Sample records for xrd optical absorption

  1. A facile synthesis of metal nanoparticle - graphene composites for better absorption of solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Bindu; Mulla, Rafiq; Rabinal, M. K., E-mail: mkrabinal@yahoo.com

    2015-06-24

    Herein, a facile chemical approach has been adopted to prepare silver nanoparticles (AgNPs)- graphene (G) composite to study photothermal effect. Sodium borohydride (SBH), a strong reducing agent has been selected for this work. Effect of SBH concentrations on optical behavior of AgNPs-G composite was also investigated. Resultant materials were characterized by various techniques including X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), optical absorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM micrographs confirm wrapping of AgNPs into graphene whereas XRD analysis reveals their particle size variation between 47 nm to 69 nm. Optical studies throw a light on theirmore » strong absorption behavior towards solar radiation.« less

  2. A study on micro-structural and optical parameters of InxSe1-x thin film

    NASA Astrophysics Data System (ADS)

    Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.

    2018-04-01

    Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.

  3. Effect of annealing temperature on optical properties of binary zinc tin oxide nano-composite prepared by sol-gel route using simple precursors: structural and optical studies by DRS, FT-IR, XRD, FESEM investigations.

    PubMed

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Binary zinc tin oxide nano-composite was synthesized by a facile sol-gel method using simple precursors from the solutions consisting of zinc acetate, tin(IV) chloride and ethanol. Effect of annealing temperature on optical and structural properties was investigated using X-ray diffraction (XRD), diffuse reflectance spectra (DRS), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD results revealed the existence of the ZnO and SnO2 phases. FESEM results showed that binary zinc tin oxide nano-composites ranges from 56 to 60 nm in diameter at 400°C and 500°C annealing temperatures respectively. The optical band gap was increased from 2.72 eV to 3.11 eV with the increasing of the annealing temperature. FTIR results confirmed the presence of zinc oxide and tin oxide and the broad absorption peaks at 3426 and 1602 cm(-1) can be ascribed to the vibration of absorptive water, and the absorption peaks at 546, 1038 and 1410 cm(-1) are due to the vibration of Zn-O or Sn-O groups in binary zinc tin oxide. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  5. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  6. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  7. Microstructural, optical and electrical properties of LaFe0.5Cr0.5O3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Ali, S. Asad; Naseem, Swaleha; Khan, Wasi; Sharma, A.; Naqvi, A. H.

    2016-05-01

    Perovskite nanocrystalline powder of LaFe0.5Cr0.5O3 was synthesized by sol-gel combustion route and characterized by x-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with EDS, UV-visible and LCR meter at room temperature Rietveld refinement of the XRD data confirms that the sample is in single phase-rhombohedral structure with space group R-3C. SEM micrograph shows clear nanostructure of the sample and EDS ensures the presence of all elements in good stoichiometric. The optical absorption indicates the maximum absorption at 315 nm and optical band gap of 2.94 eV was estimated using Tauc's relation. Dielectric constant (ɛ') and loss were found to decrease with increase in frequencies. The dielectric behavior was explained on the basis of Maxwell-Wagner's two layer model.

  8. Impact of pentacene film thickness on the photoresponse spectra: Determination of the photocarrier generation mechanism

    NASA Astrophysics Data System (ADS)

    Gorgolis, S.; Giannopoulou, A.; Anastassopoulos, D.; Kounavis, P.

    2012-07-01

    Photocurrent response, optical absorption, and x-ray diffraction (XRD) measurements in pentacene films grown on glass substrates are performed in order to obtain an insight into the mobile photocarriers generation mechanism. For film thickness of the order of 50 nm and lower, the photocurrent response spectra are found to follow the optical absorption spectra demonstrating the so-called symbatic response. Upon increasing the film thickness, the photoresponse demonstrates a transition to the so-called antibatic response, which is characterized by a maximum and minimum photocurrent for photon energies of minimum and maximum optical absorption, respectively. The experimental results are not in accordance with the model of important surface recombination rate. By taking into account the XRD patterns, the experimental photoresponse spectra can be reproduced by model simulations assuming efficient exciton dissociation at a narrow layer of the order of 20 nm near the pentacene-substrate interface. The simulated spectra are found sensitive to the film thickness, the absolute optical absorption coefficient, and the diffusion exciton length. By comparing the experimental with the simulated spectra, it is deduced that the excitons, which are created by optical excitation in the spectral region of 1.7-2.2 eV, diffuse with a diffusion length of the order of 10-80 nm to the pentacene-substrate interface where efficiently dissociate into mobile charge carriers.

  9. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  10. Synthesis and Thermal and Photo Behaviors of New Polyamide/Organocaly Nanocomposites Containing Para Phenylenediacrylic Moiety

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Soleimani, Masoumeh; Shabanian, Meisam; Abootalebi, Ashraf Sadat

    2011-06-01

    New type of aromatic polyamide/montmorillonite nanocomposites were produced using solution process in N-methyl-2-pyrolidone. Amide chains were synthesized from 4,4'-diaminodiphenyl sulfone and p-phenylenediacrylic acid in N-methyl-2-pyrolidone. The resulting nanocomposite films containing 5-15 mass % of organoclay were characterized for FT-IR, scanning electronmicroscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), optical transparency and water absorption measurements. The distribution of organoclay and nanostructure of the composites were investigated by (XRD) and SEM analyses. Thermogravimetric analysis indicated an increase in thermal stability of nanocomposites as compared to pristine polyamide. The percentage optical transparency and water absorption of these hybrids was found to be much reduced upon the addition of modified layered silicate indicating decreased permeability.

  11. Structural and optical studies of hydrothermally synthesized MoS{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, Levna; Swetha, A. K.; Aneesh, P. M., E-mail: aneeshpm@cukerala.ac.in

    2016-05-06

    Transition-metal dichalcogenides like molybdenum disulphide have intrigued intensive interest as two-dimensional (2D) materials beyond extensively studied graphene due to their unique electronic and optical properties. Here we report the hydrothermal synthesis of MoS{sub 2} nanostructures without the addition of any surfactants. The structural and optical properties of the synthesized samples were characterized by various techniques, including X-ray diffraction (XRD), UV-Vis absorption, photoluminescence (PL), and Raman analysis. XRD and Raman spectroscopic studies confirm the formation of hexagonal phase and well ordered stacking of S-Mo-S layers. The increased lattice parameters of MoS{sub 2} samples are due to the stress or strain inducedmore » bending and folding of the layers. The synthesized MoS{sub 2} nanostructures shows a large optical absorption in 300-700 nm region and strong luminescence at 640 nm. In addition, the optical results demonstrates the quantum confinement in layered d-electron material MoS{sub 2} that can lead to engineer its various properties for electronic and optoelectronic applications.« less

  12. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.

    Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.

  13. Microstructural parameters and high third order nonlinear absorption characteristics of Mn-doped PbS/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem

    2017-11-01

    In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.

  14. PVP capped CdS nanoparticles for UV-LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  15. Fabrication, characterization and annealing of polymer-fullerene bulk heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, R.; Vishnoi, R.; Biswas, S. K.

    2017-05-01

    The structural and optical properties of bulk heterojunction (BHJ) organic solar cell devices have been studied before and after heat treatment. The BHJ structure is fabricated by making the blend of Poly [3-hexylthiophene] (P3HT) and Phenyl C61 butyric acid methyl ester (PCBM) for active layer. After the heat treatment at 140 °C temperature, the device is characterized by X-ray diffraction (XRD) measurement, Raman spectroscopy and UV-visible absorption spectroscopy. The reduced intensity of XRD peak corresponding to (100) plane and decreased crystallite size was observed after annealing. The Raman peak intensity corresponding to C=C stretching mode and optical absorption peak intensity is also found to be reduced after the heat treatment to the device. The diminished intensitiesafter annealing may be due to diffusion of Al into active layer.

  16. [Effects of annealing temperature on the structure and optical properties of ZnMgO films prepared by atom layer deposition].

    PubMed

    Sun, Dong-Xiao; Li, Jin-Hua; Fang, Xuan; Chen, Xin-Ying; Fang, Fang; Chu, Xue-Ying; Wei, Zhi-Peng; Wang, Xiao-Hua

    2014-07-01

    In the present paper, we report the research on the effects of annealing temperature on the crystal quality and optical properties of ZnMgO films deposited by atom layer deposition(ALD). ZnMgO films were prepared on quartz substrates by ALD and then some of the samples were treated in air ambient at different annealing temperature. The effects of annealing temperature on the crystal quality and optical properties of ZnMgO films were characterized by X-ray diffraction (XRD), photoluminescence (PL) and ultraviolet-visible (UV-Vis) absorption spectra. The XRD results showed that the crystal quality of ZnMgO films was significantly improved when the annealing temperature was 600 degrees C, meanwhile the intensity of(100) diffraction peak was the strongest. Combination of PL and UV-Vis absorption measurements showed that it can strongly promote the Mg content increasing in ZnMgO films and increase the band gap of films. So the results illustrate that suitable annealing temperature can effectively improve the crystal quality and optical properties of ZnMgO films.

  17. Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion

    NASA Astrophysics Data System (ADS)

    Ami Hazlin, M. N.; Halimah, M. K.; Muhammad, F. D.; Faznny, M. F.

    2017-04-01

    The zinc borotellurite doped with dysprosium oxide glass samples with chemical formula {[(TeO2) 0 . 7(B2O3) 0 . 3 ] 0 . 7(ZnO) 0 . 3 } 1 - x(Dy2O3)x (where x=0.01, 0.02, 0.03, 0.04 and 0.05 M fraction) were prepared by using conventional melt quenching technique. The structural and optical properties of the proposed glass systems were characterized by using X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and UV-VIS spectroscopy. The amorphous nature of the glass systems is confirmed by using XRD technique. The infrared spectra of the glass systems indicate three obvious absorption bands which are assigned to BO3 and TeO4 vibrational groups. Based on the absorption spectra obtained, the direct and indirect optical band gaps, as well as the Urbach energy were calculated. It is observed that both the direct and indirect optical band gaps increase with the concentration of Dy3+ ions. On the other hand, the Urbach energy is observed to decrease as the concentration of Dy3+ ions increases.

  18. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P., E-mail: pkistaiah@yahoo.com

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties ismore » discussed.« less

  19. Structural and optical properties of furfurylidenemalononitrile thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  20. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  1. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.

    2014-10-01

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  2. Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Anila, E. I.

    2018-04-01

    We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.

  3. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  4. Synthesis, growth, structural, optical and thermal properties of an organic single crystal: 4-nitroaniline 4-aminobenzoic acid.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2014-01-24

    The organic single crystals of 4-nitroaniline 4-aminobenzoic acid (4NAABA) were grown from ethanol solvent. The lattice parameters of the grown crystal have been confirmed from single crystal XRD analysis. The powder XRD pattern shows the various planes of grown crystal. The FTIR and (1)H NMR spectral analysis confirm the presence of various functional groups and the placement of proton in 4NAABA compound respectively. The UV absorption was carried out which shows the cutoff wavelength around 459 nm. The optical band gap of the crystal has been evaluated from the transmission spectra and absorption coefficient by extrapolation technique. In addition, a fluorescence spectral analysis is carried out for 4NAABA crystals. The thermal properties of crystals were evaluated from thermogravimetrical analysis. It shows that the grown crystal is stable up to 160°C and the crystal has sharp melting point at 151°C. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  6. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Sohrab; Kabir, Humayun; Rahman, M. Mahbubur; Hasan, Kamrul; Bashar, Muhammad Shahriar; Rahman, Mashudur; Gafur, Md. Abdul; Islam, Shariful; Amri, Amun; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-01-01

    In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV-vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  7. Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)

    NASA Astrophysics Data System (ADS)

    Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish

    2018-05-01

    Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.

  8. Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O

    NASA Astrophysics Data System (ADS)

    BelhajSalah, S.; Abdelbaky, Mohammed S. M.; García-Granda, Santiago; Essalah, K.; Ben Nasr, C.; Mrad, M. L.

    2018-01-01

    A novel hybrid compound, bis(4-methylanilinium)hexachlorostannate(IV) monohydrate, formulated as (C7H10N)2[SnCl6]·H2O, has been prepared and characterized by powder and single crystal X-ray diffraction (XRD), Hirshfeld surface analysis, infrared spectroscopy (IR), optical study, differential thermal analysis(DTA) and X-ray photoelectron spectroscopy analysis (XPS). The title compound crystallizes in the monoclinic space group P21/c with a = 13.093(1)Å, b = 7.093(6)Å, c = 24.152(2)Å, β = 98.536(4)⁰ and V = 2218.4(4) Å3. Their crystal structure exhibits alternating inorganic layers parallel to the (ab) plane at z = n/2. The different entities, [SnCl6]2-, organic cations and water molecules, are connected via hydrogen bonds to form a three-dimensional network. The powder XRD data confirms the phase purity of the crystalline sample. The intermolecular interactions were investigated by Hirshfeld surfaces. The vibrational absorption bands were identified by IR spectroscopy and have been discussed. The optical properties of the crystal were studied by using optical absorption, UV-visible absorption and photoluminescence spectroscopy studies. The compound was also characterized by DTA to determine its thermal behavior with respect to the temperature. Finally, XPS technique is reported for analyzing the surface chemistry of this compound.

  9. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.

    2018-06-01

    This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.

  10. Effect of reaction atmosphere on structural and optical properties of hexagonal molybdenum oxide (h-MoO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, V. Arumai; Chithambararaj, A.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    The present work aims to synthesize single phase h-MoO{sub 3} nanocrytals by chemical precipitation method exposed under different reaction atmospheres. The reaction atmosphere have been successfully tuned as air, nitrogen and argon and studied its effects on structural, functional, morphology and optical properties by using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and diffuse reflectance spectroscopy (DRS) measurements. The XRD result indicates that the sample exhibits characteristic hexagonal phase of MoO{sub 3}. The crystallite size is estimated by well known Scherrer’s method. The crystallite size is relative small in the case of sample prepared atmore » argon atmosphere. The functional groups such as Mo-O, N-H and O-H are identified from FT-IR spectroscopy. The particle exhibits rod like morphology with perfect hexagonal cross-section. The optical absorption observed at 420-450 nm corresponds to fundamental optical absorption by h-MoO{sub 3}. The band gap values are estimated using Kublka-Munk (K-M) function and found to be 2. 87 eV, 2.93 eV and 2.97 eV for samples synthesized under air, nitrogen and argon, respectively.« less

  11. Microstructural and optical properties of Mn doped NiO nanostructures synthesized via sol-gel method

    NASA Astrophysics Data System (ADS)

    Shah, Shamim H.; Khan, Wasi; Naseem, Swaleha; Husain, Shahid; Nadeem, M.

    2018-04-01

    Undoped and Mn(0, 5%, 10% and 15%) doped NiO nanostructures were synthesized by sol-gel method. Structure, morphology and optical properties were investigated through XRD, FTIR, SEM/EDS and UV-visible absorption spectroscopy techniques. XRD data analysis reveals the single phase nature with cubic crystal symmetry of the samples and the average crystallite size decreases with the doping of Mn ions upto 10%. FTIR spectra further confirmed the purity and composition of the synthesized samples. The non-spherical shape of the nanostructures was observed from SEM micrographs and gain size of the nanostructures reduces with Mn doping in NiO, whereas agglomeration increases in doped sample. Optical band gap was estimated using Tauc'srelation and found to increase on incorporation of Mn upto 10% in host lattice and then decreases for further doping.

  12. XRD and spectral dataset of the UV-A stable nanotubes of 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine.

    PubMed

    Govindhan, R; Karthikeyan, B

    2017-10-01

    The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.

  13. Effect of 50MeV Li{sup 3+} ion irradiation on structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Shabir, E-mail: shaphyjmi@gmail.com; Sethi, Riti; Nasir, Mohd

    2015-08-28

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of themore » material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.« less

  14. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  15. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  16. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    NASA Astrophysics Data System (ADS)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  17. Structural, optical and enhanced power filtering application of PEG capped Zn1-xCoxS quantum dots

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Prasanth, S.; Pragash, R.; Unnikrishnan, N. V.; Sudarsanakumar, C.

    2018-04-01

    Zn1-xCoxS (x= 0.05, 0.1, 0.15 and 0.2) quantum dots were synthesized successfully using co precipitation technique in polyethylene glycol (PEG) matrix. The PEG acted as a capping agent as well as a reducing agent. The structural and optical properties of the samples were studied by x-ray diffraction (XRD), TEM analysis and UV-Visible absorption. Nonlinear optical properties were measured using open aperture z-scan technique, employing frequency doubled (532 nm) pumping sources.

  18. Structural, morphological and optical properties of chromium oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babukutty, Blessy; Parakkal, Fasalurahman; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com

    2015-06-24

    Chromium oxide nanoparticles are synthesized by reduction route from chloride precursors with surfactant, trioctylphosphine oxide (TOPO). Structural and morphological characterization are analyzed using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Transmission Electron micrographs show that the average grain size lies in the range 5nm to 10nm. Optical characterization has been done by UV-VIS spectrophotometer. Distinct optical absorptions of Cr{sup 3+} ions show hinting towards the presence of Cr{sub 2}O{sub 3}. Presence of oxygen is also confirmed from Electron Energy Loss Spectroscopy (EELS) studies.

  19. Crystalline phase transformation of colloidal cadmium sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghali, M.; Eissa, A. M.; Mosaad, M. M.

    2017-03-01

    In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.

  20. Physical and optical studies of BaO-TeO2-TiO2-B2O3 glasses containing Cu2+ transition metal ion

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Kumar, R. Vijaya; Hameed, Abdul; Sagar, D. Karuna; Chary, M. Narasimha; Shareefuddin, Md.

    2018-05-01

    Glasses with the composition xBaO-(30-x) TeO2-10TiO2-59B2O3-1CuO (where x = 10, 15, 20 and 25 mole %) were prepared by melt quenching technique. The XRD studies were made on these glass samples at room temperature. The amorphous nature of the glass samples was confirmed from the XRD patterns. The physical parameters such as density (ρ), molar volume (Vm), average boron-boron separation (dB-B) and oxygen packing density (OPD) were calculated. The change in density and molar volume has been investigated in terms of the variation of BaO in the glass composition. The optical absorption spectra have been recorded at room temperature. The values of optical band gap have been estimated from the ASF and Tauc's methods. Both Tauc's and ASF methods have been showing progressively increasing indirect optical band gap values with the increase of BaO concentrations.

  1. Effect of RE (Nd3+, Sm3+) oxide on structural, optical properties of Na2O-Li2O-ZnO-B2O3 glass system

    NASA Astrophysics Data System (ADS)

    Hivrekar, Mahesh M.; Bhoyar, D. N.; Mande, V. K.; Dhole, V. V.; Solunke, M. B.; Jadhav, K. M.

    2018-05-01

    Zinc borate glass activated with rare earth oxide (Nd2O3, Sm2O3) of Na2O-Li2O-ZnO-B2O3 quaternary system has been prepared successfully by melt quenching method. The nucleation and growth of RE oxide were controlled temperature range 950-1000° C and rapid cooling at room temperature. The physical, structural and optical properties were characterized by using X-ray diffraction (XRD), SEM, Ultraviolet-visible spectroscopy (UV-Vis). XRD and SEM studies confirmed the amorphous nature, surface morphology of prepared zinc borate glass. The physical parameters like density, molar volume, molar mass of Nd3+, Sm3+ doped borate glass are summarized in the present article. The optical absorption spectra along with tauc's plot are presented. The optical energy band gap increases due to the addition of rare earth oxide confirming the role of network modifier.

  2. Effect of reduction time on third order optical nonlinearity of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-04-01

    We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  3. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  4. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  5. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  6. Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.

    PubMed

    Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid

    2014-01-01

    Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.

  7. Influence of rare earth ions on microstructural and optical properties of ZnO nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riyajuddin, Sk., E-mail: riyaj5303@gmail.com; Ahmad, Shabbir; Faizan, M.

    2016-05-23

    Pure and 3% rare earth ions (Nd{sup 3+} & Gd{sup 3+}) doped ZnO samples were synthesized by sol-gel method, followed by annealing at temperature 450°C for 2hr. The samples were characterized by XRD, FTIR and UV-visible spectroscopy. XRD result confirmed single phase nature of all samples with crystalline structure. The average crystallite size of the doped samples found to be decreases as caculated using Debye-Scherrer’s formula. FTIR spectra indicate absorption band centered at 464 cm{sup −1} which is attributed to Zn-O lattice vibration. It confirms the formaton of compounds. UV-visible spectroscopy was used to study the optical properties and band gapmore » of the synthesised materials using Tauc’s relation.« less

  8. Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol gel in situ crystallization method

    NASA Astrophysics Data System (ADS)

    Hao, Haiyan; Yao, Xi; Wang, Minqiang

    2007-01-01

    Homogeneous ZnSe nanocrystals doped SiO 2 glass was successfully prepared by sol-gel in situ crystallization method. The structure of the doped ZnSe nanocrystals was studied by X-ray diffraction (XRD). ZnSe nanocrystals in silica were about 4-10 nm analysed by transmission electron microscopy (TEM), which was consistent with the results of XRD estimated using Scherrer's formular. The quantum size effect in ZnSe nanocrystals was evidenced from the blue-shifts of the optical absorption edge, and the average size of ZnSe nanocrystals was estimated by the magnitude of blue shift according to the L.E. Brus' effective mass model. The size of ZnSe nanocrystals depending on annealing time and temperature was further discussed using XRF.

  9. Optical and structural investigation of Dy3+-Nd3+ co-doped in magnesium lead borosilicate glasses.

    PubMed

    Rao, T G V M; Rupesh Kumar, A; Neeraja, K; Veeraiah, N; Rami Reddy, M

    2014-01-24

    MgO-PbO-B2O3-SiO2-Nd2O3-Dy2O3 glasses are prepared by melt-quenching technique. The samples are characterized by X-ray diffraction (XRD), optical absorption, luminescence and Fourier transform infrared (FT-IR) spectral studied. XRD analysis evidently indicates that the prepared samples are fully amorphous nature. From the optical absorption spectra, the bonding environment surrounding the Dy(3+) and their energy level scheme in glass network is analyzed. Enhancement of Dy(3+) emission by non-radiative energy transfers from Nd(3+) has been observed here. The samples emits intensive bluish yellow color from the (4)F9/2→(6)H15/2, (6)H13/2 transition of Dy(3+) ions in these glasses which are nearer to white light and it is also supported by the chromaticity color coordinates. The FT-IR spectra reveal that network connectivity is increased with replacement of bonds B-O-B, Si-O-Si by more resistant B-O-Si bonds with gradually increasing the content of Dy(3+) ions in the glass network. Along with spectroscopic parameters some physical parameters like density, refractive index etc. are measured for the glasses. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Autoclave growth, magnetic, and optical properties of GdB6 nanowires

    NASA Astrophysics Data System (ADS)

    Han, Wei; Wang, Zhen; Li, Qidong; Liu, Huatao; Fan, Qinghua; Dong, Youzhong; Kuang, Quan; Zhao, Yanming

    2017-12-01

    High-quality single crystalline gadolinium hexaboride (GdB6) nanowires have been successfully prepared at very low temperatures of 200-240 °C by a high pressure solid state (HPSS) method in an autoclave with a new chemical reaction route, where Gd, H3BO3, Mg and I2 were used as raw materials. The crystal structure, morphology, valence, magnetic and optical absorption properties were investigated using XRD, FESEM, HRTEM, XPS, SQUID magnetometry and optical measurements. HRTEM images and SAED patterns reveal that the GdB6 nanowires are single crystalline with a preferred growth direction along [001]. The XPS spectrum suggests that the valence of Gd ion in GdB6 is trivalent. The effective magnetic momentum per Gd3+ in GdB6 is about 6.26 μB. The optical properties exhibit weak absorption in the visible light range, but relatively strong absorbance in the NIR and UV range. Low work function and high NIR absorption can make GdB6 nanowires a potential solar radiation shielding material for solar cells or other NIR blocking applications.

  11. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  12. Effect of PbO on optical properties of tellurite glass

    NASA Astrophysics Data System (ADS)

    Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.

    2018-03-01

    Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.

  13. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    NASA Astrophysics Data System (ADS)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  14. Effect of heat treatment on morphological, structural and optical properties of CoMTPP thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ammar, A. H.; Farag, A. A. M.; Atta, A. A.; El-Zaidia, E. F. M.

    2011-03-01

    The morphologies and crystal structures of 5,10,15,20-tetrakis(4-methoxyphenyl)-21 H,23 H-porphine cobalt(II), CoMTPP, thin films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Optical constants namely the refractive index, n, and the absorption index, k, of CoMTPP were estimated by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 200 to 2500 nm. The dispersion of the refractive index in terms of the single oscillator in the transparent region is discussed. The single oscillator energy ( E0), the dispersion energy ( E d), the high frequency dielectric constant ( ɛ∞) and the lattice dielectric constant ( ɛ L) were calculated. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals two indirect allowed transitions for as-deposited and annealed films.

  15. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  16. Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.

    2012-06-15

    Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less

  17. Synthesis and studies on structural, optical and nonlinear optical properties of novel organic inter-molecular compounds: 4-chloro-3-nitroaniline-3-hydroxy benzaldehyde and urea-4-dimethylaminopyridine

    NASA Astrophysics Data System (ADS)

    Pandey, Priyanka; Rai, R. N.

    2018-05-01

    Two novel organic inter-molecular compounds (IMCs), (3-(4-chloro-3-nitrophenylimino) methyl) phenol) (CNMP) and urea ̶ 4-dimethylaminopyridine complex (UDMAP), have been synthesized by solid state reaction. These two IMCs were identified by phase diagram study of CNA-HB and U-DMAP systems. The single crystals of newly obtained IMCs were grown by slow solvent evaporation technique at room temperature. Both the IMCs were further studied for their thermal, spectral, single crystal XRD for their atomic packing in molecule, crystallinity, optical and nonlinear optical behaviour. In both the cases, melting point of inter-molecular compounds was found to be higher than that of their parent components, CNMP was found to be thermally stable up to 158 °C while UDMAP was stable up to 144 °C, which indicate their extra stability than their parents. The single crystal XRD studies confirmed that CNMP has crystallized in orthorhombic unit cell with non-centrosymmetric space group P212121 while UDMAP has crystallized in monoclinic unit cell with centrosymmetric space group C2/c. The absorption spectrum of CNMP was found to be in between the absorption of parents, while broadening of peak and red shift was observed in UDMAP as compared to the parents. Second order nonlinear optical property of CNMP and UDMAP was studied using Kurtz Perry powder technique and intense green light emission was observed with CNMP on excitation with 1064 nm of Nd:YAG laser while no emission was observed with UDMAP.

  18. Structural analysis of the industrial grade calcite

    NASA Astrophysics Data System (ADS)

    Shah, Rajiv P.; Raval, Kamlesh G.

    2017-05-01

    The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries

  19. Synthesis, Optical and Structural Properties of Copper Sulfide Nanocrystals from Single Molecule Precursors

    PubMed Central

    Ajibade, Peter A.; Botha, Nandipha L.

    2017-01-01

    We report the synthesis and structural studies of copper sulfide nanocrystals from copper (II) dithiocarbamate single molecule precursors. The precursors were thermolysed in hexadecylamine (HDA) to prepare HDA-capped CuS nanocrystals. The optical properties of the nanocrystals studied using UV–visible and photoluminescence spectroscopy showed absorption band edges at 287 nm that are blue shifted, and the photoluminescence spectra show emission curves that are red-shifted with respect to the absorption band edges. These shifts are as a result of the small crystallite sizes of the nanoparticles leading to quantum size effects. The structural studies were carried out using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and atomic force microscopy. The XRD patterns indicates that the CuS nanocrystals are in hexagonal covellite crystalline phases with estimated particles sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes, with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microspheres on the surfaces, and EDS spectra confirmed the presence of CuS nanoparticles. PMID:28336865

  20. Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish

    2018-05-01

    Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.

  1. Study of the optical properties of CuAlS2 thin films prepared by two methods

    NASA Astrophysics Data System (ADS)

    Ahmad, S. M.

    2017-04-01

    CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.

  2. DSC and optical studies on BaO-Li{sub 2}O-B{sub 2}O{sub 3}-CuO glass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhogi, Ashok, E-mail: ashokbhogi@gmail.com; Kumar, R. Vijaya; Ahmmad, Shaik Kareem

    2016-05-06

    Glasses with composition 15BaO-25Li{sub 2}O-(60-x)B{sub 2}O{sub 3} -xCuO (x= 0, 0.2, 0.4, 0.6, 0.8 and 1 mol%) were prepared by the conventional melt quenching technique. These glasses were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and density measurements. Optical absorption studies were carried out as a function of copper ion concentration. The optical absorption spectra of studied glasses containing copper oxide exhibit a single broad band around 761nm which has been assigned to the 2B{sub 1g}→2B{sub 2g} transition. From these studies, the variations in the values of glass transition temperature (T{sub g}) have been observed. The fundamental absorption edgemore » has been determined from the optical absorption spectra. The values of optical band gap and Urbach energy were determined with increase in concentration of CuO. The variations in density, glass transition temperature, optical band gap and Urbach energy with CuO content have been discussed in terms of changes in the glass structure. The analysis of these results indicated that copper ions mostly exist in Cu{sup 2+} state in these glasses when the concentration of CuO ≤ 0.8 mol% and above this concentration copper ions seem to subsist in Cu{sup 1+} state.« less

  3. Chiral monolithic absorbent constructed by optically active helical-substituted polyacetylene and graphene oxide: preparation and chiral absorption capacity.

    PubMed

    Li, Weifei; Wang, Bo; Yang, Wantai; Deng, Jianping

    2015-02-01

    Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical-substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral-substituted acetylene monomer (Ma), cross-linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV-vis absorption, scanning electron microscopy (SEM), FT-IR, Raman, energy-dispersive spectrometer (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio-differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Structural, optical and magnetic behaviour of nanocrystalline Volborthite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta

    2016-05-06

    Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less

  5. Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in

    2016-05-06

    Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.

  6. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  7. Structural, molecular orbital and optical characterizations of solvatochromic mixed ligand copper(II) complex of 5,5-Dimethyl cyclohexanate 1,3-dione and N,N,N',N'N″-pentamethyldiethylenetriamine.

    PubMed

    Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M

    2014-03-25

    In this work, a new solvatochromic mononuclear mixed ligand complex with the formula, Cu(DMCHD)(Me5dien)NO3 (where, DMCHD=5,5-Dimethyl cyclohexanate 1,3-dione and (Me5dien)=N,N,N',N'N″-pentamethyldiethylenetriamine was synthesized and characterized by analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The formation constant-value for copper (II)-DMCHD was found to be much lower than the expected for similar β-diketones, revealing monobasic unidentate nature of this ligand. The d-d absorption bands of the prepared complex exhibit a color changes in various solvent (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multi Parametric Linear Regression Analysis (MLRA). Structural parameters of the free ligands and their Cu (II) - complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The crystallite size and morphology of Cu(DMCHD)(Me5dien)NO3 were examined using XRD analysis and TEM, revealing that the complex is well crystalline and correspond to the monoclinic crystal structure. The lattice strain and mean crystallite size were estimated by Williamson-Hall (W-H) plot using X-ray diffraction data. The main important absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength of the principal optical transitions in the UV-Vis region were calculated. The analysis of absorption coefficient near the fundamental absorption edge reveals that the optical band gaps are direct allowed transitions with values of 2.78 eV and 3.59 eV. The present copper (II) complex was screened for its antimicrobial activity against Staphylococcus Aureus and Bacillus Subtilis as Gram-positive bacteria, Escherichia Coli and Salmonella Typhimurium as Gram-negative bacteria and Candida Albicans as fungus strain. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The relationship between structural and optical properties of Se-Ge-As glasses

    NASA Astrophysics Data System (ADS)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  9. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  10. Enhanced broadband near-infrared luminescence from Pr3+-doped tellurite glass with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo

    2017-11-01

    Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.

  11. Elucidation of two photon absorption of ethylenediaminium (2,4-dinitrophenolate) crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; Sabari Girisun, T. C.; Anitha, K.; Cecil Raj, S. Alfred

    2016-10-01

    Optical quality single crystals of ethylenediaminium (2,4-dinitrophenolate) [EDA(2,4)DNP] were grown by solvent evaporation method for optical limiting applications against intense ultrashot pulse lasers. Single crystal XRD showed that the material crystallizes in monoclinic system with centric space group P21/C. The crystal packing diagram was elucidated for the first time in literature and it revealed six hydrogen bonds played a very important role in stabilizing the structure. A bifurcated hydrogen bond was also observed between ethylenediamminium and dinitrophenolate ions. The formation of charge transfer complex during the reaction of ethylenediamine and 2,4-dinitrophenol was strongly evident through the vibrational spectroscopic studies. TG-DTA and DSC curves indicate that the material exhibited strong decomposition at 224 °C. Ground state absorption analysis showed that the grown crystals possess absorption maxima in UV region (270 nm, 346 nm) and wide optical transmittance window (480-1200 nm) in the entire visible and NIR region. Measurement of two photon absorption (2PA) and optical limiting response by Z-scan technique under nanosecond pulse excitation was reported. Hence EDA(2,4)DNP with high 2PA coefficient (0.79 ± 0.04 × 10-10 m/W) and low limiting threshold (2.40 ± 0.05 × 1012 W/m2) will be a potential candidate for optical limiting applications like eye and sensor protection against short pulse lasers that are well spread in human interactive sectors.

  12. Study of cobalt effect on structural and optical properties of Dy doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Pandey, Praveen C.

    2018-05-01

    The present study has been carried out to investigate the effect of Co doping on structural and optical properties of Dy doped ZnO nanoparticles. We have prepared pure Zinc oxide, Dy (1%) doped ZnO and Dy (1%) doped ZnO co-doped with Co(2%) with the help of simple sol-gel combustion method. The structural analysis carried out using X-ray diffraction spectra (XRD) indicates substitution of Dy and Co at Zn site of ZnO crystal structure and hexagonal crystal structure without any secondary phase formation in all the samples. The surface morphology was analyzed by transmission electron microscopy (TEM). Absorption study indicates that Dy doping causes a small shift in band edge, while Co co-doping results significant change is absorption edge as well as introduce defect level absorption in the visible region. The band gap of samples decreases due to Dy and Co doping, which can be attributed to defect level formation below the conduction band in the system.

  13. Synthesis of self-organized TiO{sub 2} nanotube arrays: Microstructural, stereoscopic, and topographic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quiroz, Heiddy P., E-mail: hpquirozg@unal.edu.co; Dussan, A., E-mail: adussanc@unal.edu.co

    2016-08-07

    In this work, titanium dioxide nanotubes were prepared by using titanium foils via electrochemical anodization in ethylene glycol solutions containing different amounts of water and fluoride in the ranges of 1%–3% and 0.15%–0.5%, respectively, to determine their effects on morphology, optical, and crystalline structure properties. Annealing processes were performed on all samples in the range between 273 and 723 K. Morphology and structure properties of the samples were studied by scanning electron microscopy, X-ray diffraction (XRD), and transmission electron microscopy. Titanium dioxide (TiO{sub 2}) nanotubes, through anodization method, are strongly influenced by conditions, like fluoride concentration and applied voltages. Tube lengthsmore » between 2 and 7 μm were obtained, exhibiting different diameters and wall thicknesses. When alternating voltage was applied, the outer surface of the nanotubes exhibited evenly spaced ring-shaped regions, while smooth tubes were observed when constant voltage was applied. Reflection peaks, corresponding to Brookite, Anatase, and Rutile, of TiO{sub 2} phases, were observed from the XRD pattern. These phases were corroborated via μXRD measurements, and the Ti{sub 3}O{sub 5} phase was also observed in detail. Absorption coefficient (α), optical band gap (Eg), and extinction coefficient (ε) of TiO{sub 2} nanotubes were calculated by transmittance spectra in the UV–Vis range. Strong absorption was noted in the UV region from reflectance and absorbance measurements. A correlation between synthesis parameters and physical properties is presented.« less

  14. Comprehensive study on compositional modification of Tb3+ doped zinc phosphate glass

    NASA Astrophysics Data System (ADS)

    Yaacob, S. N. S.; Sahar, M. R.; Sazali, E. S.; Mahraz, Zahra Ashur; Sulhadi, K.

    2018-07-01

    Series of glass composition (60-x) P2O5 -40 ZnO -(x) Tb2O3 where x = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol % are prepared by conventional melt quenching technique. X-Ray Diffraction (XRD), FTIR, UV-Vis-NIR and the photoluminescence (PL) spectroscopy are used to characterize the physical, structural and optical behavior of the glass sample. The XRD pattern confirms the amorphous nature and DTA verified the thermal stability of all the glass samples. Glass with 1.5 mol % of Tb2O3 possesses the highest thermal stability. Glass density is found to increase proportionally with increasing amount of Tb3+ while the molar volume behaves reversely. Six main IR absorption bands centered at about 540, 748, 891, 1085 and 1294 cm- 1 are evidenced. The UV-Vis NIR absorption spectra reveals the absorption center band at about 540, 376, 488 and 1920 nm corresponding to the absorption from 7F6 ground state to various excited state of Tb3+ ion. The optical band gaps for direct and indirect transition are in the range 4.53-5.07 eV and 4.30 eV-4.56 eV respectively. The Urbach energy decreases with the increasing concentration of Tb2O3. The PL emission spectra reveals several prominent peaks at 413, 435, 457, 488, 540, 585 and 620 nm due to electronic transition from 5D3→7F5, 5D3→7F4, 5D3→7F3, 5D4→7F6, 5D4→7F5, 5D4→7F3 and 5D4→7F5 respectively.

  15. Crystal growth and characterization of semi organic nonlinear optical (NLO) piperazinium tetrachlorozincate monohydrate (PTCZ) single crystal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2018-04-01

    The semi-organic single crystal of piperazinium tetrachlorozincate monohydrate (PTCZ) was successfully grown by slow evaporation solution technique (SEST). The grown crystal was subjected to the single crystal XRD studies for confirming the unit cell parameters. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis and the optical band gap energy was calculated. The photoconductivity study reveals that the grown crystal has positive photoconductive nature. The mechanical stability of the grown crystal was analyzed using Vickers microhardness analyzer. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 640 nm using solid state laser.

  16. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  17. Optical, electrical and ferromagnetic studies of ZnO:Fe diluted magnetic semiconductor nanoparticles for spintronic applications

    NASA Astrophysics Data System (ADS)

    Elilarassi, R.; Chandrasekaran, G.

    2017-11-01

    In the present investigation, diluted magnetic semiconductor (Zn1-xFexO) nanoparticles with different doping concentrations (x = 0, 0.02, 0.04, 0.06, and 0.08) were successfully synthesized by sol-gel auto-combustion method. The crystal structure, morphology, optical, electrical and magnetic properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis using x-rays (EDAX), ultraviolet-visible spectrophotometer, fluorescence spectroscope (FS), vibrating sample magnetometer (VSM) and broad band dielectric spectrometer (BDS). XRD results reveal that all the samples possess hexagonal wurtzite crystal structure with good crystalline quality. The absence of impurity phases divulge that Fe ions are well incorporated into the ZnO crystal lattice. The substitutional incorporation of Fe3+ at Zn sites is reflected in optical absorption spectra of the samples. Flouorescence spectra of the samples show a strong near-band edge related UV emission as well as defect related visible emissions. The semiconducting behavior of the samples has been confirmed through electrical conductivity measurements. Magnetic measurements indicated that all the samples possess ferromagnetism at room temperature.

  18. Spray deposition of highly transparent fluorine doped cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Deokate, R. J.; Pawar, S. M.; Moholkar, A. V.; Sawant, V. S.; Pawar, C. A.; Bhosale, C. H.; Rajpure, K. Y.

    2008-01-01

    The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.

  19. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawai, U. P.; Dole, B. N.; Khawal, H. A.

    Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn{sub 1−x}Ag{sub x}O nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIRmore » spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm{sup −1}.« less

  1. Growth and characterization of new nonlinear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) single crystals

    NASA Astrophysics Data System (ADS)

    Ravindraswami, K.; Janardhana, K.; Gowda, Jayaprakash; Moolya, B. Narayana

    2018-04-01

    Non linear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) was synthesized using Claisen - Schmidt condensation method and studied for optical nonlinearity with an emphasis on structure-property relationship. The structural confirmation studies were carried out using 1H-NMR, FT-IR and single crystal XRD techniques. The nonlinear absorption and nonlinear refraction parameters in z-scan with nano second laser pulses were obtained by measuring the profile of propagated beam through the samples. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. Thermo gravimetric analysis is carried out to investigate the thermal stability.

  2. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  3. Investigation of microstructural and optical properties of La0.8Ca0.2FeO3 nanostructure synthesized via gel combustion method

    NASA Astrophysics Data System (ADS)

    Naseem, Swaleha; Ali, S. Asad; Khan, Wasi; Khan, Shakeel

    2018-05-01

    Ca substituted LaFeO3 orthoferrite nanostructure perovskite has been synthesized by gel combustion method using citric acid as a fuel. The structural and optical properties were investigated by various tools. The structural analysis through Rietveld refinement of the XRD data revealed single phase of orthorhombic structure in R-3c space group of the sample without presence of any other impurity phase. Scanning electron microscopy (SEM) image exhibits non-uniform distribution of the nanoparticles in agglomerated form. The purity of the sample and stoichiometric ratio of the elements were established through energy dispersive x-ray spectroscopy (EDS). FTIR spectroscopy measurement predicts the presence of various band relation of the chemical species of Ca with LaFeO3. Optical properties were explored through UV-visible absorption spectroscopy that showed absorption edge at 347 nm and energy band gap was estimated as 3.47eV using Tauc's relation.

  4. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  5. Synthesis and optical properties of silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Jaiveer; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Choudhary, K. K.

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  6. Structural, molecular orbital and optical characterizations of binuclear mixed ligand copper (II) complex of phthalate with N,N,N',N'-tetramethylethylenediamine and its applications.

    PubMed

    Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M

    2014-09-15

    A new binuclear mixed ligand complex, [Cu2(Phth)(Me4en)2(H2O)2(NO3)2]·H2O (where, Phth=phthalate, and (Me4en)=N,N,N',N'tetramethylethylenediamine) was synthesized and characterized using analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The XRD data of Cu(II)-complex was analyzed on the basis of Williamson-Hall (W-H) and compared with TEM results. The results indicate that the complex is well crystalline and correspond to hexagonal crystal structure. Analysis of the absorption coefficient near the absorption edge reveals that the optical band gaps are indirect allowed transition with values of 1.17 and 1.78 eV. The d-d absorption bands of the complex (dissolved in various solvents) exhibit a color changes (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multiple Linear Regression Analysis (MLRA). Transient photocurrent characteristics of Cu(II)-complex/n-Si heterojunctions indicate that photocurrent under illumination increase with increasing of light intensity and explained by continuous distribution of traps. Structural parameters of the free ligands and their Cu(II)-complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The present copper (II) complex was screened for its antimicrobial activity against some Gram-positive and Gram-negative bacteria and fungus strain. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Zn doped CdO thin films with enhanced linear and third order nonlinear optical properties for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya

    2018-04-01

    Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.

  8. Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ali, F. M.; Kershi, R. M.; Sayed, M. A.; AbouDeif, Y. M.

    2018-06-01

    Polymer blend films based on Polyvinyl alcohol (PVA)/Poly(vinylpyrrolidone) (PVP) doped with different concentration of cerium ions [(PVA/PVP)-x wt.% Ce3+] (x = 3%, 5%, 10% and 15%) were prepared by the conventional solution casting technique. The characteristics of the prepared polymer composite films were studied using X-ray diffraction (XRD), FT-IR and UV-Vis. spectroscopy. The XRD patterns of the investigated samples revealed a clear reduction on the structural parameters such as crystallinity degree and cluster size D of the doped PVA/PVP blend films compared with the virgin one whereas there is no big difference in the d spacing of the product composite films. Significant changes in FT-IR spectra are observed which reveal an interactions between the cerium ions and PVA/PVP blends. The absorption spectra in the ultraviolet-visible region showed a wide red shift in the fundamental absorption edge of (PVA/PVP)-x wt. % Ce3+ composites. The optical gap Eg gradually decreased from 4.54 eV for the undoped PVA/PVP film to 3.10 eV by increasing Ce3+ ions content. The optical dispersion parameters have been analyzed according to Wemple-Didomenico single oscillator model. The dispersion energy Ed, the single oscillator energy Eo, the average inter-band oscillator wavelength λo and the static refractive index no are strongly affected by cerium ions doping. Cerium ions incorporation in PVA/PVP blend films leads to a significant increase in the refractive index and decrease in the optical gap. These results are likely of great important in varieties of applications including polymer waveguides, organic semiconductors, polymer solar cells and optoelectronics devices.

  9. Process development and characterization of centrosymmetric semiorganic nonlinear optical crystal: 4-dimethylaminopyridine potassium chloride

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Srineevasan, R.; Sivavishnu, D.

    2018-06-01

    Centrosymmetric semiorganic crystal 4-dimethylaminopyridine potassium chloride (4-DMAPKC) has been grown successfully by using slow evaporation solution growth technique. Powder x-ray diffraction shows the 4-DMAPKC crystal has good crystalline nature. Single crystal XRD shows that the grown 4-DMAPKC is cubic crystal system with cell parameters a = 3.09 Å, b = 3.09 Å, c = 3.09 Å. Investigation has been carried out to assign the Vibrational frequencies of the grown crystal by FTIR spectral studies. UVsbnd Visible NIR optical absorption spectral studies in the range of 200-1100 nm shows low absorption in UVsbnd Visible region with lower cutoff wave length at 261 nm and optical band gap energy was found as Eg = 5.52 eV. Optically transmittance spectral shows 4-DMAPKC crystal is very good transparency in UV-Visible NIR region. Thermogravimetry and differential thermal (TG-DTA) analysis were carried out. Dielectric studies of as grown crystal sample exhibit low dielectric constant and loss at higher frequencies and attests the nonlinear optical activity. Micro hardness studies of as grown crystal were discussed. Second harmonic generation (SHG) efficiency of the 4-DMAPKC is 0.69 times as that of KDP.

  10. [The change in optical spectra from solid and liquid solution of copper phthalocyanines derivatives].

    PubMed

    Zheng, Xiao-pan; He, Zhi-qun; Zhang, Chun-xiu; Xu, Zheng; Wang, Yong-sheng

    2006-06-01

    In the present work, the change in electronic absorption spectra from three copper phthalocyanines (CuPc, tb-CuPc, oo-CuPc) in different environments was investigated. The mechanism of red shift Q-band absorption from the three species in an organic solvent before and after protonation was discussed. This was used to compare with those dispersed in solid films. The relation between the molecular interactions and the spectra change was studied. In a combination of POM, DSC and XRD techniques, the structure and morphology of the thin films were characterised. It was found that the molecules in the doped matrices of PC were associated or aggregated. This association and hence the corresponding change in absorption spectra cannot be altered by the modification of dopant concentration.

  11. Stabilization and enhanced energy gap by Mg doping in ɛ-phase Ga2O3 thin films

    NASA Astrophysics Data System (ADS)

    Bi, Xiaoyu; Wu, Zhenping; Huang, Yuanqi; Tang, Weihua

    2018-02-01

    Mg-doped Ga2O3 thin films with different doping concentrations were deposited on sapphire substrates using laser molecular beam epitaxy (L-MBE) technique. X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and ultraviolet-visible (UV-vis) absorption spectrum were used to characterize the crystal structure and optical properties of the as-grown films. Compared to pure Ga2O3 thin film, the Mg-doped thin films have transformed from the most stable β-phase into ɛ-phase. The absorption edge shifted to about 205 nm and the optical bandgap increased to ˜ 6 eV. These properties reveal that Mg-doped Ga2O3 films may have potential applications in the field of deep ultraviolet optoelectronic devices, such as deep ultraviolet photodetectors, short wavelength light emitting devices and so on.

  12. Optical absorption of Er3+ doped lithium lead borate glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-05-01

    A new glass system Lithium lead borate doped with erbium trioxide were perpared using conventional melt quenching method. The amorphous nature of the glass samples were confirmed by XRD spectrum. The density of these glass were measured using Archmides principle, the values lie in the range from 4.27 to 4.76 g/cm-3. The corresponding molar volumes are calculated and the values are in the range of 23.81 to 26.17 cm-3. Absorption spectra were recorded in the wavelength range of 200nm to 1100nm, for the prepared glass samples. The optical direct and indirect energy band gaps were measured, the values are in the range of 2.875 to 3.254 eV and 2.25 to 2.81 eV respectively. Photoluminescence technique was employed to study the luminescent property of the prepared glasses excited at 380nm, emission spectra were recorded and analyzed.

  13. Structural and optical properties of CdSe nanosheets

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, P.; Arora, Aman

    2018-04-01

    Nanosheets of CdSe have been synthesized using a solvothermal route using citric acid as an additive. It is found that the citric acid effectively controls the structural and optical properties of CdSe nanostructures. XRD studies confirm the formation of hexagonal wurtzite phase of CdSe. The FESEM micrographs show that the obtained CdSe nanocrystals are in the form of very thin sheets (nanosheets). Optical absorption studies as well as Photoluminescence spectra show that the optical gap is around 1.76 eV which is close to the reported bulk value of 1.74 eV. The prepared CdSe nanosheets because of large surface area may be useful for catalytic activities in medicine, biotechnology and environmental chemistry and in biomedical imaging for in vitro detection of a breast cancer cells.

  14. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  15. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    NASA Astrophysics Data System (ADS)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  16. Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2015-12-01

    Radiation damage induced in Al2O3 single crystal by 90 MeV Xe ions were investigated by optical absorption measurements, Raman spectroscopy and X-ray diffraction (XRD) techniques. The irradiations were performed at the GANIL accelerator in Caen, France for the fluence in the range from 1012 to 6 × 1013 cm-2 at room temperature under normal incidence. The F+ and F22+ centers kinetic as a function of fluence deduced from the optical measurements explains that the single defects (F and F+) aggregate to F center clusters (F2 , F2+, F22+) during irradiation at high fluence (>1013 cm-2). Raman and XRD analysis reveal a partial disorder of 40% of Al2O3 in the studied fluence range in accordance with Kabir et al. (2008) study. The result suggests that this is due to the stress relaxation process which occurs at high fluence (>1013 cm-2).

  17. Influence of Fe ions on structural, optical and thermal properties of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Ateeq, E-mail: ateeqamu124@gmail.com; Tripathi, P.; Khan, Wasi

    2016-05-23

    In the present work, Fe doped SnO{sub 2} nanoparticles with the composition Sn{sub 1-x}Fe{sub x}O{sub 2} (x = 0, 0.02, 0.04 and 0.06) have been successfully synthesized using sol-gel auto combustion technique. The samples are characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Ultraviolet (UV-Visible) absorption spectroscopy and thermal gravimetric analysis (TGA). The XRD study shows that all the samples have been found in tetragonal rutile structure without any extra phase and average crystallite size which lies in the range of 6-17 nm. The EDAX spectrum confirmed the doping of Fe ion into tin oxidemore » nanomaterial. The optical band gap of doped SnO{sub 2} is found to decrease with increasing Fe ion concentration, which is due to the formation of donor energy levels in the actual band gap of SnO{sub 2}.« less

  18. Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite

    NASA Astrophysics Data System (ADS)

    Reddy, Ch Venkata; Babu, B.; Shim, Jaesool

    2018-01-01

    Pure CdO, ZnO and CdO/ZnO hybrid nanocomposite photocatalyst were synthesized using simple co-precipitation technique and studied in detail. The synthesized photocatalysts were characterized using several measurements such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), surface analysis (BET), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, FT-IR, TG-DTA and photoluminescence (PL). The XRD results revealed that the hexagonal and cubic crystal structure of CdO and ZnO nanoparticles. The optical response for the composite showed the presence of separate absorption signature for CdO and ZnO in the visible region at about 510 nm and 360 nm respectively. The CdO/ZnO hybrid nanocomposite photocatalyst exhibited enhanced photocatalytic degradation activity compared to pristine CdO and ZnO. The enhanced photocatalytic activity may be due to the higher specific surface area and significantly reduced the electron-hole recombination rate.

  19. Structural, electronic and optical properties of monoclinic Na{sub 2}Ti{sub 3}O{sub 7} from density functional theory calculations: A comparison with XRD and optical absorption measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araújo-Filho, Adailton A.; Silva, Fábio L.R.; Righi, Ariete

    Powder samples of bulk monoclinic sodium trititanate Na{sub 2}Ti{sub 3}O{sub 7} were prepared carefully by solid state reaction, and its monoclinic P2{sub 1}/m crystal structure and morphology were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), respectively. Moreover, the sodium trititanate main energy band gap was estimated as E{sub g}=3.51±0.01 eV employing UV–Vis spectroscopy, which is smaller than the measured 3.70 eV energy gap published previously by other authors. Aiming to achieve a better understanding of the experimental data, density functional theory (DFT) computations were performed within the local density and generalized gradient approximations (LDA and GGA,more » respectively) taking into account dispersion effects through the scheme of Tkatchenko and Scheffler (GGA+TS). Optimal lattice parameters, with deviations relative to measurements Δa=−0.06 Å, Δb=0.02 Å, and Δc=−0.09 Å, were obtained at the GGA level, which was then used to simulate the sodium trititanate electronic and optical properties. Indirect band transitions have led to a theoretical gap energy value of about 3.25 eV. Our results, however, differ from pioneer DFT results with respect to the specific Brillouin zone vectors for which the indirect transition with smallest energy value occurs. Effective masses for electrons and holes were also estimated along a set of directions in reciprocal space. Lastly, our calculations revealed a relatively large degree of optical isotropy for the Na{sub 2}Ti{sub 3}O{sub 7} optical absorption and complex dielectric function. - Graphical abstract: Monoclinic sodium trititanate Na2Ti3O7 was characterized by experiment and dispersion-corrected DFT calculations. An indirect gap of 3.5 eV is predicted, with heavy electrons and anisotropic holes ruling its conductivity. - Highlights: • Monoclinic Na2Ti3O7 was characterized by experiment (XRD, SEM, UV–Vis spectroscopy). • DFT GGA+TS optimized geometry and optoelectronic properties were obtained. • An experimental (theoretical) indirect gap of 3.5 (3.25) eV is predicted. • Heavy electrons and anisotropic holes rule the conductivity. • Ti-O bond lengths and charge states probably cause oxygen reactivity variations.« less

  20. Study of the effects of MeV Ag, Cu, Au, and Sn implantation on the optical properties of LiNbO3

    NASA Technical Reports Server (NTRS)

    Williams, E. K.; Ila, D.; Sarkisov, S.; Curley, M.; Poker, D. B.; Hensley, D. K.; Borel, C.

    1998-01-01

    The authors present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Ag was implanted at 1.5 MeV to fluences of 2 to 17 x 17(exp 16)/sq cm at room temperature. Au and Cu were implanted to fluences of 5 to 20 x 10(exp 16)/sq cm at an energy of 2.0 MeV. Sn was implanted to a fluence of 1.6 x 10(exp 17)/sq cm at 160 kV. Optical absorption spectrometry indicated an absorption peak for the Au implanted samples after heat treatment at 1,000 C at approx. 620 nm. The Ag implanted samples absorption peaks shifted from approx. 450 nm before heat treatment to 550 nm after 500 C for 1h. Heat treatment at 800 C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500 C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not change appreciably in size with heat treatment. The Au clusters increased from 3 to 9 nm diameter upon heat treatment at 1000 C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices were carried out using the Z-scan method with a tunable dye laser pumped by a frequency doubled mode-locked Nd:YAG laser. The dye laser had a 4.5 ps pulse duration time and 76 MHz pulse repetition rate (575 nm).

  1. Innovative Growth and Defect Analysis of Group III - Nitrides for High Speed Electronics

    DTIC Science & Technology

    2008-02-29

    nitrides have optical transitions from the infrared into the ultra violet and are used for light generation with a luminous flux of approximately 100...exist below the detection limit of X- Ray Diffraction (XRD). It has been shown, that metal clusters could cause resonance in the infrared and effect the...plasmonic (Mie) resonances and the specific interband absorption between the parallel bands in metallic indium [Har66]; the latter starts from 0.6

  2. Visible properties of Sm{sup 3+} ions in chloro-fluoro-borate glasses for reddish - orange emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, K. Venkata, E-mail: drvenkataraok@gmail.com; Babu, S.; Ratnakaram, Y. C.

    2016-05-23

    Optical properties of different concentration (0.2, 0.4, 0.6, 0.8 and 1.0 mol %) of Sm{sup 3+} doped chloro-fluoro-borate glasses have been synthesized and discussed. Structural characterizations have been studied through XRD analysis. Spectroscopic analysis has done from absorption spectra, luminescence spectra and decay lifetime profiles. From the emission spectra, concentration quenching is observed, with increase of samarium concentration and discussed behind the phenomena. The nature of decay curve analysis was performed for the {sup 4}G{sub 5/2} level. These glasses are expected to give interesting application in the field of optics.

  3. Synthesis, characterization and thermal decomposition of tetramethylammonium rare earth double selenates

    NASA Astrophysics Data System (ADS)

    Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.

    2018-06-01

    A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.

  4. Synthesis and photoluminescent and nonlinear optical properties of manganese doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar-Iranizad, Esmaiel; Dehghani, Zahra; Molaei, Mehdi

    2011-01-01

    In this work we synthesized ZnS:Mn 2+ nanoparticles by chemical method using PVP (polyvinylpyrrolidone) as a capping agent in aqueous solution. The structure and optical properties of the resultant product were characterized using UV-vis optical spectroscopy, X-ray diffraction (XRD), photoluminescence (PL) and z-scan techniques. UV-vis spectra for all samples showed an excitonic peak at around 292 nm, indicating that concentration of Mn 2+ ions does not alter the band gap of nanoparticles. XRD patterns showed that the ZnS:Mn 2+ nanoparticles have zinc blende structure with the average crystalline sizes of about 2 nm. The room temperature photoluminescence (PL) spectrum of ZnS:Mn 2+ exhibited an orange-red emission at 594 nm due to the 4T 1- 6A 1 transition in Mn 2+. The PL intensity increased with increase in the Mn 2+ ion concentration. The second-order nonlinear optical properties of nanoparticles were studied using a continuous-wave (CW) He-Ne laser by z-scan technique. The nonlinear refractive indices of nanoparticles were in the order of 10 -8 cm 2/W with negative sign and the nonlinear absorption indices of these nanoparticles were obtained to be about 10 -3 cm/W with positive sign.

  5. Synthesis, growth, structural, optical, luminescence, surface and HOMO LUMO analysis of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate organic single crystals grown by a slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko

    2016-02-01

    Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.

  6. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electrical and Optical Properties of Nanocrystalline A8ZnNb6O24 (A = Ba, Sr, Ca, Mg) Ceramics

    NASA Astrophysics Data System (ADS)

    John, Fergy; Thomas, Jijimon K.; Jacob, John; Solomon, Sam

    2017-08-01

    Nanoparticles of A8ZnNb6O24 (A = Ba, Sr, Ca, and Mg, abbreviated as BZN, SZN, CZN, and MZN) have been synthesized by an auto-igniting combustion technique and their structural and optical properties characterized. The phase purity, crystal structure, and particle size of the prepared nanopowders were examined by x-ray diffraction (XRD) analysis and transmission electron microscopy. The XRD results revealed that all the samples crystallized with hexagonal perovskite structure in space group P6 3 cm. The Fourier-transform infrared and Raman (FT-Raman) spectra of the samples were investigated in detail. The ultraviolet-visible (UV-Vis) absorption spectra of the samples were also recorded and their optical bandgap energy values calculated. The nanopowders synthesized by the combustion technique were sintered to 95% of theoretical density at temperature of 1250°C for 2 h. The surface morphology of the sintered pellets was studied by scanning electron microscopy. The photoluminescence spectra of the samples showed intense emission in the blue-green region. Complex impedance analysis was used to determine the grain and grain boundary effects on the dielectric behavior of the ceramics.

  8. Optical and structural properties of Mo-doped NiTiO3 materials synthesized via modified Pechini methods

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo

    2017-07-01

    In this study, molybdenum (Mo)-doped nickel titanate (NiTiO3) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO3 structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO3 lattice was doped with Mo. On the other hand, Mo doping of NiTiO3 materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  9. Optical, electrical and ferromagnetic studies of ZnO:Fe diluted magnetic semiconductor nanoparticles for spintronic applications.

    PubMed

    Elilarassi, R; Chandrasekaran, G

    2017-11-05

    In the present investigation, diluted magnetic semiconductor (Zn 1-x Fe x O) nanoparticles with different doping concentrations (x=0, 0.02, 0.04, 0.06, and 0.08) were successfully synthesized by sol-gel auto-combustion method. The crystal structure, morphology, optical, electrical and magnetic properties of the prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis using x-rays (EDAX), ultraviolet-visible spectrophotometer, fluorescence spectroscope (FS), vibrating sample magnetometer (VSM) and broad band dielectric spectrometer (BDS). XRD results reveal that all the samples possess hexagonal wurtzite crystal structure with good crystalline quality. The absence of impurity phases divulge that Fe ions are well incorporated into the ZnO crystal lattice. The substitutional incorporation of Fe 3+ at Zn sites is reflected in optical absorption spectra of the samples. Flouorescence spectra of the samples show a strong near-band edge related UV emission as well as defect related visible emissions. The semiconducting behavior of the samples has been confirmed through electrical conductivity measurements. Magnetic measurements indicated that all the samples possess ferromagnetism at room temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in; Baby, C.; Gopalakrishnan, R.

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra establishedmore » the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.« less

  11. Morphology, structure and optical properties of hydrothermally synthesized CeO2/CdS nanocomposites

    NASA Astrophysics Data System (ADS)

    Mohanty, Biswajyoti; Nayak, J.

    2018-04-01

    CeO2/CdS nanocomposites were synthesized using a two-step hydrothermal technique. The effects of precursor concentration on the optical and structural properties of the CeO2/CdS nanoparticles were systematically studied. The morphology, composition and the structure of the CeO2/CdS nanocomposite powder were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectrum analysis (EDXA) and X-ray diffraction (XRD), respectively. The optical properties of CeO2/CdS nanocomposites were studied by UV-vis absorption and photoluminescence (PL) spectroscopy. The optical band gaps of the CeO2/CdS nanopowders ranged from 2.34 eV to 2.39 eV as estimated from the UV-vis absorption. In the room temperature photoluminescence spectrum of CeO2/CdS nanopowder, a strong blue emission band was observed at 400 nm. Since the powder shows strong visible luminescence, it may be used as a blue phosphor in future. The original article published with this DOI was submitted in error. The correct article was inadvertently left out of the original submission. This has been rectified and the correct article was published online on 16 April 2018.

  12. Structural and optical properties of lead-boro-tellurrite glasses induced by gamma-ray.

    PubMed

    Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul

    2013-02-04

    Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO(4) bi-pyramidal arrangement and TeO(3+1) (or distorted TeO(4)) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb(3)TeO(6) consisting of TeO(3) trigonal pyramid connected by PbO(4) tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, E(opt) were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach's energy can be considered as being due to an increase in defects within glass network.

  13. Structural and Optical Properties of Lead-Boro-Tellurrite Glasses Induced by Gamma-Ray

    PubMed Central

    Mustafa, Iskandar Shahrim; Kamari, Halimah Mohamed; Yusoff, Wan Mohd Daud Wan; Aziz, Sidek Abdul; Rahman, Azhar Abdul

    2013-01-01

    Spectrophotometric studies of lead borotellurite glasses were carried out before and after gamma irradiation exposure. The increasing peak on the TeO4 bi-pyramidal arrangement and TeO3+1 (or distorted TeO4) is due to augmentation of irradiation dose which is attributed to an increase in degree of disorder of the amorphous phase. The structures of lead tellurate contain Pb3TeO6 consisting of TeO3 trigonal pyramid connected by PbO4 tetragonal forming a three-dimensional network. The decrease of glass rigidity is due to irradiation process which is supported by the XRD diffractograms results. The decreasing values of absorption edge indicate that red shift effect occur after irradiation processes. A shift in the optical absorption edge attributed to an increase of the conjugation length. The values of optical band gap, Eopt were calculated and found to be dependent on the glass composition and radiation exposure. Generally, an increase and decrease in Urbach’s energy can be considered as being due to an increase in defects within glass network. PMID:23380963

  14. Mechanochromic behavior of a luminescent silicone rubber under tensile deformation

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Ju; Lee, Sang Hwan; Jeong, Kwang-Un; Nah, Changwoon

    2016-09-01

    A novel mechanochromic elastomer based on silicone rubber and coumarin 6 dye have been prepared with various concentrations of the dye ranges from 2wt.% to a maximum of 5wt.% by solution mixing technique. After evaporating the solvent, cured samples were prepared as thin films using compression molding at 170° C. The optimum composition of the dye in rubber composites was determined based on the mechanochromic performance characterized with ultraviolet/visible (UV/Vis) spectrometer, x-ray diffraction (XRD) and spectrofluorometer (FL). The UV/Vis spectrometer monitors the dye aggregation in polymer film during the tensile deformation. The XRD monitors the change in size of dye aggregates. The FL monitors the optical response during tensile deformation due to the re-arrangement of dyes. As increasing a mechanical deformation to the polymeric composite film, UV/Vis absorption intensity was decreased and the FL emission wavelength was moved to decrease wavelength because of breaking dye aggregations. Also, XRD intensity peak was decreased, which dye aggregations were broken after mechanical deformation.

  15. Effect of certain alkaline metals on Pr doped glasses to investigate spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Lenkennavar Susheela, K.; Madhu, A.; Eraiah, B.; Kokila, M. K.

    2018-02-01

    Incorporation of different Alkaline earth metal like Barium, Calcium and strontium in sodium lead borate glass doped with Pr3+ is studied. Physical parameters such as density, molar volume, molar refractivity etc have been evaluated. Effect of different atomic size of alkaline metal using optical and physical parameters is analysed. XRD and FTIR were carried out to know the structural behaviour of the glasses. Absorption and Emission spectra are recorded at room temperature and the results were discussed.

  16. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  17. Structural, optical and electrical properties of WO3-Ag nanocomposites for the electro-optical devices

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak

    2018-01-01

    The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.

  18. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.

    2016-05-06

    The glasses of composition xLi{sub 2}O-15ZnO- 20Bi{sub 2}O{sub 3}- (64 - x) B{sub 2}O{sub 3}- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and E{sub f} (a constant that depends on local coordination and is called as free energy ofmore » the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (E{sub o}, E{sub d}) changed with the Li{sub 2}O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li{sub 2}O, which can be used to calculate the optical, physical, and other constants.« less

  19. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    NASA Astrophysics Data System (ADS)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  20. Synthesis, characterization and nonlinear optical properties of symmetrically substituted dibenzylideneacetone derivatives

    NASA Astrophysics Data System (ADS)

    Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara

    2014-11-01

    We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.

  1. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    NASA Astrophysics Data System (ADS)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  2. Synthesis and photosensor study of as-grown CuZnO thin film by facile chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    We have successfully deposited CuZnO thin film on a glass substrate by facile chemical bath deposition method at 85 °C for 1 hr. Structural, topographical, Optical and Electrical properties of the prepared Thin Films were investigated by XRD, Raman spectrum, AFM, UV-Visible Spectrophotometer and I-V Measurement System respectively. The X-ray diffraction (XRD) pattern confirmed the formation of the CuZnO composition when compared with standard JCPDS card (JCPDF # 75-0576 & # 36-1451). The Raman analysis shows a major peak at 458 cm-1 with E2 (High) vibrational mode. AFM images revealed uniform deposition over an entire glass substrate with 66.2 nm average roughness of the film. From the optical absorption spectrum, clear band edge around ˜407 nm was observed which results in a wide energy band gap of ˜3.04 eV. The electrical properties were measured at room temperature in the voltage range ±5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜99.9 % for 260 W.

  3. Synthesis of nanocrystalline Gd2Ti2O7 by combustion process and its structural, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Wariar, P. R. S.

    2017-07-01

    Nanosized pyrochlore material Gadolinium Titanate (Gd2Ti2O7) powder was prepared by modified single step auto-ignition combustion process. The phase formation has been investigated using X-Ray diffraction analysis (XRD). The crystalline pyrochlore phase is further confirmed by the presence of metal-oxygen bonds in the FT-IR spectra. XRD analysis revealed that Gd2Ti2O7 has a cubic structure with Fd3m space group. The combustion powder was sintered to high density (97% of theoretical density) at ˜13000 C for 4h and the surface morphology was examined by Scanning Electron Microscopy (SEM). The optical band gap of Gd2Ti2O7 determined from the absorption spectrum is found to be 4.2 eV, which corresponds to direct allowed transitions. The dielectric measurements were carried out using LCR meter in the radio frequency region at room temperature. The sintered Gd2Ti2O7 has a dielectric constant (Ɛr) = 40 and dielectric loss (tan δ) = 0.01 at 1MHz.

  4. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Hsuan; Chu, Hsueh-Liang; Hwang, Weng-Sing; Wang, Moo-Chin; Ko, Horng-Huey

    2017-12-01

    The synthesis and optical properties of Mg-Al layered double hydroxide (LDH) precursor powders were investigated using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), high-resolution TEM (HRTEM), UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363-1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH)2](CO3)0.083.(H2O)0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL) spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  5. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Kavitha, V. T.; Wariar, P. R. S.

    2018-05-01

    Nanocrystalline pyrochlore material Dysprosium Titanate (Dy2Ti2O7) has been synthesized through a single step optimized combustion route. The phase purity and phase formation of the combustion product has been characterized using X-Ray diffraction analysis (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. X-Ray diffraction analysis (XRD) reveal that Dy2Ti2O7 is highly crystalline in nature with cubic structure in the Fd3m space group. The microstructures and average particle size of the prepared nanopowder were examined by High Resolution Transmission Electron Microscopy (HR-TEM). The optical band gap of the Dy2Ti2O7 nanoparticles is determined from the absorption spectrum, was attributed to direct allowed transitions through optical band gap of 3.98 eV. The frequency dependent dielectric measurements have been carried out on the sintered pellet in the frequency range 1 Hz-10 MHz. The measured value of dielectric constant (ℇ') was ˜ 43 and loss tangent (tan δ) was 4×10-3 at 1 MHz, at room temperature.

  6. Thickness dependent structural, optical and electrical properties of Se85In12Bi3 nanochalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.

    2018-04-01

    Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.

  7. Spectroscopic properties of Sm3+ and V4+ ions in Na2O-SiO2-ZrO2 glasses

    NASA Astrophysics Data System (ADS)

    Neeraja, K.; Rao, T. G. V. M.; Kumar, A. Rupesh; Uma Lakshmi, V.; Veeraiah, N.; Rami Reddy, M.

    2013-12-01

    Na2O-SiO2-ZrO2 glasses of Sm3+ ions with and without V2O5 are characterized by spectroscopic and optical properties. The XRD and EDS spectra of the glass samples reveal an amorphous nature with different compositions within the glass matrix. The Infrared and Raman spectral studies are carried out and the existence of conventional structural units are analyzed in the glass network. The ESR spectra of the glass samples have indicating that a considerable proportion of vanadium ion exists in V4+ state. The optical absorption spectra of these glasses are recorded at room temperature, from the measured intensities of various absorption bands the Judd-Ofelt parameters Ω2, Ω4 and Ω6 are calculated. The photo-luminescence spectra recorded with excited wavelength 400 nm, five emission bands are observed; in this the energy transfer probability takes place between Sm3+ and V4+ ions.

  8. Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ayyaswamy, Arivarasan; Ganapathy, Sasikala; Alsalme, Ali; Alghamdi, Abdulaziz; Ramasamy, Jayavel

    2015-12-01

    Zinc and sulfur alloyed CdTe quantum dots (QDs) sensitized TiO2 photoelectrodes have been fabricated for quantum dots sensitized solar cells. Alloyed CdTe QDs were prepared in aqueous phase using mercaptosuccinic acid (MSA) as a capping agent. The influence of co-doping on the structural property of CdTe QDs was studied by XRD analysis. The enhanced optical absorption of alloyed CdTe QDs was studied using UV-vis absorption and fluorescence emission spectra. The capping of MSA molecules over CdTe QDs was confirmed by the FTIR and XPS analyses. Thermogravimetric analysis confirms that the prepared QDs were thermally stable up to 600 °C. The photovoltaic performance of alloyed CdTe QDs sensitized TiO2 photoelectrodes were studied using J-V characteristics under the illumination of light with 1 Sun intensity. These results show the highest photo conversion efficiency of η = 1.21%-5% Zn & S alloyed CdTe QDs.

  9. Structural and optical investigation in Er3+ doped Y2MoO6 phosphors

    NASA Astrophysics Data System (ADS)

    Mondal, Manisha; Rai, Vineet Kumar

    2018-05-01

    The Er3+ doped Y2MoO6 phosphors have been structurally and optically characterized by X-ray Diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis absorption spectroscopy and frequency upconversion (UC) emission studies. The crystal and the particles size are found to be ˜ 85 nm and ˜ 200 nm from XRD and FESEM analysis. The intense peak at ˜ 206 nm in the UV-Vis absorption spectroscopy is attributed due to the charge transfer transition between the Mo6+ and the O2- ions in the MoO4 group in the host molybdate. The frequency UC emission studies of the prepared phosphors under 980 nm diode laser excitation shows the intense UC emission in the 0.3 mol% concentrations for the Er3+ ions. In the UC emission spectra, the emission peaks at green (˜ 525 nm and ˜ 546 nm) and red (˜ 656 nm) bands are corresponding to the 2H11/2, 4S3/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions. The mechanisms involved in the UC process have been explored with the help of energy level diagram. Moreover, the CIE point (0.31, 0.60) lie in the green colour region which indicates that the developed phosphor have suitable applications in NIR to visible upconverter and in making green light display devices.

  10. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  11. A study on structure, morphology, optical properties, and photocatalytic ability of SrTiO3/TiO2 granular composites

    NASA Astrophysics Data System (ADS)

    Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen

    2018-03-01

    (1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.

  12. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  13. Physical and optical property studies on Bi3+ ion containing vanadium sodium borate glasses

    NASA Astrophysics Data System (ADS)

    Venkatesh, G.; Meera, B. N.; Eraiah, B.

    2018-04-01

    xBi2O3-(15-x)V2O5-45B2O3-40Na2O glasses have been prepared using melt quenching technique. Amorphous nature of the glasses is verified using powder XRD. Densities and molar volume have been determined as a function of bismuth content and interestingly both increases as a function of bismuth content. Further oxygen packing density (OPD) is found to decrease with bismuth content. The increase in the molar volume as a function of bismuth content may be due to structural changes in the glass network. The optical properties performed from the optical absorption spectra were recorded in the wavelength range 200-1100 nm using UV-Visible spectrophotometer. The theoretical optical basicity of the oxides have also been estimated. The calculated energy band gap values increases with increase in Bi2O3 content.

  14. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  15. Structural and optical properties of lithium sodium borate glasses doped with Sm3+ ions

    NASA Astrophysics Data System (ADS)

    Dawaud, R. S. E. S.; Hashim, S.; Alajerami, Y. S. M.; Mhareb, M. H. A.; Maqableh, M. M.; Tamchek, N.

    2014-07-01

    Absorption and emission spectra of Sm3+ doped lithium sodium borate (LNB) have been reported. The samples were prepared by the melt-quenching technique and characterized by X-ray diffraction (XRD), diffraction thermal analysis (DTA), Fourier transforms infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM). From the thermo-grams spectrum, glass transition (Tg), crystallization (Tc) and melting temperatures (Tm) have been evaluated. Direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. These glasses have shown strong nine absorption bands with hypersensitive transition at 1221 nm (6H5/2→4H3/2) and five emission bands for the transition at 4I7/2→6H13/2 (green color), 4I7/2→6H7/2 (orange color), 4I7/2→6H9/2 (orange color), 4I7/2→6H11/2 (red color) and 4I7/2→6H13/2 (red color) with performing an excitation of 400 nm. The oscillator strengths, refractive index, ions concentration, polaron radius and other parameters have been calculated for each dopant.

  16. Charge transport mechanism analysis of Al/CdS:Sr{sup 2+}/ITO device under dark and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Joydeep; Das, Mrinmay; Dey, Arka

    2016-05-06

    In this study, we have synthesized CdS:Sr{sup 2+} by hydrothermal technique. Material property has been studied by X-ray diffraction (XRD), Scanning electron microscope (SEM) and UV-vis absorption spectroscopy. XRD data revealed that there are mixed phases of CdS and SrS in the synthesized sample. The optical band gap of the material was estimated as 3.15 eV from UV-vis data. The synthesized material has been applied in metal-semiconductor device and transport properties have been analyzed by measuring current–voltage characteristics under dark and light conditions at room temperature. Variation in different device parameters like ideality factor, barrier height and series resistance ofmore » Al/CdS:Sr{sup 2+}/ITO device were analyzed by using Cheung’s function.« less

  17. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    PubMed Central

    Firat, Y. E.; Yildirim, H.; Erturk, K.

    2017-01-01

    Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Virender Singh; Tanwar, Amit; Singh, Davender, E-mail: Davender-kadian@rediffmail.com

    The pure and Ag-doped TiO{sub 2} nanoparticles were prepared by using Titanium isoproxide (TTIP), silver nitrate sodium hydroxide and sodium hydroxide. The calcined nanoparticles at 400°C were characterized by means of X-ray diffraction (XRD). XRD analyses reveal that the nanoparticles of various doping concentration were having anatase phase. The particle size was calculated by Scherrer formula and was found 11.08 nm for pure TiO{sub 2} and 8.86 nm for 6 mol % Ag doped TiO{sub 2}. The morphology and nature of nanoparticles was analyzed by using scanning electron microscope (SEM), the optical absorption spectra of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticlesmore » showed that absorption edge increases towards longer wavelength from 390 nm (pure) to 450 nm (doped), also band gap energy calculated from Tauc’s plot decrease from 3.20eV to 2.92eV with increase in doing. The measurement of photocatalytic properties of pure TiO{sub 2} and Ag-doped TiO{sub 2} nanoparticles showed that Ag-doped TiO{sub 2} degrades MB dye more efficiently than pure TiO{sub 2}.« less

  19. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    NASA Astrophysics Data System (ADS)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  20. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    NASA Astrophysics Data System (ADS)

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  1. A series of BCN nanosheets with enhanced photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Li, Junqi; Lei, Nan; Hao, Hongjuan; Zhou, Jian

    2017-03-01

    A series of flake-like BCN compounds were produced by calcination at different reaction temperatures via thermal substitution of C atoms with B atoms of boric acid substructures in graphitic carbon nitrides (g-C3N4). The structural and optical properties of the samples were characterized by XRD, TEM, HRTEM, XPS and UV-vis absorption. The photoelectrochemical (PEC) performance of all samples were characterized through photocurrent and electrochemical impedance spectroscopy (EIS) measurement. The test results demonstrated that BCN nanosheets exhibited higher PEC performance with increasing substituted amount of boron.

  2. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    NASA Astrophysics Data System (ADS)

    Patil, S. B.; Singh, A. K.

    2010-02-01

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  3. Annealing effects on electron-beam evaporated Al 2O 3 films

    NASA Astrophysics Data System (ADS)

    Shuzhen, Shang; Lei, Chen; Haihong, Hou; Kui, Yi; Zhengxiu, Fan; Jianda, Shao

    2005-04-01

    The effects of post-deposited annealing on structure and optical properties of electron-beam evaporated Al 2O 3 single layers were investigated. The films were annealed in air for 1.5 h at different temperatures from 250 to 400 °C. The optical constants and cut-off wavelength were deduced. Microstructure of the samples was characterized by X-ray diffraction (XRD). Profile and surface roughness measurement instrument was used to determine the rms surface roughness. It was found that the cut-off wavelength shifted to short wavelength as the annealing temperature increased and the total optical loss decreased. The film structure remained amorphous even after annealing at 400 °C temperature and the samples annealed at higher temperature had the higher rms surface roughness. The decreasing total optical loss with annealing temperature was attributed to the reduction of absorption owing to oxidation of the film by annealing. Guidance to reduce the optical loss of excimer laser mirrors was given.

  4. Investigation of optical properties of nickel oxide nanostructures using photoluminescence and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Siddique, M. Naseem; Ahmed, Ateeq; Ali, T.; Tripathi, P.

    2018-05-01

    Nickel oxide (NiO) nanoparticles with a crystal size of around 16.26 nm have been synthesized via sol-gel method. The synthesized precursor was calcined at 600 °C for 4 hours to obtain the nickel oxide nanoparticles. The XRD analysis result indicated that the calcined sample has a cubic structure without any impurity phases. The FTIR analysis result confirmed the formation of NiO. The NiO nanoparticle exhibited absorption band edge at 277.27 nm and the optical band gap have been estimated approximately 4.47 eV using diffuse reflectance spectroscopy and photoluminescence emission spectrum of our as-synthesized sample showed strong peak at 3.65 eV attributed to the band edge transition.

  5. Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite

    NASA Astrophysics Data System (ADS)

    Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid

    2018-05-01

    We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.

  6. Simple route to (NH4)xWO3 nanorods for near infrared absorption

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Dong, Qiang; Sato, Tsugio

    2012-05-01

    Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows.Described here is how to synthesize one-dimensional ammonium tungsten bronze ((NH4)xWO3) by a facile solvothermal approach in which ethylene glycol and acetic acid were employed as solvents and ammonium paratungstate was used as a starting material, as well as how to develop the near infrared absorption properties of (NH4)xWO3 nanorods for application as a solar light control filter. The as-obtained product was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG), atomic force microscope (AFM) and UV-Vis-NIR spectra. The SEM and TEM images clearly revealed that the obtained sample possessed rod/fiber-like morphologies with diameters around 120 nm. As determined by UV-Vis-NIR optical measurement, the thin film consisted of (NH4)xWO3 nanoparticles, which can selectively transmit most visible lights, but strongly absorb the near-infrared (NIR) lights and ultraviolet rays. These interesting optical properties make the (NH4)xWO3 nanorods suitable for the solar control windows. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30612c

  7. The role of halides on a chromium ligand field in lead borate glasses

    NASA Astrophysics Data System (ADS)

    Sekhar, K. Chandra; Srinivas, B.; Narsimlu, N.; Narasimha Chary, M.; Shareefuddin, Md

    2017-10-01

    Glasses with a composition of PbX-PbO-B2O3 (X  =  F2, Cl2 and Br2) containing Cr3+ ions were prepared by a melt quenching technique and investigated by using x-ray diffraction (XRD), optical absorption and electron paramagnetic resonance (EPR) studies. X-ray diffractograms revealed the amorphous nature of the glasses. The density and molar volume were determined. Density values increased for the PFPBCR glass system and decreased for the PCPBCR and PBPBCR glass systems with the composition. Optical absorption spectra were recorded at room temperature (RT) to evaluate the optical band gap E opt and Urbach energies. All the spectra showed characteristic peaks at around 450 nm, 600 nm and 690 nm, and they are assigned to 4 A 2g  →  4 T 1g, 4 A 2g  →  4 T 2g, 4 A 2g  →  2 E transitions respectively. From the optical absorption spectral data, the crystal field (D q ) and Racah parameters (B and C) have been evaluated. Variations in optical band gaps were explained using the electro negativity of halide ions. Electron paramagnetic resonance (EPR) studies were carried out by introducing Cr3+ as the spin probe. The EPR spectra of all the glass samples were recorded at X-band frequencies. The EPR spectra exhibit two resonance signals with effective g values at g  ≈  4.82 and g  ≈  1.99 and are attributed to isolated Cr3+ ions and exchange coupled Cr3+ pairs respectively. The number of spins along with susceptibility are also calculated from the EPR spectra.

  8. Optical characteristics of butyl rubber loaded with general purpose furnace (GPF) carbon black

    NASA Astrophysics Data System (ADS)

    Alfaramawi, K.

    2018-06-01

    Optical characteristics of butyl rubber/GPF carbon black (BR/GPFCB) composites with carbon black (CB) concentrations 40, 60, 80 and 100 phr (part per hundred part of rubber) were investigated. The structure of the BR/GPFCB composites was analyzed by x-ray diffraction (XRD). All samples with various CB showed diffraction peaks around 2θ = 14°, 25° and 44° which correspond to interlayer spacing of 6.23 Å, 3.62 Å and 2.10 Å respectively. The peaks were shifted toward larger 2θ angles with increasing CB concentration, indicating a decrease in layer spacing. Ultraviolet and visible (UV–vis) absorbance spectra in the range from 200 nm to 800 nm of the BR/GPFCB composites were studied. In the UV range of the spectra, an absorption edge was recorded. Direct and indirect optical band gaps for the composites were evaluated. The direct band gap values were found-as shown to be slightly greater than that of the indirect ones. The reflectance spectra in the UV optical range were demonstrated. Most of the incident UV light was absorbed inside the composites while a very small fraction was reflected and transmitted. This was attributed to the high UV absorption property of the CB filler. The refractive index of the composite was calculated from the reflectance data. The dependence of the real and imaginary parts of the complex dielectric constant on the incident light energy was characterized. The dielectric loss factor was found to decrease with increasing incident photon energy until approximately 5.5 eV (around the absorption edge) and then it increased rapidly.

  9. Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.

    2018-05-01

    In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.

  10. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    NASA Astrophysics Data System (ADS)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  11. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    NASA Astrophysics Data System (ADS)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  12. The formation of Colloidal 2D/3D MoS2 Nanostructures in Organic Liquid Environment

    NASA Astrophysics Data System (ADS)

    Durgun, Engin; Sen, H. Sener; Oztas, Tugba; Ortac, Bulend

    2015-03-01

    2D MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in methanol. Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, SEM, TEM, XRD, Raman and UV/VIS/NIR absorption spectroscopy techniques. Results of structural analysis show that the obtained MoS2 NS mainly present layered morphology from micron to nanometer surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown that it is correlated with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from UV region to NIR region. Investigations of MoS2 NS show that the one step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of ``two scales'' micron- and nanometer-sized layered and fullerene-like morphology MoS2 structures. This work was partially supported by TUBITAK under the Project No. 113T050 and Bilim Akademisi - The Science Academy, Turkey under the BAGEP program.

  13. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  14. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  15. Thermal, optical, mechanical and electrical properties of a novel NLO active L-phenylalanine L-phenylalaninium perchlorate single crystals

    NASA Astrophysics Data System (ADS)

    Cyrac Peter, A.; Vimalan, M.; Sagayaraj, P.; Madhavan, J.

    2010-01-01

    Single crystals of L-phenylalanine L-phenylalaninium perchlorate (LPAPCl), a semiorganic nonlinear (NLO) material have been successfully grown up to a size of 14 mm×5 mm×3 mm. The lattice parameters of the grown crystals are determined by single crystal XRD. The UV-Vis-NIR spectrum of LPAPCl show less optical absorption in the entire visible region. Nonlinear optical study reveals that the SHG efficiency of LPAPCl is nearly 1.4 times that of KDP. The laser damage density is found to be 7.4 GW/cm 2. The crystals are subjected to microhardness studies and the variation of the microhardness with the applied load is studied. The response of dielectric constant in the frequency region of 50 Hz to 5 MHz has been investigated. AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  16. Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.

    PubMed

    Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng

    2013-01-14

    Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.

  17. Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition.

    PubMed

    Jiang, Xishun; Zhang, Miao; Shi, Shiwei; He, Gang; Song, Xueping; Sun, Zhaoqi

    2014-01-01

    Cuprous oxide (Cu2O) thin films were prepared by using electrodeposition technique at different applied potentials (-0.1, -0.3, -0.5, -0.7, and -0.9 V) and were annealed in vacuum at a temperature of 100°C for 1 h. Microstructure and optical properties of these films have been investigated by X-ray diffractometer (XRD), field-emission scanning electron microscope (SEM), UV-visible (vis) spectrophotometer, and fluorescence spectrophotometer. The morphology of these films varies obviously at different applied potentials. Analyses from these characterizations have confirmed that these films are composed of regular, well-faceted, polyhedral crystallites. UV-vis absorption spectra measurements have shown apparent shift in optical band gap from 1.69 to 2.03 eV as the applied potential becomes more cathodic. The emission of FL spectra at 603 nm may be assigned as the near band-edge emission.

  18. Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route

    NASA Astrophysics Data System (ADS)

    Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq

    2018-03-01

    A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.

  19. Structural and optical studies on Sm3+ ions doped bismuth fluoroborate glasses for visible laser applications

    NASA Astrophysics Data System (ADS)

    Mariyappan, M.; Suthanthirakumar, P.; Arunkumar, S.; Marimuthu, K.

    2018-04-01

    A new series of Sm3+ doped bismuth fluoroborate glasses have been prepared following the melt quenching technique with the chemical composition (55-x)B2O3+15BiF3+15CaF2+15NaF+xSm2O3 (where x = 0.1, 0.25, 0.5, 1 and 2 in wt%). The structural analysis was made by recording XRD, SEM and EDAX spectra. The XRD pattern reveals the amorphous nature and EDAX confirms the presence of elements in the titled glasses. The optical properties have been explored through recording NIR absorption, photoluminescence spectra. Radiative properties such as transition probability (A), stimulated emission cross-section (σp) and branching ratio (βR) for the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 emission levels were determined. The luminescence quenching for the prominent 4G5/2→6H7/2 emission transition have been observed while increasing the Sm3+ ions concentration beyond 0.5wt%. The CIE chromaticity coordinates of the present glasses lay in the orange-red region thus indicates its suitability for the reddish-orange emission.

  20. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  1. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-01

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic)2·H2O]·H2O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis.

  2. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    PubMed

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Crystallized InBiS3 thin films with enhanced optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Ali, N.; Hussain, Arshad; Ahmed, R.; Omar, M. Firdaus Bin; Sultan, M.; Fu, Yong Qing

    2018-04-01

    In this paper, a one-step thermal evaporation approach was used for fabrication of indium bismuth sulphide thin films, and the synergetic effects of co-evaporation of two sources (indium granules and Bi2S3 powders) were investigated using different characterization techniques. X-ray diffraction (XRD) analysis confirmed the crystalline orthorhombic structure for the post-annealed samples. Surface roughness and crystal size of the obtained film samples were increased with increasing annealing temperatures. Analysis using X-ray photoelectron spectroscopy showed the formation of the InBiS3 structure for the obtained films, which is also confirmed by the XRD results. The optical absorption coefficient value of the annealed samples was found to be in the order of 105 cm-1 in the visible region of the solar spectrum. The optical band gap energy and electrical resistivity of the fabricated samples were observed to decrease (from 2.2 to 1.3 eV, and from 0.3 to 0.01 Ω-cm, respectively) with increasing annealing temperatures (from 200 to 350 °C), indicating the suitability of the prepared InBiS3 thin films for solar cell applications.

  4. Chemical bath deposition of Cu{sub 3}BiS{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S.G., E-mail: deshmukhpradyumn@gmail.com; Vipul, Kheraj, E-mail: vipulkheraj@gmail.com; Panchal, A.K.

    2016-05-06

    First time, copper bismuth sulfide (Cu{sub 3}BiS{sub 3}) thin films were synthesized on the glass substrate using simple, low-cost chemical bath deposition (CBD) technique. The synthesized parameters such as temperature of bath, pH and concentration of precursors were optimized for the deposition of uniform, well adherent Cu{sub 3}BiS{sub 3} thin films. The optical, surface morphology and structural properties of the Cu{sub 3}BiS{sub 3} thin films were studied using UV-VIS-NIR spectra, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The as- synthesized Cu{sub 3}BiS{sub 3} film exhibits a direct band gap 1.56 to 1.58 eV having absorption coefficient of the ordermore » of 10{sup 5} cm{sup −1}. The XRD declares the amorphous nature of the films. SEM images shows films were composed of close-packed fine spherical nanoparticles of 70-80 nm in diameter. The chemical composition of the film was almost stoichiometric. The optical study indicates that the Cu{sub 3}BiS{sub 3} films can be applied as an absorber layer for thin film solar cells.« less

  5. Spectroscopic properties of Sm3 + ions doped Alkaliborate glasses for photonics applications

    NASA Astrophysics Data System (ADS)

    Nagaraj, R.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2017-10-01

    A new series of Sm3 + doped alkaliborate glasses have been prepared by melt quenching technique and their structural and spectroscopic properties were analysed employing XRD, FTIR, optical absorption, photoluminescence and decay spectral measurements in order to explore their suitability for photonic applications. The amorphous nature have been confirmed through XRD analysis and the FTIR spectra reveal the presence of fundamental stretching and bending vibrations of the borate networks in the prepared glasses. From the absorption peak positions, bonding parameter (δ) values were calculated to examine the nature of the metal-ligand bond. The optical band gap (Eopt) corresponds to the direct and indirect allowed transitions and the Urbach energies (ΔE) were calculated from the absorption spectra to understand the electronic band structure of the studied glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were determined to explore the symmetry of the ligand environment around the Sm3 + ions in the studied glasses. The luminescence spectra exhibit four emission bands in the visible region due to the 4G5/2 → 6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions. The radiative parameters such as transition probability (A), stimulated emission cross-section (σPE), branching ratios (βR) and radiative lifetime (τR) have been determined from the luminescence spectra using JO theory to ensure the suitability of the studied glasses for optoelectronic applications. The luminescence spectra were characterized through CIE 1931 chromaticity diagram to examine the dominant emission color of the studied glasses. The lifetime values of the Sm3 + doped studied glasses pertaining to the 4G5/2 excited level have been determined through decay curve measurements and the non-exponential decay curves were fitted to the Inokuti-Hirayama model to analyze the energy transfer mechanism between the nearby Sm3 + ions. The obtained results were discussed and compared with the similar reported glasses.

  6. Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com

    2015-08-28

    There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that themore » as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.« less

  7. Nonlinear optical response of nanocomposites based on KDP single crystal with incorporated Al2O3*nH2O nanofibriles under CW and pulsed laser irradiation at 532 nm

    NASA Astrophysics Data System (ADS)

    Popov, A. S.; Uklein, A. V.; Multian, V. V.; Dantec, R. Le; Kostenyukova, E. I.; Bezkrovnaya, O. N.; Pritula, I. M.; Gayvoronsky, V. Ya.

    2016-11-01

    Optical properties and nonlinear optical response due to the CW and pulsed laser radiation self-action at 532 nm were studied in composites based on KDP single crystals with incorporated nanofibriles of nanostructured oxyhydroxide of aluminum (NOA). It was shown a high optical quality and structural homogeneity of nanocomposites KDP:NOA by the transmittance spectra, elastic optical scattering and XRD analysis. It was observed manifestation of the second harmonic generation efficiency enhancement in the KDP:NOA versus the nominally pure KDP (λ=1064 nm, τ=1 ns) that is correlated with efficient refractive index self-modulation Δn ∼10-4 (λ=532 nm, τ=30 ps). In the pyramidal and prismatic growth sectors of the nominally pure KDP crystal it was shown opposite signs of the photoinduced variations both of the refractive index and of the optical absorption/bleaching due to resonant excitation of the native defects at 532 nm. It should be considered for the wide-aperture laser frequency KDP family based convertors fabrication.

  8. UV light induced red emission in Eu3+-doped zincborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Hima Bindu, S.; Siva Raju, D.; Vinay Krishna, V.; Rajavardhana Rao, T.; Veerabrahmam, K.; Linga Raju, Ch.

    2016-12-01

    This paper reports the preparation of transparent zincborophosphate (ZBP) glasses doped with Eu3+ ions by the conventional melt quenching technique. The prepared glasses were characterized using powder XRD, FTIR, optical absorption, photoluminescence and decay curves. Judd-Ofelt (JO) intensity parameters calculated under various constraints using absorption and emission spectra. These JO intensity parameters have been used to predict the radiative properties such as radiative life time, branching ratios and stimulated emission cross section of the 5D0→7FJ (J = 0-4) transitions. Decay curves for the 5D0 level of Eu3+ ions shows single exponential for all concentrations. Luminescence properties of 5D0→7F2 transitions of Eu3+ions have revealed that the present ZBP:Eu3+ glasses have significant in optical applications at around 613 nm. An intense red luminescence has been observed due to 5D0→7F2 transition of Eu3+ ion in these glasses. From the CIE color coordinate diagram, it is observed that the present glass system is prominent material for red emission.

  9. Structural and optical properties of p-quaterphenyl thin films and application in organic/inorganic photodiodes

    NASA Astrophysics Data System (ADS)

    Attia, A. A.; Saadeldin, M. M.; Soliman, H. S.; Gadallah, A.-S.; Sawaby, K.

    2016-12-01

    Para-quaterpheny1 (p-4pheny1) thin films were deposited by the thermal evaporation method on glass/quartz substrates for structural and optical investigations. The XRD of p-4phenyl thin films showed that the as-deposited films have a monoclinic structure. The surface morphology of p-4phenyl thin film was studied using scanning electron microscope. The absorption spectrum of p-4phenyl thin film recorded in the wavelength range 200-2500 nm. Photoluminescence measurements revealed two emission peaks at 435 and 444 nm using N2-laser (337.8 nm). The energy gap obtained from the absorption and photoluminescence data was found to be 2.87 and 2.74 eV respectively with Stokes shift value of 0.13 eV. The current-voltage characteristics of p-4phenyl/p-Si heterojunction have been recorded in the dark and under illumination of laser (337.8 nm). Responsivity, Detectivity, External quantum efficiency and Response speed of (Au/p-4pheny1/p-Si/Al) photodetector have been determined using different laser sources at -1 V bias.

  10. Synthesis, growth, structure and nonlinear optical properties of a semiorganic 2-carboxy pyridinium dihydrogen phosphate single crystal

    NASA Astrophysics Data System (ADS)

    Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.

    2015-09-01

    A new semiorganic compound namely, 2-carboxy pyridinium dihydrogen phosphate (2CPDP) was synthesised and grown as single crystals by slow evaporation solution growth technique. Single crystal XRD showed that 2CPDP belongs to monoclinic crystal system with space group P21/n. The molecular structure was further confirmed by modern spectroscopic techniques like FT-NMR (1H, 13C &31P), FT-IR, UV-Vis-NIR and Fluorescence. The UV-Vis-NIR analysis revealed suitability of the crystal for nonlinear optical applications. The photo active nature of the material is established from fluorescence studies. TG-DSC analysis showed that 2CPDP was thermally stable up to 170 °C. The dependence of dielectric properties on frequency and temperature were also studied. Nonlinear optical absorption determined from open aperture Z-Scan analysis by employing picosecond Nd-YAG laser, revealed that 2CPDP can serve as a promising candidate for optical limiting applications.

  11. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  12. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  13. A comparison study of Co and Cu doped MgO diluted magnetic thin films

    NASA Astrophysics Data System (ADS)

    Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.

    2017-02-01

    Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.

  14. Structural, optical and photoelectric properties of sprayed CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.

    2018-05-01

    In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.

  15. Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA-PVP polymer composite films

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Krishnakumar, V.

    2018-05-01

    Polymer composite films based on PVA-PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10-4 and 8.05 × 10-5 S/cm for higher AlCl3 doped PVA-PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.

  16. Properties of CuInS₂ Nano-Particles on TiO₂ by Spray Pyrolysis for CuInS₂/TiO₂ Composite Solar Cell.

    PubMed

    Park, Gye-Choon; Li, Zhen-Yu; Yang, O-Bong

    2017-04-01

    In this letter, for the absorption layer of a CuInS₂/TiO₂ composite solar cell, I–III–VI2 chalcopyrite semiconductor CuInS₂ nano-particles were deposited by using spray pyrolysis method on TiO2 porous film. Their material characteristics including structural and optical properties of CuInS₂ nano-particles on TiO₂ nanorods were analyzed as a function of its composition ratios of Cu:In:S. Crystalline structure, surface morphology and crystalline size were also investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and High-Resolution TEM (HRTEM), respectively. On the other hand, optical property was characterized by an UV-Visible Spectrophotometer. As a result, it was found that the size of CuInS₂ nano-particles, which was formed at 300±5 °C, was smaller than 16 nm from HRTEM analyses, and it was identified that the CuInS₂ particle size was increased as increasing the heat-treatment temperature and time. However, as the size of CuInS₂ nano-particle becomes smaller, optical absorption edge of ternary compound film tends to move to the blue wavelength band. It turns out that the optical energy-band gap of the compound films was ranging from 1.48 eV to 1.53 eV.

  17. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    NASA Astrophysics Data System (ADS)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  18. Surface characteristics changes in polymeric material by swift ion beam

    NASA Astrophysics Data System (ADS)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2018-03-01

    In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.

  19. Effect of Zn2+, Fe3+ and Cr3+ addition to hydroxyapatite for its application as an active constituent of sunscreens

    NASA Astrophysics Data System (ADS)

    de Araujo, T. S.; de Souza, S. O.; de Sousa, E. M. B.

    2010-11-01

    Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr3+, Zn2+ and Fe3+ doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm (±1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.

  20. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors

    NASA Astrophysics Data System (ADS)

    Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad

    2018-06-01

    Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.

  1. Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications

    NASA Astrophysics Data System (ADS)

    Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.

    2018-01-01

    By simple hydrothermal method, nanorods of barium boate were successfully loaded on reduced graphene oxide sheets. Powder XRD confirms the incorporation of barium borate (2θ = 29°, (202)) along with the transition of graphene oxide (2θ = 12°, (001)) into reduced graphene oxide (2θ = 25°, (002)). In the FTIR spectra, presence of characteristic absorption peaks of rGO (1572 and 2928 cm-1) and barium borate (510, 760 and 856 cm-1) further evidences the formation of BBO:rGO nanocomposite. FESEM images potray the existence of graphene sheets as thin layers and growth of barium borate as nanorods on the sheets of reduced graphene oxide. Ground state absorption studies reveal the hypsochromic shift in the absorption maxima of the graphene layers due to reduction of graphene oxide and hypochromic shift in the absorbance intensity due to the inclusion of highly transparent barium bortae. The photoluminescence of BBO:rGO shows maximum emission in the UV region arising from the direct transitions involving the valence band and conduction band in the band gap region. Z-scan technique using CW diode pumped Nd:YAG laser (532 nm, 50 mW) exposes that both nanocomposite and individual counterpart possess saturable absorption and self-defocusing behavior. Third-order nonlinear optical coefficients of BBO:rGO nanocomposite is found to be higher than bare graphene oxide. In particular the nonlinear refractive index of nanocomposite is almost four times higher than GO which resulted in superior optical power limiting action. Strong nonlinear refraction (self-defocusing) and lower onset limiting thershold makes the BBO:rGO nanocomposite preferable candidate for laser safety devices.

  2. Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6

    NASA Astrophysics Data System (ADS)

    Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.

    2017-04-01

    Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.

  3. Influence of Lanthanum Doping on the Structural and Optical Properties of Hematite Nanopowders

    NASA Astrophysics Data System (ADS)

    Justus, J. Sharmila; Dharma Roy, S. Dawn; Raj, A. Moses Ezhil

    2016-10-01

    Rare-earth elements are an attractive class of dopant elements, as they give easily trivalent cations that possibly altering the structure and other properties of the parent nanoparticles and creating multifunctional materials because of their f-electronic configurations. Herein, experimental evidence has been given for a better understanding of the factors that dictate the interactions of La doping on the structure and optical properties of iron oxide nanoparticles. For that, lanthanum doped hematite (α-Fe2O3) nanoparticles were prepared by a facile solution method using iron (III) chloride (FeCl3) as starting precursor and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. As-prepared powders were subsequently calcined in air for 3 hr at 800 °C. Xray diffraction (XRD) technique was used to study the nanocrystal formation of α-Fe2O3 and Fourier Transform Raman (FT-Raman) spectral information identified the chemical bond structure of the nanoparticles. Morphology study of the nanoparticles was identified using Scanning Electron Microscope (SEM) and the incorporated La content was recognized from the Energy Dispersive X-ray Spectroscopy (EDS) analysis. The optical absorption spectrum was recorded in the wavelength range of 200-2000 nm and the optical parameters such as absorption coefficient and optical band gap energy of pure and doped Fe2O3 nanoparticles were determined. Obtained results are interpreted by considering the impregnation of trivalent La cations that replaced Fe cations of the host structure.

  4. Synthesis of Hierarchical Self-Assembled CuO and Their Structure-Enhanced Photocatalytic Performance

    NASA Astrophysics Data System (ADS)

    Wang, Dagui; Yan, Bing; Song, Caixiong; Ye, Ting; Wang, Yongqian

    2018-01-01

    Hierarchical self-assembled CuO hollow microspheres with superior photocatalytic performance are synthesized via a simple hydrothermal process in the presence of cationic surfactants (cetyltrimethylammonium bromide, CTAB). The structure, morphology, and optical absorption performance of CuO samples prepared with different surfactants including CTAB, nonionic surfactant (polyvinylpyrrolidone, PVP) and anionic surfactant (sodium dodecyl sulfate, SDS) are characterized by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-vis) absorption spectra. Moreover, the photocatalytic performances of the CuO samples are evaluated by the photo-degradation of a simulative contaminant methylene blue. The XRD patterns and FESEM images demonstrate that the category of surfactants have effects on the phase structure and morphology of CuO. Compared with bulk CuO (1.20 eV at room temperature), the band gap of CuO microspheres prepared with different surfactants including CTAB, PVP and SDS are measured at 2.16 eV, 2.29 eV, 2.44 eV, respectively, which exhibits a blue shift in the UV-vis spectra. The synthesized hierarchical self-assembled CuO hollow microspheres reveal commendable photocatalytic activity, in which the photo-degradation rate could rise to 94.1%. Additionally, a reasonable growth mechanism of CuO microspheres synthesized with different surfactants is discussed in detail.

  5. Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.

    PubMed

    Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A

    2015-03-05

    Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of annealing time on optical and electrical properties of CdS thin films

    NASA Astrophysics Data System (ADS)

    Soliya, Vanshika; Tandel, Digisha; Patel, Chandani; Patel, Kinjal

    2018-05-01

    Cadmium sulphide (CdS) is semiconductor compound of II-VI group. Thin film of CdS widely used in the applications such as, a buffer layer in copper indium diselenide (CIS) hetrojunction based solar cells, transistors, photo detectors and light emitting diodes. Because of the ease of making like chemical bath deposition (CBD), screen printing and thermal evaporation. It is extensively used in the CIS based solar cells as a buffer layers. The buffer layers usually used for reducing the interface recombination of the photo generated carriers by means of improving the lattice mismatch between the layers. The optimum thickness and the optoelectronics properties of CdS thin films like, optical band gap, electrical resistivity, structure, and composition etc., are to be considering for its use as a buffer layer. In the present study the CdS thin film were grown by simple dip coating method. In this method we had prepared 0.1M Cadmium-thiourea precursor solution. Before the deposition process of CdS, glass substrate has been cleaned using Methanol, Acetone, Trichloroethylene and De-ionized (DI) water. After coating of precursor layer, it was heated at 200 °C for themolysis. Then after CdS films were annealed at 200 °C for different time and studied its influence on the optical transmission, band gap, XRD, raman and the electrical resistivity. As increasing the annealing time we had observed the average transmission of the films was reduce after the absorption edge. In addition to the blue shift of absorption edge was observed. The observed optimum band gap was around 2.50 eV. XRD and raman analysis confirms the cubuc phase of CdS. Hot probe method confirms the n-type conductivity of the CdS film. Hall probe data shows the resistivity of the films was in the order of 103 Ωcm. Observed data signifies its future use in the many optoelectronics devices.

  7. Synthesis of colloidal silver iron oxide nanoparticles--study of their optical and magnetic behavior.

    PubMed

    Kumar, Anil; Singhal, Aditi

    2009-07-22

    Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.

  8. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Linfen; Liu, Bin; Liu, Tongyao; Ma, Xinlong; Li, Hao; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2017-04-01

    In this study, a series of hybrid nanostructured photocatalysts P25/(NH4)xWO3 nanocomposites with the average crystallite size of P25 and (NH4)xWO3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH4)xWO3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W5+ and W6+, the low-valance W5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH4)xWO3 nanocomposites possess high optical absorption in the whole solar spectrum of 200-2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH4)xWO3, broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH4)xWO3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH4)xWO3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues.

  9. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation

    PubMed Central

    Yang, Linfen; Liu, Bin; Liu, Tongyao; Ma, Xinlong; Li, Hao; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2017-01-01

    In this study, a series of hybrid nanostructured photocatalysts P25/(NH4)xWO3 nanocomposites with the average crystallite size of P25 and (NH4)xWO3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH4)xWO3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W5+ and W6+, the low-valance W5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH4)xWO3 nanocomposites possess high optical absorption in the whole solar spectrum of 200–2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH4)xWO3, broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH4)xWO3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH4)xWO3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues. PMID:28368032

  10. A P25/(NH4)xWO3 hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation.

    PubMed

    Yang, Linfen; Liu, Bin; Liu, Tongyao; Ma, Xinlong; Li, Hao; Yin, Shu; Sato, Tsugio; Wang, Yuhua

    2017-04-03

    In this study, a series of hybrid nanostructured photocatalysts P25/(NH 4 ) x WO 3 nanocomposites with the average crystallite size of P25 and (NH 4 ) x WO 3 of the sample was calculated to be about 30 nm and 130 nm, were successfully synthesized via a simple one-step hydrothermal method. The as-obtained samples was characterized by transmission electron microscopy (TEM), which implies that the P25/(NH 4 ) x WO 3 nanocomposites are fabricated with favourable nanosizd interfacial. The XPS results confirmed that the obtained sample consists of mixed chemical valences of W 5+ and W 6+ , the low-valance W 5+ sites could be the origin of NIR absorption. As revealed by optical absorption results, P25/(NH 4 ) x WO 3 nanocomposites possess high optical absorption in the whole solar spectrum of 200-2500 nm. Benefiting from this unique photo-absorption property and the synergistic effect of P25 and (NH 4 ) x WO 3 , broad spectrum response photocatalytic activities covering UV, visible and near infrared regions on degradation of Rhodamine B have been realized by P25/(NH 4 ) x WO 3 nanocomposites. Meanwhile, the stability of photocatalysts was examined by the XRD and XPS of the photocatalysts after the reaction. The results show that P25/(NH 4 ) x WO 3 photocatalysts has a brilliant application prospect in the energy utilization to solve deteriorating environmental issues.

  11. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  13. Post-annealing effect on optical absorbance of hydrothermally grown zinc oxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohar, Rahmat Setiawan; Djuhana, Dede; Imawan, Cuk

    In this study, the optical absorbance of zinc oxide (ZnO) nanorods was investigated. The ZnO thin film were deposited on indium tin oxide (ITO) layers using ultrasonic spray pyrolysis (USP) method and then grown by hydrothermal method. In order to improve the optical absorbance, the ZnO nanorods were then post-annealed for one hour at three different of temperatures, namely 250, 400, and 500 °C. The X-ray diffraction (XRD) spectra and FESEM images show that the ZnO nanorods have the hexagonal wurtzite crystal structure and the increasing of post-annealing temperature resulted in the increasing of crystallite size from 38.2 nm to 48.4 nm.more » The UV-vis spectra shows that all samples of ZnO nanorods exhibited the identical sharp absorption edge at 390 nm indicating that all samples have the same bandgap. The post-annealing process seemed to decrease the optical absorbance in the region of 300-550 nm and increase the optical absorbance in the region of 550-700 nm..« less

  14. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    NASA Astrophysics Data System (ADS)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  15. Synthesis of Ag@TiO2 core-shells using a rapid microwave irradiation and study of their nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Ebrahimi, M.; Abafat, Z.; Molaei, M.

    2016-07-01

    Ag@TiO2 core-shells were synthesized by employing oleylamine as capping agent and using a rapid microwave method. The shell growth was optimized first based on the variation of oleylamine content in the reaction solution. Thereafter the shell thickness was varied just by varying titanium isopropoxide (TiTP) with 25, 50, 100 and 200 μl as TiO2 precursor. The prepared core-shells were characterized by means of XRD, FTIR spectroscopy, transmission electron microscopy, and UV-Vis spectroscopy. XRD analysis revealed a cubic crystal structure for Ag and Anatase phase for TiO2. TEM images clearly indicated that the size of Ag core is roughly 15 nm and with the increase of TiTP, the shell thickness increases and varies between 5 nm and 15 nm. UV-Vis spectroscopy indicated that the plasmon resonance of Ag nanoparticles shifts from 407 nm up to 454 nm with the increase of TiTP precursor. Using a low power laser diode at a 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index were determined by the Z-scan technique and Sheik-Bahae model. The results show that the enhancement of nonlinear optical properties originates from the quality of TiO2 shell growth. The highest nonlinearity belongs to the sample synthesized with 100 μlit TiTP. Generally all the prepared Ag@TiO2 core-shells show both saturable and reverse saturable absorption. They exhibit also a considerable nonlinear absorption and nonlinear refractive index ranging from -4.21 × 10-7 to -3.51 × 10-6 which are comparable to the sole Ag and TiO2 nanoparticles.

  16. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  17. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-12-01

    The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5-10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.

  18. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    NASA Astrophysics Data System (ADS)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  19. Fabrication and Characterization of CZTS Thin Films Prepared by the Sulfurization of RF-Sputtered Stacked Metal Precursors

    NASA Astrophysics Data System (ADS)

    Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed

    2014-09-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.

  20. Effect of annealing temperature on physical properties of solution processed nickel oxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Pooja; Thangavel, R.

    2018-05-01

    In this report, NiO thin films were prepared at different annealing temperatures from nickel acetate precursor by sol-gel spin coating method. These films were characterized by different analytical techniques to obtain their structural, optical morphological and electrical properties using X-ray diffractometer (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis NIR double beam spectrophotometer and Keithley 2450 source meter respectively. FESEM images clearly indicates the formation of a homogenous and porous films. Due to their porosity, they can be used in sensing applications. The optical absorption spectra elucidated that the films are highly transparent and have a suitable band gap which are in similar agreement with earlier reports. The current enhancement under illumination shows the suitability of nanostructured NiO thin films in its application in photovoltaics.

  1. Synthesis and structural characterization of Co2+ ions doped ZnO nanopowders by solid state reaction through sonication

    NASA Astrophysics Data System (ADS)

    Babu, B.; Rama Krishna, Ch.; Venkata Reddy, Ch.; Pushpa Manjari, V.; Ravikumar, R. V. S. S. N.

    2013-05-01

    Cobalt ions doped zinc oxide nanopowder was prepared at room temperature by a novel and simple one step solid-state reaction method through sonication in the presence of a suitable surfactant Sodium Lauryl Sulphate (SLS). The prepared powder was characterized by various spectroscopic techniques. Powder XRD data revealed that the crystal structure belongs to hexagonal and its average crystallite size was evaluated. From optical absorption data, crystal fields (Dq), inter-electronic repulsion parameters (B, C) were evaluated. By correlating optical and EPR spectral data, the site symmetry of Co2+ ion in the host lattice was determined as octahedral. Photoluminescence spectra exhibited the emission bands in ultraviolet and blue regions. The CIE chromaticity coordinates are also evaluated from the emission spectrum. FT-IR spectra showed the characteristic vibrational bands of Znsbnd O.

  2. OPTICAL AND SPECTROSCOPIC STUDIES OF Fe2O3-Bi2O3-B2O3:V2O5 GLASSES

    NASA Astrophysics Data System (ADS)

    Sanjay; Kishore, N.; Agarwal, A.; Dahiya, S.; Pal, Inder; Kumar, Navin

    2013-11-01

    The glasses of compositions xFe2O3ṡ (40 - x)Bi2O3ṡ60B2O3ṡ2V2O5 have been prepared by the standard melt-quenching technique. Amorphous nature of these samples is ascertained by XRD patterns. The presence of BO3 and BO4 units is identified by IR spectra of glass samples. The absorption edge (λcut-off) shifts toward longer wavelengths with an increase in Fe2O3 content in the glass matrix. The values of optical band gap energy for indirect allowed and forbidden transitions have been determined and it is found to decrease with increase in transition metal ions. The Urbach's energy is used to characterize the degree of disorder in amorphous solids.

  3. The enhancement in optical and magnetic properties of Na-doped LaFeO3

    NASA Astrophysics Data System (ADS)

    Devi, E.; Kalaiselvi, B. J.

    2018-04-01

    La1-xNaxFeO3(x=0.00 and 0.05) were synthesized by sol-gel auto-combustion method. No evidence of impurity phase and the peak (121) slightly shift towards lower angle is confirmed by X-ray diffraction analysis (XRD). The UV-visible spectra show strong absorption peak centered at approximately 231 nm and the calculated optical band gap are found to be 2.73eV, 2.36eV for x = 0.00 and 0.05, respectively. The M-H loop of pure sample is anti-ferromagnetic, whereas those of the Na doped sample shows enhanced ferromagnetic behavior. The remnant magnetization (Mr), saturation magnetization (Ms) and coercive field (Hc) of Na-doped sample are enhanced to 1.06emu/g, 5.39emu/g and 182.84kOe, respectively.

  4. A simple and facile synthesis of MPA capped CdSe and CdSe/CdS core/shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Sukanya, D.; Sagayaraj, P.

    2015-06-01

    II-VI semiconductor nanostructures, in particular, CdSe quantum dots have drawn a lot of attention because of their promising potential applications in biological tagging, photovoltaic, display devices etc. due to their excellent optical properties, high emission quantum yield, size dependent emission wavelength and high photostability. In this paper, we describe the synthesis and properties of mercaptopropionic acid capped CdSe and CdSe/CdS nanoparticles through a simple and efficient co-precipitation method followed by hydrothermal treatment. The growth process, characterization and the optical absorption as a function of wavelength for the synthesized MPA capped CdSe and CdSe/CdS nanoparticles have been determined using X-ray diffraction study (XRD), Ultraviolet-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and High Resolution Transmission Electron Microscopy (HRTEM).

  5. Preparation and Optical Properties of CuS Nanofilms by a Facile Two-Step Process

    NASA Astrophysics Data System (ADS)

    Cui, Zhankui; Zhou, Junqiang; Ge, Suxiang; Zhao, Hongxiao

    CuS nanofilms were prepared by a facile two-step process including chemical bath deposition of Cu nanofilms first and the subsequent thermal sulfuration step. The composition and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Raman spectroscopy. The optical properties of CuS nanofilms were determined by Ultraviolet-visible (UV-Vis) technique. The results show that the nanofilms composed by Cu spherical nanoparticles were completely transformed to the nanofilms composed by CuS nanosheets when the sulfuration temperature was 350∘C. The light absorption edges of CuS nanofilms exhibit red shift when sulfuration occurred at lower temperature. A plausible growth mechanism related with gas phase reaction for formation of CuS nanofilms was also proposed.

  6. Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques

    PubMed Central

    González, Gabriela B.

    2012-01-01

    Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010

  7. Role of valence state of vanadium ions on structural and spectroscopic properties of sodium lead bismuth silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Sambasiva; Tirupataiah, Ch.; Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, D. Krishna

    2018-04-01

    Glass ceramics with composition 10Na2O- 30PbO-10Bi2O3-(50-x)SiO2: xV2O5 (0 ≤ x ≤ 5) were synthesized by melt quenching and heat treatment method. XRD and SEM studies have indicated that the samples contain well defined and randomly distributed grains of different crystalline phases. Optical absorption spectra of these samples exhibited two absorption bands at 629 and 835 nm which are the characteristics of V4+ ions. The EPR spectra of these samples have exhibited well resolved hyperfine structure consisting of sixteen-eight parallel and eight perpendicular lines with a raise in their intensity with an increase in the content of V2O5 up to 3 mol% indicates the increase of redox ratio V4+/V5+ in the glass ceramic matrix.

  8. Preparation of TiO2-SiO2 via sol-gel method: Effect of Silica precursor on Catalytic and Photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fatimah, I.

    2017-02-01

    TiO2-SiO2have been synthesized by the sol-gel method from titanium isopropoxide and varied silica precursors: tetraethyl orthosilicate and tetra methyl ortho silicate. To study the effect of the precursor, prepared materials were characterized by X-ray diffraction, scanning electron microscopy, Diffuse Reflectance UV-vis optical absorption, and also gas sorption analysis. XRD patterns showed the formation of TiO2 anatase in the TiO2-SiO2 composite with different crystallite size from different silica precursor as well as the different surface morphology. The DRUV-vis absorption spectra exhibit similar band gap energy correspond to 3.21eV value while the surface area, pore volume and pore radius of the materials seems to be affected by the precursor. The higher specific surface area contributes to give the enhanced activity in phenol hydroxylation and methylene blue photodegradation.

  9. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  10. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  11. Physical and absorption properties of titanium nanoparticles incorporated into zinc magnesium phosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, S.F.; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    We report the influences of Titania (TiO{sub 2}) nanoparticles (NPs) on the physical and optical properties of melt quench synthesized zinc magnesium phosphate glasses. Five glass samples with composition (42 − x)P{sub 2}O{sub 5}–50ZnO–8MgO–xTiO{sub 2}, where x = 0, 1, 2, 3, 4 mol% are prepared and characterized. XRD pattern verified the amorphous nature of all samples. TEM images manifested the growth of Ti NPs of average size ≈ 5.78 nm. TiO{sub 2} NP concentration dependent variation in the physical properties including glass density, molar volume, molar refractivity, electronic polarizability and ionic packing density are determined. The values of glassmore » refractive indices, density and ionic packing density are increased with the increase of TiO{sub 2} NP contents. Conversely, the Urbach energy, direct and indirect optical band gap are found to decrease with the increase of TiO{sub 2} NP concentration. These glass compositions may be potential for various solid state devices including laser. - Highlights: • TiO{sub 2} NP embedded self-cleaning phosphate glass are synthesized for the first time. • Well dispersed and uniform sized TiO{sub 2} NPs are grown. • Absorption spectra revealed prominent peak in the UV region. • TiO{sub 2} NPs strongly influenced the physical and absorption features of synthesized glasses. • The effects of TiO{sub 2} NPs on the physical and optical properties of these glasses are determined.« less

  12. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    PubMed

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  13. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  14. Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Mozaffari, Hossein

    2017-10-01

    In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).

  15. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract.

    PubMed

    Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan

    2013-12-18

    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum ( S. muticum ) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV-Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV-visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum .

  16. Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract

    PubMed Central

    Azizi, Susan; Namvar, Farideh; Mahdavi, Mahnaz; Ahmad, Mansor Bin; Mohamad, Rosfarizan

    2013-01-01

    Biological synthesis of nanoparticles is a relatively new emerging field of nanotechnology which has economic and eco-friendly benefits over chemical and physical processes of synthesis. In the present work, for the first time, the brown marine algae Sargassum muticum (S. muticum) aqueous extract was used as a reducing agent for the synthesis of nanostructure silver particles (Ag-NPs). Structural, morphological and optical properties of the synthesized nanoparticles have been characterized systematically by using FTIR, XRD, TEM and UV–Vis spectroscopy. The formation of Ag-NPs was confirmed through the presence of an intense absorption peak at 420 nm using a UV–visible spectrophotometer. A TEM image showed that the particles are spherical in shape with size ranging from 5 to 15 nm. The nanoparticles were crystalline in nature. This was confirmed by the XRD pattern. From the FTIR results, it can be seen that the reduction has mostly been carried out by sulphated polysaccharides present in S. muticum. PMID:28788431

  17. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    PubMed Central

    Kuriakose, Sini; Avasthi, D K

    2015-01-01

    Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864

  18. Investigation on nonlinear optical properties of MoS2 nanoflake, grown on silicon and quartz substrates

    NASA Astrophysics Data System (ADS)

    Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.

    2018-03-01

    In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.

  19. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  20. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  1. Synthesis, crystal growth, structural, thermal and optical properties of naphthalene picrate an organic NLO material.

    PubMed

    Chandramohan, A; Bharathikannan, R; Kandavelu, V; Chandrasekaran, J; Kandhaswamy, M A

    2008-12-01

    Crystalline substance of naphthalene picrate (NP) was synthesized and single crystals were grown using slow evaporation solution growth technique. The solubility of the naphthalene picrate complex was estimated using different solvents such as chloroform and benzene. The material was characterized by elemental analysis, powder X-ray diffraction (XRD), nuclear magnetic resonance (NMR) and fourier transform-infrared (FT-IR) techniques. The electronic absorption was studied through UV-vis spectrophotometer. Thermal behavior and stability of the crystal were studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The second harmonic generation (SHG) of the material was confirmed using Nd:YAG laser.

  2. Deposition Time Dependent Properties of Copper Tin Telluride (Cu₂SnTe₃) Nanoparticles for Solar Absorber Applications.

    PubMed

    Rakspun, Jariya; Tubtimtae, Auttasit; Vailikhit, Veeramol; Teesetsopon, Pichanan; Choopun, Supab

    2018-06-01

    We report the growth of copper tin telluride nanoparticles as an absorber layer using a chemical bath deposition (CBD) process for solar selective applications. The XRD results showed the phase of Cu2SnTe3 with a cubical structure. The larger-sized nanoparticles resulted with increased absorption properties and the optical band gap ranging from 1.93, 1.90, 1.58 and 1.56 eV for deposition times of 20-120 min, respectively. Then, the electrical properties of Cu2SnTe3 nanoparticles were also provided a higher current (~6-8 mA) with bias potential of zero.

  3. Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles

    NASA Astrophysics Data System (ADS)

    Reinholdt, A.; Pecenka, R.; Pinchuk, A.; Runte, S.; Stepanov, A. L.; Weirich, Th. E.; Kreibig, U.

    2004-10-01

    We present results of an investigation of TiN nanoparticles, which were produced by laser ablation/evaporation and adiabatic expansion with the nanoparticle beam apparatus LUCAS. Compositional and structural characterization, using secondary ion mass spectrometry (SIMS), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD) and selected area electron diffraction (SAED), revealed that crystalline and almost stoichiometric particles were formed and that they are susceptible to oxidation. Furthermore, transmission electron microscopy (TEM) analysis showed that TiN nanoparticles exhibit cuboid shapes. The size distributions were obtained using the edge length as parameter. They are fairly broad and the mean particle diameter depends on the seeding gas flow (the pressure) that is applied to the ablation chamber during production. In situ optical transmission spectra of the TiN nanoparticles deposited on a quartz substrate indicate a pronounced single Mie resonance at around 1.7 eV and an absorption flank starting at approximately 3.0 eV. The experimental optical extinction spectra of different samples were fitted using Mie theory calculations. The dielectric function of bulk TiN was modified to account for size and interface damping of the Mie resonance. Due to the distinct absorption band, TiN may be used as a color pigment. The dependence of the color stimulus on the extinction cross-section as well as on the product of the particle concentration and the sample thickness were examined. Chromaticity coordinates were derived according to the CIE 1976 (L^*a^*b^*) color space from the in situ optical transmission spectra.

  4. Structural properties and UV to NIR absorption spectra of metal-free phthalocyanine (H2Pc) thin films P. B. Thakor, P. N. Gajjar and A. R. Jani: Different reference systems in the study of structural properties of some simple liquid metals Shazia Bashir, M. S. Rafique, M. Khaleeq-ur-Rahman, Faizan-ul-Haq and B. R. Alvina: CO2 and Nd:YAG laser radiation induced damage in aluminium Smail Bougouffa: The study of atomic transitions by use of Numerov technique in schematic model

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    The structural properties and absorption spectra of H2Pc thin films have been studied. The films used in these studies were thermally evaporated on glass/quartz substrates with thickness ranging from 60 to 460 nm. The XRD studies of H2Pc thin films showed that the as-deposited films have a-form with monoclinic system. The mean crystallite size (L), the dislocation density (d) and the strain (x) were evaluated. The molecular structure of H2Pc thin films is confirmed by analysis of (FTIR) spectra. The surface morphology of H2Pc thin films was examined by scanning electron microscope. The absorption spectra of H2Pc recorded in the UV - VIS - IR region for the as-deposited and the annealed thin films of different thickness have been analyzed. The spectra showed two absorption bands namely the Q-band and the Soret (B)-band. The Q-band shows its characteristic splitting (Davydove splitting) with DQ = 0.21 eV. Values of some important optical parameters, namely optical absorption coefficient (a¢), molar extinction coefficient (emolar), half-band-width (Dl), electronic dipole strength (q2) and oscillator strength (f) were calculated. The fundamental and the onset of the indirect energy gaps were also determined as 2.47 and 1.4 eV, respectively.

  5. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  6. Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kumari, Lakshmi; Kar, Asit Kumar

    2018-05-01

    ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.

  7. Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals

    NASA Astrophysics Data System (ADS)

    Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2017-12-01

    The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.

  8. Compositional dependence of optical and electrical properties of indium doped zinc oxide (IZO) thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Dintle, Lawrence K.; Luhanga, Pearson V. C.; Moditswe, Charles; Muiva, Cosmas M.

    2018-05-01

    The structural and optoelectronic properties of undoped and indium doped zinc oxide (IZO) thin films grown on glass substrates through a simple reproducible custom-made pneumatic chemical spray pyrolysis technique are presented. X-ray diffraction (XRD) results showed a polycrystalline structure of hexagonal wurtzite phase growing preferentially along the (002) plane for the undoped sample. Increase in dopant content modified the orientation leading to more pronounced (100) and (101) reflections. Optical transmission spectra showed high transmittance of 80-90% in the visible range for all thin films. The optical band gap energy (Eg) was evaluated on the basis of the derivative of transmittance (dT/dλ) versus wavelength (λ) model and Tauc's extrapolation method in the region where the absorption coefficient, α ≥ 104 cm-1. The observed values of Eg were found to decrease generally with increasing In dopant concentration. From the figure of merit calculations a sample with 4 at.% In dopant concentration showed better optoelectronic properties.

  9. Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Philominathan, P.

    2017-11-01

    An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.

  10. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; Qiao, Mei; Wang, Tie-Jun; Zhang, Jing; Liu, Yong; Liu, Peng; Zhu, Zi-Hua; Wang, Xue-Lin

    2017-09-01

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this paper, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.

  11. Correlation of film thickness to optical band gap of Sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Teh, Yen Chin; Saif, Ala'eddin A.; Azhar Zahid Jamal, Zul; Poopalan, Prabakaran

    2017-11-01

    Ba0.9Gd0.1TiO3 thin films have been fabricated on SiO2/Si and fused silica by sol-gel method. The films are prepared through a spin coating process and annealed at 900 °C to obtain crystallized films. The effect of film thickness on the microstructure and optical band gap has been investigated using X-ray diffractometer, atomic force microscope and ultraviolet-visible spectroscopy, respectively. XRD patterns confirm that the films crystallized with tetragonal phase perovskite structure. The films surface morphology is analysed through amplitude parameter analysis to find out that the grain size and surface roughness are increased with the increase of films thickness. The transmittance and absorbance spectra reveal that all films exhibit high absorption in UV region. The evaluated optical band gap is obtained in the range of 3.67 - 3.78 eV and is found to be decreased as the thickness increase.

  12. Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Rati, Y. Y.; Stanko, D.; Kranjčec, M.; Kökényesi, S.; Daróci, L.; Bohdan, R.

    2014-11-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited upon a quartz substrate by rapid thermal evaporation. Structural studies of the as-deposited, annealed and illuminated films were performed using XRD, scanning electron and atomic force microscopies. Surfaces of all the films were found to be covered with Ag-rich crystalline micrometer sized cones. Thermal annealing leads to mechanical deformation of part of the cones and their detachment from the base film surface while the laser illumination leads to the new formations appearance on the surface of thin films. The spectroscopic studies of optical transmission spectra for as-deposited, annealed and illuminated thin films were carried out. The optical absorption spectra in the region of its exponential behaviour were analysed, the dispersion dependences of refractive index as well as their variation after annealing and illumination were investigated.

  13. Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Rajendran, V.

    2018-01-01

    Investigation on the structural, morphological, optical studies and antimicrobial performance of organic solvent assisted magnesium oxide (MgO) nanoparticles. Nanoparticles are in 16-18 nm of grain size prepared by sol-gel method. The XRD studies shows as synthesized products are in cubic phase with periclase structurer. The well disperesd spherical morphology were obtained in SEM and TEM. The organic solvent methanol had profound effects on the size of the nano particles. The optical absorption edge energy was present in UV region and the corresponding band gap energy values are 4.5 and 4.9 eV for water with ethanol and methanol mediated MgO sample respectively. The PL emission spectrum has a emission peak at 340 and 353 nm which is due to surface defects. The obtained MgO nanoparticles showed superior antimicrobial activities for the gram positive, gram negative and fungus strains using the ELISA reader at 450 nm.

  14. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter

    NASA Astrophysics Data System (ADS)

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-01

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.

  15. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  16. Microstructural and optical properties of CdS nanoparticles synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    Semiconductor nanoparticles of CdS are of great interest for both fundamental research and industrial development due to their unique size-dependent optical and electronic properties and their exciting utilization in the fields of light-emitting diode, electro-chemical cells, laser, hydrogen producing catalyst, biological label. We present a scheme to measure the optical properties of CdS nanoparticles The peaks were indexed by powder-x software. The XRD pattern analysis showed that CdS composition was found to have hexagonal structure with well crystalline nature. the surface morphology and the composition of the samples were investigated by SEM (JEOL, japan). The image shows the presence of large spherical aggregates of smaller individual nanoparticles of various sizes for pure cds. to check the chemical composition of the material, energy dispersive X-ray (EDX) spectroscopic analysis was also performed which further confirmed the presence of cd and s ions in the matrix. The optical absorption spectra of CdS sample was recorded by uv-vis spectrophotometer in the range of 200 to 800 nm.

  17. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  18. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  19. Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Milićević, Bojana; Đorđević, Vesna; Lončarević, Davor; Dostanić, Jasmina M.; Ahrenkiel, S. Phillip; Dramićanin, Miroslav D.; Sredojević, Dušan; Švrakić, Nenad M.; Nedeljković, Jovan M.

    2017-11-01

    Under normal conditions, titanium dioxide does not absorb visible light photons due to large band gap. Nevertheless, when titanium dioxide nanoparticles (TiO2 NPs) are surface-modified with thiosalicylic acid (TSA), their optical properties are altered owing to the formation of charge transfer complex that initiates absorption in the visible spectral range. Colloidal and sol-gel techniques were used to synthesize uniform TiO2 NPs of different sizes (average diameters in the range 4-15 nm), and effects of their subsequent modification by TSA molecules were compared with effect of modification of commercial Degussa TiO2 powder. Thorough microstructural characterization of TiO2 nanoparticulates was performed including transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, as well as nitrogen adsorption-desorption isotherms. Optical measurements revealed that all surface-modified TiO2 samples with TSA have similar spectral features independent of their morphological differences, and, more importantly, absorption onset of modified TiO2 samples was found to be red-shifted by 1.0 eV compared to the unmodified ones. The mode of binding between TSA and surface Ti atoms was analyzed by infrared spectroscopy. Finally, the quantum chemical calculations, based on density functional theory, were performed to support optical characterization of surface-modified TiO2 with TSA.

  20. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    PubMed

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  1. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kalita, Amarjyoti; Kalita, Manos P. C.

    2017-08-01

    We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.

  2. Effect of Precursors on Key Opto-electrical Properties of Successive Ion Layer Adsorption and Reaction-Prepared Al:ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; Kathalingam, A.; AlFaify, S.

    2018-02-01

    Aluminum-doped zinc oxide (Al:ZnO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) method using different precursors. This inexpensive SILAR method involves dipping of substrate sequentially in zinc solution, de-ionized water and ethylene glycol in multiple cycles. Prepared films were investigated by x-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), optical absorption, photoluminescence (PL), Raman spectroscopy and electrical studies. XRD study confirmed incorporation of aluminum in ZnO lattice with a polycrystalline hexagonal wurtzite structure of the films. The crystallite size determined by the Scherrer equation showed an increase from 28 nm to 35 nm for samples S1 to S4, respectively. SEM study showed smooth morphology with homogeneous distribution of particles. From the AFM images, the surface roughness was found to change according to precursors. For the optical analysis, the zinc chloride precursor showed high optical transmittance of about 90% in the visible range with a band gap value 3.15 eV. The room-temperature PL spectra exhibited a stronger violet emission peak at 420 nm for all the prepared samples. The Raman spectra showed a peak around 435 cm-1 which could be assigned to non-polar optical phonons (E2-high) mode AZO films of a ZnO wurtzite structure. Hall effect measurements showed n-type conductivity with low resistivity ( ρ) and high carrier concentrations ( n) of 2.39 × 10-3 Ω-cm and 8.96 × 1020 cm-3, respectively, for the film deposited using zinc chloride as precursor. The above properties make the prepared AZO film to be regarded as a very promising electrode material for fabrication of optoelectronic devices.

  3. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  4. Enhancement in ferroelectric, pyroelectric and photoluminescence properties in dye doped TGS crystals

    NASA Astrophysics Data System (ADS)

    Sinha, Nidhi; Goel, Neeti; Singh, B. K.; Gupta, M. K.; Kumar, Binay

    2012-06-01

    Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (Tc) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/pyroelectric properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications.

  5. Study of structural and optical properties of ZnS zigzag nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Rahchamani, Seyyed Zabihollah; Rezagholipour Dizaji, Hamid; Ehsani, Mohammad Hossein

    2015-11-01

    Zinc sulfide (ZnS) nanostructured thin films of different thicknesses with zigzag shapes have been deposited on glass substrates by glancing angle deposition (GLAD) technique. Employing a homemade accessory attached to the substrate holder enabled the authors to control the substrate temperature and substrate angle. The prepared samples were subjected to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV-VIS. spectroscopy techniques. The structural studies revealed that the film deposited at room temperature crystallized in cubic structure. The FESEM images of the samples confirmed the formation of zigzag nano-columnar shape with mean diameter about 60-80 nm. By using the data obtained from optical studies, the real part of the refractive index (n), the absorption coefficient (α) and the band gap (Eg) of the samples were calculated. The results show that the refractive indices of the prepared films are very sensitive to deposition conditions.

  6. Photocatalytic activity of binary metal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity.

    PubMed

    Magdalane, C Maria; Kaviyarasu, K; Vijaya, J Judith; Siddhardha, Busi; Jeyaraj, B

    2016-10-01

    We report the synthesis of high quality CeO2-CdO binary metal oxide nanocomposites were synthesized by a simple chemical precipitation and hydrothermal method. Cerium nitrate and cadmium nitrate were used as precursors. Composition, structure and morphology of the nanocomposites were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD pattern proves that the final product has cubic phase and the particle size diameter of the nanocomposites are 27nm, XRD results also indicated that the crystalline properties of the nanocomposite were improved without affecting the parent lattice, FESEM analysis indicates that the product is composed of spherical particles in clusters. The morphological and optical properties of CeO2-CdO nanosamples were characterized by HRTEM and DRS spectroscopy. The IR results showed high purity of products and indicated that the nanocomposites are made up of CeO2 and CdO bonds. Absorption spectra exhibited an upward shift in characteristic peaks caused by the addition of transition metal oxide, suggesting that crystallinity of both the metal oxide is improved due to specific doping level. TGA plots further confirmed the purity and stability of nanomaterials prepared. Hence the nanocomposite has cubic crystal lattice and form a homogeneous solid structure. From the result, Cd(2+) ions are embedded in the cubic crystal lattice of ceria. The growth rate increases which are ascribed to the cationic doping with a lower valence cation. Ce-Cd binary metal oxide nanocomposites showed antibacterial activity, it showed the better growth inhibition towards p.aeruginosa. Exploit of photodegradation and photocatalytic activity of large scale synthesis of CeO2-CdO binary metal oxide nanocomposites was reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya

    2018-01-01

    Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.

  8. Dependence of O2 and Ar2 flow rates on the physical properties of ATO thin films deposited by atmospheric pressure chemical vapor deposition (APCVD)

    NASA Astrophysics Data System (ADS)

    Fadavieslam, M. R.; Sadra, S.

    2017-11-01

    Antimony-doped tin oxide SnO2:Sb thin films were fabricated through atmospheric pressure chemical vapor deposition at T = 350 °C on soda lime glass substrates. After preparing the thin films, the effects of oxygen and argon flow rates on the structural, optical, and electrical properties were investigated. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy, optical absorption (UV-Vis), and electrical resistance measurements using the two-point probe technique and the Hall effect. The results showed that the films contained uniform polycrystalline structures. Accordingly, the structural, morphological, optical, and electrical properties of the samples indicated the following effects: (a) Increasing the oxygen flow rate from 60 to 160 cc/min decreased the intensity of XRD peaks, the average roughness from 48.5 to 47.9 nm, the average transmission from 44 to 40 (in the visible region), the optical band gap from 3.74 to 3.66 eV, and the carrier mobility from 239.52 to 21.08 cm2/V.S; moreover, it increased the average grain size from 74 to 79 nm, the thickness from 320 to 560 nm, the specific resistance from 3.38 × 10-2 to 14.9 × 10-2 Ω cm, the carrier concentration from 7.72 × 1017 to 1.99 × 1018 cm-3, and the Seebeck coefficient from 47.2 to 57.85 μVk-1 (at 400 K). (b) Increasing the argon flow rate of 40 cc/min to 120 cc/min decreased the intensity of XRD peaks, the average size of grains from 88 nm to 61 nm, the optical band gap from 3.66 to 2.73 eV, the carrier concentration from 1.99 × 1018 to 1.73 × 1017 cm-3, and the Seebeck coefficient from 57.85 to 36.59 μVk-1 (at 400 k); moreover, this increased the average roughness from 47.9 to 50.8 nm, the average transmission from 40 to 64 (in the visible region), thickness from 560 to 620 nm, specific resistance from 14.9 × 10-2 to 39.87 × 10-2 Ω cm, and carrier mobility from 21.08 to 90.61 μv/vs. (c) All thin films had degenerate n-type conductivity.

  9. Effect of Co2+ Ions Doping on the Structural and Optical Properties of Magnesium Aluminate

    NASA Astrophysics Data System (ADS)

    Kanwal, Kiran; Ismail, Bushra; Rajani, K. S.; Kissinger, N. J. Suthan; Zeb, Aurang

    2017-07-01

    Cobalt-doped nanosized magnesium aluminate (Mg1-xCoxAl2O4) samples having different compositions ( x = 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized by a chemical co-precipitation method. All samples were characterized by means of x-ray diffraction (XRD), scanning electron microscopy, Fourier transform infrared spectroscopy, ultra violet-visible spectroscopy, photoluminescence and diffused reflectance spectroscopy. The results of XRD revealed that the samples were spinel single phase cubic close packed crystalline materials. The lattice constant and x-ray density were found to be affected by the ionic radii of the doped metal cations. Using the Debye-Scherrer formula, the calculated crystalline size was found to be Co2+ ion concentration-dependent and varied between 32 nm and 40 nm. Nano-dimensions and phase of the Mg1-xCoxAl2O4 samples were analyzed and the replacement of Mg2+ ions with Co2+ ions was confirmed by elemental analysis. Three strong absorption bands at 540 nm, 580 nm and 630 nm were observed for the doped samples which are attributed to the three spin-allowed 4T1g (4F) → 4T2g, 4A2g, 4T1g (4P) electronic transitions of Co2+ at tetrahedral lattice sites. Nanophosphors have optical properties different from bulk because of spatial confinement and non-radiative relaxation. Decreases in particle size can increase the surface area and the defects, which can in turn increase the luminescent efficiency to make it very useful for tunable laser operations, persistent phosphorescence, color centers, photoconductivity and luminescence for display technology. MgAl2O4 was doped with Co2+ ions using a co-precipitation method and the optical absorption studies revealed that there is a decrease of band gap due to the increase of Co2+ content. The emission intensity of this phosphor is observed at 449 nm with a sharp peak attributed to the smaller size of the particles and the homogeneity of the powder.

  10. Single-Source Molecular Precursor for Synthesis of CdS Nanoparticles and Nanoflowers

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Sobhani, Azam

    2012-04-01

    CdS Semiconductor nanostructures were synthesized by using two different methods. Using triphenylphosphine (C18H15P) and oleylamine (C18H37N) as surfactant, CdS semiconductor nanocrystals with a size ranging from 30 to 90 nm can be synthesized by thermal decomposition of precursor [bis(thiosemicarbazide)cadmium(II)]. CdS nanoflowers were synthesized via hydrothermal decomposition of [bis(thiosemicarbazide) cadmium(II)] without any surfactant. X-ray diffraction (XRD) patterns confirm that the resulting samples were a pure hexagonal phase of CdS. The optical property test indicates that the absorption peak of the samples shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect.

  11. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    NASA Astrophysics Data System (ADS)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  12. Enhancement of nonlinear optical and temperature dependent dielectric properties of Ce:BaTiO3 nano and submicron particles

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Dhanuskodi, S.; Thomas, Anitta Rose; Philip, Reji

    2017-08-01

    The solgel synthesized Ce: BaTiO3 (BT) particles are crystallized in tetragonal structure and the expansion of lattice along a-axis is ensured from the Rietveld refined XRD spectra. FTIR shows that the increase of force constant from 199.97 to 213.13 N m-1 is owing to an effective incorporation of heavier atomic mass of Ce in BT lattice. HRTEM reflects the discontinuous atomic planes in the form of Ti vacancies which is supported by EDS measurement. The modification of optical band structure of BT with Ce ions is validated through several absorption and defect emission bands. Energy dependent second harmonic generation is carried out to confirm the non saturated signal, thermal stability and maximum intensity 2483 counts attained for 2 mol% Ce at 200 mJ. Optical limiting characteristics of the samples is analysed at 532 nm using 5 ns laser pulses of energy 50, 100 and 150 µJ. The nonlinear absorption coefficient (β) is found to be enhanced upon Ce doping. Lower optical limiting thresholds of 2.8 and 3.3 J cm-2 are obtained in the case of 1 and 4 mol% Ce samples respectively. Dielectric properties in a broad temperature range (40-500 °C) and frequency (100 Hz-5 MHz) have been investigated in detail. The dielectric constant is increased from 1926 to 3750 on Ce doping and there are two semicircles in the Cole-Cole plot at 500 °C due to grain and grain boundaries and corresponding equivalent circuit model is proposed.

  13. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  14. Structure, glass transition temperature and spectroscopic properties of 10Li2O-xP2O5-(89-x)TeO2-1CuO (5≤x≤25 mol%) glass system.

    PubMed

    Upender, G; Babu, J Chinna; Mouli, V Chandra

    2012-04-01

    X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), infrared (IR), Raman, electron paramagnetic resonance (EPR) and optical absorption studies on 10Li2O-xP2O5-(89-x)TeO2-1CuO glasses (where x=5, 10, 15, 20 and 25 mol%) have been carried out. The amorphous nature of the glasses was confirmed using XRD and FESEM measurements. The glass transition temperature (Tg) of glass samples have been estimated from DSC traces and found that the Tg increases with increasing P2O5 content. Both the IR and Raman studies have been showed that the present glass system consists of [TeO3], [TeO4], [PO3] and [PO4] units. The spin-Hamiltonian parameters such as g∥, g⊥, and A∥ have been determined from EPR spectra and it was found that the Cu2+ ion is present in tetragonal distorted octahedral site with [Formula: see text] as the ground state. Bonding parameters and bonding symmetry of Cu2+ ions have been calculated by correlating EPR and optical data and were found to be composition dependent. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  16. Investigations of the drift mobility of carriers and density of states in nanocrystalline CdS thin films

    NASA Astrophysics Data System (ADS)

    Singh, Baljinder; Singh, Janpreet; Kaur, Jagdish; Moudgil, R. K.; Tripathi, S. K.

    2016-06-01

    Nanocrystalline Cadmium Sulfide (nc-CdS) thin films have been prepared on well-cleaned glass substrate at room temperature (300 K) by thermal evaporation technique using inert gas condensation (IGC) method. X-ray diffraction (XRD) analysis reveals that the films crystallize in hexagonal structure with preferred orientation along [002] direction. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) studies reveal that grains are spherical in shape and uniformly distributed over the glass substrates. The optical band gap of the film is estimated from the transmittance spectra. Electrical parameters such as Hall coefficient, carrier type, carrier concentration, resistivity and mobility are determined using Hall measurements at 300 K. Transit time and mobility are estimated from Time of Flight (TOF) transient photocurrent technique in gap cell configuration. The measured values of electron drift mobility from TOF and Hall measurements are of the same order. Constant Photocurrent Method in ac-mode (ac-CPM) is used to measure the absorption spectra in low absorption region. By applying derivative method, we have converted the measured absorption data into a density of states (DOS) distribution in the lower part of the energy gap. The value of Urbach energy, steepness parameter and density of defect states have been calculated from the absorption and DOS spectra.

  17. Bricks in historical buildings of Toledo City: characterisation and restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Arce, Paula; Garcia-Guinea, Javier; Gracia, Mercedes

    2003-01-15

    Two different types of ancient bricks (12th to 14th centuries) collected from historical buildings of Toledo (Spain) were characterised by optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectrometers (SEM/EDS), electron probe microanalysis (EM), X-ray diffraction (XRD), differential thermal analysis (DTA) and {sup 57}Fe-Moessbauer spectroscopy. Physical properties such as water absorption and suction, porosity, density and compression strength were also determined. Several minerals found in the brick matrix, such as garnet, let us infer raw material sources; calcite, dolomite, illite and neoformed gehlenite and diopside phases, on temperature reached in firing; secondary calcite, on first cooling scenarios; and manganese micronodules, on latemore » pollution environments. XRD and DTA of original and refired samples supply information about firing temperatures. Additional data on firing conditions and type of the original clay are provided by the Moessbauer study. Physical properties of both types of bricks were compared and correlated with raw materials and fabric and firing technology employed. The physicochemical characterisation of these bricks provides valuable data for restoration purposes to formulate new specific bricks using neighbouring raw materials.« less

  18. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  19. Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A. R.; Hussain, S. G.; Ali, S.

    2018-05-01

    In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol-gel method. A variety of characterization techniques as ultra-violet visible (UV-Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV-Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10-2 emu/g was observed.

  20. Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies

    NASA Astrophysics Data System (ADS)

    Hebbar, Vidyashree; Bhajantri, R. F.; Naik, Jagadish; Rathod, Sunil G.

    2016-07-01

    In this paper, we report the microstructural, optical and fluorescence properties of poly(vinyl alcohol) (PVA)/Thiazole Yellow G (TY) dye composite prepared by solvent casting. The formation of change-transfer complex as a result of the interaction between the dye molecules and polymer chain is confirmed in FTIR, FT-Raman, XRD and DSC studies. SEM studies present the morphology of the samples. The UV-visible absorption spectra possess characteristic peaks of the TY dye corresponding to n-π* transition along with a characteristic peak of PVA. The composites exhibit the decreasing energy gap and increasing refractive index with an increase in wt.% of the TY dye. The fluorescence-quenching phenomena are observed in emission wavelength range of 391-406 nm upon excitation in the vicinity of absorption maxima (335 nm) with the quantum yield of 0.72 for lowest concentration of dye. The prepared composites bear high brightness, and improved thermal stability, which make them a promising material for sensors and optoelectronic applications.

  1. Effects of X-ray irradiation on the Eu3+ → Eu2+ conversion in CaAl2O4 phosphors

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Carvalho, Jéssica C.; Andrade, Adriano B.; Rezende, Marcos V.; Macedo, Zélia S.; Valerio, Mário E. G.

    2018-01-01

    This paper reports structural and luminescence properties of Eu-doped CaAl2O4 produced by an alternative sol-gel method using coconut water. Results of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) allowed us to identify the best synthesis conditions for sample preparation. Simultaneous measurements of X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) were also performed in the X-ray energy range of the Eu LIII edge. Results from photoluminescence (PL) showed only the characteristic Eu3+ emission. However, radioluminescence emission spectra from Eu-doped CaAl2O4 shows a process of conversion of Eu3+ to Eu2+, which is induced by X-ray irradiation and is dependent on the radiation dose energy. X-ray absorption near edge structure (XANES) measurements corroborate Eu reduction due to irradiation, showing that only the Eu3+ ion is present in stable form in the CaAl2O4.

  2. The effects of annealing temperature on the structural properties and optical constants of a novel DPEA-MR-Zn organic crystalline semiconductor nanostructure thin films

    NASA Astrophysics Data System (ADS)

    Al-Hossainy, A. Farouk; Ibrahim, A.

    2017-11-01

    The dependence of structural properties and optical constants on annealing temperature of a 2-((1,2-bis (diphenylphosphino)ethyl)amino) acetic acid-methyl red-monochloro zinc dihydride (DPEA-MR-Zn) as a novel organic semiconductor thin film was studied. The DPEA-MR-Zn thin film was deposited on silicon substrates using the spin coating technique. The as-deposited film was annealed in air for 1 h at 150, 175 and 205 °C. The XRD study of DPEA-MR-Zn in its powder form showed that this complex is mere a triclinic crystal structure with a space group P-1. In addition, the XRD patterns showed that the as-deposited thin films were crystallized according to the preferential orientation [(214), (121), (0 2 bar 6), (3 bar 02), (122) and (11 4 bar)]. Moreover, two additional peaks (2 bar 2 bar 1 and 2 4 bar 7) were shown at 2θ nearly 30°, and 69°, where, the more annealing temperature, the more the intensity of the two peaks. In addition, it was noticed that the grain size had a remarkable change with an annealing temperature of the DPEA-MR-Zn thin films. The optical measurements showed that the thin film has a relatively high absorption region where the photon energy ranges from 2 to 3.25 eV. Both of Wemple-DiDomenico and single Sellmeier oscillator models were applied on the DPEA-MR-Zn to analyze the dispersion of the refractive index and the optical and dielectric constants. The outcome of the study of the structural and optical properties reported here of the DPEA-MR-Zn organic semiconductor crystalline nanostructure thin film had shown various applications in many advanced technologies such as photovoltaic solar cells.

  3. Effects of sulfurization on the optical properties of Cu2ZnxFe1-xSnS4 thin films

    NASA Astrophysics Data System (ADS)

    Hannachi, A.; Oueslati, H.; Khemiri, N.; Kanzari, M.

    2017-10-01

    In order to prepare thin films of novel semiconductor materials that contain only earth abundant, low cost and nontoxic elements, Cu2ZnxFe1-xSnS4 ingots were successfully synthesized by direct fusion method. Crushed powders of these ingots were used as raw materials for the thermal evaporation. Cu2ZnxFe1-xSnS4 (with x = 0, 0.25, 0.5, 0.75 and 1) thin films were deposited on non-heated glass substrates by vacuum evaporation method. The as deposited films were sulfurized for 30 min at sulfurization temperature Ts = 400 °C. The effects of the sulfurization on the structural and optical properties of CZFTS films were realized by X-ray diffraction (XRD) and UV-Vis spectroscopy. XRD patterns show that all sulfurized CZFTS films were polycrystalline in nature with a preferential orientation along the (112) plane. CFTS films exhibit a stannite structure while CZTS films had a kesterite structure. Optical measurements showed that CZFTS films sulfurized at 400 °C exhibited an optical transmittance between 60 and 80% and all materials had relatively high absorption coefficients in the range of 104-105 cm-1. The band gap energies of sulfurized CZFTS films decreased from 1.71 to 1.50 eV with the increase of the Zn content. The dispersion of the refractive index was discussed in terms of the single oscillator model proposed by Wemple and DiDomenico and the optical parameters such as refractive index, extinction coefficient, oscillator energy and dispersion energy were calculated. The electrical free carrier susceptibility and the carrier concentration on the effective mass ratio were evaluated according to the model of Spitzer and Fan. The hot probe analysis showed that all sulfurized CZFTS films are p-type conductivity.

  4. Investigation of luminescence and laser transition of Dy3+ ion in P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses

    NASA Astrophysics Data System (ADS)

    Ram, G. Chinna; Narendrudu, T.; Suresh, S.; Kumar, A. Suneel; Rao, M. V. Sambasiva; Kumar, V. Ravi; Rao, D. Krishna

    2017-04-01

    P2O5sbnd PbOsbnd Bi2O3sbnd R2O3 (R = Al, Ga, In) glasses doped with Dy2O3 were prepared by melt quenching technique. The prepared glasses were characterized by XRD, optical absorption, FTIR, luminescence studies. Judd-Ofelt parameters have been evaluated for three glass systems from optical absorption spectra and in turn radiative parameters for excited luminescent levels of Dy3+ ion are also calculated. Emission cross section and branching ratio values are observed to high for 6H13/2 level for Dy3+ ion. The yellow to blue intensity ratios and CIE chromaticity coordinates were calculated. Decay curves exhibit non exponential behavior. Quantum efficiency of prepared glasses was measured by using radiative and calculated life times. IR studies, J-O parameters and Y/B ratio values indicate that more asymmetry around Dy3+ ions in Ga2O3 mixed glass was observed. Chromaticity coordinates lie near ideal white light region. These coordinates and CCT values have revealed that all the prepared glasses emit quality white light especially the glasses mixed with Ga2O3 are suitable for development of white LEDs.

  5. Effects of deposition temperatures on structure and physical properties of Cd 1-xZn xTe films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge

    2010-02-01

    Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.

  6. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter.

    PubMed

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-05

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Aging effects of the precursor solutions on the properties of spin coated Ga-doped ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serrao, Felcy Jyothi, E-mail: jyothiserrao@gmail.com; Dharmaprakash, S. M.

    2015-06-24

    In this study, gallium doped zinc oxide thin films (GZO) were grown on a glass substrate by a simple sol-gel process and spin coating technique using zinc acetate and gallium nitrate (3at%) as precursors for Zn and Ga ions respectively. The effects of aging time of the precursor solution on the structural and optical properties of the GZO films were investigated. The surface morphology, grain size, film thickness and optical properties of the GZO films were found to depend directly on the sol aging time. XRD studies reveal that the films are polycrystalline with a hexagonal wurtzite structure and showmore » the c-axis grain orientation. Optical transmittance spectra of all the films exhibited transmittance higher than about 82% within the visible wavelength region. A sharp fundamental absorption edge with a slight blue shifting was observed with an increase in sol aging time which can be explained by Burstein-Moss effect. The result indicates that an appropriate aging time of the sol is important for the improvement of the structural and optical properties of GZO thin films derived from sol-gel method.« less

  8. Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Kaushal, Ajay; Kaur, Davinder

    2011-06-01

    We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1- x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2-WO3 thin film electrode with higher VO2 content ( x ≥ 0.2). Increase of VO2 content in (WO3)1- x (VO2) x films leads to red shift in optical band gap.

  9. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    NASA Astrophysics Data System (ADS)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  10. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    NASA Astrophysics Data System (ADS)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  11. Theoretical and experimental evaluation of a new organic proton transfer crystal aminoguanidinium p-nitrobenzoate monohydrate for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, T.; Senthilkumar, K.; Dhandapani, M.; Muthuraja, P.; Balachandar, S.; Sethu Raman, M.

    2017-12-01

    Aminoguanidinium p-nitrobenzoate monohydrate (AGPNB), an organic third order nonlinear crystal, was successfully grown by the slow evaporation technique. Single crystal XRD analysis reveals that the grown crystal belongs to monoclinic system with P21/n space group. FT-IR, 1H and 13C NMR spectroscopic studies were carried out to confirm the proton transfer. Optical and thermal suitability were assessed by UV-NIR and TG-DTA studies. Hirshfeld surface analysis predicts that the O⋯H/H⋯O interactions dominated over the crystal structure. Third order nonlinearity was studied by Z-scan analysis and it is found that AGPNB can be used as a reverse satuarble absorption (RSA) based optical limiter at 632.8 nm. Computational studies, such as geometry optimization, Natural bond orbital (NBO) analysis, Mulliken population analysis and Molecular electrostatic potential (MEP) were performed at B3LYP/6-311G(d,p) level of theory. The calculated first order hyperpolarizability of AGPNB is found to be 35 times that of urea.

  12. An optical fiber glass containing PbSe quantum dots

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Jiang, Huilü; Ma, Dewei; Cheng, Xiaoyu

    2011-09-01

    An optical fiber material, sodium-aluminum-borosilicate glass doped with PbSe quantum dots (QDs) is synthesized by a high-temperature melting method. Crystallization, size distribution and absorption-photoluminescence (PL) of this material are observed by XRD, TEM, and spectrometer respectively. The obtained results indicate that the glass contains QDs in diameter of 6-13 nm depending on the heat-treatment temperature and with a higher doped concentration than those available. It shows an enhanced PL, widened FWHM (275-808 nm), obvious Stokes shift (20-110 nm), with the PL peak wavelength located within 1676-2757 nm depending on the size of QD. The glass is fabricated into an optical fiber in diameter of 10-70 μm and length of 1 m, with pliability and ductility similar to usual SiO 2 fibers. It can be easily fused and spliced with SiO 2 fibers due to a small difference of melting point between them. Characterized by high doped concentration and broad FWHM, this study suggests that the glass can be applied to designing novel broadband fiber amplifiers working in C-L waveband.

  13. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y 2SiO 5 crystal

    DOE PAGES

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...

    2017-01-28

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less

  14. An approach for scalable production of silver (Ag) decorated WS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Sumesh, C. K.; Kapatel, Sanni; Chaudhari, Arti

    2018-05-01

    In the Present study we report the synthesis of Ag nanoparticles (NPs) decorated WS2 nanosheets by sonochemical exfoliation followed by simple chemical reduction process at room temperature. The morphology and microstructure of the as-synthesized Ag-WS2 nanocomposite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and optical absorption (UV-Vis.) spectroscopy. X-ray and TEM analysis shows the presence of Ag with significant peak over 38.08°, 44.22°, 64.37° and 77.33° at 2θ angle for (111), (200), (220) and (311) respectively. The Ag nanoparticles are randomly distributed throughout the surface of the WS2 nanosheets without undergoing further oxidation during the formation of composites. The formation of Ag-WS2 nanocomposites shows a clear blue shift in the absorption as we obtained the characteristics absorption valleys at 456, 536 and 631 nm from the UV Vis spectroscopy analysis compared to pure WS2 nanosheets. Henceforth a facile method for the Ag decoration on WS2 nanosheets was put forward and briefly discussed. The proposed synthesis method is very promising for the low cost and large-scale synthesis of other noble metal incorporation TMDC compounds.

  15. As-synthesis of nanostructure AgCl/Ag/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.

    2012-02-01

    In this work, we present the simple synthetic route for silver chloride/silver nanoparticles (AgCl/Ag-NPs) using as-synthesis method. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed that when AgNO 3 content is below 0.1 wt.% in synthetic gel, the guest AgCl/Ag-NPs is formed on the silica channel wall, and lower exists in the crystalline state. When AgNO 3 content exceeds this value, AgCl/Ag nanoparticles can be observed in high crystalline state. The absorption at 327 nm ascribed to the characteristic absorption of the AgCl semiconductor. Ag nanoparticles have been shown to exist in the nanocomposite at 375 nm. When AgNO 3 content is above 0.1 wt.% in synthetic gel, spectra exhibited stronger absorption at 450-700 nm that was attributed to the surface plasmonic resonance of silver nanoparticles. The obtained AgCl/Ag/MCM-41 sample exhibit enhanced photocatalytic activity for the degradation of methylene blue under visible-light irradiation.

  16. Characterization of Sb-doped Bi(2)UO(6) solid solutions by X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Misra, N L; Yadav, A K; Dhara, Sangita; Mishra, S K; Phatak, Rohan; Poswal, A K; Jha, S N; Sinha, A K; Bhattacharyya, D

    2013-01-01

    The preparation and characterization of Sb-doped Bi(2)UO(6) solid solutions, in a limited composition range, is reported for the first time. The solid solutions were prepared by solid-state reactions of Bi(2)O(3), Sb(2)O(3) and U(3)O(8) in the required stoichiometry. The reaction products were characterized by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) measurements at the Bi and U L(3) edges. The XRD patterns indicate the precipitation of additional phases in the samples when Sb doping exceeds 4 at%. The chemical shifts of the Bi absorption edges in the samples, determined from the XANES spectra, show a systematic variation only up to 4 at% of Sb doping and support the results of XRD measurements. These observations are further supported by the local structure parameters obtained by analysis of the EXAFS spectra. The local structure of U is found to remain unchanged upon Sb doping indicating that Sb(+3) ions replace Bi(+3) during the doping of Bi(2)UO(6) by Sb.

  17. Colloidal synthesis of monodispersed ZnS and CdS nanocrystals from novel zinc and cadmium complexes

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Mohammed, Aliyu D.; Strydom, Christien A.; Young, Desmond A.; Jordaan, Anine

    2014-06-01

    Monodispersed spherical and hexagonal shaped ZnS and CdS nanocrystals respectively, have been synthesized using novel heteroleptic complexes of xanthate (S2CObu) and dithiocarbamate (S2CNMePh). The nanocrystals were prepared via colloidal route and stabilized in hexadecylamine (HDA). The morphology of the as-prepared nanocrystals was characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and powdered X-ray diffraction (p-XRD) analysis. An average diameter of 7.2 nm and 8.6 nm were obtained for the ZnS and CdS respectively. The optical properties of the nanoparticles studied by UV-vis and photoluminescence (PL) spectroscopy showed a blue shift in the absorption spectra, and band edge emission respectively.

  18. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  19. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  20. Effect of pH on the structural, optical and morphological properties of Ga-doped ZnO nanoparticles by reflux precipitation method

    NASA Astrophysics Data System (ADS)

    Ungula, J.; Dejene, B. F.; Swart, H. C.

    2018-04-01

    Gallium-doped zinc oxide nanoparticles (GZO NPs) were synthesized by the reflux precipitation method at 1, 3, 5, 7 and 8 pH conditions of Ga/Zn precursor solution (Ga/Zn sol.). Analysis of X-ray diffraction (XRD) spectra showed that the diffraction peak intensities of GZO NPs increased and the crystallite sizes varied from 11 to 27 nm with an increase in the pH of the Zn/Ga sol. Scanning electron microscopy micrographs showed agglomerated tiny particles that formed on big slabs of nanorods at the lower pH, but fine and enlarged particles on nano-spherical bases formed at the higher pH values. The photoluminescence exciton peak intensities of the GZO NPs and their respective FWHM increased to a maximum at the 5 pH and then reduced slightly as the solution got more basic. The increase of the deep level peak intensities with the increase in the pH followed the XRD diffraction intensity results. It was observed that both the exciton and DLE peaks emission positions shifted to lower wavelengths up to the 5 pH and then red shifted for a further increase in the pH values. The UV-vis analysis also demonstrated that the optical properties of the GZO NPs improved with the increase Ga/Zn sol. pH, as shown by the blue shift of the absorption edge of the reflectance spectra. The band gap energy was tuned from 3.18 to 3.31 eV with the increase in the pH from 1 to 5. An additional increase in the pH yielded no significant change in the optical properties of the GZO NPs.

  1. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

    NASA Astrophysics Data System (ADS)

    Singh, Gurinder; Kaura, Aman; Mukul, Monika; Singh, Janpreet; Tripathi, S. K.

    2014-06-01

    We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge-Te, Sb-Te and Te-Te bond lengths. In element substitutes Sb to form In-Te-like structure in the GST system. In-Te has a weaker bond strength compared with the Sb-Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation α hν = β (hν - E_{{g }} )2 . Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

  2. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  3. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    NASA Astrophysics Data System (ADS)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  4. Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method

    NASA Astrophysics Data System (ADS)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    Cu2ZnSnS4 (CZTS) nanocrystals were synthesized by a simple ultrasonic assisted sol-gel method using two different solvents. Structure and purity of the phase formed were investigated using X-ray diffraction (XRD) and Raman measurements. The average crystallite size were estimated by using Scherrer's formula and found to be 2.09 and 7.15 nm. Raman study reveals the kesterite-phase of prepared samples. The influence of solvent in the morphologies of prepared samples was investigated by field emission scanning electron microscopy (FESEM). Ultraviolet-visible-near-infrared absorption measurement was carried out to calculate the optical band gap of samples. Oxidation state of the constitute elements of as-prepared samples were investigated by X-ray photoelectron spectroscopy (XPS) analysis and the results are in good agreement with the literature. The surface area and pore volume were estimated after analysis of nitrogen adsorption-desorption isotherm curves and found to be 16.5 m2/gm and 0.01 cm3/gm respectively.

  5. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    PubMed Central

    Kumar, Santosh; Koh, Joonseok

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photoluminescence (PL) and circular dichroism (CD). The CD spectrum showed the chitosan-chromone derivative had a secondary helical structure. Microbiological screening results demonstrated the chitosan-chromone derivative had antimicrobial activity against Escherichia coli bacteria. The chitosan-chromone derivative did not have any adverse effect on the cellular proliferation of mouse embryonic fibroblasts (MEF) and did not lead to cellular toxicity in MEFs. These results suggest that the chitosan-chromone derivative gels may open a new perspective in biomedical applications. PMID:22754352

  6. A study on dependence of the structural, optical and electrical properties of cadmium lead sulphide thin films on Cd/Pb ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Sinitha B., E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Abraham, Anitha, E-mail: sinithanair@gmail.com, E-mail: anithakklm@gmail.com; Philip, Rachel Reena, E-mail: reenatara@rediffmail.com

    2014-10-15

    Cadmium Lead Sulphide thin films with systematic variation in Cd/Pb ratio are prepared at 333K by CBD, adjusting the reagent-molarity, deposition time and pH. XRD exhibits crystalline-amorphous transition as Cd% exceeds Pb%. AFM shows agglomeration of crystallites of size ∼50±5 nm. EDAX assess the composition whereas XPS ascertains the ternary formation, with binding energies of Pb4f{sub 7/2} and 4f{sub 5/2}, Cd3d{sub 5/2} and 3d{sub 3/2} and S2p at 137.03, 141.606, 404.667, 412.133 and 160.218 eV respectively. The optical absorption spectra reveal the variance in the direct allowed band gaps, from 1.57eV to 2.42 eV as Cd/Pb ratio increases from 0.2more » to 2.7, suggesting possibility of band gap engineering in the n-type films.« less

  7. Auto-combustion synthesis and characterization of Mg doped CuAlO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Shraddha, E-mail: shraddhaa32@gmail.com; Parveen, Azra; Naqvi, A. H.

    2015-06-24

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO{sub 2}nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO{sub 2} sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO{sub 2} has been studied over a wide range of frequencies by using complex impedance spectroscopy.Themore » variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.« less

  8. Auto-combustion synthesis and characterization of Mg doped CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Naqvi, A. H.

    2015-06-01

    The synthesis of pure and Mg doped Copper aluminumoxide CuAlO2nanoparticles, a promising p-type TCO (transparent conducting oxide) have been done bysol gel auto combustion method using NaOH as a fuel, calcinated at 600°C. The structural properties were examined by XRD and SEM techniques. The optical absorption spectra of CuAlO2 sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The crystallite size was determined by powder X-ray diffraction technique. The electrical behavior of pure and Mg doped CuAlO2 has been studied over a wide range of frequencies by using complex impedance spectroscopy.The variation of a.c. conductivity has been studied as function of frequency and temperature. The data taken together conclude that doping causes decreases in the ac conductivity of the nanoparticles as compared with the pure nanoparticles. Mg doping affects the optical properties and band gap.

  9. Glycerol capped PbS/CdS core/shell nanoparticles at different molar ratio and its application in biosensors: An optical properties study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, D., E-mail: ddasphy014@gmail.com; Hussain, A. M. P.

    2016-05-06

    Glycerol capped PbS/CdS core/shell type nanoparticles fabricated with two different molar ratios are characterized for study of structural and optical properties. The X-ray diffraction (XRD) pattern exhibits cubic phased polycrystalline nanocrystals. The calculated grain sizes from Williamson-Hall plot were found to be around 6 nm with increased strain. HRTEM investigation confirms the formation of core/shell nanostructures and the sizes of the particles were found to be around 7 nm which is in good agreement with the results of the W-H plot. An increase of band gap with the decrease in precursor concentration is confirmed from the blue shift in the absorption spectramore » and also from Tauc plot. A clear blue shifted intense emission is observed in the photoluminescence spectra with decrease in particle size. Intense luminescence from the core/shell nanostructure may be applied in bio labelling and biosensors.« less

  10. Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor

    NASA Astrophysics Data System (ADS)

    Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.

    2014-11-01

    Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.

  11. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    NASA Astrophysics Data System (ADS)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  12. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    NASA Astrophysics Data System (ADS)

    Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.

    2017-05-01

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.

  13. One-pot synthesis of silica-hybridized Ag{sub 2}S–CuS nanocomposites with tunable nonlinear optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann Mary, K.A.; Unnikrishnan, N.V., E-mail: nvu100@yahoo.com; Philip, Reji

    2015-10-15

    Highlights: • Silica modified QDs of CuS and Ag{sub 2}S is developed at room temperature. • Formation of Ag{sub 2}S/CuS nanocomposites is confirmed from XRD and FFT of HRTEM images. • The concentration dependent growth of silica modified QDs is discussed. • Nonlinear absorption observed in ns excitations is dominated by SA and ESA. • Tuning of optical limiting efficiency is achieved with relative Ag{sub 2}S content. - Abstract: In the present work we report a simple, facile route developed for preparing silica hybridized copper sulfide and silver sulfide quantum dots at room temperature. By adjusting the concentration of themore » precursors, Ag{sub 2}S can form Ag{sub 2}S–CuS nanocomposites which are self regulated in one pot. Their crystalline, structural and optical properties have been investigated in detail, and the optical limiting nature is studied from fluence-dependent transmittance measurements employing short (5 ns) laser pulses at 532 nm. Ag{sub 2}S nanoparticles are found to have large third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 1.7 J cm{sup −2}, while the nonlinearity of the nanocomposites is found to lie in between that of Ag{sub 2}S and CuS nanoparticles. These results suggest pathways for designing good quality optical limiters with tunable optical limiting efficiencies by varying the constituent nanocrystal compositions.« less

  14. CdZnO coated film: A material for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Bhat, M. A.; Reshi, H. A.; Khan, S. D.

    2018-06-01

    The present study reports structural and optical parameters of wide band gap oxide thick film prepared by screen-printing followed by sintering route. Characterization of the samples was carried out with UV-spectroscopy, XRD, SEM, and Photoluminous study. The XRD and SEM studies reveal that the film deposited is polycrystalline, double phase, and porous with unsymmetrical grain distributions. Optical diffused reflection spectroscopy and Pl measurements give optical band gap of 2.87 eV and near band edge emission at 430 nm.

  15. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  16. Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material.

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-07-01

    4-Chloro 4-nitrostilbene (CONS) a new organic nonlinear optical material has been synthesized. Employing slow evaporation method, good optical quality single crystals (dimensions up to 6×2×3 mm(3)) have been grown using ethyl methyl ketone (EMK) as a solvent. The grown crystals have been subjected to various characterizations such as single crystal X-ray diffraction, powder XRD, Fourier Transform Infrared spectroscopy (FTIR), proton NMR, solid UV absorption, SHG studies. Single crystal X-ray diffraction reveals that the crystal system belongs to monoclinic with noncentrosymmetric space group P21. The UV-Vis absorption spectrum has been recorded and found that the cut off wavelength is 380 nm. Functional groups and the structure of the title compound have been confirmed by FTIR and (1)H NMR spectroscopic analyses respectively. Molecular mass of the CONS confirmed by the high resolution mass spectral analysis .The thermal behavior of the grown crystal has been studied by TG/DTA analysis and it shows the melting point is at 188.66 °C. Dislocations and growth pattern present in the grown crystal revealed by the etching study. The mechanical strength of the CONS crystal has been studied by Vicker's hardness measurement. The SHG efficiency of the grown crystal has been determined by Kurtz and Perry powder test which revealed that the CONS crystal (327 mV) has 15 times greater efficiency than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Red light emission from europium doped zinc sodium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Hegde, Vinod; Viswanath, C. S. Dwaraka; Upadhyaya, Vyasa; Mahato, K. K.; Kamath, Sudha D.

    2017-12-01

    Zinc sodium bismuth borate (ZNBB) glasses doped with different concentrations of europium were prepared by conventional melt quenching method and characterized through the measurements of density, refractive index, X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectra, optical absorption, luminescence and radiative lifetimes. FTIR spectra showed seven characteristic peaks of bismuth and borate functional groups in the range of 400-1600 cm-1. The optical band gap and bonding parameters have been calculated from absorption spectra. Photoluminescence spectra recorded in the visible region with 394 nm excitation are used to calculate the Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4). The JO intensity parameters have been used to calculate the radiative parameters such as branching ratio (β), stimulated emission cross-section (σse), transition probability (A) for the fluorescent level of 5D0→7F2. Decay rates through single exponential are used to calculate the lifetime (τm) of the meta-stable state 5D0 of (Eu3+ ion) these glasses. The radiative parameters measured for all these glasses show 0.7 mol% europium doped zinc sodium bismuth borate glass 5D0→7F2 transition has the potential for red laser applications. The quality of the colour emitted by the present glasses are estimated quantitatively by CIE chromaticity coordinates, which confirms the suitability of these glasses as a red emitting material for field emission technologies and LEDs.

  18. Co/Cr co-doped MgGa{sub 2}O{sub 4} nanoparticles: Microstructure and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Xiulan, E-mail: xlduan@sdu.edu.cn; Liu, Jian; Yu, Fapeng

    2016-01-15

    Graphical abstract: The Ga 2p{sub 3/2} spectra consist of two peaks, corresponding to Ga{sup 3+} ions placed at octahedral and tetrahedral sites, respectively. The fraction of tetrahedral Ga{sup 3+} ions (∼1117 eV) increases with increasing doping concentration. - Highlights: • Structural and properties of Co{sup 2+}/Cr{sup 3+}: MgGa{sub 2}O{sub 4} nanoparticles were characterized. • The distribution of cations was studied using XPS. • The inversion degree increased with increasing content of doping ions. • The doping concentration has also effect on absorption and emission properties. • Optical properties of nanoparticles were discussed based on the structural results. - Abstract: MgGa{submore » 2}O{sub 4} nanoparticles co-doped with Co{sup 2+}/Cr{sup 3+} ions were prepared by a citrate sol–gel method. Their microstructure and optical properties were studied using X-ray powder diffraction (XRD), infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), absorption and fluorescence spectroscopy. MgGa{sub 2}O{sub 4} nanoparticles with the size of 10–30 nm were obtained when the precursor was annealed at 800 °C. Results indicated that Ga{sup 3+} and Mg{sup 2+} cations occupied the octahedral sites as well as the tetrahedral sites in samples. The inversion degree of Ga or Mg increased with increasing content of doping ions. Absorption spectra indicated that Co{sup 2+} and Cr{sup 3+} ions entered both the tetrahedral and octahedral sites of spinel structure by substituting Mg{sup 2+} and Ga{sup 3+} ions, respectively. Emission spectra of the co-doped MgGa{sub 2}O{sub 4} showed a broad emission band peaking at 700 and 680 nm, relevant to the emission characteristic of octahedral Cr{sup 3+} and tetrahedral Co{sup 2+} ions.« less

  19. Radiation damage induced in Al2O3 single crystal sequentially irradiated with reactor neutrons and 90 MeV Xe ions

    NASA Astrophysics Data System (ADS)

    Zirour, H.; Izerrouken, M.; Sari, A.

    2016-06-01

    The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.

  20. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  1. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    NASA Astrophysics Data System (ADS)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  2. Effects of (Ce, Cu) Co-doping on the Structural and Optical Properties of ZnO Aerogels Synthesized in Supercritical Ethanol

    NASA Astrophysics Data System (ADS)

    Djouadi, D.; Slimi, O.; Hammiche, L.; Chelouche, A.; Touam, T.

    2018-03-01

    Undoped, Ce-doped, Cu-doped and (Ce,Cu ) co-doped ZnO aerogels were synthesized by sol-gel process in supercritical conditions of ethanol. [Cu]/[Zn] and [Ce]/[Zn] atomic ratios were fixed at 0.02 (2%). The aerogels were investigated without any additional treatments by using X-ray diffraction (XRD), UV–visible spectrophotometry, scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Fourier transforms infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). XRD results revealed that all the samples are well crystallized in hexagonal wurtzite structure. EDS measurements showed that highly pure aerogels are prepared. SEM analysis indicated that the morphology of the samples is dependent on Cu and Ce dopants. From UV-visible spectroscopy analyses, it was shown that the absorption and the band gap of the aerogels are strongly affected by Ce and Cu dopants. FTIR spectra demonstrated that co-doping induces a shift of Zn-O bond vibration band toward low wavenumbers. The room temperature photoluminescence spectra put into evidence that the visible emission intensity is influenced by Ce and Cu doping. In particular, the co-doping leads to the appearance of a blue emission band at 443 nm.

  3. Italian Renaissance and Hispano-Moresque lustre-decorated majolicas: imitation cases of Hispano-Moresque style in central Italy

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.

    An investigation was carried out on Renaissance lustre-decorated majolica shards, found during excavations made in Umbria (central Italy) and defined by experts, on the ground of the surface decoration, as imitations of the Hispano-Moresque style. A comparison between this particular kind of samples, produced in central Italy, and some Hispano-Moresque lustre shards has been performed. The ceramic bodies as well as the lustred surfaces have been analysed by means of several techniques: inductively coupled plasma optical emission spectrometry, X-ray diffraction (XRD), atomic absorption spectrometry with electrothermal atomisation and scanning electron microscopy. By means of XRD analysis the presence of cosalite (Pb2Bi2S5) has been disclosed in the Italian lustre decorations but was not observed in the Hispano-Moresque ones. A hypothesis has been made, considering bismuth as a discriminating element, between lustres produced in central Italy and the Hispano-Moresque ones. We thought that the Italian artisans were able to manage the use of bismuth. Therefore a recipe, quite similar to the one employed by the Spanish artisans, was used by the Italian ceramists if their aim was to imitate the Hispano-Moresque style.

  4. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    NASA Astrophysics Data System (ADS)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  5. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  6. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, V.; Gajendiran, J., E-mail: gaja.nanotech@gmail.com

    2014-08-15

    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parametersmore » and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.« less

  7. Growth and characterization of hexamethylenetetramine crystals grown from solution

    NASA Astrophysics Data System (ADS)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  8. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    NASA Astrophysics Data System (ADS)

    Osuntokun, Jejenija; Ajibade, Peter A.

    2016-09-01

    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato-κS,S'-bis(N,N-dimethylthiourea-κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33-7.21 nm for ZnS and 4.95-7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  9. Development of thermoplastic starch blown film by incorporating plasticized chitosan.

    PubMed

    Dang, Khanh Minh; Yoksan, Rangrong

    2015-01-22

    The objective of the present work was to improve blown film extrusion processability and properties of thermoplastic starch (TPS) film by incorporating plasticized chitosan, with a content of 0.37-1.45%. The effects of chitosan on extrusion processability and melt flow ability of TPS, as well as that on appearance, optical properties, thermal properties, viscoelastic properties and tensile properties of the films were investigated. The possible interactions between chitosan and starch molecules were evaluated by FTIR and XRD techniques. Chitosan and starch molecules could interact via hydrogen bonds, as confirmed from the blue shift of OH bands and the reduction of V-type crystal formation. Although the incorporation of chitosan caused decreased extensibility and melt flow ability, as well as increased yellowness and opacity, the films possessed better extrusion processability, increased tensile strength, rigidity, thermal stability and UV absorption, as well as reduced water absorption and surface stickiness. The obtained TPS/chitosan-based films offer real potential application in the food industry, e.g. as edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Preparation of SiO2@Ag Composite Nanoparticles and Their Antimicrobial Activity.

    PubMed

    Qin, Rui; Li, Guian; Pan, Liping; Han, Qingyan; Sun, Yan; He, Qiao

    2017-04-01

    At normal atmospheric temperature, the modified sol–gel method was employed to synthesize SiO2 nanospheres (SiO2 NSs) whose average size was about 352 nm. Silver nanoparticles (Ag NPs) were uniformly distributed on the surface of SiO2 nanospheres (SiO2 NSs) by applying chemical reduction method at 95 °C and the size of silver nanoparticles (Ag NPs) could be controlled by simply tuning the reaction time and the concentration of sodium citrate. Besides, the size, morphology, structure and optical absorption properties of SiO2@Ag composite nanoparticles were measured and characterized by laser particle size analyzer (LPSA), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD) and ultraviolet visible absorption spectrometer (UV-Vis), respectively. Furthermore, antimicrobial effect experiments that against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) were carried out to characterize the antibacterial activity of synthesized SiO2@Ag composite nanoparticles. The results show that the prepared SiO2@Ag composite nanoparticles have strong antimicrobial activity, which is associated with the size of silver nanoparticles.

  11. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    NASA Astrophysics Data System (ADS)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  12. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy.

    PubMed

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki S; Ahmed, Saleh A; Danish, Ekram Y; Mohammed, Omar F; Pal, Samir Kumar

    2014-08-11

    Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Towards better light harvesting capability for DSSC (dye sensitized solar cells) through addition of Au@SiO2 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Fadhilah, Nur; Alhadi, Emha Riyadhul Jinan; Risanti, Doty Dewi

    2018-04-01

    The Au nanoparticles as core can increase the light harvesting due to the strong near-field effect LSPR (Localized Surface Plasmon Resonance), effectively minimized the electron recombination process and also can improve the optical absorption of the dye sensitized. Au@SiO2 core-shell nanoparticles were prepared using SiO2 extracted from Sidoarjo mud volcano. In this work investigated the influence of pH solution and silica shell volume fraction in Au@SiO2 nanoparticles core-shell structure on DSSC loaded with Ru-based dye. From XRD characterization it was found that core-shell contains SiO2, Au, γAl2O3 and traces NaCl. UV-Vis absorption spectra of core-shell showed the position of the surface plasmon AuNP band in the range of 500-600 nm. The Au@SiO2 core-shell with volume fraction of 30ml silica has the highest peak absorbance. The enhanced light absorption is primarily attributed to the LSPR effect of the Au core. Our results on incident photon-to-current conversion efficiency indicates that the presence of SiO2 depending on its volume fraction tends to shift to longer wavelength.

  14. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    NASA Astrophysics Data System (ADS)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  15. Optical studies on electron beam evaporated Lithium Triborate films

    NASA Astrophysics Data System (ADS)

    Mohandoss, R.; Dhanuskodi, S.; Sanjeeviraja, C.

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1 × 10-5 mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a = 8.55 (2); b = 5.09 (2); c = 7.39 (2) Å) were determined by powder XRD indicating the (1 1 1) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (˜4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n2 ˜ 10-16 cm2/W) and nonlinear absorption coefficient (β ˜ 10-2 cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature.

  16. Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter

    NASA Astrophysics Data System (ADS)

    Farouk, M.; Samir, A.; El Okr, M.

    2018-02-01

    Glasses of composition [16RO-3Al2O3sbnd 6CuOsbnd 20Na2Osbnd 55P2O5], where R is the alkaline earth (R = Mg, Ca, Sr and Ba mol. %), were prepared by conventional melt quenching technique. The glass samples were characterized by X-ray diffraction, infrared spectroscopy, and spectrophotometer. XRD patterns show no sharp peaks indicating the non-crystalline nature of the prepared glasses. The density and molar volume of the glass systems were determined in order to study their structures. These results revealed that addition of alkaline earth elements leads to the formation of non-bridging oxygens (NBOs) and expands (opens up) the structure. The infrared spectra were analyzed to quantify the present phosphate groups. The optical absorption spectra of Cu2+ ions show the characteristic broadband single of Cu2+ ions in octahedral symmetry. The band gap was estimated following two methodologies. The first method considers the band edge of the transmission, while the second approach relays on the estimated values of the optical constants. A decent agreement for the band gap values using the two methods was obtained.

  17. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.

    PubMed

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-04-12

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.

  18. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method

    PubMed Central

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762

  19. Optical, structural, thermal and dielectric spectroscopy characterizations of seeded melt grown 2-hydroxy biphenyl single crystal.

    PubMed

    Sadhasivam, S; Rajesh, Narayana Perumal

    2014-09-15

    Organic single crystal of 2-hydroxy biphenyl (2-HB) was grown by top seeded melt growth method. Scanning electron microscopy studies has been carried out on the surface of the grown crystals to investigate the nature of growth and defects. The crystalline perfection and lattice parameters of 2-HB has been determined by single crystal XRD analysis and it belongs to orthorhombic crystal system with space group Fdd2. The functional groups and molecular associations were confirmed by FT-IR. The optical characteristics such as cut-off and transmittance were carried out using UV-Vis-NIR spectra. Absence of absorption in the region between 320 and 1100 nm makes the grown crystal desirable to optical applications. Thermal stability of grown crystals was characterized by thermogravimetric (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) analyses. Broadband dielectric studies reveals that dielectric constant of grown crystal is low. The resistivity of grown crystal was studied by impedance analysis. The second harmonic generation intensity of 3.8 mJ was studied. The grown crystal belongs to soft material studied by hardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grainmore » size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.« less

  1. Photopyroelectric spectroscopic studies of ZnO-MnO(2)-Co(3)O(4)-V(2)O(5) ceramics.

    PubMed

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO(2) + 0.4Co(3)O(4) + xV(2)O(5)), x = 0-1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300-800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (E(g)) was 2.11 eV for 0.3 mol% V(2)O(5) at a sintering temperature of 1025 °C as determined from the plot (ρhυ)(2)versushυ. With a further increase in V(2)O(5), the value of E(g) was found to be 2.59 eV. Steepness factor 'σ(A)' and 'σ(B)', which characterize the slope of exponential optical absorption, is discussed with reference to the variation of E(g). XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively.

  2. Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.

    PubMed

    Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang

    2017-01-01

    In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.

  3. Optical studies on electron beam evaporated lithium triborate films.

    PubMed

    Mohandoss, R; Dhanuskodi, S; Sanjeeviraja, C

    2012-10-01

    Lithium triborate (LB3) has numerous applications in scintillator for neutron detection, laser weapon and communication. LB3 films have been prepared by electron beam evaporation technique under a pressure of 1×10(-5) mbar on glass substrate at 323 K for 4 min. The crystallographic orientations and the lattice parameters (a=8.55 (2); b=5.09 (2); c=7.39 (2)Å) were determined by powder XRD indicating the (111) preferential orientation of the film. The lower cut off wavelength at 325 nm with 75% transparency was measured from the UV-vis spectrum. The optical constants extinction coefficient (K), reflectance (R), the linear refractive index (1.34) and the optical energy band gap (~4.0 eV) were estimated. The photoluminescence spectrum shows the emission peak in the visible region with low concentration of oxygen defects. LB3 is found to be second harmonic generation (SHG) active using a Q-switched Nd:YAG laser (1064 nm, 9 ns, 10 Hz). The nonlinear refractive index (n(2)~10(-16) cm(2)/W) and nonlinear absorption coefficient (β~10(-2) cm/W) reveal (Z-scan technique) that the material has negative nonlinearity and self-focusing nature. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    NASA Astrophysics Data System (ADS)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  5. Photopyroelectric Spectroscopic Studies of ZnO-MnO2-Co3O4-V2O5 Ceramics

    PubMed Central

    Rizwan, Zahid; Zakaria, Azmi; Ghazali, Mohd Sabri Mohd

    2011-01-01

    Photopyroelectric (PPE) spectroscopy is a nondestructive tool that is used to study the optical properties of the ceramics (ZnO + 0.4MnO2 + 0.4Co3O4 + xV2O5), x = 0–1 mol%. Wavelength of incident light, modulated at 10 Hz, was in the range of 300–800 nm. PPE spectrum with reference to the doping level and sintering temperature is discussed. Optical energy band-gap (Eg) was 2.11 eV for 0.3 mol% V2O5 at a sintering temperature of 1025 °C as determined from the plot (ρhυ)2 versus hυ. With a further increase in V2O5, the value of Eg was found to be 2.59 eV. Steepness factor ‘σA’ and ‘σB’, which characterize the slope of exponential optical absorption, is discussed with reference to the variation of Eg. XRD, SEM and EDAX are also used for characterization of the ceramic. For this ceramic, the maximum relative density and grain size was observed to be 91.8% and 9.5 μm, respectively. PMID:21673911

  6. Preparation, characterization and photocatalytic activities of TiO2-SrTiO3 composites

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhu, Lianjie; Gao, Fubo; Xie, Hanjie

    2017-01-01

    Series of TiO2-SrTiO3 composites were synthesized by hydrothermal method, using TiO2 nanotube array as a precursor and Sr(OH)2 as a Sr source material. TiO2-SrTiO3 products with various composition were obtained by simply changing the reaction time. The as-synthesized products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The optical properties were studied by means of UV-Vis absorption spectroscopy and photoluminescence (PL) spectra. Their photocatalytic activities were assessed by photodegradation of rhodamine B (RhB) solution and the photocatalytic reaction mechanism was discussed. The TiO2-SrTiO3 composites obtained at 2 h exhibits the highest activity for photodegradation of RhB.

  7. Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si

    NASA Astrophysics Data System (ADS)

    Shuihab, Aliyah; Khalf, Surour

    2018-05-01

    In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.

  8. Au nanoparticle monolayers covered with sol-gel oxide thin films: optical and morphological study.

    PubMed

    Della Gaspera, Enrico; Karg, Matthias; Baldauf, Julia; Jasieniak, Jacek; Maggioni, Gianluigi; Martucci, Alessandro

    2011-11-15

    In this work, we provide a detailed study of the influence of thermal annealing on submonolayer Au nanoparticle deposited on functionalized surfaces as standalone films and those that are coated with sol-gel NiO and TiO(2) thin films. The systems are characterized through the use of UV-vis absorption, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectroscopic ellipsometry. The surface plasmon resonance peak of the Au nanoparticles was found to red-shift and increase in intensity with increasing surface coverage, an observation that is directly correlated to the complex refractive index properties of Au nanoparticle layers. The standalone Au nanoparticles sinter at 200 °C, and a relationship between the optical properties and the annealing temperature is presented. When overcoated with sol-gel metal oxide films (NiO, TiO(2)), the optical properties of the Au nanoparticles are strongly affected by the metal oxide, resulting in an intense red shift and broadening of the plasmon band; moreover, the temperature-driven sintering is strongly limited by the metal oxide layer. Optical sensing tests for ethanol vapor are presented as one possible application, showing reversible sensing dynamics and confirming the effect of Au nanoparticles in increasing the sensitivity and in providing a wavelength dependent response, thus confirming the potential use of such materials as optical probes.

  9. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  10. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions

    NASA Astrophysics Data System (ADS)

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F.; van Bokhoven, Jeroen A.

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  11. In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions.

    PubMed

    Rothensteiner, Matthäus; Jenni, Joel; Emerich, Hermann; Bonk, Alexander; Vogt, Ulrich F; van Bokhoven, Jeroen A

    2017-08-01

    An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace. It was tested successfully for carbon dioxide splitting. In combined XAS/XRD experiments with an unfocused beam, XAS measurements were performed at the Ce K edge (40.4 keV) and XRD measurements at 64.8 keV and 55.9 keV. Furthermore, XRD measurements with a focused beam at 41.5 keV were carried out. Equimolar ceria-hafnia was auto-reduced in a flow of argon and chemically reduced in a flow of hydrogen/helium. Under reducing conditions, all cerium(iv) was converted to cerium(iii) and a cation-ordered pyrochlore-type structure was formed, which was not stable upon oxidation in a flow of carbon dioxide.

  12. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  13. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  14. [Preparation and spectral characterization of CdS(y)Te(1-y) thin films].

    PubMed

    Li, Wei; Feng, Liang-Huan; Wu, Li-Li; Zhang, Jing-Quan; Li, Bing; Lei, Zhi; Cai, Ya-Ping; Zheng, Jia-Gui; Cai, Wei; Zhang, Dong-Min

    2008-03-01

    CdS(y)Te(1-y) (0 < or = y < or = 1) polycrystalline thin films were prepared on glass substrates by co-evaporation of powders of CdTe and CdS. For the characterization of the structure and composition of the CdS(y)Te(1-y) thin films the X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) were used. The results indicate that the values of sulfur content y detected and controlled by the quartz wafer detector show good agreement with the EDS results. The films were found to be cubic for x < 0. 3, and hexagonal for x > or = 0.3. The 20-50 nm of grain sizes for CdS(y)Te(1-y) thin films were calculated using a method of XRD analysis. Finally, the optical properties of CdS(y)Te(1-y) thin films were characterized by UV-Vis-NIR spectroscopy alone. According to a method from Swanepoel, together with the first-order Sellmeier model, the thickness, of d-535 nm, energy gap of E(g)-1.41 eV, absorption coefficient, alpha(lambda) and refractive index, n(lambda) of CdS(0.22) Te(0.78) thin films were determined from the transmittance at normal incidence of light in the wavelength range 300-2 500 nm. The results also indicate that the CdS(y)Te(1-y) thin films with any composition (0 < or = y < or = 1) can be prepared by co-evaporation, and the method to characterize the optical properties of CdS(y)Te(1-y) thin films can be implemented for other semiconductor thin films.

  15. Luminescence study of ZnSe/PVA (polyvinyl alcohol) composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahariya, Vikas

    The ZnSe nanocrystals have been prepared into poly vinyl alcohol(PVA) polymer matrix on glass using ZnCl2 and Na2SeSO3 as zinc and selenium source respectively. Poly vinyl Alcohol (PVA) used as polymer matrix cum capping agent due to their high viscosity and water solubility. It is transparent for visible region and prevents Se- ions to photo oxidation. The ZnSe/PVA composite film was deposited on glass substrate. The film was characterized by X Ray Diffraction (XRD) and UV-Visible absorption Spectroscopy and Photoluminescence. The X Ray Diffraction (XRD) study confirms the nanometer size (10 nm) particle formation within PVA matrix with cubic zinc blendmore » crystal structure. The UV-Visible Absorption spectrum of ZnSe/PVA composite film shown blue shift in absorption edge indicating increased band gap due to quantum confinement. The calculated energy band gap from the absorption edge using Tauc relation is 3.4 eV. From the Photoluminescence study a broad peak at 435 nm has been observed in violet blue region due to recombination of surface states.« less

  16. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  17. Broadband optical limiting and nonlinear optical absorption properties of a novel hyperbranched conjugated polymer

    NASA Astrophysics Data System (ADS)

    Li, Chao; Liu, Chunling; Li, Quanshui; Gong, Qihuang

    2004-12-01

    The nonlinear transmittance of a novel hyperbranched conjugated polymer named DMA-HPV has been measured in CHCl 3 solution using a nanosecond optical parametric oscillator. DMA-HPV shows excellent optical limiting performance in the visible region from 490 to 610 nm. An explanation based on the combination of two-photon absorption and reverse saturable absorption was proposed for its huge and broadband nonlinear optical absorption.

  18. Characterization of prepared In2O3 thin films: The FT-IR, FT-Raman, UV-Visible investigation and optical analysis.

    PubMed

    Panneerdoss, I Joseph; Jeyakumar, S Johnson; Ramalingam, S; Jothibas, M

    2015-08-05

    In this original work, the Indium oxide (In2O3) thin film is deposited cleanly on microscope glass substrate at different temperatures by spray pyrolysis technique. The physical properties of the films are characterized by XRD, SEM, AFM and AFM measurements. The spectroscopic investigation has been carried out on the results of FT-IR, FT-Raman and UV-Visible. XRD analysis exposed that the structural transformation of films from stoichiometric to non-stoichiometric orientation of the plane vice versa and also found that, the film is polycrystalline in nature having cubic crystal structure with a preferred grain orientation along (222) plane. SEM and AFM studies revealed that, the film with 0.1M at 500°C has spherical grains with uniform dimension. The complete vibrational analysis has been carried out and the optimized parameters are calculated using HF and DFT (CAM-B3LYP, B3LYP and B3PW91) methods with 3-21G(d,p) basis set. Furthermore, NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) technique. The molecular electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, molecular electrostatic potential energy (MEP) analysis and Polarizability first order hyperpolarizability calculations are performed by time dependent DFT (TD-DFT) approach. The energy excitation on electronic structure is investigated and the assignment of the absorption bands in the electronic spectra of steady compound is discussed. The calculated HOMO and LUMO energies showed the enhancement of energy gap by the addition of substitutions with the base molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) at different temperatures are calculated and interpreted in gas phase. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  19. Preparation and thermal stability of the spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Niu, Yongan; Li, Yang

    2014-03-15

    The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} core–shell nanoparticles (NPs) are prepared via hydrothermal synthesis and modified Stöber method. During these processes, shell thicknesses could be easily adjusted by the amount of tetraethylorthosilicate (TEOS), and the formation of core-free SiO{sub 2} could be effectively avoided. The structures and compositions of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and ultraviolet–visible (UV–vis) absorption spectroscopy. These results reveal that the α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs with certain sizes are monodisperse and homogeneous. To estimate the thermal stability, the α-Fe{sub 2}O{submore » 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are annealed at 600, 800 and 1000 °C for 1 h under air atmosphere, respectively. Furthermore, the stabilities of these NPs are confirmed by thermal analysis methods. The structure and shape stabilities of these as-prepared α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are investigated by XRD and scanning electron microscope (SEM). -- Graphical abstract: Schematic of preparation of the monodisperse spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs). Highlights: • The spindle α-Fe{sub 2}O{sub 3}@SiO{sub 2} nanoparticles (NPs) are successfully prepared by hydrothermal synthesis and modified Stöber method. • Optical properties are estimated and calculated by UV vis absorption spectrum. • Thermal stability of the α-Fe{sub 2}O{sub 3}, α-Fe{sub 2}O{sub 3}@SiO{sub 2} and SiO{sub 2} NPs are compared and analyzed by the SEM technique. • The structural changes of α-Fe{sub 2}O{sub 3}@SiO{sub 2} NPs are measured by XRD measurement.« less

  20. Synthesis and NLO studies of novel (2E)-1-(2-bromo-4,5-dimethoxyphenyL)-3-(3-Bromo-4-Fluorophenyl)Prop-2-en-1-one single crystal

    NASA Astrophysics Data System (ADS)

    Shruthi, C.; Ravindrachary, V.; Prasad, D. Jagadeesh; Guruswamy, B.; Hegde, Shreedatta

    2017-05-01

    A novel organic nonlinear optical (NLO) material (2E)-1-(2-Bromo-4,5-Dimethoxyphenyl)-3-(3-Bromo-4-Fluorophenyl)Prop-2-en-1-one has been synthesized using Claisen-Schmidth condensation method. The chemical structure of the compound was confirmed by recording its FT-IR spectrum and the functional groups were identified. Single crystals were grown by slow evaporation method and the single crystal XRD study reveals that the compound crystallizes in the monoclinic crystal system with a space group -P 2yn. The observed cell parameters are a = 9.346(5) A°, b = 12.953(7) A°, c = 14.355(8) A°, α = 90°, β = 108.379°(9), γ = 90°. UV-Visible study shows that the compound is transparent in the entire visible region and the absorption takes place in the UV range. The Non linear optical efficiency of the crystal was estimated and it is found to be 0.5 times that of standard KDP crystal.

  1. Facile Synthesis and Optical Properties of Small Selenium Nanocrystals and Nanorods

    NASA Astrophysics Data System (ADS)

    Jiang, Fengrui; Cai, Weiquan; Tan, Guolong

    2017-06-01

    Selenium is an important element for human's health, small size is very helpful for Se nanoparticles to be absorbed by human's body. Here, we present a facile approach to fabrication of small selenium nanoparticles (Nano-Se) as well as nanorods by dissolving sodium selenite (Na2SeO3) in glycerin and using glucose as the reduction agent. The as-prepared selenium nanoparticles have been characterized by X-ray diffraction (XRD), UV-Vis absorption spectroscopy and high resolution transmission electron microscope (HRTEM). The morphology of small Se nanoparticles and nanorods have been demonstrated in the TEM images. A small amount of 3-mercaptoproprionic acid (MPA) and glycerin play a key role on controlling the particle size and stabilize the dispersion of Nano-Se in the glycerin solution. In this way, we obtained very small and uniform Se nanoparticles; whose size ranges from 2 to 6 nm. This dimension is much smaller than the best value (>20 nm) ever reported in the literatures. Strong quantum confinement effect has been observed upon the size-dependent optical spectrum of these Se nanoparticles.

  2. Pulsed UV laser-induced modifications in optical and structural characteristics of alpha-irradiated PM-355 SSNTD.

    PubMed

    Alghamdi, S S; Farooq, W A; Baig, M R; Algarawi, M S; Alrashidi, Talal Mohammed; Ali, Syed Mansoor; Alfaramawi, K

    2017-10-01

    Pre- and postalpha-exposed PM-355 detectors were irradiated using UV laser with different number of pulses (100, 150, 200, 300, and 400). UV laser beam energy of 20mJ per pulse with a pulse width of 9ns was incident on an area of 19.6mm 2 of the samples. XRD spectra indicated that for both reference and UV-irradiated samples, the structure is amorphous, but the crystallite size increases upon UV irradiation. The same results were obtained from SEM analysis. Optical properties of PM-355 polymeric solid-state nuclear track detectors were also investigated. Absorbance measurements for all PM-355 samples in the range of 200-400nm showed that the absorption edge had a blue shift up to a certain value, and then, it had an oscillating behavior. Photoluminescence spectra of PM-355 at 250nm revealed a decrease in the broadband peak intensity as a function of the number of UV pulses, while the wavelengths corresponding to the peaks had random shifts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthesis of indium phosphide nanocrystals by sonochemical method and survey of optical properties

    NASA Astrophysics Data System (ADS)

    Trung, Ho Minh; Duy Thien, Nguyen; Van Vu, Le; Long, Nguyen Ngoc; Hieu, Truong Kim

    2013-10-01

    Indium phosphide semiconductor materials (InP) have various applications in the field of semiconductor optoelectronics because of its advantages. But the making of this material is difficult due to the very weak chemical activity of In element. In this report we present a simple method to synthesize InP nanocrystals from inorganic precursors such as indium chloride (InCl3), yellow phosphorus (P4), reduction agent NaBH4 at low temperature with the aid of ultrasound. Structural, morphological and optical properties of the formed InP nanocrystals were examined by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersed X-ray analysis (EDS), Raman scattering, absorption and photoluminscence (PL) spectroscopy. After the surface treatment of InP nanocrystals with liquid hydrofluoric (HF) acid, the luminescence spectra have an enhanced intensity and consist of the peaks in the region from 500 nm to 700 nm. The intensity of these peaks strongly depends on the concentration and etching time of HF. International Workshop on Advanced Materials and Nanotechnology 2012 (IWAMN 2012).

  4. Structural, morphological and optical investigations on electron-beam irradiated PbF2-TeO2-B2O3-Eu2O3 glasses

    NASA Astrophysics Data System (ADS)

    Wagh, Akshatha; Petwal, Vikash; Dwivedi, Jishnu; Upadhyaya, V.; Raviprakash, Y.; Kamath, Sudha D.

    2016-09-01

    Combined structural, optical and morphological studies were carried out on Eu2O3 doped PbF2-TeO2-B2O3 glass samples, before and after being subjected to electron beam of energy 7.5 MeV. XRD confirmed the amorphous nature of the glasses even after 150 kGy electron beam irradiation. Densities of the irradiated samples showed slightly greater values when compared to their respective values before irradiation, which proved the increase in the compaction of the network. The intensities of the three prominent bands; B-O-B linkages, BO4 units and BO3 units of FT-IR spectra, of the titled glasses, showed slight decrease after electron beam irradiation. The decrement in the values of energy band gap and shift in cut-off wavelength towards red edge, proved the formation of color centers in the glass network after irradiation. The change in Hunter L values, through color measurement was a proof for the Farbe/color/absorption centers created in the glass sites after irradiation.

  5. Sensitive And Selective Chemical Sensor With Nanostructured Surfaces.

    DOEpatents

    Pipino, Andrew C. R.

    2003-02-04

    A chemical sensor is provided which includes an optical resonator including a nanostructured surface comprising a plurality of nanoparticles bound to one or more surfaces of the resonator. The nanoparticles provide optical absorption and the sensor further comprises a detector for detecting the optical absorption of the nanoparticles or their environment. In particular, a selective chemical interaction is provided which modifies the optical absorption of the nanoparticles or their environment, and an analyte is detected based on the modified optical absorption. A light pulse is generated which enters the resonator to interrogate the modified optical absorption and the exiting light pulse is detected by the detector.

  6. Synthesis and characterization of flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jiasong; Xiang, Weidong, E-mail: xiangweidong001@126.com; College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035

    Graphical abstract: In this paper, flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres were prepared via biomolecule-assisted solvothermal rate with CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine as raw materials. UV-vis absorption spectrum showed that the band gap of CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Highlights: Black-Right-Pointing-Pointer We reported a small biomolecule-assisted route to synthesis CuIn{sub 0.3}Ga{sub 0.7}S{sub 2}. Black-Right-Pointing-Pointer The possible mechanisms of flower-like CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} microspheres were proposed. Black-Right-Pointing-Pointer The as-prepared CuIn{sub 0.3}Ga{sub 0.7}S{sub 2} products were investigated by XRD, XPS, FESEM and TEM. Black-Right-Pointing-Pointer The optical properties were investigatedmore » by UV-vis spectroscopy and Raman spectrum. -- Abstract: We report the formation and characterization of the flower-like CuIn{sub 1-x}Ga{sub x}S{sub 2} (x = 0.3) microspheres using CuCl{sub 2}{center_dot}2H{sub 2}O, GaCl{sub 3}, InCl{sub 3} and L-cystine in the mixed solvent of ethylene glycol and distilled water (1:2, v/v) at 200 Degree-Sign C for 24 h. XRD results indicated that the CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} nanostructures have a (1 1 2) preferred orientation. The EDS and XPS analyses of the sample revealed that Cu, In, Ga and S were present in an atomic ratio of approximately 1:0.7:0.3:2. FESEM and TEM images showed that the product was microspheres, consisting of nanoplates with the thickness of about 20 nm. The optical properties were investigated by ultraviolet-visible (UV-vis) absorption spectroscopy and Raman spectroscopy. UV-vis absorption spectrum indicated that the band gap of as-synthesized flower-like CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} microspheres was about 2.427 eV. Raman spectrum of the obtained CuIn{sub 0.7}Ga{sub 0.3}S{sub 2} exhibited a high-intensity peak at 302 cm{sup -1} could be assigned as A1-mode.« less

  7. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    PubMed

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, Ahmad, E-mail: Yazdania@modares.ac.ir; Shadrokh, Zohreh; Department of Physics, University of Shahrood, P.O. Box 316-36155, Shahrood

    Highlights: • Opto-crystalline character of the composition of Cu{sub 2}S and S{sub 2}Sn was considered. • The formation Cu{sub 2}SnS{sub 3} is strongly related to phase separation at interface. • The entanglement of phases is strongly due to the chemical bond competition. • The suggested fluctuation region is approved by PL spectra. • Reconstruction and cluster formation is evident by formation of flat-spiral flowers. - Abstract: Optical character of crystal structure of the composition of two different semiconducting metallic sulfides, Cu{sub 2}S and S{sub 2}Sn, in pure phase formation of the ternary chalcogenide Cu{sub 2}SnS{sub 3} was considered. Because ofmore » the difficulties related to the phase separation at the definite Eutectic temperature for the composite formation, which is evident in optical absorption fluctuations, solvothermal synthesis in the intermediate temperature range 180–220 °C seems convenient where tetragonal crystal structure is investigated by XRD. Absorption fluctuations below E = E{sub g} were more pronounced for the lower limit case (180 °C) reflected in a sharp peak located at 1.48 eV on S1 as seen in UV-PL measurement. The characteristic behavior of the interface, resulting in the reconstruction and cluster formation due to the offset of bond rupturing displacement of atomic positions, is in favor of aggregation instead of agglomeration, which is evident by formation of small flat-spiral flowers in SEM images.« less

  9. Thermal stability, optical and Photoluminescence properties of spherical Ce x Zr1‑x O2 (x = 0.05) crystalline blue-emitting nanophosphors synthesized by microwave method

    NASA Astrophysics Data System (ADS)

    Manjunatha, S.; Dharmaprakash, M. S.

    2018-03-01

    Nanocrystalline ZrO2 based material is an impressive candidate for the various functional applications owing to their ease of preparation and high thermal stability. This paper reports the synthesis, structural and optical characterization of thermally stable monodispersed CexZr1‑xO2 (x = 0.05) nanoparticles. This method is based on the fact that, microwave irradiation allows the formation of size controlled and single phase cubic ZrO2 nanoparticles containing Ce+4 as a dopant. The XRD and Rietveld analysis revealed the formation of the crystalline cubic fluorite phase. The formation of nanoparticles was confirmed by FTIR. The morphology of the nanophosphors was characterised by FESEM and TEM. The optical band gap was calculated from the UV–visible absorption spectra and was found to vary from 3.93 to 4.25 eV with calcination temperature. It shows the decrease in the optical band gap from the pristine ZrO2. The particle size was measured by using HRTEM, and the average particle size was found to be 22 nm. Under the 268 nm Ultra Violet irradiation excitation a blue emission at 443 nm was observed at room temperature. The possible luminescence mechanism of CexZr1‑xO2 nanophosphor under UV excitation is discussed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  11. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  12. Enhanced nonlinear optical properties of L-arginine stabilized gold nanoparticles embedded in PVP polymer

    NASA Astrophysics Data System (ADS)

    Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.

    2018-05-01

    Highly stable colloidal gold nanoparticles (GNPs) stabilised in l-arginine were synthesized and embedded in polyvinyl pyrrolidone (PVP) polymer matrix to fabricate thin films by spin coating method. Nonlinear optical response of GNP-PVP nanocomposite were investigated using single beam Z-scan technique using He-Ne laser beam in CW regime operated at 632.8 nm as an excitation source. The sign of nonlinear refractive index was found negative, which is of self-defocusing nature. The nonlinear optical parameters estimated for GNP-PVP nanocomposite and found values as large as n2≈(1.7 -3.1 ) ×10-4c m2W-1, β ≈(2.40 -4.69 ) ×10-5c m W-1 and χef f (3 )≈(2.30 -4.34 ) ×10-4e s u . The nonlinear refractive index, absorption coefficient and third order nonlinear susceptibility have found decreasing with the increase in the concentration of l-arginine. Localized surface plasmon resonance (LSPR) peaks show the blue shift. The average size of the GNPs is found reducing from 11 nm to 7.5 nm with the increase in the stabilizer concentration, as analysed by transmission electron microscopy. The XRD study reveals face-centred cubic (fcc) structure of GNPs. The huge nonlinearity is attributed to the thermo-optic phenomenon. The huge enhancement in third order nonlinear susceptibility and nonlinear refractive index indicates that this optical material possess a high potential for various optoelectronic devices applications.

  13. Facile synthesis of ferromagnetic Ni doped CeO2 nanoparticles with enhanced anticancer activity

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Ahmad, Ishaq; Naqvi, M. Sajjad H.; Malik, Maaza

    2015-12-01

    NixCe1-xO2 (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV-vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO2 crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO2 nanoparticles. The synthesized NixCe1-xO2 nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO2 nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared NixCe1-xO2 nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO2 nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic NixCe1-xO2 nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  14. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications.

    PubMed

    Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S

    2016-01-15

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    NASA Astrophysics Data System (ADS)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  16. Efficient visible-light photocatalytic degradation of sulfadiazine sodium with hierarchical Bi₇O₉I₃under solar irradiation.

    PubMed

    Xu, MengMeng; Zhao, YaLei; Yan, QiShe

    2015-01-01

    Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.

  17. Cr-substitution effect on structural, optical and electrical properties of Cr{sub x}Ce{sub 1−x}PO{sub 4} (x = 0.00, 0.08, 0.10 and 0.20) nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadhalaoui, Amor; Dhaouadi, Hassouna, E-mail: dhaouadihassouna@yahoo.fr; Marouani, Houda

    2016-01-15

    Graphical abstract: The Cr{sub x}Ce{sub 1−x}PO{sub 4} (x = 0.00, 0.08, 0.10 and 0.20) nanorods synthesized under hydrothermal conditions. - Highlights: • Cr{sub x}Ce{sub 1−x}PO{sub 4} (x = 0.00–0.20) nanorods were synthesized by hydrothermal method. • Mean crystallite size of the products decreases with Cr-content. • Obvious improvements of the electrical conductivity comparatively to CePO4. - Abstract: Cr{sub x}Ce{sub 1−x}PO{sub 4} (x = 0.00–0.20) nanorods were synthesized using the hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), infrared absorption spectroscopy (IR) and transmission electron microscopy (TEM). The XRD results revealed the formation of a pure CePO{sub 4}more » hexagonal phase. TEM images confirmed the nano-size character of the as-prepared samples. Impedance spectroscopy analysis was used to analyze the electrical behavior of samples as a function of frequency at different temperatures. The increase of Cr-amount led to an increase in the total conductivities and decreased the activation energies (E{sub a} (x = 0.00) = 1.08 eV to E{sub a} (x = 0.20) = 0.80 eV). The optical properties of Cr{sub x}Ce{sub 1−x}PO{sub 4} nanomaterials were investigated using UV–vis spectroscopy. The band-gap energy values decreased with increasing Cr-content showing a red-shift trend. The improvement of the electrical conductivity and optical properties makes the Cr{sub x}Ce{sub 1−x}PO{sub 4} nanomaterials possible candidates to be used as electrolytes in solid oxide fuel cells, in photocatalytic and photovoltaic applications.« less

  18. Electro–optical properties of poly(vinyl acetate)/polyindole composite film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhagat, D. J., E-mail: bhagatd@rediffmail.com; Dhokane, G. R.; Bajaj, N. S.

    2016-05-06

    In present work, electrical and optical properties of poly(vinyl acetate)/polyindole (PVAc/PIN) composite film are reported. The prepared composite was characterized via X–ray diffraction (XRD), UV–Vis spectroscopy and DC conductivity measurements. The polymer chain separation was determined using XRD analysis. An attempt has been made to study the temperature dependence of DC conductivity of PVAc/PIN composite in temperature range 308–373 K. The DC conductivity initially increases and reaches to 2.45×10–7 S/cm. The optical band gap value of composite is determined as 4.77 eV. The semiconducting nature of composite observed from electronic as well as optical band gap and Arrhenius behavior of DCmore » plot.« less

  19. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    PubMed

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  1. Physico-chemical characterization, density functional theory (DFT) studies and Hirshfeld surface analysis of a new organic optical material: 1H-benzo[d]imidazol-3-ium-2,4,6-trinitrobenzene-1,3 bis(olate)

    NASA Astrophysics Data System (ADS)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2017-10-01

    A novel organic crystal, 1H-benzo[d]imidazol-3-ium-2,4,6-trinitrobenzene-1,3 bis(olate) (BITB), was synthesized. Single crystals of BITB were harvested by solution growth-slow evaporation technique. 1H and 13C NMR spectroscopic techniques were utilized to confirm the presence of various types of carbons and protons in BITB. Single crystal XRD confirms that BITB crystallizes in monoclinic system with a space group of P21/n. The suitability of this material for optical applications was assessed by optical absorption, transmittance, reflectance and refractive index spectroscopic techniques. Gaussian 09 program at B3LYP/6-311++G(d,p) level of basis set as used for the optimization of molecular structure of BITB. Greater first order hyperpolarizability value of BITB is due to intensive hydrogen bond network in the crystal. The value is 15 times greater than that of Urea, a reference standard. Computation of frontier molecular orbitals and electrostatic potential surface helped to understand the electron density and reactive sites in BITB. The material was thermally stable up to 220 °C. Hirshfeld surface analysis was performed to quantify the covalent and non covalent interactions.

  2. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    NASA Astrophysics Data System (ADS)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  3. Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J. C.; Singh, N. K.; Choudhury, S.; Chattopadhay, K. K.

    2014-04-01

    Ordered and perpendicular columnar arrays of In2O3 were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In2O3 columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ˜400 nm and ˜100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In2O3 columns have a high band to band transition at ˜3.75 eV. The ultraviolet and green emissions were obtained from the In2O3 columnar arrays. The P-N junction was formed between In2O3 and P-type Si substrate. The GLAD synthesized In2O3 film exhibits low current conduction compared to In2O3 TF. However, the Si/GLAD-In2O3 detector shows ˜1.5 times enhanced photoresponsivity than that of Si/In2O3 TF.

  4. High dose gamma ray exposure effect on the properties of CdSe nanowires

    NASA Astrophysics Data System (ADS)

    Narula, Chetna; Chauhan, R. P.

    2018-03-01

    We report high dose gamma-ray (γ-ray) induced modifications incurred by polycrystalline cadmium selenide (CdSe) nanowires of 80 nm diameter. The nanowires have been synthesized using polycarbonate template assisted electro-deposition technique. The samples were irradiated with 60Co γ-radiation at a dose rate of 4.533 kGy/h for different time intervals with doses varying from 0 to 400 kGy. The effects of γ rays on the structural, morphological, optical and electrical properties of nanowires are discussed. XRD patterns of as-synthesized and gamma irradiated CdSe nanowires did not show any phase transformations but the variation in relative intensity was observed. The crystallite size evaluated using Scherrer's formula was found to vary. The optical parameters were obtained using UV-vis spectrometer measurements of absorption. Band gap was found to decrease with γ irradiation up to a dose of 300 kGy after which it was seen to increase. Refractive index and optical dielectric constants were also evaluated. Subjection of γ-radiation also brings about key changes in the electrical properties of CdSe nanowires. The attained data shows that the electrical conductivity varies with absorbed dose. The variations in the properties of CdSe nanowires can be considered as a consequence of ionization process, defect production and its annihilation.

  5. Assessment of role of iron ions on the physical and spectroscopic properties of multi-component Na2O-PbO-Bi2O3-SiO2 glass ceramics

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Sambasiva; Kumar, A. Suneel; Ram, G. Chinna; Tirupataiah, Ch.; Rao, D. Krishna

    2018-01-01

    Multi-component glass ceramics composition Na2O-PbO-Bi2O3-SiO2 doped with different concentrations of Fe2O3 as nucleating agent were characterised by XRD, SEM (scanning electron microscope) and DTA (differential thermal analysis) techniques. Optical absorption, EPR, FTIR and Raman studies are also carried out on these glass ceramics. Absorption bands observed at about 457, 489, 678 and 820 nm are the characteristics of Fe3+ ions whereas the band observed at about 964 nm is due to Fe2+ ions. EPR studies suggested that Fe3+ ions entered in the lattice as tetragonally distorted octahedral symmetry or rhombic sites at low concentration of Fe2O3, whereas at higher concentration of Fe2O3 (beyond 1 mol%), the super exchange type of interactions between multivalency iron ions begin to dominate. FTIR and Raman spectra have revealed the behaviour of various structural units in the glass ceramic matrix. The analysis of these spectroscopic studies indicates that iron ions do exist in Fe3+ and Fe2+ state.

  6. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  7. Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.

    2018-07-01

    In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.

  8. Optical absorption and electrical properties of MPc (M =Fe, Cu, Zn)-TCNQ interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sánchez Vergara, M. E.; Medrano Gallardo, D.; Vera Estrada, I. L.; Jiménez Sandoval, O.

    2018-04-01

    This research is related to the growth and characterization of doped molecular semiconductor metallophthalocyanine-tetracyanoquinodimethane (MPc-TCNQ) films, with M = Fe, Zn, Cu. FT-IR and Raman spectroscopies were employed to study the chemical interactions taking place in the MPc-TCNQ films. XRD was carried out to determine the crystalline structure present in the samples, due to the facility of the MPcs to be in alpha and/or beta phases. The thin films were analized by SEM and UV-vis spectroscopy in order to study their morphological and optical properties. The absorption spectra recorded in the UV-Vis region for the deposited samples showed two bands, namely the Q and Soret bands. The absorption coefficient (α) and photon energy (hν) were calculated from the UV-vis spectra, to in turn determine the optic activation energy in each film and its semiconductor behavior. The values obtained for direct transitions due to the crystallinity of the films were: 1.2, 1.4 and 2 eV for FePc-TCNQ (MMFe), ZnPc-TCNQ (MMZn) and CuPc-TCNQ (MMCu), respectively. Additionally, I-V characteristics have been obtained from fabricated glass/ITO/MM/Ag devices using ohmic contacts both after annealing. The electrical properties of the devices, e.g. carrier mobility and concentration of thermally generated holes, were extracted from the J-V characteristics. The results show that the conduction process is ohmic for the MMZn and MMCu devices, at low voltages, while at high voltages, a space-charge-limited conduction (SCLC) is present. The effect of temperature on conductivity was also measured in these samples and the lower thermal activation energy calculated was 0.37 eV for MMZn. Moreover, it was found that the temperature-dependent electric current is always higher for the MMZn device and suggests a semiconductor-like behavior with an important conductivity of the order of 103 S cm-1. Anyhow, in terms not only of electric properties, but also of optic behavior, the results suggest that all three devices manufactured, MMFe, MMCu and MMZn, are of potential use in optoelectronics. The doping effect of TCNQ favors the electronic transport, most likely due to the formation of conduction channels caused by the anisotropy induced by the dopant.

  9. Band gap narrowing in BaTiO{sub 3} nanoparticles facilitated by multiple mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramakanth, S.; James Raju, K. C., E-mail: kcjrsp@uohyd.ernet.in; School of Physics, University of Hyderabad, Hyderabad 500046

    2014-05-07

    In the present work, BaTiO{sub 3} nanoparticles of four different size ranges were prepared by sol-gel method. The optical band gap of these particles at some size ranges has come down to 2.53 eV from 3.2 eV, resulting in substantial increase in optical absorption by these ferroelectric nanoparticles making them potential candidates for light energy harvesting. XRD results show the presence of higher compressive strain in 23 nm and 54 nm size particles, they exhibit a higher band gap narrowing, whereas tensile strain is observed in 31 nm and 34 nm particles, and they do not show the marginal band gap narrowing. The 23 nm and 54 nmmore » particles also show a coupling of free carriers to phonons by increasing the intensity of LO phonon mode at 715 cm{sup −1}. The higher surface charge density is expected in case of enhanced surface optical Raman modes (638 cm{sup −1}) contained in 31 and 34 nm size particles. In addition to this, the red shift in an LO mode Raman spectral line at 305 cm{sup −1} with decrease in particle size depicts the presence of phonon confinement in it. The enhanced optical absorption in 23 nm and 54 nm size particles with a narrowed band gap of 3 eV and 2.53 eV is due to exchange correlation interactions between the carriers present in these particles. In 31 nm and 34 nm range particles, the absorption got bleached exhibiting increased band gaps of 3.08 eV and 3.2 eV, respectively. It is due to filling up of conduction band resulting from weakening of exchange correlation interactions between the charge carriers. Hence, it is concluded that the band gap narrowing in the nanoparticles of average size 23 nm/54 nm is a consequence of multiple effects like strain, electron-phonon interaction, and exchange correlation interactions between the carriers which is subdued in some other size ranges like 31 nm/34 nm.« less

  10. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  12. Investigation of structural, optical, magnetic and electrical properties of tungsten doped Nisbnd Zn nano-ferrites

    NASA Astrophysics Data System (ADS)

    Pathania, Abhilash; Bhardwaj, Sanjay; Thakur, Shyam Singh; Mattei, Jean-Luc; Queffelec, Patrick; Panina, Larissa V.; Thakur, Preeti; Thakur, Atul

    2018-02-01

    Tungsten substituted nickel-zinc ferrite nanoparticles with chemical composition of Ni0.5Zn0.5WxFe2-xO4 (x = 0.0, 0.2, 0.4, 0.6, 0.8 & 1.0) were successfully synthesized by a chemical co-precipitation method. The prepared ferrites were pre sintered at 850 °C and then annealed at 1000 °C in a muffle furnace for 3 h each. This sintered powder was inspected by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM) to study the structural, optical, and magnetic properties. XRD measurement revealed the phase purity of all the nanoferrite samples with cubic spinel structure. The estimated crystallite size by X-ray line broadening is found in the range of 49-62 nm. FTIR spectra of all the samples have observed two prominent absorption bands in the range 400-700 cm-1 arising due to tetrahedral and octahedral stretching vibrations. Vibrating sample magnetometer experiments showed that the saturation magnetizations (MS) decreased with an increase in non-magnetic tungsten ion doping. The electrical resistivity of tungsten doped Nisbnd Zn nano ferrites were examined extensively as a function of temperature. With an increase in tungsten composition, resistivity was found to decrease from 2.2 × 105 Ω cm to 1.9 × 105 Ω cm which indicates the semiconducting behavior of the ferrite samples. The activation energy also decreased from 0.0264 to 0.0221 eV at x = 0.0 to x = 1.0. These low coercive field tungsten doped Nisbnd Zn ferrites are suitable for hyperthermia and sensor applications. These observations are explained in detail on the basis of various models and theories.

  13. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  14. Mineralogy of mine waste at the Vermont Asbestos Group mine, Belvidere Mountain, Vermont

    USGS Publications Warehouse

    Levitan, D.M.; Hammarstrom, J.M.; Gunter, M.E.; Seal, R.R.; Chou, I.-Ming; Piatak, N.M.

    2009-01-01

    Samples from the surfaces of waste piles at the Vermont Asbestos Group mine in northern Vermont were studied to determine their mineralogy, particularly the presence and morphology of amphiboles. Analyses included powder X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and Raman spectroscopy. Minerals identified by XRD were serpentine-group minerals, magnetite, chlorite, quartz, olivine, pyroxene, and brucite; locally, mica and carbonates were also present. Raman spectroscopy distinguished antigorite and chrysotile, which could not be differentiated using XRD. Long-count, short-range XRD scans of the (110) amphibole peak showed trace amounts of amphibole in most samples. Examination of amphiboles in tailings by optical microscopy, SEM, and EPMA revealed non-fibrous amphiboles compositionally classified as edenite, magnesiohornblende, magnesiokatophorite, and pargasite. No fibrous amphibole was found in the tailings, although fibrous tremolite was identified in a sample of host rock. Knowledge of the mineralogy at the site may lead to better understanding of potential implications for human health and aid in designing a remediation plan.

  15. Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide.

    PubMed

    Halimah, M K; Ami Hazlin, M N; Muhammad, F D

    2018-04-15

    A series of glass samples with chemical formula {[(TeO 2 ) 0.7 (B 2 O 3 ) 0.3 ] 0.7 (ZnO) 0.3 } 1-x (Dy 2 O 3 ) x where x=0.01, 0.02, 0.03, 0.04 and 0.05M fraction were synthesized through conventional melt-quenching method. The most common way to fabricate a glass material is by fusion of two or more component oxides followed by their quenching. This technique is known as melt-quenching technique. Kaur et al. (2016) [1] highlighted that the melt-quenching method able to enhance the mechanical properties like hardness and flexural strength of the material. The nature of the glass systems is proven to be amorphous based on the XRD pattern. The FTIR spectra of the glass systems confirm the existence of five bands which are assigned for the BO 4 , BO 3, TeO 4 and TeO 3 vibrational groups. The density of the glass systems is increased with the addition of Dy 2 O 3 while the molar volume is found to be inversely proportional to the density of the proposed glass. The optical properties of the glasses are determined through the absorption spectra obtained from the UV-VIS spectrophotometer. From the absorption spectra, the indirect and direct optical band gaps and the Urbach energy are found to be inversely proportional to each other. As the molar fraction of the Dy 2 O 3 increased, the optical band gaps are observed to increase as opposed to the Urbach energy. For this glass system, the values of refractive index, electronic polarizability, oxide ion polarizability and the optical basicity are found to decrease as the addition of the dysprosium oxide is increased. From the emission spectra, two intense blue and yellow emission bands are observed, which correspond to the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ions respectively. The CIE chromaticity coordinates of the zinc borotellurite glass systems are found to be located in the white light region. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Growth, spectral, optical, laser damage threshold and DFT investigations on 2-amino 4-methyl pyridinium 4-methoxy benzoate (2A4MP4MB): A potential organic third order nonlinear optical material for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Krishnakumar, M.; Karthick, S.; Thirupugalmani, K.; Babu, B.; Vinitha, G.

    2018-05-01

    In present investigation, single crystals of organic charge transfer complex, 2-amino-4-methyl pyridinium-4-methoxy benzoate (2A4MP4MB) was grown by controlled slow evaporation solution growth technique using methanol as a solvent at room temperature. Single crystal XRD analysis confirmed the crystal system and lattice parameters of 2A4MP4MB. The crystalline nature, presence of various vibrational modes and other chemical bonds in the compound have been recognized and confirmed by powder X-ray diffraction, FT-IR and FT-Raman spectroscopic techniques respectively. The presence of various proton and carbon positions in title compound was confirmed using 1H NMR and 13C NMR spectral studies. The wide optical operating window and cut-off wavelength were identified and band gap value of the title compound was calculated using UV-vis-NIR study. The specific heat capacity (cp) values of the title compound, 1.712 J g-1·K-1 at 300 K and 13.6 J g-1 K-1 at 433 K (melting point) were measured using Modulated Differential Scanning Calorimetric studies (MDSC). From Z-scan study, nonlinear refractive index (n2), nonlinear absorption (β) and third order nonlinear susceptibility (χ(3)) values were determined. The self-defocusing effect and saturable absorption behavior of the material were utilized to exhibit the optical limiting action at λ = 532 nm by employing the same continuous wave (cw) Nd: YAG laser source. The laser damage threshold (LDT) study of title compound was carried out using Nd: YAG laser of 532 nm wavelength. The Vickers' micro hardness test was carried out at room temperature and obtained results were investigated using classical Meyer's law. In addition, DFT calculations were carried out for the first time for this compound. These characterization studies performed on the title compound planned to probe the valuable and safe region of optical, thermal and mechanical properties to improve efficacy of 2A4MP4MB single crystals in optoelectronic device applications.

  17. Materials for n-type organic electronics: synthesis and properties of fluoroarene-thiophene semiconductors

    NASA Astrophysics Data System (ADS)

    Facchetti, Antonio; Yoon, Myung-Han; Katz, Howard E.; Marks, Tobin J.

    2003-11-01

    Recent progress in the field of organic electronics is due to a fruitful combination of both innovative molecular design and promising low-cost material/device assembly. Targeting the first strategy, we present here the general synthesis of fluoroarene-containing thiophene-based semiconductors and the study of their properties with respect to the corresponding fluorine-free hole-transporting analogues. The new compounds have been characterized by elemental analysis, mass spectrometry, and 1H- and 19F NMR. The dramatic influence of fluorine substitution and molecular architecture has been investigated by solution/film optical absorption, fluorescence emission, and cyclic voltammetry. Single crystal data for all of the oligomers have been obtained and will be presented. Film microstructure and morphology of this new class of materials have been studied by XRD and SEM. Particular emphasis will be posed on the solution-processable oligomers and polymers.

  18. Preparation and characterization of polyaniline-copper composites by electrical explosion of wire.

    PubMed

    Liu, Aijie; Bac, Luong Huu; Kim, Jin-Chun; Liu, Lizhu

    2012-07-01

    Polyaniline-copper composites with a polyacrylic acid (PAA) were synthesized by electrical explosion of wire. Polyaniline (PANI) and PAA were put into the explosion medium, deionized water (DIW) and ethanol, stirred for 24 hrs and sonicated for 2 hrs. These solutions were used as base liquids for explosion process to fabricate Cu nanoparticle. Optical absorption in the UV-visible region of PANI and PANI/PAA-Cu composites was measured in a range of 200-900 nm. X-ray diffraction was used to analyze the phase of the composites. XRD pattern showed the PANI was amorphous and copper was polycrystalline. Two phases of Cu and Cu2O were formed in aqueous solution while single Cu phase was obtained in ethanol solution. Field emission scanning electron microscope was used to observe the microstructure of the composites. The synthesized composites were extensively characterized by Fourier Transform Infrared (FTIR) spectroscopy and electrical measurements.

  19. ZnO nanorods decorated with ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less

  20. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  1. Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar

    2018-05-01

    Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.

  2. Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.

    PubMed

    Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John

    2014-03-01

    A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.

  3. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  4. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  5. Strong anisotropic optical conductivity in two-dimensional puckered structures: The role of the Rashba effect

    NASA Astrophysics Data System (ADS)

    Saberi-Pouya, S.; Vazifehshenas, T.; Salavati-fard, T.; Farmanbar, M.; Peeters, F. M.

    2017-08-01

    We calculate the optical conductivity of an anisotropic two-dimensional system with Rashba spin-flip excitation within the Kubo formalism. We show that the anisotropic Rashba effect caused by an external field significantly changes the magnitude of the spin splitting. Furthermore, we obtain an analytical expression for the longitudinal optical conductivity associated with interband transitions as a function of the frequency for arbitrary polarization angle. We find that the diagonal components of the optical conductivity tensor are direction dependent and the optical absorption spectrum exhibits a strongly anisotropic absorption window. The height and width of this absorption window are very sensitive to the anisotropy of the system. While the height of absorption peak increases with increasing effective mass anisotropy ratio, the peak intensity is larger when the light polarization is along the armchair direction. Moreover, the absorption peak width becomes broader as the density-of-states mass or Rashba interaction is enhanced. These features in the optical absorption spectrum can be used to determine parameters relevant for spintronics.

  6. Photothermal measurement of optical surface absorption using strain transducers

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Trusty, G. L.

    1981-09-01

    We discuss the measurement of small optical surface absorption coefficients. A demonstration experiment was performed using a metallurgical strain gauge to measure 488 nm absorption on the surface of a glass plate. A strain of 10 to the minus 8th power resulted from absorption of 0.3 watts. The results are interpreted and the sensitivity of a proposed fiber optic strain gauge is discussed.

  7. Optical properties of a new Bi38Mo7O78 semiconductor with fluorite-type δ-Bi2O3 structure

    NASA Astrophysics Data System (ADS)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng; Huang, Pengjie; Zheng, Min

    2017-03-01

    Bi3+-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi3+ ions. In this work, a new semiconductor of bismuth molybdate Bi38Mo7O78 (19Bi2O3·7MoO3) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi38Mo7O78 can be regarded to be derived from the cubic δ-phase Bi2O3 structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi38Mo7O78 (2.38 eV) was greatly narrowed in comparison with Bi2O3 (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi38Mo7O78 nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  8. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor.

    PubMed

    Dayakar, T; Venkateswara Rao, K; Bikshalu, K; Rajendar, V; Park, Si-Hyun

    2017-06-01

    A non-enzymatic glucose biosensor was developed by utilizing the zinc oxide nanoparticles (ZnO NPs) synthesized by a novel green method using the leaf extract of Ocimum tenuiflorum. The structural, optical and morphological properties of ZnO NPs characterized by means of X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, and transmission electron microscopy (TEM). The XRD analysis revealed that the ZnO NPs were crystalline and had a hexagonal wurtzite structure. The crystallite size measured by XRD was the same as that measured using SEM and TEM. The UV-vis absorption spectrum estimates the band gap of ZnO NPs present in the range of 2.82 to 3.45eV. The reduction and formation of ZnO NPs mainly due to the involvement of leaf extract bio-molecular compounds analyzed from the FTIR spectra. The SEM result confirms the morphology of the NPs responsible from the various concentration of leaf extract in the synthesis process. HRTEM analysis depicts the spherical structure of ZnO NPs. The synthesized NPs have the average size ranges from 10 to 20nm. The fabricated GCE/ZnO glucose sensor represents superior electro catalytic activity that has been observed for ZnO NPs with a reproducible sensitivity of 631.30μAmM -1 cm -2 , correlation coefficient of R=0.998, linear dynamic range from 1-8.6mM, low detection limit of 0.043μM (S/N=3) and response time<4s. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V.

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  10. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime

    PubMed Central

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro

    2012-01-01

    Abstract. Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed. PMID:22734767

  11. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  12. Elastic, optical and structural features of wide range of CdO- Na2B4O7 glasses

    NASA Astrophysics Data System (ADS)

    Saddeek, Y. B.; Aly, K. A.; Shaaban, Kh S.; Mossad Ali, Atif; Sayed, M. A.

    2018-06-01

    Wide range of CdO—Na2B4O7 glasses have been prepared and characterized via XRD, FTIR and UV spectroscopies along with DTA and ultrasonic techniques. The compositional dependence of the physical parameters such as the density, the molar volume, the optical transmittance, the optical band gap, the ultrasonic velocities and the elastic moduli on CdO content were determined. The profiles of XRD assured the amorphous nature of the explored glasses. The clarification of the borate and cadmium functional groups besides their linkages was extracted from the deconvoluted FTIR spectra. Such a clarification was used in the analysis of the relation of the mechanical, T g and optical parameters versus CdO content. These physical parameters revealed the glass modifier role of CdO.

  13. FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.

    2011-12-01

    The inorganic constituents of 5 different plants (leaves and stalks) were investigated by using Fourier transformer infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis including thermal gravimetric analysis (TGA), derivative thermogravimetry (DTG) and differential scanning calorimetry (DSC). These plants are Catha edulis (Khat), basil, mint, green tea and trifolium. The absorption bands of carbonate ions CO 32- was exhibited at 1446 cm -1, and the phosphate ions PO 43- was assigned at 1105 and 1035 cm -1. At high temperatures (600, 700 and 600 °C) further absorption bands of the phosphate ions PO 43- was assigned at the frequencies 572, 617, 962, 1043 and 1110 cm -1 and the vibrational absorption band of the carbonate ions CO 32- was assigned at 871, 1416 and 1461 cm -1. X-ray diffraction and thermal analysis confirm the obtained results of FITR. Results showed that the main inorganic constituents of C. edulis and basil leaves are hydroxyapatite whereas the hydroxyapatite content in the other plant samples is less than that in case of C. edulis and basil plant leaves.

  14. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  15. Synthesis, growth, structural, optical, spectral, thermal and mechanical studies of 4-methoxy 4-nitrostilbene (MONS): a new organic nonlinear optical single crystal.

    PubMed

    Dinakaran, Paul M; Bhagavannarayana, G; Kalainathan, S

    2012-11-01

    4-Methoxy 4-nitrostilbene (MONS), a new organic nonlinear optical material has been synthesized. Based on the solubility data good quality single crystal with dimensions up to 38×11×3 mm(3) has been grown by slow evaporation method using ethyl methyl ketone (MEK) as a solvent. Powder XRD confirms the crystalline property and also the diffraction planes have been indexed. The lattice parameters for the grown MONS crystals were determined by using single crystal X-ray diffraction analysis and it reveals that the crystal lattice system is triclinic. The crystalline perfection of the grown crystals has been analysed by high resolution X-ray diffraction (HRXRD) rocking curve measurements. Fourier transform infrared (FTIR) spectrum for powdered MONS sample confirms the functional groups present in the grown crystal. The UV-vis absorption spectrum has been recorded in the range of 190-1100 nm and the cut off wavelength 499 nm has been determined. The optical constants of MONS have been determined through UV-vis-NIR spectroscopy. The MONS crystals were further subjected to other characterizations. i.e., (1)H NMR, TG/DTA, photoluminescence and microhardness test. The Kurtz and Perry powder technique confirms the NLO property of the grown crystal and the SHG efficiency of MONS was found to be 1.55× greater than that of KDP crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Modification of Optical, Structural and Dielectric Properties of MeV Ions Irradiated PS/Cu Nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K; Shah, Sunil

    2015-12-01

    In order to study structural, thermal, optical and dielectric behaviors of composites, the films of Cu/polystyrene nanocomposites were synthesized at different concentrations of Cu-nanoparticles. These polymer nanocomposites were irradiated with carbon (85 MeV) and silicon (120 MeV) ions at different fluences. The samples were characterized using different techniques viz: X-ray diffraction, UV-visible spectroscopy, differential scanning calorimetry, and impedance gain phase analyzer. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 120 MeV Si-ions, which may be attributed to radiation-induced cross-linking in polymer. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.38 eV to 3.40 eV) on doping with silver nanoparticles and also upon irradiation. Differential scanning calorimetry analysis revealed an increase in the glass transition temperature upon irradiation, which may be attributed to cross linking of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Dependence of dielectric properties on frequency, ions and filler concentration was studied. The results revealed the enhancement in dielectric properties after doping nanoparticles and also upon irradiation. It was observed that the effect of Si-beam is more effectual than the C-beam because of large electronic energy loss of heavy ion.

  17. Investigations in structural morphological and optical properties of Bi-Pb-S system thin films

    NASA Astrophysics Data System (ADS)

    Malika, Boukhalfa; Noureddine, Benramdane; Mourad, Medles; Abdelkader, Outzourhit; Attouya, Bouzidi; Hind, Tabet-derraz

    Bi2S3, PbS and Bi-Pb-S system thin films were grown on glass substrates by the spray pyrolysis technique. The films growth was realized by the reaction of aqueous solutions of bismuth trichloride (BiCl3) and trihydrate Lead Acetate (TLA) (Pb(CH3COO)2.3H2O) with thiourea on heated substrates. The films study was performed as a function of the TLA volume ratio (TLA vol. ratio) in the solution obtained by the mixture of BiCl3 and thiourea used as precursor solution (PrS). X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) were used for structural and compositional analysis of the as deposited films. With the structural investigations, Bi2S3, PbS thin films and PbS-Bi2S3 composite thin films formation was confirmed. Optical properties of the deposited films were obtained using transmittance and reflectance measurements in the wavelength range [200-2500 nm]. The absorption edge shows a shift towards low energy with the increase of the TLA vol. ratio.The optical bandgaps for the films with various TLA vol. ratio are found to lie between those of the Bi2S3 and PbS ones. The optical parameters (extinction coefficient, refractive index, real and imaginary parts if the complex dielectric constant) of the thin films are also investigated. These are found to be dependent on the TLA vol. ratio.

  18. Super-resolution atomic force photoactivated microscopy of biological samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Seunghyun; Kim, Hyemin; Shin, Seungjun; Doh, Junsang; Kim, Chulhong

    2017-03-01

    Optical microscopy (OM) and photoacoustic microscopy (PAM) have previously been used to image the optical absorption of intercellular features of biological cells. However, the optical diffraction limit ( 200 nm) makes it difficult for these modalities to image nanoscale inner cell structures and the distribution of internal cell components. Although super-resolution fluorescence microscopy, such as stimulated emission depletion microscopy (STED) and stochastic optical reconstruction microscopy (STORM), has successfully performed nanoscale biological imaging, these modalities require the use of exogenous fluorescence agents, which are unfavorable for biological samples. Our newly developed atomic force photoactivated microscopy (AFPM) can provide optical absorption images with nanoscale lateral resolution without any exogenous contrast agents. AFPM combines conventional atomic force microscopy (AFM) and an optical excitation system, and simultaneously provides multiple contrasts, such as the topography and magnitude of optical absorption. AFPM can detect the intrinsic optical absorption of samples with 8 nm lateral resolution, easily overcoming the diffraction limit. Using the label-free AFPM system, we have successfully imaged the optical absorption properties of a single melanoma cell (B16F10) and a rosette leaf epidermal cell of Arabidopsis (ecotype Columbia (Col-0)) with nanoscale lateral resolution. The remarkable images show the melanosome distribution of a melanoma cell and the biological structures of a plant cell. AFPM provides superior imaging of optical absorption with a nanoscale lateral resolution, and it promises to become widely used in biological and chemical research.

  19. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.

    PubMed

    Bhirud, Ashwini P; Sathaye, Shivaram D; Waichal, Rupali P; Ambekar, Jalindar D; Park, Chan-J; Kale, Bharat B

    2015-03-21

    Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. ∼5941 μmol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.

  20. Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Rajesh, S.

    2017-04-01

    The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.

  1. Structural, optical, electrochemical and photovoltaic studies of spider web like Silver Indium Diselenide Quantum dots synthesized by ligand mediated colloidal sol-gel approach

    NASA Astrophysics Data System (ADS)

    Adhikari, Tham; Pathak, Dinesh; Wagner, Tomas; Jambor, Roman; Jabeen, Uzma; Aamir, Muhammad; Nunzi, Jean-Michel

    2017-11-01

    Silver indium diselenide quantum dots were successively synthesized by colloidal sol-gel method by chelating with organic ligand oleylamine (OLA). The particle size was studied by transmission electron microscopy (TEM) and the size was found about 10 nm. X-ray diffraction (XRD) was used to study crystalline structure of the nanocrystals. The grain size and morphology were further studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The elemental composition was studied by X-ray photon electron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDAX). The capping property of OLA in nanocrystal was also demonstrated by Fourier Transform Infrared spectroscopy (FTIR). The band gap was calculated from both cyclic voltammetry and optical absorption and suggest quantum confinement. The solution processed bilayer thin film solar cells were fabricated with n-type Zinc oxide using doctor blading/spin coating method and their photovoltaic performance was studied. The best device sintered at 450 °C showed an efficiency 0.75% with current density of 4.54 mAcm-2, open-circuit voltage 0.44 V and fill factor 39.4%.

  2. Synthesis, spectral and thermal studies of pyridyl adducts of Zn(II) and Cd(II) dithiocarbamates, and their use as single source precursors for ZnS and CdS nanoparticles.

    PubMed

    Onwudiwe, Damian C; Strydom, Christien A; Oluwafemi, Oluwatobi S; Hosten, Eric; Jordaan, Anine

    2014-06-21

    The synthesis, spectroscopic characterisation, and thermal studies of pyridyl adducts of Zn(II) and Cd(II) complexes of N-ethyl-N-phenyl dithiocarbamate, represented as [ZnL2py] and [CdL2py2], are reported. Single-crystal X-ray structural analysis of the Zn compound showed that it is five-coordinate with four sulphurs from dithiocarbamate and one nitrogen from pyridine in a distorted square pyramidal geometry. The thermogravimetric studies indicate that the zinc and cadmium compounds undergo fast weight loss, and the temperature at maximum rate of decomposition is at 277 °C and 265 °C respectively, to give the metal (Zn or Cd) sulphide residues. These compounds were used as single molecule precursors to produce nanocrystalline MS (M = Zn, Cd) after thermolysis in hexadecylamine. The morphological and optical properties of the resulting MS nanocrystallites were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-Vis absorption and photoluminescence (PL) spectroscopy, and powdered X-ray diffraction (XRD). By varying the growth time, the temporal evolution of the optical properties and morphology of the nanocrystals were investigated.

  3. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates

    NASA Astrophysics Data System (ADS)

    Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.

    2018-05-01

    Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.

  4. Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3+-doped calcium borotellurite glasses.

    PubMed

    Lima, A M O; Gomes, J F; Hegeto, F L; Medina, A N; Steimacher, A; Barboza, M J

    2018-03-15

    This paper reports the synthesis and the characterization of Yb 3+ -doped calcium borotellurite (CaBTeX) glasses with composition 10CaF 2 -(29.5-0.4x)CaO-(60-0.6x)B 2 O 3 -xTeO 2 -0.5Yb 2 O 3 (x=10, 16, 22, 31 and 54mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO 2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO 2 content. The replacement of CaO and B 2 O 3 by TeO 2 changes the glass structure, which decreases the excited Yb 3+ /cm 3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420K. The fluorescence lifetime does not change significantly due to TeO 2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluation of TeO2 content on the optical and spectroscopic properties of Yb3 +-doped calcium borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Lima, A. M. O.; Gomes, J. F.; Hegeto, F. L.; Medina, A. N.; Steimacher, A.; Barboza, M. J.

    2018-03-01

    This paper reports the synthesis and the characterization of Yb3 +-doped calcium borotellurite (CaBTeX) glasses with composition 10CaF2-(29.5 - 0.4x)CaO-(60 - 0.6x)B2O3-xTeO2-0.5Yb2O3 (x = 10, 16, 22, 31 and 54 mol%). The results of XRD confirm the amorphous character of all the samples. The density, molar volume, refractive index and electronic polarizability values show an increase with TeO2 content. Otherwise, the optical band gap energy shows a decrease with the increase of TeO2 content. The replacement of CaO and B2O3 by TeO2 changes the glass structure, which decreases the excited Yb3 +/cm3 and, consequently, the luminescence intensity. The temperature dependence of luminescence was studied for all the samples up to 420 K. The fluorescence lifetime does not change significantly due to TeO2 addition. In addition, absorption and emission cross section were calculated and present high values as compared to other tellurite and phosphate glasses.

  6. Effect of Trisodium Citrate Concentration on the Structural and Photodiode Performance of CdO Thin Films

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.

    2015-08-01

    CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.

  7. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  8. Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications

    NASA Astrophysics Data System (ADS)

    Damodaraiah, S.; Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2017-05-01

    Different compositions of (5, 10, 15 and 20 mol%) of bismuth and different concentrations (0.5, 1.0, 1.5 and 2.0 mol%) of Dy3+ ion doped bismuth phosphate (BiP) glasses were synthesized by melt-quenching technique. The structural characterization was accomplished by XRD, SEM with EDS, FTIR, FT-Raman and 31P MAS NMR spectroscopy. The optical properties were studied using absorption and photoluminescence spectroscopy. Different structural groups were identified using FTIR and FT-Raman spectra. The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by 31P MAS NMR spectroscopic investigations. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6) were evaluated from absorption spectra. Radiative parameters such as radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated using Judd-Ofelt intensity parameters. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated for all the observed emission transitions of prepared glasses. The decay profiles for 4F9/2 level were recorded and fit exponential for 0.5 mol% and non-exponential for higher concentrations of Dy3+ due to non-radiative energy transfer among excited Dy3+ ions. The CIE chromaticity co-ordinates have been calculated from the luminescence spectra which confirmed greenish yellow light emission.

  9. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  10. Synthesis and characterization of CdTe nanostructures grown by RF magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Elaheh; Ghoranneviss, Mahmood; Hantehzadeh, Mohammad Reza

    2017-08-01

    In this paper, we synthesize Cadmium Telluride nanostructures by radio frequency (RF) magnetron sputtering system on soda lime glass at various thicknesses. The effect of CdTe nanostructures thickness on crystalline, optical and morphological properties has been studied by means of X-ray diffraction (XRD), UV-VIS-NIR spectrophotometry, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The XRD parameters of CdTe nanostructures such as microstrain, dislocation density, and crystal size have been examined. From XRD analysis, it could be assumed that increasing deposition time caused the formation of the wurtzite hexagonal structure of the sputtered films. Optical properties of the grown nanostructures as a function of film thickness have been observed. All the films indicate more than 60% transmission over a wide range of wavelengths. The optical band gap values of the films have obtained in the range of 1.62-1.45 eV. The results indicate that an RF sputtering method succeeded in depositing of CdTe nanostructures with high purity and controllable physical properties, which is appropriate for photovoltaic and nuclear detector applications.

  11. Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcination temperatures

    NASA Astrophysics Data System (ADS)

    Loganathan, A.; Kumar, K.

    2016-06-01

    In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.

  12. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  13. Au-Ag-Cu nano-alloys: tailoring of permittivity

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-04-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective.

  14. Structural, morphological and optical studies of F doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla

    2018-05-01

    Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.

  15. Multiple-Path-Length Optical Absorbance Cell

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  16. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    NASA Astrophysics Data System (ADS)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  17. Optical state-of-charge monitor for batteries

    DOEpatents

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  18. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  19. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  20. Bio-synthesis and antimicrobial activity of silver nanoparticles using anaerobically digested parthenium slurry.

    PubMed

    Adur, Alaknanda J; Nandini, N; Shilpashree Mayachar, K; Ramya, R; Srinatha, N

    2018-06-01

    Silver nanoparticles were prepared through eco-friendly, cost effective, bio-mediated technique using anaerobically digested Parthenium hysterophorous digested slurry (PDS) for the first time. The synthesized nanoparticles were characterized through different techniques such as UV-Vis spectrophotometer for optical properties; X-ray diffractometer (XRD), high resolution transmission electron spectroscopy (HR-TEM) and Fourier Transform Infra Red (FTIR) Spectroscopy for structural property investigations. It was observed that the prepared silver nanoparticles were crystallized in face centered cubic crystal structure with an average particle size of 19 nm as confirmed from XRD. Also HR-TEM studies reveal the formation of nano-sized silver particles with face centered cubic nano structure. In addition, absorption spectra exhibit Surface Plasmon Resonance (SPR) which suggests the formation of silver nanoparticles. FTIR results show the presence of different characteristic functional groups and their stretching / bending vibrations in turn responsible for the bioreduction of silver ions in Parthenium digested slurry. Further investigations on antimicrobial activity were done by subjecting the synthesized silver nanoparticles on E-coli and Pseudomonas as marker organisms for the group of gram negative bacteria by well plate method on enrichment media. The result obtained shows a clear zone of inhibition confirming the antibacterial activity. Overall, the investigated results confirm the biosynthesized silver nanoparticles are potential candidates for antimicrobial activity applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-11-01

    Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.

  2. Chromium substitution in mullite type bismuth aluminate: Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0≤x≤2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Tapas, E-mail: debnath@du.ac.bd; Ullah, Ahamed; Rüscher, Claus H.

    2014-12-15

    Nominal compositions Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with 0.0≤x≤2.0 (Δx=0.2) were prepared using appropriate amounts of nitrates dissolved in glycerine and heated at 800 °C for 24 h as we previously used for the preparation of solid solution series Bi{sub 2}M{sub x}/M′{sub 4−x}O{sub 9} (M/M′=Fe/Al, Ga/Al and Fe/Ga). The samples were characterized using XRD, FTIR and optical microscopic techniques. Analyses of XRD data show mullite type single phase can be prepared up to x=1.2. The lattice parameters (a, b and c) increases with increasing Cr content. Further increase in x (i.e., x≥1.4) show the presence of some additional phases indicatingmore » a limiting value for Cr doping is in the range of 1.2≤x<1.4. The effect of Cr incorporation could also be observed in the infrared absorption spectra via systematic hard mode shifts of certain lattice modes, e.g. the Bi–O related vibration changes from 96 cm{sup −1} to 93 cm{sup −1} with increasing x up to 1.2 and certain intensity changes together with shift in peak positions. Interestingly, the absence of any splitting and shift of the high energy IR absorption peak at 821 cm{sup −1} as assigned to the characteristic tetrahedral type dimer, Al{sub 2}O{sub 7}, indicate that the Cr thus partially substitutes only the octahedrally coordinated Al. This is confirmed by Rietveld structure refinements, too. - Graphical abstract: Structural model of Cr doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9}. - Highlights: • Chromium doped bismuth aluminate, Bi{sub 2}Cr{sub x}Al{sub 4−x}O{sub 9} with mullite type structure are synthesized. • The samples are characterized by XRD and FTIR techniques. • Cr can replace only certain amount of octahedrally coordinated Al in Bi{sub 2}Al{sub 4}O{sub 9} under present experimental conditions.« less

  3. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S.; Udayabhaskar, R.

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO throughmore » hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.« less

  4. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs.

    PubMed

    Gurunath, S; Nanjwade, Baswaraj K; Patila, P A

    2014-07-01

    Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.

  5. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs

    PubMed Central

    Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.

    2013-01-01

    Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (ΔGtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902

  6. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  7. Studies on Optical and Electrical Properties of Hafnium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jayaraman, Venkatachalam; Sagadevan, Suresh; Sudhakar, Rajesh

    2017-07-01

    In this paper, the synthesis and physico-chemical properties of hafnium oxide nanoparticles (HfO2 NPs) are analyzed and reported. The synthesis was carried out by the precipitation route by using hafnium tetrachloride (HfCl4) as precursor material with potassium hydroxide (KOH) dissolved in Millipore water. In the precipitation technique, the chemical reaction is comparatively simple, low-cost and non-toxic compared to other synthetic methods. The synthesized HfO2 NPs were characterized by using powder x-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Raman analysis, and high-resolution transmission electron microscopy (HRTEM). The monoclinic structure of the HfO2 NPs was resolved utilizing x-ray diffraction (XRD). The optical properties were studied from the UV-Vis absorption spectrum. The optical band gap of the HfO2NPs was observed to be 5.1 eV. The Raman spectrum shows the presence of HfO2 NPs. The HRTEM image showed that the HfO2 NPs were of spherical shape with an average particle size of around 28 nm. The energy-dispersive x-ray spectroscopy (EDS) spectrum obviously demonstrated the presence of HfO2 NPs. Analysis and studies on the dielectric properties of the HfO2 NPs such as the dielectric constant, the dielectric loss, and alternating current (AC) conductivity were carried out at varying frequencies and temperatures.

  8. Effect of Surface Functionalization on Structural and Optical Properties of Luminescent LaF₃:Sm Nanoparticles.

    PubMed

    Ansari, Anees A

    2018-02-01

    Samarium (Sm3+)-doped LaF3 nanoparticles (NPs) subsequently encapsulated with inert crystalline LaF3 and amorphous silica layers were prepared by polyol and sol-gel chemical process, respectively. These surface modified core/shell/SiO2-nanostructured were characterized by X-ray diffraction (XRD), FE-transmission electron microscopy (TEM), thermal analysis, FTIR, UV/Vis absorption, bang gap energy and photoluminescence spectroscopy. The FETEM, EDX and FTIR spectral studies clearly revealed that the silica layer has been formed surrounding the core-NPs. Comparative spectral analysis indicated that core/shell/SiO2-NPs revealed high solubility in aqueous and non-aqueous solvents. The decrease in band gap energy after surface growth of an inert LaF3 and silica shells is directly correlated to the increase in grain size. On comparing the emission intensity, a significant enhancement was observed after inert layer coating, whereas, it suppress after silica encapsulation due to the non-radiative transitions. The increase luminescent intensity after inert shell growth indicates that a significant amount of non-radiative centers existing on the surface of core/shell nanoparticles can be eliminated by the shielding effect of LaF3 shells. These observed results indicate that the as-prepared core/shell/SiO2-NPs could be highly useful in broad photonic based applications such as optical sensor/optical bio-probe and light emitting diode.

  9. Teflon impregnated anatase TiO2 nanoparticles irradiated by 80 keV Xe+ ions

    NASA Astrophysics Data System (ADS)

    Khanam, Rizwin; Paul, Nibedita; Kumar, P.; Kanjilal, D.; Ahmed, Gazi A.; Mohanta, Dambarudhar

    2014-10-01

    We report the effect of 80 keV Xe+ ion irradiation on the morphological and optical responses of TiO2 nanoparticles spread over commercially available polytetrafluoroethylene (PTFE, Teflon). These nanoparticles were synthesized via a convenient, sol-gel approach with titanium isopropoxide as the main precursor. From X-ray diffraction (XRD) studies we found that, the nanoparticles crystallize in anatase phase and with a preferential orientation of crystallites along (1 0 1) plane. Upon irradiation at a fluence of 1.25 × 1017 ions/cm2, the nanoparticle dimension was found to increase from a value of ∼9 nm to ∼20-30 nm. Essentially, particle growth is predicted as a consequence of swelling behavior accompanied by the formation of Xe van der Waal crystals in isolated regions of nano-titania. Evidence of nanoripples was also witnessed on the surface of the irradiated nano-titania. The morphological evolution was assessed both by atomic force and transmission electron microscopies (AFM and TEM) independently. From the UV-Vis optical absorption studies, the estimated optical band gap was found to drop with increasing fluence, while refractive index exhibited a remarkable improvement. Photoluminescence (PL) studies have revealed that, the band edge emission and those due to the self trapped excitons (STE) and other oxygen vacancy related ones were manifested considerably as a result of Xe ion irradiation.

  10. Study on the Effect of Various Sol-Gel Concentration to the Electrical, Structural and Optical Properties of the Nanostructured Titanium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ahmad, M. K.; Rusop, M.

    2009-06-01

    Nanostructured Titanium Dioxide (TiO2) thin film with various sol-gel concentration has been successfully prepared using sol-gel spin coating method. The sol-gel concentration of nanostructured TiO2 thin films are varied at 0.1 M, 0.2 M, 0.3 M and 0.4 M, respectively. The effects of different sol-gel concentration of nanostructured TiO2 thin film structural, electrical and optical properties have been studied. The effects of these properties were characterized using X-Ray Diffractometer (XRD), 2-point probe I-V measurement and UV-Vis-NIR Spectrophotometer. For electrical properties, 0.2 M of sol-gel concentration gives the lowest sheet resistance among other concentrated sol-gels. As for structural properties, 0.1 M of concentration gives very weak peak, and continues stronger as in comes to 0.2 M until 0.4 M. It is due to amount of solute (i.e Titanium Isopropoxide) increases in the solution and therefore the intensity of (101) planes become higher. The optical transmission in the visible region (450-1000 nm) for 0.1 M and 0.2 M are the highest (>80%), indicating that the films are transparent in the visible region. The transmission decreases sharply near the ultraviolet region due to the band gap absorption.

  11. Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites

    PubMed Central

    Kaith, B. S.; Rajput, Jaspreet

    2014-01-01

    Polyaniline/ZnO nanocomposites were prepared by in situ oxidative polymerization of aniline monomer in the presence of different weight percentages of ZnO nanostructures. The steric stabilizer added to prevent the agglomeration of nanostructures in the polymer matrix was found to affect the final properties of the nanocomposite. ZnO nanostructures of various morphologies and sizes were prepared in the absence and presence of sodium lauryl sulphate (SLS) surfactant under different reaction conditions like in the presence of microwave radiation (microwave oven), under pressure (autoclave), under vacuum (vacuum oven), and at room temperature (ambient condition). The conductivity of these synthesized nanocomposites was evaluated using two-probe method and the effect of concentration of ZnO nanostructures on conductivity was observed. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-visible (UV-VIS) spectroscopy techniques were used to characterize nanocomposites. The optical energy band gap of the nanocomposites was calculated from absorption spectra and ranged between 1.5 and 3.21 eV. The reported values depicted the blue shift in nanocomposites as compared to the band gap energies of synthesized ZnO nanostructures. The present work focuses on the one-step synthesis and potential use of PANI/ZnO nanocomposite in molecular electronics as well as in optical devices. PMID:24523653

  12. Structural, optical and dielectric properties of Ce0.9Nd0.1O1.95 nanocrystalline oxygen ion conductors: Effect of sintering temperature

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Dutta, A.

    2015-01-01

    Neodymium doped nanocrystalline ceria [Ce0.9Nd0.1O1.95] was prepared through citrate auto-ignition method. The prepared samples were sintered at five different temperatures starting from 400 °C up to 1200 °C. Rietveld's powder structure refinement analysis of XRD data confirmed the single phase cubic fluorite structure of the prepared samples with space group Fm 3 barm and the obtained particle size and lattice parameter values were found to vary with sintering temperature from 6.68 nm to 39.51 nm and from 5.39077 Å to 5.42317 Å respectively. The optical properties were studied using FT-IR and UV-vis absorption spectra. The FT-IR spectra confirm the presence of functional groups and chemical bonding in the material. The optical band gap was calculated from UV-vis spectra and its value was found to decrease from 3.70 eV to 2.46 eV with increase in sintering temperature. The dc conductivity was found to be thermally activated and decreased with increase in sintering temperature. The nature of impedance spectra reveals the presence of both grain and grain boundary effect. The tangent loss exhibited the presence of relaxation peaks due to the presence of defect pair in the synthesized samples.

  13. Effect of Aluminum on Characterization of ZnTe/n-Si Heterojunction Photo detector

    NASA Astrophysics Data System (ADS)

    Maki, Samir A.; Hassun, Hanan K.

    2018-05-01

    Aluminum doped zinc telluride ZnTenSi thin films of (400nm) thickness with (005 01 015 and 02) wt % were deposited on the glass substrate and nSi wafer to fabricate ZnTenSi heterojunction Photodetector by using thermal vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples XRD analysis shows that all the deposited ZnTenSi films show polycrystalline structure with cubic phases and highest sharp peak corresponding to (111) planes and from AFM images shows the surface roughness increase with increase Al percentage ratio The optical absorption measurement of the films was find from transmittance ranges in the variety of wavelength (400 1000) nm and the optical energy band gap decrease from 224 eV to 186 eV dependent upon the Aluminum ratio in the films moreover our studies contain the calculation of the electrical properties of hetero junction were obtained via IV (dark and light condition) and C V measurement The photoelectric properties indicated rise illumination current of heterojunctions through increasing both of incident lighting intensity and Aluminum dopant The values of specific detectivity and quantum efficiency are calculated for all samples also the best spectral response occurs when Al doping ratio 02% The high photo sensitivity and comparatively fast response haste are attributable to in height crystal quality of the [ZnTe ] thin films.

  14. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Lee, T Randall

    2008-10-07

    This report describes the structural and optical properties of a series of spherical shell/core nanoparticles in which the shell is comprised of a thin layer of gold, silver, or gold-silver alloy, and the core is comprised of a monodispersed silica nanoparticle. The silica core particles were prepared using the Stöber method, functionalized with terminal amine groups, and then seeded with small gold nanoparticles (approximately 2 nm in diameter). The gold-seeded silica particles were coated with a layer of gold, silver, or gold-silver alloy via solution-phase reduction of an appropriate metal ion or mixture of metal ions. The size, morphology, and elemental composition of the composite nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The optical properties of the nanoparticles were analyzed by UV-vis spectroscopy, which showed strong absorptions ranging from 400 nm into the near-IR region, where the position of the plasmon band reflected not only the thickness of the metal shell, but also the nature of the metal comprising the shell. Importantly, the results demonstrate a new strategy for tuning the position of the plasmon resonance without having to vary the core diameter or the shell thickness.

  15. Polarized electronic absorption spectra of Cr2SiO4 single crystals

    NASA Astrophysics Data System (ADS)

    Furche, A.; Langer, K.

    Polarized electronic absorption spectra, E∥a(∥X), E∥b(∥Y) and E∥c(∥Z), in the energy range 3000-5000 cm-1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75 Å along [001]. The spectra were scanned at 273 and 120 K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6 μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20 μm and 1 nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35 kbar, above 1440 °C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm-1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10 Dq =10700 cm-1. A relatively intense, sharp band at 18400 cm-1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000 cm-1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr24+, whereas the latter alone would be in conflict with the strong polarization of bands I and II parallel [100]. Therefore, it is concluded that the spectra obtained can best be interpreted assuming both dd-transitions of localized d-electrons at Cr2+ as well as δ-δ* transitions of Cr24+ pairs with metal-metal interaction. To explain this, a dynamic exchange process 2 Crloc2+⇔Cr2, cpl4+ is suggested wherein the half life times of the ground states of both exchanging species are significantly longer than those of the respective optically excited states, such that the spectra show both dd- and δ-δ*-transitions.

  16. Nitrogen dioxide sensing using a novel gas correlation detector

    NASA Astrophysics Data System (ADS)

    Kebabian, Paul L.; Annen, Kurt D.; Berkoff, Timothy A.; Freedman, Andrew

    2000-05-01

    A nitrogen dioxide point sensor, based on a novel nondispersive gas filter spectroscopic scheme, is described. The detection scheme relies on the fact that the absorption spectrum of nitrogen dioxide in the 400-550 nm region consists of a complicated line structure superimposed on an average broadband absorption. A compensating filter is used to remove the effect of the broadband absorption, making the sensor insensitive both to small particles in the optical path and to potentially interfering gases with broadband absorption features in the relevant wavelength region. Measurements are obtained using a remote optical absorption cell that is linked via multimode fibre optics to the source and detection optics. The incorporation of blue light emitting diodes which spectrally match the nitrogen dioxide absorption allows the employment of electronic (instead of mechanical) switching between optical paths. A sensitivity of better than 1.0 ppm m column density (1 s integration time) has been observed; improvements in electronics and thermal stabilization should increase this sensitivity.

  17. Non linear optical investigations of silver nanoparticles synthesised by curcumin reduction

    NASA Astrophysics Data System (ADS)

    Dhanya, N. P.

    2017-11-01

    Metal nanoparticles have considerable applications in assorted fields like medicine, biology, photonics, metallurgy etc. Optical applications of Silver nanoparticles are of significant interest among researchers nowadays. In this paper, we report a single step chemical reduction of silver nanoparticles with Curcumin both as a reducing and stabilising agent at room temperature. Structural, plasmonic and non linear optical properties of the prepared nanoparticles are explored using Scanning Electron Microscope, Transmission Electron Microscope, UV absorption spectrometry, Spectroflurometry and Z scan. UV-Vis absorption studies affirm the Surface Plasmon Resonance (SPR) absorption and spectroflurometric studies announce the emission spectrum of the prepared silvernanoparticles at 520 nm. SEM and TEM images uphold the existence of uniform sized, spherical silvernanoparticles. Nonlinear optical studies are accomplished with the open aperture z scan technique in the nanosecond regime. The nonlinearity is in virtue of saturable absorption, two-photon absorption and excited state absorption. The marked nonlinearity and optical limiting of the Curcumin reduced silvernanoparticles enhances its photonic applications.

  18. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  19. [Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra].

    PubMed

    Yu, Can; Xia, Hai-Ping; Wang, Dong-Jie; Chen, Hong-Bing

    2011-09-01

    The CdWO4 crystals with good quality in the size of Phi25 mm x 120 mm, doped with Co in 0.5% molar fraction in the raw composition, were grown by the Bridgman method by taking -70 degrees C x cm(-1) of solid-liquid interface and -0.50 mm x h(-1) growth rate. The crystal presents transparence and deep blue. The X-ray diffraction (XRD) was used to characterize the crystals. Three absorption peaks at 518, 564 and 655 nm respectively, which are attributed to the overlapping of 4 T1 (4F) --> 4A2 (4F) and 4 T1 (4F) --> 4 T1 (4P) of Co2+ octahedrons, and a wide band centered at 1 863 nm, which is attributed to 4Ti (4F) --> 4 T2 (4F), was observed. The absorption results indicated that the Co ions presented +2 valence in crystal and located within the distorted oxygen octahedrons. The crystal-field parameter D(q) and the Racah parameter B were estimated to be 990 and 726.3 cm(-1) respectively based on the absorption spectra. A fluorescence emission at 778 nm (4T1 (4P) --> 4 T1 (4F)) for codoped CdWO4 crystals was observed under excitation by 520 nm light. It can be deduced from the changes in absorption and emission intensity of different parts of crystal that the concentration of Co2+ ion in crystal increased along growing direction and the effective distribution coefficient of Co2+ ion in CdWO4 crystal is less than 1.

  20. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  1. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    PubMed

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  2. Phonon-Assisted Optical Absorption in Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Noffsinger, Jesse; Kioupakis, Emmanouil; Van de Walle, Chris G.; Louie, Steven G.; Cohen, Marvin L.

    2012-04-01

    The phonon-assisted interband optical absorption spectrum of silicon is calculated at the quasiparticle level entirely from first principles. We make use of the Wannier interpolation formalism to determine the quasiparticle energies, as well as the optical transition and electron-phonon coupling matrix elements, on fine grids in the Brillouin zone. The calculated spectrum near the onset of indirect absorption is in very good agreement with experimental measurements for a range of temperatures. Moreover, our method can accurately determine the optical absorption spectrum of silicon in the visible range, an important process for optoelectronic and photovoltaic applications that cannot be addressed with simple models. The computational formalism is quite general and can be used to understand the phonon-assisted absorption processes in general.

  3. First-principles study of direct and indirect optical absorption in BaSnO3

    NASA Astrophysics Data System (ADS)

    Kang, Youngho; Peelaers, Hartwin; Krishnaswamy, Karthik; Van de Walle, Chris G.

    2018-02-01

    We report first-principles results for the electronic structure and the optical absorption of perovskite BaSnO3 (BSO). BSO has an indirect fundamental gap, and hence, both direct and indirect transitions need to be examined. We assess direct absorption by calculations of the dipole matrix elements. The phonon-assisted indirect absorption spectrum at room temperature is calculated using a quasiclassical approach. Our analysis provides important insights into the optical properties of BSO and addresses several inconsistencies in the results of optical absorption experiments. We shed light on the variety of bandgap values that have been previously reported, concluding that the indirect gap is 2.98 eV and the direct gap is 3.46 eV.

  4. A systematic probe in the properties of spray coated mixed spinel films of cobalt and manganese

    NASA Astrophysics Data System (ADS)

    Grace Victoria, S.; Moses Ezhil Raj, A.

    2018-01-01

    The multiple oxidation states of manganese and cobalt in cobalt manganese oxides play a crucial role in shaping up the vivid properties thus evoking curiosity among researchers. In the present work, mixed spinel films of CoMn(CoMn)2O4 were coated on glass substrates by the spray pyrolysis technique with different precursor concentrations of the acetate salts of the metals in ethyl alcohol. XRD investigations revealed an intermediate tetragonal spinel structure between cubic MnCo2O4 and tetragonal Mn3O4 (JCPDS 18-0410) with predominant orientation along (311) plane. The tetragonal distortion from cubic symmetry may be due to high Mn2+ ion content at octahedral sites. Raman spectroscopy highlighted two typical emission peaks characteristic of the deposited mixed spinel oxides. Functional groups were assigned with the aid of FTIR spectral analysis to the observed absorption bands. The binding energies of the photo-electron peaks observed for the transition metal ions and the oxygenated ions were recorded by XPS. The results indicated that the divalent and trivalent ions of cobalt co-existed with the divalent manganese ions. AFM images revealed vertically aligned columnar grains. The electrical measurements indicated conduction mechanism through jumps of polarons. Optical absorption revealed wide band gap energy of 3.76 eV.

  5. In-situ grown MgO-ZnO ceramic coating with high thermal emittance on Mg alloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Li, Hang; Lu, Songtao; Qin, Wei; Wu, Xiaohong

    2017-07-01

    Intense solar radiation and internal heat generation determine the equilibrium temperature of an in-orbit spacecraft. Thermal control coatings with low solar absorptance and high thermal emittance effectively maintain the thermal equilibrium within safe operating limits for exposed, miniaturized and highly integrated components. A novel ceramic coating with high thermal emittance and good adhesion was directly prepared on the Mg substrate using an economical process of controlled plasma electrolytic oxidation (PEO) in the electrolyte containing ZnSO4. XRD and XPS results showed that this coating was mainly composed of the MgO phase as well as an unusual ZnO crystalline phase. The adhesive strength between the coating and substrate determined by a pull-off test revealed an excellent adhesion. Thermal and optical properties test revealed that the coating exhibited a high infrared emittance of 0.88 (2-16 μm) and low solar absorptance of 0.35 (200-2500 nm). The result indicated that the formation of ZnO during the PEO process played an important role in the improvement of the coating emittance. The process developed provides a simple surface method for improving the thermal emittance of Mg alloy, which presents a promising application prospect in the thermal management of the spacecraft.

  6. Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide.

    PubMed

    de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun

    2018-03-20

    The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.

  7. Synthesis and characterization of α-NaYF{sub 4}: Yb, Er nanoparticles by reverse microemulsion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com

    2016-05-06

    A simple and cost effective reverse microemulsion system was newly designed to synthesis NaYF{sub 4}:20%Yb,2%Er upconverting luminescent nanoparticles. XRD results confirms the cubic structure of NaYF{sub 4} nanophosphor in the as prepared condition without any other impurity phases. The as-prepared sample itself having highly crystalline nanoparticle with well dispersed uniform morphology is the advantage of this reverse microemulsion process. HRTEM images of as prepared and calcined samples revealed spherical nanoclusters morphology with size of ~210 nm and ~245 nm respectively. The characteristic absorption wavelength that occurs at 980 nm due to transition of energy levels {sup 2}F{sub 5/2} to {sup 2}F{sub 7/2} formore » Yb{sup 3+} rare earth ion in as prepared and calcined upconversion nanoparticle confirms the presence of Yb{sup 3+} by UV-Visible spectroscopy which can act as a sensitizer for photonic upconversion. Therefore the absorption at NIR region and emission spectrum at visible region suggests that NaYF{sub 4}:20%Yb,2%Er is suitable for upcoversion process, due to its optical property and chemical stability this material also be useful for bio imaging applications.« less

  8. [Study on the fine structure of K-feldspar of Qichun granite].

    PubMed

    Du, Deng-Wen; Hong, Han-Lie; Fan, Kan; Wang, Chao-Wen; Yin, Ke

    2013-03-01

    Fine structure of K-feldspar from the Qichun granite was investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR), and inductively coupled plasma mass spectrometry methods to understand the evolution of the granitic magmatism and its correlation to molybdenite mineralization. The XRD results showed that K-feldspar of the potassic alteration veins has higher ordering index and triclinicity and is namely microcline with triclinic symmetry. K-feldspar of the early cretaceous granite has relatively lower ordering index and has widening [131] peak and is locally triclinic ordering. K-feldspar of the late cretaceous granite has lowest ordering index and sharp [131] peak and is honiogeneously monoclinic. The FTIR results showed that the IR spectra of the Qichun K-feldspar are similar to that of orthoclase reported by Farmer (1974). The 640 cm-1 absorption band increases while the 540 cm-' absorption band decreases with increase in K-feldspar ordering index, also, the 1,010 cm-1 absorption band separates into 1,010 and 1,046 cm-1 absorption bands, with a change in the band shape from widening to sharp outline. The ICP-MS results suggested that K-feldspar of the early cretaceous granite has relatively higher metal elements and rare earth elements, and the granite exhibits better mineralization background, K-feldspar of the potassic alteration veins has markedly lower Sr and Ba, indicating that the alteration fluid originated from the granitic magmatism, and hence, potassic alteration is a good indicator for molybdenite exploration.

  9. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  10. Microstructure and spectroscopic investigations of calcium zinc bismuth phosphate glass ceramics doped with manganese ions

    NASA Astrophysics Data System (ADS)

    Suneel Kumar, A.; Sambasiva Rao, M. V.; Chinna Ram, G.; Krishna Rao, D.

    2018-01-01

    Multi-component 10CaF2-20ZnO-(15 - x)Bi2O3-55P2O5:xMnO (0 ≤ x ≤ 2.5) glass ceramics were synthesised by melt quenching technique and heat treatment. The prepared glass ceramics were characterised by XRD, DTA, EDS and SEM. Spectroscopic studies such as optical absorption, EPR, FTIR and Raman were also carried out on these glass ceramics. The XRD and SEM studies have indicated that ceramic samples contain well defined and randomly distributed grains of different crystalline phases. The observed increase of enthalpy from DTA patterns up to 1 mol% of MnO indicates that the crystallisation starts initially from the surface of the material then gradually it is extended to the volume of the material and this influence is meagre at higher concentrations of MnO. The absorption spectra of manganese doped glass ceramics have exhibited two types of conventional bands; one due to Mn2+ ions and other due to Mn3+ ions. The EPR spectra of MnO doped glass ceramics showed a resonance signal around g2 = 2.023 with a six line hyperfine structure and another signal at about g1 = 4.314. The relative intensity and half-width of these two signals are observed to increase with the increase in the concentration of manganese ions up to 1 mol% beyond this concentration it is found to decrease. Such observation indicates the conversion of part of Mn2+ ions into Mn3+ ions in the glass ceramic matrix. The observed increase in the intensity of symmetrical structural units at the expense of asymmetrical structural units from the FTIR and Raman spectra at higher concentration of MnO indicating that Mn2+ ions occupy the network forming positions in the glass ceramic structure.

  11. Microscopic theory of optical absorption in graphene enhanced by lattices of plasmonic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mueller, Niclas S.; Reich, Stephanie

    2018-06-01

    We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles, as was previously realized experimentally. By using tight-binding wave functions for the electronic states of graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.

  12. Twistacene contained molecule for optical nonlinearity: Excited-state based negative refraction and optical limiting

    NASA Astrophysics Data System (ADS)

    Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2018-06-01

    Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.

  13. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  14. Au-Ag-Cu nano-alloys: tailoring of permittivity

    PubMed Central

    Hashimoto, Yoshikazu; Seniutinas, Gediminas; Balčytis, Armandas; Juodkazis, Saulius; Nishijima, Yoshiaki

    2016-01-01

    Precious metal alloys enables new possibilities to tailor materials for specific optical functions. Here we present a systematic study of the effects of a nanoscale alloying on the permittivity of Au-Ag-Cu metals at 38 different atomic mixing ratios. The permittivity was measured and analyzed numerically by applying the Drude model. X-ray diffraction (XRD) revealed the face centered cubic lattice of the alloys. Both, optical spectra and XRD results point towards an equivalent composition-dependent electron scattering behavior. Correlation between the fundamental structural parameters of alloys and the resulting optical properties is elucidated. Plasmonic properties of the Au-Ag-Cu alloy nanoparticles were investigated by numerical simulations. Guidelines for designing plasmonic response of nano- structures and their patterns are presented from the material science perspective. PMID:27118459

  15. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  16. Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, Michael

    2016-08-01

    We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.

  17. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  18. Tunable emission and excited state absorption induced optical limiting in Tb2(MoO4)3: Sm3+/Eu3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Mani, Kamal P.; Sreekanth, Perumbilavil; Vimal, G.; Biju, P. R.; Unnikrishnan, N. V.; Ittyachen, M. A.; Philip, Reji; Joseph, Cyriac

    2016-12-01

    Photoluminescence properties and optical limiting behavior of pure and Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are investigated. The prepared nanophosphors exhibit excellent emission when excited by UV light. Color-tunable emissions in Tb2-xSmx(MoO4)3 and Tb2-xEux(MoO4)3 are realized by employing different excitation wavelengths or by controlling the doping concentration of Sm3+ and Eu3+. Luminescence quantum yield and CIE chromatic coordinates of the prepared phosphors were also presented. Optical limiting properties of the samples are investigated by open aperture Z-scan technique using 5 ns laser pulses at 532 nm. Numerical fitting of the measured Z-scan data to the relevant nonlinear transmission equations reveals that the nonlinear absorption is arising from strong excited state absorption, along with weak absorption saturation and it is found that the optical nonlinearity of Tb2(MoO4)3 increases with Sm3+/Eu3+doping. Parameters such as saturation fluence, excited state absorption cross section and ground state absorption cross section of the samples have been determined numerically, from which the figure of merit for nonlinear absorption is calculated. The excited state absorption cross-section of the samples is found to be one order of magnitude higher than that of the ground state absorption cross-section, indicating strong reverse saturable absorption. These results indicate that Sm3+/Eu3+ doped Tb2(MoO4)3 nanophosphors are efficient media for UV/n-UV pumped LEDs, and are also potential candidates for designing efficient optical limiting devices for the protection of human eyes and sensitive optical detectors from harmful laser radiation.

  19. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  20. Hyperspectral photoacoustic spectroscopy of highly-absorbing samples for diagnostic ocular imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-01-01

    Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.

  1. Quantification of optical absorption coefficient from acoustic spectra in the optical diffusive regime using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Guo, Zijian; Favazza, Christopher; Wang, Lihong V.

    2012-02-01

    Photoacoustic (PA) tomography (PAT) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Multi-wavelength PAT can noninvasively monitor hemoglobin oxygen saturation (sO2) with high sensitivity and fine spatial resolution. However, accurate quantification in PAT requires knowledge of the optical fluence distribution, acoustic wave attenuation, and detection system bandwidth. We propose a method to circumvent this requirement using acoustic spectra of PA signals acquired at two optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560 and 575 nm were quantified with errors of ><5%.

  2. Quantitative absorption data from thermally induced wavefront distortions on UV, Vis, and NIR optics

    NASA Astrophysics Data System (ADS)

    Mann, Klaus; Schäfer, Bernd; Leinhos, Uwe; Lübbecke, Maik

    2017-11-01

    A photothermal absorption measurement system was set up, deploying a Hartmann-Shack wavefront sensor with extreme sensitivity to accomplish spatially resolved monitoring of thermally induced wavefront distortions. Photothermal absorption measurements in the near-infrared and deep ultra-violet spectral range are performed for the characterization of optical materials, utilizing a Yb fiber laser (λ = 1070 nm) and an excimer laser (193nm, 248nm) to induce thermal load. Wavefront deformations as low as 50pm (rms) can be registered, allowing for a rapid assessment of material quality. Absolute calibration of the absorption data is achieved by comparison with a thermal calculation. The method accomplishes not only to measure absorptances of plane optical elements, but also wavefront deformations and focal shifts in lenses as well as in complex optical systems, such as e.g. F-Theta objectives used in industrial high power laser applications. Along with a description of the technique we present results from absorption measurements on coated and uncoated optics at various laser wavelengths ranging from deep UV to near IR.

  3. A comprehensive investigation of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22Co0.48Mn0.15Al0.15 alloy

    NASA Astrophysics Data System (ADS)

    Zareii, Seyyed Mojtaba; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    A comprehensive study of structural, morphological, hydrogen absorption and magnetic properties of MmNi4.22 Co0.48Mn0.15Al0.15 alloy as a promising hydrogen storage media was investigated. The X-ray diffraction (XRD) profiles show that the alloy maintains its crystal structure (hexagonal LaNi5-type) even after 30 hydrogenation/dehydrogenation (H/D) cycles. However, the XRD peaks are found to be slightly broadened after cycling. SEM images reveal that particles size of the cycled sample decreases, with more uniform particle size distribution compared to noncycled ones. The pressure-composition (PC) isotherms and kinetics curves of hydrogen absorption reaction were obtained at different working temperatures by using a homemade Sievert apparatus. The enthalpy and entropy of hydride formation of the alloy were evaluated. Furthermore, the Jander diffusion and Johnson-Mehl-Avrami models as the fitting models were employed to study the kinetic mechanism of hydriding reaction and its activation energy. The room temperature magnetic measurements indicate that the milling and H/D cycling change the magnetic properties of the as-annealed alloy.

  4. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun

    2017-12-01

    Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

  5. Investigation and characterization of ZnO single crystal microtubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Naser, Qusay A.H.; Zhou, Jian, E-mail: jianzhou@whut.edu.cn; Liu, Guizhen

    2016-04-15

    Morphological, structural, and optical characterization of microwave synthesized ZnO single crystal microtubes were investigated in this work. The structure and morphology of the ZnO microtubes are characterized using X-ray diffraction (XRD), single crystal diffraction (SCD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results reveal that the as-synthesized ZnO microtube has a highly regular hexagonal cross section and smooth surfaces with an average length of 650–700 μm, an average outer diameter of 50 μm and wall thickness of 1–3 μm, possessing a single crystal wurtzite hexagonal structure. Optical properties of ZnOmore » single crystal microtubes were investigated by photoluminescence (PL) and ultraviolet-visible (UV-vis) absorption techniques. Room-temperature PL spectrum of the microtube reveal a strong UV emission peak at around 375.89 nm and broad and a weak visible emission with a main peak identified at 577 nm, which was assigned to the nearest band-edge emission and the deep-level emission, respectively. The band gap energy of ZnO microtube was found to be 3.27 eV. - Highlights: • ZnO microtube length of 650–700 μm, diameter of 50 μm, wall thickness of 1–3 μm • ZnO microtube possesses a single crystal wurtzite hexagonal structure. • The crystal system is hexahedral oriented along a-axis with indices of (100). • A strong and sharp UV emission at 375.89 nm (3.29 eV) • One prominent absorption band around 378.88 nm (3.27 eV)« less

  6. Exploring the color of transition metal ions in irregular coordination geometries: new colored inorganic oxides based on the spiroffite structure, Zn(2-x)M(x)Te3O8 (M = Co, Ni, Cu).

    PubMed

    Tamilarasan, S; Sarma, Debajit; Bhattacharjee, S; Waghmare, U V; Natarajan, S; Gopalakrishnan, J

    2013-05-20

    We describe the synthesis, crystal structures, and optical absorption spectra of transition metal-substituted spiroffite derivatives, Zn(2-x)M(x)Te3O8 (M(II) = Co, Ni, Cu; 0 < x ≤ 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 °C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M(II)-O bonds (1.898-2.236 Å) and one longer Zn/M(II)-O bond (2.356-2.519 Å). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn(2-x)M(x)Te3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M(II)-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M(II) = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn(2-x)M(x)Te3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

  7. Optical and luminescence properties of Dy3+ ions in phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Rasool, Sk. Nayab; Rama Moorthy, L.; Jayasankar, C. K.

    2013-08-01

    Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 - x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd-Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti-Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.

  8. Long- and Short-Range Structure of Ferrimagnetic Iron-Chromium Maghemites.

    PubMed

    García-Guaderrama, Marco; Montero-Cabrera, María E; Morán, Emilio; Alario-Franco, Miguel A; Fuentes-Cobas, Luis E; Macías-Ríos, Edgar; Esparza-Ponce, Hilda E; Fuentes-Montero, María E

    2015-12-07

    Maghemite-like materials containing Fe(3+) and Cr(3+) in comparable amounts have been prepared by solution-combustion synthesis. The conditions of synthesis and the magnetic properties are described. These materials are ferrimagnetic and are much more stable than pure iron maghemite since their maghemite-hematite transformation takes place at about ∼ 700 °C instead of ∼ 300 °C, as usually reported. These materials were studied by synchrotron radiation X-ray diffraction (XRD) and by X-ray absorption fine structure (XAFS) of the K-absorption edge of two elements. High-resolution XRD patterns were processed by means of the Rietveld method. Thus, maghemites were studied by XAFS in both Fe and Cr K-edges to clarify the short-range structure of the investigated systems. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure transitions were performed. The extended X-ray absorption fine structure (EXAFS) spectra were fitted considering the facts that the central atom of Fe is able to occupy octahedral and tetrahedral sites, each with a weight adjustment, while Cr occupies only octahedral sites. Interatomic distances were determined for x = 1, by fitting simultaneously both Fe and Cr K-edges average EXAFS spectra. The results showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO3).

  9. In vitro and in vivo studies on a novel solid dispersion of repaglinide using polyvinylpyrrolidone as the carrier.

    PubMed

    Yin, Li-Fang; Huang, Shi-Jing; Zhu, Chun-Li; Zhang, Shu-Hui; Zhang, Qiang; Chen, Xi-Jing; Liu, Qing-Wang

    2012-11-01

    In order to improve the dissolution and absorption of the water insoluble drug repaglinide, a solid dispersion was developed by solvent method using polyvinylpyrrolidone K30 (PVP K30) as the hydrophilic carrier for the first time. Studies indicated that both solubility and the dissolution rate of repaglinide were significantly increased in the solid dispersion system compared with that of repaglinide raw material or physical mixtures. The repaglinide solid dispersions with PVP K30 solid state was characterized by polarizing microscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DSC and XRD studies indicated that repaglinide existed in an amorphous form in the solid dispersion. FT-IR analysis demonstrated the presence of intermolecular hydrogen bonding between repaglinide and PVP K30 in the solid dispersion. In the in situ gastrointestinal perfusion experiment, solid dispersion was shown to remarkably enhance the absorption of repaglinide in stomach and all segments of intestine. In vivo pharmacokinetic study in rats showed that immediate and complete release of repaglinide from the solid dispersion resulted in rapid absorption that significantly increased the bioavailability and the maximum plasma concentration over repaglinide raw material. These results demonstrated PVP K30 was an appropriate carrier for solid dispersion of repaglinide, with increased dissolution and oral absorption.

  10. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  11. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file.

    PubMed Central

    Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.; Bowring, Andrea R.

    2015-01-01

    We report on reversible, light-induced transformations in (CH3NH3)Pb(BrxI1–x)3. Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics. PMID:28706629

  12. The equation of state of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one determined via in-situ optical microscopy and interferometry measurements

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2016-04-07

    Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less

  13. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    NASA Astrophysics Data System (ADS)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  14. Electrodeposition and characterization of ZnO thin films using sodium thiosulfate as an additive for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Rahal, Hassiba; Kihal, Rafiaa; Affoune, Abed Mohamed; Ghers, Mokhtar; Djazi, Faycal

    2017-06-01

    Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90 °C. The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques. Deposited films were obtained at -0.60 V vs. SCE and characterized by XRD, SEM, FTIR, optical, photoelectrochemical and electrical measurements. Thickness of the deposited film was measured to be 357 nm. X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane. FTIR results confirmed the presence of ZnO films at peak 558 cm-1. SEM images showed uniform, compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape. Optical properties of ZnO reveal a high optical transmission (> 80 % ) and high absorption coefficient (α > {10}5 {{cm}}-1) in visible region. The optical energy band gap was found to be 3.28 eV. Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction. Electrical properties of ZnO films showed a low electrical resistivity of 6.54 {{Ω }}\\cdot {cm}, carrier concentration of -1.3× {10}17 {{cm}}-3 and mobility of 7.35 cm2 V-1 s-1. Project supported by the Algerian Ministry of Higher Education and Scientific Research, Algeria (No. J0101520090018).

  15. Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0.55Cu0.45Fe2O4 nanoparticles annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    Mn0.55Cu0.45Fe2O4 nanoparticles were synthesized by wet chemical co-precipitation method. The obtained samples were annealed at different temperatures (500 °C to 1250 °C). All annealed samples were characterized for their structural, magnetic, linear and non-linear optical properties. XRD results confirm single phase cubic spinel structure only for samples annealed at 800 °C and 1250 °C. The average crystallite sizes of the samples are in the range of 11-37 nm. HR-SEM image of the sample annealed at 800 °C exposed spherical morphology. The quantitative analysis of EDX results is close to the expected values. Bandgaps were evaluated from UV-DRS. The FTIR spectrum showing the essential peaks around 452.1 and 567.2 cm-1 prove the formation of spinel nanoparticles. In PL spectrum, a broad emission peak is attained in visible region at 485 nm. The saturation magnetization (M s), coercivity (H c) and remanence magnetization (M r) are obtained from the hysteresis curve. Nonlinear absorption coefficients (10-4 cm W-1), nonlinear indices of refraction (10-8 cm2 W-1) and the third order nonlinear susceptibilities (10-6 esu) are determined using Z-scan experiment. CW laser beam is utilized to study the optical limiting characteristics and the results prove these materials to be a potential candidate for device applications like optical switches and power limiters.

  16. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

    NASA Astrophysics Data System (ADS)

    Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.

    2017-05-01

    Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.

  17. Optical band gap of thermally deposited Ge-S-Ga thin films

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Heera, Pawan; Singh, Bhanu Pratap; Sharma, Raman

    2018-05-01

    Thin films of Ge20S80-xGax glassy alloy, obtained from melt quenching technique, were deposited on the glass substrate by thermal evaporation technique under a high vacuum conditions (˜ 10-5 Torr). Absorption spectrum fitting method (ASF) is employed to obtain the optical band gap from absorption spectra. This method requires only the measurement of the absorption spectrum of the sample. The width of the band tail was also determined. Optical band gap computed from absorption spectra is found to decrease with an increase in Ga content. The evaluated optical band gap (Eg) is in well agreement with the theoretically predicted Eg and obtained from transmission spectra.

  18. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  19. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  20. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  1. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  2. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    PubMed

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  3. Water-based metamaterial absorbers for optical transparency and broadband microwave absorption

    NASA Astrophysics Data System (ADS)

    Pang, Yongqiang; Shen, Yang; Li, Yongfeng; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-01

    Naturally occurring water is a promising candidate for achieving broadband absorption. In this work, by virtue of the optically transparent character of the water, the water-based metamaterial absorbers (MAs) are proposed to achieve the broadband absorption at microwave frequencies and optical transparence simultaneously. For this purpose, the transparent indium tin oxide (ITO) and polymethyl methacrylate (PMMA) are chosen as the constitutive materials. The water is encapsulated between the ITO backed plate and PMMA, serving as the microwave loss as well as optically transparent material. Numerical simulations show that the broadband absorption with the efficiency over 90% in the frequency band of 6.4-30 GHz and highly optical transparency of about 85% in the visible region can be achieved and have been well demonstrated experimentally. Additionally, the proposed water-based MA displays a wide-angle absorption performance for both TE and TM waves and is also robust to the variations of the structure parameters, which is much desired in a practical application.

  4. Optical absorption in planar graphene superlattice: The role of structural parameters

    NASA Astrophysics Data System (ADS)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  5. Accurately Measuring the Color of the Ocean on Earth and from Space: Uncertainties Revisited and A Report from the Community-Led Spectral Absorption Workshop to Update and Revise the NASA Inherent Optical Properties Protocol

    NASA Technical Reports Server (NTRS)

    Neeley, Aimee Renee

    2014-01-01

    The color of the ocean (apparent optical properties or AOPs) is determined by the spectral scattering and absorption of light by its dissolved and particulate constituents.The absorption and scattering properties of the water column are the so-called inherent optical properties.

  6. CW laser damage testing of RAR nano-textured fused silica and YAG

    NASA Astrophysics Data System (ADS)

    MacLeod, Bruce D.; Hobbs, Douglas S.; Manni, Anthony D.; Sabatino, Ernest; Bernot, David M.; DeFrances, Sage; Randi, Joseph A.; Thomas, Jeffrey

    2017-11-01

    A study of the continuous wave (CW) laser induced damage threshold (LiDT) of fused silica and yttrium aluminum garnet (YAG) optics was conducted to further illustrate the enhanced survivability within high power laser systems of an anti-reflection (AR) treatment consisting of randomly distributed surface relief nanostructures (RAR). A series of three CW LiDT tests using the 1070nm wavelength, 16 KW fiber laser test bed at Penn State Electro-Optic Center (PSEOC) were designed and completed, with improvements in the testing protocol, areal coverage, and maximum exposure intensities implemented between test cycles. Initial results for accumulated power, stationary site exposures of RAR nano-textured optics showed no damage and low surface temperatures similar to the control optics with no AR treatment. In contrast, optics with thin-film AR coatings showed high surface temperatures consistent with absorption by the film layers. Surface discriminating absorption measurements made using the Photothermal Common-path Interferometry (PCI) method, showed zero added surface absorption for the RAR nanotextured optics, and absorption levels in the 2-5 part per million range for thin-film AR coated optics. In addition, the surface absorption of thin-film AR coatings was also found to have localized absorption spikes that are likely pre-cursors for damage. Subsequent CW LiDT testing protocol included raster scanning an increased intensity focused beam over the test optic surface where it was found that thin-film AR coated optics damaged at intensities in the 2 to 5 MW/cm2 range with surface temperatures over 250C during the long-duration exposures. Significantly, none of the 10 RAR nano-textured fused silica optics tested could be damaged up to the maximum system intensity of 15.5 MW/cm2, and surface temperatures remained low. YAG optics tested during the final cycle exhibited a similar result with RAR nano-textured surfaces surviving intensities over 3 times higher than thin-film AR coated surfaces. This result was correlated with PCI measurements that also show zero-added surface absorption for the RAR nano-textured YAG optics.

  7. Photoconductivity in reactively evaporated copper indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-01

    Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.

  8. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  9. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  10. Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal

    2006-11-01

    Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.

  11. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    NASA Astrophysics Data System (ADS)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  12. Optically enhanced SnO{sub 2}/CdSe core/shell nanostructures grown by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijay, E-mail: vijaynadda83@gmail.com; Goswami, Y. C.; Rajaram, P.

    2015-08-28

    Synthesis of SnO{sub 2}/CdSe metal oxide/ chalcogenide nanostructures on glass micro slides using ultrasonic sol-gel process followed by spin coating has been reported. Stannous chloride, cadmium chloride and selenium dioxide compounds were used for Sn, Cd and Se precursors respectively. Ethylene glycol was used as complexing agent. The samples were characterized by XRD, SEM, AFM and UV-spectrophotometer. All the peaks shown in diffractograms are identified for SnO{sub 2}. Peak broadening observed in core shell due to stress behavior of CdSe lattice. Scanning electron microscope and AFM exhibits the conversion of cluster in to nanorods structures forms. Atomic force microscope showsmore » the structures in nanorods form and a roughness reduced 1.5194 nm by the deposition of CdSe. Uv Visible spectra shows a new absorption edge in the visible region make them useful for optoelectronic applications.« less

  13. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    PubMed

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping.

  14. Novel Film Formation Pathways for Copper Zinc Tin Selenide for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Bendapudi, Sree Satya Kanth

    Because of the anticipated high demand for Indium, ongoing growth of CIGS technology may be limited. Kesterite materials, which replace In with a Zn/Sn couple, are thought to be a solution to this issue. However, efficiencies are still below the 10% level, and these materials are proving to be complex. Even determination of the bandgap is not settled because of the occurrence of secondary phases. We use a film growth process, 2SSS, which we believe helps control the formation of secondary phases. Under the right growth conditions we find 1/1 Zn/Sn ratios and XRD signatures for Cu2ZnSnSe 4 with no evidence of secondary phases. The optical absorption profile of our films is also a good match to the CIS profile even for films annealed at 500°C. We see no evidence of phase separation. The effect of intentional variation of the Zn/Sn ratio on material and device properties is also presented.

  15. Change spectroscopic studies and optimization electrical properties of PVP/PEO doped copper phthalocyanines

    NASA Astrophysics Data System (ADS)

    Ragab, H. M.; Ahmad, F.; Radwan, Sh. N.

    2016-12-01

    Composite films of polyvinyl pyrrolidone and Polyethylene oxide (PVP/PEO) blend doped with 1, 4 and 12 wt% of copper Phthalocyanines (CuPc) were prepared by casting method. The samples were studied using different techniques. The X-ray (XRD) revealed average crystallite size and X-ray intensity decrease at 1 CuPc %; this implies to an increase on the degree of amorphousity, then increase at CuPc >1%. The change in both the intensity and position of some absorption peaks of the blend with CuPc content were observed in Fourier transform infrared (FTIR) spectroscopy suggest the complexation of polymer blend. The UV-Vis spectroscopy revealed that the optical band gap decreases as well as band tail width increases with increasing CuPc concentration. It may be reflect the role of CuPc in modifying the electronic structure of the polymeric matrix. The charge carrier concentration is responsible for conductivity improvement in electrolytes rather than the mobility.

  16. Synthesis and characterization of structural, morphological and photosensor properties of Cu0.1Zn0.9S thin film prepared by a facile chemical method

    NASA Astrophysics Data System (ADS)

    Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal

    2018-05-01

    The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.

  17. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    PubMed

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  18. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Shidong; Murakami, Setsuaki; Kamitakahara, Masanobu

    The titania/hydroxyapatite composite granular photo-catalyst with novel microstructure was fabricated by the process based on the liquid immiscibility effect and followed by precalcination and hydrothermal treatment from commercially available powders of {alpha}-Tri-calcium phosphate and TiO{sub 2}. XRD, SEM, BET, optical microscopy and UV-vis spectrophotometer were applied to characterize the prepared photo-catalyst. Microstructure analysis indicated that the granule was weaved by rod-shaped hydroxyapatite crystals whose surface was covered by nano-sized TiO{sub 2}. In the composite granules, the active surface of anatase was retained effectively. With the hybridization of TiO{sub 2} and HAp, a 16-nm blue-shift of absorption edge could be observedmore » and the crystallinity of anatase could be enhanced by precalcination. The granules with the rod-shaped hydroxyapatite crystals performing as scaffold work as three-dimensional high porous, size-controllable small reactor. The phase and microstructure transformation of the granule before and after hydrothermal treatment was investigated and its decomposition ability was evaluated by using Methylene blue as a target pollutant compound.« less

  20. Structural and optical properties of α-Fe2O3 nanoparticles, influence by holmium ions

    NASA Astrophysics Data System (ADS)

    Mathevula, L. E.; Noto, L. L.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    α-Fe2O3 and α-Fe2O3 doped with different concentration of holmium ions were synthesized by a simple sol-gel method. The XRD data confirmed the hexagonal structure of α-Fe2O3 for un-doped and holmium doped samples. The crystallite size was found to be decreasing with increasing holmium concentration. The amount of holmium was quantified using an EDS, which shows an increase in holmium quantity as concentration increases. The UV-Vis measurement shows an absorption edge around 570 nm. The band gap was estimated using the Kubelka-Munk relation and it was found to be fluctuating between 1.94 eV and 2.04 eV. The PL spectra confirmed the effect of holmium ions on luminescence properties of α-Fe2O3 which showed a maximum intensity at 0.1 mol% Holmium, and quenching as the concentration is increased from 0.3 mol% to 0.9 mol%.

Top