data System (ADS)

    Kuila, S. K.; Kundu, T. K.

    2018-03-01

    Bulk graphitic carbon nitride (g-C3N4) is synthesized by thermal decomposition of urea and used as an adsorbent for gadolinium ion (Gd3+) from aqueous solution. Adsorption capacity of g-C3N4 is found to be influenced by initial Gd3+ concentration, solution pH and contact time. Adsorbed Gd3+is separated from g-C3N4 by ultracentrifuge. Initial and Gd ion accumulated g-C3N4 adsorbent are characterized by X-ray diffraction technique (XRD) for phase identification, UV-visible and Fourier transform infrared (FTIR) spectroscopy for adsorption characteristics and optical property, scanning electron microscopy (SEM) for morphological behaviour along with energy dispersive X-ray spectroscopy (EDS) for elemental study. HNO3(0.1M), NaOH (0.1M) and de-ionized water are used for desorption and around 97% quantitative recovery of Gd ion is observed.

  8. Adsorption and separation of n/iso-pentane on zeolites: A GCMC study.

    PubMed

    Fu, Hui; Qin, Hansong; Wang, Yajun; Liu, Yibin; Yang, Chaohe; Shan, Honghong

    2018-03-01

    Separation of branched chain hydrocarbons and straight chain hydrocarbons is very important in the isomerization process. Grand canonical ensemble Monte Carlo simulations were used to investigate the adsorption and separation of iso-pentane and n-pentane in four types of zeolites: MWW, BOG, MFI, and LTA. The computation of the pure components indicates that the adsorption capacity is affected by physical properties of zeolite, like pore size and structures, and isosteric heat. In BOG, MFI and LTA, the amount of adsorption of n-pentane is higher than iso-pentane, while the phenomenon is contrary in MWW. For a given zeolite, a stronger adsorption heat corresponds to a higher loading. In the binary mixture simulations, the separation capacity of n-and iso-pentane increases with the elevated pressure and the increasing iso-pentane composition. The adsorption mechanism and competition process have been examined. Preferential adsorption contributions prevail at low pressure, however, the size effect becomes important with the increasing pressure, and the relatively smaller n-pentane gradually competes successfully in binary adsorption. Among these zeolites, MFI has the best separation performance due to its high shape selectivity. This work helps to better understand the adsorption and separation performance of n- and iso-pentane in different zeolites and explain the relationship between zeolite structures and adsorption performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves.

    PubMed

    Beltrame, Karla K; Cazetta, André L; de Souza, Patrícia S C; Spessato, Lucas; Silva, Taís L; Almeida, Vitor C

    2018-01-01

    The present work reports the preparation of activated carbon fibers (ACFs) from pineapple plant leaves, and its application on caffeine (CFN) removal from aqueous solution. The preparation procedure was carried out using the H 3 PO 4 as activating agent and slow pyrolysis under N 2 atmosphere. The characterization of materials was performed from the N 2 adsorption and desorption isotherms, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, Boehm titration and pH pzc method. ACFs showed high BET surface area value (S BET = 1031m 2 g -1 ), well-developed mesoporous structure (mesopore volume of 1.27cm³ g -1 ) and pores with average diameter (D M ) of 5.87nm. Additionally, ACFs showed features of fibrous material with predominance of acid groups on its surface. Adsorption studies indicated that the pseudo-second order kinetic and Langmuir isotherm models were that best fitted to the experimental data. The monolayer adsorption capacity was found to be 155.50mgg -1 . thermodynamic studies revealed that adsorption process is spontaneous, exothermic and occurs preferably via physisorption. The pineapple leaves are an efficient precursor for preparation of ACFs, which were successful applied as adsorbent material for removal of caffeine from the aqueous solutions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.

    PubMed

    Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun

    2013-02-15

    A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO2) and adsorption of remazol reactive dye

    NASA Astrophysics Data System (ADS)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Nanoporous amorphous-MnO2 was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH3COO)2.4H2O) in 0.1 M KMnO4. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO2 bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO2. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye on 0.2g synthesized nanoporous amorphous-MnO2 showed 99 - 100% decolorization.

  12. Adsorption behavior of thorium on N,N,N',N'-tetraoctyldiglycolamide (TODGA) impregnated graphene aerogel.

    PubMed

    Chen, Mumei; Li, Zheng; Geng, Yiyun; Zhao, Haogui; He, Shuhua; Li, Qingnuan; Zhang, Lan

    2018-05-01

    As a kind of three-dimensional graphene architecture material with superhydrophobic, low density, high specific surface area and porosity, graphene aerogel (GA) can be used to immobilize extractant to constitute the solvent impregnated adsorbent. In this paper, the N,N,N',N'-tetraoctyldiglycolamide impregnated graphene aerogel ( GA-TODGA) was prepared to remove the thorium from aqueous solution. It is found that the adsorption of thorium on GA-TODGA is strongly dependent on the concentration of TODGA in GA and HNO 3 in aqueous solution. Compared with other solvent impregnated adsorbents, the adsorption capacity of GA-TODGA is much higher due to the high immobilization capacity of GA for TODGA. Furthermore, the GA-TODGA also possesses excellent stability and reusability, ensuring the application potential of using GA-TODGA in large scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Adsorption of small hydrocarbons on rutile TiO 2(110)

    DOE PAGES

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; ...

    2015-11-21

    Here, temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes of C 1–C 4) on rutile TiO 2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti 5c sites. Similar to previous studiesmore » on the adsorption of n-alkanes on metal and metal oxide surfaces, we find that the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti 5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti 5c sites were also determined. The saturation coverage of CH 4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C 2–C 4 hydrocarbons are found nearly independent of the chain length with values of ~ 1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  14. Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41.

    PubMed

    Zanjanchi, M A; Golmojdeh, H; Arvand, M

    2009-09-30

    The use of titania-dispersed materials in photocatalytic processes has been proposed as an alternative to the conventional bare TiO(2), in order to modify the surface area and activity of the catalyst. A homogeneously dispersed Keggin unit into TiO(2) was synthesized using tungstophosphoric acid (TPA) and titanium tetraisopropoxide. This compound was then loaded into MCM-41 by dispersing it in a suspension containing the mesoporous phase. Two other titanium-containing MCM-41 catalysts, Ti-MCM-41 and TiO(2)/MCM-41 were also prepared using isomorphous substitution synthesis method and impregnation method, respectively, for the sake of comparison. The prepared photocatalysts were characterized by X-ray diffraction (XRD), nitrogen physisorption (BET) and chemical analysis. The catalysts were used to study degradation of methylene blue (MB) in aqueous solution. XRD result shows a pure anatase crystalline phase for TPA-containing TiO(2) indicating that there is good molecular distribution of tungstophosphoric acid into TiO(2) structure. Supported TPA-TiO(2) into MCM-41 shows both TPA-TiO(2) and MCM-41 characteristic X-ray reflections in the high-angle and low-angle parts of the XRD patterns, respectively. The experimental results show that adsorption is a major constituent in the elimination of MB from the dye solutions by the TPA-containing materials. Exploitation of both adsorption and photocatalytic processes speeds up the removal of the dye using the TPA-TiO(2)-loaded MCM-41 photocatalyst. The elimination of MB is completed within 15 min for a 30 mg l(-1) MB solution containing a catalyst dose of 100mg/100ml. The efficiencies of the other photocatalysts such as commercial TiO(2), Ti-MCM-41, TiO(2)/MCM-41 and TPA-TiO(2) for adsorption and degradation of MB were also studied and compared with that of the prepared catalyst.

  15. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    Molecular dynamic simulations were carried out to study the sorption, structural properties, and diffusivities of n-hexane and cyclohexane adsorbed in Ni2(dhtp). The results indicated strong interactions between the alkanes and the host material. The free energy perturbation method was employed to investigate the adsorption free energies of methane, ethane, n-butane, n-hexane and cyclohexane. For linear alkanes, the free energy lowered as the length of the carbon chain increased. Also, the adsorption of n-hexane was preferred over cyclohexane, due to its ability to rearrange its structure to maximize contacts with the host. Furthermore, due to the large pore size of Ni2(dhtp),more » higher loadings of alkanes did not significantly affect the alkane structure, and enhanced the free energy of adsorption for subsequent alkanes being loaded. According to our studies, Ni2(dhtp) has a very promising potential for adsorption and storage of alkanes. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  16. Adsorption properties of congo red from aqueous solution onto N,O-carboxymethyl-chitosan.

    PubMed

    Wang, Li; Wang, Aiqin

    2008-03-01

    N,O-carboxymethyl-chitosans (N,O-CMC) with different degree of substitution (DS) were synthesized under heterogeneous conditions by controlling the reaction temperature. The factors influencing adsorption capacity of N,O-CMC such as the DS of N,O-CMC, initial pH value of the dye solution and adsorption temperature for anionic dye congo red (CR) were investigated. Compared with chitosan (78.90 mg/g), N,O-CMC with the DS of 0.35 exhibited much higher adsorption capacity (330.62 mg/g) for CR at the same adsorption conditions. The adsorption kinetics and isotherms showed that the sorption processes were better fitted by pseudo-second-order equation and the Langmuir equation, respectively. The adsorption mechanism of N,O-CMC was also discussed by means of IR and XPS spectra. The results in this study indicated that N,O-CMC was an attractive candidate for removing CR from the dye wastewater.

  17. Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies.

    PubMed

    Hassan, Asaad F; Hrdina, Radim

    2018-04-01

    Chitosan/nanohydroxyapatite composites based on scallop shells (CP12, CP14 and CP21) were prepared with different chitosan: nanohydroxyapatite ratios (1:2, 1:4 and 2:1, respectively). Nanohydroxyapatite (P), chitosan(C) and their composites were characterized by means of TGA, XRD, N 2 adsorption/desorption analysis, SEM, Zeta potential and FTIR. The BET surface area ranged between 189 and 512 m 2 /g. Static adsorption of Hg +2 was tested for the effect of adsorbent dosage, pH, time and initial Hg +2 concentrations indicating that maximum static adsorption capacity was confirmed by CP12 (111.6 mg/g). Static adsorption well fitted with Langmuir adsorption isotherm and Pseudo-second order kinetic models. CP12 was selected for dynamic adsorption of Hg +2 considering the effect of bed height, flow rate and the effect of Hg +2 concentrations. Maximum dynamic adsorption capacity was confirmed at bed height of 3 cm, 2.0 mL/min flow rate and 300 mg/L as Hg +2 concentration with breakthrough time (t b ) and exhaustion time (t e ) of 9 and 21 h. Yoon-Nelson and Thomas models best described the experimental Hg +2 breakthrough curve model. After static adsorption, EDTA solution confirmed the maximum desorption efficiency. The validity of CP12 was tested through three cycles of column dynamic adsorption-desorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.

    PubMed

    Parida, Kulamani; Mishra, Krushna Gopal; Dash, Suresh Kumar

    2012-11-30

    This paper deals with the immobilization of various weight percentage of TiO(2) on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, UV-vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO(2) but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO(2)-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO(2) loading was more than 20 wt.%, the adsorption activity (25)TiO(2)-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO(2) and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO(2)-MCM-41. The adsorption of Cr(VI) onto (20)TiO(2)-MCM-41 at pH~5.5 and temperature 323 K was 91% at 100mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO(2)-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  1. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15.

    PubMed

    Bui, Tung Xuan; Choi, Heechul

    2009-09-15

    The removal of five selected pharmaceuticals, viz., carbamazepine, clofibric acid, diclofenac, ibuprofen, and ketoprofen was examined by batch sorption experiments onto a synthesized mesoporous silica SBA-15. SBA-15 was synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption measurement, and point of zero charge (PZC) measurement. Pharmaceutical adsorption kinetics was rapid and occurred on a scale of minutes, following a pseudo-second-order rate expression. Adsorption isotherms were best fitted by the Freundlich isotherm model. High removal rates of individual pharmaceuticals were achieved in acidic media (pH 3-5) and reached 85.2% for carbamazepine, 88.3% for diclofenac, 93.0% for ibuprofen, 94.3% for ketoprofen, and 49.0% for clofibric acid at pH 3 but decreased with increase in pH. SBA-15 also showed high efficiency for removal of a mixture of 5 pharmaceuticals. Except for clofibric acid (35.6%), the removal of pharmaceuticals in the mixture ranged from 75.2 to 89.3%. Based on adsorption and desorption results, the mechanism of the selected pharmaceuticals was found to be a hydrophilic interaction, providing valuable information for further studies to design materials for the purpose. The results of this study suggest that mesoporous-silica-based materials are promising adsorbents for removing pharmaceuticals from not only surface water but also wastewater of pharmaceutical industrial manufactures.

  2. Adsorption of small hydrocarbons on rutile TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar tomore » previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.« less

  3. Ultrasound-assisted preparation of a nanostructured zinc(II) amine pillar metal-organic framework as a potential sorbent for 2,4-dichlorophenol adsorption from aqueous solution.

    PubMed

    Abazari, Reza; Salehi, Ghazal; Mahjoub, Ali Reza

    2018-09-01

    Using a green and simple route with ultrasound illumination under atmospheric pressure and at room temperature, the nanosized preparation of a Zn(II) metal-organic framework, [Zn(ATA)(BPD)] ∞ (ATA = 2-aminoterephthalic acid), BPD = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene), having nano-plate shape and 3D channel framework, was considered and the product was named as compound 1. The X-ray diffraction (XRD), scanning electron microscopy (SEM), IR spectroscopy, Brunauer-Emmett-Teller (BET), and thermogravimetric analysis (TGA) were used for characterization of the synthesized micro/nano-structures. Further, impact of different sonication times and initial reagent contents on the shape and size of the micro/nano-structures was investigated. The results show that under ultrasound irradiation non-aggregated plates with uniform morphology can be obtained with content of [0.0125] M of the initial reagents in the presence of triethylamine (TEA) at 120 min. Moreover, through N 2 adsorption, effect of the preparation route on the porosity was explored. The bulk and nano-plates of compound 1 were also studied for adsorption of 2,4-dichlorophenol as a pollutant sample. Kinetic studies indicated that 2,4-dichlorophenol adsorption via MOF nano-plates are of first-order kinetics. Also, MOF nano-plates have significantly been reutilized for five times while their adsorption properties have remained unchanged. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Adsorption behavior of Cr(VI) on modified natural zeolite by a new bolaform N,N,N,N',N',N'-hexamethyl-1,9-nonanediammonium dibromide reagent.

    PubMed

    Noroozifar, M; Khorasani-Motlagh, M; Gorgij, M N; Naderpour, H R

    2008-07-15

    The demand for effective adsorbents is to increase in response to the widespread recognition of the deleterious health effects of Cr(VI)-oxyanions exposure through drinking water. In this study, Cr(VI)-oxyanions uptake from aqueous solutions by a new bolaform N,N,N,N',N',N'-hexamethyl-1,9-nonanediammonium dibromide reagent-modified natural zeolitic materials from Zahedan, Iran, was investigated using batch technique. Spectrophotometry method was used for Cr determination. The Cr(VI)-solution concentration varied between 2 and 104 mg L(-1). It was shown that the Cr(VI) uptake strongly depended on pH. The maximum removal of Cr(VI) occurred in acidic media at pH<1.5. The amounts of Cr(VI) adsorbed increased with increase in dose of both adsorbents and their contact time. Based on results an adsorption mechanism has been suggested. The adsorption data for modified zeolite using the amine was consistent with Langmuir isotherm equation and the equilibrium data was analyzed using the Langmuir isotherm.

  5. Heteropolyhedral silver compounds containing the polydentate ligand N,N,O-E-[6-(hydroxyimino)ethyl]-1,3,7-trimethyllumazine. Preparation, spectral and XRD structural study and AIM calculations.

    PubMed

    Jiménez-Pulido, Sonia B; Hueso-Ureña, Francisco; Fernández-Liencres, M Paz; Fernández-Gómez, Manuel; Moreno-Carretero, Miguel N

    2013-01-14

    The oxime derived from 6-acetyl-1,3,7-trimethyllumazine (1) ((E-6-(hydroxyimino)ethyl)-1,3,7-trimethylpteridine-2,4(1H,3H)-dione, DLMAceMox) has been prepared and its molecular and crystal structure determined from spectral and XRD data. The oxime ligand was reacted with silver nitrate, perchlorate, thiocyanate, trifluoromethylsulfonate and tetrafluoroborate to give complexes with formulas [Ag(2)(DLMAceMox)(2)(NO(3))(2)](n) (2), [Ag(2)(DLMAceMox)(2)(ClO(4))(2)](n) (3), [Ag(2)(DLMAceMox)(2)(SCN)(2)] (4), [Ag(2)(DLMAceMox)(2)(CF(3)SO(3))(2)(CH(3)CH(2)OH)]·CH(3)CH(2)OH (5) and [Ag(DLMAceMox)(2)]BF(4) (6). Single-crystal XRD studies show that the asymmetrical residual unit of complexes 2, 3 and 5 contains two quite different but connected silver centers (Ag1-Ag2, 2.9-3.2 Å). In addition to this, the Ag1 ion displays coordination with the N5 and O4 atoms from both lumazine moieties and a ligand (nitrato, perchlorato or ethanol) bridging to another disilver unit. The Ag2 ion is coordinated to the N61 oxime nitrogens, a monodentate and a (O,O)-bridging nitrato/perchlorato or two monodentate O-trifluoromethylsulfonato anions. The coordination polyhedra can be best described as a strongly distorted octahedron (around Ag1) and a square-based pyramid (around Ag2). The Ag-N and Ag-O bond lengths range between 2.22-2.41 and 2.40-2.67 Å, respectively. Although the structure of 4 cannot be resolved by XRD, it is likely to be similar to those described for 2, 3 and 5, containing Ag-Ag units with S-thiocyanato terminal ligands. Finally, the structure of the tetrafluoroborate compound 6 is mononuclear with a strongly distorted tetrahedral AgN(4) core (Ag-N, 2.27-2.43 Å). Always, the different Ag-N distances found clearly point to the more basic character of the oxime N61 nitrogen atom when compared with the pyrazine N5 one. A topological analysis of the electron density within the framework provided by the quantum theory of atoms in molecules (QTAIM) using DFT(M06L) levels of

  6. Hydrotalcite-based CeNiAl mixed oxides for SO2 adsorption and oxidation.

    PubMed

    Zhao, Ling; Kang, Qi; Guan, Xiongfei; Martyniuk, Christopher J

    2018-06-05

    The impact of Ce on SO 2 adsoption and oxidation was studied over a series of flower-like hydrotalcite-based CeNiAl mixed oxides. Combined with XRD, BET, pyridine chemisorption, CO 2 -TPD, XPS and H 2 -TPR results, it revealed that introduction of Ce into NiAlO generates new centers for oxygen storage and release, promotes the enhancement of Lewis acid strength, increases weakly and strongly alkaline sites, and increases ability for SO 2 adsorption and oxidation. Furthermore, in situ Fourier transform infrared spectroscopy revealed that adsorbed SO 2 molecules formed surface bidentate binuclear sulfate. Taken together, we propose that the addition of Ce 4+ to NiAlO acts to improve this compound as major adsorbent for SO 2 .

  7. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.

    PubMed

    García, S; Pis, J J; Rubiera, F; Pevida, C

    2013-05-21

    We present experimentally measured adsorption isotherms of CO2, H2, and N2 on a phenol-formaldehyde resin-based activated carbon, which had been previously synthesized for the separation of CO2 in a precombustion capture process. The single component adsorption isotherms were measured in a magnetic suspension balance at three different temperatures (298, 318, and 338 K) and over a large range of pressures (from 0 to 3000-4000 kPa). These values cover the temperature and pressure conditions likely to be found in a precombustion capture scenario, where CO2 needs to be separated from a CO2/H2/N2 gas stream at high pressure (~1000-1500 kPa) and with a high CO2 concentration (~20-40 vol %). Data on the pure component isotherms were correlated using the Langmuir, Sips, and dual-site Langmuir (DSL) models, i.e., a two-, three-, and four-parameter model, respectively. By using the pure component isotherm fitting parameters, adsorption equilibrium was then predicted for multicomponent gas mixtures by the extended models. The DSL model was formulated considering the energetic site-matching concept, recently addressed in the literature. Experimental gas-mixture adsorption equilibrium data were calculated from breakthrough experiments conducted in a lab-scale fixed-bed reactor and compared with the predictions from the models. Breakthrough experiments were carried out at a temperature of 318 K and five different pressures (300, 500, 1000, 1500, and 2000 kPa) where two different CO2/H2/N2 gas mixtures were used as the feed gas in the adsorption step. The DSL model was found to be the one that most accurately predicted the CO2 adsorption equilibrium in the multicomponent mixture. The results presented in this work highlight the importance of performing experimental measurements of mixture adsorption equilibria, as they are of utmost importance to discriminate between models and to correctly select the one that most closely reflects the actual process.

  8. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  9. Post-combustion CO2 capture with activated carbons using fixed bed adsorption

    NASA Astrophysics Data System (ADS)

    Al Mesfer, Mohammed K.; Danish, Mohd; Fahmy, Yasser M.; Rashid, Md. Mamoon

    2018-03-01

    In the current work, the capturing of carbon dioxide from flue gases of post combustion emission using fixed bed adsorption has been carried out. Two grades of commercial activated carbon (sorbent-1 and sorbent-2) were used as adsorbent. Feed consisting of CO2 and N2 mixture was used for carrying out the adsorption. The influence of bed temperature, feed rate, equilibrium partial pressure and initial % CO2 in feed were considered for analyzing adsorption-desorption process. It was found that the total adsorption-desorption cycle time decreases with increased column temperature and feed rates. The time required to achieve the condition of bed saturation decreases with increased bed temperature and feed rates. The amount of CO2 adsorbed/Kg of the adsorbent declines with increased bed temperature with in studied range for sorbent-1 and sorbent-2. It was suggested that the adsorption capacity of the both the sorbents increases with increased partial pressure of the gas.

  10. Preparation, characterization and dye adsorption of Au nanoparticles/ZnAl layered double oxides nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Xin; Hao, Xiao Dong; Kuang, Min; Zhao, Han; Wen, Zhong Quan

    2013-10-01

    In this work, Au/ZnAl-layer double oxides (LDO) nanocomposties were prepared through a facile calcination process of AuCl4- intercalated ZnAl-layered double hydroxides (LDHs) nanocomposites. The morphology and crystal structure of these nanocomposites were characterized by Scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and N2 sorption analysis. By tailoring the process parameter, such as calcination temperature, heating time and the component composition, the adsorption properties of methyl orange (MO) on the Au/ZnAl-LDO nanocomposites were investigated in this work. In a typical adsorption process, it was found that 0.985 mg of MO (0.01 g L-1, 100 mL, 1 mg of MO in total) can be removed in 60 min by utilizing only 2.5 mg of Au/ZnAl-LDO (Au content, 1%) as adsorbents. Our adsorption data obtained from the Langmuir model also gave good values of the determination coefficient, and the saturated adsorption capacity of Au/ZnAl-LDO nanocomposites for MO was found to be 627.51 mg/g under ambient condition (e.g., room temperature, 1 atm). In principle, these hybrid nanostructures with higher adsorption abilities could be very promising adsorbents for wastewater treatment.

  11. Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite

    NASA Astrophysics Data System (ADS)

    Bahgat, Mohamed; Farghali, Ahmed Ali; El Rouby, Waleed; Khedr, Mohamed; Mohassab-Ahmed, Mohassab Y.

    2013-06-01

    This research was carried out to evaluate the capability of multi-walled carbon nanotubes (CNTs) and NiFe2O4-decorated multi-walled carbon nanotubes (NiFe2O4-CNTs) toward waste water treatment relevant to organic dyes. CNTs were prepared via chemical vapor deposition method. NiFe2O4-CNTs were prepared by in-situ chemical precipitation of metal hydroxides followed by hydrothermal processing. The samples were characterized using XRD and TEM. The adsorption efficiency of CNTs and NiFe2O4-CNTs of methyl green dye at various temperatures was examined. The adsorbed amount increased with the CNTs and NiFe2O4-CNTs dosage. The linear correlation coefficients and standard deviations of Langmuir and Freundlich isotherms were determined. It was found that Langmuir isotherm fitted the experimental results well in both adsorption cases n of methyl green onto CNTs and NiFe2O4-CNTs. Kinetics analyses were conducted using pseudo first-order, second-order and the intraparticle diffusion models. The results showed that the adsorption kinetics was controlled by a pseudo second-order model for adsorption of methyl green onto CNTs and best controlled by pseudo first-order in case of NiFe2O4-CNTs. Changes in the free energy of adsorption (Δ G°), enthalpy (Δ H°), entropy (Δ S°), and the activation energy ( E a) were determined. The Δ H°, Δ G° and E a values indicated that the adsorption of methyl green onto MWCNTs and NiFe2O4-MWCNTs was physisorption.

  12. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.

    PubMed

    Xu, Zhihua; Zhang, Daofang; Yuan, Zhihang; Chen, Weifang; Zhang, Tianqi; Tian, Danqi; Deng, Haixuan

    2017-10-01

    Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl 2 ), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl 2 , AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N 2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pH pzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl 2 (1173 m 2 /g) and AC-MgCi (1336 m 2 /g) were much higher than that of AC-MgO (450 m 2 /g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl 2 (42.55 mg/g) was higher than those of AC-MgCi (40.93 mg/g) and AC-MgO (35.87 mg/g).

  13. Magnetic ordered mesoporous Fe3O4/CeO2 composites with synergy of adsorption and Fenton catalysis

    NASA Astrophysics Data System (ADS)

    Li, Keyan; Zhao, Yongqin; Song, Chunshan; Guo, Xinwen

    2017-12-01

    Magnetic Fe3O4/CeO2 composites with highly ordered mesoporous structure and large surface area were synthesized by impregnation-calcination method, and the mesoporous CeO2 as support was synthesized via the hard template approach. The composition, morphology and physicochemical properties of the materials were characterized by XRD, SEM, TEM, XPS, Raman spectra and N2 adsorption/desorption analysis. The mesoporous Fe3O4/CeO2 composite played a dual-function role as both adsorbent and Fenton-like catalyst for removal of organic dye. The methylene blue (MB) removal efficiency of mesoporous Fe3O4/CeO2 was much higher than that of irregular porous Fe3O4/CeO2. The superior adsorption ability of mesoporous materials was attributed to the abundant oxygen vacancies on the surface of CeO2, high surface area and ordered mesoporous channels. The good oxidative degradation resulted from high Ce3+ content and the synergistic effect between Fe and Ce. The mesoporous Fe3O4/CeO2 composite presented low metal leaching (iron 0.22 mg L-1 and cerium 0.63 mg L-1), which could be ascribed to the strong metal-support interactions for dispersion and stabilization of Fe species. In addition, the composite can be easily separated from reaction solution with an external magnetic field due to its magnetic property, which is important to its practical applications.

  14. Adsorption of arsenic from aqueous solution using magnetic graphene oxide

    NASA Astrophysics Data System (ADS)

    Sherlala, A. I. A.; Raman, A. A.; Bello, M. M.

    2017-06-01

    A binary of graphene oxide (GO) and iron oxide (IO) was prepared and used for the removal of arsenic from aqueous solution. The synthesized compound was characterized using XRD analysis. The prepared composite was used for the adsorption of arsenic from aqueous solution. Central Composite Design was used to design the adsorption experiments and to investigate the effects of operational parameters (initial concentration of arsenic, adsorbent dosage, pH and time) on the adsorption capacity and efficiency. The adsorbent shows a high adsorption capacity for the arsenic. The adsorption efficiency ranges between 33.2 % and 99.95 %. The most significant factors affecting the adsorption capacity were found to be the initial concentration of arsenic and the adsorbent dosage. The initial pH of the solution slightly affects the adsorption capacity, with the maximum adsorption capacity occurring around pH 6 - 7. Thus, the developed adsorbent has a potential for effective removal of arsenic from aqueous solution.

  15. Adsorption of ferrous ions onto montmorillonites

    NASA Astrophysics Data System (ADS)

    Qin, Dawei; Niu, Xia; Qiao, Min; Liu, Gang; Li, Hongxin; Meng, Zhenxiao

    2015-04-01

    The adsorption of Fe (II) onto montmorillonites was investigated through initial concentration, contact time, pH and temperature. During the whole adsorption process, the ascorbic acid (Vitamin C) was added as a kind of antioxidant, at the same time, deionized water (after boiling) and nitrogen protection were also used to avoid oxidation. The Fe2+/Fetotal ratio of the iron exists in the Fe-montmorillonites was found more than 95%. Two kinetic models, including pseudo-first-order and pseudo-second-order model, were used to analyze the adsorption process of Fe (II) on montmorillonites. The results of our study showed that adsorption process fitted with pseudo-second-order well. Adsorption isotherms showed that Langmuir model was better than Freundlich model. The thermodynamic parameters ΔG0 and ΔH0 were 3.696 kJ/mol and 6.689 kJ/mol (we just gave the values at 298 K), respectively. The positive values at different temperatures showed that the adsorption process was non-spontaneous and endothermic. The characteristics of materials were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Surface area and porosity analyzer, Thermogravimetric analysis (TGA), Differential scanning calorimeter (DSC) and Zeta potential distribution.

  16. Adsorptive removal of 1-naphthol from water with Zeolitic imidazolate framework-67

    NASA Astrophysics Data System (ADS)

    Yan, Xinlong; Hu, Xiaoyan; Chen, Tao; Zhang, Shiyu; Zhou, Min

    2017-08-01

    1-Naphthol is widely used as an intermediate in the plastics, dyes, fibers and rubbers production areas, leading to the increasing detection of 1-naphthol in the soil and water environment, which is of particular concern due to its acute toxicity and negative environmental impacts. Considering the high surface area and good stability of ZIFs (zeolitic imidazole frameworks) material, ZIF-67 (a representative cobalt-based ZIFs material) was synthesized and applied as an adsorbent for removal of 1-naphthol from aqueous solution. The obtained ZIF-67 was characterized by XRD, TEM, XPS, N2 physisorption and TG, and the adsorption isotherm, kinetics, and regeneration of the adsorbent were studied in detail. The adsorption of 1-naphthol on ZIF-67 followed a pseudo-second-order equation kinetics and fitted Langmuir adsorption model with a maximum adsorption capacity of 339 mg/g at 313 K, which is much higher than that of the common adsorbents reported such as activated carbon and carbon nanotubes et al. The solution pH was found to be an important factor influencing the adsorption process, which could be explained by the predominant mechanism controlling the process, i.e. electrostatic attraction. In addition, the ZIF-67 showed desirable reusability toward 1-naphthol removal from alkaline aqueous solution.

  17. Adsorption-photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation.

    PubMed

    Wang, Xuejiang; Wu, Zhen; Wang, Yin; Wang, Wei; Wang, Xin; Bu, Yunjie; Zhao, Jianfu

    2013-11-15

    ZnO coupled TiO2/bamboo charcoal (ZnO-TiO2/BC) was prepared using the sol-gel method combined with microwave irradiation. The ZnO-TiO2/BC and TiO2/BC were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), N2 adsorption (BET), and UV-vis diffuse reflectance spectroscopy (UV-vis-DRS). The ZnO dopant promoted the transformation of anatase TiO2 to rutile phase, and a significant red shift of absorption edge was brought out due to the interfacial coupling effect between ZnO and TiO2 particles. The BET specific surface area and total pore volume decreased with ZnO doping, indicating that some micropores were blocked. SEM studies indicated that ZnO was almost uniformly deposited on the surface of the ZnO-TiO2/BC. The adsorption and photocatalytic degradation experiments showed that the photo-degrade efficiency for Zno-TiO2/BC was higher than that of TiO2/BC, and for both composites, the removal efficiency of HA increased as pH decreased from 10.0 to 2.0. The degradation of HA by ZnO-TiO2/BC and TiO2/BC fitted well with the Langmuir-Hinshelwood kinetics model, and HA degradation was achieved through a synergistic mechanism of adsorption and photocatalysis. ZnO-TiO2/BC could be used as an effective and alternative photocatalyst for the treatment of water contaminated by organic pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of adsorptive and catalytic properties of copper, silver and iron contain titanium-pillared bentonite for the removal bisphenol A from aqueous solution

    NASA Astrophysics Data System (ADS)

    Tomul, Fatma; Turgut Basoglu, Funda; Canbay, Hale

    2016-01-01

    Ti-pillared bentonite, Cu, Ag and Fe modified Ti-pillared bentonite and Cu/Ti- and Fe/Ti-mixed pillared bentonite were synthesized using different titanium sources by direct synthesis or by modification after synthesis. The effects of synthesis conditions on the surface characteristics, pore structure and acidity of the pillared bentonites were investigated by SEM⿿EDS, XPS, XRD, N2-adsorption/desorption and FTIR analyses before and after ammonia adsorption. The results of EDS, XPS and XRD analysis confirmed that titanium, copper, silver and iron were incorporated into the bentonite structure. In the XRD patterns, the formation of delaminated structure reflecting the non-parallel distribution of the bentonite layers by pillaring with Ti, Cu/Ti and Fe/Ti-pillars was observed. XPS spectra indicated the presence of TiO2, CuO, Ag and Ag2O and Fe2O3 species depending on the source of active metals in the synthesized samples. In the FTIR spectra, an increase in the Bronsted/Lewis peak intensity was observed with the loading of copper and iron, whereas a decrease in Lewis and Bronsted acidities was observed with incorporation of silver. Adsorption studies indicated that the adsorption capacity of the sample synthesized using titanium (IV) propoxide and incorporating iron to the structure by ion exchange (Fe-PTi-PILC) were higher than those in other samples. The adsorption of BPA (bisphenol A) by all tested samples was found to fit the Langmuir isotherm. In the catalytic wet peroxide oxidation (CWPO) over PTi-PILC (prepared by titanium (IV) propoxide), Fe-PTi-PILC and Cu-PTi-PILC (prepared by copper impregnated Ti-pillared bentonite) samples, BPA values close to complete conversion were achieved within 30 min at 25 °C, pH 4 and 5 g/L mcat. CWPO results showed that increasement of pH causes a decrease the rate of oxidation. On the other hand, by the time catalyst and BPA concentration is increased, the rate of oxidation is increased as well.

  19. Adsorptive separation of CO 2 in sulfur-doped nanoporous carbons: Selectivity and breakthrough simulation

    DOE PAGES

    Saha, Dipendu; Orkoulas, Gerassimos; Chen, Jihua; ...

    2017-03-01

    In this research, we have synthesized two sulfur functionalized nanoporous carbons by post-synthesis modifications with sulfur bearing activating agents that simultaneously enhanced the surface area and introduced sulfur functionalities on the carbon surface. The Brunauer–Emmett–Teller (BET) surface areas of these materials were 2865 and 837 m 2/g with total sulfur contents of 8.2 and 12.9 %, respectively. The sulfur-functionalized carbons were characterized with pore textural properties, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electron microscopy (SEM and TEM). In both the carbons, CO 2 adsorption isotherms and kinetics were measured in three different temperatures of 298, 288 and 278more » K and pressures up to 760 torr. The gravimetric CO 2 uptake followed the trend with BET surface area but the surface area-based uptake was reversed and it followed the trend of sulfur content. The heat of adsorption of CO 2 in low uptake was 60-65 kJ/mol, which is the highest for CO 2 adsorption in porous carbons. In order to investigate the adsorptive separation of CO 2, N 2 and CH 4 adsorption isotherms were also measured at 298 K and 760 torr. The selectivity of separation for CO 2/N 2 and CO 2/CH 4 was calculated based on the Ideal Adsorbed Solution Theory (IAST) and all the results demonstrated the high CO 2 selectivity for the carbon with higher sulfur content. The adsorption isotherms were combined with mass balances to calculate the breakthrough behavior of the binary mixtures of CO 2/N 2 and CO 2/CH 4. The simulation results demonstrated that the dimensionless breakthrough time is a decreasing function of the mole fraction of CO 2 in the feed stream. The overall results suggest that the sulfurfunctionalized carbons can be employed as potential adsorbents for CO 2 separation.« less

  20. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol

    NASA Astrophysics Data System (ADS)

    Guo, Na; Liang, Yimai; Lan, Shi; Liu, Lu; Ji, Guijuan; Gan, Shucai; Zou, Haifeng; Xu, Xuechun

    2014-06-01

    TiO2-SiO2 hollow nanospheres with remarkable enhanced photocatalytic performance have been fabricated by sol-gel method. The hollow sphere possesses both high phototcatalytic activity and adsorption capability. The as-prepared samples were characterized by XRD, SEM, TEM, FTIR, XPS, BJH and TGA/DSC. The experiment results show that, the photocatalyst calcined at 500 °C with Ti/Si ratio of 5:1 (denoted as 5T/S-500) displayed superiorities in both textural and functional properties with the enhanced degradation efficiency on azo dyes (methylene blue, methyl orange) and phenol. The high adsorption capability of organic poisonous contaminants onto 5T/S-500 in aqueous solution demonstrated that the photocatalyst can remove the contaminants from water effectively even without illumination. The TEM and SEM morphologies demonstrated unique hollow and coarse structure of 5T/S-500. Structural analysis showed that Si was doped into the lattice of TiO2 and SiO2 nanoparticles can work as a surface modifier on TiO2. The surface area of 5T/S-500 is 1105 m2/g, 14.5 times as great as that of the pure hollow TiO2 nanosphere, confirms the effect of SiO2 on the improvement of specific surface area. The high photocatalytic activities and high adsorption ability for organic poisonous contaminants demonstrate that the nanocomposite of TiO2-SiO2 is a promising candidate material for future treatment of contaminated water.

  1. Synthetic, XRD, non-covalent interactions and solvent dependent nonlinear optical studies of Sulfadiazine-Ortho-Vanillin Schiff base: (E)-4-((2-hydroxy-3-methoxy- benzylidene) amino)-N-(pyrimidin-2-yl)benzene-sulfonamide

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Salim, Muhammad; Khalid, Muhammad; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo

    2018-06-01

    In this study, Sulfadiazine-Ortho-Vanillin Schiff base namely (E)-4-((2-hydroxy-3-methoxybenzylidene)amino)sbnd N-(pyrimidin-2-yl)benzene-sulfonamide (BS) was synthesized. Chemical characterization and computational studies using different techniques like XRD, FT-IR, UV-Vis, NBO, FMO, and MEP have been employed. Density functional theory (DFT) calculations have been performed at M06-2X/6-311 + G(d,p) level of theory to obtain optimized geometry and vibrational wave numbers for (E)-4-((2-hydroxy-3-methoxybenzylidene)amino)sbnd N-(pyrimidin-2-yl)benzene-sulfonamide (BS). The DFT optimized geometry supports the experimental XRD parameters. Frontier molecular orbital (FMO) energies and molecular electrostatic potential (MEP) surfaces have been executed at M06-2X/6-311 + G(d,p) level of theory. NBO analysis has been carried out at M06-2X/6-311 + G(d,p) level which not only discovered the hyper conjugative interactions and stability in title molecule but also reconfirmed the existence of Nsbnd H⋯N hydrogen bonds between the dimer. The findings of small EHOMO-ELUMO gap shows less hardness and larger softness values which suggested the bioactiveness of the title molecule. Finally, the effect of solvent on nonlinear optical (NLO) properties has been executed using M06-2X level of theory and 6-311 + G (d,p) basis set. The solvent polarity enhanced the NLO response from 3.62 × 10-30 esu to 4.66 × 10-30 esu indicating the considerable NLO character hence in general may have potential applications in the development of non-linear optical materials.

  2. Selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation.

    PubMed

    Miao, Guang; Ye, Feiyan; Wu, Luoming; Ren, Xiaoling; Xiao, Jing; Li, Zhong; Wang, Haihui

    2015-12-30

    This study investigates selective adsorption of thiophenic compounds from fuel over TiO2/SiO2 under UV-irradiation. The TiO2/SiO2 adsorbents were prepared and then characterized by N2 adsorption, X-ray diffraction and X-ray photoelectron spectroscopy. Adsorption isotherms, selectivity and kinetics of TiO2/SiO2 were measured in a UV built-in batch reactor. It was concluded that (a) with the employment of UV-irradiation, high organosulfur uptake of 5.12 mg/g was achieved on the optimized 0.3TiO2/0.7SiO2 adsorbent at low sulfur concentration of 15 ppmw-S, and its adsorption selectivity over naphthalene was up to 325.5; (b) highly dispersed TiO2 served as the photocatalytic sites for DBT oxidation, while SiO2 acted as the selective adsorption sites for the corresponding oxidized DBT using TiO2 as a promoter, the two types of active sites worked cooperatively to achieve the high adsorption selectivity of TiO2/SiO2; (c) The kinetic rate-determining step for the UV photocatalysis-assisted adsorptive desulfurization (PADS) over TiO2/SiO2 was DBT oxidation; (d) consecutive adsorption-regeneration cycles suggested that the 0.3TiO2/0.7SiO2 adsorbent can be regenerated by acetonitrile washing followed with oxidative air treatment. This work demonstrated an effective PADS approach to greatly enhance adsorption capacity and selectivity of thiophenic compounds at low concentrations for deep desulfurization under ambient conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Low frequency sonochemical synthesis of nanoporous amorphous manganese dioxide (MnO{sub 2}) and adsorption of remazol reactive dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Siti Zubaidah; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali, E-mail: rozali@ukm.edu.my

    2015-09-25

    Nanoporous amorphous-MnO{sub 2} was synthesized by sonochemical process (sonication) on the solid manganese (II) acetate tetrahydrate (Mn(CH{sub 3}COO){sub 2}.4H{sub 2}O) in 0.1 M KMnO{sub 4}. The product was characterized by X-ray diffraction (XRD), morphology of the material was scanned by Field Emission Scanning Electron Microscopy (FE-SEM) and absorptions of MnO{sub 2} bonding was characterized by Fourier Transform Infra-Red Spectrometer (FT-IR). Remazol reactive dye or Red 3BS, was used in the adsorption study using nanoporous amorphous-MnO{sub 2}. In batch experiment, 10 ppm of Remazol reactive dye was used and experiment was carried out at room temperature. Adsorption of Remazol dye onmore » 0.2g synthesized nanoporous amorphous-MnO{sub 2} showed 99 – 100% decolorization.« less

  4. Adsorption of the natural protein surfactant Rsn-2 onto liquid interfaces.

    PubMed

    Brandani, Giovanni B; Vance, Steven J; Schor, Marieke; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O; MacPhee, Cait E; Cheung, David L

    2017-03-22

    To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.

  5. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    PubMed

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  6. Effect of degree of deacetylation of chitosan on adsorption capacity and reusability of chitosan/polyvinyl alcohol/TiO2 nano composite.

    PubMed

    Habiba, Umma; Joo, Tan Chin; Siddique, Tawsif A; Salleh, Areisman; Ang, Bee Chin; Afifi, Amalina M

    2017-11-01

    The chitosan/polyvinyl alcohol/TiO 2 composite was synthesized. Two different degrees of deacetylation of chitosan were prepared by hydrolysis to compare the effectiveness of them. The composite was analyzed via field emission scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, weight loss test and adsorption study. The FTIR and XRD results proved the interaction among chitosan, PVA and TiO 2 without any chemical reaction. It was found that, chitosan with higher degree of deacetylation has better stability. Furthermore, it also showed that higher DD of chitosan required less time to reach equilibrium for methyl orange. The adsorption followed the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models were fitted well for isotherm study. Adsorption capacity was higher for the composite containing chitosan with higher DD. The dye removal rate was independent of the dye's initial concentration. The adsorption capacity was increased with temperature and it was found from reusability test that the composite containing chitosan with higher DD is more reusable. It was notable that adsorption capacity was even after 15 runs. Therefore, chitosan/PVA/TiO 2 composite can be a very useful material for dye removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synthesis and CO{sub 2} adsorption study of modified MOF-5 with multi-wall carbon nanotubes and expandable graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullah, Sami, E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Bustam, M. A., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com; Shariff, A. M., E-mail: samichemist1@gmail.com, E-mail: azmibustam@petronas.com.my, E-mail: azmish@petronas.com.my, E-mail: lkhlfh@gmail.com, E-mail: hmurshid@gmail.com, E-mail: nadiariazz@gmail.com

    2014-10-24

    MOF-5 was synthesized by solvothermal method and its reactivation under anhydrous conditions. This research is conducted to investigate the effect of MOF-5 and MOF-5 modified with multi-wall carbon nanotubes (MWCNTs) and expandable graphite (EG) on the performance of CO{sub 2} adsorption. The synthesized MOFs were characterized using Field emission scanning electron microscopy (FESEM) for surface morphology, Thermogravimetric analysis (TGA) for thermal stability, X-ray diffraction (XRD) for crystals plane, Brunauer-Emmet-Teller (BET) for surface area and CO{sub 2} adsorption. The result had showed that the modified MOF-5 enhanced the CO{sub 2} adsorption compared to the pure MOF-5. The increment in the CO{submore » 2} uptake capacities of MOF materials was attributed to the decrease in the pore size and enhancement of micropore volume of MOF-5 by multi-walled carbon nanotube and EG incorporation. The BET surface area of the synthesized MOF-5@MWCNTs is more than MOF-5. The CO{sub 2} sorption capacities of MOF-5 and MOF-5@MWCNTs were observed to increase from 0.00008 to 0.00048 mol g-1 at 298 K and 1 bar. The modified MOF-5@MWCNTs resulted in the highest CO{sub 2} adsorption followed by the modified MOF-5@ EG and lastly, MOF-5.« less

  8. Insights into the Hydrothermal Stability of Triamine-Functionalized SBA-15 Silica for CO2 Adsorption.

    PubMed

    Jahandar Lashaki, Masoud; Ziaei-Azad, Hessam; Sayari, Abdelhamid

    2017-10-23

    The hydrothermal stability of triamine-grafted, large-pore SBA-15 CO 2 adsorbents was studied by using steam stripping. Following two 3 h cycles of steam regeneration, lower CO 2 uptakes, lower CO 2 /N ratios, and slower adsorption kinetics were observed relative to fresh samples, particularly at the lowest adsorption temperature (25 °C). CO 2 adsorption measurements for a selected sample exposed to 48 h of steam stripping depicted that after the initial loss during the first exposure to steam (3-6 h), the adsorptive properties stabilized. For higher adsorption temperatures (i.e., 50 and 75 °C), however, all adsorptive properties remained almost unchanged after steaming, indicating the significance of diffusional limitations. Thermogravimetric analysis and FTIR spectroscopy on grafted samples before and after steam stripping showed no amine leaching and no change in the chemical nature of the amine groups, respectively. Also, a six-cycle CO 2 adsorption/desorption experiment under dry conditions showed no thermal degradation. However, N 2 adsorption measurement at 77 K showed significant reductions in the BET surface area of the grafted samples following steaming. Based on the pore size distribution of calcined, grafted samples before and after steaming, it is proposed that exposure to steam restructured the grafted materials, causing mass transfer resistance. It is inferred that triamine-grafted, large-pore SBA-15 adsorbents are potential candidates for CO 2 capture at relatively high temperatures (50-75 °C; for example, flue gas) combined with steam regeneration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cesium adsorption and distribution onto crushed granite under different physicochemical conditions.

    PubMed

    Tsai, Shih-Chin; Wang, Tsing-Hai; Li, Ming-Hsu; Wei, Yuan-Yaw; Teng, Shi-Ping

    2009-01-30

    The adsorption of cesium onto crushed granite was investigated under different physicochemical conditions including contact time, Cs loading, ionic strength and temperature. In addition, the distribution of adsorbed Cs was examined by X-ray diffraction (XRD) and EDS mapping techniques. The results showed that Cs adsorption to crushed granite behaved as a first-order reaction with nice regression coefficients (R(2) > or = 0.971). Both Freundlich and Langmuir models were applicable to describe the adsorption. The maximum sorption capacity determined by Langmuir model was 80 micromol g(-1) at 25 degrees C and 10 micromol g(-1) at 55 degrees C. The reduced sorption capacity at high temperature was related to the partial enhancement of desorption from granite surface. In general, Cs adsorption was exothermic (DeltaH<0, with median of -12 kJ mol(-1)) and spontaneous (DeltaG<0, with median of -6.1 at 25 degrees C and -5.0 kJ mol(-1) at 55 degrees C). The presence of competing cations such as sodium and potassium ions in synthetic groundwater significantly reduces the Cs adsorption onto granite. The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) mapping method provided substantial evidences that micaceous minerals (biotite in this case) dominate Cs adsorption. These adsorbed Cs ions were notably distributed onto the frayed edges of biotite minerals. More importantly, the locations of these adsorbed Cs were coincided with the potassium depletion area, implying the displacement of K by Cs adsorption. Further XRD patterns displayed a decreased intensity of signal of biotite as the Cs loading increased, revealing that the interlayer space of biotite was affected by Cs adsorption.

  10. Photocatalytic enhancement of floating photocatalyst: Layer-by-layer hybrid carbonized chitosan and Fe-N- codoped TiO2 on fly ash cenospheres

    NASA Astrophysics Data System (ADS)

    Song, Jingke; Wang, Xuejiang; Bu, Yunjie; Wang, Xin; Zhang, Jing; Huang, Jiayu; Ma, RongRong; Zhao, Jianfu

    2017-01-01

    Due to the advantage of floating on water surface, floating photocatalysts show higher rates of radical formation and collection efficiencies. And they were expected to be used for solar remediation of non-stirred and non-oxygenated reservoirs. In this research, floating fly ash cenospheres (FAC) supported layer-by- layer hybrid carbonized chitosan and Fe-N-codoped TiO2 was prepared by a simple sol-gel method. The catalysts were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy(DRS), nitrogen adsorption analyses for Brunauer-Emmett-Teller (BET) specific surface area. It is indicated that Fe-N codoped narrowed the material's band gap, and the layer of carbonized chitosan (Cts) increased the catalyst's adsorption capacity and the absorption ability of visible light. Comparing with Fe-N-TiO2/FAC and N-TiO2/FAC, the composite photocatalyst show excellent performance on the degradation of RhB. Photodegradation rate of RhB by Fe-N-TiO2/FAC-Cts was 0.01018 min-1, which is about 1.5 and 2.09 times higher than Fe-N-TiO2/FAC and N-TiO2/FAC under visible light irradiation in 240 min, respectively. The dye photosentization, capture of holes and electrons by Fe3+ ion, and synergistic effect of adsorption and photodegradation were attributed to the results for the improvement of photocatalytic performance. The floating photocatalyst can be reused for at least three consecutive times without any significant decrease on the degradation of Rhodamin B after each reuse.

  11. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants.

    PubMed

    Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin

    2017-03-15

    In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized in a one-pot process. The synthesized MOFs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), N 2 adsorption, and thermogravimetric analysis (TGA). The meso-porosity and thermal stability of the binary MOFs were higher than those of single HKUST-1 or UiO-66. The synthesized MOF hybrids were then tested for adsorptive removal of methylene blue (MB) from wastewater in terms of kinetic and isothermal adsorption as compared to a commercially available activated carbon (AC). All the synthesized MOFs showed significant removal of MB under a wide range of pH. The adsorption capacities of HKUST-1 are higher than UiO-66 and commercial AC while the binary MOFs presented an even higher adsorption capacity than single MOFs. This is the first time that binary HKUST-1 and UiO-66 MOFs have been successfully synthesized and demonstrated enhanced adsorptive removal of contaminants. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: Applications to gas sensor devices

    NASA Astrophysics Data System (ADS)

    Abbasi, Amirali; Sardroodi, Jaber Jahanbin

    2018-04-01

    The adsorption of O3 molecule on the undoped and N-doped TiO2/WSe2 nanocomposites was studied using first principles density functional theory calculations. O3 interaction with TiO2/WSe2 nanocomposites is considered so as to investigate WSe2 effects on the adsorption process. WSe2 favors the adsorption of O3 on TiO2 particles. In other words, WSe2 is conducive to the interaction of O3 molecule with fivefold coordinated titanium sites of TiO2. The effects of vdW interactions were taken into account in order to obtain equilibrium geometries of O3 molecules at TiO2/WSe2 interfaces. For all adsorption configurations, the binding site was positioned on the fivefold coordinated titanium atoms. The results show that the interactions between O3 and TiO2 in TiO2/WSe2 nanocomposites are stronger than those between O3 and bare TiO2, suggesting that WSe2 helps to strengthen the interaction of ozone molecule with TiO2 particles. The results also indicate that the adsorption of the O3 molecule on the N-doped TiO2/WSe2 nanocomposite is more energetically favorable than the adsorption of O3 on the pristine one, representing that the N-doped nanocomposites are more sensitive than the undoped ones. Our DFT results clearly show that the N-doped TiO2/WSe2 nanocomposite would be a promising O3 gas sensor. The electronic structure of the adsorption system was also investigated, including analysis of the total and projected density of states, and charge density differences of the TiO2/WSe2 with adsorbed O3 molecules. The charge density difference calculations indicate that the charges were accumulated over the adsorbed O3 molecule. Besides, the N-doped nanocomposites have better sensing response than the pristine ones. This work was devoted to provide the theory basis for the design and development of novel and advanced O3 sensors based on modified TiO2/WSe2 nanocomposites.

  13. Study of Cs/NF3 adsorption on GaN (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-03-01

    To investigate the optoelectronics properties of Cs/NF3 adsorption on GaN (0 0 1) photocathode surface, different adsorption models of Cs-only, Cs/O, Cs/NF3 adsorption on GaN clean surface were established, respectively. Atomic structures, work function, adsorption energy, E-Mulliken charge distribution, density of states and optical properties of all these adsorption systems were calculated using first principles. Compared with Cs/O co-adsorption, Cs/NF3 co-adsorption show better stability and more decline of work function, which is more beneficial for photoemission efficiency. Besides, surface band structures of Cs/NF3 co-adsorption system exhibit metal properties, implying good conductivity. Meanwhile, near valence band minimum of Cs/NF3 co-adsorption system, more acceptor levels emerges to form a p-type emission surface, which is conductive to the escape of photoelectrons. In addition, imaginary part of dielectric function curve and absorption curve of Cs/NF3 co-adsorption system both move towards lower energy side. This work can direct the optimization of activation process of NEA GaN photocathode.

  14. Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost.

    PubMed

    Zhu, Weiqin; Du, Wenhui; Shen, Xuyang; Zhang, Hangjun; Ding, Ying

    2017-08-01

    Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb 2+ and Cd 2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb 2+ and Cd 2+ onto either CM or CV follows a Langmuir model and presents maximum Pb 2+ and Cd 2+ adsorption capacities of 102.77 mg g -1 and 38.11 mg g -1 onto CM and 170.65 and 43.01 mg g -1 onto CV, respectively. Kinetic studies show that the adsorption of Pb 2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd 2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb 2+ and Cd 2+ . FTIR analysis demonstrates that the adsorption of Pb 2+ and Cd 2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adsorption kinetics of SO2 on powder activated carbon

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Qilong; Ma, Chunyuan

    2018-02-01

    The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.

  16. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface

    NASA Astrophysics Data System (ADS)

    Singla, Preeti; Singhal, Sonal; Goel, Neetu

    2013-10-01

    The adsorption of NO2 molecules on (8,0) zigzag single-walled boron nitride nanotube surface is investigated using density functional theory calculations. Two interaction modes, nitro (interacting atom is N) and nitrite (O interacts with BNNT) have been studied with increase in number of NO2 molecules. The adsorption of single NO2 molecule in both configurations is observed to be exothermic and physical in nature. However, in nitrite configuration, NO2 molecules are chemisorbed on the surface leading to the dissociation of NO2 molecules into NO and O. The density of states, natural bond orbital analysis and frontier orbital pictures provide rational understanding of the charge transfer involved in the process and predict significant enhancement in the conductivity of the BNNT after NO2 adsorption. The DFT calculations show that NO2 adsorption introduces new impurity states in the band gap of bare BNNT and expand their applications as NO2 molecule gas sensor and catalytic surface for Nsbnd O dissociation depending upon the mode of adsorption.

  17. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Culp, J.T.; Natesakhawat, Sittichai

    2007-07-05

    We have improved the activation process for CuBTC [Cu3(BTC)2, BTC ) 1,3,5-benzenetricarboxylate] by extracting the N,N-dimethylformamide-solvated crystals with methanol; we identify material activated in this way as CuBTC-MeOH. This improvement allowed the activation to be performed at a much lower temperature, thus greatly mitigating the danger of reducing the copper ions. A review of the literature for H2 adsorption in CuBTC shows that the preparation and activation process has a significant impact on the adsorption capacity, surface area, and pore volume. CuBTC-MeOH exhibits a larger pore volume and H2 adsorption amount than any previously reported results for CuBTC. We havemore » performed atomically detailed modeling to complement experimentally measured isotherms. Quantum effects for hydrogen adsorption in CuBTC were found to be important at 77 K. Simulations that include quantum effects are in good agreement with the experimentally measured capacity for H2 at 77 K and high pressure. However, simulations underpredict the amount adsorbed at low pressures. We have compared the adsorption isotherms from simulations with experiments for H2 adsorption at 77, 87, 175, and 298 K; nitrogen adsorption at 253 and 298 K; and argon adsorption at 298 and 356 K. Reasonable agreement was obtained in all cases.« less

  18. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling; Qin, Zuzeng; Ji, Hongbing

    2017-08-01

    In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al2O3, CuO and α-Fe2O3 surfaces at room temperature. Samples were characterized by means of TG, XRD, N2 adsorption-desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO2-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO2-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al2O3 have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095-2122 and 1026-1054 cm-1. The formation of ozonide O3- at 790 cm-1, atomic oxygen at 1317 cm-1, and superoxide O2- at 1124 cm-1 was detected; these species are believed to be intermediates of O3 decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO2, will compete with O3 adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO2 in the presence of O3.

  19. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.

    PubMed

    Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib

    2015-01-01

    Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. In situ fabrication of ZnO@N-doped nanoporous carbon core-shell heterostructures with high photocatalytic and adsorption capacity by a calcination of ZnO@MOF strategy

    NASA Astrophysics Data System (ADS)

    Qi, Qi; Liu, Sujuan; Li, Xing; Kong, Chunlong; Guo, Zhiyong; Chen, Liang

    2017-11-01

    This report describes the controllable encapsulation of ZnO nanoparticles with N-doped nanoporous carbon (N-NpC) via a simple fabrication and calcination of ZnO@ZIF-8 (zeolitic imidazolate framework). In the fabrication of ZnO@ZIF-8, ZnO was used both as the support and Zn source for the formation of ZIF-8. After calcination under N2 atmosphere, the ZnO@N-NpC core-shell heterostructures were formed and characterized by IR, UV-vis, XRD, XPS, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). As expected, the well-defined ZnO@N-NpC core-shell nanospheres demonstrated distinct photocatalytic activity and adsorption capacity in response to the dye methylene blue (MB) in aqueous solution, and the degradation efficiency of MB is up to 99% under UV irradiation for 20 min after catalysts were reused for 5 cycles and stored for two months. Therefore, it is reasonable to believe that the ZnO@N-NpC core-shell heterostructures are new-type nanomaterials for photodegradation of the organic pollutants from wastewater.

  1. Adsorption of n-butane on graphene/Ru(0001)—A molecular beam scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivapragasam, Nilushni; Nayakasinghe, Mindika T.; Burghaus, Uwe, E-mail: uwe.burghaus@ndsu.edu

    2016-07-15

    Adsorption kinetics/dynamics of n-butane on graphene, physical vapor deposited on Ru(0001) (hereafter G/Ru), and bare Ru(0001) (hereafter Ru) are discussed. The chemical activity of the supported-graphene as well as the support was probed by thermal desorption spectroscopy (adsorption kinetics). In addition and to the best of our knowledge, for the first time, molecular beam scattering data of larger molecules were collected for graphene (probing the adsorption dynamics). Furthermore, samples were inspected by x-ray photoelectron spectroscopy and Auger electron spectroscopy. At the measuring conditions used here, n-butane adsorption kinetics/dynamics are molecular and nonactivated. Binding energies of butane on Ru and G/Rumore » are indistinguishable within experimental uncertainty. Thus, G/Ru is “kinetically transparent.” Initial adsorption probabilities, S{sub 0}, of n-butane decrease with increasing impact energy (0.76–1.72 eV) and are adsorption temperature independent for both Ru and G/Ru, again consistent with molecular adsorption. Also, S{sub 0} of Ru and G/Ru are indistinguishable within experimental uncertainty. Thus, G/Ru is “dynamically transparent.” Coverage dependent adsorption probabilities indicate precursor effects for graphene/Ru.« less

  2. Analyzing adsorption characteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation

    NASA Astrophysics Data System (ADS)

    Chang, Shing-Cheng; Chien, Shih-Yao; Chen, Chieh-Li; Chen, Cha'o.-Kuang

    2015-03-01

    The adsorption characteristics of carbon dioxide, nitrogen and water molecules in MCM-41 mesoporous molecular sieve have been investigated by the molecular simulation. We evaluate the pressure-adsorption isotherms and adsorption density profiles under variant gas pressure, operating temperature and mesopore radius of MCM-41 by the grand canonical Monte Carlo simulation. According to the calculated adsorption energy distributions, the adsorption mechanisms of gas in MCM-41 are mainly divided into three types, namely "surface adsorption" on the pore wall, "multilayer adsorption" on the adsorbed gas molecules and "molecular self-aggregation" near the pore center. In addition, the adsorption characteristics of water molecules in MCM-41 are found to be quite different from those of carbon dioxide and nitrogen due to the hydrogen bonds effect. The results indicate that the MCM-41 is practicable in engineering application for the capture, storage, and re-use of water molecules, since it is temperature-sensitive and can achieve significant adsorption loadings within a small range of pressure values via the capillary condensation phenomena.

  3. Effect of H2O on the morphological changes of KNO3 formed on K2O/Al2O3 NOx storage materials: Fourier transform infra-red (FTIR) and time-resolved x-ray diffraction (TR-XRD) studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Mudiyanselage, Kumudu K.; Szanyi, Janos

    Based on combined FTIR and XRD studies, we report here that H2O induces a morphological change of KNO3 species formed on model K2O/Al2O3 NOx storage-reduction catalysts. Specifically as evidenced by FTIR, the contact of H2O with NO2 pre-adsorbed on K2O/Al2O3 promotes the transformation from bidentate (surface-like) KNO3 species to ionic (bulk-like) ones irrespective of K loadings. Once H2O is removed from the sample, a reversible transformation into bidentate KNO3 is observed, demonstrating a significant dependence of H2O on such morphological changes. TR-XRD results show the formation of two different types of bulk KNO3 phases (orthorhomobic and rhombohedral) in an as-impregnatedmore » sample. Once H2O begins to desorb above 400 K, the former is transformed into the latter, resulting in the existence of only the rhombohedral KNO3 phase. On the basis of consistent FTIR and TR-XRD results, we propose a model for the morphological changes of KNO3 species with respect to NO2 adsorption/desorption, H2O and/or heat treatments. Compared with the BaO/Al2O3 system, K2O/Al2O3 shows some similarities with respect to the formation of bulk nitrates upon H2O contact. However, there are significant differences that originate from the lower melting temperature of KNO3 relative to Ba(NO3)2.« less

  4. Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field.

    PubMed

    Lv, Yong-an; Zhuang, Gui-lin; Wang, Jian-guo; Jia, Ya-bo; Xie, Qin

    2011-07-21

    To find an effective strategy for the capture and decomposition of nitrous oxide (N(2)O) is very important in order to protect the ozone layer and control the effects of global warming. Based on first-principles calculations, such a strategy is proposed by the systemic study of N(2)O interaction with pristine and Al (or Ga)-doped graphene, and N(2)O dissociation on the surface of Al (or Ga)-doped graphene in an applied electric field. The calculated adsorption energy value shows the N(2)O molecule more firmly adsorbs on the surface of Al (or Ga)-doped graphene than that of pristine graphene, deriving from a stronger covalent bond between the N(2)O molecule and the Al (or Ga) atom. Furthermore, our study suggests that N(2)O molecules can be easily decomposed to N(2) and O(2) with the appropriate electric field, which reveals that Al-doped graphene may be a new candidate for control of N(2)O. This journal is © the Owner Societies 2011

  5. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    PubMed

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    PubMed

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  7. Simultaneous adsorption of Cd²⁺ and BPA on amphoteric surfactant activated montmorillonite.

    PubMed

    Liu, Chongmin; Wu, Pingxiao; Zhu, Yajie; Tran, Lytuong

    2016-02-01

    The study mainly investigated the simultaneous adsorption of bisphenol A (BPA) and Cd(2+) from aqueous solution on octadecane-betaine modified montmorillonite (BS-Mt). The characteristics of the obtained materials were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), Specific surface area (BET) and Scanning electron microscopy/Energy disperse spectroscopy (SEM/EDS), confirming that BS-18 was successfully introduced into Mt. Also, factors including initial solution pH, initial Cd(2+)/BPA concentration, contact time and adsorbent dosage on the adsorption processes were shown to be crucial for Cd(2+) adsorption, whereas had negligible effects on BPA adsorption. In this study, we found that pseudo-second-order model fitted well with the adsorption kinetic studies for both Cd(2+) and BPA with an equilibrium time of 24 h. The Cd(2+) and BPA adsorption isotherm could be well described by Freundlich model and Langmuir model, respectively. On the basis of kinetic models, the maximum adsorption capacity of Cd(2+) in aqueous solution was slightly enhanced after modification, indicating that Cd(2+) adsorption on BS-Mt was mainly attributed to direct electrostatic attraction and the chelate reaction, while the dramatic enhancement of maximum adsorption capacity for BPA was due to the hydrophobic interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Tetramethylene glycol mediated hydrothermal synthesis of defect-rich SnO2 nanoparticles for fast adsorption and degradation of MB dye

    NASA Astrophysics Data System (ADS)

    Rani, Barkha; Jadhao, Charushila Vasant; Sahu, Niroj Kumar

    2018-04-01

    Defect-rich pristine tin oxide nanoparticles (SnO2 NPs) with high colloidal stability have been synthesized by tetramethylene glycol (TMG) mediated hydrothermal process and characterized by XRD, TEM, Zeta Potential, PL spectroscopy and porosity measurement techniques. XRD result suggests the formation of rutile phase of SnO2 with average crystallite size of 2.65 nm. TMG act as a structure directing agent assist in the formation of network like structure of SnO2 NPs as confirmed from TEM. Significant blue shifts in the UV absorption spectrum as that of the bulk and defect bands in the PL spectrum are observed. The nanomaterial possesses very high surface area of 263.102 m2/g and large pore volume. The above properties strongly influence the photocatalytic degradation of methylene blue dye. Very fast adsorption and 96% degradation (under UV irradiation) has been achieved when 10 ppm methylene blue solutions is catalysed by 20 mg SnO2 NPs which pave the way for potential environmental application.

  9. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.

    PubMed

    Ren, Xiaohua; Guo, Huanhuan; Feng, Jinkui; Si, Pengchao; Zhang, Lin; Ci, Lijie

    2018-01-01

    3D porous N-doped reduced graphene oxide (N-rGO) aerogels were synthesized by a hydrothermal reduction of graphene oxide (GO) with urea and following freeze-drying process. N-rGO aerogels have a high BET surface of 499.70 m 2 /g and a high N doping content (5.93-7.46 at%) including three kinds of N (graphitic, pyridinic and pyrrolic). Their high catalytic performance for phenol oxidation in aqueous solution was investigated by catalytic activation of persulfate (PS). We have demonstrated that N-rGO aerogels are promising metal-free catalysts for phenol removal. Kinetics studies indicate that phenol degradation follows first-order reaction kinetics with the reaction rate constant of 0.16799 min -1 for N-rGO-A(1:30). Interestingly, the comparison of direct catalytic oxidation with adsorption-catalytic oxidation experiments indicates that adsorption plays an important role in the catalytic oxidation of phenol by decreasing the phenol degradation time. Spin density and adsorption modeling demonstrates that graphitic N in N-rGO plays the most important role for the catalytic performance by inducing high positive charge densities to adjacent carbon atoms and facilitating phenol adsorption on these carbon sites. Furthermore, the activation mechanism of persulfate (PS) on N-rGO was first investigated by DFT method and PS can be activated to generate strongly oxidative radical (SO 4 · - ) by transferring electrons to N-rGO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  11. [Adsorptive Stabilization of Soil Cr (VI) Using HDTMA Modified Montmorillonite].

    PubMed

    2016-03-15

    A series of organo-montomorillonites were prepared using Na-montomorillonite and hexadecyl trimethyl ammonium bromide (HDTMA). The organo-montomorillonites were then investigated for the remediation of Cr(VI) contaminated soils. FT-IR, XRD, SEM and N2 -BET, CEC, Zeta potential measurement were conducted to understand the structural changes of montmorillonites as different amounts of HDTMAs were added as modifier. The characterization results indicated that the clay interlayer spacing distance increased from 1. 25 nm to 2. 13 nm, the clay surface roughness decreased, the clay surface area reduced from 38.91 m² · g⁻¹ to 0.42 m² · g⁻¹, the clay exchangeable cation amount reduced from 62 cmol · kg⁻¹ to 9.9 cmol · kg⁻¹ and the clay surface charge changed from -29.1 mV to 5.59 mV as the dosage of HDTMA in montmorillonite was increased. The TCLP (toxicity characteristic leaching procedure) was used to evaluate the leachate toxicity of Cr(VI). The effects of the initial soil Cr(VI) concentration, montmorillonites dosage, reaction time and HDTMA modification amount were investigated, respectively. The results revealed that modification of montmorillonites would manifest an attenuated physical adsorptive effect and an enhanced electrostatic adsorptive effect on Cr(VI), suggesting electrostatic effect was the major force that resulted in improved Cr(VI) adsorption onto HDTMA modified montmorillonites.

  12. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc)† †Electronic supplementary information (ESI) available: Additional experimental details, and full characterization (powder X-ray diffraction, infrared spectra, diamine loadings, dry N2 decomposition profiles, and CO2 adsorption data) for all new adsorbents. CCDC 1577354. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04266c

    PubMed Central

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; Gygi, David; Weston, Simon C.

    2017-01-01

    Alkyldiamine-functionalized variants of the metal–organic framework Mg2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4– = 4,4′′-dioxido-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4– = 3,3′-dioxidobiphenyl-4,4′-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development

  13. First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN

    NASA Astrophysics Data System (ADS)

    Guo, Fangyu; Wang, Jianchuan; Du, Yong; Wang, Jiong; Shang, Shun-Li; Li, Songlin; Chen, Li

    2018-09-01

    Using first-principles calculations based on density functional theory, we systematically study the adsorption and diffusion behaviors of single oxygen (O) atom on the (0 0 1) surfaces of TiN, ZrN and HfN nitride coatings. The top of N site (top(N)) is the most energetic favorable site for O atom and followed by the hollow site for all the three nitrides. O atom tends to diffuse on the (0 0 1) surfaces of the nitrides from the top of transition metal top(TM) sites to a neighboring top(TM) sites by avoiding N sites. The adsorption of O on ZrN and HfN is more stable than that on TiN. Our findings could explain the experimental phenomenon that the oxide thickness of TiN is smaller than that of ZrN under the same oxidation conditions.

  14. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    NASA Astrophysics Data System (ADS)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  15. Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption.

    PubMed

    De Decker, Jeroen; Folens, Karel; De Clercq, Jeriffa; Meledina, Maria; Van Tendeloo, Gustaaf; Du Laing, Gijs; Van Der Voort, Pascal

    2017-08-05

    Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32mg U/g (pH 3) and 27.99mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375min. The adsorbed U(VI) is easily recovered by desorption in 0.1M HNO 3 . Three adsorption/desorption cycles were performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of vacancy defect on surface feature and adsorption of Cs on GaN(0001) surface.

    PubMed

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at B(Ga) site on N vacancy defect surface. The E(ads) of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable.

  17. Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption.

    PubMed

    Saleh, Muhammad; Chandra, Vimlesh; Kemp, K Christian; Kim, Kwang S

    2013-06-28

    A polyindole-reduced graphene oxide (PIG) hybrid was synthesized by reducing graphene oxide sheets in the presence of polyindole. We have shown PIG as a material for capturing carbon dioxide (CO2). The PIG hybrid was chemically activated at temperatures of 400-800 °C, which resulted in nitrogen (N)-doped graphene sheets. The N-doped graphene sheets are microporous with an adsorption pore size of 0.6 nm for CO2 and show a maximum (Brunauer, Emmet and Teller) surface area of 936 m(2) g(-1). The hybrid activated at 600 °C (PIG6) possesses a surface area of 534 m(2) g(-1) and a micropore volume of 0.29 cm(3) g(-1). PIG6 shows a maximum CO2 adsorption capacity of 3.0 mmol g(-1) at 25 °C and 1 atm. This high CO2 uptake is due to the highly microporous character of the material and its N content. The material retains its original adsorption capacity on recycling even after 10 cycles (within experimental error). PIG6 also shows high adsorption selectivity ratios for CO2 over N2, CH4 and H2 of 23, 4 and 85 at 25 °C, respectively.

  18. Probing adsorption sites of carbon dioxide in metal organic framework of [Zn(bdc)(dpds)]n: A molecular simulation study

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.; Liao, Jian-Min; Huang, Xiao-Zhuang; Lin, Chia-Hsun; Ke, Szu-Yu; Wang, Chih-Chieh

    2017-11-01

    We used force-field based grand-canonical Monte Carlo simulation method and density functional theory to study adsorption characteristics of carbon dioxide (CO2) molecules in a metal-organic framework (MOF) compound, [Zn(bdc)(dpds)]n. The studied MOF include a metal ion (Zn(II)), an anion organic linker (dianion of benzene dicarboxylicacid, bdc2-) and a neutral organic linker (4,4‧-dipyridyldisulfide, dpds). Results from calculated adsorption isotherms and enthalpies of adsorption agree with the experimental data. The interactions between the adsorbed CO2 and the organic linkers were examined in simulations. Calculated results show available absorption sites are surrounded by two dpds ligands in which an S-S bond as an N-N‧ spacer connect two pyridines. In contrast, the bdc2- ligand does not give a significant contribution to the substantial adsorption amount even though it contains the carboxylate group that provides available bonding site to CO2.

  19. Different effects of surface heterogeneous atoms of porous and non-porous carbonaceous materials on adsorption of 1,1,2,2-tetrachloroethane in aqueous environment.

    PubMed

    Chen, Weifeng; Ni, Jinzhi

    2017-05-01

    The surface heterogeneous atoms of carbonaceous materials (CMs) play an important role in adsorption of organic pollutants. However, little is known about the surface heterogeneous atoms of CMs might generate different effect on adsorption of hydrophobic organic compounds by porous carbonaceous materials - activated carbons (ACs) and non-porous carbonaceous materials (NPCMs). In this study, we observed that the surface oxygen and nitrogen atoms could decrease the adsorption affinity of both ACs and NPCMs for 1,1,2,2-tetrachloroethane (TeCA), but the degree of decreasing effects were very different. The increasing content of surface oxygen and nitrogen ([O + N]) caused a sharper decrease in adsorption affinity of ACs (slope of lg (k d /SA) vs [O + N]: -0.098∼-0.16) than that of NPCMs (slope of lg (k d /SA) vs [O + N]: -0.025∼-0.059) for TeCA. It was due to the water cluster formed by the surface hydrophilic atoms that could block the micropores and generate massive invalid adsorption sites in the micropores of ACs, while the water cluster only occupied the surface adsorption sites of NPCMs. Furthermore, with the increasing concentration of dissolved TeCA, the effect of surface area on adsorption affinity of NPCMs for TeCA kept constant while the effect of [O + N] decreased due to the competitive adsorption between water molecule and TeCA on the surface of NPCMs, meanwhile, both the effects of micropore volume and [O + N] on adsorption affinity of ACs for TeCA were decreased due to the mechanism of micropore volume filling. These findings are valuable for providing a deep insight into the adsorption mechanisms of CMs for TeCA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of Particle Association on 2,2'-Bipyridyl Adsorption onto Kaolinite.

    PubMed

    Helmy, A. K.; Ferreiro, E. A.; de Bussetti, S. G.

    2000-05-15

    The effect of particle concentration, in kaolin suspensions, on the adsorption of 2,2'-bipyridyl was studied. Adsorption expressed in units of micromoles per gram decreased as a result of the increase in particle concentration and also as a result of the presence of coagulant (0.25 M NaCl). Dispersion treatment with sodium hexametaphosphate increased the adsorption of bipyridyl. The decrease in adsorption with the increase in particle concentration suggests a possible relation between adsorption and flocculation phenomena. On the basis of classic flocculation theory a straight-line relation was obtained between the square root of the adsorption maximum (mmol/L) and particle concentration (g/L). It is concluded that particle association, which is a function of particle concentration, reduces the surface/aqueous interface and consequently the adsorption of bipyridyl. Copyright 2000 Academic Press.

  1. CO{sub 2} adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhijian Liang; Marc Marshall; Alan L. Chaffee

    2009-05-15

    The potential for the metal organic framework (MOF) Cu-BTC to selectively adsorb and separate CO{sub 2} is considered. Isotherms for CO{sub 2}, CH{sub 4}, and N{sub 2} were measured from 0 to 15 bar and at temperatures between 25 and 105{sup o}C. The isotherms suggest a much higher working capacity (x4) for CO{sub 2} adsorption on Cu-BTC relative to the benchmark zeolite 13X over the same pressure range. Higher CO{sub 2}/N{sub 2} and CO{sub 2}/CH{sub 4} selectivities in the higher pressure range (1-15 bar) and with lower heats of adsorption were also demonstrated. Cu-BTC was observed to be stable inmore » O{sub 2} at 25{sup o}C, but its crystallinity was reduced in humid environments. The CO{sub 2} adsorption capacity was progressively reduced upon cyclic exposure to water vapor at low relative humidity (<30%), but leveled out at 75% of its original value after several water adsorption/desorption cycles. 27 refs., 1 fig.« less

  2. Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds.

    PubMed

    Zhong, Lexuan; Lee, Chang-Seo; Haghighat, Fariborz

    2012-12-01

    The photocatalytic oxidation (PCO) technology as an alternative method for air purification has been studied for decades and a variety of PCO models indicate that the adsorption of reactants on the catalyst surface is one of the major physical and chemical processes occurring at a heterogeneous photocatalytic reaction. However, limited study explored the adsorption effect of a photocatalyst. This study carried out a systematic evaluation of adsorption performance of titanium dioxide (TiO(2)) coated fiberglass fibers (FGFs), TiO(2) coated carbon cloth fibers (CCFs), and original CCFs air filters at various relative humidity conditions for nine volatile organic compounds. TiO(2)/FGFs, TiO(2)/CCFs, and CCFs were characterized by SEM for morphology and N(2) adsorption isotherm for BET surface area and pore structure. A bench-scale adsorption test setup was constructed and adsorption tests were performed at various relative humidity conditions and four different injected concentrations for each compound. The isothermal adsorption curves at low concentration levels were obtained and they were well described by Langmuir isotherm model. It was noticed that there were significant differences between the adsorption behaviors and photocatalytic activities of TiO(2)/FGFs and TiO(2)/CCFs. It was concluded that adsorption performance is closely related to the characteristics of substrates and therefore, the development of a substrate with high adsorption ability is a promising trend for improving the performance of the UV-PCO technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Infrared spectroscopic study of radiation-induced adsorption of n-hexane on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Gadzhieva, N. N.

    2017-07-01

    Radiation-stimulated adsorption on a beryllium surface is studied by IR reflection-absorption spectroscopy. It is found that γ-irradiation at room temperature leads to the appearance of n-hexane adsorption centers on a beryllium surface according to molecular and dissociation mechanisms. The kinetics of n-hexane adsorption in a Be- n-hexane system is studied; activated dissociative chemisorption accompanied by formation of beryllium alkyls and surface hydrides is observed at absorbed doses 15 kGy ≤ Vγ ≤ 35 kGy. A possible mechanism of this process is suggested.

  4. Study of carbon dioxide adsorption on a Cu-nitroprusside polymorph

    DOE PAGES

    Roque-Malherbe, R.; Lozano, C.; Polanco, R.; ...

    2011-03-26

    A careful structural characterization was carried out to unequivocally determine the structure of the synthesized material. The TGA, DRIFTS and a Pawley fitting of the XRD powder profiles indicate that the hydrated and in situ dehydrated polymorph crystallizes in the orthorhombic space group Pnma. Meanwhile, the CO 2 isosteric heat of adsorption appears to be independent of loading with an average value of 30 kJ/mol. This translates to a physisorption type interaction, where the adsorption energy corresponding to wall and lateral interactions are mutually compensated to produce, an apparently, homogeneous adsorption energy. The somewhat high adsorption energy is probably duemore » to the confinement of the CO 2 molecules in the nitroprusside pores. Statistical Physics and the Dubinin theory for pore volume filling allowed model the CO 2 equilibrium adsorption process in Cu-nitroprusside. A DRIFTS test for the adsorbed CO 2 displayed a peak at about 2338 cm -1 that was assigned to a contribution due to physical adsorption of the molecule. Another peak found at 2362 cm -1 evidenced that this molecule interacts with the Cu 2+, which appears to act as an electron accepting Lewis acid site. In conclusion, the aim of the present paper is to report a Pnma stable Cu-nitroprusside polymorph obtained by the precipitation method that can adsorb carbon dioxide.« less

  5. Effect of pH and Electrolytes on Adsorption of 2,4-D onto Kaolinite

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    The fate and transport of pesticides in soil can be greatly influenced by adsorption onto clay minerals such as kaolinite. The ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) is one of the most commonly used herbicides. The purpose of this study is to investigate the effect of electrolytes and pH on the adsorption of 2,4- D onto kaolinite. The adsorption coefficient (Kd) of 2,4-D on two types of kaolinite was measured in batch experiments using water and 4 different electrolytes (0.005M CaSO4, 0.005M CaCl2, 0.01M KCl, and 0.01M NaCl). The experiments were carried out with 0.5 g kaolinite at a solid:liquid ratio of 1:20 and at different pH (1.9-6.3). The pH of the solution was controlled by addition of 0.2N of HCl. X-ray diffraction analysis of both kaolinite with and without adsorbed 2,4-D was also done to understand the location of 2,4-D adsorption. The effects of pH and electrolytes on Kd were compared and possible adsorption mechanisms were revealed for 2,4-D adsorption onto the two different types of kaolinite. The results implied that 2,4-D adsorption was higher for an electrolyte solution with monovalent cation than with divalent cation for one type of kaolinite, while no such trend was observed for the other kaolinite. The adsorption of 2,4-D increased significantly with decreasing pH for both types of kaolinite.

  6. Energetic investigation of the adsorption process of CH4, C2H6 and N2 on activated carbon: Numerical and statistical physics treatment

    NASA Astrophysics Data System (ADS)

    Ben Torkia, Yosra; Ben Yahia, Manel; Khalfaoui, Mohamed; Al-Muhtaseb, Shaheen A.; Ben Lamine, Abdelmottaleb

    2014-01-01

    The adsorption energy distribution (AED) function of a commercial activated carbon (BDH-activated carbon) was investigated. For this purpose, the integral equation is derived by using a purely analytical statistical physics treatment. The description of the heterogeneity of the adsorbent is significantly clarified by defining the parameter N(E). This parameter represents the energetic density of the spatial density of the effectively occupied sites. To solve the integral equation, a numerical method was used based on an adequate algorithm. The Langmuir model was adopted as a local adsorption isotherm. This model is developed by using the grand canonical ensemble, which allows defining the physico-chemical parameters involved in the adsorption process. The AED function is estimated by a normal Gaussian function. This method is applied to the adsorption isotherms of nitrogen, methane and ethane at different temperatures. The development of the AED using a statistical physics treatment provides an explanation of the gas molecules behaviour during the adsorption process and gives new physical interpretations at microscopic levels.

  7. Investigation of Physically and Chemically Ionic Liquid Confinement in Nanoporous Materials by a Combination of SANS, Contrast-Matching SANS, XRD and Nitrogen Adsorption

    NASA Astrophysics Data System (ADS)

    Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.

    2012-02-01

    In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.

  8. Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content

    NASA Astrophysics Data System (ADS)

    Ramos Guivar, Juan A.; Bustamante D., Angel; Gonzalez, J. C.; Sanches, Edgar A.; Morales, M. A.; Raez, Julia M.; López-Muñoz, María-José; Arencibia, Amaya

    2018-10-01

    Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites prepared with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap co-precipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, these nanocomposites contain a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2/g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, being possible to be separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.

  9. Preparation of Chitosan Coated Magnetic Hydroxyapatite Nanoparticles and Application for Adsorption of Reactive Blue 19 and Ni2+ Ions

    PubMed Central

    Nguyen, Van Cuong; Pho, Quoc Hue

    2014-01-01

    An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158

  10. Enhanced photocatalytic activity of Fe-doped TiO2 coated on N-doped activated carbon composites for photocatalytic degradation of dyeing wastewater

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Zhu, Beibei; Wang, Lu; Li, Ya; Qiao, Qichen

    2017-10-01

    Fe-doped TiO2 coated on N-doped activated carbon (Fe-TiO2/N-AC, FTNA) composites were synthesized simply by a straightforward two-step procedure. The obtained materials were characterized by X-ray diffractometry (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopies. Through the degradation of dyeing wastewater, the photocatalytic activity of FTNA was investigated under ultraviolet light irradiation. The results showed that containing N functional groups were successfully introduced onto the surface of the activated carbon. Compared with Fe-TiO2/AC (FTA), FTNA with average particle size of TiO2 13.6 nm and surface area 1007.89 m2/g showed a higher photoactivity. Additionally, for the photocatalytic degradation of dyeing wastewater, the optimum N content and catalyst content were 0.8% and 5g/L, respectively. Moreover, the photoactivity and photo stability of the catalyst after many runs was also evaluated.

  11. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.

    PubMed

    Ünlü, Nuri; Ceylan, Şeyda; Erzengin, Mahmut; Odabaşı, Mehmet

    2011-08-01

    As a low-cost natural adsorbent, diatomite (DA) (2 μm) has several advantages including high surface area, chemical reactivity, hydrophilicity and lack of toxicity. In this study, the protein adsorption performance of supermacroporous composite cryogels embedded with Ni(2+)-attached DA particles (Ni(2+)-ADAPs) was investigated. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic composite cryogel column embedded with Ni(2+)-ADAPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA) both from aqueous solutions and human serum. The chemical composition and surface area of DA was determined by XRF and BET method, respectively. The characterization of composite cryogel was investigated by SEM. The effect of pH, and embedded Ni(2+)-ADAPs amount, initial HSA concentration, temperature and flow rate on adsorption were studied. The maximum amount of HSA adsorption from aqueous solution at pH 8.0 phosphate buffer was very high (485.15 mg/g DA). It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Ni(2+)-ADAPs in poly(2-hydroxyethyl methacrylate) composite cryogel without significant loss of adsorption capacity. The efficiency of albumin adsorption from human serum before and after albumin adsorption was also investigated with SDS-PAGE analyses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular simulation of methane adsorption characteristics on coal macromolecule

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyuan; He, Xiaoxiao; Meng, Zhuoyue; Xue, Wenying

    2018-02-01

    In this paper, the molecular model of anthracite named Wender2 was selected to study the adsorption behaviour of single component CH4 and the competitive adsorption of CH4/CO2, CH4/H2O and CH4/N2. The molecular model of anthracite was established by molecular simulation software (Materials Studio 8.0), and Grand Canonical Monte Carlo (GCMC) simulations were carried out to investigate the single and binary component adsorption. The effects of pressure and temperature on the adsorption position, adsorption energy and adsorption capacity were mainly discussed. The results show that for the single component adsorption, the adsorption capacity of CH4 increases rapidly with the pressure ascending, and then tends to be stable after the first step. The low temperature is favourable for the adsorption of CH4, and the high temperature promotes desorption quantity of CH4 from the coal. Adsorbent molecules are preferentially adsorbed on the edge of coal macromolecules. The order of adsorption capacity of CH4/CO2, CH4/H2O and CH4/N2 in the binary component is H2O>CO2>CH4>N2. The change of pressure has little effect on the adsorption capacity of the adsorbent in the competitive adsorption, but it has a great influence on the adsorption capacity of the adsorbent, and there is a positive correlation between them.

  13. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.

    PubMed

    Mullick, Aditi; Neogi, Sudarsan

    2018-07-01

    Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N 2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH pzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L -1 and the maximum adsorption capacity of 5 mg.g -1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L -1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO 3 - , NO 3 - , SO 4 2- , Cl - ) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L -1 , the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Influence of Vacancy Defect on Surface Feature and Adsorption of Cs on GaN(0001) Surface

    PubMed Central

    Ji, Yanjun; Du, Yujie; Wang, Meishan

    2014-01-01

    The effects of Ga and N vacancy defect on the change in surface feature, work function, and characteristic of Cs adsorption on a (2 × 2) GaN(0001) surface have been investigated using density functional theory with a plane-wave ultrasoft pseudopotential method based on first-principles calculations. The covalent bonds gain strength for Ga vacancy defect, whereas they grow weak for N vacancy defect. The lower work function is achieved for Ga and N vacancy defect surfaces than intact surface. The most stable position of Cs adatom on Ga vacancy defect surface is at T1 site, whereas it is at BGa site on N vacancy defect surface. The E ads of Cs on GaN(0001) vacancy defect surface increases compared with that of intact surface; this illustrates that the adsorption of Cs on intact surface is more stable. PMID:25126599

  15. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  16. Ti, Al and N adatom adsorption and diffusion on rocksalt cubic AlN (001) and (011) surfaces: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Mastail, C.; David, M.; Nita, F.; Michel, A.; Abadias, G.

    2017-11-01

    We use ab initio calculations to determine the preferred nucleation sites and migration pathways of Ti, Al and N adatoms on cubic NaCl-structure (B1) AlN surfaces, primary inputs towards a further thin film growth modelling of the TiAlN alloy system. The potential energy landscape is mapped out for both metallic species and nitrogen adatoms for two different AlN surface orientations, (001) and (110), using density functional theory. For all species, the adsorption energies on AlN(011) surface are larger than on AlN(001) surface. Ti and Al adatom adsorption energy landscapes determined at 0 K by ab initio show similar features, with stable binding sites being located in, or near, epitaxial surface positions, with Ti showing a stronger binding compared to Al. In direct contrast, N adatoms (Nad) adsorb preferentially close to N surface atoms (Nsurf), thus forming strong N2-molecule-like bonds on both AlN(001) and (011). Similar to N2 desorption mechanisms reported for other cubic transition metal nitride surfaces, in the present work we investigate Nad/Nsurf desorption on AlN(011) using a drag calculation method. We show that this process leaves a Nsurf vacancy accompanied with a spontaneous surface reconstruction, highlighting faceting formation during growth.

  17. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization

    PubMed Central

    Ding, Yi; Liu, Le; Fang, Yaowei; Zhang, Xu; Lyu, Mingsheng; Wang, Shujun

    2018-01-01

    We report the adsorption of dextranase on a Mg/Fe-layered double hydroxide (Mg/Fe-LDH). We focused the effects of different buffers, pH, and amino acids. The Mg/Fe-LDH was synthesized, and adsorption experiments were performed to investigate the effects. The maximum adsorption occurred in pH 7.0 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, and the maximum dextranase adsorption uptake was 1.38 mg/g (416.67 U/mg); histidine and phenylalanine could affect the adsorption. A histidine tag could be added to the protein to increase the adsorption significantly. The performance features and mechanism were investigated with X-ray diffraction patterns (XRD) and Fourier transform infrared spectra (FTIR). The protein could affect the crystal structure of LDH, and the enzyme was adsorbed on the LDH surface. The main interactions between the protein and LDH were electrostatic and hydrophobic. Histidine and phenylalanine could significantly affect the adsorption. The hexagonal morphology of LDH was not affected after adsorption. PMID:29562655

  18. Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies

    NASA Astrophysics Data System (ADS)

    Erdawati, E.; Darsef, D.

    2018-04-01

    A sol gel method with citric acid as an anionic surfactant was used to fabricate nano magnesium ferrites (MgFe2O4) under different calcination temperatures for 2h, respectively. The microstructure and surface morphology of magnesium ferrite powder were characterized by FTIR, XRD, SEM, and BET. The results of this study are useful for adsorption Congo red. The results showed that increasing solution pH and extending contact time are favorable for improving adsorption efficiency. with initial Congo red concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and0.00189 g/mg/min for solutions with initial congo red of 50 and 100 mg/L, respectively

  19. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  20. Study of the Adsorption Space of Modified Clinoptilolites

    DOE PAGES

    Roque-Malherbe, Rolando; Costa-Hernandez,, Alba N.; Rivera-Maldonado, Christymarie; ...

    2013-05-25

    Carbon dioxide (CO 2) adsorption is an important adsorbent characterization method and a significant industrial process. In separation and recovery technology, the adsorption of the CO 2 is important to reduce the concentration of this gas considered as one of the greenhouse gases. Natural zeolites, particularly clinoptilolite, are widely applied as adsorbents. In the present research, the structure, composition and morphology of modified with hexafluorosilicate (HFSi) and orthophosphoric acid (H 3PO 4) clinoptilolites were investigated by characterizations and measurements made with, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDAX) and gravimetric adsorption. In addition, themore » surface Chemistry of the modified clinoptilolites was analyzed by applying diffuse reflectance fourier transform infrared spectrometry (DRIFTS). Further, the interaction of CO 2 within the adsorption space of these modified clinoptilolites and a synthetic ZSM-5 zeolite was studied with the help of adsorption measurements. An appropriate theoretical methodology for the analysis of the XRD and adsorption data was applied. The calculated cell parameters of the tested are similar to those reported for a typical clinoptilolite of: a = 17.662 Å, b = 17.911 Å, c = 7.407 Å and β = 116.40 The resolution of the TGA derivative profiles indicated the presence of two steps for water release, one of them represents the loss of majority of the water present in the micropores. This was evidenced as a broad peak centered at about 50°C for the CSW-HFSi-0.1, but at 100 °C for the samples CSW-HFSi-0.4. The SEM micrographs corresponding to the modified clinoptilolites, was evidenced that the CSW zeolite shows secondary particles exhibiting diameters from 3 to 40 μm, formed by primary clinoptilolite crystallites showing a crystallite size, Φ = 40 nm. The EDAX elemental analysis it can be demonstrated that the

  1. Adsorption Characteristics of Pb(2+) onto Wine Lees-Derived Biochar.

    PubMed

    Zhu, Qihong; Wu, Jun; Wang, Lilin; Yang, Gang; Zhang, Xiaohong

    2016-08-01

    Biochar has great advantages in soil amendment and polluted soil remediation. Herein, the pore and adsorption properties of wine lees-derived biochar were explored. Specifically, the adsorption isotherm and kinetics of Pb(2+) onto wine lees-derived biochar were examined. Experimental results revealed that wine lees-derived biochar featured large specific surface area and total pore volume, and high contents of -COOH and -OH on its surface. Adsorption of Pb(2+) onto wine lees-derived biochar proceeded via a multilayer adsorption mechanism, as described by the Freundlich adsorption model. Adsorption kinetics followed the Lagergren pseudo-second-order kinetics model; adsorption equilibrium was achieved within 30-60 min. Furthermore, the effect of solution pH on the adsorption of Pb(2+) was investigated. Within the studied pH range of 3-6, the adsorption capacity increased with increasing pH. Under established optimized conditions, wine lees-derived biochar achieved a Pb(2+) adsorption capacity of 79.12 mg/g.

  2. Synthesis, characterization, and application of Zn(NH 3)(CO3) for selective adsorptive separation of CO2

    NASA Astrophysics Data System (ADS)

    Khazeni, Naasser

    This study explores the potential of Zn(NH3)(CO3) for selective CO2 separation. It develops a novel, highly controllable, single-pot synthesis approach based on urea hydrolysis and solvothermal aging to increase the feasibility of synthesizing Zn(NH3)(CO3), determines the structure of Zn(NH3)(CO3) in detail through single crystal X-ray diffraction and powder X-ray diffraction analyses, and performs adsorption analyses for the compound using CO2, N 2, H2, O2, and CH4 as adsorptives. Through adsorptive characterization, a systematic adsorbent selection screening is performed to assess the potential application of Zn(NH3)(CO 3) for adsorptive separation of CO2 from an upstream gas mixture of power generation, hydrogen production, and natural gas industries. Structural analysis shows Zn(NH3)(CO3) to have an inorganic helical framework that consists of a small helix of (ZnOCO) 2 and a large helix of (ZnOCO)4 with two ammines (NH 3) pendant from every other zinc. In terms of adsorption capacity and CO2 selectivity, Zn(NH3)(CO3) adsorbed 0.550 mmole/g CO2 at 293 K and 4500 mmHg, but only 0.047 mmole/g N 2, 0.084 mmole/g H2, 0.207 mmole/g 02, and 0.060 mmole/g CH4 at the same temperature and pressure. This behavior demonstrates considerable equilibrium selectivities - 36, 31, 63, and 11 - for separating CO2 from CH4, CO2 from H 2, CO2 from N2, and CO2 from 02, respectively. During adsorption, the pendant ammines act as the gates of check-valves: applied pressure opens the gates for adsorption; and during desorption, the gates are closed, trapping the adsorbates, until a reduction of pressure to near-atmospheric levels. Therefore, Zn(NH3)(CO3) exhibits low-pressure H3 or H4 hysteresis, indicating that the Zn(NH3)(CO3) framework can achieve gas storage at near-atmospheric pressures. Additionally, the compound proves structurally stable, with an adsorption decrease of 0.8% after 20 adsorption/desorption cycles - a factor that, considered with the other characteristics of Zn

  3. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    PubMed Central

    Ghouma, Imen; Limousy, Lionel; Bennici, Simona

    2018-01-01

    The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2. PMID:29670008

  4. Adsorptive Removal and Adsorption Kinetics of Fluoroquinolone by Nano-Hydroxyapatite

    PubMed Central

    Chen, Yajun; Lan, Tao; Duan, Lunchao; Wang, Fenghe; Zhao, Bin; Zhang, Shengtian; Wei, Wei

    2015-01-01

    Various kinds of antibiotics, especially fluoroquinolone antibiotics (FQs) have been widely used for the therapy of infectious diseases in human and livestock. For their poorly absorbed by living organisms, large-scale misuse or abuse of FQs will foster drug resistance among pathogenic bacteria, as well as a variety of environmental problems when they were released in the environment. In this work, the adsorption properties of two FQs, namely norfloxacin (NOR) and ciprofloxacin (CIP), by nano-hydroxyapatite (n-HAP) were studied by batch adsorption experiments. The adsorption curves of FQs by n-HAP were simulated by Langmuir and Freundlich isotherms. The results shown that NOR and CIP can be adsorbed effectively by the adsorbent of n-HAP, and the adsorption capacity of FQs increase with increasing dosage of n-HAP. The optimum dosage of n-HAP for FQs removal was 20 g·L-1, in which the removal efficiencies is 51.6% and 47.3%, and an adsorption equilibrium time is 20 min. The maximum removal efficiency occurred when pH is 6 for both FQs. The adsorption isotherm of FQs fits well for both Langmuir and Freundlich equations. The adsorption of both FQs by n-HAP follows second-order kinetics. PMID:26698573

  5. Adsorption of cadmium(II) on waste biomaterial.

    PubMed

    Baláž, M; Bujňáková, Z; Baláž, P; Zorkovská, A; Danková, Z; Briančin, J

    2015-09-15

    Significant increase of the adsorption ability of the eggshell biomaterial toward cadmium was observed upon milling, as is evidenced by the value of maximum monolayer adsorption capacity of 329mgg(-1), which is markedly higher than in the case of most "green" sorbents. The main driving force of the adsorption was proven to be the presence of aragonite phase as a consequence of phase transformation from calcite occurring during milling. Cadmium is adsorbed in a non-reversible way, as documented by different techniques (desorption tests, XRD and EDX measurements). The optimum pH for cadmium adsorption was 7. The adsorption process was accompanied by the increase of the value of specific surface area. The course of adsorption has been described by Langmuir, Freundlich and Dubinin-Radushkevich isotherms. The adsorption kinetics was evaluated using three models, among which the best correlation coefficients and the best normalized standard deviation values were achieved for the pseudo-second order model and the intraparticle diffusion model, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.

    PubMed

    Sun, Yuanyuan; Yue, Qinyan; Mao, Yanpeng; Gao, Baoyu; Gao, Yuan; Huang, Lihui

    2014-01-30

    FeCl3, AlCl3 and MnCl2 were used as the assisted activation agent in activated carbon preparation by H3PO4 activation using microwave heating method. The physico-chemical properties of activated carbons were investigated by scanning electron microscope (SEM), N2 adsorption/desorption, Boehm's titration, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). To investigate the adsorption performances of chromium onto these newly developed activated carbons, a batch of experiments were performed under different adsorption conditions: solution pH, initial Cr(VI) ion concentration, contact time and co-existing ions. The results suggested that carbon with MnCl2 as assisted activation agent displayed the highest BET surface area (1332m(2)/g) and the highest pore volume (1.060cm(3)/g). FeCl3, AlCl3 and MnCl2 had successfully improved Cr(VI) adsorption and activated carbon with FeCl3 as assisted activation agent exhibited the best uptake capacity. To study the transformation of Cr(VI) in adsorption process, total chromium in the aqueous solution was also recorded. The ratio of the amount of Cr(VI) to Cr(III) on each adsorbent was explained by XPS analysis results. Both the co-existing salts (Na2SO4 and NaNO3) demonstrated promoted effects on Cr(VI) removal by four carbons. The pseudo-second-order model and Freundlich equation displayed a good correlation with adsorption data. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Understanding gas adsorption in MOF-5/graphene oxide composite materials.

    PubMed

    Lin, Li-Chiang; Paik, Dooam; Kim, Jihan

    2017-05-10

    Metal-organic framework (MOF) and graphene oxide (GO) composite materials (MOF/GO) have been regarded as promising for separation applications due to their synergistically enhanced adsorption properties. Molecular-level understandings of these materials, however, remain unknown to date. In this study, molecular simulations were used, for the first time, to model these composite materials. Specifically, the composite MOF-5/GO material was modeled as stacks of sandwich-like layers on top of one another, consistent with experimental observations inferred from XRD and the SEM images. Simulations indicate that CO 2 and CH 4 bind strongly in the MOF/GO interface region, resulting in synergistically enhanced adsorption properties. To exploit the interface region, we found that in simulating linear alkanes, larger guest molecules show substantially improved adsorption properties in composites compared to the parent MOF-5 structure, illustrating that the performance of adsorption in these molecules will benefit the most from the MOF/GO composites.

  8. Highly Permeable AlPO-18 Membranes for N 2 /CH 4 Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Zhaowang; Elsaidi, Sameh K.; Thallapally, Praveen K.

    Herein we demonstrate that AlPO-18 membranes can separate N2/CH4 gas mixtures at unprecedented N2 permeances. The best membranes separated N2/CH4 mixtures with N2 permeances as high as 3076 GPU and separation selectivities as high as 4.6. Gas mixture separation data, N2 and CH4 adsorption isotherms, ideal adsorbed solution theory (IAST), and breakthrough experiments were collected to understand the separation mechanisms. Competitive adsorption and differences in diffusivities were identified as the prevailing separation mechanisms. Differences in diffusivity played a more dominant role than the competitive adsorption, and led to nitrogen selective membranes.

  9. Water adsorption on goethite: Application of multilayer adsorption models

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Tumminello, R.; Meredith, R.

    2016-12-01

    Adsorbed water on the surface of atmospheric mineral dust has recently been shown to significantly affect the ability of mineral dust aerosol to act as cloud condensation nuclei. We have studied water adsorption as a function of relative humidity (RH) on goethite (α-FeO(OH)), a common component of atmospheric mineral dust. The goethite surface area and particle size was determined using BET analysis and with N2 as an adsorbate and scanning electron microscopy, respectively. Water adsorption on the sample was monitored using horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy equipped with a flow cell. Water content was determined using Beer's law and the optical constants for bulk water. The results were analyzed using Type II adsorption isotherms to model multilayer adsorption, including BET (Brunauer, Emmet and Teller), FHH (Frenkel, Halsey and Hill) and Freundlich. BET fits to experimental data provide parameters of monolayer coverage, while the FHH and Freundlich isotherms provide insights into multilayer adsorption mechanisms. Results indicate that goethite contains 5% H2O by mass at 50% RH, which increases to 12% by mass at 90% RH. Adsorption parameters and experimental results will be presented.

  10. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  11. Preparation of 1D Hierarchical Material Mesosilica/Pal Composite and Its Performance in the Adsorption of Methyl Orange

    PubMed Central

    Wu, Mei; Han, Haifeng; Ni, Lingli; Song, Daiyun; Li, Shuang; Hu, Tao; Jiang, Jinlong; Chen, Jing

    2018-01-01

    This paper highlights the synthesis of a one-dimensional (1D) hierarchical material mesosilica/palygorskite (Pal) composite and evaluates its adsorption performance for anionic dye methyl orange (MO) in comparison with Pal and Mobile crystalline material-41 (MCM-41). The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB) and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM), transmissionelectron microscopy (TEM), N2 adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD), and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles. PMID:29361713

  12. Adsorption of Pb(II) from fish sauce using carboxylated cellulose nanocrystal: Isotherm, kinetics, and thermodynamic studies.

    PubMed

    Wang, Nan; Jin, Ru-Na; Omer, A M; Ouyang, Xiao-Kun

    2017-09-01

    In the present study, a new adsorbent based on carboxylated cellulose nanocrystal (CCN) was developed for the adsorption of Pb(II) from fish sauce. The prepared adsorbent material was characterized by zeta potential, FT-IR, XRD, and XPS tools. The changes in the morphological structure of the developed CCN surface were evidenced by SEM and TEM. The favorable adsorption conditions were selected by studying the contact time, initial concentration, temperature, and concentration of the used glutamic acid and NaCl. The results indicated that the Langmuir isotherm model agrees very well with experimental adsorption data (R 2 =0.9962) with a maximum adsorption capacity 232.56mg/g of Pb(II) at 293.2K. Additionally, data of the adsorption kinetics follow the pseudo-second-order kinetics (R 2 >0.9990). On the other hand, the thermodynamics studies show that the adsorption process is spontaneous and endothermic. Furthermore, the developed CCN could be regenerated using acid treatment with a good reusability for Pb(II) adsorption. The results clearly indicated that the synthesized CCN could be effectively applied as a new material for Pb(II) adsorption from fish sauce solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Gökoğlu, Gökhan; Üzengi Aktürk, Olcay

    2017-12-01

    In this study, we investigate the adsorption properties of Au, Cu, and AuxCuy nanoclusters on MoS2 sheet and the interactions of the adsorbed systems with CO and H2O molecules by using first principles calculations. Results indicate that Au, Cu, or AuxCuy strongly binds to MoS2 monolayer resulting in enhanced chemical activity and sensitivity toward CO and H2O molecules compared to bare MoS2 monolayer. Although both CO and H2O molecules bind weakly to pristine MoS2 monolayer, CO strongly binds to MoS2 sheet in the presence of Au, Cu atoms or AuxCuy clusters. Semiconductor MoS2 monolayer turns into metal upon Au or Cu adsorption. AuxCuy nanocluster adsorption decreases the band gap of MoS2 monolayer acting as a n-type dopant. AuxCuy-doped MoS2 systems have improved adsorption properties for CO and H2O molecules, so the conclusions provided in this study can be useful as a guide for next generation device modeling.

  14. Adsorption Behavior of Ferromagnetic Carbon Nanotubes for Methyl Orange from Aqueous Solution.

    PubMed

    Wang, Liping; Zhang, Mingyu; Zhao, Chenxi; Yang, Shan

    2016-03-01

    The ferromagnetic carbon nanotubes which can be easily separated from aqueous solution were prepared and characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Batch experiments were carried out to investigate the adsorption behavior of ferromagnetic carbon nanotubes for removing methyl orange (MO). The results showed that these ferromagnetic carbon nanotubes were richer in surface function groups than the carbon nanotubes did, furthermore, both γ-Fe2O3 and Fe with ferromagnetism were found on the surface of carbon nanotubes. The results also demonstrated that ferromagnetic carbon nanotubes possessed stronger adsorption ability for MO than carbon nanotubes did. The adsorption isotherms followed Langmuir isotherm equation and the adsorption kinetics could be well described with the pseudo second-order kinetic model. The adsorption process involved an intraparticle diffusion, while it was not the only rate-controlling step. The values of AG were negative and the value of ΔH is -12.37 kJ/mol, proving that the adsorption of MO onto ferromagnetic carbon nanotubes was a spontaneous and exothermic process.

  15. Synthesis of a Ni2P/Ni12P5 bi-phase nanocomposite for the efficient catalytic reduction of 4-nitrophenol based on the unique n-n heterojunction effects.

    PubMed

    Tian, Feng-Yu; Hou, Dongfang; Zhang, Wei-Min; Qiao, Xiu-Qing; Li, Dong-Sheng

    2017-10-24

    A novel heterostructure catalyst of Ni 2 P/Ni 12 P 5 has been fabricated through a simple solvothermal method by modifying the molar ratio of the initial raw materials. The products are characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It is found that the two phases, Ni 2 P and Ni 12 P 5 , are interlaced with one another in the as-formed nanocomposite, resulting in more interfaces. The bi-phase catalyst exhibits a markedly enhanced catalytic activity in the reduction of 4-nitrophenol, as compared to that of single Ni 2 P or Ni 12 P 5 . The enhanced catalytic activity can be attributed to the unique n-n series effects, which result in the increased ease of electron transfer over the Ni 2 P/Ni 12 P 5 bi-phase catalyst.

  16. Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: A DFT study

    NASA Astrophysics Data System (ADS)

    Cui, Hao; Zhang, Xiaoxing; Chen, Dachang; Tang, Ju

    2018-07-01

    Metal-Nx embedded CNT have aroused considerable attention in the field of gas interaction due to their strong catalytic behavior, which provides prospective scopes for gas adsorption and sensing. Detecting SF6 decomposed species in certain devices is essential to guarantee their safe operation. In this work, we performed DFT method and simulated the adsorption of three SF6 decomposed gases (SO2, SOF2 and SO2F2) onto the PtN3 embedded CNT surface, in order to shed light on its adsorption ability and sensing mechanism. Results suggest that the CNT embedded with PtN3 center has strong interaction with these gas molecules, leading to high hybridization between Pt dopant and active atoms inner gas molecules. These interactions are assumed to be chemisorption due to the remarkable Ead and QT, thus resulting in dramatic deformations in electronic structure of PtN3-CNT near the Fermi level. Furthermore, the electronic redistribution cause the conductivity increase of proposed material in three systems, based on frontier molecular orbital theory. Our calculations attempt to suggest novel sensing material that are potentially employed in detection of SF6 decomposed components.

  17. Elaboration and Characterization of TiO2 and Study of the Influence of The Number of Thin Films on the Methylene Blue Adsorption Rate

    NASA Astrophysics Data System (ADS)

    Madoui, Karima; Medjahed, Aicha; Hamici, Melia; Djamila, Abdi; Boudissa, Mokhtar

    2018-05-01

    Thin films of titanium oxide (TiO2) deposited on glass substrates were fabricated by using the sol-gel route. The realization of these thin layers was made using the dip-coating technique with a solution of titanium isopropoxyde as a precursor. The samples prepared with different numbers of deposited layers were annealed at 400 ° C for 2 hours. The main purposes of this work were investigations of both the effect of the number of thin TiO2 layers on the crystal structure of the anatase form first and, their ability to adsorb the solution of methylene blue in order to make colored filters from a photocatalytic process. The deposited titanium-oxide layers were characterized by using various techniques: namely, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and UV-Visible spectrometry. The result obtained by using the XRD technique showed the appearance of an anatase phase, as was confirmed by using Raman spectroscopy. The AFM surface analysis allowed the surface topography to be characterized and the surface roughness to be measured, which increased with increasing number of layers. The UV-Visible spectra showed that the TiO2 films had a good transmittance varying from 65% to 95% according to the number of layers. The gap energy varied as a function of the number of deposited layers. The as deposited TiO2 layers were tested as a photocatalyst towards the adsorption of methylene blue dye. The results obtained during this study showed that the adsorption capacity varied according to the number of deposited thin layers and the exposing duration to ultraviolet (UV) light. The maximum absorption rate of the dye was obtained for the two-layer sample. Seventy-two hours of irradiation allowed the adsorption intensity of the dye to be maximized for two-layer films.

  18. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    PubMed

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. Copyright 2003 Elsevier Science B.V.

  19. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  1. Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Yu, Han; Yu, Hongbing

    2017-01-01

    Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.

  2. Tungsten substituted molybdophosphoric acid loaded on various types of mesoporous silica SBA-15 for application of thorium ion adsorption

    NASA Astrophysics Data System (ADS)

    Aghayan, H.; Khanchi, A. R.; Yousefi, T.; Ghasemi, H.

    2017-12-01

    In this research, three type of mesoporous silica with different morphologies, namely fibers, spheres and platelets were synthesized and used as a support for immobilization of [H3PMo6W6O40].nH2O. The samples were then applied as an inorganic composite ion-exchanger for sorption of thorium from aqueous solution. Various techniques including ICP, XRD, BET, SEM and FT-IR methods were used to characterize of the products. The experiment results showed that the [H3PMo6W6O40].nH2O supported on the platelet mesoporous silica exhibited both the highest sorption capacity and fastest kinetics when compared with the fibers and spheres adsorbents. Our results show that the morphology of the mesoporous support, which can produce different channel lengths, pore size and surface area, has a serious effect on the sorption properties and influences: (1) the amount of loading of heteropoly acid in the support (2) the kinetic of the sorption process and (3) the maximum of adsorption capacity. The platelet morphology showed the shortest equilibrium time, the highest loading amount and the highest adsorption capacity therefore delivering the best performance among the three morphologies.

  3. Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.

    2017-06-01

    Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.

  4. Single-component and binary CO2 and H2O adsorption of amine-functionalized cellulose.

    PubMed

    Gebald, Christoph; Wurzbacher, Jan A; Borgschulte, Andreas; Zimmermann, Tanja; Steinfeld, Aldo

    2014-02-18

    A fundamental analysis of single-component and binary CO2 and H2O adsorption of amine-functionalized nanofibrillated cellulose is carried out in the temperature range of 283-353 K and at CO2 partial pressures in the range of 0.02-105 kPa, where the ultralow partial pressure range is relevant for the direct capture of CO2 from atmospheric air. Single-component CO2 and H2O adsorption experimental data are fitted to the Toth and Guggenheim-Anderson-de Boer models, respectively. Corresponding heats of adsorption, derived from explicit solutions of the van't Hoff equation, are -50 kJ/mol CO2 and -48.8 kJ/mol H2O. Binary CO2/H2O adsorption measurements for humid air reveal that the presence of H2O at 2.55 kPa enhances CO2 adsorption, while the presence of CO2 at 0.045 kPa does not influence H2O adsorption. The energy demand of the temperature-vacuum-swing adsorption/desorption cycle for delivering pure CO2 from air increases significantly with H2O adsorption and indicates the need to reduce the hygroscopicity of the adsorbent.

  5. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments

    NASA Astrophysics Data System (ADS)

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Ortega, Daniela E.

    2018-01-01

    The adsorption of pollutant gases (CO, CO2, SO2 and H2S) onto Fe-doped graphene nanosheets (FeG) is studied on the basis of density functional theory calculations at the PBE/Def2-SVP level of theory. The most stable adsorption configurations, binding characteristics, electronic properties and stability at room temperature of the FeG-Gas interactions is fully analyzed. The gas molecules are chemisorbed onto FeG with adsorption energies in the range of 0.54-1.8 eV, with an enhanced adsorption strength compared to intrinsic graphene. The stability of the FeG-Gas interactions is dominated by Lewis-acid-base interactions, and its strength is sorted as SO2 > CO > H2S > CO2. The adsorption stability is also retained at room temperature (300 K). Due to the strong interaction of SO2, CO, and H2S, FeG could catalyze or activate these gas molecules, suggesting the possibility of FeG as a catalyst substrate. The electron acceptor/donor character of CO, CO2, SO2 and H2S molecules when adsorbed onto FeG causes charge transfer processes that are responsible for the change in conductance of FeG; thus, the response of the HOMO-LUMO gap of FeG under gas adsorption could be useful for sensing applications. Furthermore, the analysis of the co-adsorption in O2 environments shows that the CO2 interaction turns unstable onto FeG, while the sensing response towards H2S is suppressed. Finally, these results give new insights into the emerging applications of Fe-doped graphene in gas capture/filtration devices, solid-state gas sensors or as a catalyst substrate.

  6. Adsorption of drugs onto a pH responsive poly(N,N-dimethyl aminoethyl methacrylate) grafted anion-exchange membrane in vitro.

    PubMed

    Karppi, Jouni; Akerman, Satu; Akerman, Kari; Sundell, Annika; Nyyssönen, Kristiina; Penttilä, Ilkka

    2007-06-29

    The influence of charge and lipophilicity of acidic and basic model drugs on their adsorption onto poly(N,N-dimethyl aminoethyl methacrylic acid) grafted poly(vinylidene fluoride) (DMAEMA-PVDF) membranes was evaluated. The effect of serum proteins (albumin, IgG) and hormones (cortisol, free thyroxine (T(4)F) and thyrotropin (TSH)) on drug adsorption was also studied. Acidic model drugs (antiepileptics and benzodiazepies) adsorbed to a greater extent onto the membrane from Hepes buffer at ionic strength of 25mM and pH 7.0 than basic drugs (antidepressants) did. Adsorption of acidic model drugs was based on electrostatic interactions between positively charged tertiary amino groups of DMAEMA side-chain and acidic negatively charged drug. Albumin diminished the adsorption of drugs from serum onto the membrane. Lipophilicity was related to the adsorption of acidic model drugs from serum onto the membrane. The degree of grafting had the greatest effect on adsorption of lipophilic drugs, but no influence was observed on adsorption of hydrophilic drugs. The present results showed that acidic drugs and albumin adsorbed onto the membrane, which suggests that the PVDF-DMAEMA membrane may be suitable for separating acidic drugs from protein-free substances for subsequent monitoring and evaluation.

  7. Adsorption of phenol and hydrazine upon pristine and X-decorated (X = Sc, Ti, Cr and Mn) MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu

    2018-05-01

    Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.

  8. Adsorption of 4-n-Nonylphenol and Bisphenol-A on Magnetic Reduced Graphene Oxides: A Combined Experimental and Theoretical Studies.

    PubMed

    Jin, Zhongxiu; Wang, Xiangxue; Sun, Yubing; Ai, Yuejie; Wang, Xiangke

    2015-08-04

    Adsorption of 4-n-nonylphenol (4-n-NP) and bisphenol A (BPA) on magnetic reduced graphene oxides (rGOs) as a function of contact time, pH, ionic strength and humic acid were investigated by batch techniques. Adsorption of 4-n-NP and BPA were independent of pH at 3.0- 8.0, whereas the slightly decreased adsorption was observed at pH 8.0-11.0. Adsorption kinetics and isotherms of 4-n-NP and BPA on magnetic rGOs can be satisfactorily fitted by pseudo-second-order kinetic and Freundlich model, respectively. The maximum adsorption capacities of magnetic rGOs at pH 6.5 and 293 K were 63.96 and 48.74 mg/g for 4-n-NP and BPA, respectively, which were significantly higher than that of activated carbon. Based on theoretical calculations, the higher adsorption energy of rGOs + 4-n-NP was mainly due to π-π stacking and flexible long alkyl chain of 4-n-NP, whereas adsorption of BPA on rGOs was energetically favored by a lying-down configuration due to π-π stacking and dispersion forces, which was further demonstrated by FTIR analysis. These findings indicate that magnetic rGOs is a promising adsorbent for the efficient elimination of 4-n-NP/BPA from aqueous solutions due to its excellent adsorption performance and simple magnetic separation, which are of great significance for the remediation of endocrine-disrupting chemicals in environmental cleanup.

  9. Wrinkles and Folds of Activated Graphene Nanosheets as Fast and Efficient Adsorptive Sites for Hydrophobic Organic Contaminants.

    PubMed

    Wang, Jun; Chen, Baoliang; Xing, Baoshan

    2016-04-05

    To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.

  10. Energetics of CO2 and H2O adsorption on zinc oxide.

    PubMed

    Gouvêa, Douglas; Ushakov, Sergey V; Navrotsky, Alexandra

    2014-08-05

    Adsorption of H2O and CO2 on zinc oxide surfaces was studied by gas adsorption calorimetry on nanocrystalline samples prepared by laser evaporation in oxygen to minimize surface impurities and degassed at 450 °C. Differential enthalpies of H2O and CO2 chemisorption are in the range -150 ±10 kJ/mol and -110 ±10 kJ/mol up to a coverage of 2 molecules per nm(2). Integral enthalpy of chemisorption for H2O is -96.8 ±2.5 kJ/mol at 5.6 H2O/nm(2) when enthalpy of water condensation is reached, and for CO2 is -96.6 ±2.5 kJ/mol at 2.6 CO2/nm(2) when adsorption ceases. These values are consistent with those reported for ZnO prepared by other methods after similar degas conditions. The similar energetics suggests possible competition of CO2 and H2O for binding to ZnO surfaces. Exposure of bulk and nanocrystalline ZnO with preadsorbed CO2 to water vapor results in partial displacement of CO2 by H2O. In contrast, temperature-programmed desorption (TPD) indicates that a small fraction of CO2 is retained on ZnO surfaces up to 800 °C, under conditions where all H2O is desorbed, with adsorption energies near -200 kJ/mol. Although molecular mechanisms of adsorption were not studied, the thermodynamic data are consistent with dissociative adsorption of H2O at low coverage and with several different modes of CO2 binding.

  11. Computational study of hydrocarbon adsorption in metal-organic framework Ni2(dhtp).

    PubMed

    Sun, Xiuquan; Wick, Collin D; Thallapally, Praveen K; McGrail, B Peter; Dang, Liem X

    2011-03-31

    Enhancing the efficiency of the Rankine cycle, which is utilized for multiple renewable energy sources, requires the use of a working fluid with a high latent heat of vaporization. To further enhance its latent heat, a working fluid can be placed in a metal organic heat carrier (MOHC) with a high heat of adsorption. One such material is Ni\\DOBDC, in which linear alkanes have a higher heat of adsorption than cyclic alkanes. We carried out molecular dynamics simulations to investigate the structural, diffusive, and adsorption properties of n-hexane and cyclohexane in Ni\\DOBDC. The strong binding for both n-hexane and cyclohexane with Ni\\DOBDC is attributed to the increase of the heat of adsorption observed in experiments. Our structural results indicate the organic linkers in Ni\\DOBDC are the primary binding sites for both n-hexane and cyclohexane molecules. However, at all temperatures and loadings examined in present work, n-hexane clearly showed stronger binding with Ni\\DOBDC than cyclohexane. This was found to be the result of the ability of n-hexane to reconfigure its structure to a greater degree than cyclohexane to gain more contacts between adsorbates and adsorbents. The geometry and flexibility of guest molecules were also related to their diffusivity in Ni\\DOBDC, with higher diffusion for flexible molecules. Because of the large pore sizes in Ni\\DOBDC, energetic effects were the dominant force for alkane adsorption and selectivity.

  12. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Hongqiang; Song, Shaoxian; Weng, Xiaoqing; He, Dongsheng; Zhao, Yunliang

    Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO) was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl), a representative cationic surfactant. X-ray diffraction (XRD), FT-IR spectroscopy and atomic force microscope (AFM) were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS). The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO.

  13. Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement

    NASA Astrophysics Data System (ADS)

    Mizushima, S.

    2004-06-01

    The adsorption isotherms on SiO2/Si(100) surfaces were measured using a vacuum mass comparator. Samples with a surface area difference of 816.6 cm2 were used for the measurement, and a substitution weighing method was adopted to reduce the uncertainty due to the drift and non-linearity of the indication of the mass comparator. We measured adsorption isotherms of water vapour on the SiO2/Si(100) surfaces outgassed at a temperature of 500 °C and found that dissociative adsorption caused an irreversible increase of 0.028 µg cm-2 with an uncertainty of 0.004 µg cm-2 (k = 1). We also found that the physical adsorption of water molecules on hydroxylated surfaces had a monolayer capacity of 0.004 µg cm-2 with an uncertainty of 0.002 µg cm-2 (k = 1). In addition, the adsorption isotherms for ethanol vapour and n-octane vapour, which were different from water vapour in adsorption properties, were measured and analysed.

  14. DFT study on the adsorption behavior and electronic response of AlN nanotube and nanocage toward toxic halothane gas

    NASA Astrophysics Data System (ADS)

    Mohammadi, R.; Hosseinian, A.; Khosroshahi, E. Saedi; Edjlali, L.; Vessally, E.

    2018-04-01

    We have investigated the adsorption of a halothane molecule on the AlN nanotube, and nanocage using density functional theory calculations. We predicted that the halothane molecule tends to be physically adsorbed on the surface of AlN nanotube with adsorption energy (Ead) of -4.2 kcal/mol. The electronic properties of AlN nanotube are not affected by the halothane, and it is not a sensor. But the AlN nanocage is more reactive than the AlN nanotube because of its higher curvature. The halothane tends to be adsorbed on a hexagonal ring, an Alsbnd N bond, and a tetragonal ring of the AlN nanocage. The adsorption ability order is as follows: tetragonal ring (Ead = -14.7 kcal/mol) > Alsbnd N bond (Ead = -12.3 kcal/mol) > hexagonal ring (Ead = -10.1 kcal/mol). When a halothane molecule is adsorbed on the AlN nanocage, its electrical conductivity is increased, demonstrating that it can yield an electronic signal at the presence of this molecule, and can be employed in chemical sensors. The AlN nanocage benefits from a short recovery time of about 58 ms at room temperature.

  15. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  16. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    PubMed

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  17. Optical regulation of protein adsorption and cell adhesion by photoresponsive GaN nanowires.

    PubMed

    Li, Jingying; Han, Qiusen; Zhang, Ying; Zhang, Wei; Dong, Mingdong; Besenbacher, Flemming; Yang, Rong; Wang, Chen

    2013-10-09

    Interfacing nanowires with living cells is attracting more and more interest due to the potential applications, such as cell culture engineering and drug delivery. We report on the feasibility of using photoresponsive semiconductor gallium nitride (GaN) nanowires (NWs) for regulating the behaviors of biomolecules and cells at the nano/biointerface. The GaN NWs have been fabricated by a facile chemical vapor deposition method. The superhydrophobicity to superhydrophilicity transition of the NWs is achieved by UV illumination. Bovine serum albumin adsorption could be modulated by photoresponsive GaN NWs. Tunable cell detachment and adhesion are also observed. The mechanism of the NW surface responsible for modulating both of protein adsorption and cell adhesion is discussed. These observations of the modulation effects on protein adsorption and cell adhesion by GaN NWs could provide a novel approach toward the regulation of the behaviors of biomolecules and cells at the nano/biointerface, which may be of considerable importance in the development of high-performance semiconductor nanowire-based biomedical devices for cell culture engineering, bioseparation, and diagnostics.

  18. A Biomedical Application of Activated Carbon Adsorption: An Experiment Using Acetaminophen and N-Acetylcysteine.

    ERIC Educational Resources Information Center

    Rybolt, Thomas R.; And Others

    1988-01-01

    Illustrates an interesting biomedical application of adsorption from solution and demonstrates some of the factors that influence the in vivo adsorption of drug molecules onto activated charcoal. Uses acetaminophen and N-acetylcysteine for the determination. Suggests several related experiments. (MVL)

  19. SO2 Adsorption on CeO2(100) and CeO2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R.

    2016-09-13

    The adsorption and reaction of sulfur dioxide, SO2, was studied on oxidized and reduced CeOX(100) and compared to previous results on CeOX(111). SO2 adsorbs on oxidized CeO2(100) as sulfite, SO32-, at 200 K and sulfite is the only adsorbate observed on the surface at any temperature. The sulfite desorbs monotonically from 200 to 700 K. The adsorption and desorption of SO2 does not result in any change in the Ce4+ oxidation state. SO2 also adsorbs as sulfite on reduced CeO1.7(100) at 200 K. There is also a small amount of elemental sulfur, S0, formed. As the sample is heated themore » sulfite decomposes into sulfide, S2-. Roughly 25 % of the adsorbed S either desorbs or diffuses into the bulk of the reduced ceria. The decomposition, and resulting formation of S2- and O2-, re-oxidize some of the Ce3+ to Ce4+. Unlike what has been observed following the adsorption and reaction of many other molecules, the adsorption and reaction of SO2 is virtually identical on CeOX(100) and CeOX(111).« less

  20. Syntheses, structures and selective dye adsorption of five formic-based coordination polymers prepared by in-situ hydrolysis of N, N‧-dimethylformamide

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Meng, Xiang-min; Zhang, Dong-mei; Zhang, Xia; Wang, Mei; Jin, Fan; Fan, Yu-hua

    2017-04-01

    Five functional coordination polymers (formic-based CPs) namely: {[Cu2(CHOO)3(bibp)2]·CHOO}n (1), {[Co2(CHOO)3(bibp)2]·NO3·H2O}n (2), {[Ni2(CHOO)3(bibp)2]·NO3·H2O}n (3) [Co(CHOO)2(bbibp)]n (4) and [Zn(CHOO)2(bbibp)]n (5) (bibp=4,4‧-bis(imidazolyl)biphenyl, bbibp=4,4‧-bis(benzoimidazo-1-yl)biphenyl) have been successfully hydrothermally synthesized using the in-situ hydrolysis of N, N‧-dimethylformamide (DMF) as the source of formate. All of these five polymers were characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Complexes 1-3 have the similar three-dimensional 3D kag topological framework built from the bibp ligand as the support member between the neighboring formic planes. Both complexes 4 and 5 have the similar one-dimensional 1D linear chain which is further assembled into 3D supermolecular structure by C-H…O hydrogen bonds. The dyes adsorption experiments have also been investigated systematically. The results show that complexes 2 and 3 exhibit high selective adsorption ability towards anionic dyes in their aqueous solution. Moreover, complex 2 displays good reversibility in the process of the dyes adsorption-release. Meanwhile, the unusual blocking phenomenon was firstly observed when complex 2 was in MO/OIV aqueous solutions with different concentration.

  1. Understanding Electrocatalytic Activity Enhancement of Bimetallic Particles to Ethanol Electro-oxidation: (1) Water Adsorption and Decomposition on PtnM (n=2,3 and 9; M=Pt, Ru, Sn)

    PubMed Central

    Wang, Yixuan; Mi, Yunjie; Redmon, Natalie; Holiday, Jessica

    2009-01-01

    The fundamental assumption of the bi-functional mechanism for PtSn alloy to catalyze ethanol electro-oxidation reaction (EER) is that Sn facilitates water dissociation and EER occurs over Pt site of the PtSn alloy. To clarify this assumption and achieve a good understanding about the EER, H2O adsorption and dissociation over bimetallic clusters PtM (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) are systematically investigated in the present work. To discuss a variety of effects, PtnM (n=2, and 3; M=Pt, Sn and Ru), one-layer Pt6M (M=Pt, Sn and Ru), and two-layer (Pt6M)Pt3 (M=Pt, Sn, Ru, Rh, Pd, Cu and Re) clusters are used to model the PtM bimetallic catalysts. Water exhibits atop adsorption on Pt and Ru sites of the optimized clusters PtnM (n=2, and 3; M=Pt and Ru), yet bridge adsorption on Sn sites of Pt2Sn as well as distorted tetrahedral Pt3Sn. However, in the cases of one-layer Pt6M and two-layer Pt9M cluster models water preferentially binds to all of investigated central atom M of surface layer in atop configuration with the dipole moment of water almost parallel to the cluster surface. Water adsorption on the Sn site of PtnSn (n=2 and 3) is weaker than those on the Pt site of Ptn (n=3 and 4) and the Ru site of PtnRu (n=2 and 3), while water adsorptions on the central Sn atom of Pt6Sn and Pt9Sn are enhanced so significantly that they are even stronger than those on the central Pt and Ru atoms of PtnM (n=6 and 9; M=Pt and Ru). For all of the three cluster models, energy barrier (Ea) for the dissociation of adsorbed water over Sn is lower than over Ru and Pt atoms (e.g., Ea: 0.78 vs 0.96 and 1.07 eV for Pt9M), which also remains as external electric fields were added. It is interesting to note that the dissociation energy on Sn site is also the lowest (Ediss: 0.44 vs 0.61 and 0.67eV). The results show that from both kinetic and thermodynamic viewpoints Sn is more active to water decomposition than pure Pt and the PtRu alloy, which well supports the assumption of the bi

  2. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage† †Electronic supplementary information (ESI) available: Experimental and computational details, free energy plots for the NH3 evolution and N2 reduction with Co3N/Co, Fe4N/Fe, Mn5N2/Mn4N, Mo2N/Mo, CrN/Cr2N, TaN/Ta2N, NbN/Nb2N, Li3N/LiH, Ba3N2/BaH2, Sr3N2/SrH2, and Ca3N2/CaH2, surface oxidation energetics, ΔGvac[NH*x, yH*] based on gas phase H2 as hydrogen source, NH3 evolution with Fe-doped Mn4N, NH3 evolution with Mn6N2.58, Ca3N2 and Sr2N after correcting for partial nitride hydrolysis, NH3 yield from Ca3N2vs. time and H2 gas flow rate. See DOI: 10.1039/c5sc00789e

    PubMed Central

    Avram, A. M.; Peterson, B. A.; Pfromm, P. H.; Peterson, A. A.

    2015-01-01

    The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH3), a fertilizer and chemical fuel, from N2 and H2 requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat via nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized via electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH3 per mol metal per min at 1 bar and above 550 °C via reduction of Mn6N2.58 to Mn4N and hydrogenation of Ca3N2 and Sr2N to Ca2NH and SrH2, respectively. PMID:29218166

  3. Adsorption of antibiotics on microplastics.

    PubMed

    Li, Jia; Zhang, Kaina; Zhang, Hua

    2018-06-01

    Microplastics and antibiotics are two classes of emerging contaminants with proposed negative impacts to aqueous ecosystems. Adsorption of antibiotics on microplastics may result in their long-range transport and may cause compound combination effects. In this study, we investigated the adsorption of 5 antibiotics [sulfadiazine (SDZ), amoxicillin (AMX), tetracycline (TC), ciprofloxacin (CIP), and trimethoprim (TMP)] on 5 types of microplastics [polyethylene (PE), polystyrene (PS), polypropylene (PP), polyamide (PA), and polyvinyl chloride (PVC)] in the freshwater and seawater systems. Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD) analysis revealed that microplastics have different surface characterizes and various degrees of crystalline. Adsorption isotherms demonstrated that PA had the strongest adsorption capacity for antibiotics with distribution coefficient (K d ) values ranged from 7.36 ± 0.257 to 756 ± 48.0 L kg -1 in the freshwater system, which can be attributed to its porous structure and hydrogen bonding. Relatively low adsorption capacity was observed on other four microplastics. The adsorption amounts of 5 antibiotics on PS, PE, PP, and PVC decreased in the order of CIP > AMX > TMP > SDZ > TC with K f correlated positively with octanol-water partition coefficients (Log K ow ). Comparing to freshwater system, adsorption capacity in seawater decreased significantly and no adsorption was observed for CIP and AMX. Our results indicated that commonly observed polyamide particles can serve as a carrier of antibiotics in the aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Particle-scale CO2 adsorption kinetics modeling considering three reaction mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Dong-Myung; Sun, Xin

    2013-09-01

    In the presence of water (H2O), dry and wet adsorptions of carbon dioxide (CO2) and physical adsorption of H2O happen concurrently in a sorbent particle. The three reactions depend on each other and have a complicated, but important, effect on CO2 capturing via a solid sorbent. In this study, transport phenomena in the sorbent were modeled, including the tree reactions, and a numerical solving procedure for the model also was explained. The reaction variable distribution in the sorbent and their average values were calculated, and simulation results were compared with experimental data to validate the proposed model. Some differences, causedmore » by thermodynamic parameters, were observed between them. However, the developed model reasonably simulated the adsorption behaviors of a sorbent. The weight gained by each adsorbed species, CO2 and H2O, is difficult to determine experimentally. It is known that more CO2 can be captured in the presence of water. Still, it is not yet known quantitatively how much more CO2 the sorbent can capture, nor is it known how much dry and wet adsorptions separately account for CO2 capture. This study addresses those questions by modeling CO2 adsorption in a particle and simulating the adsorption process using the model. As adsorption temperature changed into several values, the adsorbed amount of each species was calculated. The captured CO2 in the sorbent particle was compared quantitatively between dry and wet conditions. As the adsorption temperature decreased, wet adsorption increased. However, dry adsorption was reduced.« less

  5. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    NASA Astrophysics Data System (ADS)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  6. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells.

    PubMed

    Hwang, Kyung-Jun; Shim, Wang-Geun; Kim, Youngjin; Kim, Gunwoo; Choi, Chulmin; Kang, Sang Ook; Cho, Dae Won

    2015-09-14

    The adsorption mechanism for the N719 dye on a TiO2 electrode was examined by the kinetic and diffusion models (pseudo-first order, pseudo-second order, and intra-particle diffusion models). Among these methods, the observed adsorption kinetics are well-described using the pseudo-second order model. Moreover, the film diffusion process was the main controlling step of adsorption, which was analysed using a diffusion-based model. The photodynamic properties in dye-sensitized solar cells (DSSCs) were investigated using time-resolved transient absorption techniques. The photodynamics of the oxidized N719 species were shown to be dependent on the adsorption time, and also the adsorbed concentration of N719. The photovoltaic parameters (Jsc, Voc, FF and η) of this DSSC were determined in terms of the dye adsorption amounts. The solar cell performance correlates significantly with charge recombination and dye regeneration dynamics, which are also affected by the dye adsorption amounts. Therefore, the photovoltaic performance of this DSSC can be interpreted in terms of the adsorption kinetics and the photodynamics of oxidized N719.

  7. Adsorption in a Fixed-Bed Column and Stability of the Antibiotic Oxytetracycline Supported on Zn(II)-[2-Methylimidazolate] Frameworks in Aqueous Media

    PubMed Central

    Anceski Bataglion, Giovana; Nogueira Eberlin, Marcos; Machado Ronconi, Célia

    2015-01-01

    A metal-organic framework, Zn-[2-methylimidazolate] frameworks (ZIF-8), was used as adsorbent material to remove different concentrations of oxytetracycline (OTC) antibiotic in a fixed-bed column. The OTC was studied at concentrations of 10, 25 and 40 mg L-1. At 40 mg L-1, the breakthrough point was reached after approximately 10 minutes, while at 10 and 25 mg L-1 this point was reached in about 30 minutes. The highest removal rate of 60% for the 10 mg L-1 concentration was reached after 200 minutes. The highest adsorption capacity (28.3 mg g-1) was attained for 25 mg L-1 of OTC. After the adsorption process, a band shift was observed in the UV-Vis spectrum of the eluate. Additional studies were carried out to determine the cause of this band shift, involving a mass spectrometry (MS) analysis of the supernatant liquid during the process. This investigation revealed that the main route of adsorption consisted of the coordination of OTC with the metallic zinc centers of ZIF-8. The materials were characterized by thermal analysis (TA), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and infrared spectroscopy (IR) before and after adsorption, confirming the presence of OTC in the ZIF-8 and the latter’s structural stability after the adsorption process. PMID:26057121

  8. Enhanced nitrogen selectivity for nitrate reduction on Cu-nZVI by TiO2 photocatalysts under UV irradiation

    NASA Astrophysics Data System (ADS)

    Krasae, Nalinee; Wantala, Kitirote

    2016-09-01

    The aims of this work were to study the effect of Cu-nZVI with and without TiO2 on nitrate reduction and to study the pathway of nitrate reduction utilizing to nitrogen gas. The chemical and physical properties of Cu-nZVI and Cu-nZVI/TiO2 such as specific surface area, crystalline phase, oxidation state of Cu and Fe and morphology were determined by N2 adsorption-desorption Brunauer-Emmett-Teller (BET) analytical technique, X-ray diffraction (XRD), X-ray Absorption Near Edge Structure (XANES) technique and Transmittance Electron Microscopy (TEM). The full factorial design (FFD) was used in this experiment for the effect of Cu-nZVI with and without TiO2, where the initial solution pH was varied at 4, 5.5, and 7 and initial nitrate concentration was varied at 50, 75, and 100 ppm. Finally, the pathway of nitrate reduction was examined to calculate the nitrogen gas selectivity. The specific area of Cu-nZVI and Cu-nZVI/TiO2 was found to be about 4 and 36 m2/g, respectively. The XRD pattern of Fe0 in Cu-nZVI was found at 45° (2θ), whereas Cu-nZVI/TiO2 cannot be observed. TEM images can confirm the position of the core and the shell of nZVI for Fe0 and ferric oxide. Cu-nZVI/TiO2 proved to have higher activity in nitrogen reduction performance than that without TiO2 and nitrate can be completely degraded in both of solution pH of 4 and 7 in 75 ppm of initial nitrate concentration. It can be highlighted that the nitrogen gas selectivity of Cu-nZVI/TiO2 greater than 82% was found at an initial solution pH of 4 and 7. The main effects of Cu-nZVI with and without TiO2 and the initial nitrate concentration on nitrate reduction were significant. The interaction between solution pH and initial nitrate concentration and the interaction of all effects at a reaction time of 15 min on nitrate reduction were also significant.

  9. Sonochemical surface functionalization of exfoliated LDH: Effect on textural properties, CO2 adsorption, cyclic regeneration capacities and subsequent gas uptake for simultaneous methanol synthesis.

    PubMed

    Ezeh, Collins I; Huang, Xiani; Yang, Xiaogang; Sun, Cheng-Gong; Wang, Jiawei

    2017-11-01

    To improve CO 2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO 2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO 2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO 2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    PubMed

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites.

    PubMed

    Martínez-Orozco, R D; Rosu, H C; Lee, Soo-Wohn; Rodríguez-González, V

    2013-12-15

    Nanocomposites of graphene oxide (GO) and silver nanoparticles (AgNPs) were synthetized using a practical photochemical silver functionalization. Their photocatalytic activities were evaluated with two dyes, Rhodamine B and Indigo Carmine, under visible-light irradiation. The prepared nanocomposites were characterized by HRTEM, FESEM, XRD, Raman, FTIR and UV-vis absorption spectroscopy. These nanocomposites present new defect domains of sp(3) type in combination with several graphitic functional groups that act as nucleation sites for anchoring AgNPs, while the sp(2)-sp(3) edge defects domains of GO generate the photoactivity. Furthermore, their photocatalytic performances are governed by their large adsorption capacity, and strong interaction with dye chromophores. A comprehensive photocatalytic way underlying the importance of adsorption is suggested to explain the low visible-light responsive photoactivity of the AgNPs-GO nanocomposites and the possible binding-site saturation. Then, the usage of H2SO4 allows the production of ionic species and helps to confirm the strong adsorption of both dyes. The ability to synthesize AgNPs-GO nanocomposites with extensive adsorptive capacity is certainly of interest for the efficient removal of hazardous materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar.

    PubMed

    Bombuwala Dewage, Narada; Liyanage, Achala S; Pittman, Charles U; Mohan, Dinesh; Mlsna, Todd

    2018-05-02

    α-Fe 2 O 3 and Fe 3 O 4 dispersed on high surface area (663 m 2 /g) Douglas fir biochar (BC) was prepared for fast nitrate and fluoride ion removal from water using magnetic separations. This biochar, made originally at 900 °C, was impregnated with FeCl 3 and converted by pyrolysis at 600 °C to magnetic (494 m 2 /g) biochar (MBC). MBC and its precursor BC were characterized using SEM, SEM-EDX, STEM, S BET , PZC measurements, XRD analysis, and XPS. Dispersed α-Fe 2 O 3 and Fe 3 O 4 particles caused magnetization and generated most adsorption sites, causing more nitrate and fluoride uptake than BC. Both nitrate and fluoride adsorption on MBC remained high over a pH range from 2 to 10. Sorption was evaluated from 298 to 318 K using the Langmuir and Freundlich isotherm models. Langmuir adsorption capacities were 15 mg/g for nitrate and 9 mg/g for fluoride, higher capacities than those reported for other biochar and iron oxide adsorbents. Published by Elsevier Ltd.

  14. Adsorption and desorption of SO2, NO and chlorobenzene on activated carbon.

    PubMed

    Li, Yuran; Guo, Yangyang; Zhu, Tingyu; Ding, Song

    2016-05-01

    Activated carbon (AC) is very effective for multi-pollutant removal; however, the complicated components in flue gas can influence each other's adsorption. A series of adsorption experiments for multicomponents, including SO2, NO, chlorobenzene and H2O, on AC were performed in a fixed-bed reactor. For single-component adsorption, the adsorption amount for chlorobenzene was larger than for SO2 and NO on the AC. In the multi-component atmosphere, the adsorption amount decreased by 27.6% for chlorobenzene and decreased by 95.6% for NO, whereas it increased by a factor of two for SO2, demonstrating that a complex atmosphere is unfavorable for chlorobenzene adsorption and inhibits NO adsorption. In contrast, it is very beneficial for SO2 adsorption. The temperature-programmed desorption (TPD) results indicated that the binding strength between the gas adsorbates and the AC follows the order of SO2>chlorobenzene > NO. The adsorption amount is independent of the binding strength. The presence of H2O enhanced the component effects, while it weakened the binding force between the gas adsorbates and the AC. AC oxygen functional groups were analyzed using TPD and X-ray photoelectron spectroscopy (XPS) measurements. The results reveal the reason why the chlorobenzene adsorption is less affected by the presence of other components. Lactone groups partly transform into carbonyl and quinone groups after chlorobenzene desorption. The chlorobenzene adsorption increases the number of C=O groups, which explains the positive effect of chlorobenzene on SO2 adsorption and the strong NO adsorption. Copyright © 2015. Published by Elsevier B.V.

  15. Green Synthesis of Zinc Oxide Nanoparticles for Enhanced Adsorption of Lead Ions from Aqueous Solutions: Equilibrium, Kinetic and Thermodynamic Studies.

    PubMed

    Azizi, Susan; Mahdavi Shahri, Mahnaz; Mohamad, Rosfarizan

    2017-06-08

    In the present study, ZnO nanoparticles (NPs) were synthesized in zerumbone solution by a green approach and appraised for their ability to absorb Pb(II) ions from aqueous solution. The formation of as-synthesized NPs was established by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV-visible studies. The XRD and TEM analyses revealed high purity and wurtzite hexagonal structure of ZnO NPs with a mean size of 10.01 ± 2.6 nm. Batch experiments were performed to investigate the impact of process parameters viz. Pb(II) concentration, pH of solution, adsorbent mass, solution temperature, and contact time variations on the removal efficiency of Pb(II). The adsorption isotherm data provided that the adsorption process was mainly monolayer on ZnO NPs. The adsorption process follows pseudo-second-order reaction kinetic. The maximum removal efficiencies were 93% at pH 5. Thermodynamic parameters such as enthalpy change (ΔH⁰), free energy change (ΔG⁰), and entropy change (ΔS⁰) were calculated; the adsorption process was spontaneous and endothermic. The good efficiency of the as-synthesized NPs makes them attractive for applications in water treatment, for removal of heavy metals from aqueous system.

  16. NH3 adsorption on anatase-TiO2(101)

    NASA Astrophysics Data System (ADS)

    Koust, Stig; Adamsen, Kræn C.; Kolsbjerg, Esben Leonhard; Li, Zheshen; Hammer, Bjørk; Wendt, Stefan; Lauritsen, Jeppe V.

    2018-03-01

    The adsorption of ammonia on anatase TiO2 is of fundamental importance for several catalytic applications of TiO2 and for probing acid-base interactions. Utilizing high-resolution scanning tunneling microscopy (STM), synchrotron X-ray photoelectron spectroscopy, temperature-programmed desorption (TPD), and density functional theory (DFT), we identify the adsorption mode and quantify the adsorption strength on the anatase TiO2(101) surface. It was found that ammonia adsorbs non-dissociatively as NH3 on regular five-fold coordinated titanium surface sites (5f-Ti) with an estimated exothermic adsorption energy of 1.2 eV for an isolated ammonia molecule. For higher adsorbate coverages, the adsorption energy progressively shifts to smaller values, due to repulsive intermolecular interactions. The repulsive adsorbate-adsorbate interactions are quantified using DFT and autocorrelation analysis of STM images, which both showed a repulsive energy of ˜50 meV for nearest neighbor sites and a lowering in binding energy for an ammonia molecule in a full monolayer of 0.28 eV, which is in agreement with TPD spectra.

  17. Effect of solvents on the extraction of natural pigments and adsorption onto TiO2 for dye-sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Al-Alwani, Mahmoud A. M.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Ludin, Norasikin A.

    2015-03-01

    Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.

  18. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X = -NH2, -OH, -N, -F).

    PubMed

    Liu, Xiao-le; Chen, Guang-Hui; Wang, Xiu-Jun; Li, Peng; Song, Yi-Bing; Li, Rui-Yan

    2017-11-15

    The adsorption capacities of a heterometallic metal-organic framework (CPM-200-In/Mg) to VOCs (HCHO, C 2 H 4 , CH 4 , C 2 H 2 , C 3 H 8 , C 2 H 6 , C 2 H 3 Cl, C 2 H 2 Cl 2 , CH 2 Cl 2 and CHCl 3 ) and some inorganic gas molecules (HCN, SO 2 , NO, CO 2 , CO, H 2 S and NH 3 ), as well as its selectivity in ternary mixture systems of natural gas and post-combustion flue gas are theoretically explored at the grand canonical Monte Carlo (GCMC) and density functional theory (DFT) levels. It is shown that CPM-200-In/Mg is suitable for the adsorption of VOCs, particularly for HCHO (up to 0.39 g g -1 at 298 K and 1 bar), and the adsorption capacities of some inorganic gas molecules such as SO 2 , H 2 S and CO 2 match well with the sequence of their polarizability (SO 2 > H 2 S > CO 2 ). The large adsorption capacities of HCN and HCHO in the framework result from the strong interaction between adsorbates and metal centers, based on analyzing the radial distribution functions (RDF). Comparing C 2 H 4 and CH 4 molecules interacting with CPM-200-In/Mg by VDW interaction, we speculate that the high adsorption capacities of their chlorine derivatives in the framework could be due to the existence of halogen bonding or strong electrostatic and VDW interactions. It is found that the basic groups, including -NH 2 , -N and -OH, can effectively improve both the adsorption capacities and selectivity of CPM-200-In/Mg for harmful gases. Note that the adsorption capacity of CPM-200-In/Mg-NH 2 (site 2) (245 cm 3 g -1 ) for CO 2 exceeded that of MOF-74-Mg (228 cm 3 g -1 ) at 273 K and 1 bar and that for HCHO can reach 0.41 g g -1 , which is almost twice that of 438-MOF and nearly 45 times of that in active carbon. Moreover, for natural gas mixtures, the decarburization and desulfurization abilities of CPM-200-In/Mg-NH 2 (site 2) have exceeded those of the MOF-74 series, while for post-combustion flue gas mixtures, the desulfurization ability of CPM-200-In/Mg-NH 2 (site 2) is still

  19. Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution.

    PubMed

    Srivastava, Shalini; Agrawal, Shashi Bhushan; Mondal, Monoj Kumar

    2017-05-01

    Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe 2+ and Fe 3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM-EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.

  20. The studies on gas adsorption properties of MIL-53 series MOFs materials

    NASA Astrophysics Data System (ADS)

    Jiao, Yuqiu; Li, Zhenyu; Ma, Yue; Zhou, Guanggang; Wang, Shuangxi; Lu, Guiwu

    2017-08-01

    Molecular dynamics (MD), grand canonical Monte Carlo (GCMC) and ideal adsorbed solution theory (IAST) were used to study the structures and gas adsorption properties of MIL-53(M)[M=Cr, Fe, Sc, Al] metal organic framework (MOF) materials. The results show that the volumes of those MOF materials increase significantly at high temperature. By analyzing the adsorption isotherms, we found that the temperature had a paramount effect on the gas adsorption behaviors of these MOF materials. For MIL-53(Cr), the orders of the quantities of adsorbed gases were CH4>N2>CO2>H2S, CH4>H2S>CO2>N2 and CH4>CO2>H2S>N2 at 100K, 293K and 623K, respectively. We also calculated the adsorption of several combinations of two gases by MIL-53(Cr) at 293K, the results indicate that the material had selective adsorption of CH4 over CO2, H2S and N2. Our calculations provide microscopic insights into the gas adsorption performances of these MOFs and may further guide the practice of gas separation.

  1. Application of activated carbon modified by acetic acid in adsorption and separation of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Song, Xue; Wang, Li'ao; Zeng, Yunmin; Zhan, Xinyuan; Gong, Jian; Li, Tong

    2018-03-01

    Compared with the methods to modify the activated carbons by alkalis for gas adsorption, fewer studies of that by organic acids have been reported. The acid modified activated carbons are usually utilized to treat wastewater, whereas the application in the separation of CO2/CH4 has less been studied. In this study, acetic acid was used to modify activated carbon. N2 adsorption/desorption isotherms and FT-IR were adopted to describe the properties of the samples. According to the adsorption data of pure gas component at 298 K, the gas adsorbed amount and the selectivity on the modified samples were larger than that on the raw sample. Besides, the adsorbed amount of CO2 and the selectivity on 15H-AC in the adsorption breakthrough experiments showed better performance. The results confirm that the method to modify the activated carbons with acetic acid is feasible to improve the adsorption capacity and the separation effect of CO2/CH4.

  2. Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process.

    PubMed

    Lan, Huachun; Li, Jianfei; Sun, Meng; An, Xiaoqiang; Hu, Chengzhi; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2016-09-01

    In this study, a FeCx/N-doped carbon fiber composite (FeCx/NCNFs) was developed via an electrospinning method. According to the characterization results of XRD, TEM and XPS, FeCx (a mixture of Fe7C3 and Fe3C) was either embedded in or attached to the NCNFs. It was used for the first time as a catalyst for dimethylarsinate (DMA) degradation and as an absorbent for inorganic arsenic (As (V)), with degradation and adsorption occurring simultaneously, in an electro-Fenton process. The effects of catalyst dosage, initial DMA concentration, solution pH, and applied current on the treatment efficiency and the corresponding H2O2 generation were systematically investigated. The results showed that DMA could be efficiently oxidized into As(V). 96% of DMA was degraded after reaction time of 360 min and the residual As(V) concentration in solution was below the allowable limit of 0.01 mg/L under the optimum treatment conditions. Based on an ESR and radical scavenger experiment, OH was proven to be the sole reactive oxygen species involved in the degradation process of DMA. DMA was oxidized to MMA as the primary oxidation product, which was subsequently oxidized to inorganic arsenic, As (V). TOC was also efficiently removed at the same time. The DMA removal mechanism for simultaneous degradation of dimethylarsinate and adsorption of arsenic over FeCx/NCNFs in the electro-Fenton process was also proposed based on the experimental results. Copyright © 2016. Published by Elsevier Ltd.

  3. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  4. Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu(II) in water

    NASA Astrophysics Data System (ADS)

    Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma

    2017-03-01

    Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.

  5. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties

    PubMed Central

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-01-01

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5–11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm3 g−1 (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g−1) and P7 (1388.8 mg g−1) samples reveal that these two particular samples can absorb even more water than their own weights. PMID:26964638

  6. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties.

    PubMed

    Sharma, Pankaj; Song, Ju-Sub; Han, Moon Hee; Cho, Churl-Hee

    2016-03-11

    GIS-NaP1 zeolite samples were synthesized using seven different Si/Al ratios (5-11) of the hydrothermal reaction mixtures having chemical composition Al2O3:xSiO2:14Na2O:840H2O to study the impact of Si/Al molar ratio on the water vapour adsorption potential, phase purity, morphology and crystal size of as-synthesized GIS-NaP1 zeolite crystals. The X-ray diffraction (XRD) observations reveal that Si/Al ratio does not affect the phase purity of GIS-NaP1 zeolite samples as high purity GIS-NaP1 zeolite crystals were obtained from all Si/Al ratios. Contrary, Si/Al ratios have remarkable effect on the morphology, crystal size and porosity of GIS-NaP1 zeolite microspheres. Transmission electron microscopy (TEM) evaluations of individual GIS-NaP1 zeolite microsphere demonstrate the characteristic changes in the packaging/arrangement, shape and size of primary nano crystallites. Textural characterisation using water vapour adsorption/desorption, and nitrogen adsorption/desorption data of as-synthesized GIS-NaP1 zeolite predicts the existence of mix-pores i.e., microporous as well as mesoporous character. High water storage capacity 1727.5 cm(3) g(-1) (138.9 wt.%) has been found for as-synthesized GIS-NaP1 zeolite microsphere samples during water vapour adsorption studies. Further, the total water adsorption capacity values for P6 (1299.4 mg g(-1)) and P7 (1388.8 mg g(-1)) samples reveal that these two particular samples can absorb even more water than their own weights.

  7. A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-03-01

    The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.

  8. Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.

  9. The adsorption features between insecticidal crystal protein and nano-Mg(OH)2.

    PubMed

    Pan, Xiaohong; Xu, Zhangyan; Zheng, Yilin; Huang, Tengzhou; Li, Lan; Chen, Zhi; Rao, Wenhua; Chen, Saili; Hong, Xianxian; Guan, Xiong

    2017-12-01

    Nano-Mg(OH) 2 , with low biological toxicity, is an ideal nano-carrier for insecticidal protein to improve the bioactivity. In this work, the adsorption features of insecticidal protein by nano-Mg(OH) 2 have been studied. The adsorption capacity could reach as high as 136 mg g -1 , and the adsorption isotherm had been fitted with Langmuir and Freundlich models. Moreover, the adsorption kinetics followed a pseudo-first or -second order rate model, and the adsorption was spontaneous and an exothermic process. However, high temperatures are not suitable for adsorption, which implies that the temperature would be a critical factor during the adsorption process. In addition, FT-IR confirmed that the protein was adsorbed on the nano-Mg(OH) 2 , zeta potential analysis suggested that insecticidal protein was loaded onto the nano-Mg(OH) 2 not by electrostatic adsorption but maybe by intermolecular forces, and circular dichroism spectroscopy of Cry11Aa protein before and after loading with nano-Mg(OH) 2 was changed. The study applied the adsorption information between Cry11Aa and nano-Mg(OH) 2 , which would be useful in the practical application of nano-Mg(OH) 2 as a nano-carrier.

  10. Adsorption of ammonia at GaN(0001) surface in the mixed ammonia/hydrogen ambient - a summary of ab initio data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempisty, Paweł; Krukowski, Stanisław; Interdisciplinary Centre for Materials Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warsaw

    Adsorption of ammonia at NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH{sub 2} and H-covered surface (region II), and at the conduction band minimum (CBM) for NH{sub 3}-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of themore » ECR in case of all mixed H-NH{sub 2}-NH{sub 3} coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN{sub 2} radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH{sub 2} radical at the surface and escape of H{sub 2} molecule. The process energy is close to 0.12 eV, thus not large, but the direct

  11. Effect of SiO2/Al2O3 Ratio on Micro-Mesopore Formation for Pt/Beta-MCM-41 via NaOH Treatment and the Catalytic Performance in N-heptane Hydro isomerization

    NASA Astrophysics Data System (ADS)

    Gao, Li; Shi, Zhiyuan; Liu, Yingming; Zhao, Yuanshou; Liu, Qinghua; Xu, Chengguo; Bai, Peng; Yan, Zifeng

    2018-01-01

    Micro-mesoporous composite material Beta-MCM-41(BM) were hydrothermally synthesized by treating parent beta with molar SiO2/Al2O3 ratios of 12.5, 20 and 30 as precursors. The influence of SiO2/Al2O3 ratio of zeolite beta on effective micro-mesoporous composite formation was studied by investigating the crystallinity, morphology, chemical composition, acidity and textural property of Beta-MCM-41 through XRD, nitrogen adsorption, SEM, TEM, NH3-TPD, FTIR and Pyridine-FTIR. The catalytic performance was evaluated in terms of n-heptane hydro isomerization. The results demonstrated that Beta-MCM-41 supported Pt catalysts showed higher selectivity to isoheptanes than Pt/Beta. It was attributed to the superiorities of the pore structure and mesoporous accelerated the diffusion of larger molecules of isoheptanes.

  12. Total N-nitrosamine Precursor Adsorption with Carbon Nanotubes: Elucidating Controlling Physiochemical Properties and Developing a Size-Resolved Precursor Surrogate

    NASA Astrophysics Data System (ADS)

    Needham, Erin Michelle

    As drinking water sources become increasingly impaired with nutrients and wastewater treatment plant (WWTP) effluent, formation of disinfection byproducts (DBPs)--such as trihalomethanes (THMs), dihaloacetonitriles (DHANs), and N-nitrosamines--during water treatment may also increase. N-nitrosamines may comprise the bulk of the chronic toxicity in treated drinking waters despite forming at low ng/L levels. This research seeks to elucidate physicochemical properties of carbon nanotubes (CNTs) for removal of DBP precursors, with an emphasis on total N-nitrosamines (TONO). Batch experiments with CNTs were completed to assess adsorption of THM, DHAN, and TONO precursors; physiochemical properties of CNTs were quantified through gas adsorption isotherms and x-ray photoelectron spectroscopy. Numerical modeling was used to elucidate characteristics of CNTs controlling DBP precursor adsorption. Multivariate models developed with unmodified CNTs revealed that surface carboxyl groups and, for TONO precursors, cumulative pore volume (CPV), controlled DBP precursor adsorption. Models developed with modified CNTs revealed that specific surface area controlled adsorption of THM and DHAN precursors while CPV and surface oxygen content were significant for adsorption of TONO precursors. While surrogates of THM and DHAN precursors leverage metrics from UV absorbance and fluorescence spectroscopy, a TONO precursor surrogate has proved elusive. This is important as measurements of TONO formation potential (TONOFP) require large sample volumes and long processing times, which impairs development of treatment processes. TONO precursor surrogates were developed using samples that had undergone oxidative or sorption treatments. Precursors were analyzed with asymmetric flow field-flow fractionation (AF4) with inline fluorescence detection (FLD) and whole water fluorescence excitation-emission matrices (EEMs). TONO precursor surrogates were discovered, capable of predicting changes in

  13. Preparation and characterization of pitch-based nanoporous carbons for improving CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seul-Yi; Yoo, Hye-Min; Park, Sang Wook

    2014-07-01

    Pitch is considered a promising low-cost carbon precursor. However, when pitch is pyrolyzed, it forms polycrystalline graphite, which is non-porous, and therefore, not useful for CO{sub 2} adsorption. In this work, pitch was chemically activated to obtain a large specific surface area and micropore volume. Varying weight ratios of KOH (i.e., 0, 1, 2, and 3) were used as the activating agent. The characteristics of the samples were investigated using scanning electron microscopy (SEM), N{sub 2}/77 K adsorption isotherms, and X-ray diffraction (XRD). The CO{sub 2} adsorption performance was studied by isothermal adsorption/desorption measurements. The results showed that an increasemore » in specific surface areas and total pore volumes of pitch-based nanoporous carbons, resulted in an enhancement of CO{sub 2} adsorption capacity. - Graphical abstract: This is the surface morphologies of pitch precursor and pitch-derived activated carbon (AC-2). - Highlights: • Pitch is considered a promising low-cost carbon precursor. • Specific surface area: 1442 m{sup 2}/g and micropore volume: 0.504 cm{sup 3}/g. • CO{sub 2} adsorption capacity showed 203 mg/g (@ RT/1 bar)« less

  14. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    NASA Astrophysics Data System (ADS)

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-03-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.

  15. Synthesis, dynamic NMR characterization and XRD studies of novel N,N'-substituted piperazines for bioorthogonal labeling.

    PubMed

    Mamat, Constantin; Pretze, Marc; Gott, Matthew; Köckerling, Martin

    2016-01-01

    Novel, functionalized piperazine derivatives were successfully synthesized and fully characterized by 1 H/ 13 C/ 19 F NMR, MS, elemental analysis and lipophilicity. All piperazine compounds occur as conformers resulting from the partial amide double bond. Furthermore, a second conformational shape was observed for all nitro derivatives due to the limited change of the piperazine chair conformation. Therefore, two coalescence points were determined and their resulting activation energy barriers were calculated using 1 H NMR. To support this result, single crystals of 1-(4-nitrobenzoyl)piperazine ( 3a , monoclinic, space group C 2/ c , a = 24.587(2), b = 7.0726(6), c = 14.171(1) Å, β = 119.257(8)°, V = 2149.9(4) Å 3 , Z = 4, D obs = 1.454 g/cm 3 ) and the alkyne derivative 4-(but-3-yn-1-yl)-1-(4-fluorobenzoyl)piperazine ( 4b , monoclinic, space group P 2 1 / n , a = 10.5982(2), b = 8.4705(1), c = 14.8929(3) Å, β = 97.430(1)°, V = 1325.74(4) Å 3 , Z = 4, D obs = 1.304 g/cm 3 ) were obtained from a saturated ethyl acetate solution. The rotational conformation of these compounds was also verified by XRD. As proof of concept for future labeling purposes, both nitropiperazines were reacted with [ 18 F]F - . To test the applicability of these compounds as possible 18 F-building blocks, two biomolecules were modified and chosen for conjugation either using the Huisgen-click reaction or the traceless Staudinger ligation.

  16. Cysteine and cystine adsorption on FeS2(100)

    NASA Astrophysics Data System (ADS)

    Suzuki, Teppei; Yano, Taka-aki; Hara, Masahiko; Ebisuzaki, Toshikazu

    2018-08-01

    Iron pyrite (FeS2) is the most abundant metal sulfide on Earth. Owing to its reactivity and catalytic activity, pyrite has been studied in various research fields such as surface science, geochemistry, and prebiotic chemistry. Importantly, native iron-sulfur clusters are typically coordinated by cysteinyl ligands of iron-sulfur proteins. In the present paper, we study the adsorption of L-cysteine and its oxidized dimer, L-cystine, on the FeS2 surface, using electronic structure calculations based density functional theory and Raman spectroscopy measurements. Our calculations suggest that sulfur-deficient surfaces play an important role in the adsorption of cysteine and cystine. In the thiol headgroup adsorption on the sulfur-vacancy site, dissociative adsorption is found to be energetically favorable compared with molecular adsorption. In addition, the calculations indicate that, in the cystine adsorption on the defective surface under vacuum conditions, the formation of the S-Fe bond is energetically favorable compared with molecular adsorption. Raman spectroscopic measurements suggest the formation of cystine molecules through the S-S bond on the pyrite surface in aqueous solution. Our results might have implications for chemical evolution at mineral surfaces on the early Earth and the origin of iron-sulfur proteins, which are believed to be one of the most ancient families of proteins.

  17. Adsorption of diastase over natural halloysite nanotubes (HNTs)

    NASA Astrophysics Data System (ADS)

    Twaiq, F.; Chang, K. X.; Ling, J. Y. W.

    2017-06-01

    Adsorption of diastase over natural halloysite nanotubes is studied in order to evaluate the adsorption capacity of diastase. The halloysite surface characteristics were assessed using nitrogen adsorption, x-ray diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier transformed infrared (FTIR). The surface area of the natural halloysite is found to be 51 m2·g-1, with total pore volume of 0.106 cm3·g-1. The natural halloysite has a basal spacing (d001) of 10 Å confirming the structure of the natural halloysite material. TGA results indicated that halloysite loses its interlayer water in the range of 30 to 105 °C and the dehydration in the structural layer above 150 °C. The dehydroxylation of halloysite has occurred at approximately 460 °C. The FTIR result of the thermally treated halloysite sample indicated that the bands observed are assigned to Si-O and Al-O bonds. The effects of solution pH and temperature were studied on the adsorption capacity and percent removal of diastase from the solution. The adsorption kinetic found to fit well with both the Pseudo first-order and Pseudo second-order models, and the values of the kinetic constant were found to be 0.173 min-1 and 0.00018 g·mg-1·min-1 respectively. The Langmuir isotherm model is found to fit well to the adsorption data and a kinetic value is found to be 0.00059 m3·g-1. The maximum adsorption capacity was found to be 370 mg·g-1, indicating the potential for applications of the natural nanostructured halloysite material as an effective adsorbent for diastase.

  18. Chlamydomonas angulosa (Green Alga) and Nostoc commune (Blue-Green Alga) Microalgae-Cellulose Composite Aerogel Beads: Manufacture, Physicochemical Characterization, and Cd (II) Adsorption

    PubMed Central

    Hwang, Kyojung; Kwon, Gu-Joong; Yang, Jiwook; Kim, Minyoung; Hwang, Won Joung; Youe, Wonjae; Kim, Dae-Young

    2018-01-01

    This study presents composite aerogel beads prepared by mixing dissolved cellulose with Chlamydomonas angulosa and Nostoc commune cells, respectively, at 0.1, 0.3, and 0.5% (w/w). The manufactured composites (termed regenerated cellulose (RC)), with C. angulosa (RCCA-(1, 3, and 5)), and with N. commune (RCNC-(1, 3, and 5)) were analyzed. Both RCCA-5 and RCNC-5 showed the high specific surface area to be about 261.3 and 332.8 m2·g−1. In the microstructure analysis, network structures were observed in the cross-sections of RC, RCCA-5, and RCNC-5. The pyrolysis temperature of the RCCA-5 and RCNC-5 composite aerogel beads was rapidly increased about 250 °C during the mixing of cellulose with C. angulosa and N. commune. The chemical analysis of RC, RCCA-5, and RCNC-5 showed peaks corresponding to various functional groups, such as amide, carboxyl, and hydroxyl groups from protein, lipid, and carbohydrate. RCNC-5 at pH 6 demonstrated highest Cd2+ removal rate about 90.3%, 82.1%, and 63.1% at 10, 25, and 50 ppm Cd2+, respectively. At pH 6, Cd2+ adsorption rates per unit weight of the RCNC-5 were about 0.9025, 2.0514, and 3.1547 mg/g at 10, 25, and 50 ppm, respectively. The peaks assigned to the amide, carboxyl, and hydroxyl groups in RCCA-5, RCNC-5, and RC were shifted or disappeared immediately after adsorption of Cd2+. The specific surface area, total pore volume, and mean pore diameter of composites was decreased due to adsorption of Cd2+ on the developed materials. As can be seen in the X-ray powder diffraction (XRD) spectrum, significant changes in the molecular structure of the composite aerogel beads were not observed even after adsorption of Cd2+. PMID:29621190

  19. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methylmore » iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.« less

  20. XRD and 29Si MAS-NMR spectroscopy across the β-Lu 2Si 2O 7- β-Y 2Si 2O 7 solid solution

    NASA Astrophysics Data System (ADS)

    Becerro, Ana I.; Escudero, Alberto

    2005-01-01

    Samples in the system Lu 2-xY xSi 2O 7 (0⩽ x⩽2) have been synthesized following the sol-gel method and calcined to 1300 °C, a temperature at which the β-polymorph is known to be the stable phase for the end-members Lu 2Si 2O 7 and Y 2Si 2O 7. The XRD patterns of all the compositions studied are compatible with the structure of the β-polymorph. Unit cell parameters are calculated as a function of composition from XRD patterns. They show a linear change with increasing Y content, which indicates a solid solubility of β-Y 2Si 2O 7 in β-Lu 2Si 2O 7 at 1300 °C. 29Si MAS NMR spectra of the different members of the system agree with the XRD results, showing a linear decrease of the 29Si chemical shift with increasing Y content. Finally, a correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu 2Si 2O 7-Y 2Si 2O 7 and the results compare favorably with the values obtained experimentally.

  1. N2O reduction over a fullerene-like boron nitride nanocage: A DFT study

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.

    2017-07-01

    We study, for the first time, the adsorption and catalytic decomposition of N2O molecule over a fullerene-like boron nitride nanocage (B12N12) using density functional theory calculations. It is found that the electron donating property of the cage plays an important role in the adsorption and activation of N2O. By the incorporation of a carbon atom into B12N12 cluster, our results indicate that the adsorption of N2O over B11N12C or B12N11C is more stronger than over pristine B12N12. The decomposition of N2O into N2 and O species over the C-doped clusters is energetically more favorable than that on B12N12. Moreover, the C-doping plays an important role in reducing the activation barrier for the CO + O* reaction over B12N12 surface.

  2. Syntheses, structures and selective dye adsorption of five formic-based coordination polymers prepared by in-situ hydrolysis of N, N′-dimethylformamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zheng; Meng, Xiang-min; Zhang, Dong-mei

    Five functional coordination polymers (formic-based CPs) namely: ([Cu{sub 2}(CHOO){sub 3}(bibp){sub 2}]·CHOO){sub n} (1), ([Co{sub 2}(CHOO){sub 3}(bibp){sub 2}]·NO{sub 3}·H{sub 2}O)n (2), ([Ni{sub 2}(CHOO){sub 3}(bibp){sub 2}]·NO{sub 3}·H{sub 2}O){sub n} (3) [Co(CHOO){sub 2}(bbibp)]{sub n} (4) and [Zn(CHOO){sub 2}(bbibp)]{sub n} (5) (bibp=4,4′-bis(imidazolyl)biphenyl, bbibp=4,4′-bis(benzoimidazo-1-yl)biphenyl) have been successfully hydrothermally synthesized using the in-situ hydrolysis of N, N′-dimethylformamide (DMF) as the source of formate. All of these five polymers were characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Complexes 1–3 have the similar three-dimensional 3D kag topological framework built from the bibp ligand as the support member betweenmore » the neighboring formic planes. Both complexes 4 and 5 have the similar one-dimensional 1D linear chain which is further assembled into 3D supermolecular structure by C–H…O hydrogen bonds. The dyes adsorption experiments have also been investigated systematically. The results show that complexes 2 and 3 exhibit high selective adsorption ability towards anionic dyes in their aqueous solution. Moreover, complex 2 displays good reversibility in the process of the dyes adsorption-release. Meanwhile, the unusual blocking phenomenon was firstly observed when complex 2 was in MO/OIV aqueous solutions with different concentration.« less

  3. Adsorption of selected volatile organic vapors on multiwall carbon nanotubes.

    PubMed

    Shih, Yang-hsin; Li, Mei-syue

    2008-06-15

    Carbon nanotubes are expected to play an important role in sensing, pollution treatment and separation techniques. This study examines the adsorption behaviors of volatile organic compounds (VOCs), n-hexane, benzene, trichloroethylene and acetone on two multiwall carbon nanotubes (MWCNTs), CNT1 and CNT2. Among these VOCs, acetone exhibits the highest adsorption capacity. The highest adsorption enthalpies and desorption energies of acetone were also observed. The strong chemical interactions between acetone and both MWCNTs may be the result from chemisorption on the topological defects. The adsorption heats of trichloroethylene, benzene, and n-hexane are indicative of physisorption on the surfaces of both MWCNTs. CNT2 presents a higher adsorption capacity than CNT1 due to the existence of an exterior amorphous carbon layer on CNT2. The amorphous carbon enhances the adsorption capacity of organic chemicals on carbon nanotubes. The morphological and structure order of carbon nanotubes are the primary affects on the adsorption process of organic chemicals.

  4. Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

    PubMed Central

    Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.

    2017-01-01

    The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093

  5. Adsorption kinetics of ion of Pb2+ using Tricalcium Phosphate particles

    NASA Astrophysics Data System (ADS)

    Fadli, A.; Yenti, S. R.; Akbar, F.; Maihendra; Mawarni, F.

    2018-04-01

    One of the heavy metals that can pollute water is Pb2+. The concentration of ion Pb2+ can be removed using the adsorption method. The purpose of this research is to determine the adsorption kinetics model of ions Pb2+ using tricalcium phosphate (TCP) particles with variation of the temperature and adsorbent dosage. Five hundred mililiter Pb2+ solution with of 3 mg/L were added 0,5 gr, 1 gr and 1,5 gr of TCP in a glass beaker and stirred with rate of 300 rpm at a temperature of 30 °C, 40 °C and 50 °C. Pb2+ concentration in solution was analyzed by AAS (Atomic Adsorption Spectroscopy). The results showed that the rate of adsorption increased with the increasing of the temperature and adsorbent dosage. Minimum constant value of adsorption kinetic was 1,720 g/mg.min obtained at temperature of 30 °C and adsorbent dosageof 0,5 gr. The maximum value of adsorption kinetic constant was 9,755 g/mg.min obtained at temperature of 50 °C and adsorbent dosage of 1,5 gr. The appropriate model for adsorption kinetics followed the pseudo second order.

  6. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  7. Synthesis and characterization of reduced graphite oxide-polymer composites and their application in adsorption of lead.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2015-01-01

    Herein, we report the in situ polymerization of 1,5-diaminonaphthalene (15DAN) and 1,4-diaminoanthraquinone (14DAA) on the surface of reduced graphite oxide (RGO). Synthesized RGO-P15DAN and RGO-P14DAA were characterized by FTIR, Raman, SEM, TGA and XRD. The adsorption capacity and adsorptivity of the synthesized composites were investigated by Atomic Absorption Spectroscopy (AAS) using 100 ppm aqueous solution of Pb(2+) ions. Further, we compared the results of the composites with those of poly 1,5-(diaminonaphthalene) (P15DAN), poly 1,4-(diaminoanthraquinone) (P14DAA), RGO, graphite oxide (GO) and graphite. Among the tested adsorbents, RGO-P15DAN demonstrated the high adsorptivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    PubMed

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A study in the adsorption of Fe(2+) and NO(3)(-) on pine needles based hydrogels.

    PubMed

    Chauhan, Ghanshyam S; Chauhan, Sandeep; Kumar, Sunil; Kumari, Anita

    2008-09-01

    Novel supports for use as cation and anion adsorbents were prepared from lignocellulosics using pine needles and their carboxymethylated forms by network/hydrogel formation with acrylamide and N,N-methylene bisacrylamide. The hydrogels thus prepared were further functionalized by partial alkaline hydrolysis with 0.5 N NaOH and were characterized by FTIR, SEM and nitrogen analysis. Adsorption of Fe(2+) on these hydrogels was carried as a function of time, temperature, pH and ionic strength. The hydrogel having the maximum adsorption capacity was loaded with Fe(2+) at the conditions those afforded maximum uptake and was used as novel anionic adsorbent for NO(3)(-). The water uptake capacities and biodegradability of the hydrogels before and after the ion loading was studied to evaluate the possible end-uses of these hydrogels as alternate materials in the removal of ionic species from water.

  10. Charge-controlled switchable CO adsorption on FeN4 cluster embedded in graphene

    NASA Astrophysics Data System (ADS)

    Omidvar, Akbar

    2018-02-01

    Electrical charging of an FeN4 cluster embedded in graphene (FeN4G) is proposed as an approach for electrocatalytically switchable carbon monoxide (CO) adsorption. Using density functional theory (DFT), we found that the CO molecule is strongly adsorbed on the uncharged FeN4G cluster. Our results show that the adsorption energy of a CO molecule on the FeN4G cluster is dramatically decreased by introducing extra electrons into the cluster. Once the charges are removed, the CO molecule is spontaneously adsorbed on the FeN4G absorbent. In the framework of frontier molecular orbital (FMO) analysis, the enhanced sensitivity and reactivity of the FeN4G cluster towards the CO molecule can be interpreted in terms of interaction between the HOMO of CO molecule and the LUMO of FeN4G cluster. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Our study indicates that the FeN4G nanomaterial is an excellent absorbent for controllable and reversible capture and release of the CO.

  11. Adsorptive separation studies of ethane-methane and methane-nitrogen systems using mesoporous carbon.

    PubMed

    Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang

    2013-03-15

    Adsorptive separations of C(2)H(6)/CH(4) and CH(4)/N(2) binary mixtures are of paramount importance from the energy and environmental points of view. A mesoporous carbon adsorbent was synthesized using a soft template method and characterized with TEM, TGA, and nitrogen adsorption/desorption. Adsorption equilibrium and kinetics of C(2)H(6), CH(4), and N(2) on the mesoporous carbon adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. The adsorption capacities of C(2)H(6) and CH(4) on the mesoporous carbon adsorbent at 298 K and 100 kPa are 2.20 mmol/g and 1.05 mmol/g, respectively. Both are significantly higher than those of many adsorbents including pillared clays and ETS-10 at a similar condition. The equilibrium selectivities of C(2)H(6)/CH(4) and CH(4)/N(2) at 298 K are 19.6 and 5.8, respectively. It was observed that the adsorption of C(2)H(6), CH(4), and N(2) gases on the carbon adsorbent was reversible with modest isosteric heats of adsorption, which implies that this carbon adsorbent can be easily regenerated in a cyclic adsorption process. These results suggest that the mesoporous carbon studied in this work is a promising alternative adsorbent for the separations of C(2)H(6)/CH(4) and CH(4)/N(2) gas mixtures. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@N-doped activated carbon composite

    NASA Astrophysics Data System (ADS)

    Nekouei, Farzin; Nekouei, Shahram; Noorizadeh, Hossein

    2018-03-01

    In this study, we synthesized a new nanocomposite catalyst comprising Ag/AgCl@N-doped activated carbon (Ag/AgCl@N-AC) and demonstrated its high efficiency during the enhanced adsorptive removal and catalytic oxidation of ciprofloxacin (CIP) with peroxymonosulfate (PMS) and persulfate (PS) as oxidants in aqueous solution. The efficiency of the new nanocomposite was compared with those of both pristine AC and N-AC under the same conditions. Furthermore, the effects of oxidants on the catalytic oxidation of CIP were assessed using PMS and PS. We found that the degradation efficiency of CIP with Ag/AgCl@N-AC was higher when using PS as an oxidant, whereas the use of PMS obtained relatively better results with both AC and N-AC. The adsorption processes for AC, N-AC, and Ag/AgCl@N-AC were dominated not only by electrostatic attraction but also by π-π interactions, which had higher impacts on the adsorption processes than the specific surface area.

  13. Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics.

    PubMed

    Anirudhan, T S; Divya, L; Suchithra, P S

    2009-01-01

    This study investigated the feasibility of using a new adsorbent prepared from coconut coir pith, CP (a coir industry-based lignocellulosic residue), for the removal of uranium [U(VI)] from aqueous solutions. The adsorbent (PGCP-COOH) having a carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto CP using potassium peroxydisulphate-sodium thiosulphite as a redox initiator and in the presence of N,N'-methylenebisacrylamide as a crosslinking agent. IR spectroscopy results confirm the graft copolymer formation and carboxylate functionalization. XRD studies confirm the decrease of crystallinity in PGCP-COOH compared to CP, and it favors the protrusion of the functional group into the aqueous medium. The thermal stability of the samples was studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was determined using potentiometric titration. The ability of PGCP-COOH to remove U(VI) from aqueous solutions was assessed using a batch adsorption technique. The maximum adsorption capacity was observed at the pH range 4.0-6.0. Maximum removal of 99.2% was observed for an initial concentration of 25mg/L at pH 6.0 and an adsorbent dose of 2g/L. Equilibrium was achieved in approximately 3h. The experimental kinetic data were analyzed using a first-order kinetic model. The temperature dependence indicates an endothermic process. U(VI) adsorption was found to decrease with an increase in ionic strength due to the formation of outer-sphere surface complexes on PGCP-COOH. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as DeltaG(0), DeltaH(0) and DeltaS(0) were derived to predict the nature of adsorption. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC-50, with carboxylate functionality for comparison. Utility of the adsorbent was tested by removing U(VI) from simulated nuclear industry wastewater

  14. Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes

    NASA Astrophysics Data System (ADS)

    Kafshgari, Leila Asadi; Ghorbani, Mohsen; Azizi, Asghar

    2017-10-01

    In present study, MnFe2O4/MWCNT nanocomposite synthesized using the hydrothermal technique and has been used for removal of DR16 and Y40 dyes from aqueous solutions. The characteristics results of FTIR, XRD, FESEM and TEM indicated that the nanoadsorbent was successfully fabricated. Magnetic sensitivity results demonstrated that the nanoparticles with saturation magnetization (Ms) value of 8.93 emu g-1 would have a fast magnetic response. The performance of adsorption was investigated in a batch reactor employing parameters expected to affect the maximum adsorption capacity (qm) such as pH, contact time, initial dye concentration and temperature. The highest sorption capacities of DR16 and Y40 after 300 min at 328 K were found to be 607.79 mg/g and 280 mg/g at pH of 2 and 6, respectively. The adsorption behavior over the time was assessed through pseudo-first, pseudo-second and Weber-Morris intra particle diffusion models. It was found that the pseudo-second order model gave the best agreement to the experimental data. Adsorbate-adsorbent interactions as a function of temperature was evaluated by Langmuir, Freundlich, Temkin and Sips isotherm models from which Sips isotherm had the highest consistency with the experimental data. Thermodynamic parameters including ΔG°, ΔS° and ΔH° were determined over the temperature range of 298-328 K. The results revealed that the adsorption reaction of DR16 onto MnFe2O4/MWCNT was spontaneous and exothermic, whilst the sorption process of Y40 was spontaneous and endothermic. In addition, activation energy values implied that the removal process of DR16 and Y40 was physical in nature.

  15. Polyacrylic acid grafted kaolinite via a facile ‘grafting to’ approach based on heterogeneous esterification and its adsorption for Cu2+

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Zhou, Qi; Yan, Chunjie; Luo, Wenjun

    2017-03-01

    Kaolinite (KLN) was successfully decorated by polyacrylic acid (PAA) brushes via a facile ‘one-step’ manner in this study. This process was achieved by heterogeneous esterification between carboxyl on the PAA chains and hydroxyl on the KLN in the presence of Al3+ as catalyst. The prepared composite (denoted as PAA-g-KLN) was characterized by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction pattern (XRD), Field emission scanning electron microscopy (FE-SEM) and thermogravimetry (TG) to confirm the successful grafting of PAA brushes on the surface of KLN. Subsequently, the PAA-g-KLN was used as adsorbent for the removal of Cu2+ from wastewater. Due to the introduction of abundant and highly accessible carboxyl groups on the surface of kaolinite, PAA-g-KLN exhibited an enhanced adsorption performance than raw kaolinite, which could be up to 32.45 mg·g-1 at 45 °C with a fast adsorption kinetic. Theoretical models analysis revealed that Langmuir isotherm model and the pseudo second-order model were more suitable for well elucidation of the experimental data. In addition, the regeneration experiment showed that the PAA-g-KLN could still keep a satisfactory adsorption capacity (>65%) by being reused for 6 consecutive cycles. The study provides an easy and rapid method for surface polyelectrolyte modification on inorganic mineral as a promising adsorbent to remove Cu2+ from aqueous solution.

  16. Response surface methodology approach for optimization of adsorption of Janus Green B from aqueous solution onto ZnO/Zn(OH)2-NP-AC: Kinetic and isotherm study

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Khafri, H. Zare; Asfaram, A.; Goudarzi, A.

    2016-01-01

    The Janus Green B (JGB) adsorption onto homemade ZnO/Zn(OH)2 nanoparticles loaded on activated carbon (AC) which characterized by FESEM and XRD analysis has been reported. Combination of response surface methodology (RSM) and central composite design (CCD) has been employed to model and optimize variables using STATISTICA 10.0 software. The influence of parameters over pH (2.0-8.0), adsorbent (0.004-0.012 g), sonication time (4-8 min) and JGB concentration (3-21 mg L-1) on JGB removal percentage was investigated and their main and interaction contribution was examined. It was revealed that 21 mg L-1 JGB, 0.012 g ZnO/Zn(OH)2-NP-AC at pH 7.0 and 7 min sonication time permit to achieve removal percentage more than 99%. Finally, a good agreement between experimental and predicted values after 7 min was achieved using pseudo-second-order rate equation. The Langmuir adsorption is appropriate for correlation of equilibrium data. The small amount of adsorbent (0.008-0.015 g) is applicable for successful removal of JGB (RE > 99%) in short time (7 min) with high adsorption capacity (81.3-98.03 mg g-1).

  17. Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.

    PubMed

    Kuśmierek, Krzysztof; Świątkowski, Andrzej

    2016-03-01

    The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.

  18. Isoelectric point and adsorption activity of porous g-C3N4

    NASA Astrophysics Data System (ADS)

    Zhu, Bicheng; Xia, Pengfei; Ho, Wingkei; Yu, Jiaguo

    2015-07-01

    The isoelectric point (IEP) is an important physicochemical parameter of many compounds, such as oxides, hydroxides, and nitrides, and can contribute to estimation of the surface charges of compound particles at various pH conditions. In this work, three types of graphitic carbon nitrides (g-C3N4) were synthesized by directly heating melamine, thiourea, and urea. The prepared samples showed different microstructures and IEPs that influenced their adsorption activity. Differences in microstructure resulted from the various precursors used during synthesis. The IEPs of the obtained g-C3N4 were measured to be approximately 4-5, which is due to the equilibrium of chemical reactions between hydrogen ions, hydroxyl ions, and amine groups on the g-C3N4 surface. The IEP of g-C3N4 prepared from thiourea was lower than those of the corresponding samples prepared from melamine and urea. The adsorption activity of methylene blue on g-C3N4 prepared from urea and thiourea was excellent, which indicates that g-C3N4 is a promising adsorbent. This work provides a useful reference for choosing precursors with which to prepare g-C3N4 and combining g-C3N4 with other compounds in solution.

  19. H{sub 2} adsorption in Li-decorated porous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H{sub 2}) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H{sub 2} molecules get adsorbed on each Li atom. The maximum H{sub 2} storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE’s revised target for the on-board vehicles. The average H{sub 2} adsorption binding energy is 0.535 eV/H{sub 2}, which lies between 0.2-0.6 eV/H{sub 2} that is required for achieving adsorption and desorption atmore » near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.« less

  20. High temperature XRD of Cu2GeSe3

    NASA Astrophysics Data System (ADS)

    Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra

    2015-06-01

    The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  1. Effect of cetyl trimethyl ammonium bromide concentration on structure, morphology and carbon dioxide adsorption capacity of calcium hydroxide based sorbents

    NASA Astrophysics Data System (ADS)

    Hlaing, Nwe Ni; Vignesh, K.; Sreekantan, Srimala; Pung, Swee-Yong; Hinode, Hirofumi; Kurniawan, Winarto; Othman, Radzali; Thant, Aye Aye; Mohamed, Abdul Rahman; Salim, Chris

    2016-02-01

    Calcium hydroxide (Ca(OH)2) has been proposed as an important material for industrial, architectural, and environmental applications. In this study, calcium acetate was used as a precursor and cetyl trimethyl ammonium bromide (CTAB) was used as a surfactant to synthesize Ca(OH)2 based adsorbents for carbon dioxide (CO2) capture. The effect of CTAB concentration (0.2-0.8 M) on the structure, morphology and CO2 adsorption performance of Ca(OH)2 was studied in detail. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), BET surfaced area and thermogravimetry-differential thermal analysis (TG-DTA) techniques. The phase purity, crystallite size, Brunauer-Emmett-Teller (BET) surface area and CO2 adsorption performance of Ca(OH)2 precursor adsorbents were significantly increased when the concentration of CTAB was increased. XRD results showed that pure Ca(OH)2 phase was obtained at the CTAB concentration of 0.8 M. TGA results exhibited that 0.8 M of CTAB-assisted Ca(OH)2 precursor adsorbent possessed a residual carbonation conversion of ∼56% after 10 cycles.

  2. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA

    NASA Astrophysics Data System (ADS)

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-01

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe3O4@SiO2 - graphene oxide (Fe3O4@SiO2@GO) polymers and DNA. The Fe3O4@SiO2@GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe3O4@SiO2@GO was modified by DNA. Based on the principle of complementary base, Fe3O4@SiO2@GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe3O4@SiO2@GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0 × 10- 12-2.5 × 10- 11 mol/L. The detection limit was 1.7 × 10- 12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe3O4@SiO2@GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases.

  3. A chemiluminescence biosensor based on the adsorption recognition function between Fe3O4@SiO2@GO polymers and DNA for ultrasensitive detection of DNA.

    PubMed

    Sun, Yuanling; Li, Jianbo; Wang, Yanhui; Ding, Chaofan; Lin, Yanna; Sun, Weiyan; Luo, Chuannan

    2017-05-05

    In this work, a chemiluminescence (CL) biosensor was prepared for ultrasensitive determination of deoxyribonucleic acid (DNA) based on the adsorption recognition function between core-shell Fe 3 O 4 @SiO 2 - graphene oxide (Fe 3 O 4 @SiO 2 @GO) polymers and DNA. The Fe 3 O 4 @SiO 2 @GO polymers were composed by GO and magnetite nanoparticles. And the core-shell polymers were confirmed by Scanning Electron Microscope (SEM), X-Ray Powder Diffraction (XRD) and Fourier Transform Infrared (FTIR). Then Fe 3 O 4 @SiO 2 @GO was modified by DNA. Based on the principle of complementary base, Fe 3 O 4 @SiO 2 @GO-DNA was introduced to the CL system and the selectivity, sensitivity of DNA detection was significantly improved. The adsorption properties of Fe 3 O 4 @SiO 2 @GO to DNA were researched through the adsorption equilibrium, adsorption kinetic and thermodynamics. Under optimized CL conditions, DNA could be assayed with the linear concentration range of 5.0×10 -12 -2.5×10 -11 mol/L. The detection limit was 1.7×10 -12 mol/L (3δ) and the relative standard deviation (RSD) was 3.1%. The biosensor was finally used for the determination of DNA in laboratory samples and recoveries ranged from 99% to 103%. The satisfactory results revealed the potential application of Fe 3 O 4 @SiO 2 @GO-DNA-CL biosensor in the diagnosis and the treatment of human genetic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Selective CO2 gas adsorption in the narrow crystalline cavities of flexible peptide metallo-macrocycles.

    PubMed

    Miyake, Ryosuke; Kuwata, Chika; Masumoto, Yui

    2015-02-21

    Crystalline peptide Ni(ii)-macrocycles (BF4(-) salt) exhibited moderate CO2 gas adsorption (ca. 6-7 CO2 molecules per macrocycle) into very narrow cavities (narrowest part <2 Å), accompanied by the expansion of the cavities. The BF4(-) salt demonstrated selective uptake of CO2 gas in preference to CH4 and N2 gases.

  5. Designed Synthesis of Mesoporous Solid-Supported Lewis Acid-Base Pairs and Their CO2 Adsorption Behaviors.

    PubMed

    Zakharova, Maria V; Masoumifard, Nima; Hu, Yimu; Han, Jongho; Kleitz, Freddy; Fontaine, Frédéric-Georges

    2018-04-18

    Conventional amines and phosphines, such as diethylenetriamine, diphenylpropylphosphine, triethylamine, and tetramethylpiperidine, were grafted or impregnated on the surface of metalated SBA-15 materials, such as Ti-, Al-, and Zr-SBA-15, to generate air-stable solid-supported Lewis acid-base pairs. The Lewis acidity of the metalated materials before and after the introduction of Lewis bases was verified by means of pyridine adsorption-Fourier transform infrared spectroscopy. Detailed characterization of the materials was achieved by solid-state 13 C and 31 P MAS NMR spectroscopy, low-temperature N 2 physisorption, X-ray photoelectron spectroscopy, and energy-dispersive X-ray mapping analyses. Study of their potential interactions with CO 2 was performed using CO 2 adsorption isotherm experiments, which provided new insights into their applicability as solid CO 2 adsorbents. A correlation between solid-supported Lewis acid-base pair strength and the resulting affinity to CO 2 is discussed based on the calculation of isosteric enthalpy of adsorption.

  6. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.

    PubMed

    Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng

    2007-05-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).

  7. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.

    PubMed

    Niknam Shahrak, Mahdi; Ghahramaninezhad, Mahboube; Eydifarash, Mohsen

    2017-04-01

    Heavy metals are emerging toxic pollutants in which the development of advanced materials for their efficient adsorption and separation is thus of great significance in environmental sciences point of view. In this study, one of the zinc-based zeolitic imidazolate framework materials, known as ZIF-8, has been synthesized and used for chromium(VI) contaminant removal from water for the first time. The as-synthesized ZIF-8 adsorbent was characterized with different methodologies such as powder X-ray diffraction (XRD), thermo-gravimetric analysis, FT-IR, nuclear magnetic resonance spectroscopy, and UV-Vis spectra of solid state. Various factors affecting removal percentage (efficiency) are experimentally investigated including pH of solution, adsorbent dosage, contact time and initial concentration of Cr(VI) to achieve the optimal condition. The obtained results indicate that the ZIF-8 shows good performance for the Cr(VI) removal from aqueous solution so that 60 min mixing of 2 g of ZIF-8 adsorbent with the 2.5 ppm of Cr(VI) solution in a neutral environment will result in the highest separation efficiency around 70%. The time needed to reach the equilibrium (maximum separation efficiency) is only 60 min for a concentration of 5 mg L -1 . Structure stability in the presence of water is also carefully examined by XRD determination of ZIF-8 under different contact times in aqueous solution, which suggests that the structure is going to be destructed after 60 min immersed in solution. Electrostatic interaction of Cr(VI) anions by positively charged ZIF-8 is responsible for Cr(VI) adsorption and separation. Moreover, equilibrium adsorption study reveals that the Cr(VI) removal process using ZIF-8 nicely fits the Langmuir and Toth isotherm models which mean the adsorbent has low heterogeneous surface with different distributions of adsorption energies during Cr(VI) adsorption. Equilibrium adsorption capacity is observed around 0.25 for 20 mg L -1 of initial Cr

  8. A flexible metal–organic framework: Guest molecules controlled dynamic gas adsorption

    DOE PAGES

    Mahurin, Shannon Mark; Li, Man -Rong; Wang, Hailong; ...

    2015-04-13

    A flexible metal–organic framework (MOF) of [Zn 3(btca) 2(OH) 2]·(guest) n (H 2btca = 1,2,3-benzotriazole-5-carboxylic acid) that exhibits guest molecule-controlled dynamic gas adsorption is reported in which carbon dioxide molecules rather than N 2, He, and Ar induce a structural transition with a corresponding appearance of additional steps in the isotherms. Physical insights into the dynamic adsorption behaviors of flexible compound 1 were detected by gas adsorption at different temperatures and different pressures and confirmed by Fourier transform infrared spectroscopy and molecular simulations. Interestingly, by taking advantage of the flexible nature inherent to the framework, this MOF material enables highlymore » selective adsorption of CO 2/N 2, CO 2/Ar, and CO 2/He of 36.3, 32.6, and 35.9, respectively, at 298 K. Furthermore, this class of flexible MOFs has potential applications for controlled release, molecular sensing, noble gas separation, smart membranes, and nanotechnological devices.« less

  9. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  10. Adsorption of Ca2+ on single layer graphene oxide.

    PubMed

    Terracciano, Amalia; Zhang, Jianfeng; Christodoulatos, Christos; Wu, Fengchang; Meng, Xiaoguang

    2017-07-01

    Graphene oxide (GO) holds great promise for a broad array of applications in many fields, but also poses serious potential risks to human health and the environment. In this study, the adsorptive properties of GO toward Ca 2+ and Na + were investigated using batch adsorption experiments, zeta potential measurements, and spectroscopic analysis. When pH increased from 4 to 9, Ca 2+ adsorption by GO and the zeta potential of GO increased significantly. Raman spectra suggest that Ca 2+ was strongly adsorbed on the GO via -COOCa + formation. On the other hand, Na + was adsorbed into the electrical diffuse layer as an inert counterion to increase the diffuse layer zeta potential. While the GO suspension became unstable with increasing pH from 4 to 10 in the presence of Ca 2+ , it was more stable at higher pH in the NaCl solution. The findings of this research provide insights in the adsorption of Ca 2+ on GO and fundamental basis for prediction of its effect on the colloidal stability of GO in the environment. Copyright © 2017. Published by Elsevier B.V.

  11. Effect of Spin Multiplicity in O2 Adsorption and Dissociation on Small Bimetallic AuAg Clusters.

    PubMed

    García-Cruz, Raúl; Poulain, Enrique; Hernández-Pérez, Isaías; Reyes-Nava, Juan A; González-Torres, Julio C; Rubio-Ponce, A; Olvera-Neria, Oscar

    2017-08-17

    To dispose of atomic oxygen, it is necessary the O 2 activation; however, an energy barrier must be overcome to break the O-O bond. This work presents theoretical calculations of the O 2 adsorption and dissociation on small pure Au n and Ag m and bimetallic Au n Ag m (n + m ≤ 6) clusters using the density functional theory (DFT) and the zeroth-order regular approximation (ZORA) to explicitly include scalar relativistic effects. The most stable Au n Ag m clusters contain a higher concentration of Au with Ag atoms located in the center of the cluster. The O 2 adsorption energy on pure and bimetallic clusters and the ensuing geometries depend on the spin multiplicity of the system. For a doublet multiplicity, O 2 is adsorbed in a bridge configuration, whereas for a triplet only one O-metal bond is formed. The charge transfer from metal toward O 2 occupies the σ* O-O antibonding natural bond orbital, which weakens the oxygen bond. The Au 3 ( 2 A) cluster presents the lowest activation energy to dissociate O 2 , whereas the opposite applies to the AuAg ( 3 A) system. In the O 2 activation, bimetallic clusters are not as active as pure Au n clusters due to the charge donated by Ag atoms being shared between O 2 and Au atoms.

  12. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nejati, Kamellia; Davary, Soheila; Saati, Marziye

    2013-09-01

    The hydrotalcite-like compound of Cu-Fe-layered double hydroxide was studied as a potential adsorbent of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The nanoparticles of Cu-Fe layered double hydroxide were prepared by Cu/Fe molar ratio of 2:1 using a coprecipitation method at pH 8.5 and characterized by the X-ray powder diffraction (XRD), the Fourier transform infrared spectroscopy (FT-IR), the thermal gravimetric analysis (TGA) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The adsorption experiments on LDH, on the other hand, were conducted in three different procedures, namely, time-dependent, pH-dependent and temperature-dependent. Characterization of the adsorption products by the XRD method indicates that the intercalation of 2,4-D between the LDH layers has not occurred and the surface adsorption had taken place. The adsorption kinetic was tested for pseudo-first-order, pseudo-second-order, Elovich and Intra-particle diffusion kinetic models and the rate constants were calculated. The equilibrium adsorption data were described by Langmuir and Freundlich equations. It was observed that, the Langmuir isotherm slightly better fitted to the experimental data rather than that of Freundlich. In the adsorption experiments, the Gibbs free energy values, ΔG°, the enthalpy, ΔH°, and the entropy, ΔS° were also determined.

  13. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    NASA Astrophysics Data System (ADS)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  15. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).

    PubMed

    Pan, Yun-xiang; Liu, Chang-jun; Mei, Donghai; Ge, Qingfeng

    2010-04-20

    The effects of hydration and oxygen vacancy on CO(2) adsorption on the beta-Ga(2)O(3)(100) surface have been studied using density functional theory slab calculations. Adsorbed CO(2) is activated on the dry perfect beta-Ga(2)O(3)(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect beta-Ga(2)O(3)(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect beta-Ga(2)O(3)(100) surface. Adsorption of CO(2) on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slightly repulsive interaction when H(2)O and CO(2) are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the coadsorbed H(2)O to a bicarbonate species, making the CO(2) adsorption exothermic, with an adsorption energy of -0.13 eV. The effect of defects on CO(2) adsorption and activation has been examined by creating an oxygen vacancy on the dry beta-Ga(2)O(3)(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O(2) molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO(2). In the most stable CO(2) adsorption configuration on the dry defective beta-Ga(2)O(3)(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO(2) occupies the oxygen vacancy site, and the CO(2) adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is spontaneous, with a reaction energy of -0.62 eV. These results indicate that, when water and CO(2) are present in the adsorption system simultaneously, water will compete with CO(2) for the oxygen vacancy sites and impact CO(2) adsorption and conversion negatively.

  16. The adsorption properties of titanium dioxide

    NASA Astrophysics Data System (ADS)

    Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien

    2008-12-01

    The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.

  17. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    NASA Astrophysics Data System (ADS)

    Baybaş, Demet; Ulusoy, Ulvi

    2012-10-01

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO22+ and Th4+. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th4+ adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements.

  18. Novel hydrophobic PDVB/R-SiO2 for adsorption of volatile organic compounds from highly humid gas stream.

    PubMed

    Lu, Han-feng; Cao, Jie-jing; Zhou, Ying; Zhan, De-li; Chen, Yin-fei

    2013-11-15

    A novel organic-inorganic hydrophobic polydivinylbenzene-silica adsorbent (PDVB/R-SiO2) was successfully prepared by introducing a specific amount of divinylbenzene and solvent (i.e., tetrahydrofuran) to SiO2pores and initiating polymerization under solvothermal conditions. New smaller structures and surface areas were formed in the SiO2 pores. The PDVB/R-SiO2-0.5 samples exhibited a bimodal pore size distribution with both SiO2 micropores/mesopores (0.5-2.0 nm) and mesopores (2.0-5.0 nm). The surface areas increased from 116 m(2)/g (SiO2) to 246 m(2)/g. The breakthrough curves of toluene adsorption indicated that the amount adsorbed on PDVB/R-SiO2-0.5 was 12 times higher than that on SiO2. The highly humid environment exhibited no effect on adsorption because the surface of PDVB was functionalized. The adsorbed toluene was easily desorbed in hot N2 stream at 100 °C. After 10 adsorption-desorption cycles, PDVB/R-SiO2-0.5 continued exhibiting excellent adsorption, indicating superior structural and regeneration abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. DFT simulation on H2 adsorption over Ni-decorated defective h-BN nanosheets

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Chu, Wei; Zhou, Yanan; Sun, Wenjing; Xue, Ying

    2018-05-01

    Nickel doped defective h-BN nanosheets and their potential application on hydrogen storage were explored by density functional theory (DFT) calculation. Three types of defective h-BN (SW defect, VB and VN substrates) were modeled. In comparison with the SW defect, the B or N vacancy can improve the interaction between Ni atom and h-BN nanosheet strikingly. Furthermore, the Ni-doped SW defect sheet shows chemisorption on H2 molecules, and the Hsbnd H bond is partially dissociated. While on the VB sheet, Ni adatom interacts with H2 in the range of physisorption. However, the Ni-functionalized VN sheet exhibits a desirable adsorption on H2, and the corresponding energy varies from -0.40 to -0.51 eV, which is favorable for H2 adsorption and release at ambient conditions. As a result, the VN substrate is expected to a desirable support for H2 storage. Our work provides an insight into H2 storage on Ni-functionalized defective h-BN monolayer.

  20. Reactive adsorption of SO2 on activated carbons with deposited iron nanoparticles.

    PubMed

    Arcibar-Orozco, Javier A; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2013-02-15

    The effect of iron particle size anchored on the surface of commercial activated carbon on the removal of SO(2) from a gas phase was studied. Nanosize iron particles were deposited using forced hydrolysis of FeCl(3) with or without H(3)PO(4) as a capping agent. Dynamic adsorption experiments were carried out on either dry or pre-humidified materials and the adsorption capacities were calculated. The surface of the initial and exhausted materials was extensively characterized by microscopic, porosity, thermogravimetric and surface chemistry. The results indicate that the SO(2) adsorption capacity increased two and half times after the prehumidification process owing to the formation of H(2)SO(4) in the porous system. Iron species enhance the SO(2) adsorption capacity only when very small nanoparticles are deposited on the pore walls as a thin layer. Large iron nanoparticles block the ultramicropores decreasing the accessibility of the active sites and consuming oxygen that rest adsorption centers for SO(2) molecules. Iron nanoparticles of about 3-4 nm provide highly dispersed adsorption sites for SO(2) molecules and thus increase the adsorption capacity of about 80%. Fe(2)(SO(4))(3) was detected on the surface of exhausted samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Predicting heavy metals' adsorption edges and adsorption isotherms on MnO2 with the parameters determined from Langmuir kinetics.

    PubMed

    Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong

    2015-01-01

    Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.

  2. Wastewater remediation by TiO2-impregnated chitosan nano-grafts exhibited dual functionality: High adsorptivity and solar-assisted self-cleaning.

    PubMed

    Essawy, Amr A; Sayyah, S M; El-Nggar, A M

    2017-08-01

    This work provides a very infrequent and unique avenue of a novel bio-based nanografted polymeric composites achieving encouraging results in green management of dye contaminants in wastewater. A chitosan-grafted-polyN-Methylaniline (Ch-g-PNMANI) and chitosan-grafted-polyN-Methylaniline imprinted TiO 2 nanocomposites (Ch-g-PNMANI/TiO 2 ) were prepared and efficiently applied in wastewater remediation. The nanocomposites were characterized by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy, UV-Vis diffuse reflectance spectroscopy and Brunauer-Emmett-Teller surface area (BET) measurements. The prepared composites exhibit higher adsorptivity in removing remazol red RB-133 (RR RB-133) dye compared to other adsorbents reported in literature. The effects of TiO 2 loadings, initial dye concentration, contact time, and pH on dye adsorption were investigated. The maximum adsorption of dye was found at low pH values. Furthermore, Ch-g-PNMANI/TiO 2 of the optimum TiO 2 loading has higher adsorption capacity (116.3mg/g) than the pristine Ch-g-PNMANI (108.7mg/g). Moreover, the prepared adsorbents are photoactive under sunlight-irradiation. The study addresses a nanocomposite of considerable adsorption and in the same time has the fastest self-cleaning photoactivity (t 1/2 =31.5min.) under sunlight irradiation where a plausible photodegradation mechanism was proposed. Interestingly, the presented photoactive adsorbents are still effective in removing dye after five adsorption/sunlight-assisted self-cleaning photoregeneration cycles and therefore, they can be potentially applied to the rapid, "green" and low-cost remediation of RR RB-133 enriched industrial printing and dyeing wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adsorption of sugar surfactants at the air/water interface.

    PubMed

    Varga, Imre; Mészáros, Róbert; Stubenrauch, Cosima; Gilányi, Tibor

    2012-08-01

    The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Physicochemical factors affecting ethanol adsorption by activated carbon.

    PubMed

    Bradley, K J; Hamdy, M K; Toledo, R T

    1987-03-01

    Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.

  5. Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand

    USGS Publications Warehouse

    Coston, J.A.; Fuller, C.C.; Davis, J.A.

    1995-01-01

    Pb2+ and Zn2+ adsorption was studied in batch experiments with material collected from a shallow, unconfined aquifer of glacial outwash sand and gravel in Falmouth, Massachusetts, USA. The aquifer solids contain primarily quartz with minor amounts of alkali feldspars and ferromagnetic minerals. Pb2+ and Zn2+ adsorption experiments with various grain size and mineral fractions of the aquifer solids showed that: 1) Zn2+ adsorption was independent of grain size, but Pb2+ was preferentially adsorbed by the <64 ??m size fraction and 2) Pb2+ adsorption decreased after removal of the paramagnetic, Fe-bearing mineral fraction, but Zn2+ adsorption was unaffected. Pb2+ and Zn2+ adsorption on mineral separates from the aquifer material compared with metal adsorption on a purified quartz powder indicated that adsorption of both metal ions was dominated by coatings on the quartz fraction of the sediment. Characterization of the coatings by AES, SEM-EDS, and TOF-SIMS demonstrated that the natural quartz grains were extensively coated with Al- and Fe-bearing minerals of variable composition. -from Authors

  6. Adsorptive removal of patulin from aqueous solution using thiourea modified chitosan resin.

    PubMed

    Liu, Bingjie; Peng, Xiaoning; Chen, Wei; Li, Yang; Meng, Xianghong; Wang, Dongfeng; Yu, Guangli

    2015-09-01

    In the present paper, thiourea modified chitosan resin (TMCR) was firstly prepared through converting hydroxyl groups of chitosan resin into thiol groups, using glutaraldehyde as cross-linking agent and thiourea as modification agent. TMCR was characterized by FTIR, EDXS, SEM, XRD and AFM technologies. Batch adsorption experiments were performed to study the adsorption capacity of TMCR for patulin at different pH, temperature, contact time and patulin concentration. The result showed that TMCR was effective in removal of patulin from aqueous solution. The adsorption capacity of TMCR for patulin was 1.0 mg/g at pH 4.0, 25 °C for 24 h. Adsorption process could be well described by pseudo-first order model, Freundlich isotherm model and intraparticle diffusion model. It indicated that TMCR is expected to be a new material for patulin adsorption from aqueous solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics.

    PubMed

    Zhao, Bing; Xu, Xinyang; Zeng, Fanqiang; Li, Haibo; Chen, Xi

    2018-05-04

    The co-pyrolysis technology was applied to municipal sewage sludge (MSS) and hazelnut shell with alkaline activating agent K 2 CO 3 under N 2 atmosphere. The innovative bio-char produced by co-pyrolysis had significant physical and chemical characteristics. The specific surface area reached 1990.23 m 2 /g, and the iodine absorption number was 1068.22 mg/g after co-pyrolysis at 850 °C. Although hazelnut shell was a kind of solid waste, it also had abundant cellulose resource, which could contribute to porous structure of bio-char during co-pyrolysis with MSS and decrease total heavy metals contents of raw material to increase security of bio-chars. Meanwhile, the residual fractions of heavy metals in bio-char were above 92.95% after co-pyrolysis at 900 °C except Cd to prevent heavy metals digestion, and the bio-char presented significant immobilization behavior from co-pyrolysis technology. Moreover, the yield and the iodine absorption number of bio-chars under different process variables were analyzed, and it was confirmed that appropriate process variables could contribute the yield and the iodine absorption number of bio-char and prevent to etch pore structure excessively to collapse. The changes of surface functional groups and crystallographic structure before and after co-pyrolysis were analyzed by FTIR and XRD, respectively. The hierarchical porous structure of bio-char was presented by SEM and N 2 adsorption-desorption isotherm. The Cu(II) adsorption capacity of the bio-char was 42.28 mg/g after 24 h, and surface functional groups acted as active binding sites for Cu(II) adsorption. Langmuir model and pseudo-second-order model can describe process of Cu(II) adsorption well.

  8. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    PubMed

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  9. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    PubMed

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton.

    PubMed

    Ali, Attarad; Gul, Ayesha; Mannan, Abdul; Zia, Muhammad

    2018-05-17

    This study was designed to investigate removal of toxic metals and reduction of bacterial count from Rawal Lake wastewater with novel nanocomposite sorbents. Iron, zinc and silver oxide nanoparticles (NPs) were attached on cotton. The nanocomposites (iron NPs on cotton (FeCt), zinc NPs on cotton (ZnCt) and silver NPs on cotton (AgCt)) were characterized by FTIR, XRD and SEM, which showed successful adsorption of 10-30 nm size nanoparticles. Batch experiments were performed to determine the adsorption capacity of nanocomposite for metal removal. All the three adsorbents demonstrated 100% adsorption efficiency for Ag + , Co 2+ , Fe 3+ , Zn 2+ and Cu 2+ whereas less adsorption for Cd 2+ and Cr 3+ . The maximum adsorbance (qe) was exhibited by Co 2+ on ZnCt, FeCt and AgCt as 125.0, 111.1 and 100.0 mg g -1 , respectively. The efficiency of adsorbents for metal ions sorption was found as AgCt > ZnCt > FeCt while the order of adsorption for metals was observed as Fe 3+  > Co 2+  > Zn 2+  > Cu 2+  > Ag +  > Cr 3+  > Cd 2 + . The adsorption mechanism mostly follow Langmuir isotherm and pseudo-second order kinetic model. The maximum microbial reduction was exhibited by AgCt followed by ZnCt and FeCt. The microbes were further processed for staining and biochemical characteristics to evaluate resistance and sensitive microbes. The study concludes that the NPs doped on cotton can be effectively used for adsorption of heavy metals and reduction of microbial count from natural wastewater making it valuable for human consumption. In addition, the nanoparticles impregnated cotton can be efficiently used in water filtration plants. Copyright © 2018. Published by Elsevier B.V.

  11. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion

    NASA Astrophysics Data System (ADS)

    He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran

    2018-01-01

    A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.

  12. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    PubMed

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-05-31

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  13. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property.

    PubMed

    Li, Jiwei; Ma, Jianwei; Chen, Shaojuan; Huang, Yudong; He, Jinmei

    2018-08-01

    The large-scale applications of lysozyme in the pharmaceutical industry and food industry require more efficient and cost-effective techniques for its separation/purification. In the present study, graphene oxide (GO) was encapsulated into environmentally benign sodium alginate (SA) to prepare a Ca 2+ crosslinked alginate/graphene oxide composite gel beads (Ca-SA/GO) which were then used to adsorb lysozyme from aqueous solutions. Compared with pure Ca 2+ crosslinked alginate gel beads (Ca-SA), the as-prepared Ca-SA/GO has a lower swelling degree, an improved gel stability in salt solutions, and a higher mechanical performance. This can be explained by the uniform distribution of GO sheets in the Ca-SA matrix and the existence of hydrogen bonding and high interfacial adhesion between GO filler and SA matrix demonstrated by SEM, FTIR, XRD, and TGA. Batch adsorption experiments found that the lysozyme adsorption capacity of Ca-SA/GO can reach 278.28 mg g -1 and it can be regenerated and reused at least 4 times. Moreover, in column adsorption, the Ca-SA/GO showed excellent dynamic adsorption property. With good stability, adsorption capacity, and regeneration ability, the Ca-SA/GO could be a promising adsorbent for lysozyme from aqueous solutions. Copyright © 2018. Published by Elsevier B.V.

  14. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.

    PubMed

    Li, Linhui; Ma, Jincai; Xu, Meng; Li, Xu; Tao, Jiahui; Wang, Guanzhu; Yu, Jitong; Guo, Ping

    2016-01-01

    Adsorption and desorption are important processes that influence the potential toxicity and bioavailability of heavy metals in soils. However, information regarding adsorption and desorption behavior of heavy metals in soils subjected to freeze-thaw cycles is poorly understood. In the current study, the effect of freeze-thaw cycles with different freezing temperature (-15, -25, -35°C) on soil properties was investigated. Then the adsorption and desorption behavior of Pb(2+) and Cd(2+) in freeze-thaw treated soils was studied. The adsorption amounts of Pb(2+) and Cd(2+) in freeze-thaw treated soils were smaller than those in unfrozen soils (p < 0.05), due to the fact that pH, cation exchange capacity, organic matter content, free iron oxide content, and CaCO3 content in freeze-thaw treated soils were smaller than those in unfrozen soils. The adsorption amounts of Pb(2+) and Cd(2+) in soils treated with lower freezing temperatures were higher than those in soils treated with higher freezing temperatures. Desorption percentages of Pb(2+) and Cd(2+) in unfrozen soils were smaller than those in freeze-thaw treated soils (p < 0.05). The desorption percentages of Pb(2+) and Cd(2+) were smaller in soils treated with lower freezing temperatures than those in soils treated with higher freezing temperatures. The results obtained highlight the change of the adsorption and desorption behavior of typical heavy metals in freeze-thaw treated soils located in seasonal frozen soils zone in northeast China.

  15. Utilization of Natural Zeolite from Ponorogo and Purworejo for Naphthol Substance Adsorption

    NASA Astrophysics Data System (ADS)

    Imandiani, Sundus; Indira, Christine; Johan, Anthony; Budiyono

    2018-02-01

    Indonesia has many zeolite producing areas yet untapped. Researchers developed the utilization of natural zeolites useful for the adsorption of naphthol dyes commonly found in batik waste. In this study researchers used natural zeolites from Purworejo and Ponorogo that are activated using hydrochloric acid that is used for adsorption. The purpose of this research is to know the effect of natural zeolite activation from Ponorogo and Purworejo on the effectiveness of adsorption of naphthol dyes widely used in batik industry. Natural zeolite was activated using HCl concentration of 1.3N; 1.8N; 3.2N; and 3.9N for 60 minutes. The methods are preparation of natural zeolite from Purworejo and Ponorogo, dealumination using hydrochloric acid, adsorption process of naphthol dyes using activated zeolite, and test of adsorption result with uv-vis spectrophotometry. The test results showed that the higher HCl concentration will increase adsorption capacity. This can be known from the concentration of naphthol dye which decreased both using natural zeolite Ponorogo and Purworejo. While the effectiveness of adsorption shows natural zeolite Purworejo has a greater adsorption capacity than Ponorogo with optimum conditions of dealumination using concentration HCl 3,9N.

  16. Surface interaction of H2S, SO2, and SO3 on fullerene-like gallium nitride (GaN) nanostructure semiconductor

    NASA Astrophysics Data System (ADS)

    Salimifard, M.; Rad, A. Shokuhi; Mahanpoor, K.

    2017-10-01

    Density functional theory (DFT) using MPW1PW91 and B3LYP hybrid functionals was utilized for quantum-based investigations of three major sulfur compounds (H2S, SO2, and SO3) adsorption onto fullerene-like Ga12N12 nanocluster. All chemicals showed high chemisorption with the order of SO3>SO2>>H2S. Results of charge analysis showed that during adsorption, transfer of charge is from H2S to nanocluster while reverse direction of charge transfer is found for SO2 and SO3 molecules. Partial dissociation is found for adsorbates especially for SO2 and SO3 molecules. Results of thermochemistry analysis show negative values for enthalpy and Gibbs free energy of adsorption, confirming exothermic spontaneous process. Analysis of frontier molecular orbital (FMO) showed important role of orbital hybridizing towards formation of new bonds upon adsorption. As a result, we introduce Ga12N12 nanocluster as a strong adsorbent for sulfur compounds.

  17. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-01-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO2 and 99% N2. Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  18. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2 Adsorption Membrane.

    PubMed

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-12-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO 2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO 2 and 99% N 2 . Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO 2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO 2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO 2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  19. The role of electric field in enhancing separation of gas molecules (H2S, CO2, H2O) on VIB modified g-C3N4 (0 0 1)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Penghui; Wei, Shiqian; Guo, Jiaxing; Dan, Meng; Zhou, Ying

    2018-07-01

    In this study, the first-principles calculations were performed to investigate the adsorption behaviors of gas molecules H2S, CO2 and H2O on Cr, Mo and W modified g-C3N4 (0 0 1) surface. The results show that H2S, CO2 and H2O are physically adsorbed on the pristine g-C3N4, while the adsorption becomes chemisorbed due to the introduction of transition metals which significantly improve the interfacial electron transfer and narrow the band gap of g-C3N4 (0 0 1). Furthermore, it is found that the adsorption behaviors can be greatly influenced by the applied electric field. The adsorption energy is generally arranged in the order of Eads(H2S) > Eads(H2O) > Eads(CO2), and W/g-C3N4 (0 0 1) exhibits the best separation capability. The study could provide a versatile approach to selectively capture and separate the mixed gases in the catalytic reactions by controlling the applied intensity of electric field.

  20. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  1. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    NASA Astrophysics Data System (ADS)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  2. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on β-Ga2O3(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yunxiang; Liu, Chang-jun; Mei, Donghai

    The effects of hydration and oxygen vacancy on CO2 adsorption on the β-Ga2O3(100) surface have been studied using density functional theory slab calculations. Adsorbed CO2 is activated on the dry perfect β-Ga2O3(100) surface, resulting in a carbonate species. This adsorption is slightly endothermic, with an adsorption energy of 0.07 eV. Water is preferably adsorbed molecularly on the dry perfect β-Ga2O3(100) surface with an adsorption energy of -0.56 eV, producing a hydrated perfect β-Ga2O3(100) surface. Adsorption of CO2 on the hydrated surface as a carbonate species is also endothermic, with an adsorption energy of 0.14 eV, indicating a slight repulsive interactionmore » when H2O and CO2 are coadsorbed. The carbonate species on the hydrated perfect surface can be protonated by the co-adsorbed H2O to a bicarbonate species, making the overall process exothermic with an adsorption energy of -0.13 eV. The effect of defects on CO2 adsorption and activation has been examined by creating an oxygen vacancy on the dry β-Ga2O3(100) surface. The formation of an oxygen vacancy is endothermic, by 0.34 eV, with respect to a free O2 molecule in the gas phase. Presence of the oxygen vacancy promoted the adsorption and activation of CO2. In the most stable CO2 adsorption configuration on the dry defective β-Ga2O3(100) surface with an oxygen vacancy, one of the oxygen atoms of the adsorbed CO2 occupies the oxygen vacancy site and the CO2 adsorption energy is -0.31 eV. Water favors dissociative adsorption at the oxygen vacancy site on the defective surface. This process is instantaneous with an adsorption energy of -0.62 eV. These results indicate that, when water and CO2 are both present in the adsorption system simultaneously, the water molecule will compete with CO2 for the oxygen vacancy sites and impact CO2 adsorption and conversion negatively. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the computing time

  3. Ab Initio Cluster Calculations for the Adsorption of Small Molecules on Oxide Surfaces - from Single Molecules to Monolayers

    NASA Astrophysics Data System (ADS)

    Pykavy, M.; Staemmler, V.; Rittner, F.

    2000-04-01

    Quantum chemical ab initio cluster calculations were performed for the adsorption of small molecules on metal oxide surfaces. Two systems were studied in detail: The adsorption of N2 on the (110) surface plane of TiO2 (rutile) and the adsorption of CO on the polar (0001) surface of Cr2O3. In both cases a full five-dimensional potential for the interaction of a single molecule with the respective surface was calculated. For N2/TiO2 (110) the minimum was found for the end-on adsorption of N2 atop a coordinately unsaturated surface Ti atom, with an adsorption energy of (35 ± 5) kJ/mol. In the case of CO/Cr2O3 (0001) the CO molecule is adsorbed strongly tilted (almost side-on) along a line connecting two Cr3+ ions at the surface; the calculated adsorption energy is 22 kJ/mol. In conjunction with empirical pair potentials for the N2/N2 and CO/CO interaction in the gas phase, Monte Carlo simulations were carried out to determine adsorption isotherms and the geometric structure of adsorbed monolayers.

  4. Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Deng, Lin; Shi, Zhou; Wang, Li; Zhou, Shiqing

    2017-05-01

    A novel magnetic NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite (NiFe2O4/ZnAl-EDTA LDH) was prepared through modified coprecipitation method and employed for adsorptive removal of Cr(VI) from aqueous solution. The adsorbents were characterized using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS). Factors affecting the Cr(VI) adsorption, such as initial solution pH, adsorbent dosage, contact time, initial Cr(VI) concentration, temperature and coexisting ions, were studied systematically. Experiments results show that the magnetic NiFe2O4/ZnAl-EDTA LDH exhibits high adsorption efficiency within a wide pH range of 3.0-7.0 (R>80% at Cr(VI) concentration 50 mg L-1, contact time 360 min, and adsorbent dosage 2 g/L) and quick separation property. The adsorption process is fitted well with the Langmuir isotherm and pseudo-second-order kinetic model. The maximum theoretical adsorption capacity is found to be 77.22 mg g-1 at pH 6.0 and 318 K. The positive ΔH value (2.907 kJ mol-1) and negative ΔG value (-4.722 kJ mol-1) at 298-318 K reveals that the adsorption process is feasible, spontaneous and endothermic. Coexisting anions (PO43-, SO42-, CO32-, HCO3-, Cl-, and NO3-) have no significant effect on Cr(VI) removal. The mechanism study indicates that the adsorption of Cr(VI) onto NiFe2O4/ZnAl-EDTA LDH mainly involves electrostatic attraction and ion exchange interaction. It is interesting to note that a proportion of Cr(VI) adsorbed on the adsorbent surface are reduced to Cr(III) during the adsorption process. Results from this study demonstrate the potential utility of the magnetic NiFe2O4/ZnAl-EDTA LDH that could be developed into a viable technology for efficient removal of Cr(VI) from aqueous solution.

  5. SAPO-34 Membranes for N-2/CH4 separation: Preparation, characterization, separation performance and economic evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, SG; Zong, ZW; Zhou, SJ

    2015-08-01

    SAPO-34 membranes were synthesized by several routes towards N-2/CH4 separation. Membrane synthesis parameters including water content in the gel, crystallization time, support pore size, and aluminum source were investigated. High performance N-2-selective membranes were obtained on 100-nm-pore alumina tubes by using Al(i-C3H7O)(3) as aluminum source with a crystallization time of 6 h. These membranes separated N-2 from CH, with N-2 permeance as high as 500 GPU with separation selectivity of 8 at 24 degrees C. for a 50/50 N-2/CH4 mixture. Nitrogen and CH, adsorption isotherms were measured on SAPO-34 crystals. The N-2 and CH, heats of adsorption were 11 andmore » 15 kJ/mol, respectively, which lead to a preferential adsorption of CE-H-4 over N-2 in the N-2/CH4 mixture. Despite this, the SAPO-34 membranes were selective for N-2 over CH4 in the mixture because N-2 diffuses much faster than CH4 and differences in diffusivity played a more critical role than the competitive adsorption. Preliminary economic evaluation indicates that the required N-2/CH4 selectivity would be 15 in order to maintain a CH4 loss below 10%. For small nitrogen-contaminated gas wells, our current SAPO-34 membranes have potential to compete with the benchmark technology cryogenic distillation for N-2 rejection. (C) 2015 Elsevier B.V. All rights reserved,« less

  6. Adsorption characteristics of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents.

    PubMed

    Humelnicu, Doina; Dinu, Maria Valentina; Drăgan, Ecaterina Stela

    2011-01-15

    Adsorption features of UO(2)(2+) and Th(4+) ions from simulated radioactive solutions onto a novel chitosan/clinoptilolite (CS/CPL) composite as beads have been investigated compared with chitosan cross-linked with epichlorohydrin. The effects of contact time, the initial metal ion concentration, sorbent mass and temperature on the adsorption capacity of the CS-based sorbents were investigated. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Sips model. The maximum experimental adsorption capacities were 328.32 mg Th(4+)/g composite, and 408.62 mg UO(2)(2+)/g composite. The overall adsorption tendency of CS/CPL composite toward UO(2)(2+) and Th(4+) radiocations in the presence of Cu(2+), Fe(2+) and Al(3+), under competitive conditions, followed the order: Cu(2+)>UO(2)(2+)>Fe(2+)>Al(3+), and Cu(2+)>Th(4+)>Fe(2+)>Al(3+), respectively. The negative values of Gibbs free energy of adsorption indicated the spontaneity of the adsorption of radioactive ions on both the CS/CPL composite and the cross-linked CS. The desorption level of UO(2)(2+) from the composite CS/CPL, by using 0.1M Na(2)CO(3), was around 92%, and that of Th(4+) ions, performed by 0.1M HCl, was around 85%, both values being higher than the desorption level of radiocations from the cross-linked CS, which were 89% and 83%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Doping and vacancy effects of graphyne on SO2 adsorption.

    PubMed

    Kim, Sunkyung; Lee, Jin Yong

    2017-05-01

    The adsorption of sulfur dioxide (SO 2 ) on pristine and modified graphyne (including boron- or nitrogen- doping and introducing a single carbon atom defect) was investigated by density functional theory calculations. The structural, electronic, and magnetic properties of graphyne were changed according to the dopant atom site of doping and vacancy. SO 2 adsorption was obviously affected by modification of graphyne. SO 2 weakly interacted with pristine and nitrogen-doped graphynes. Boron doping at the sp-hybridized carbon site and introducing a single carbon atom vacancy in graphyne brought about a dramatic enhancement in SO 2 adsorption. The strongly chemisorbed SO 2 at these active sites caused deformation of the graphyne structure and electron redistribution, which induced changes in the conductivity and magnetism of graphynes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface.

    PubMed

    Gao, Zhengyang; Ding, Yi

    2017-06-01

    The moisture content of coal affects the adsorption capacity of CO 2 on the coal surface. Since the hydrogen bonds are formed between H 2 O and oxygen functional group, the H 2 O cluster more easily adsorbs on the coal micropore than CO 2 molecule. The coal micropores are occupied by H 2 O molecules that cannot provide extra space for CO 2 adsorption, which may leads to the reduction of CO 2 adsorption capacity. However, without considering factors of micropore and oxygen functional groups, the co-adsorption mechanisms of CO 2 and adsorbed H 2 O molecule are not clear. Density functional theory (DFT) calculations were performed to elucidate the effect of adsorbed H 2 O to CO 2 adsorption. This study reports some typical coal-H 2 O···CO 2 complexes, along with a detailed analysis of the geometry, energy, electrostatic potential (ESP), atoms in molecules (AIM), reduced density gradient (RDG), and energy decomposition analysis (EDA). The results show that H 2 O molecule can more stably adsorb on the aromatic ring surface than CO 2 molecule, and the absolute values of local ESP maximum and minimum of H 2 O cluster are greater than CO 2 . AIM analysis shows a detailed interaction path and strength between atoms in CO 2 and H 2 O, and RDG analysis shows that the interactions among CO 2 , H 2 O, and coal model belong to weak van der Waals force. EDA indicates that electrostatic and long-range dispersion terms play a primary role in the co-adsorption of CO 2 and H 2 O. According to the DFT calculated results without considering micropore structure and functional group, it is shown that the adsorbed H 2 O can promote CO 2 adsorption on the coal surface. These results demonstrate that the micropore factor plays a dominant role in affecting CO 2 adsorption capacity, the attractive interaction of adsorbed H 2 O to CO 2 makes little contribution.

  9. Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Guo; Chen, Honglin; Qin, Hangdao; Feng, Yujun

    2014-02-01

    To study the contribution of different nitrogen-containing functional groups to enhancement of phenol adsorption, the aminated activated carbons (AC) were characterized by N2 adsorption/desorption, XPS, Boehm titration, and pH drift method and tested for adsorption behaviors of phenol. Adsorption isotherm fitting revealed that the Langmuir model was preferred for the aminated ACs. The adsorption capacity per unit surface area (qm/SSABET) was linearly correlated with the amount of pyridinic and pyrrolic N, which suggested that these two functional groups played a critical role in phenol adsorption. The enhancement of adsorption capacity was attributed to the strengthened π-π dispersion between phenol and basal plane of AC by pyridinic, pyrrolic N. The adsorption kinetics was found to follow the pseudo-second-order kinetic model, and intraparticle diffusion was one of the rate-controlling steps in the adsorption process.

  10. Development of TRPN dendrimer-modified disordered mesoporous silica for CO{sub 2} capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoyun; Zhang, Sisi; Qin, Hongyan

    2014-08-15

    Highlights: • A novel series of TRPN dendrimers are synthesized. • Structurally disordered mesoporous silica was used to develop the CO{sub 2} adsorbent. • The CO{sub 2} adsorption capacity is relatively high. • The sorbent exhibits a high stability after 12 cycling runs. • The sorbent achieves complete desorption at low temperature (60 °C). - Abstract: A novel series of tri(3-aminopropyl) amine (TRPN) dendrimers were synthesized and impregnated on structurally disordered mesoporous silica (DMS) to generate CO{sub 2} adsorbents (TS). The physicochemical and adsorption properties of the adsorbents before and after dendrimer modification were characterized by X-ray diffraction (XRD), thermogravimetricmore » analysis (TGA), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and N{sub 2} adsorption–desorption (N{sub 2}-BET) techniques. CO{sub 2} adsorption–desorption tests indicated that the sorbent demonstrates high CO{sub 2} adsorption capacity (138.1 mg g{sup −1} for G1 sample TS-G1-3CN-50 and 91.7 mg g{sup −1} for G2 sample TS-G2-6CN-50), and can completely desorb CO{sub 2} under vacuum at 60 °C. Its CO{sub 2} adsorption capacity at 25 °C increases with the amine loading, achieving the highest adsorption capacity (140.6 mg g{sup −1} for TS-G1-3CN) at 60%. The developed TS materials exhibited excellent cycling stability. After 12 consecutive adsorption–desorption runs, TS-G1-3CN-50 shows an adsorption capacity of 136.0 mg g{sup −1}, retaining 98.5% of its original value.« less

  11. Study on adsorption properties and mechanism of Pb2+ with different carbon based adsorbents.

    PubMed

    Song, Min; Wei, Yuexing; Cai, Shipan; Yu, Lei; Zhong, Zhaoping; Jin, Baosheng

    2018-03-15

    Different activated carbon materials are prepared from a series of solid wastes (sawdust, acrylic fabric, tire powder and rice husk) by combination of the KOH activation method and steam activation method. The influences of several parameters such as pH, contact time, adsorbent dosage and temperature on adsorption performance of Pb 2+ with those different carbon adsorbents are investigated. The results demonstrate that C rice husk performance well in the adsorption process. In the following, the C rice husk is used to explain the adsorption mechanism of Pb 2+ by SEM-EDS, FT-IR and XPS. The results illustrate that the surface oxygen-containing functional groups such as carboxyl, lactone group, phenolic hydroxyl and other alkaline metal ions like Na + and K + have significant effect on the adsorption process. A reasonable mechanism of Pb 2+ adsorption is proposed that the ion exchange play key roles in the adsorption process. In addition, the effects of Cu 2+ , Zn 2+ on the Pb 2+ adsorption capacity with the four carbon adsorbents are also studied and the results demonstrate that other heavy metals play positive effects on the adsorption of Pb 2+ . Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JR; Yu, JM; Lu, WG

    2013-02-26

    Despite tremendous efforts, precise control in the synthesis of porous materials with pre-designed pore properties for desired applications remains challenging. Newly emerged porous metal-organic materials, such as metal-organic polyhedra and metal-organic frameworks, are amenable to design and property tuning, enabling precise control of functionality by accurate design of structures at the molecular level. Here we propose and validate, both experimentally and computationally, a precisely designed cavity, termed a 'single-molecule trap', with the desired size and properties suitable for trapping target CO2 molecules. Such a single-molecule trap can strengthen CO2-host interactions without evoking chemical bonding, thus showing potential for CO2 capture.more » Molecular single-molecule traps in the form of metal-organic polyhedra are designed, synthesised and tested for selective adsorption of CO2 over N-2 and CH4, demonstrating the trapping effect. Building these pre-designed single-molecule traps into extended frameworks yields metal-organic frameworks with efficient mass transfer, whereas the CO2 selective adsorption nature of single-molecule traps is preserved.« less

  13. Methane and CO2 Adsorption Capacities of Kerogen in the Eagle Ford Shale from Molecular Simulation.

    PubMed

    Psarras, Peter; Holmes, Randall; Vishal, Vikram; Wilcox, Jennifer

    2017-08-15

    Over the past decade, the United States has become a world leader in natural gas production, thanks in part to a large-fold increase in recovery from unconventional resources, i.e., shale rock and tight oil reservoirs. In an attempt to help mitigate climate change, these depleted formations are being considered for their long-term CO 2 storage potential. Because of the variability in mineral and structural composition from one formation to the next (even within the same region), it is imperative to understand the adsorption behavior of CH 4 and CO 2 in the context of specific conditions and pore surface chemistry, i.e., relative total organic content (TOC), clay, and surface functionality. This study examines two Eagle Ford shale samples, both recovered from shale that was extracted at depths of approximately 3800 m and having low clay content (i.e., less than 5%) and similar mineral compositions but distinct TOCs (i.e., 2% and 5%, respectively). Experimentally validated models of kerogen were used to the estimate CH 4 and CO 2 adsorption capacities. The pore size distributions modeled were derived from low-pressure adsorption isotherm data using CO 2 and N 2 as probe gases for micropores and mesopores, respectively. Given the presence of water in these natural systems, the role of surface chemistry on modeled kerogen pore surfaces was investigated. Several functional groups associated with surface-dissociated water were considered. Pressure conditions from 10 to 50 bar were investigated using grand canonical Monte Carlo simulations along with typical outgassing temperatures used in many shale characterization and adsorption studies (i.e., 60 and 250 °C). Both CO 2 and N 2 were used as probe gases to determine the total pore volume available for gas adsorption spanning pore diameters ranging from 0.3 to 30 nm. The impacts of surface chemistry, outgassing temperature, and the inclusion of nanopores with diameters of less than 1.5 nm were determined for applications

  14. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Xingwei; Zhang, Tianyong; Jiang, Shuang; Zhang, Guanghui; Wu, Wubin; Ma, Xiaoyuan

    2018-05-01

    The BiOI/TiO2 heterostructures with different Bi/Ti molar ratios were synthesized by biomimetic synthesis and simple hydrothermal method. XRD, SEM, TEM, N2 adsorption-desorption isotherms, XPS, UV-vis diffuse reflection spectra and photoluminescence spectra (PL) were employed to characterize the as-prepared photocatalysts and confirm the presence of p-n heterojunction. The photocatalytic activities of these photocatalysts were measured by photocatalytic selective hydroxylation of phenol with high concentration under simulated solar light irradiation. The results showed that BiOI/TiO2 heterostructure exhibited more excellent photocatalytic performance than the pure TiO2 and BiOI. Moreover, 20% BiOI/TiO2 heterostructure exhibited the highest photocatalytic performance, which can be ascribed to the exposed reactive facets, narrow band gap and effective separation of the photogenerated electrons and holes because of p-n heterojunction between BiOI and TiO2. The results of reusability tests indicated that the as-prepared photocatalysts have excellent photochemical stability. Furthermore, active-species trapping experiments were conducted to confirm the formation of radOH, which played a chief role in the process of photocatalytic selective hydroxylation of phenol. The charge transfer process of BiOI/TiO2 heterostructure and a possible mechanism for photocatalytic selective hydroxylation of phenol were proposed.

  15. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  16. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    PubMed Central

    Eltaher, M. A.; Abdou, A. N. A.

    2017-01-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227

  17. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites.

    PubMed

    Rashed, M Nageeb; Eltaher, M A; Abdou, A N A

    2017-12-01

    Nanocomposite TiO 2 /ASS (TiO 2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO 2 /ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO 2 /ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO 2  : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd 2+ from bi-pollutant solution was achieved with TiO 2 /ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO 2 /ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO 2 /ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO 2 /ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd 2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  18. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    PubMed Central

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-01-01

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) has been investigated. C60(OH)n, C60(C(COOH)2)n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C60(OH)n or C60(C(COOH)2)n, the study of a ternary system showed the inhibition effect of C60(OH)n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH)2)n, even at its low concentration, on Th(IV) adsorption was observed in acid medium. PMID:28788324

  19. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons.

    PubMed

    Sevilla, Marta; Parra, Jose B; Fuertes, Antonio B

    2013-07-10

    The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of the pristine materials and up to 1.6 nm for the highly activated carbons (47% burnoff). The N-doped carbons possess ~3 wt % of N heteroatoms that are incorporated into several types of functional groups (i.e., pyrrole/pyridone, pyridine, quaternary, and pyridine-N-oxide). Under conventional operation conditions (i.e., T ~ 0-25 °C and P(CO2) ~ 0-1 bar), CO2 adsorption proceeds via a volume-filling mechanism, the size limit for volume-filling being ~0.7-0.8 nm. Under these circumstances, the adsorption of CO2 by nonfunctionalized porous carbons is mainly determined by the volume of the micropores with a size below 0.8 nm. It was also observed that the CO2 capture capacities of undoped and N-doped carbons are analogous which shows that the nitrogen functionalities present in these N-doped samples do not influence CO2 adsorption. Taking into account the temperature invariance of the characteristic curve postulated by the Dubinin theory, we show that CO2 uptakes can be accurately predicted by using the adsorption data measured at just one temperature.

  20. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE PAGES

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin; ...

    2015-08-07

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  1. SANS Investigations of CO 2 Adsorption in Microporous Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Melnichenko, Yuri B.; He, Lilin

    The high pressure adsorption behavior of CO 2 at T = 296 K in microporous carbon was investigated by small-angle neutron scattering (SANS) technique. A strong densification of CO 2 in micropores accompanied by non-monotonic adsorption-induced pore deformation was observed. The density of confined CO 2 increases rapidly with pressure and reaches the liquid –like density at 20 bar, which corresponds to the relative pressure of P/Psat ~0.3. At P > 20 bar density of confined CO 2 increases slowly approaching a plateau at higher pressure. The size of micropores first increases with pressure, reaches amore » maximum at 20 bar, and then decreases with pressure. A complementary SANS experiment conducted on the same microporous carbon saturated with neutron-transparent and non-adsorbing inert gas argon shows no deformation of micropores at pressures up to ~200 bars. This result demonstrates that the observed deformation of micropores in CO 2 is an adsorption-induced phenomenon, caused by the solvation pressure - induced strain and strong densification of confined CO 2 .« less

  2. First-principles study on the structure and electronic property of gas molecules adsorption on Ge2Li2 monolayer

    NASA Astrophysics Data System (ADS)

    Hu, Yiwei; Long, Linbo; Mao, Yuliang; Zhong, Jianxin

    2018-06-01

    Using first-principles methods, we have studied the adsorption of gas molecules (CO2, CH4, H2S, H2 and NH3) on two dimensional Ge2Li2 monolayer. The adsorption geometries, adsorption energies, charge transfer, and band structures of above mentioned gas molecules adsorption on Ge2Li2 monolayer are analyzed. It is found that the adsorption of CO2 on Ge2Li2 monolayer is a kind of strong chemisorption, while other gas molecules such as CH4, H2S, H2 and NH3 are physisorption. The strong covalent binding is formed between the CO2 molecule and the nearest Ge atom in Ge2Li2 monolayer. This adsorption of CO2 molecule on Ge2Li2 monolayer leads to a direct energy gap of 0.304 eV. Other gas molecules exhibit mainly ionic binding to the nearest Li atoms in Ge2Li2 monolayer, which leads to indirect energy gap after adsorptions. Furthermore, it is found that the work function of Ge2Li2 monolayer is sensitive with the variation of adsorbents. Our results reveal that the Ge2Li2 monolayer can be used as a kind of nano device for gas molecules sensor.

  3. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  4. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    PubMed Central

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  5. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    NASA Astrophysics Data System (ADS)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L-1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g-1 for As(V) and 143.6 mg g-1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.

  6. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading.

    PubMed

    Pal, Arun; Chand, Santanu; Elahi, Syed Meheboob; Das, Madhab C

    2017-11-14

    A microporous MOF {[Zn(SDB)(L) 0.5 ]·S} n (IITKGP-5) with a polar pore surface has been constructed by the combination of a V-shaped -SO 2 functionalized organic linker (H 2 SDB = 4,4'-sulfonyldibenzoic acid) with an N-rich spacer (L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene), forming a network with sql(2,6L1) topology. IITKGP-5 is characterized by TGA, PXRD and single crystal X-ray diffraction. The framework exhibits lozenge-shaped channels of an approximate size of 4.2 × 5.6 Å 2 along the crystallographic b axis with a potential solvent accessible volume of 26%. The activated IITKGP-5a revealed a CO 2 uptake capacity of 56.4 and 49 cm 3 g -1 at 273 K/1 atm and 295 K/1 atm, respectively. On the contrary, it takes up a much smaller amount of CH 4 (17 cm 3 g -1 at 273 K and 13.6 cm 3 g -1 at 295 K) and N 2 (5.5 cm 3 g -1 at 273 K; 4 cm 3 g -1 at 295 K) under 1 atm pressure exhibiting its potential for a highly selective adsorption of CO 2 from flue gas as well as a landfill gas mixture. Based on the ideal adsorbed solution theory (IAST), a CO 2 /N 2 selectivity of 435.5 and a CO 2 /CH 4 selectivity of 151.6 have been realized at 273 K/100 kPa. The values at 295 K are 147.8 for CO 2 /N 2 and 23.8 for CO 2 /CH 4 gas mixtures under 100 kPa. In addition, this MOF nearly approaches the target values proposed for PSA and TSA processes for practical utility exhibiting its prospect for flue gas separation with a CO 2 loading capacity of 2.04 mmol g -1 .

  7. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    NASA Astrophysics Data System (ADS)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  8. Simultaneous adsorption of SO2 and NO from flue gas over mesoporous alumina.

    PubMed

    Sun, Xin; Tang, Xiaolong; Yi, Honghong; Li, Kai; Ning, Ping; Huang, Bin; Wang, Fang; Yuan, Qin

    2015-01-01

    Mesoporous alumina (MA) with a higher ability to simultaneously remove SO2 and NO was prepared by the evaporation-induced self-assembly process. The adsorption capacities of MA are 1.79 and 0.702 mmol/g for SO2 and NO, respectively. The Brunauer-Emmett-Teller method was used to characterize the adsorbent. Simultaneous adsorption of SO2 and NO from flue gas over MA in different operating conditions had been studied in a fixed bed reactor. The effects of temperature, oxygen concentration and water vapour were investigated. The experimental results showed that the optimum temperature for MA to simultaneously remove SO2 and NO was 90°C. The simultaneous adsorption capacities of SO2 and NO could be enhanced by increasing O2 when its concentration was below 5%. The changes of simultaneous adsorption capacities were not obvious when O2 concentration was above 5%. The increase in relative humidity results in an increase after dropping of SO2 adsorption capacity, whereas the adsorption capacity of NO showed an opposite trend. The results suggest that MA is a great adsorbent for simultaneous removal of SO2 and NO from flue gas.

  9. Adsorption of cadmium by sulphur dioxide treated activated carbon.

    PubMed

    Macías-García, A; Gómez-Serrano, V; Alexandre-Franco, M F; Valenzuela-Calahorro, C

    2003-10-01

    Merck carbon (1.5 mm) was treated in three ways: heating from ambient temperature to 900 degrees C in SO(2); treatment at ambient temperature in SO(2); or successive treatments in SO(2) and H(2)S at ambient temperature. All samples were then characterised and tested as adsorbents of Cd(2+) from aqueous solution. The characterisation was in terms of composition by effecting ultimate and proximate analyses and also of textural properties by N(2) adsorption at -196 degrees C. Kinetics and extent of the adsorption process of Cd(2+) were studied at 25 and 45 degrees C at pH of the Cd(2+) solution (i.e., 6.2) and at 25 degrees C also at pH 2.0. The various treatments of the starting carbon had no significant effect on the kinetics of the adsorption of Cd(2+), but increased its adsorption capacity. The most effective treatment was heating to 900 degrees C, the adsorption in this case being 70.3% more than that of the starting carbon. The adsorption increased at 45 degrees C but decreased at pH 2.0 when compared to adsorption at 25 degrees C and pH 6.2, respectively.

  10. Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques.

    PubMed

    Gupta, Vinod Kumar; Jain, Rajeev; Varshney, Shaily; Saini, Vipin Kumar

    2007-03-15

    The wheat husk, an agricultural by-product, has been activated and used as an adsorbent for the adsorption of Reactofix Navy Blue 2 GFN from aqueous solution. In this work, adsorption of Reactofix Navy Blue 2 GFN on wheat husk and charcoal has been studied by using batch studies. The equilibrium adsorption level was determined to be a function of the solution pH, adsorbent dosage, dye concentration and contact time. The equilibrium adsorption capacities of wheat husk and charcoal for dye removal were obtained using Freundlich and Langmuir isotherms. Thermodynamic parameters such as the free energies, enthalpies and entropies of adsorption were also evaluated. Adsorption process is considered suitable for removing color, COD from waste water.

  11. Adsorption of transgenic insecticidal Cry1Ab protein to SiO2. 2. Patch-controlled electrostatic attraction.

    PubMed

    Madliger, Michael; Sander, Michael; Schwarzenbach, René P

    2010-12-01

    Adsorption governs the fate of Cry proteins from genetically modified Bt crops in soils. The effect of ionic strength (I) on the adsorption of Cry1Ab (isoelectric point IEP(Cry1Ab) ≈ 6) to negatively charged quartz (SiO(2)) and positively charged poly-L-lysine (PLL) was investigated at pH 5 to 8, using quartz crystal microbalance with dissipation monitoring and optical waveguide lightmode spectroscopy. Cry1Ab adsorbed via positively and negatively charged surface patches to SiO(2) and PLL, respectively. This patch controlled electrostatic attraction (PCEA) explains the observed increase in Cry1Ab adsorption to sorbents that carried the same net charge as the protein (SiO(2) at pH > IEP(Cry1Ab) and PLL at pH < IEP(Cry1Ab)) with decreasing I. In contrast, the adsorption of two reference proteins, BSA and HEWL, with different adsorption mechanism, were little affected by similar changes of I. Consistent with PCEA, Cry1Ab desorption from SiO(2) at pH > IEP(Cry1Ab) increased with increasing I and pH. Weak Cry1Ab-SiO(2) PCEA above pH 7 resulted in reversible, concentration dependent adsorption. Solution depletion experiments showed that PCEA also governed Cry1Ab adsorption to SiO(2) particles at environmentally relevant concentrations (a few ng mL(-1)). These results imply that models describing Cry1Ab adsorption to charged surfaces in soils need to account for the nonuniform surface charge distribution of the protein.

  12. Recyclable graphene oxide grafted with poly(N-isopropylacrylamide) and its enhanced selective adsorption for phenols

    NASA Astrophysics Data System (ADS)

    Gong, Zailin; Li, Shujin; Han, Weifang; Wang, Jiaping; Ma, Jun; Zhang, Xiangdong

    2016-01-01

    The graphene oxide (GO) was synthesized with Brodie's method and grafted with poly (N-isopropylacrylamide) (NIPAM) in aqueous solution at ambient temperature. Compared with the initial GO, the PNIPAM graft GO (GO-PNIPAM) has larger surface area, pore volume and self-flocculation effect with rapid response to temperature. Moreover, the GO-PNIPAM also has selective adsorptions with different phenol pollutants because of the different interactions of hydrogen bonds and the molecule structure of the adsorbates. Compared with phenol and bisphenol A, hydroquinone has better adsorption on GO-PNIPAM because of the ample phenolic hydroxyl group and the appropriate molecule structure. The adsorption performance of hydroquinone on GO-PNIPAM is also temperature sensitive because of the thermoresponsive transition of the hydrogen bond. The thermoresponsive adsorption and self-flocculation will make the GO-PNIPAM recyclable in the potential water remediation.

  13. A novel highly efficient adsorbent {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n: Synthesis, crystal structure, magnetic and arsenic (V) absorption capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Xiao, Yu; Qin, Yan; Sun, Quanchun; Zhang, Shuhua

    2018-05-01

    A novel highly efficient adsorbent-microporous tetranuclear Co(II)-based polymer, {[Co4(L)2(μ3-OH)2(H2O)3(4,4‧-bipy)2]·(H2O)2}n (1, H3L = 4-(N,N‧-bis(4-carboxybenzyl)amino) benzenesulfonic acid, 4,4‧-bipy = 4,4‧-bipyridine), was hydrothermally synthesized. The complex 1 is a metal-organic framework (MOF) material which was characterized by single-crystal X-ray diffraction, BET and platon software. Co-MOF (complex 1) reveals excellent adsorption property. The capacity of Co-MOF to remove arsenic As(V) from sodium arsenate aqueous solutions was investigated (The form of As(V) is AsO43-). The experimental results showed that Co-MOF had a higher stable and relatively high As(V) removal rate (> 98%) at pH 4-10. The adsorption kinetics followed a pseudo-second-order kinetic model, and the adsorption isotherm followed the Langmuir equation. Co-MOF exhibits a very high adsorption capacity of As(V) in aqueous solution (Qmax of 96.08 mg/g). Finally, the optimal adsorption conditions for the model were obtained through a Box-Behnken response surface experiment which was designed with adsorption time, dose, temperature and rotational speed of the shaker as the influencing factors to determine two-factor interaction effects. Co-MOF was further characterized using FTIR, PXRD, X-ray photoelectron spectroscopy before and after adsorption As (V). The magnetism of Co-MOF was also discussed.

  14. Investigation of copper (Cu2+) adsorption performances and gamma radiation dose effect of polymeric hydrogel

    NASA Astrophysics Data System (ADS)

    Hassan, Safia; Yasin, Tariq; Imran, Zahid; Batool, Syeda Sitwat

    2018-02-01

    In present study, series of gamma irradiated poly(acrylic acid)/Penytriethoxytrisilane (PTES) based hydrogels were synthesized. The hydrogels were used for the adsorption of Cu2+ from the aqueous solution. Batch adsorption experiments were performed by varying contact time (0-10 hours), pH value (2-6), hydrogels weight (15-155 mg) and initial Cu2+ concentration (0.003-90 mg/L). The results indicated that lowering the gamma irradiation dose (30-15 kGy) and PTES amount (1.65-0.83 μmol) into hydrogel polymeric networks, improved the initial rate of adsorption and final adsorption capacity of hydrogel for Cu2+. AA40/15 had 143.4mg/g Cu2+ adsorption capacity higher than AA80/30 which is 106.0mg/g. Hydrogels exhibited maximum o adsorption capacity for Cu2+ within a wide pH range. All adsorption data was described by the pseudo—first order and second order kinetic model equations and isotherm data by Langmuir model. FTIR spectra analysis before and after adsorption of Cu2+ on the AA hydrogels gave detail analysis of adsorption mechanism. The behavior of adsorption expressed that the enhanced adsorption capacity was due to the porous structure and e presence of functional groups onto surface of adsorbate. It is expected this polymeric hydrogel has potential to work as alternative biomedical sorbents and environmental use as pH altered.

  15. Nitrogen doped microporous carbon by ZnCl2 activation of protein

    NASA Astrophysics Data System (ADS)

    Wilson, Praveen; Vijayan, Sujith; Prabhakaran, K.

    2017-09-01

    ZnCl2 activation of protein containing biomass has been studied for the preparation of N-doped activated carbon (NDC) using powdered dry fish as a source of protein. Nearly 52% increase in the yield of NDC is observed by activation with ZnCl2 due to an increase in the thermal stability of Zn2+-fish protein complex compared to the protein alone. The NDCs obtained are characterized by XRD, IR, XPS, Raman spectroscopy, SEM, TEM, elemental analysis and N2 adsorption-desorption studies. The activation at 550 °C produces NDC with the highest surface area and total pore volume of 1001 m2 g-1 and 0.719 cm3 g-1, respectively, at a ZnCl2 to fish powder weight ratio of 3. A maximum micropore volume of 0.273 cm3 g-1 is obtained at a ZnCl2 to fish powder weight ratio of 1:1. The N-content (12.4-5.2 wt%) decreases with an increase in activation temperature and ZnCl2 to fish powder weight ratio. The NDC obtained by activation at 550 °C at a ZnCl2 to fish powder weight ratio of 1:1 shows the maximum CO2 adsorption capacity of 2.4 and 3.73 mmol g-1 at 25 and 0 °C, respectively, at 1 atmosphere. The CO2 adsorption on the NDC shows excellent cyclic stability and high selectivity over nitrogen gas.

  16. Sono-assisted adsorption of a textile dye on milk vetch-derived charcoal supported by silica nanopowder.

    PubMed

    Jorfi, Sahand; Darvishi Cheshmeh Soltani, Reza; Ahmadi, Mehdi; Khataee, Alireza; Safari, Mahdi

    2017-02-01

    This study was performed to assess the efficiency of silica nanopowder (SNP)/milk vetch-derived charcoal (MVDC) nanocomposite coupled with the ultrasonic irradiation named sono-adsorption process for treating water-contained Basic Red 46 (BR46) dye. Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared spectroscopy (FT-IR) were performed for the characterization of as-prepared adsorbent. The sono-assisted adsorption process was optimized using response surface optimization on the basis of central composite design by the application of quadratic model. Accordingly, the color removal can be retained more than 93% by an initial BR46 concentration of 8 mg/L, sonication time of 31 min, adsorbent dosage of 1.2 g/L and initial pH of 9. The pseudo-second order kinetic model described the sono-assisted adsorption of BR46 reasonably well (R 2  > 0.99). The intra-particular diffusion kinetic model pointed out that the sono-assisted adsorption of BR46 onto SNP/MVDC nanocomposite was diffusion controlled as well as that ultrasonication enhanced the diffusion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Heavy metal adsorption changes of EAF steel slag after phosphorus adsorption.

    PubMed

    Song, Guanling; Cao, Lijing; Chen, Xiao; Hou, Wenhua; Wang, Qunhui

    2012-01-01

    A kind of electric arc furnace (EAF) steel slag was phosphated, and its isothermal and dynamic adsorptions of copper, cadmium, and lead ions were measured to determine if heavy metal adsorption changes after phosphorus adsorption. The surface area increased greatly after the slag was phosphated. Isothermal adsorption experiments showed that the theoretical Q(max) of the EAF steel slag on Cu(2+), Cd(2+), and Pb(2+) improved 59, 50, and 89% respectively after it was phosphated. Dynamic adsorption results showed that the greatest adsorption capacities of unit volume of Cu(2+), Cd(2+), and Pb(2+) were 2.2, 1.8, and 1.8 times that of the column packed with original EAF steel slag when the column was packed with phosphate EAF steel slag at the same heavy metal ion concentration. The breakthrough time, the exhaustion time and elution efficiency of the column also increased when the column was packed with phosphated EAF steel slag compared with that packed with original EAF steel slag. Phosphorus adsorption could further improve the heavy metal ion adsorption of the EAF steel slag.

  18. Synthesis, characterization and metal adsorption properties of the new ion exchanger polymer 3-n-propyl(4-methylpyridinium) silsesquioxane chloride.

    PubMed

    Magosso, H A; Panteleimonov, A V; Kholin, Y V; Gushikem, Y

    2006-11-01

    The preparation and anion exchange properties of 3-n-propyl(4-methylpyridinium) silsesquioxane chloride polymer are described. This new polymer was prepared by the sol-gel processing method and is designated as SiPic+Cl-. It is insoluble in water and showed an anion exchange capacity of 1.46x10(-3) mol g-1. The adsorption isotherms of ZnCl2, CdCl2 and HgCl2 were determined from aqueous solutions and the adsorption equilibria simulations fit the model of fixed bidentate centers with the absence of lateral interactions and energetic heterogeneity between them. The metal ions diffuse into the solid solution interface and are dominantly present as MCl2-(4) species for Zn(II), MCl(2-)4 and MCl-3 species for Cd(II) and MCl-3 species for Hg(II).

  19. Adsorption of N-hexane, methanol and water vapor and binary mixtures of N-hexane/water vapor on super activated carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Prado, Jesus Antonio

    Recent times have seen a large rise in the utilization of engineered nanomaterials (ENMs) within a wide variety of industries due to their unique properties. Consequently, the fabrication, application and disposal of ENMs will inevitably lead to their release to the environment. Once ENMs are in the environment, they may undergo atmospheric transformations, such the sorption of hazardous air pollutants (HAPs) or water vapor. These transformed ENMs may then affect the general public through inhalation -- or other pathways of exposure -- and those employed by the ever-growing nanotechnology sector are of particular vulnerability. As a result, it is important to evaluate the adsorption characteristics of a common carbon-based ENM under the presence of HAPs or water vapor which may adsorb onto them. This study investigated the unary and binary gas-phase adsorption of n-hexane, methanol and water vapor on super activated carbon nanoparticles (SACNPs) with a bench-scale adsorption system. Removal efficiencies, breakthrough tests, throughput ratios, adsorption capacities and kinetics modeling were completed to assess the adsorption behavior of the SACNPs.

  20. Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study

    NASA Astrophysics Data System (ADS)

    Re Fiorentin, Michele; Gaspari, Roberto; Quaglio, Marzia; Massaglia, Gulia; Saracco, Guido

    2018-04-01

    Nitrogen-doped graphene has raised considerable interest for its possible applications as carbon dioxide adsorber and catalyst. In this paper, we provide a theoretical study of graphitic, pyridiniclike and pyrroliclike nitrogen defects in a free-standing graphene layer, focusing on their formation and adsorption behavior. Using density functional theory and thermodynamics, we analyze the various defects, highlighting the great stability of graphitic nitrogen in a wide temperature and pressure range. CO2 adsorption proves to be moderately thermodynamically disfavored around standard conditions for the most stable nitrogen defects and slightly favored for the more energetic ones. The combination of the results on defect stability and CO2 adsorption may open interesting possibilities in the design of carbon-based materials with promising adsorption performances.

  1. Simultaneous Online Measurement of H2O and CO2 in the Humid CO2 Adsorption/Desorption Process.

    PubMed

    Yu, Qingni; Ye, Sha; Zhu, Jingke; Lei, Lecheng; Yang, Bin

    2015-01-01

    A dew point meter (DP) and an infrared (IR) CO2 analyzer were assembled in a humid CO2 adsorption/desorption system in series for simultaneous online measurements of H2O and CO2, respectively. The humidifier, by using surface-flushing on a saturated brine solution was self-made for the generation of humid air flow. It was found that by this method it became relatively easy to obtain a low H2O content in air flow and that its fluctuation could be reduced compared to the bubbling method. Water calibration for the DP-IR detector is necessary to be conducted for minimizing the measurement error of H2O. It demonstrated that the relative error (RA) for simultaneous online measurements H2O and CO2 in the desorption process is lower than 0.1%. The high RA in the adsorption of H2O is attributed to H2O adsorption on the transfer pipe and amplification of the measurement error. The high accuracy of simultaneous online measurements of H2O and CO2 is promising for investigating their co-adsorption/desorption behaviors, especially for direct CO2 capture from ambient air.

  2. Adsorption of selected endocrine disrupting compounds and pharmaceuticals on activated biochars.

    PubMed

    Jung, Chanil; Park, Junyeong; Lim, Kwang Hun; Park, Sunkyu; Heo, Jiyong; Her, Namguk; Oh, Jeill; Yun, Soyoung; Yoon, Yeomin

    2013-12-15

    Chemically activated biochar produced under oxygenated (O-biochar) and oxygen-free (N-biochar) conditions were characterized and the adsorption of endocrine disrupting compounds (EDCs): bisphenol A (BPA), atrazine (ATR), 17 α-ethinylestradiol (EE2), and pharmaceutical active compounds (PhACs); sulfamethoxazole (SMX), carbamazepine (CBM), diclofenac (DCF), ibuprofen (IBP) on both biochars and commercialized powdered activated carbon (PAC) were investigated. Characteristic analysis of adsorbents by solid-state nuclear magnetic resonance (NMR) was conducted to determine better understanding about the EDCs/PhACs adsorption. N-biochar consisted of higher polarity moieties with more alkyl (0-45 ppm), methoxyl (45-63 ppm), O-alkyl (63-108 ppm), and carboxyl carbon (165-187 ppm) content than other adsorbents, while aromaticity of O-biochar was higher than that of N-biochar. O-biochar was composed mostly of aromatic moieties, with low H/C and O/C ratios compared to the highly polarized N-biochar that contained diverse polar functional groups. The higher surface area and pore volume of N-biochar resulted in higher adsorption capacity toward EDCs/PhACs along with atomic-level molecular structural property than O-biochar and PAC. N-biochar had a highest adsorption capacity of all chemicals, suggesting that N-biochar derived from loblolly pine chip is a promising sorbent for agricultural and environmental applications. The adsorption of pH-sensitive dissociable SMX, DCF, IBP, and BPA varied and the order of adsorption capacity was correlated with the hydrophobicity (Kow) of adsorbates throughout the all adsorbents, whereas adsorption of non-ionizable CBM, ATR, and EE2 in varied pH allowed adsorbents to interact with hydrophobic property of adsorbates steadily throughout the study. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of Cu2O/TiO2 photocatalysts for H2 evolution from aqueous solution with different scavengers

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Wang, Baowei; Liu, Sihan; Duan, Xiaofei; Hu, Zongyuan

    2015-01-01

    A series of Cu2O/TiO2 photocatalysts with different molar fraction of Cu2O were prepared by a facile modified ethanol-induced approach followed by a calcination process. The chemical state of copper compound was proved to be cuprous oxide by the characterization of X-ray photoelectron spectra (XPS). Furthermore, these composite oxides were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption desorption and UV-vis techniques to study the morphologies, structures, and optical properties of the as-prepared samples. The results indicated that the photocatalytic activity of n-type TiO2 was significantly enhanced by combined with p-type Cu2O, due to the efficient p-n heterojunction. The p-n heterojunction between Cu2O and TiO2 can enhance visible-light adsorption, efficiently suppress charge recombination, improve interfacial charge transfer, and especially provide plentiful reaction active sites on the surface of photocatalyst. As a consequence, the prepared 2.5-Cu2O/TiO2 photocatalyst exhibited the highest photocatalytic activity for H2 evolution rate and reached 2048.25 μmol/(g h), which is 14.48 times larger than that of pure P25. The apparent quantum yield (AQY) of the 2.5-Cu2O/TiO2 sample at 365 nm was estimated to be 4.32%. In addition, the influence of different scavengers, namely methanol, anhydrous ethanol, ethylene glycol and glycerol, on the photocatalytic activity for H2 evolution rate was discussed.

  4. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    PubMed

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    PubMed

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  6. Adsorption of Cu2+ to biomass ash and its modified product.

    PubMed

    Xu, Lei; Cui, Hongbiao; Zheng, Xuebo; Liang, Jiani; Xing, Xiangyu; Yao, Lunguang; Chen, Zhaojin; Zhou, Jing

    2017-04-01

    Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu 2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu 2+ , and the Langmuir model could best represent the adsorption characteristics of Cu 2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu 2+ was spontaneous and endothermic in nature. The adsorptions of Cu 2+ onto the modified biomass ash followed pseudo-second-order kinetics.

  7. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  8. Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils.

    PubMed

    Arthur, Jennifer D; Mark, Noah W; Taylor, Susan; Šimunek, J; Brusseau, M L; Dontsova, Katerina M

    2017-04-01

    The explosive 2,4,6-trinitrotoluene (TNT) is currently a main ingredient in munitions; however the compound has failed to meet the new sensitivity requirements. The replacement compound being tested is 2,4-dinitroanisole (DNAN). DNAN is less sensitive to shock, high temperatures, and has good detonation characteristics. However, DNAN is more soluble than TNT, which can influence transport and fate behavior and thus bioavailability and human exposure potential. The objective of this study was to investigate the environmental fate and transport of DNAN in soil, with specific focus on sorption processes. Batch and column experiments were conducted using soils collected from military installations located across the United States. The soils were characterized for pH, electrical conductivity, specific surface area, cation exchange capacity, and organic carbon content. In the batch rate studies, change in DNAN concentration with time was evaluated using the first order equation, while adsorption isotherms were fitted using linear and Freundlich equations. Solution mass-loss rate coefficients ranged between 0.0002h -1 and 0.0068h -1 . DNAN was strongly adsorbed by soils with linear adsorption coefficients ranging between 0.6 and 6.3Lg -1 , and Freundlich coefficients between 1.3 and 34mg 1 - n L n kg -1 . Both linear and Freundlich adsorption coefficients were positively correlated with the amount of organic carbon and cation exchange capacity of the soil, indicating that similar to TNT, organic matter and clay minerals may influence adsorption of DNAN. The results of the miscible-displacement column experiments confirmed the impact of sorption on retardation of DNAN during transport. It was also shown that under flow conditions DNAN transforms readily with formation of amino transformation products, 2-ANAN and 4-ANAN. The magnitudes of retardation and transformation observed in this study result in significant attenuation potential for DNAN, which would be anticipated to

  9. Integration of coagulation and adsorption for removal of N-nitrosodimethylamine (NDMA) precursors from biologically treated municipal wastewater.

    PubMed

    Wang, Miaomiao; Meng, Yingjie; Ma, Defang; Wang, Yan; Li, Fengli; Xu, Xing; Xia, Chufan; Gao, Baoyu

    2017-05-01

    This study investigated the N-nitrosodimethylamine (NDMA) formation potential of various dissolved organic matter (DOM) fractions in biologically treated municipal wastewater by UF fractionation, XAD-8 resin adsorption isolation, and excitation and emission matrix (EEM) fluorescence spectroscopy. Removal of various NDMA precursor fractions was also analyzed to evaluate the efficiency of traditional water treatment processes (coagulation, adsorption, and coagulation-adsorption). Results showed that NDMA were mainly formed by low molecular weight (MW) fractions (<30 kDa) and hydrophilic fractions (HiS) in biologically treated municipal wastewater. Integrated coagulation-adsorption treatments showed the highest reduction capacity for NDMA formation potential (57%), followed by isolated adsorption treatment (50%) and isolated coagulation treatment (28%). The powdered activated carbon (PAC) adsorption process could reduce the high MW precursors (>30 kDa) by 48%, which was higher than other treatments. In contrast, the highest uptake (66%) of low MW precursors (<30 kDa) was achieved by the coagulation-adsorption process. All treatments preferentially removed the hydrophobic acids (HoA) fraction compared to other fractions. Coagulation could remove more fulvic acid-like substances and adsorption could remove more microbial by-products and aromatic proteins.

  10. Synthesis of Large-Pore Stabilized MIL-53(Al) Compounds with Increased CO2 Adsorption and Decreased Water Adsorption

    DTIC Science & Technology

    2014-01-01

    increase in the quadrupolar coupling constant upon saturation with DMF for sDMF220, 8.4~10.1, and sDMF120, 8.2~10.1 compared to the increase in CQ...nonpolar methane . The CH4 adsorption isotherms for sH2O and sDMF220 shown in Fig. 5 also exhibit Type I behaviour. The CO2 adsorption isotherm for sH2O...Am. Chem. Soc., 2002, 124, 13519-13526. 15. T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry , T. Bataille and G. Ferey, Chem-Eur J

  11. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    PubMed

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  12. Photo-catalytic decolourisation of toxic dye with N-doped titania: a case study with Acid Blue 25.

    PubMed

    Chakrabortty, Dhruba; Gupta, Susmita Sen

    2013-05-01

    Dyes are one of the hazardous water pollutants. Toxic Acid Blue 25, an anthraquinonic dye, has been decolourised by photo-catalysing it with nitrogen doped titania in aqueous medium. The photo catalyst was prepared from 15% TiCl3 and 25% aqueous NH3 solution as precursor. XRD and TEM revealed the formation of well crystalline anatase phase having particle size in the nano-range. BET surface area of the sample was higher than that of pure anatase TiO2. DRS showed higher absorption of radiation in visible range compared to pure anatase TiO2. XPS revealed the presence of nitrogen in N-Ti-O environment. The experimental parameters, namely, photocatalyst dose, initial dye concentration as well as solution pH influence the decolourisation process. At pH 3.0, the N-TiO2 could decolourise almost 100% Acid Blue 25 within one hour. The influence of N-TiO2 dose, initial concentration of Acid Blue 25 and solution pH on adsorption-desorption equilibrium is also studied. The adsorption process follows Lagergren first order kinetics while the modified Langmuir-Hinselwood model is suitably fitted for photocatalytic decolourisation of Acid Blue 25.

  13. Dissociative adsorption of a multifunctional compound on a semiconductor surface: a theoretical study of the adsorption of hydroxylamine on Ge(100).

    PubMed

    Park, Hyunkyung; Kim, Do Hwan

    2018-06-06

    The adsorption behavior of hydroxylamine on a Ge(100) surface was investigated using density functional theory (DFT) calculations. These calculations predicted that hydroxylamine, a multifunctional compound consisting of a hydroxyl group and an amine group, would initially become adsorbed through N-dative bonding, or alternatively through the hydroxyl group via O-H dissociative adsorption. An N-O dissociative reaction may also occur, mainly via N-dative molecular adsorption, and the N-O dissociative product was calculated to be the most stable of all the possible adsorption structures. The calculations furthermore indicated the formation of the N-O dissociative product from the N-dative structure to be nearly barrierless and the dissociated hydroxyl and amine groups to be bonded to two Ge atoms of adjacent Ge dimers. Simulated STM images suggested the change in electron density that would occur upon adsorption of hydroxylamine in various adsorption configurations, and specifically indicated the N-O dissociative product to have greater electron density around the amine groups, and the hydroxyl groups to mainly contribute electron density to the unoccupied electronic states.

  14. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  15. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization.

    PubMed

    Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin

    2018-01-01

    Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base.

    PubMed

    Monier, M

    2012-04-01

    A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Characterization and Properties of Activated Carbon Prepared from Tamarind Seeds by KOH Activation for Fe(III) Adsorption from Aqueous Solution

    PubMed Central

    Mopoung, Sumrit; Moonsri, Phansiri; Palas, Wanwimon; Khumpai, Sataporn

    2015-01-01

    This research studies the characterization of activated carbon from tamarind seed with KOH activation. The effects of 0.5 : 1–1.5 : 1 KOH : tamarind seed charcoal ratios and 500–700°C activation temperatures were studied. FTIR, SEM-EDS, XRD, and BET were used to characterize tamarind seed and the activated carbon prepared from them. Proximate analysis, percent yield, iodine number, methylene blue number, and preliminary test of Fe(III) adsorption were also studied. Fe(III) adsorption was carried out by 30 mL column with 5–20 ppm Fe(III) initial concentrations. The percent yield of activated carbon prepared from tamarind seed with KOH activation decreased with increasing activation temperature and impregnation ratios, which were in the range from 54.09 to 82.03 wt%. The surface functional groups of activated carbon are O–H, C=O, C–O, –CO3, C–H, and Si–H. The XRD result showed high crystallinity coming from a potassium compound in the activated carbon. The main elements found in the activated carbon by EDS are C, O, Si, and K. The results of iodine and methylene blue adsorption indicate that the pore size of the activated carbon is mostly in the range of mesopore and macropore. The average BET pore size and BET surface area of activated carbon are 67.9764 Å and 2.7167 m2/g, respectively. Finally, the tamarind seed based activated carbon produced with 500°C activation temperature and 1.0 : 1 KOH : tamarind seed charcoal ratio was used for Fe(III) adsorption test. It was shown that Fe(III) was adsorbed in alkaline conditions and adsorption increased with increasing Fe(III) initial concentration from 5 to 20 ppm with capacity adsorption of 0.0069–0.019 mg/g. PMID:26689357

  18. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation.

    PubMed

    Moghadam, Peyman Z; Ivy, Joshua F; Arvapally, Ravi K; Dos Santos, Antonio M; Pearson, John C; Zhang, Li; Tylianakis, Emmanouil; Ghosh, Pritha; Oswald, Iain W H; Kaipa, Ushasree; Wang, Xiaoping; Wilson, Angela K; Snurr, Randall Q; Omary, Mohammad A

    2017-05-01

    FMOF-1 is a flexible, superhydrophobic metal-organic framework with a network of channels and side pockets decorated with -CF 3 groups. CO 2 adsorption isotherms measured between 278 and 313 K and up to 55 bar reveal a maximum uptake of ca. 6.16 mol kg -1 (11.0 mol L -1 ) and unusual isotherm shapes at the higher temperatures, suggesting framework expansion. We used neutron diffraction and molecular simulations to investigate the framework expansion behaviour and the accessibility of the small pockets to N 2 , O 2 , and CO 2 . Neutron diffraction in situ experiments on the crystalline powder show that CO 2 molecules are favourably adsorbed at three distinct adsorption sites in the large channels of FMOF-1 and cannot access the small pockets in FMOF-1 at 290 K and oversaturated pressure at 61 bar. Stepped adsorption isotherms for N 2 and O 2 at 77 K can be explained by combining Monte Carlo simulations in several different crystal structures of FMOF-1 obtained from neutron and X-ray diffraction under different conditions. A similar analysis is successful for CO 2 adsorption at 278 and 283 K up to ca. 30 bar; however, at 298 K and pressures above 30 bar, the results suggest even more substantial expansion of the FMOF-1 framework. The measured contact angle for water on an FMOF-1 pellet is 158°, demonstrating superhydrophobicity. Simulations and adsorption measurements also show that FMOF-1 is hydrophobic and water is not adsorbed in FMOF-1 at room temperature. Simulated mixture isotherms of CO 2 in the presence of 80% relative humidity predict that water does not influence the CO 2 adsorption in FMOF-1, suggesting that hydrophobic MOFs could hold promise for CO 2 capture from humid gas streams.

  19. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  20. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation.

    PubMed

    Wang, Yawen; Huang, Yu; Ho, Wingkei; Zhang, Lizhi; Zou, Zhigang; Lee, Shuncheng

    2009-09-30

    In this study, C-N-S-tridoped titanium dioxide (TiO(2)) nanocrystals were synthesized by using a facile hydrothermal method in the presence of a biomolecule l-cysteine. This biomolecule could not only serve as the common source for the carbon, sulfur and nitrogen tridoping, but also could control the final crystal phases and morphology. The resulting materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption and UV-vis diffuse reflectance spectroscopy. XPS analysis revealed that S was incorporated into the lattice of TiO(2) through substituting oxygen atoms, N might coexist in the forms of N-Ti-O and Ti-O-N in tridoped TiO(2) and most C could form a mixed layer of carbonate species deposited on the surface of TiO(2) nanoparticles. The photocatalytic activities of the samples were tested on the removal of NO at typical indoor air level in a flow system under simulated solar light irradiation. The tridoped TiO(2) samples showed much higher removal efficiency than commercial P25 and the undoped counterpart photocatalyst. The enhanced visible light photocatalytic activity of C-N-S-tridoped TiO(2) nanocrystals was explained on the basis of characterizations. The possible formation process of the monodispersed C-N-S-tridoped anatase TiO(2) nanocrystals was also proposed. This study provides a new method to prepare visible light active TiO(2) photocatalyst.

  1. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    PubMed

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  2. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory

    NASA Astrophysics Data System (ADS)

    Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic

    2017-08-01

    The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.

  3. Antiviral Decoction of Isatidis Radix (板藍根 bǎnnn) Inhibited Influenza Virus Adsorption on MDCK Cells by Cytoprotective Activity

    PubMed Central

    Ke, Lijing; Wen, Teng; Bradshaw, Jeremy P; Zhou, Jianwu; Rao, Pingfan

    2012-01-01

    The aim of this study is to elucidate how the Isatidis Radix (板藍根 bǎnnn) tonic, as an aqueous mixture of hundreds of compositions, interrupts the infection of influenza viruses to their host cells. The efficacy of the tonic was evaluated and expressed as cell proliferation rate and plaque reduction rate in Madin-Darby Canine Kidney (MDCK) cells, against 3 strains of influenza A and B viruses. This boiling water (at 100°C) extract of Isatidis Radix (RIE) showed antiviral activity against influenza virus A and B. The concentration for 50% inhibition of influenza virus A replication (IC50) in MDCK cell was 12.6 mg/mL with a therapeutic index >8. When cells were incubated with RIE prior to virus adsorption, the numbers of viable cell were at least doubled compared to the numbers of virus control, RIE incubation after virus adsorption and RIE incubation with virus prior to adsorption, in both influenza virus A and B. Moreover, much less virus particles were spotted by scanning electron microscope (SEM) in the RIE pre-treated cells than the cells without RIE treatment. These results indicate the antiviral activity of RIE is mainly attributed to its host cell protection effect but not actions on virus or post-virus-adsorption interruption. Cell, but not virus, is more likely to be the action target of RIE. PMID:24716114

  4. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal.

    PubMed

    Nethaji, S; Sivasamy, A

    2017-04-01

    Graphene oxide (GO) was prepared from commercially available graphite powder. Porous iron oxide ribbons were grown on the surface of GO by solvothermal process. The prepared GO-Fe 3 O 4 nanocomposites are characterized by FT-IR, XRD, VSM, SEM, TEM, Raman spectroscopy, surface functionality and zero point charge studies. The morphology of the iron oxide ribbons grown on GO is demonstrated with TEM at various magnifications. The presence of magnetite nanoparticles is evident from XRD peaks and the magnetization value is found to be 37.28emu/g. The ratio of intensity of D-peak to G-peak from Raman spectrum is 0.995. The synthesized Graphene oxide-Fe 3 O 4 nanocomposites (GO-Fe 3 O 4 ) were explored for its surface adsorptive properties by using a model organic compound, 2,4-Dichlorophenoxy acetic acid (2,4-D) from aqueous solution. Batch adsorption studies were performed and the equilibrium data are modelled with Langmuir, Freundlich and Temkin isotherms. The maximum monolayer capacity from Langmuir isotherm is 67.26mg/g. Kinetic studies were also carried out and the studied adsorption process followed pseudo second-order rate equation. Mechanism of the adsorption process is studied by fitting the data with intraparticle diffusion model and Boyd plot. The studied adsorption process is both by film diffusion and intraparticle diffusion. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  6. Competitive adsorption of textile dyes using peat: adsorption equilibrium and kinetic studies in monosolute and bisolute systems.

    PubMed

    Sepulveda, L; Troncoso, F; Contreras, E; Palma, C

    2008-09-01

    The purpose of this study is to investigate the adsorption by peat of four reactive textile dyes with the following commercial names: Yellow CIBA WR 200% (Y), Dark Blue CIBA WR (DB), Navy CIBA WB (N), and Red CIBA WB 150% (R), used in a cotton-polyester fabric finishing plant. The decolorization levels obtained varied between 5% and 30%, and the most significant variables were pH and ionic strength. Equilibrium studies were carried out at pH 2.8 and temperature of 25 degrees C. Maximum adsorption capacities were between 15 and 20 mg g(-1). Experimental data were fitted to the models of Langmuir. The equilibrium studies for bisolute systems were DB-R and Y-N mixtures. The Langmuir extended model indicated that there is competition for adsorption sites and without interaction between dyes. The results of the kinetic adsorption studies on monosolute and bisolute systems were fitted to the film-pore diffusion, variable diffusivity and quasi-stationary models. They showed that the diffusivity coefficients obtained varied between 2.0 x 10(-8) and 8.5 x 10(-8) cm2s(-1) when the variable diffusivity mass transfer model (VDM) was used and effective diffusion coefficient was fitted between 3.3 x 10(-7) and 56.0 x 10(-7) cm2s(-1) for the film-pore diffusion model (FPDM). The root of average of squares relative error obtained varied between 0.8% and 47.0% for the VDM and FPDM models, respectively.

  7. Comparison of nitrogen adsorption and transmission electron microscopy analyses for structural characterization of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.

    2017-10-01

    Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.

  8. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  9. Adsorption behavior of hydrotalcite-like modified bentonite for Pb2+, Cu2+and methyl orange removal from water

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Peng, Jingdong; Xiao, Huan; Peng, Huanjun; Bu, Lingli; Pan, Ziyu; He, Yan; Chen, Fang; Wang, Xiang; Li, Shiyu

    2017-10-01

    Hydrotalcite-like compound (HTlc) which contained lanthanum cation was prepared successfully. The title compound was characterized by thermogravimetry analysis, element analysis, X-ray fluorescence, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, as well as specific surface area. The study sought to investigate the adsorption of heavy metals and dye (Pb2+, Cu2+ and methyl orange) in aqueous solution on Ben-HTlc. For optimization of adsorption behavior of the three elements, the pH value, contact time, adsorbate concentration were optimized. As for Pb2+, Cu2+ and methyl orange (MO), the single-component adsorption generally reached the maximum quantity in first 20 min and their respective adsorption capacities were 384.6 mg g-1, 156.3 mg g-1 and 333.3 mg g-1 (pH = 6.5 ± 0.1), the adsorption affinities were in the following sequence Pb2+ > MO > Cu2+. The repeated adsorption and regeneration studies showed the promising application of Ben-HTlc. The breakthrough experimental consequence had shown that the synthesized Ben-HTlc could efficiently remove heavy metals and dye from water, suggesting the potential utilization of Ben-HTlc in pollutants removal.

  10. The adsorptive behavior of albumin and lysozyme proteins on rod-shaped and plate-shaped hydroxyapatite.

    PubMed

    Ozeki, K; Hoshino, T; Aoki, H; Masuzawa, T

    2013-01-01

    The adsorption behavior of albumin (BSA) and lysozyme (LSZ) on rod-shaped and plate-shaped hydroxyapatite (HA) was investigated to evaluate the influence of crystal orientation and morphology on the selective protein adsorption of HA. The rod-shaped HA was prepared by hydrothermal treatment from β-tricalcium phosphate (β-TCP) in H3PO4 solution (pH 2.0 and 4.0 for HA-pH 2.0 and HA-pH 4.0). The plate-shaped HA was synthesized by hydrolysis of CaHPO4-2H2O (DCPD) in NaOH solution at 40°C and 80°C (HA-40°C and HA-80°C). The synthesized HA was characterized using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). HA-pH 2.0 and HA-pH 4.0 produced rod-shaped crystals that were highly oriented to the a-face plane, whereas HA-40°C and HA-80°C showed a plate-like shape and a c-face preferred orientation. The peak intensity ratio I(300)/I(002) (a/c intensity ratio) from the XRD patterns increased in the following order: HA-80°C, HA-40°C, HA-pH 2.0 and HA-pH 4.0. It also increased as the Ca/P ratio decreased. The amount of adsorbed BSA increased in the following order: HA-pH 4.0, HA-pH 2.0, HA-40°C and HA-80°C. The amount of adsorbed LSZ on HA increased in the following order--HA-pH 2.0, HA-pH 4.0, HA-40°C and HA-80°C--with a corresponding decrease in the a/c intensity ratio. The BSA/LSA adsorption ratio increased with the a/c intensity ratio in the range of 3.3-8.9, and the BSA and LSZ were selectively adsorbed on HA, depending on the crystal shape.

  11. First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.

    PubMed

    Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao

    2017-06-16

    To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.

  12. Hydrogel covered bimetallic Co:Ni magnetic nano alloy for protein adsorption in biomedical application

    NASA Astrophysics Data System (ADS)

    Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    In this study, polyacrylamide (PAAm) hydrogel covered CoNi magnetic nanoalloys with various Co/Ni molar ratio (from 1/4 to 4/1) were synthesized, characterized and used for adsorption of Bovine Serum Albumin (BSA). XRD, EDS, VSM, SEM, AFM, Automated Gas Sorption Analyzer and Fluorescence measurements were used for characterizations and adsorption studies. The results confirm that all the synthesized nanoalloys have soft ferromagnetic nature and particles size were determined to be in the range of 8.60-12.19 nm. Adsorption performances of magnetic nanoalloys were investigated on bovine serum albumin (BSA) as a model protein. The results showed that prepared CoNi:PAAm composites have multistage adsorption kinetics for BSA and increasing Ni content in the CoNi nanoalloys enhance the adsorption rate constant and the rate constant can be tuned between 0.003 s-1 and 0.009 s-1 and between 0.01 s-1 and 0.60 s-1 for the first order adsorption and the second order adsorption stages, respectively. These results show that CoNi:PAAm composites can open new pathways for preparing a special composite material which has specific adsorption kinetic for bio-separation technology.

  13. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  14. Functionalization of silica-gel with polyamidoamine and 2-mercaptobenzothiazole and its adsorption property for lead

    NASA Astrophysics Data System (ADS)

    Wu, X. Z.; Liu, Y.; Luo, L. L.; Chen, Z. Y.

    2018-01-01

    Adsorbents PAMAM-n.0MBTSG (n=1-4) have been prepared by immobilizing polyamidoamine (PAMAM) and 2-mercaptobenzothiazole (MBT) on silica-gel. Characterized with FTIR, SEM, TGA, the preconcentration of Pb2+ with PAMAM-n.0MBTSG(n=1-4) has been investigated by graphite furnace atomic absorption spectroscopy (GFAAS). SEM showed that the surface morphology of adsorbent changed with the generation increase of PAMAM. Adsorption capacity of PAMAM-n.0MBTSG for Pb2+ (n=1-4) reached 16.22, 19.84, 22.92 and 27.56 mg g-1 respectively. Pb2+ (1.0 ng mL-1) in 2000 mL solution could be quantitatively absorbed with PAMAM-4.0MBTSG and eluted to obtain a preconcentration factor (PF) of 200. GFAAS method for analysis of Pb2+ with PAMAM-4.0MBTSG as adsorbent was proposed and successfully applied to analysis of Pb2+ of standard reference material, sea water and squid sample.

  15. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    NASA Astrophysics Data System (ADS)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  16. Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.

    PubMed

    Fiuza, Raildo Alves; Medeiros de Jesus Neto, Raimundo; Correia, Laise Bacelar; Carvalho Andrade, Heloysa Martins

    2015-09-15

    Stones of yellow mombin, a native fruit of the tropical America and West Indies, were used as starting materials to produce activated carbons, subsequently used as adsorbent for CO2 capture. The carbonaceous materials were either chemically activated with HNO3, H3PO4 and KOH or physically activated with CO2. The carbon samples were characterized by SEM, EDX, TG/DTA, Raman spectroscopy, physical adsorption for textural analysis and by acid-base titrations. The CO2 adsorption capacity and adsorption cycles were investigated by TG. The results indicate that the capacity of CO2 adsorption may be maximized on highly basic surfaces of micropores smaller than 1 nm. The KOH activated carbon showed high and stable capacity of CO2 adsorption after 10 cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Irradiation Enhanced Adsorption and Trapping of O2 on Microporous Water Ice

    NASA Astrophysics Data System (ADS)

    Shi, Jianming; Teolis, B. D.; Baragiola, R. A.

    2007-10-01

    The condensed O2 found on Ganymede and Europa, and its relationship to tenuous O2 atmospheres have long been a puzzle considering the instability of solid oxygen at the relative high temperatures of the satellites. We report on the discovery that ion irradiation of microporous water ice exposed to gaseous oxygen enhances adsorption and retention of O2. We investigated how the irradiation history of ice with and without ambient O2 influences the O2 adsorption on ice. Irradiation by 100 KeV Ar+ or 50 KeV H+ ions in vacuum was found to compact the ice, in agreement with Raut et al. [(2007), J. Chem. Phys., 126, 244511]. This was revealed in a subsequent oxygen exposure which resulted in no O2 adsorption. When ice was irradiated at an ambient O2 pressure of 5.5x10-7 torr, O2 adsorption was enhanced by a factor as high as 5.5 compared to unirradiated ice. The enhanced amount of adsorbed O2 increased with decreasing ion flux. A uniform oxygen concentration of 3% was achieved throughout the ion penetration depth for a low flux limit. After simultaneous irradiation and oxygen exposure, the adsorbed O2 could be retained in the ice when the ambient O2 pressure was removed. The experimental results show that the ion induced enhancement of adsorption and retention of oxygen may explain the difference in the amount of condensed oxygen on the leading vs. trailing sides of Ganymede and Europa [Spencer et. al. (1995), J. Geophys. Res., 100, 19049]. The results also indicate that re-adsorption of atmospheric O2 can not be neglected in exosphere models, since significant amounts of adsorbed O2 could occur in regions with surfaces colder than 50 K or those areas under low flux ion bombardment.

  19. Adsorption of small molecules on the [Zn-Zn]2+ linkage in zeolite. A DFT study of ferrierite

    NASA Astrophysics Data System (ADS)

    Benco, Lubomir

    2017-02-01

    In zeolites monovalent Zn(I) forms a sub-nano particles [Zn-Zn]2+ stabilized in rings of the zeolite framework, which exhibit interesting catalytic properties. This work reports on adsorption properties of [Zn-Zn]2+ particles in zeolite ferrierite investigated for a set of probing diatomic (N2, O2, H2, CO, NO) and triatomic (CO2, N2O, NO2, H2O) molecules using dispersion-corrected DFT. Three [Zn-Zn]2+ sites are compared differing in the location and stability. On all sites molecules form physisorbed clusters with the molecule connected on-top of the Zn-Zn linkage. In physisorbed clusters adsorption induces only slight change of bonding and the geometry of the Zn-Zn linkage. Some molecules can form stable chemisorbed clusters in which the molecule is integrated between two Zn+ cations. The sandwich-like chemisorption causes pronounced changes of bonding and can lead to the transfer of the electron density between two Zn+ cations and to a change of the oxidation state. The knowledge of bonding of small molecules can help understanding of the mechanism of conversion reactions catalyzed by sub-nano [Zn-Zn] particles.

  20. FTIR, XRD and DSC studies of nanochitosan, cellulose acetate and polyethylene glycol blend ultrafiltration membranes.

    PubMed

    Vinodhini, P Angelin; K, Sangeetha; Thandapani, Gomathi; P N, Sudha; Jayachandran, Venkatesan; Sukumaran, Anil

    2017-11-01

    In the present work, a series of novel nanochitosan/cellulose acetate/polyethylene glycol (NCS/CA/PEG) blend flat sheet membranes were fabricated in different ratios (1:1:1, 1:1:2, 2:1:1, 2:1:2, 1:2:1, 2:2:1) in a polar solvent of N,N'-dimethylformamide (DMF) using the most popular phase inversion method. Nanochitosan was prepared by the ionotropic gelation method and its average particle size has been analyzed using Dynamic Light Scattering (DLS) method. The effect of blending of the three polymers was investigated using FTIR and XRD studies. FTIR results confirmed the formation of well-blended membranes and the XRD analysis revealed enhanced amorphous nature of the membrane ratio 2:1:2. DSC study was conducted to find out the thermal behavior of the blend membranes and the results clearly indicated good thermal stability and single glass transition temperature (T g ) of all the prepared membranes. Asymmetric nature and rough surface morphology was confirmed using SEM analysis. From the results it was evident that the blending of the polymers with higher concentration of nanochitosan can alter the nature of the resulting membranes to a greater extent and thus amorphous membranes were obtained with good miscibility and compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries.

    PubMed

    Li, Fen; Su, Yan; Zhao, Jijun

    2016-09-14

    The advance of lithium sulfur batteries is now greatly restricted by the fast capacity fading induced by shuttle effect. Using first-principles calculations, various vacancies, N doping, and B,N co-doping in graphene sheets have been systematically explored for lithium polysufides entrapped in Li-S batteries. The LiS, LiC, LiN and SB bonds and Hirshfeld charges in the Li 2 S 6 adsorbed defective graphene systems have been analyzed to understand the intrinsic mechanism of retaining lithium polysulfides in these systems. Total and local densities of states analyses elucidate the strongest adsorption sites among the N and B-N co-doped graphene systems. The overall electrochemical performance of Li-S batteries varies with the types of defects in graphene. Among the defective graphene systems, only the reconstructed pyrrole-like vacancy is effective for retaining lithium polysulfides. N doping induces a strong LiN interaction in the defective graphene systems, in which the pyrrolic N rather than the pyridinic N plays a dominant role in trapping of lithium polysulfides. The shuttle effect can be further depressed via pyrrolic B,N co-doped defective graphene materials, especially the G-B-N-hex system with extremely strong adsorption of lithium polysulfides (4-5 eV), and simultaneous contribution from the strong LiN and SB interactions.

  2. Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs.

    PubMed

    Lawal, Isiaka A; Lawal, Monsurat M; Akpotu, Samson O; Azeez, Mayowa A; Ndungu, Patrick; Moodley, Brenda

    2018-06-18

    The adsorption of sulfamethoxazole (SMZ) and ketoprofen (KET) using carbon nanotubes (CNTs) and CNTs modified with ionic liquids (ILs) was investigated. Two ionic liquids (1-benzyl, 3-hexyl imidazolium, IL1 and 1-benzyl, 3-decahexyl imidazolium, IL2) were synthesized, and characterized by nuclear magnetic resonance ( 1 H and 13 C NMR) and high resolution-mass spectrometry (HR-MS). CNTs and modified CNTs were characterized using FT-IR, X-ray diffraction (XRD), surface area and porosity analysis, thermal gravimetric analysis (TGA), Zeta potential, Raman and scanning electron microscopy (SEM). Kinetics, isotherm and computational studies were carried out to determine the efficiency and adsorption mechanism of SMZ and KET on modified CNTs. A density functional theory (DFT) method was applied to shed more light on the interactions between the pharmaceutical compounds and the adsorbents at the molecular level. The effects of adsorbent dosage, concentration, solution pH, energetics and contact time of SMZ and KET on the adsorption process were investigated. The adsorption of SMZ and KET on CNTs and modified CNTs were pH dependent, and adsorption was best described by pseudo-second-order kinetics and the Freundlich adsorption isotherm. Ionic liquid modified CNTs showed improved adsorption capacities compared to the unmodified ones for both SMZ and KET, which is in line with the computational results showing performance order; CNT+KET/SMZ < CNT-ILs+SMZ < CNT-ILs+KET. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. An efficient adsorption of indigo carmine dye from aqueous solution on mesoporous Mg/Fe layered double hydroxide nanoparticles prepared by controlled sol-gel route.

    PubMed

    Ahmed, M A; Brick, A A; Mohamed, A A

    2017-05-01

    A new approach for removal of indigo carmine blue (IC) dye which is extensively used in jeans manufacture was successfully performed on novel mesoporous [LDH] nanoparticles prepared by sol-gel route using CTAB as shape and pore directing agent. The physicochemical features were monitored by X-ray diffraction (XRD), Fourier transformer infra-red (FTIR), N 2 adsorption-desorption isotherm, Field emission electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM). The influence of reaction parameters affecting dye adsorption including contact time, initial dye concentration, pH and temperature were investigated. Textural analysis and HRTEM images indicate the existence of mesoporous spherical nanoparticles of size = 26 nm connected to each other's and embedded large numbers of mesopores of average pore radius = 43.5 Å. A successful adsorption of IC on LDH nanoparticles of surface area = 85.6 m 2 /g at various pH with maximum adsorption capacity = 62.8 mg/g at pH = 9.5. Langmuir model is more favorable to describe the adsorption of IC rather than Freundlich model which reflecting the preferential formation of monolayer on the surface of LDH. Both film diffusion and the intraparticle diffusion affect the dye adsorption. The values of enthalpy change (ΔH) for and (ΔS) are + 28.18 and + 0.118 kJ/mol, respectively indicating that the removal process is endothermic. The results indicated that LDH nanoparticles conserved a good activity even after five consecutive cycles of reuse. Our results suggest that mesoporous LDH nanoparticles are considered a potential novel adsorbent for remediation of wastewater containing IC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  5. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  6. A stable solid acid material: Sulfated ZrO2 dispersed on alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Jiaqi, Chen; Xu, Wang; Rui-Feng, Li

    2017-02-01

    A tubular solid acid catalyst was designed by loading sulfated zirconia into γ-Al2O3 nanotubes using the method of stepwise deposition. The XRD, N2 adsorption-desorption characterization demonstrated that introducing alumina nanotube and SO4 2- anions have played an important role in stabilizing the metastable tetragonal ZrO2 phase, and the sulfated zirconia on the surface of the γ-Al2O3 nanotube has high dispersion and stability. The catalyst reused repeatedly possesses large amounts of acid sites and good acidity, exhibiting high catalytic activity and stability for isopropylbenzene cracking.

  7. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders.

    PubMed

    Zhou, Minghua; Yu, Jiaguo

    2008-04-15

    A simple method for preparing highly daylight-induced photoactive nanocrystalline C,N,S-tridoped TiO2 powders was developed by a solid-phase reaction. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra, N2 adsorption-desorption measurements and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by the photocatalytic oxidation of formaldehyde under daylight irradiation in air. The results show that daylight-induced photocatalytic activities of the as-prepared TiO2 powders were improved by C,N,S-tridoping. The C,N,S-tridoped TiO2 powders exhibited stronger absorption in the near UV and visible-light region with red shift in the band-gap transition. When the molar ratio of CS(NH2)2 to xerogel TiO2 powders (prepared by hydrolysis of Ti(OC4H9)4 in distilled water) (R) was kept in 3, the daylight-induced photocatalytic activities of the as-prepared C,N,S-tridoped TiO2 powders were about more than six times greater than that of Degussa P25 and un-doped TiO2 powders. The high activities of the C,N,S-tridoped TiO2 can be attributed to the results of the synergetic effects of strong absorption in the near UV and visible-light region, red shift in adsorption edge and two phase structures of un-doped TiO2 and C,N,S-tridoped TiO2.

  8. Nano-zinc oxide incorporated graphene oxide/nanocellulose composite for the adsorption and photo catalytic degradation of ciprofloxacin hydrochloride from aqueous solutions.

    PubMed

    Anirudhan, T S; Deepa, J R

    2017-03-15

    Purpose of this study is to report the synthetic procedure of a novel photo catalyst, nano zinc oxide incorporated graphene oxide/nanocellulose (ZnO-GO/NC) for the effective adsorption and subsequent photo degradation of ciprofloxacin (CF), an antibiotic widely used in the poultry. Self cleaning property in cellulose was achieved by introducing a nano zinc oxide incorporated graphene oxide into nanocellulose (NC) matrix. By incorporating nano zinc oxide (ZnO) in graphene oxide (GO), band gap could be tuned to 2.4eV and after the composite formation with NC, the band gap was enhanced to 2.8eV which is in the visible region. Thus the degradation of the CF was achieved under the visible light. Photo degradation was due to electron hole interaction. The step wise modification in the synthesis ZnO-GO/NC was characterized using FT-IR, XRD, SEM, EDS, AFM, DRS-UV and BET N 2 adsorption isotherm techniques. The values of surface area, pore volume and pore radius were found to be 12.68m 2 /g, 0.026mL/g and 12.5nm, respectively. Efficiency in the adsorption process of CF onto ZnO-GO/NC was verified by batch adsorption technique. The optimum pH was found to be 5.5 and dose of the ZnO-GO/NC was optimized as 2.0g/L. Equilibrium was attained at 120min and the adsorption of drug followed second-order kinetics. Sips isotherm was the best fitted model and could explain the nature of interaction of CF with ZnO-GO/NC. The studies revealed that the degradation followed first-order kinetics and the optimum pH for the degradation process was found to be 6.0 and achieved a maximum degradation efficiency of 98.0%. The reusability of ZnO-GO/NC after five consecutive cycles indicated it to be a potential candidate for the removal and degradation of CF from aquatic environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. H2O Adsorption Kinetics on Smectites

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Quinn, Richard C.; Howard, Jeanie; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The adsorptive equilibration of H2O a with montomorillonite, a smectite clay has been measured. At low temperatures and pressures, equilibration can require many hours, effectively preventing smectites at the martian surface from responding rapidly to diurnal pressure and temperature variations.

  10. CO₂ adsorption on amine-functionalized periodic mesoporous benzenesilicas.

    PubMed

    Sim, Kyohyun; Lee, Nakwon; Kim, Joonseok; Cho, Eun-Bum; Gunathilake, Chamila; Jaroniec, Mietek

    2015-04-01

    CO2 adsorption was investigated on amine-functionalized mesoporous silica (SBA-15) and periodic mesoporous organosilica (PMO) samples. Hexagonally (p6mm) ordered mesoporous SBA-15 and benzene-PMO (BPMO) samples were prepared in the presence of Pluronic P123 block copolymer template under acidic conditions. Three kinds of amine-containing organosilanes and polyethylenimine were used to functionalize SBA-15 and BPMO. Small-angle X-ray scattering and nitrogen adsorption isotherms showed that these samples featured ordered mesostructure, high surface area, and narrow pore size distributions. Solid-state (13)C- and (29)Si cross-polarization magic-angle spinning NMR spectra showed chemical linkage between amine-containing modifiers and the surface of mesoporous materials. The chemically linked amine-containing modifiers were found to be on both the inner and outer surfaces. N-[3-(trimethoxysilyl)propyl]ethylenediamine-modified BPMO (A2-BPMO) sample exhibited the highest CO2 uptake (i.e., ∼3.03 mmol/g measured on a volumetric adsorption analyzer) and the fastest adsorption rate (i.e., ∼13 min to attain 90% of the maximum amount) among all the samples studied. Selectivity and reproducibility measurements for the A2-BPMO sample showed quite good performance in flowing N2 gas at 40 mL/min and CO2 gas of 60 mL/min at 25 °C.

  11. Lithium and sodium adsorption properties of two-dimensional aluminum nitride

    NASA Astrophysics Data System (ADS)

    Sengupta, Amretashis

    2018-09-01

    In this work the lithiation and sodiation properties of 2-dimensional (2D) AlN sheets are studied from density functional theory (DFT) simulations. 2D AlN showed theoretical specific capacity of 500.8 and 385.3 mA h g-1, maximum open circuit voltage of 1.49 and 1.86 V and diffusion barriers 0.40 and 0.15 eV, for Li and Na adsorption respectively. The calculations show 2D AlN as a possible alternative as anode material in Li-ion and Na-ion batteries. Further the high specific capacity and small diffusion barriers for Na atoms can make 2D AlN useful in supercapacitors. The change in carrier transport properties due to Li/Na adsorption on monolayer AlN can also be useful in chemical/bio-sensors and nanoelectronics devices.

  12. Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside.

    PubMed

    Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław

    2014-02-01

    Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    NASA Astrophysics Data System (ADS)

    Tzvetkov, George; Kaneva, Nina; Spassov, Tony

    2017-04-01

    A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn2+-organic complexes followed by a treatment in Zn(CH3COO)2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV-vis spectroscopy measurements along with N2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m2 g-1 and total pore volume of 0.26 cm3 g-1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g-1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  14. Theoretical Study of Trimethylacetic Acid Adsorption on CeO 2 (111) Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weina; Thevuthasan, S.; Wang, Wenliang

    We investigated trimethylacetic acid (TMAA) adsorption on stoichiometric and oxygen-deficient CeO 2(111) surfaces using density functional theory that accounts for the on-site Coulomb interaction via a Hubbard term (DFT+U) and long-range dispersion correction. Both the molecular state and dissociative state (TMAA → TMA– + H +) were identified on stoichiometric and oxygen-deficient CeO 2(111) surfaces. For the stoichiometric surface, two thermodynamically favorable configurations with adsorption energies of the order of -30 kcal/mol are identified; one is a molecule adsorption state, and the other one is a dissociative state. For the oxygen-deficient surface, dissociative states are more favorable than molecular states.more » Moreover, the most favorable configuration is the dissociative adsorption of TMAA with the adsorption energy of the order of -77 kcal/mol. The dissociated TMA moiety takes the position of oxygen vacancy, forming three Ce–O bonds. The signature vibrational frequencies for these thermodynamically stable structures are reported as well as their electronic structures. The effects of long-range dispersion interactions are found to be negligible for geometries but important for adsorption energies.« less

  15. Theoretical Study of Trimethylacetic Acid Adsorption on CeO 2 (111) Surface

    DOE PAGES

    Wang, Weina; Thevuthasan, S.; Wang, Wenliang; ...

    2016-01-11

    We investigated trimethylacetic acid (TMAA) adsorption on stoichiometric and oxygen-deficient CeO 2(111) surfaces using density functional theory that accounts for the on-site Coulomb interaction via a Hubbard term (DFT+U) and long-range dispersion correction. Both the molecular state and dissociative state (TMAA → TMA– + H +) were identified on stoichiometric and oxygen-deficient CeO 2(111) surfaces. For the stoichiometric surface, two thermodynamically favorable configurations with adsorption energies of the order of -30 kcal/mol are identified; one is a molecule adsorption state, and the other one is a dissociative state. For the oxygen-deficient surface, dissociative states are more favorable than molecular states.more » Moreover, the most favorable configuration is the dissociative adsorption of TMAA with the adsorption energy of the order of -77 kcal/mol. The dissociated TMA moiety takes the position of oxygen vacancy, forming three Ce–O bonds. The signature vibrational frequencies for these thermodynamically stable structures are reported as well as their electronic structures. The effects of long-range dispersion interactions are found to be negligible for geometries but important for adsorption energies.« less

  16. A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

    PubMed Central

    Pan, Changchang; Chen, Yuhong; Wu, Na; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-01-01

    The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface. PMID:28772396

  17. Highly efficient removal of chlorotetracycline from aqueous solution using graphene oxide/TiO2 composite: Properties and mechanism

    NASA Astrophysics Data System (ADS)

    Li, Zhaoqian; Qi, Mengyu; Tu, Chunyan; Wang, Weiping; Chen, Jianrong; Wang, Ai-Jun

    2017-12-01

    The extensive usage of chlorotetracycline (CTC) has caused the persistence of antibiotic residues in aquatic environments, resulting in serious threat to human health and ecosystems. In this study, graphene oxide/titanium dioxide (GO/TiO2) nanocomposite was successfully synthesized via in situ hydrolysis of tetra-n-butyl titanate (Ti(BuO)4) to TiO2 particles on GO sheets and used as adsorbent for efficient adsorptive removal of CTC from aqueous solution. The prepared GO/TiO2 was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), Raman spectroscopy and X-ray photoelectron (XPS). Adsorption kinetics, isotherms and thermodynamics were systematically investigated to evaluate the adsorption properties of GO/TiO2. Adsorption mechanism was further analyzed by FT-IR, UV-vis and XPS. The results indicated that adsorption kinetics closely followed the pseudo-second order model; the maximum adsorption capacity determined by Langmuir model was 261.10 mg g-1 at 298 K and the thermodynamic studies revealed that the adsorption of CTC onto the GO/TiO2 was a spontaneous and endothermic process. Moreover, the interactions between CTC and GO/TiO2 were presumed to be ligand exchange between CTC and TiO2, while the π-π electron donor-acceptor interaction, hydrogen bond and cation-π bonding were constructed between CTC and GO. Finally, the prepared GO/TiO2 was successfully applied for the efficient removal of CTC from Wu River water.

  18. Influence of N2 partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N2 vacuum arc discharge

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Abdallah, B.; Ahmad, M.; A-Kharroub, M.

    2016-08-01

    The influence of N2 partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N2 partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N2 partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N2 partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N2 partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N2 partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N2 partial pressure.

  19. Directed Synthesis of Nanoporous Carbons from Task-Specific Ionic Liquid Precursors for the Adsorption of CO 2

    DOE PAGES

    Mahurin, Shannon M.; Fulvio, Pasquale F.; Hillesheim, Patrick C.; ...

    2014-07-31

    Postcombustion CO 2 capture has become a key component of greenhouse-gas reduction as anthropogenic emissions continue to impact the environment. In this paper, we report a one-step synthesis of porous carbon materials using a series of task-specific ionic liquids for the adsorption of CO 2. By varying the structure of the ionic liquid precursor, we were able to control pore architecture and surface functional groups of the carbon materials in this one-step synthesis process leading to adsorbents with high CO 2 sorption capacities (up to 4.067 mmol g -1) at 0 °C and 1 bar. Finally, added nitrogen functional groupsmore » led to high CO 2/N 2 adsorption-selectivity values ranging from 20 to 37 whereas simultaneously the interaction energy was enhanced relative to carbon materials with no added nitrogen.« less

  20. Experimental study on removals of SO2 and NOX using adsorption of activated carbon/microwave desorption.

    PubMed

    Ma, Shuang-Chen; Yao, Juan-Juan; Gao, Li; Ma, Xiao-Ying; Zhao, Yi

    2012-09-01

    Experimental studies on desulfurization and denitrification were carried out using activated carbon irradiated by microwave. The influences of the concentrations of nitric oxide (NO) and sulfur dioxide (SO 2 ), the flue gas coexisting compositions, on adsorption properties of activated carbon and efficiencies of desulfurization and denitrification were investigated. The results show that adsorption capacity and removal efficiency of NO decrease with the increasing of SO 2 concentrations in flue gas; adsorption capacity of NO increases slightly first and drops to 12.79 mg/g, and desulfurization efficiency descends with the increasing SO 2 concentrations. Adsorption capacity of SO 2 declines with the increasing of O 2 content in flue gas, but adsorption capacity of NO increases, and removal efficiencies of NO and SO 2 could be larger than 99%. Adsorption capacity of NO declines with the increase of moisture in the flue gas, but adsorption capacity of SO 2 increases and removal efficiencies of NO and SO 2 would be relatively stable. Adsorption capacities of both NO and SO 2 decrease with the increasing of CO 2 content; efficiencies of desulfurization and denitrification augment at the beginning stage, then start to fall when CO 2 content exceeds 12.4%. The mechanisms of this process are also discussed. [Box: see text].

  1. Chitosan supramolecularly cross linked with trimesic acid - Facile synthesis, characterization and evaluation of adsorption potential for chromium(VI).

    PubMed

    Bhatt, Ronak; Sreedhar, B; Padmaja, P

    2017-11-01

    A facile synthesis of Chitosan Supramolecularly cross-linked with Trimesic Acid (CTMA) is reported in this work. The adsorption potential of CTMA for removal of hexavalent chromium was evaluated and the influence of pH, temperature, contact time and adsorbent dose on the adsorption process was investigated. The experimental results showed that CTMA could efficiently adsorb Cr 6+ and partially reduce it to the less toxic Cr 3+ state. The maximum adsorption capacity of CTMA for Cr 6+ was found to be 129.53mg/g at pH 2.0. CTMA and chromium loaded CTMA were characterised by FT-IR, Raman, TGA-DSC, SEM-EDX, XRD, ESR and XPS spectroscopic techniques. Chitosan was observed to be cross- linked with TMA via ionic, hydrogen bonding and pi-pi supramolecular interactions while adsorption of chromium onto CTMA was by electrostatic forces and hydrogen bonding. From the observed results it was evident that CTMA was successfully applied for simultaneous removal of chromium, lead and iron from chrome plating effluent. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adsorption of Se species on crushed granite: a direct linkage with its internal iron-related minerals.

    PubMed

    Jan, Yi-Lin; Wang, Tsing-Hai; Li, Ming-Hsu; Tsai, Shih-Chin; Wei, Yuan-Yaw; Teng, Shi-Ping

    2008-01-01

    The adsorption of selenium species on crushed granite is investigated directly linking to its internal iron-related minerals. Experimental results demonstrated that granite has higher affinity toward Se(IV) adsorption than Se(VI) adsorption. Se(IV) adsorption on granite is insensitive to background electrolytes while the effect of ionic strength on Se(VI) adsorption is not observed, which is attributed to the overloading of Se(VI) ions. Results of chemical sequential extraction showed that the removal of crystalline iron oxides dramatically reduces Se(IV) adsorption, which corresponds to the disappearance of goethite signal within XRD pattern. Based on our results, it is proposed that goethite within granite dominates Se adsorption in crushed granite. Although these goethites probably stem from some sample preparation processes including drilling in situ, crushing, washing and drying granite samples in laboratory, the formation of goethite enhances the granite affinity toward Se species adsorption. Images of SEM/EDS furthermore revealed that goethite is embedded within the fractures. In addition, quantification by standard addition method by spiking goethite suspension indicates that only around 20% of goethite minerals are available during Se(IV) adsorption.

  3. Adsorption of Cu(II) on Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated and Carboxylated Fullerenes

    PubMed Central

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH < 5, but decreased at pH ≥ 5. The presence of C60(C(COOH)2)n inhibited the adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683

  4. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis.

    PubMed

    Elhafez, S E Abd; Hamad, H A; Zaatout, A A; Malash, G F

    2017-01-01

    In the last decades, Egypt has been suffering from the phenomenon of black cloud resulting from burning rice husk and increasing the demand for water leading to the water crisis. An alternative, low-value and surplus agricultural byproduct (rice husk, RH) has an enormous potential for the removal of Cu(II) ions from water. The present study focuses on the chance of the use of rice husk as a bio-adsorbent without any chemical treatment instead of burning it and soiling the environment. The elemental, structural, morphological, surface functional, thermal, and textural characteristics of RH are determined by XRF, XRD, SEM, FT-IR, TGA, and BET surface area, respectively, and contributed to the understanding of the adsorption mechanism of Cu(II) ions in aqueous solution. Also, the performance analysis, adsorption mechanism, influencing factors, favorable conditions, etc. are discussed in this article. The results obtained from optimization by batch mode are achieved under the following conditions: initial concentration, 150 ppm; amount of rice husk, 1 g; average particle size, 0.25 mm; temperature, 25 °C; pH, 4; agitation rate, 180 rpm; and contact time, 60 min. RH exhibits a high degree of selectivity for Cu(II) adsorption. The adsorption isotherm is fitted well with Langmuir and Freundlich models with R 2 0.998 and 0.997, respectively. The adsorption is well governed by the pseudo-second-order kinetics. It is observed that the rate of adsorption improves with decreasing temperature, and the process is exothermic and non-spontaneous. Particular attention has being paid to factors as production processes, fixed/operational cost, production cost, and profit. The techno-economical analysis is presented in this study that provides precise demands on capital for a fixed investment, provisions for operational capital, and finally provisions for revenue. The social, economical, and environmental benefits by industrial point of view using low-cost adsorbent are also

  5. Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jiang, B.; Li, F. L.

    2017-06-01

    The self-diffusion coefficients (D) of CH4/CO2/H2O/N2 at a relatively broad range of temperatures(298.15∼ 458.15K)and pressures (1∼6MPa) under the NPT, NPH, NVE, and NVT ensembles were obtained after the calculations of molecular mechanics(MM), annealing kinetics(AK), giant canonical Monte Carlo(GCMC), and molecular dynamics (MD) based on Wiser bituminous coal model (WM). The Ds of the adsorbates at the saturated adsorption configurations are D CH422ON2(NPT, 298.15K, 0.1MPa). The diffusion activation energy (E) is E H2O (1.07kJ/mol)N2(1.82kJ/mol)2 (2.94kJ/mol)adsorption energy barrier and N2 and H2O to the lowest. The order of different ensembles is D N2 (NVE)< D N2 (NVT)≈D N2 (NPH)≈D N2 (NPT) (T<418K) and D N2 (NVE) is remarkable higher than other ensembles when T>418K. The average swelling ratios manifest as H2O (14.7∼35.18%)>CO2 (13.38∼32.25%)>CH4 (15.35∼23.71%)> N2 (11.47∼22.14%) (NPH, 1∼6MPa). There exits differences in D, swelling ratios and E among various ensembles, indicating that the selection of ensembles has an important influence on the MD calculations for self-diffusion coefficients.

  6. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.

    PubMed

    Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro

    2010-11-01

    A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ⊃ solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ⊃ solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ⊃ solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such

  7. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    González, Lucy T.; Rodríguez, F. E. Longoria; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L. G.; Acuna-Askar, Karim; Kharisov, B. I.; Villarreal Chiu, J. F.; Alfaro Barbosa, J. M.

    2016-10-01

    Total suspended particles (TSP) and particles smaller than 2.5 μm (PM2.5) were collected at four sites in the metropolitan area of Monterrey (MAM) in Mexico. The samples were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Scanning Electron Microscopy (SEM). In order to determine the possible sources of emissions of atmospheric particulate matter, a principal component analysis (PCA) was performed. The XRD results showed that the major crystalline compounds found in the TPS were CaCO3 and SiO2; while in the PM2.5 CaSO4 was found. The XPS analysis showed that the main elements found on the surface of the particles were C, O, Si, Ca, S, and N. The deconvolution carried out on the high-resolution spectra for C1s, S2p and N1s, showed that the aromatics, sulfates and pyrrolic-amides were the main groups contributing to the signal of these elements, respectively. The C-rich particles presented a spherical morphology, while the Ca- and Si-based particles mostly showed a prismatic shape. The PCA analysis together with the results obtained from the characterization techniques, suggested that the main contributors to the CaCO3 particles collected in the PM were most probably produced and emitted into the atmosphere by local construction industries and exploitation of rich-deposits of calcite. Meanwhile, the SiO2 found in the MAM originated from the suspension of geological material abundant in the region, and the carbon particles were mainly produced by the combustion of fossil fuels.

  8. Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption.

    PubMed

    Echeverría, Jesús C; Calleja, Ignacio; Moriones, Paula; Garrido, Julián J

    2017-01-01

    We investigated the response of three fiber optic sensing elements prepared at pH 10 from phenyltriethoxysilane (PhTEOS) and tetraethylsilane (TEOS) mixtures with 30, 40, and 50% PhTEOS in the silicon precursor mixture. The sensing elements are referred to as Ph30, Ph40 and Ph50, respectively. The films were synthesized by the sol-gel method and affixed to the end of optical fibers by the dip-coating technique. Fourier transform infrared spectroscopy, N 2 adsorption-desorption at 77 K and X-ray diffraction analysis were used to characterize the xerogels. At a given pressure of n -hexane, the response of each sensing element decreased with temperature, indicating an exothermic process that confirmed the role of adsorption in the overall performance of the sensing elements. The isosteric adsorption enthalpies were obtained from the calibration curves at different temperatures. The magnitude of the isosteric enthalpy of n -hexane increased with the relative response and reached a plateau that stabilized at approximately -31 kJ mol -1 for Ph40 and Ph50 and at approximately -37 kJ mol -1 for Ph30. This indicates that the adsorbate-adsorbent interaction was dominant at lower relative pressure and condensation of the adsorbate on the mesopores was dominant at higher relative pressure.

  9. Fabrication of N, P-codoped reduced graphene oxide and its application for organic dye removal

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yang, Feng; Liu, Xiaoxia; Tan, Guangqun; Xiao, Dan

    2018-03-01

    N, P-codoped reduced graphene oxide (PA-RGO) was synthesized from graphene oxide (GO) and phytic acid (PA) mixture with the reductant of hydrazine hydrate (N2H4) via one-pot solution method. PA can modify the surface of RGO to enhance the hydrophilicity of RGO, and supply anionic functional groups, which can complex with cationic dye via anion-cation interaction. PA-RGO with different amount doped PA were used to remove multiple organic dyes from aqueous solution. The adsorption properties of the PA-RGO-2.0 towards Rhodamine B (RhB) were investigated under various parameters such as different pH of initial solution, different dosage of the PA-RGO-2.0, shaking speed and temperature. To study structural and chemical characterization of PA-RGO-2.0, Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscope (AFM), X-ray photoelectron and spectroscopy (XPS) were used, and UV-vis spectrum was used to monitor the absorbance of adsorbate. The batch adsorption experiments of RhB on PA-RGO-2.0 showed that the RhB equilibrium capacity was about 149 mg/g. In addition, the adsorption process was well-matched with the pseudo-second-order rate model. The as-prepared composites were found to be highly selective for cationic organic dyes. The good reusability of PA-RGO indicated that the adsorbent possessed potential practical application.

  10. Efficient simultaneous adsorption-biodegradation of high-concentrated N,N-dimethylformamide from water by Paracoccus denitrificans-graphene oxide microcomposites

    NASA Astrophysics Data System (ADS)

    Zheng, Yuan; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-02-01

    Water contamination becomes one of the most pervasive environmental issues all over the world in recent years. In this paper, the functionalization of graphene oxide (GO) with copolymers containing methacrylic acid (MAA) and butyl methacrylate (BMA) was investigated to prepare a new microcomposite material (PGO) via free radical solution polymerization. PGO was used for the adsorption of N,N-dimethylformamide (DMF) from aqueous solution by utilizing the characteristics of ultralarge surface and the Van der Waals force between DMF molecules and polymers on the surface of PGO. Besides, PGO was used not only a high-capable adsorbent but also a carrier for the immobilization of Paracoccus denitrificans cells in the treatment of high-concentrated DMF. Bacterial cells could immobilized on the PGO (PGO@P. denitrificans) stably by covalent coupling process after acclimatization and high-concentrated DMF (2000 mg/L) could be removed completely and relatively rapidly from aqueous solutions by the simultaneous adsorption-biodegradation (SAB) process of PGO@P. denitrificans. Furthermore, the excellent recycle performance of PGO@P. denitrificans made the whole process more economical and practical.

  11. Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks.

    PubMed

    Martín-Calvo, Ana; García-Pérez, Elena; Manuel Castillo, Juan; Calero, Sofia

    2008-12-21

    We use Monte Carlo simulations to study the adsorption and separation of the natural gas components in IRMOF-1 and Cu-BTC metal-organic frameworks. We computed the adsorption isotherms of pure components, binary, and five-component mixtures analyzing the siting of the molecules in the structure for the different loadings. The bulk compositions studied for the mixtures were 50 : 50 and 90 : 10 for CH4-CO2, 90 : 10 for N2-CO2, and 95 : 2.0 : 1.5 : 1.0 : 0.5 for the CH4-C2H6-N2-CO2-C3H8 mixture. We choose this composition because it is similar to an average sample of natural gas. Our simulations show that CO2 is preferentially adsorbed over propane, ethane, methane and N2 in the complete pressure range under study. Longer alkanes are favored over shorter alkanes and the lowest adsorption corresponds to N2. Though IRMOF-1 has a significantly higher adsorption capacity than Cu-BTC, the adsorption selectivity of CO2 over CH4 and N2 is found to be higher in the latter, proving that the separation efficiency is largely affected by the shape, the atomic composition and the type of linkers of the structure.

  12. Influence of ɣ and ultrasonic irradiations on the physicochemical properties of CeO2-Fe2O3-Al2O3 for textile dyes removal applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.

    2018-04-01

    In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.

  13. 2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.

    PubMed

    Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R

    2015-02-15

    Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    PubMed

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  15. Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores.

    PubMed

    Wei, Haoran; Deng, Shubo; Hu, Bingyin; Chen, Zhenhe; Wang, Bin; Huang, Jun; Yu, Gang

    2012-12-01

    Cost-effective biomass-derived activated carbons with a high CO(2) adsorption capacity are attractive for carbon capture. Bamboo was found to be a suitable precursor for activated carbon preparation through KOH activation. The bamboo size in the range of 10-200 mesh had little effect on CO(2) adsorption, whereas the KOH/C mass ratio and activation temperature had a significant impact on CO(2) adsorption. The bamboo-derived activated carbon had a high adsorption capacity and excellent selectivity for CO(2) , and also the adsorption process was highly reversible. The adsorbed amount of CO(2) on the granular activated carbon was up to 7.0 mmol g(-1) at 273 K and 1 bar, which was higher than almost all carbon materials. The pore characteristics of activated carbons responsible for high CO(2) adsorption were fully investigated. Based on the analysis of narrow micropore size distribution of several activated carbons prepared under different conditions, a more accurate micropore range contributing to CO(2) adsorption was proposed. The volume of micropores in the range of 0.33-0.82 nm had a good linear relationship with CO(2) adsorption at 273 K and 1 bar, and the narrow micropores of about 0.55 nm produced the major contribution, which could be used to evaluate CO(2) adsorption on activated carbons. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrasound assisted dispersion of Bi2Sn2O7-C3N4 nanophotocatalyst over various amount of zeolite Y for enhanced solar-light photocatalytic degradation of tetracycline in aqueous solution.

    PubMed

    Heidari, Shirin; Haghighi, Mohammad; Shabani, Maryam

    2018-05-01

    Bi 2 Sn 2 O 7 -C 3 N 4 /Y nanophotocatalyst with various ratios of zeolite and high activity under simulated solar light irradiation were successfully synthesized using ultrasound-assisted dispersion method. The effect of different amounts of zeolite (10, 20 and 30 wt%) on the photocatalytic degradation of antibiotic tetracycline was investigated. The as-prepared nanophotocatalysts were characterized by XRD, FESEM, EDX, BET, FTIR, DRS and pH pzc techniques. The degradation results demonstrated that, Bi 2 Sn 2 O 7 -C 3 N 4 /Y(10) nanophotocatalyst with a degradation efficiency of about 80.4% is an optimum sample. This result can be attributed to the zeolite as a support that prevented the accumulation of Bi 2 Sn 2 O 7 -C 3 N 4 active phase and increased access to active sites. Furthermore, it enhanced the adsorption capacity of tetracycline on the photocatalyst surface; that it is beneficial for tetracycline photocatalytic oxidation. Also the results of the DRS analysis indicated that the sharp absorption edge for optimum sample Bi 2 Sn 2 O 7 -C 3 N 4 /Y at about 480 nm and was active in the visible light range. Eventually, different operational parameters such as photocatalyst loading, concentrations of pollutant and pH solution were investigated. In addition, the degradation mechanism was suggested for TC removal. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Adsorbent for p-phenylenediamine adsorption and removal based on graphene oxide functionalized with magnetic cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Dongxue; Liu, Liangliang; Jiang, Xinyu; Yu, Jingang; Chen, Xiaohong; Chen, Xiaoqing

    2015-02-01

    Recently, graphene oxide (GO) based magnetic nanocomposites have been widely used in an adsorption-based process for the removal of organic pollutants from the water system. In this study, magnetic β-cyclodextrin-graphene oxide nanocomposites (MCG) were synthesized according to covalent binding of magnetic β-cyclodextrin nanoparticles onto the GO surface and the as-made nanocomposites were successfully applied as adsorbents for the adsorption and removal of p-phenylenediamines (PPD). The composition and morphology of prepared materials were characterized by Fourier infrared spectrometry (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Effects of pH, temperature, time and reusability on the adsorption of PPD were investigated, as well as the kinetics and isotherms parameters of the adsorbents were determined. The results indicated that the maximum adsorption capacity of MCG was 1102.58 mg/g at 45 °C and pH 8. The adsorption capacity remained at 81% after five cycles. Removal rate could reach 98% after three times of adsorption. The adsorption process with PPD was found that fitted pseudo-second-order kinetics equations and the Langmuir adsorption model. The results showed the MCG had a good adsorption ability to remove organic pollutants in wastewater.

  18. Multiscale structural characterizations of mixed U(iv)-An(iii) oxalates (An(iii) = Pu or Am) combining XAS and XRD measurements.

    PubMed

    Arab-Chapelet, B; Martin, P M; Costenoble, S; Delahaye, T; Scheinost, A C; Grandjean, S; Abraham, F

    2016-04-28

    Mixed actinide(III,IV) oxalates of the general formula M2.2UAn(C2O4)5·nH2O (An = Pu or Am and M = H3O(+) and N2H5(+)) have been quantitatively precipitated by oxalic precipitation in nitric acid medium (yield >99%). Thorough multiscale structural characterization using XRD and XAS measurements confirmed the existence of mixed actinide oxalate solid solutions. The XANES analysis confirmed that the oxidation states of the metallic cations, tetravalent for uranium and trivalent for plutonium and americium, are maintained during the precipitation step. EXAFS measurements show that the local environments around U(+IV), Pu(+III) and Am(+III) are comparable, and the actinides are surrounded by ten oxygen atoms from five bidentate oxalate anions. The mean metal-oxygen distances obtained by XAS measurements are in agreement with those calculated from XRD lattice parameters.

  19. Preparation of Activated Carbon/N-doped Titania Composite for Synergistic Adsorption-photocatalytic Oxidation of Batik Dye

    NASA Astrophysics Data System (ADS)

    Aziz, A. A.; Ibrahim, S.

    2018-05-01

    A synergetic improved composite TiO2 photocatalysts was successfully synthesized by using nitrogen (N) as a dopant and activated carbon (AC) as synergetic compound. Two different types of AC prepared from Garcinia mangostana shell and commercial AC obtained from palm shell were chosen as synergetic compound. Thus synthesized composites was further characterized by Brunauer-Emmett-Teller (BET) surface analyzer and UV-visible light spectroscope. The doping of N resulted in a better solar light utilization potential. Furthermore, synergizing with AC contributed for the improved BET surface area and pore size distribution. The synergetic adsorption-photocatalytic activity was investigated by removing a commercial batik dye namely Remazol Brilliant Blue (RBB) under direct solar irradiation. The synergetic experiments showed that commercial AC synergized with N-TiO2 resulted with a maximum removal efficiency of ∼80% in 6 h.

  20. Synthesis, spectroscopic (UV-Vis, FT-IR and NMR), single crystal XRD of 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate: A comprehensive experimental and computational study

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2017-01-01

    A piperidin-4-one containing picrate 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate [3,5-DPPP] was synthesized. The molecular structure of 3,5-DPPP was confirmed by FT-IR, NMR, Uv-Vis, single crystal XRD analysis and DFT and HF methods with 6-31G(d,p) basis set. The XRD data confirm the transfer of protons from picric acid (O2) to piperidin-4-one ring (N1). The 3,5-DPPP compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds (N-H⋯O, C-H⋯S and C-H⋯O). Density functional theory and HF calculations have been used widely for calculating a wide variety of molecular properties such as optimized structure, FT-IR and Uv-Vis spectra, and provided reliable results which are in agreement with experimental data. The charge density data have been used to understand the properties of molecular systems. Furthermore, several quantum chemical insights have been obtained in the form of the total and partial density of states, the HOMO-LUMO energy gap and electrostatic potential map etc. In addition, the polarizability and first hyperpolarizability were calculated to show the potential applications of 3,5-DPPP in nonlinear optics.

  1. Adsorption and Dissociation of CO2 on Ru(0001)

    PubMed Central

    2017-01-01

    The adsorption and dissociation of carbon dioxide on a Ru(0001) single crystal surface was investigated by reflection–absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) spectroscopy for CO2 adsorbed at 85 K. RAIRS spectroscopy shows that the adsorption of CO2 on a Ru(0001) single crystal is partially dissociative, resulting in CO2 and CO. The CO vibrational mode was also observed to split into two distinct modes, indicating two general populations of CO present at the surface. Furthermore, a time-dependent blue-shift is observed, which is characteristic of increasing CO surface coverage. TPD showed that coverages of up to 0.3 ML were obtained, and no evidence for chemisorption of oxygen on ruthenium was found. PMID:28413569

  2. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper.

  3. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.

    PubMed

    Doczekalska, Beata; Kuśmierek, Krzysztof; Świątkowski, Andrzej; Bartkowiak, Monika

    2018-05-04

    Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.

  4. High temperature XRD of Cu{sub 2}GeSe{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premkumar, D. S.; Malar, P.; Chetty, Raju

    2015-06-24

    The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less

  5. Synthesis, Structural, and Adsorption Properties and Thermal Stability of Nanohydroxyapatite/Polysaccharide Composites.

    PubMed

    Skwarek, Ewa; Goncharuk, Olena; Sternik, Dariusz; Janusz, Wladyslaw; Gdula, Karolina; Gun'ko, Vladimir M

    2017-12-01

    A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step method and characterized using nitrogen adsorption-desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of nitrogen adsorption-desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high specific surface area from 49 to 82 m 2 /g. The incremental pore size distributions indicate mainly mesoporosity. The composites with the component ratio 1:1 preferably form a film-like structure, and the value of S BET varies from 0.3 to 43 m 2 /g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large S BET values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp, polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m 2 of surface).

  6. Mechanisms and chemistry of dye adsorption on manganese oxides-modified diatomite.

    PubMed

    Al-Ghouti, Mohammad A; Al-Degs, Yehya S; Khraisheh, Majeda A M; Ahmad, Mohammad N; Allen, Stephen J

    2009-08-01

    The investigations into structural changes which occur during adsorbent modification and the adsorption mechanisms are essential for an effective design of adsorption systems. Manganese oxides were impregnated onto diatomite to form the type known as delta-birnessite. Initial investigations established the effectiveness of manganese oxides-modified diatomite (MOMD) to remove basic and reactive dyes from aqueous solution. The adsorption capacity of MOMD for methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was 320, 419, and 204mg/g, respectively. Various analytical techniques were used to characterise the structure and the mechanisms of the dye adsorption process onto MOMD such as Fourier transform infrared (FTIR), X-ray diffraction (XRD) and atomic absorption spectrometry (A.A.). A small shift to higher values of the d-spacing of dye/MOMD was observed indicating that a small amount of the dye molecules were intercalated in the MOMD structure and other molecules were adsorbed on the external surface of MOMD. Two mechanisms of dye adsorption onto MOMD were proposed; intercalation of the dye in the octahedral layers and adsorption of the dye on the MOMD external surface. Moreover, the results demonstrated that the MOMD structure was changed upon insertion of MB and RY with an obvious decrease in the intensity of the second main peak of the MOMD X-ray pattern.

  7. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    NASA Astrophysics Data System (ADS)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  8. Synthesis and Absorption Properties of Hollow-spherical Dy2Cu2O5 via a Coordination Compound Method with [DyCu(3,4-pdc)2(OAc)(H2O)2]•10.5H2O Precursor.

    PubMed

    Liu, Xuanwen; You, Junhua; Wang, Renchao; Ni, Zhiyuan; Han, Fei; Jin, Lei; Ye, Zhiqi; Fang, Zhao; Guo, Rui

    2017-10-12

    Dy 2 Cu 2 O 5 nanoparticles with perovskite structures were synthesized via a simple solution method (SSM) and a coordination compound method (CCM) using [DyCu(3,4-pdc) 2 (OAc)(H 2 O) 2 ]•10.5H 2 O (pdc = 3,4-pyridinedicarboxylic acid) as precursor. The as-prepared samples were structurally characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS) and standard Brunauer-Emmett-Teller (BET) methods. Compared to the aggregated hexahedral particles prepared by SSM, the Dy 2 Cu 2 O 5 of CCM showed hollow spherical morphology composed of nanoparticles with average diameters of 100-150 nm and a larger special surface area up to 36.5 m 2 /g. The maximum adsorption capacity (Q m ) of CCM for malachite green (MG) determined by the adsorption isotherms with different adsorbent dosages of 0.03-0.07 g, reached 5.54 g/g at room temperature. The thermodynamic parameters of adsorption process were estimated by the fittings of the isotherms at 298, 318, and 338 K, and the kinetic parameters were obtained from the time-dependent adsorption isotherms. The results revealed that the adsorption process followed a pseudo-second-order reaction. Finally, the adsorption mechanism was studied using a competitive ion (CI) experiments, and the highly efficient selective adsorption was achieved due to strong O-Cu and O-Dy coordination bonds between Dy 2 Cu 2 O 5 and MG.

  9. Template-free hydrothermal synthesis of MgO-TiO2 microcubes toward high potential removal of toxic water pollutants

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ipsita Hazra; Kundu, Sukanya; Naskar, Milan Kanti

    2018-01-01

    MgO-TiO2 microcubes were synthesized by a facile template-free hydrothermal method followed by calcination. Different analytical tools such as XRD, DTA/TG, FTIR, N2 adsorption-desorption study, FESEM, TEM and UV-DRS were used to characterize the sample. The FESEM images exhibited cube shaped particles of size 2-4 μm. The MgO-TiO2 microcubes exhibit a high potential removal of toxic Pb (II) ions and photocatalytic degradation of organic dye methyl orange from water. The absorption capacity was determined by changing different experimental conditions. The spontaneity of the reaction was confirmed by thermodynamic study. The prepared MgO-TiO2 microcubes showed superior adsorption capacity up to 2900 mg g-1 for Pb (II) ions, and about 95% of photodegradation of methyl orange (MO), the water pollutants.

  10. Adsorption of bis(2-hydroxy-3-chloropropyl) dodecylamine on quartz surface and its implication on flotation

    NASA Astrophysics Data System (ADS)

    Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying

    2018-06-01

    In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.

  11. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    PubMed

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Adsorption of an anionic dye on a novel low-cost mesoporous adsorbent: kinetic, thermodynamic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Msaad, Asmaa; Belbahloul, Mounir; Zouhri, Abdeljalil

    2018-05-01

    Our activated carbon was prepared successfully using phosphoric acid as an activated agent. The activated carbon was characterized by Scanning Electron Micrograph (SEM), Brunauer-Emmett- Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The aim of our study is to evaluate the adsorption capacity of Methyl Orange (MO) on Ziziphus lotus activated carbon. Adsorption isotherms were studied according to Langmuir and Freundlich Model, and adsorption kinetics according to pseudo-first and second-order. Results show that the maximum adsorption was reached in the first 10min at ambient temperature with a yield of 96.31%. The Langmuir isotherm shows a correlation coefficient of 99.4 % higher than Freundlich model and the adsorption kinetic model follow a pseudo-second-order with a maximum adsorption capacity of 769.23 mg/g. FTIR and X-Ray spectroscopy indicate that our activated carbon has an amorphous structure with the presence of functional groups, where BET analysis revealed a high surface area of 553 mg/g, which facilitate the adsorption process

  13. Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils.

    PubMed

    Huang, Junxing; Liang, Chuanzhou; Zhang, Xu

    2017-06-01

    The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO 2 . The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO 2 . The adsorption of racemic-metalaxyl on SiO 2 decreased to some extent in soil-SiO 2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO 2 in soil-SiO 2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO 2 in the presence of soil. Interactions between SiO 2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO 2 , and the interactions were analyzed by extended Derjaguin-Landau-Verwey-Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Selective adsorption of flavor-active components on hydrophobic resins.

    PubMed

    Saffarionpour, Shima; Sevillano, David Mendez; Van der Wielen, Luuk A M; Noordman, T Reinoud; Brouwer, Eric; Ottens, Marcel

    2016-12-09

    This work aims to propose an optimum resin that can be used in industrial adsorption process for tuning flavor-active components or removal of ethanol for producing an alcohol-free beer. A procedure is reported for selective adsorption of volatile aroma components from water/ethanol mixtures on synthetic hydrophobic resins. High throughput 96-well microtiter-plates batch uptake experimentation is applied for screening resins for adsorption of esters (i.e. isoamyl acetate, and ethyl acetate), higher alcohols (i.e. isoamyl alcohol and isobutyl alcohol), a diketone (diacetyl) and ethanol. The miniaturized batch uptake method is adapted for adsorption of volatile components, and validated with column breakthrough analysis. The results of single-component adsorption tests on Sepabeads SP20-SS are expressed in single-component Langmuir, Freundlich, and Sips isotherm models and multi-component versions of Langmuir and Sips models are applied for expressing multi-component adsorption results obtained on several tested resins. The adsorption parameters are regressed and the selectivity over ethanol is calculated for each tested component and tested resin. Resin scores for four different scenarios of selective adsorption of esters, higher alcohols, diacetyl, and ethanol are obtained. The optimal resin for adsorption of esters is Sepabeads SP20-SS with resin score of 87% and for selective removal of higher alcohols, XAD16N, and XAD4 from Amberlite resin series are proposed with scores of 80 and 74% respectively. For adsorption of diacetyl, XAD16N and XAD4 resins with score of 86% are the optimum choice and Sepabeads SP2MGS and XAD761 resins showed the highest affinity towards ethanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents.

    PubMed

    Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M

    2016-08-01

    Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Photo-induced CO2 reduction by CH4/H2O to fuels over Cu-modified g-C3N4 nanorods under simulated solar energy

    NASA Astrophysics Data System (ADS)

    Tahir, Beenish; Tahir, Muhammad; Amin, Nor Aishah Saidina

    2017-10-01

    Copper modified polymeric graphitic carbon nitride (Cu/g-C3N4) nanorods for photo-induced CO2 conversion with methane (CH4) and water (H2O) as reducing system under simulated solar energy has been investigated. The nanocatalysts, synthesized by pyrolysis and sonication, were characterized by XRD, FTIR, Raman analysis, XPS, SEM, N2 adsorption-desorption and PL spectroscopy. The presence of Cu2+ ions over the g-C3N4 structure inhibited charge carriers recombination process. The results indicated that photo-activity and selectivity of Cu/g-C3N4 photo-catalyst for CO2 reduction greatly dependent on the type of CO2-reduction system. CO2 was efficiently converted to CH4 and CH3OH with traces of C2H4 and C2H6 hydrocarbons in the CO2-water system. The yield of the main product, CH4 over 3 wt.% Cu/g-C3N4 was 109 μmole g-cata.-1 h-1 under visible light irradiation, significantly higher than the pure g-C3N4 catalyst (60 μmole/g.cat). In photo-induced CO2-CH4 reaction, CO and H2 were detected as the main products with smaller amount of hydrocarbons. The highest efficiency was detected over 3 wt.%Cu-loading of g-C3N4 and at optimal CH4/CO2 feed ratio of 1.0. The maximum yield of CO and H2 detected were 142 and 76 μmole g-catal.-1 h-1, respectively at selectivity 66.6% and 32.5%, respectively. Significantly enhanced CO2/CH4 reduction over Cu/g-C3N4 was attributed to its polymeric structure with efficient charge transfer property and inhibited charges recombination rate. A proposed photo-induced reaction mechanism, corroborated with the experimental data, was also deliberated.

  17. Effect of Solution Concentration on Magnetic Ni0.5Zn0.5Fe₂O₄ Nanoparticles and Their Adsorption Behavior of Neutral Red.

    PubMed

    Li, Shasha; Liu, Qifeng; Lu, Rongzhu; Wu, Xiaoyang; Chen, Jian

    2018-07-01

    Magnetic Ni0.5Zn0.5Fe2O4 nanoparticles were prepared via the methanol combustion process, the morphology, chemical composition, microstructure and magnetic properties of them were investigated by SEM, EDX, TEM, XRD, VSM, and BET. The experimental data revealed that the solution concentration was a key factor to the Ni0.5Zn0.5Fe2O4 nanoparticles, with the solution concentration of ferric nitrate decreasing from 3.37 to 1.12 mol/L, the saturation magnetization decreased from 69.3 Am2/kg to 37.2 Am2/kg, and the average crystalline size of Ni0.5Zn0.5Fe2O4 nanoparticles decreased from 32 to 25 nm. While, with the solution concentration of ferric nitrate decreasing from 1.12 to 0.56 mol/L, the saturation magnetization increased from 37.2 Am2/kg to 104.6 Am2/kg, and the average crystalline size increased from 25 to 44 nm. The adsorption behavior of neutral red (NR) onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was investigated by UV spectroscopy at room temperature; the adsorption kinetics data related to the adsorption of NR from aqueous solutions were in good agreement with the pseudo-second-order kinetic model in a range of initial concentration of 50-300 mg/L. By comparison of the Langmuir and Freundlich models for adsorption isotherm of NR, the Langmuir model (correlation coefficient R2 = 0.9918) could be used to evaluate the adsorption isotherm of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles at room temperature, which suggested that the adsorption of NR onto magnetic Ni0.5Zn0.5Fe2O4 nanoparticles was monolayer, and the adsorption energy was constant.

  18. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  19. Adsorption of CO2 from flue gas streams by a highly efficient and stable aminosilica adsorbent.

    PubMed

    Liu, Shou-Heng; Lin, Yuan-Chung; Chien, Yi-Chi; Hyu, Han-Ren

    2011-02-01

    Three ordered mesoporous silicas (OMSs) with different pore sizes and pore architectures were prepared and modified with amine functional groups by a postgrafting method. The carbon dioxide (CO2) adsorption on these amine-modified OMSs was measured by using microbalances at 348 K, and their adsorption capacities were found to be 0.2-1.4 mmol g(-1) under ambient pressure using dry 15% CO2. It was found experimentally that the CO2 adsorption capacity and adsorption rate were attributed to the density of amine groups and pore volume, respectively. A simple method is described for the production of densely anchored amine groups on a solid adsorbent invoking direct incorporation of tetraethylenepentamine onto the as-synthesized OMSs. Unlike conventional amine-modified OMSs, which typically show CO2 adsorption capacity less than 2 mmol g(-1), such organic template occluded amine-OMS composites possessed remarkably high CO2 uptake of approximately 4.6 mmol g(-1) at 348 K and 1 atm for a dry 15% CO2/nitrogen feed mixture. The enhancement of 8% in CO2 adsorption capacity was also observed in the presence of 10.6% water vapor. Durability tests done by cyclic adsorption-desorption revealed that these adsorbents also possess excellent stability.

  20. Factors affecting adsorption characteristics of Zn2+ on two natural zeolites.

    PubMed

    Oren, Ali Hakan; Kaya, Abidin

    2006-04-17

    Mining-related and industrial wastes are primary sources of heavy metal contamination in soils and groundwater. The limitation of such waste in drinking water needs to meet government requirements in order to safeguard human health and environment. Zinc, one of the most preponderant pollutants, is difficult to remove from wastewater rather than other heavy metals (i.e. lead, copper and cadmium). This paper investigates Zn2+ adsorption characteristics of two natural zeolites found in the regions of Gordes and Bigadic, in western Turkey. The results show that the Zn2+ adsorption behavior of both zeolites is highly dependent on the pH. Adsorption dependence on lower pH values (pH<4) is explained by the dissolution of crystal structure and the competition of the zinc ions with the H+. Between pH 4 and 6, the basic mechanism is the ion exchange process. The results also showed that decrease in grain size does not increase the adsorption capacity of zeolite from Gordes, yet it increases that of zeolite from Bigadic about 23%. The results also reveal that an increase in the initial concentration of Zn2+ in the system causes an increase in the adsorption capacity to a degree, then it becomes more constant at higher concentrations. With this, the removal efficiency of Gordes zeolite is two times higher than that of Bigadic zeolite. Results show that an increase in slurry concentration results in a lower uptake of Zn2+. In the final part of the paper, we compared the experimental data with the Langmuir and Freundlich isotherms. The results show that there is a good fit between the experimental data and empirical isotherms.

  1. Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash.

    PubMed

    Liu, Minmin; Hou, Li-An; Xi, Beidou; Zhao, Ying; Xia, Xunfeng

    2013-05-15

    A novel hybrid mesoporous aluminosilicate sieve (HMAS) was prepared with fly ash and impregnated with zeolite A precursors. This improved the mercury adsorption of HMAS compared to original MCM-41. The HMAS was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier transform infrared (FTIR) analysis, transmission electron microscopy (TEM) images and 29 Si and 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra. These showed that the HMAS structure was still retained after impregnated with zeolite A. But the surface area and pore diameter of HMAS decreased due to pore blockage. Adsorption of mercury from aqueous solution was studied on untreated MCM-41and HMAS. The mercury adsorption rate of HMAS was higher than that of origin MCM-41. The adsorption of mercury was investigated on HMAS regarding the pH of mercury solution, initial mercury concentration, and the reaction temperature. The experimental data fit well to Langmuir and Freundlich isotherm models. The Dublin-Radushkevich isotherm and the characterization show that the mercury adsorption on HMAS involved the ion-exchange mechanisms. In addition, the thermodynamic parameters suggest that the adsorption process was endothermic in nature. The adsorption of mercury on HMAS followed the first order kinetics.

  2. Modifying the catalytic and adsorption properties of metals and oxides

    NASA Astrophysics Data System (ADS)

    Yagodovskii, V. D.

    2015-11-01

    A new approach to interpreting the effect of promoters (inhibitors) of nonmetals and metals added to a host metal (catalyst) is considered. Theoretical calculations are based on a model of an actual two-dimensional electron gas and adsorbate particles. An equation is derived for the isotherm of induced adsorption on metals and semiconductors with respect to small fillings of θ ~ 0.1-0.15. The applicability of this equation is verified experimentally for metals (Ag, Pd, Cu, Fe, and Ni), graphitized ash, and semiconductor oxides Ta2O5, ZnO, and Ni. The applicability of the theoretical model of promotion is verified by the hydrogenation reaction of CO on ultradispersed nickel powder. The use of plasmachemical surface treatments of metals and oxides, accompanied by an increase in activity and variation in selectivity, are investigated based on the dehydrocyclization reactions of n-hexane and the dehydrogenation and dehydration of alcohols. It is established that such treatments for metals (Pt, Cu, Ni, and Co) raise their activity due to the growth of the number of active centers upon an increase in the activation energy. Applying XPES and XRD methods to metallic catalysts, it is shown that the rise in activity is associated with a change in their surface states (variation in the structural characteristics of metal particles and localization of certain forms of carbon in catalytically active centers). It is shown that plasmachemical treatments also alter their surface composition, surface activity, and raise their activity when used with complex phosphate oxides of the NASICON type. It is shown by the example of conversion of butanol-2 that abrupt variations in selectivity (prevalence of dehydration over dehydrogenation and vice versa) occur, depending on the type of plasma. It is concluded that plasmachemical treatments of metals and ZnO and NiO alter the isosteric heats and entropies of adsorption of isopropanol.

  3. Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test.

    PubMed

    Nam, Sangchul; Namkoong, Wan; Kang, Jeong-Hee; Park, Jin-Kyu; Lee, Namhoon

    2013-10-01

    Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Adsorption of anionic surfactants from aqueous solution by high content of primary amino crosslinked chitosan microspheres.

    PubMed

    Zhang, Caihong; Wen, Haifeng; Huang, Yingying; Shi, Wenjian

    2017-04-01

    High content of primary amino crosslinked chitosan microspheres (ACCMs) were synthesized and characterized with IR, XRD and SEM technologies. Subsequently, ACCMs were adopted to adsorb three common anionic surfactants from aqueous solution: sodium dodecyl benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS). The adsorption performances were evaluated based on different variables such as the pH, contact time, temperature and initial concentration of the anionic surfactants. Moreover, the adsorption were investigated with kinetic models, equilibrium isotherms and thermodynamic models. The experimental results indicated that the adsorption processes were fitted very well with a pseudo-second-order model. The adsorption isotherms could be better described by Langmuir model rather than Freundlich model. The adsorption of SDBS was a spontaneous, exothermic process. While the adsorption of SLS and SDS were spontaneous, endothermic. The adsorption processes were complex physical-chemistry adsorption models, which are dominated by physisorption. Furthermore, this study found that the material had strong absorption abilities for anionic surfactants, the saturation adsorption capacity of ACCMs were 1220mg/g for SDBS, 888mg/g for SLS, and 825mg/g for SDS at pH 3.0 and 298K, respectively. The adsorption capacity was reduced only 5.7% after 8 cycles of the adsorption-desorption processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    PubMed

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  6. Thermodynamics of GaN(s)-NH3(v)+N2(v)+H2(v) system - Electronic aspects of the processes at GaN(0001) surface

    NASA Astrophysics Data System (ADS)

    Kempisty, Pawel; Strak, Pawel; Sakowski, Konrad; Krukowski, Stanislaw

    2017-08-01

    Comprehensive analysis of GaN(0001) surface in equilibrium with ammonia/hydrogen mixture was undertaken using results of ab initio calculations. Adsorption energies of the species derived from ammonia and molecular hydrogen and their stable sites were obtained. It was shown that the adsorption process type and energy depend on the position of Fermi level at the surface. Hydrogen decomposes into two separate H atoms, always adsorbed in the positions on top of the surface Ga atoms (On-top). Ammonia adsorption at GaN(0001) surface proceeds molecularly to ammonia in the On-top position or dissociatively into NH2 radicals in bridge (NH2-bridge) or On-top positions or into NH radicals in H3 (NH-H3) site. Presence of these species affects Fermi level pinning at the surface due to creation of new surface states. The Fermi level pinning in function of the surface attached species concentration was determined using extended electron counting rule (EECR). Results of ab initio calculations fully proved validity of the EECR predictions. Thermodynamic analysis of the surface in equilibrium with molecular hydrogen and ammonia vapor mixture is made giving the range of ammonia and hydrogen pressures, corresponding to Fermi level pinned at Ga-broken bond state for NH-H3&H and NH3&H and NH2-bridge&H coverage and at VBM for NH3 & H coverage. As the region of Fermi level pinned at Ga broken bond state corresponds to very low pressures, at pressures close to normal, GaN(0001) surface is almost totally covered by H, NH3 and NH2 located in On-top positions. It is also shown however that dominant portion of the hydrogen and ammonia pressures corresponds to Fermi level not pinned. Among them are these corresponding to MOVPE and HVPE growth conditions in which the surface is almost fully covered by NH3, NH2 and H species in On-top positions.

  7. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  8. Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger.

    PubMed

    Sepehrian, H; Ahmadi, S J; Waqif-Husain, S; Faghihian, H; Alighanbari, H

    2010-04-15

    Mesoporous aluminosilicates, have been prepared with various mole ratios of Si/Al and Cethyltrimethylammonium bromide (CTAB). They have been characterized by XRD, nitrogen adsorption/desorption measurements, FT-IR and thermogravimetry. Adsorption behavior of heavy metal ions on this adsorbent have been studied and discussed. The results show that incorporation of aluminum ions in the framework of the mesoporous MCM-41 has transformed it into an effective cation exchanger. The K(d) values of several metal ions have been increased. Separation of Sr(II)-Ce(III), Sr(II)-U(VI) and Cd(II)-Ce(III) has been developed on columns of this novel mesoporous cation exchanger. 2009 Elsevier B.V. All rights reserved.

  9. Ionic liquid-assisted sonochemical preparation of CeO 2 nanoparticles for CO oxidation

    DOE PAGES

    Alammar, Tarek; Noei, Heshmat; Wang, Yuemin; ...

    2014-10-10

    CeO 2 nanoparticles were synthesized via a one-step ultrasound synthesis in different kinds of ionic liquids based on bis(trifluoromethanesulfonylamide, [Tf 2N] –, in combination with various cations including 1-butyl-3-methylimidazolium ([C 4mim] +), 1-ethyl-2,3-dimethylimidazolium ([Edimim] +), butyl-pyridinium([Py 4] +), 1-butyl-1-methyl-pyrrolidinium ([Pyrr 14] +), and 2-hydroxyethyl-trimethylammonium ([N 1112OH] +). Depending on synthetic parameters, such as ionic liquid, Ce(IV) precursor, heating method, and precipitator, formed ceria exhibits different morphologies, varying from nanospheres, nanorods, nanoribbons, and nanoflowers. The morphology, crystallinity, and chemical composition of the obtained materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-raymore » spectroscopy (EDX), Raman spectroscopy, and N2 adsorption. The structural and electronic properties of the as-prepared CeO 2 samples were probed by CO adsorption using IR spectroscopy under ultrahigh vacuum conditions. The catalytic activities of CeO 2 nanoparticles were investigated in the oxidation of CO. CeO 2 nanospheres obtained sonochemically in [C 4mim][Tf 2N] exhibit the best performance for low-temperature CO oxidation. As a result, the superior catalytic performance of this material can be related to its mesoporous structure, small particle size, large surface area, and high number of surface oxygen vacancy sites.« less

  10. Research of Co(II) Adsorption on Silica Gel Grafted with Dithiocarbamate (DTC-SiO2) in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Yao, Qingxu; Xu, Peng; Huo, Yonggang; Shang, Aiguo; Yu, Fengmei

    2018-01-01

    Dithiocarbamate grafted silica gel (DTC-SiO2) was prepared following two simple reaction steps. The properties of the composite were characterized by FTIR, SEM and element analysis. Its ability to remove Co2+ ions in aqueous solution with low concentration was also studied by static adsorption experiments. The effects of pH value in solution, contact time and temperature were investigated. The results show that the DTC-SiO2 exhibits excellent adsorption property for Co2+. The adsorption kinetics could be well described by pseudo-second-order model and the adsorption isotherms could be depicted by both Freundlich and Dubinin-Radushkevich models. The adsorption process belongs to chemisorption. The slightly influence of common interfering metal ions (Na+, K+, Ca2+ and Mg2+) on the adsorption capacity revealing the synthesized DTC-SiO2 performs excellent selective adsorption to Co2+.

  11. Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption

    USGS Publications Warehouse

    Mastalerz, Maria; Drobniak, A.; Rupp, J.

    2008-01-01

    Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable

  12. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    NASA Astrophysics Data System (ADS)

    Kadirova, Zukhra C.; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9-10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (SBET 50 m2/g) and low crystallinity (as FeOOH and Fe2O3 phases) in the BAU-HA and BAU-OA samples (SBET 4 and 111 m2/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (kapp) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015-0.025 mM; sample content - 10 mg/l; initial oxalic acid concentration - 0.43 mM; pH 3-4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  13. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    NASA Astrophysics Data System (ADS)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  14. Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    PubMed

    Siegelman, Rebecca L; McDonald, Thomas M; Gonzalez, Miguel I; Martell, Jeffrey D; Milner, Phillip J; Mason, Jarad A; Berger, Adam H; Bhown, Abhoyjit S; Long, Jeffrey R

    2017-08-02

    In the transition to a clean-energy future, CO 2 separations will play a critical role in mitigating current greenhouse gas emissions and facilitating conversion to cleaner-burning and renewable fuels. New materials with high selectivities for CO 2 adsorption, large CO 2 removal capacities, and low regeneration energies are needed to achieve these separations efficiently at scale. Here, we present a detailed investigation of nine diamine-appended variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) that feature step-shaped CO 2 adsorption isotherms resulting from cooperative and reversible insertion of CO 2 into metal-amine bonds to form ammonium carbamate chains. Small modifications to the diamine structure are found to shift the threshold pressure for cooperative CO 2 adsorption by over 4 orders of magnitude at a given temperature, and the observed trends are rationalized on the basis of crystal structures of the isostructural zinc frameworks obtained from in situ single-crystal X-ray diffraction experiments. The structure-activity relationships derived from these results can be leveraged to tailor adsorbents to the conditions of a given CO 2 separation process. The unparalleled versatility of these materials, coupled with their high CO 2 capacities and low projected energy costs, highlights their potential as next-generation adsorbents for a wide array of CO 2 separations.

  15. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.

    PubMed

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Hadibarata, Tony; Yusop, Zulkifli

    2016-08-01

    Polyethersulphone (PES) membranes blended with silicon dioxide (SiO2) nanoparticles were prepared via a dry-jet wet spinning technique for the removal of bisphenol A (BPA) by adsorption mechanism. The morphology of SiO2 nanoparticles was analysed using a transmission electron microscopy and particle size distribution was also analysed. The prepared membranes were characterized by several techniques including field emission scanning electron microscopy, Fourier transform infrared spectroscopy and water contact angle. The adsorption mechanism of membrane towards BPA was evaluated by batch experiments and kinetic model. The influence of natural organic matter (NOM) in feed water on membrane BPA removal was also studied by filtration experiments. Results showed that BPA adsorption capacity as high as 53 µg/g could be achieved by the PES membrane incorporated with 2 wt% SiO2 in which the adsorption mechanism was in accordance with the pseudo-second-order kinetic model. The intraparticles diffusion model suggested that the rate limiting factor of membrane adsorption mechanism is governed by the diffusion of BPA into the membrane pores. The presence of 10 ppm NOM has reported to negatively reduce BPA removal by 24%, as it tended to compete with BPA for membrane adsorption. This work has demonstrated that PES-SiO2 membrane has the potential to eliminate trace amount of BPA from water source containing NOM.

  16. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    PubMed

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  17. Ag{sup II} doped MIL-101 and its adsorption of iodine with high speed in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Ping; Qi, Bingbing; Liu, Ying

    In order to improve the adsorption speed of iodine from water, MIL-101 with extra-large specific surface area (3054 m{sup 2}/g) was chosen as a base material, and then, Ag was doped into MIL-101 to enhance its adsorption capacity through an incipient-wetness impregnation method. With the characterization of SEM-EDS, TEM, XRD, XPS, TGA, IR, and BET techniques, the resulting Ag was identified to be stay in the framework of MIL-101 stably in the form of Ag{sup II} (generally, Ag{sup II} cation is not stable). However, after the adsorption of I{sup −} anions, Ag{sup II} stay in the cages of MIL-101 inmore » the form of AgI/AgI{sub 3}. It is important to note that, all adsorbents show high adsorption speed of iodine in solution. The equilibrium adsorption time of the adsorbents were acquired by only a few minutes, which can be attributed to its large BET surface area. An interesting note is that, when the doping amount of Ag is less than 9%, the iodine anions adsorption capacity of Ag@MIL-101 is greater than its theoretical adsorption capacity. It shows that both physical adsorption and chemical adsorption are existed in the adsorption process. This study hopefully leads to a new and highly efficient Ag-based adsorbent for iodide adsorb from solutions. - Graphical abstract: Ag{sup II} stay in the framework of MIL-101 stably because of F{sup -}, after the adsorption of I{sup -} anions, Ag{sup I}I /Ag{sup I}I{sub 3} stay in the cages of MIL-101. The equilibrium adsorption time of Ag@MIL-101 were acquired by only a few minutes. - Highlights: • Ag{sup II} was doped into MIL-101 by an incipient-wetness impregnation method. • Both physical adsorption and chemical adsorption are verified in the adsorption process. • Ag@MIL-101 exhibits high adsorption speed and adsorption capacity. • Ag@MIL-101 can be effectively applied to the removal of radioactive iodide anions from water in acidic and neutral medium.« less

  18. Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source.

    PubMed

    Cordero-García, A; Turnes Palomino, G; Hinojosa-Reyes, L; Guzmán-Mar, J L; Maya-Teviño, L; Hernández-Ramírez, A

    2017-02-01

    In this study, the photocatalytic removal of an emerging contaminant, diclofenac (DCF) sodium, was performed using the nitrogen-doped WO 3 /TiO 2 -coupled oxide catalyst (WO 3 /TiO 2 -N). The catalyst synthesis was accomplished by a sol-gel method using tetrabutyl orthotitanate (C 16 H 36 O 4 Ti), ammonium p-tungstate [(NH 4 ) 10 H 2 W 12 O 42 ·4H 2 O] and ammonium nitrate (NH 4 NO 3 ) as the nitrogen source. For comparison, TiO 2 and WO 3 /TiO 2 were also prepared under similar conditions. Analysis by X-ray diffraction (XRD), N 2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the synthesized materials. The photocatalytic efficiency of the semiconductors was determined in a batch reactor irradiated with simulated solar light. Residual and mineralized DCF were quantified by high-performance liquid chromatography, total organic carbon analysis and ion exchange chromatography. The results indicated that the tungsten atoms were dispersed on the surface of TiO 2 as WO 3 . The partial substitution of oxygen by nitrogen atoms into the lattice of TiO 2 was an important factor to improve the photocatalytic efficiency of WO 3 /TiO 2 . Therefore, the best photocatalytic activity was obtained with the WO 3 /TiO 2 -N 0.18 catalyst, reaching 100% DCF transformation at 250 kJ m -2 and complete mineralization at 400 kJ m -2 of solar-accumulated energy.

  19. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  20. Influence of 300°C thermal conversion of Fe-Ce hydrous oxides prepared by hydrothermal precipitation on the adsorptive performance of five anions: Insights from EXAFS/XANES, XRD and FTIR (companion paper).

    PubMed

    Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan

    2017-04-01

    In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L 3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents. Copyright © 2016 Elsevier Inc. All rights reserved.