Sample records for xrd tem raman

  1. XRD, TEM, IR, Raman and NMR Spectroscopy of In Situ Crystallization of Lithium Disilicate Glass

    NASA Technical Reports Server (NTRS)

    Fuss, T.; Mogus-Milankovic, A.; Ray, C. S.; Lesher, C. E.; Youngman, R.; Day, D. E.

    2006-01-01

    The structure of a Li2O-2SiO2 (LS2) glass was investigated as a function of pressure and temperature up to 6 GPa and 750 C respectively, using XRD, TEM, IR, Raman and NMR spectroscopy. Glass densified at 6 GPa has an average Si-O-Si bond angle approx.7deg lower than that found in glass processed at 4.5 GPa. At 4.5 GPa, lithium disilicate crystallizes from the glass, while at 6 GPa a new high pressure form of lithium metasilicate crystallizes. The new phase, while having lithium metasilicate crystal symmetry, contains at least 4 different Si sites. NMR results for 6 GPa sample indicate the presence of Q4 species with (Q(sup 4))Si-O-Si(Q(sup 4)) bond angles of approx.157deg. This is the first reported occurrence of Q(sup 4) species with such large bond angles in alumina free alkali silicate glass. No five- or six- coordinated Si are found.

  2. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    PubMed

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, David K; Lee, Christopher; Dazen, Kevin

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  4. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Christopher M; Dazen, Kevin; Kafle, Kabindra

    2015-01-01

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It ismore » demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.« less

  5. Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method

    NASA Astrophysics Data System (ADS)

    Kibasomba, Pierre M.; Dhlamini, Simon; Maaza, Malik; Liu, Chuan-Pu; Rashad, Mohamed M.; Rayan, Diaa A.; Mwakikunga, Bonex W.

    2018-06-01

    The Williamson-Hall (W-H) equation, which has been used to obtain relative crystallite sizes and strains between samples since 1962, is revisited. A modified W-H equation is derived which takes into account the Scherrer equation, first published in 1918, (which traditionally gives more absolute crystallite size prediction) and strain prediction from Raman spectra. It is found that W-H crystallite sizes are on average 2.11 ± 0.01 times smaller than the sizes from Scherrer equation. Furthermore the strain from the W-H plots when compared to strain obtained from Raman spectral red-shifts yield factors whose values depend on the phases in the materials - whether anatase, rutile or brookite. Two main phases are identified in the annealing temperatures (350 °C-700 °C) chosen herein - anatase and brookite. A transition temperature of 550 °C has been found for nano-TiO2 to irreversibly transform from brookite to anatase by plotting the Raman peak shifts against the annealing temperatures. The W-H underestimation on the strain in the brookite phase gives W-H/Raman factor of 3.10 ± 0.05 whereas for the anatase phase, one gets 2.46 ± 0.03. The new βtot2cos2θ-sinθ plot and when fitted with a polynomial yield less strain but much better matching with experimental TEM crystallite sizes and the agglomerates than both the traditional Williamson-Hall and the Scherrer methods. There is greater improvement in the model when linearized - that is the βtotcos2θ-sinθ plot rather than the βtot2cos2θ-sinθ plot.

  6. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    PubMed

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mineralogical Composition of the Mexican Ordinary Chondrite Type Meteorite: A Raman, Infrared and XRD Study

    NASA Astrophysics Data System (ADS)

    Ostrooumov, M.

    2016-08-01

    The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.

  8. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.

    PubMed

    Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William

    2005-12-01

    Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

  9. New constraints on deformation processes in serpentinite from sub-micron Raman Spectroscopy and TEM

    NASA Astrophysics Data System (ADS)

    Smith, S. A. F.; Tarling, M.; Rooney, J. S.; Gordon, K. C.; Viti, C.

    2017-12-01

    Extensive work has been performed to characterize the mineralogical and mechanical properties of the various serpentine minerals (i.e. antigorite, lizardite, chrysotile, polyhedral and polygonal serpentine). However, correct identification of serpentine minerals is often difficult or impossible using conventional analytical techniques such as optical- and SEM-based microscopy, X-ray diffraction and infrared spectroscopy. Transmission Electron Microscopy (TEM) is the best analytical technique to identify the serpentine minerals, but TEM requires complex sample preparation and typically results in very small analysis areas. Sub-micron confocal Raman spectroscopy mapping of polished thin sections provides a quick and relatively inexpensive way of unambiguously distinguishing the main serpentine minerals within their in-situ microstructural context. The combination of high spatial resolution (with a diffraction-limited system, 366 nm), large-area coverage (up to hundreds of microns in each dimension) and ability to map directly on thin sections allows intricate fault rock textures to be imaged at a sample-scale, which can then form the target of more focused TEM work. The potential of sub-micron Raman Spectroscopy + TEM is illustrated by examining sub-micron-scale mineral intergrowths and deformation textures in scaly serpentinites (e.g. dissolution seams, mineral growth in pressure shadows), serpentinite crack-seal veins and polished fault slip surfaces from a serpentinite-bearing mélange in New Zealand. The microstructural information provided by these techniques has yielded new insights into coseismic dehydration and amorphization processes and the interplay between creep and localised rupture in serpentinite shear zones.

  10. [Raman spectrum of nano-graphite synthesized by explosive detonation].

    PubMed

    Wen, Chao; Li, Xun; Sun, De-Yu; Guan, Jin-Qing; Liu, Xiao-Xin; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De; Jin, Zhi-Hao

    2005-01-01

    The nano-graphite powder synthesized by the detonation of explosives with negative oxygen balance is a new powder material with potential applications. In this work, the preparation of nano-graphite powder in steel chamber by pure TNT (trinitrotoluene) explosives has been introduced. In the synthesis process, the protective gases in the steel chamber are N2, CO2 and Ar, and the pressure is 0.25-2 atm. Raman spectrum of the nano-graphite was measured. The characteristic Raman band assigned to sp2 of graphite has been observed at about 1 585 cm(-1) with half-peak width of 22 cm(-1). The peak shifted to a higher frequency by 5 cm(-1) compared with that of bulk graphite. The authors explain this blue shift phenomenon by size effect. The average size of nanographite from Raman measurement is 2.97-3.97 nm. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to measure the structure and particle size of the nano-graphite. The crystallite size of nano-graphite estimated from XRD andTEM are 2.58 nm (acid untreated) and 1.86 nm (acid treated) respectively, which is in accord with the results of the measurement approximately.

  11. Mössbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    NASA Astrophysics Data System (ADS)

    Constantinescu, Serban Grigore; Udubasa, Sorin S.; Udubasa, Gheorghe; Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel

    2012-03-01

    The complementary investigation techniques, Mössbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MÖSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Mössbauer technique.

  12. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    NASA Astrophysics Data System (ADS)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  13. Powder XRD, TEM, FTIR and thermal studies of strontium tartrate nano particles

    NASA Astrophysics Data System (ADS)

    Lathiya, U. M.; Jethva, H. O.; Joshi, M. J.; Vyas, P. M.

    2017-05-01

    Strontium tartrate finds several applications, e.g., as non-linear optical and dielectric material, in tracer composition and ammunition unit, in treating structural integrity of bone. The growth of single crystals of strontium tartrate in silica gel has been widely reported. In the present study, strontium tartrate nano particles were synthesized by wet chemical method using strontium chloride, tartaric acid and sodium meta-silicate solutions in the presence of Triton X -100 surfactant. It was found that the presence of sodium meta-silicate facilitated the reaction for strontium tartrate product. The powder XRD study of strontium tartrate nano-particles suggested monoclinic crystal system and the average crystallite size was found to be 40 nm determined by applying Scherrer's formula. The TEM analysis indicated that the nano particles were spherical in nature. The FTIR spectrum confirmed the presence of various functional groups such as O-H,C-H, and C=O stretching mode. The thermal analysis was carried out by using TGA and DTA studies. The nano-particles were found to be stable up to 175°C and then decomposed through various stages. The results are compared with the bulk crystalline material available in the literature.

  14. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    NASA Astrophysics Data System (ADS)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  15. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    PubMed

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    PubMed Central

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  17. HR-TEM and FT-Raman dataset of the caffeine interacted Phe-Phe peptide nanotube for possible sensing applications.

    PubMed

    Narayanan, A Lakshmi; Dhamodaran, M; Solomon, J Samu; Karthikeyan, B; Govindhan, R

    2018-02-01

    Sensing ability of caffeine interaction with Phe-Phe annotates (PNTs), is presented (Govindhan et al., 2017; Karthikeyan et al., 2014; Tavagnacco et al., 2013; Kennedy et al., 2011; Wang et al., 2017) [1-5] in this data set. Investigation of synthesized caffeine carrying peptide nanotubes are carried out by FT-Raman spectral analysis and high resolution transmission electron microscopy (HR-TEM). Particle size of the caffeine loaded PNTs is < 40 nm. The FT-Raman spectrum signals are enhanced in the region of 400-1700 cm -1 . These data are ideal tool for the applications like biosensing and drug delivery research (DDS).

  18. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.

    PubMed

    Habibi, Neda

    2014-10-15

    The preparation and characterization of magnetite-carboxymethyl cellulose nano-composite (M-CMC) material is described. Magnetite nano-particles were synthesized by a modified co-precipitation method using ferrous chloride tetrahydrate and ferric chloride hexahydrate in ammonium hydroxide solution. The M-CMC nano-composite particles were synthesized by embedding the magnetite nanoparticles inside carboxymethyl cellulose (CMC) using a freshly prepared mixture of Fe3O4 with CMC precursor. Morphology, particle size, and structural properties of magnetite-carboxymethyl cellulose nano-composite was accomplished using X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. As a result, magnetite nano-particles with an average size of 35nm were obtained. The biocompatible Fe3O4-carboxymethyl cellulose nano-composite particles obtained from the natural CMC polymers have a potential range of application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Three-dimensional nanoporous MoS2 framework decorated with Au nanoparticles for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Sheng, Yingqiang; Jiang, Shouzhen; Yang, Cheng; Liu, Mei; Liu, Aihua; Zhang, Chao; Li, Zhen; Huo, Yanyan; Wang, Minghong; Man, Baoyuan

    2017-08-01

    The three-dimensional (3D) MoS2 decorated with Au nanoparticles (Au NPs) hybrids (3D MoS2-Au NPs) for surface-enhanced Raman scattering (SERS) sensing was demonstrated in this paper. SEM, Raman spectroscopy, TEM, SAED, EDX and XRD were performed to characterize 3D MoS2-Au NPs hybrids. Rhodamine 6G (R6G), fluorescein and gallic acid molecules were used as the probe for the SERS detection of the 3D MoS2-Au NPs hybrids. In addition, we modeled the enhancement of the electric field of MoS2-Au NPs hybrids using Finite-difference time-domain (FDTD) analysis, which can further give assistance to the mechanism understanding of the SERS activity.

  20. In situ TEM Raman spectroscopy and laser-based materials modification.

    PubMed

    Allen, F I; Kim, E; Andresen, N C; Grigoropoulos, C P; Minor, A M

    2017-07-01

    We present a modular assembly that enables both in situ Raman spectroscopy and laser-based materials processing to be performed in a transmission electron microscope. The system comprises a lensed Raman probe mounted inside the microscope column in the specimen plane and a custom specimen holder with a vacuum feedthrough for a tapered optical fiber. The Raman probe incorporates both excitation and collection optics, and localized laser processing is performed using pulsed laser light delivered to the specimen via the tapered optical fiber. Precise positioning of the fiber is achieved using a nanomanipulation stage in combination with simultaneous electron-beam imaging of the tip-to-sample distance. Materials modification is monitored in real time by transmission electron microscopy. First results obtained using the assembly are presented for in situ pulsed laser ablation of MoS 2 combined with Raman spectroscopy, complimented by electron-beam diffraction and electron energy-loss spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV-vis, TEM and XPS investigations.

    PubMed

    Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw

    2016-10-26

    Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.

  2. Structure analysis and spectroscopic characterization of 2-Fluoro-3-Methylpyridine-5-Boronic Acid with experimental (FT-IR, Raman, NMR and XRD) techniques and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Dikmen, Gökhan

    2016-03-01

    Possible stable conformers, geometrical molecular structures, vibrational properties as well as band assignments, nuclear magnetic shielding tensors of 2-Fluoro-3-Methylpyridine-5-Boronic Acid (2F3MP5BA) were studied experimentally and theoretically using FT-IR, Raman, (CP/MAS) NMR and XRD spectroscopic methods. FT-IR and Raman spectra were evaluated in the region of 3500-400 cm-1, and 3200-400 cm-1, respectively. The optimized geometric structures, vibrational wavenumbers and nuclear magnetic shielding tensors were examined using Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-311++G(d, p) basis set. 1H, 13C NMR chemical shifts were calculated using the gauge invariant atomic orbital (GIAO) method. 1H, 13C, APT and HETCOR NMR experiments of title molecule were carried out in DMSO solution. 13C CP/MAS NMR measurement was done with 4 mm zirconium rotor and glycine was used as an external standard. Single crystal of 2F3MP5BA was also prepared for XRD measurements. Assignments of vibrational wavenumbers were also strengthened by calculating the total energy distribution (TED) values using scaled quantum mechanical (SQM) method.

  3. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    PubMed

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Investigation of irradiation effects induced by self-ion in 6H-SiC combining RBS/C, Raman and XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaabane, Nihed; Debelle, Aurelien; Sattonnay, Gael

    2012-01-01

    Single crystals of 6H-SiC were irradiated at room temperature and 670 K with 4 MeV C ions at two fluences: 1015 and 1016 cm2 (0.16 and 1.6 dpa at the damage peak). Damage accumulation was studied by a combination of X-ray diffraction (XRD), Raman spectroscopy and Rutherford backscattering spectrometry in channelling geometry (RBS/C) along the [0001] direction. The irradiated layer is found to be composed of a low damage region up to 1.5 lm followed by a region where the disorder level is higher, consistent with SRIM predictions. At room temperature and low fluence, typically 1015 cm2, the strain depthmore » profile follows the dpa depth distribution (with a maximum value of 2%). The disorder is most likely due to small defect clusters. When increasing the fluence up to 1016 cm2, a buried amorphous layer forms, as indicated by e.g. Raman results where the Si C bands become broader or even disappear. At a higher irradiation temperature of 670 K, amorphization is not observed at the same fluence, revealing a dynamic annealing process. However, results tend to suggest that the irradiated layer is highly heterogeneous and composed of different types of defects.« less

  5. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    PubMed

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  6. Size dependent Raman and absorption studies of single walled carbon nanotubes synthesized by pulse laser deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Dixit, Saurabh; Singhal, Sonal; Vankar, V. D.; Shukla, A. K.

    2017-10-01

    In this article, size dependent correlation of acoustic states is established for radial breathing mode (RBM). Single walled carbon nanotubes (SWCNTs) are synthesized along with carbon encapsulated iron nanoparticles by pulse laser deposition at room temperature. Ferrocene is used as a catalyst for growth of SWCNTs. Various studies such as HR-TEM, X-Ray Diffraction (XRD), Raman spectroscopy and NIR-Absorption spectroscopy are utilized to confirm the presence of SWCNTs in the as-synthesized and purified samples. RBM of SWCNTs can be differentiated here from Raman modes of carbon encapsulated iron nanoparticles by comparing their line shape asymmetry as well as oscillator strength. Furthermore, a quantum confinement model is proposed for RBM. It is invoked here that RBM is manifestation of quantum confinement of acoustic phonons. Well reported analytical relation of RBM is utilized to explore the nature of phonons responsible for RBM on the basis of quantum confinement model. Diameters of SWCNTs estimated by Raman studies are found to be in reasonably good agreement with that of NIR-absorption studies.

  7. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    NASA Astrophysics Data System (ADS)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  8. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    PubMed

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Synthesis and structural properties of Ba(1-x)LaxTiO3 perovskite nanoparticles fabricated by solvothermal synthesis route

    NASA Astrophysics Data System (ADS)

    Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.

    2017-05-01

    We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.

  10. DSC and Raman studies of silver borotellurite glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Khanna, Atul; Gonzàlez, Fernando

    2016-05-01

    Silver borotellurite glasses of composition: xAg2O-yB2O3-(100-x-y)TeO2 (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B2O3 content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B2O3 due to the transformation of TeO4 into TeO3 units.

  11. Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods

    NASA Astrophysics Data System (ADS)

    Govindhan, Raman; Karthikeyan, Balakrishnan

    2017-12-01

    3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.

  12. DSC and Raman studies of silver borotellurite glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Amandeep; Khanna, Atul, E-mail: atul.phy@gndu.ac.in; Gonzàlez, Fernando

    2016-05-23

    Silver borotellurite glasses of composition: xAg{sub 2}O-yB{sub 2}O{sub 3}-(100-x-y)TeO{sub 2} (x=20-mol%, y = 0, 10, 20 and 30-mol%) were prepared and characterized by density, X-ray diffraction (XRD), differential scanning calorimetry, and Raman spectroscopy. XRD confirmed the amorphous structure of all samples. Density of glasses decreases while the glass transition temperature increases with increase in B{sub 2}O{sub 3} content from 10 to 30-mol%. Raman study shows that coordination number of Te with oxygen decreases steadily from 3.42 to 3.18 on adding B{sub 2}O{sub 3} due to the transformation of TeO{sub 4} into TeO{sub 3} units.

  13. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates.

    PubMed

    Silva, Chinthaka M; Rosseel, Thomas M; Kirkegaard, Marie C

    2018-03-19

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18 , 4 × 10 19 , and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2 , with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.

  14. XRF, μ-XRD and μ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations.

    PubMed

    Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L

    2012-01-30

    This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Harish, G. S.; Sreedhara Reddy, P.

    2015-09-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.

  16. 3-Iodobenzaldehyde: XRD, FT-IR, Raman and DFT studies.

    PubMed

    Kumar, Chandraju Sadolalu Chidan; Parlak, Cemal; Tursun, Mahir; Fun, Hoong-Kun; Rhyman, Lydia; Ramasami, Ponnadurai; Alswaidan, Ibrahim A; Keşan, Gürkan; Chandraju, Siddegowda; Quah, Ching Kheng

    2015-06-15

    The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The new insight into the structure-activity relation of Pd/CeO2-ZrO2-Nd2O3 catalysts by Raman, in situ DRIFTS and XRD Rietveld analysis.

    PubMed

    Yang, X; Yang, L; Lin, J; Zhou, R

    2016-01-28

    Pd/CeO2-ZrO2-Nd2O3 (CZN) catalysts with different CeO2/ZrO2 molar ratios were synthesized and have been characterized by multiple techniques, e.g. XRD in combination with Rietveld refinement, UV-Raman, XPS and in situ DRIFTS. The XRD pattern of CZN with CeO2/ZrO2 molar ratios ≥1/2 can be indexed satisfactorily to the fluorite structure with a space group Fm3̄m, while the XRD patterns of CZ12 only display diffraction peaks of the tetragonal phase (S.G. P42/nmc). Nd addition can effectively stabilize the cubic structure of the CZN support and increase the enrichment of defect sites on the surface, which may be related to the better catalytic activity of Pd/CZN12 catalysts compared with Pd/CZ12. The presence of moderate ZrO2 can increase the concentration of O* active species, leading to accelerate the formation of nitrate species and thus enhance the catalytic activity of NOx and HC elimination. The Pd-dispersion decreases with the increasing Zr content, leading to the decreased CO catalytic activity, especially for the aged catalysts. The change regularity of the OSC value is almost the same with the in situ dynamic operational window, demonstrating that the in situ dynamic operational window is basically affected by the OSC value.

  18. Laser additive manufacturing bulk graphene-copper nanocomposites.

    PubMed

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  19. Laser additive manufacturing bulk graphene-copper nanocomposites

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J.

    2017-11-01

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  20. Near-ultraviolet micro-Raman study of diamond grown on GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazari, M., E-mail: m-n79@txstate.edu; Hancock, B. L.; Anderson, J.

    2016-01-18

    Ultraviolet (UV) micro-Raman measurements are reported of diamond grown on GaN using chemical vapor deposition. UV excitation permits simultaneous investigation of the diamond (D) and disordered carbon (DC) comprising the polycrystalline layer. From line scans of a cross-section along the diamond growth direction, the DC component of the diamond layer is found to be highest near the GaN-on-diamond interface and diminish with characteristic length scale of ∼3.5 μm. Transmission electron microscopy (TEM) of the diamond near the interface confirms the presence of DC. Combined micro-Raman and TEM are used to develop an optical method for estimating the DC volume fraction.

  1. Short-range interactions between surfactants, silica species and EDTA⁴- salt during self-assembly of siliceous mesoporous molecular sieve: a UV Raman study.

    PubMed

    Song, Jiayin; Liu, Liping; Li, Peng; Xiong, Guang

    2012-11-01

    The effects of surfactants, counterions and additive salts on the formation of siliceous mesoporous molecular sieves during self-assembly process were investigated by UV Raman spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. The surfactant molecules experience the rearrangement after adding the silica species and adjusting the pH value. The obvious change of the Raman bands related to the surfactants supports a cooperative interaction between surfactant and inorganic species during self-assembly process. The addition of EDTANa(4) to the system induces the interaction between the COO(-) groups of EDTA(4-) and silanol groups of silica and a strong interaction between the EDTA(4-) and the N(+)(CH(3))(3) groups of the surfactant. The above interactions may be the main reason for the salt effect. The new information from the change of the chemical bonds allows for a further analysis to the interactions of different salts between surfactants and silica species at molecular level. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    NASA Astrophysics Data System (ADS)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  3. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    PubMed

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  5. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less

  6. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates

    DOE PAGES

    Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.

    2018-03-07

    Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less

  7. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamini, D.; Devanand Venkatasubbu, G.; Kumar, J.; Ramakrishnan, V.

    2014-01-01

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass.

  8. The structural and Raman spectral studies on Ni0.5Cu0.5Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Somani, M.; Saleem, M.

    2018-05-01

    Spinel ferrite Ni0.5Cu0.5Fe2O4 has been successfully prepared via solid state reaction. The crystal structure studies using XRD technique revealed cubic structure of the sample. The XRD spectra was further refined via Retvield Refinement and all the parameters regarding structure were obtained which confirmed cubic structure. The assigned space group was found to be Fd-3m. Particle size was calculated to be 56 nm. The Raman Spectra revealed five active Raman modes which confirmed spinel structure.

  9. Evolution of Photoluminescence, Raman, and Structure of CH3NH3PbI3 Perovskite Microwires Under Humidity Exposure

    NASA Astrophysics Data System (ADS)

    Segovia, Rubén; Qu, Geyang; Peng, Miao; Sun, Xiudong; Shi, Hongyan; Gao, Bo

    2018-03-01

    Self-assembled organic-inorganic CH3NH3PbI3 perovskite microwires (MWs) upon humidity exposure along several weeks were investigated by photoluminescence (PL) spectroscopy, Raman spectroscopy, and X-ray diffraction (XRD). We show that, in addition to the common perovskite decomposition into PbI2 and the formation of a hydrated phase, humidity induced a gradual PL redshift at the initial weeks that is stabilized for longer exposure ( 21 nm over the degradation process) and an intensity enhancement. Original perovskite Raman band and XRD reflections slightly shifted upon humidity, indicating defects formation and structure distortion of the MWs crystal lattice. By correlating the PL, Raman, and XRD results, it is believed that the redshift of the MWs PL emission was originated from the structural disorder caused by the incorporation of H2O molecules in the crystal lattice and radiative recombination through moisture-induced subgap trap states. Our study provides insights into the optical and structural response of organic-inorganic perovskite materials upon humidity exposure.

  10. Effect of particle size and laser power on the Raman spectra of CuAlO2 delafossite nanoparticles

    NASA Astrophysics Data System (ADS)

    Yassin, O. A.; Alamri, S. N.; Joraid, A. A.

    2013-06-01

    A transparent conductive oxide CuAlO2 delafossite is studied using x-ray powder diffraction (XRD) and micro-Raman spectroscopy measurements as a function of the particle size and laser power from 2 to 20 mW. The XRD results indicate that the lattice parameters and the cell volume expand as the particle size reduces. Large red shifts (˜60 cm-1) and line broadening (˜50 cm-1) are observed as the particle size becomes of the order of 13 nm. These huge values can only be justified if collective effects on the Raman spectra created by the lattice expansion, confinement of phonons and enhanced phonon-phonon interactions are included in the interpretations of the Raman spectra of the CuAlO2 nanoparticles.

  11. Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles.

    PubMed

    Yamini, D; Devanand Venkatasubbu, G; Kumar, J; Ramakrishnan, V

    2014-01-03

    The pure hydroxyapatite (HAP) nanoparticles (NPs) have been synthesized by wet chemical precipitation method. Raman spectral measurements have been made for pure HAP, pure Polyethylene glycol (PEG) 6000 and PEG coated HAP in different mass ratios (sample 1, sample 2 and sample 3). The peaks observed in Raman spectrum of pure HAP and the XRD pattern have confirmed the formation of HAP NPs. Vibrational modes have been assigned for pure HAP and pure PEG 6000. The observed variation in peak position of Raman active vibrational modes of PEG in PEG coated HAP has been elucidated in this work, in terms of intermolecular interactions between PEG and HAP. Further these results suggest that the functionalization of nanoparticles may be independent of PEG mass. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  13. Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Hisako, E-mail: hirai@sci.ehime-u.ac.jp; Kadobayashi, Hirokazu; Hirao, Naohisa

    The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With themore » sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.« less

  14. Raman spectra and optical trapping of highly refractive and nontransparent particles

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Li, Yong-qing

    2002-08-01

    We measured the Raman spectra of single optically trapped highly refractive and nontransparent microscopic particles suspended in a liquid using an inverted confocal laser-tweezers-Raman-spectroscopy system. A low-power diode-laser beam of TEM00 mode was used both for optical trapping and Raman excitation of refractive, absorptive, and reflective metal particles. To form a stable trap for a nontransparent particle, the beam focus was located near the top of the particle and the particle was pushed against a glass plate by the axial repulsive force. Raman spectra from single micron-sized crystals with high index of refraction including silicon, germanium, and KNbO3, and from absorptive particles of black and color paints were recorded. Surface-enhanced Raman scattering of R6G and phenylalanine molecules absorbed on the surface of a trapped cluster of silver particles was also demonstrated.

  15. Characterization of TEM Moiré Patterns Originating from Two Monolayer Graphenes Grown on the Front and Back Sides of a Copper Substrate by CVD Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi

    2018-06-01

    The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.

  16. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  17. Influence of water vapour and carbon dioxide on free lime during storage at 80 °C, studied by Raman spectroscopy.

    PubMed

    Dubina, E; Korat, L; Black, L; Strupi-Šuput, J; Plank, J

    2013-07-01

    Micro-Raman spectroscopy has been used to follow the reaction of free lime (CaO) exposed for 24h to moist air at 80 °C under conditions of different relative humidities (10-80% RH). X-ray diffraction and SEM imaging were applied as complementary techniques. The conversion of lime to calcium hydroxide and its subsequent carbonation to various calcium carbonate polymorphs was found to strongly depend on the relative humidity. At low RH (10-20%), only Raman spectroscopy revealed the formation of early amorphous CaCO3 which in the XRD patterns was detected only at ≥40% RH. However, XRD analysis could identify the crystalline polymorphs formed at higher relative humidities. Thus, between 20 and 60% RH, all three CaCO3 polymorphs (calcite, aragonite and vaterite) were observed via XRD whereas at high relative humidity (80%), calcite was the predominant reaction product. The results demonstrate the usefulness of Raman spectroscopy in the study of minor cement constituents and their reaction products on air, especially of amorphous character. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Synthesis of SrFe12O19 magnetic nanoparticles by EDTA complex method

    NASA Astrophysics Data System (ADS)

    Wang, Shifa; Li, Danming; Xiao, Yuhua; Dang, Wenqiang; Feng, Jie

    2017-10-01

    A modified polyacrylamide gel route was used to prepare SrFe12O19 magnetic nanoparticles; ethylenediaminetetraacetic acid (EDTA) was used as a carboxyl chelating agent. The phase purity, morphology and magnetic properties of as-prepared samples were analyzed via X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometery (VSM). XRD analysis indicates that high-purity SrFe12O19 magnetic nanoparticles can be synthesized at 700°C in air. The characteristic peaks of as-prepared sample at 210, 283, 321, 340, 381, 411, 432, 475, 532, 618, 686, and 726 cm-1 were observed in Raman spectra. SEM and TEM show that the synthesized SrFe12O19 magnetic nanoparticles are uniform with the mean particle size of 60 nm. VSM measurement shows that the maximum magnetic energy product (BH)max of sample prepared using EDTA as a chelating agent is higher than that of sample prepared using citric acid as a chelating agent.

  19. Synthesis and characterization of 64SiO2-26CaO-5P2O5-5CuO bioactive composition for the growth of hydroxyapatite layer by XRD, Raman and pH studies

    NASA Astrophysics Data System (ADS)

    Kaur, Pardeep; Singh, K. J.

    2016-05-01

    Bioactive sample with the nominal composition of 64SiO2-26CaO-5P2O5-5CuO has been prepared in the laboratory by using the sol-gel technique. The bioactivity of the prepared sample has been analyzed by using the Tris Simulated Body Fluid which has also been prepared in the laboratory. XRD and Raman techniques have been employedto probe the formation of hydroxyapatite layer. pH studies has also been undertaken to check the acidic/non-acidic behavior of sample. Growth of hydroxyapatite layer has been observed after one day on the surface of the sample. Moreover, sample has been observed to be non-acidic in nature.

  20. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  1. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.

  2. Raman investigation of molybdenum disulfide with different polytypes

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    The Raman spectra of molybdenum disulfide (MoS2) with different polytypes are investigated. Although 2H-MoS2 is most common in nature, the 3R phase can exist due to a small difference in the formation energy. However, only a few studies are reported for the 3R phase, and most studies have focused on the 2H phase. We found the 2H, 3R and mixed phases of exfoliated few-layer MoS2 from natural molybdenite crystals. The crystal structures of 2H- and 3R-MoS2 are confirmed by the HR-TEM measurements. By using 3 different excitation energies, we compared the Raman spectra of different polytypes in detail. We show that the Raman spectroscopy can be used to identify not only the number of layers but also the polytypes of MoS2.

  3. Raman shifts in electron-irradiated monolayer MoS 2

    DOE PAGES

    Parkin, William M.; Balan, Adrian; Liang, Liangbo; ...

    2016-03-21

    Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less

  4. Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates

    NASA Astrophysics Data System (ADS)

    Jayram, Naidu Dhanpal; Sonia, S.; Poongodi, S.; Kumar, P. Suresh; Masuda, Yoshitake; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2015-11-01

    The present work is an attempt to overcome the challenges in the fabrication of super hydrophobic silver decorated zinc oxide (ZnO) nanostructure thin films via thermal evaporation process. The ZnO nanowire thin films are prepared without any surface modification and show super hydrophobic nature with a contact angle of 163°. Silver is further deposited onto the ZnO nanowire to obtain nanoworm morphology. Silver decorated ZnO (Ag@ZnO) thin films are used as substrates for surface enhanced Raman spectroscopy (SERS) studies. The formation of randomly arranged nanowire and silver decorated nanoworm structure is confirmed using FESEM, HR-TEM and AFM analysis. Crystallinity and existence of Ag on ZnO are confirmed using XRD and XPS studies. A detailed growth mechanism is discussed for the formation of the nanowires from nanobeads based on various deposition times. The prepared SERS substrate reveals a reproducible enhancement of 3.082 × 107 M for Rhodamine 6G dye (R6G) for 10-10 molar concentration per liter. A higher order of SERS spectra is obtained for a contact angle of 155°. Thus the obtained thin films show the superhydrophobic nature with a highly enhanced Raman spectrum and act as SERS substrates. The present nanoworm morphology shows a new pathway for the construction of semiconductor thin films for plasmonic studies and challenges the orderly arranged ZnO nanorods, wires and other nano structure substrates used in SERS studies.

  5. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  6. Evolution of TEM-type enzymes: biochemical and genetic characterization of two new complex mutant TEM enzymes, TEM-151 and TEM-152, from a single patient.

    PubMed

    Robin, Frédéric; Delmas, Julien; Schweitzer, Cédric; Tournilhac, Olivier; Lesens, Olivier; Chanal, Catherine; Bonnet, Richard

    2007-04-01

    Two clinical isolates of Escherichia coli, CF1179 and CF1295, were isolated from a patient hospitalized in the hematology unit of the University Hospital of Clermont-Ferrand, Clermont-Ferrand, France. They were resistant to penicillin-clavulanate combinations and to ceftazidime. The double-disk synergy test was positive only for isolate CF1179. Molecular comparison of the isolates showed that they were clonally related. E. coli recombinant strains exhibiting the resistance phenotype of the clinical strains were obtained by cloning. The clones corresponding to strains CF1179 and CF1295 produced TEM-type beta-lactamases with pI values of 5.7 and 5.3, respectively. Sequencing analysis revealed two novel blaTEM genes encoding closely related complex mutant TEM enzymes, designated TEM-151 (pI 5.3) and TEM-152 (pI 5.7). These two genes also harbored a new promoter region which presented a 9-bp deletion. The two novel beta-lactamases differed from the parental enzyme, TEM-1, by the substitution Arg164His, previously observed in extended-spectrum beta-lactamases (ESBLs), and by the substitutions Met69Val and Asn276Asp, previously observed in the inhibitor-resistant penicillinase TEM-36/IRT-7. They differed by two amino acid substitutions: TEM-152 harbored a Glu240Lys ESBL-type substitution and TEM-151 had an Ala284Gly substitution. Functional analysis of TEM-151 and TEM-152 showed that both enzymes had hydrolytic activity against ceftazidime (kcat, 5 and 16 s-1, respectively). TEM-152 was more resistant than TEM-151 to the inhibitor clavulanic acid (50% inhibitory concentrations, 1 versus 0.17 microM). These results confirm the evolution of TEM-type enzymes toward complex enzymes harboring the two kinds of substitutions which confer an extended spectrum of action against beta-lactam antibiotics and resistance to inhibitors.

  7. Raman spectroscopy of synthetic and natural iowaite.

    PubMed

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  8. Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhaned Raman Spectrosocpy Based Trace Explosives Detection

    NASA Astrophysics Data System (ADS)

    Sree Satya Bharati, Moram; Byram, Chandu; Soma, Venugopal R.

    2018-03-01

    Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5 mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, shape, and crystallinity were investigated using the XRD, FESEM and TEM techniques. The fabricated NPs were utilized for sensing of explosive molecules such as 2, 4, 6-trinitrophenol (PA), 2, 4-dinitrotoluene (DNT) and a common dye methylene blue (MB) using the surface enhanced Raman spectroscopy (SERS) technique. The detection limit in terms of weight was as low as few nano-grams in the case of nitroaromatic explosive compounds (PA, DNT) and few picograms in the case of a common dye molecule (MB). Typical enhancement factors achieved were estimated to be 104, 105 and 107, respectively, for PA, DNT, and MB. The significance of the present work lies in exploring the performance of the prepared NPs being used as SERS substrates for explosives detection using a portable Raman instrument. Such capability enables one to carry the spectrometer to the point of interest in the field and evaluate any hazardous samples within a short period of time.

  9. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    USGS Publications Warehouse

    Drits, Victor A.; Środoń, Jan; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good

  10. Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index

    NASA Astrophysics Data System (ADS)

    Baldan, M. R.; Almeida, E. C.; Azevedo, A. F.; Gonçalves, E. S.; Rezende, M. C.; Ferreira, N. G.

    2007-11-01

    The graphitization index provided by X-ray diffraction (XRD) and Raman spectrometry for reticulated vitreous carbon (RVC) substrates, carbonized at different heat treatment temperatures (HTT), is investigated. A systematic study of the dependence between the disorder-induced D and G Raman bands is presented. The crystallite size La was obtained for both X-ray diffraction and Raman spectrometry techniques. Particularly, the validity for La determination, from Raman spectra, is pointed out comparing the commonly used formula based on peaks amplitude ratio ( ID/ IG) and the recent proposed equation that uses the integrated intensities of D and G bands. The results discrepancy is discussed taken into account the strong contribution of the line broadening presented in carbon materials heat treated below 2000 °C.

  11. Raman Micro-Spectroscopy as a Tool to Characterise Cobalt — Manganese Layered Oxides (Heterogenite-Asbolane-Lithipophorite), Study on Crystalline and Amorphous Phases from the DRC (Democratic Republic of the Congo)

    NASA Astrophysics Data System (ADS)

    Burlet, C.; Vanbrabant, Y.; Decree, S.

    2014-06-01

    This study defines Raman reference spectra for heterogenite, asbolane and lithiophorite. Those three phases are hardly differenciable by XRD. Raman spectroscopy allows comparison of their natural chemical variability with their spectroscopic signatures.

  12. Study of the phase transformation of single particles of Ga2O3 by UV-Raman spectroscopy and high-resolution TEM.

    PubMed

    Wang, Xiang; Xu, Qian; Fan, Fengtao; Wang, Xiuli; Li, Mingrun; Feng, Zhaochi; Li, Can

    2013-09-01

    By taking advantage of UV-Raman spectroscopy and high-resolution TEM (HRTEM), combined with the focused ion beam (FIB) technique, the transformation from GaOOH into α-Ga2O3 and then into β-Ga2O3 was followed. We found that the stepwise transformations took place from the surface region before developing into the bulk of single particles without particle agglomeration and growth. During the transformation from GaOOH into α-Ga2O3, the elimination of water vapor through the dehydroxylation of GaOOH resulted in the formation of micropores in the single particles, whilst maintaining their particle size. For the phase transformation from α-Ga2O3 into β-Ga2O3, the nucleation of β-Ga2O3 was found to occur at the surface defects and this process could be retarded by occupying these defects with a small amount of La2O3. By finely controlling the process of the phase transformation, the β-Ga2O3 domains gradually developed from the surface into the bulk of the single particles without particle agglomeration. Therefore, the surface structure of the α-Ga2O3 single particles can be easily tuned and a particle with an α@β core-shell phase structure has been obtained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

    NASA Astrophysics Data System (ADS)

    Hansora, D. P.; Shimpi, N. G.; Mishra, S.

    2015-12-01

    This work represents a state-of-the-art technique developed for the preparation of graphene from graphite-metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300-1400 cm-1) and (1500-1600 cm-1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.

  14. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    PubMed

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  15. Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis

    NASA Astrophysics Data System (ADS)

    Solanki, Rekha Garg; Rajaram, Poolla; Bajpai, P. K.

    2018-05-01

    This work is based on the growth, characterization and estimation of lattice strain and crystallite size in CdS nanoparticles by X-ray peak profile analysis. The CdS nanoparticles were synthesized by a non-aqueous solvothermal method and were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman and UV-visible spectroscopy. XRD confirms that the CdS nanoparticles have the hexagonal structure. The Williamson-Hall (W-H) method was used to study the X-ray peak profile analysis. The strain-size plot (SSP) was used to study the individual contributions of crystallite size and lattice strain from the X-rays peaks. The physical parameters such as strain, stress and energy density values were calculated using various models namely, isotropic strain model, anisotropic strain model and uniform deformation energy density model. The particle size was estimated from the TEM images to be in the range of 20-40 nm. The Raman spectrum shows the characteristic optical 1LO and 2LO vibrational modes of CdS. UV-visible absorption studies show that the band gap of the CdS nanoparticles is 2.48 eV. The results show that the crystallite size estimated from Scherrer's formula, W-H plots, SSP and the particle size calculated by TEM images are approximately similar.

  16. Modeling and measurements of XRD spectra of extended solids under high pressure

    NASA Astrophysics Data System (ADS)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  17. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  18. Zeta potential and Raman studies of PVP capped Bi2S3 nanoparticles synthesized by polyol method

    NASA Astrophysics Data System (ADS)

    Tarachand, Sathe, Vasant G.; Okram, Gunadhor S.

    2018-05-01

    Here we report the synthesis and characterisation of polyvinylpyrrolidone (PVP) capped Bi2S3 nanoparticles via one step catalyst-free polyol method. Raman spectroscopy, dynamic light scattering and zeta potential analysis were performed on it. Rietveld refinement of powder XRD of PVP capped samples confirmed the formation of single phase orthorhombic Bi2S3 for all PVP capped samples. The presence of eight obvious Raman modes further confirmed the formation of stoichiometric Bi2S3. Dynamic light scattering (DLS) studies show a clear increase in hydrodynamic diameter for samples made with increasing PVP concentration. Particle size obtained from DLS and XRD (using Scherrer's formula) combine with change in full width half maxima of Raman modes collectively suggest overall improvement in crystallinity and quality of product on introducing PVP. In zeta potential (ζ) measurement, steric hindrance of carbon chains plays very crucial role and a systematic reduction of ζ value is observed for samples made with decreasing PVP concentration. An isoelectric point is obtained for sample made with low PVP (1g). Present results are likely to open a window for its medical and catalytic applications.

  19. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  20. Raman spectroscopy of sputtered metal-graphene and metal-oxide-graphene interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Gajek, Marcin; Freitag, Marcus; Kuroda, Marcelo; Perebeinos, Vasili; Raoux, Simone

    2012-02-01

    In this talk, we report our recent development in sputtering deposition of magnetic and non-magnetic metal and metal-oxide thin films on graphene for applications in spintronics and nanoeleoctronics. TEM and SEM images demonstrate homogeneous coverage, uniform thickness, and good crystallinity of the sputtered films. Raman spectroscopy shows that the structure of the underlying graphene is well preserved, and the spectral weight of the defect D mode is comparable to that of the e-beam evaporated samples. Most significantly, we report the first observation of graphene-enhanced surface excitations of crystalline materials. Specifically, we discover two pronounced dispersive Raman modes at the interface of graphene and the nickel-oxide and cobalt-oxide films which we attribute to the strong light absorption and high-order resonant scattering process in the graphene layer. We will present the frequency-dependent, polarization-dependent Raman data of these two modes and discuss their microscopic origin.

  1. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  2. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry.

    PubMed

    Malherbe, C; Hutchinson, I B; Ingley, R; Boom, A; Carr, A S; Edwards, H; Vertruyen, B; Gilbert, B; Eppe, G

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.

  3. Periodic Density Functional Theory Study of the Structure, Raman Spectrum, and Mechanical Properties of Schoepite Mineral.

    PubMed

    Colmenero, Francisco; Cobos, Joaquín; Timón, Vicente

    2018-04-16

    The structure and Raman spectrum of schoepite mineral, [(UO 2 ) 8 O 2 (OH) 12 ]·12H 2 O, was studied by means of theoretical calculations. The computations were carried out by using density functional theory with plane waves and pseudopotentials. A norm-conserving pseudopotential specific for the U atom developed in a previous work was employed. Because it was not possible to locate H atoms directly from X-ray diffraction (XRD) data by structure refinement in previous experimental studies, all of the positions of the H atoms in the full unit cell were determined theoretically. The structural results, including the lattice parameters, bond lengths, bond angles, and powder XRD pattern, were found to be in good agreement with their experimental counterparts. However, the calculations performed using the unit cell designed by Ostanin and Zeller in 2007, involving half of the atoms of the full unit cell, led to significant errors in the computed powder XRD pattern. Furthermore, Ostanin and Zeller's unit cell contains hydronium ions, H 3 O + , which are incompatible with the experimental information. Therefore, while the use of this schoepite model may be a very useful approximation requiring a much smaller amount of computational effort, the full unit cell should be used to study this mineral accurately. The Raman spectrum was also computed by means of density functional perturbation theory and compared with the experimental spectrum. The results were also in agreement with the experimental data. A normal-mode analysis of the theoretical spectra was performed to assign the main bands of the Raman spectrum. This assignment significantly improved the current empirical assignment of the bands of the Raman spectrum of schoepite mineral. In addition, the equation of state and elastic properties of this mineral were determined. The crystal structure of schoepite was found to be stable mechanically and dynamically. Schoepite can be described as a brittle material exhibiting

  4. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  5. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    PubMed

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  6. Carbon nanohorns under cold compression to 40 GPa: Raman scattering and X-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Li, Bo; Nan, Yanli; Zhao, Xiang; Song, Xiaolong; Li, Haining; Wu, Jie; Su, Lei

    2017-11-01

    We report a high-pressure behavior of carbon nanohorns (CNHs) to 40 GPa at ambient temperature by in situ Raman spectroscopy and synchrotron radiation x-ray diffraction (XRD) in a diamond anvil cell. In Raman measurement, multiple structural transitions are observed. In particular, an additional band at ˜1540 cm-1 indicative of sp3 bonding is shown above 35 GPa, but it reverses upon releasing pressure, implying the formation of a metastable carbon phase having both sp2 and sp3 bonds. Raman frequencies of all bands (G, 2D, D + G, and 2D') are dependent upon pressure with respective pressure coefficients, among which the value for the G band is as small as ˜2.65 cm-1 GPa-1 above 10 GPa, showing a superior high-pressure structural stability. Analysis based on mode Grüneisen parameter demonstrates the similarity of high-pressure behavior between CNHs and single-walled carbon nanotubes. Furthermore, the bulk modulus and Grüneisen parameter for the G band of CNHs are calculated to be ˜33.3 GPa and 0.1, respectively. In addition, XRD data demonstrate that the structure of post-graphite phase derives from surface nanohorns. Based on topological defects within conical graphene lattice, a reasonable transformation route from nanohorns to the post-graphite phase is proposed.

  7. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  8. Synthesis and characterization of mixed monolayer protected gold nanorods and their Raman activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mlambo, Mbuso; Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125; Mdluli, Phumlani S.

    2013-10-15

    Graphical abstract: Gold nanorods surface functionalization. - Highlights: • Mixed monolayer protected gold nanorods. • Surface enhanced Raman spectroscopy. • HS-(CH{sub 2}){sub 11}-NHCO-coumarin as a Raman active compound. - Abstract: The cetyltrimethylammonium bromide (CTAB) gold nanorods (AuNRs) were prepared by seed-mediated route followed by the addition of a Raman active compound (HS-(CH{sub 2}){sub 11}-NHCO-coumarin) on the gold nanorods surfaces. Different stoichiometric mixtures of HS-(CH{sub 2}){sub 11}-NHCO-coumarin and HS-PEG-(CH{sub 2}){sub 11}COOH were evaluated for their Raman activities. The lowest stoichiometric ratio HS-(CH{sub 2}){sub 11}-NHCO-coumarin adsorbed on gold nanorods surface was detected and enhanced by Raman spectroscopy. The produced mixed monolayer protectedmore » gold nanorods were characterized by UV-vis spectrometer for optical properties, transmission electron microscope (TEM) for structural properties (shape and aspect ratio) and their zeta potentials (charges) were obtained from ZetaSizer to determine the stability of the produced mixed monolayer protected gold nanorods. The Raman results showed a surface enhanced Raman scattering (SERS) enhancement at the lowest stoichiometric ratio of 1% HS-(CH{sub 2}){sub 11}-NHCO-coumarin compared to high ratio of 50% HS-(CH{sub 2}){sub 11}-NHCO-coumarin on the surface of gold nanorods.« less

  9. New 'chimie douce' approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties.

    PubMed

    Altavilla, Claudia; Sarno, Maria; Ciambelli, Paolo; Senatore, Adolfo; Petrone, Vincenzo

    2013-03-29

    Hybrid organic-inorganic oleylamine@MoS2-CNT nanocomposites with different compositions were obtained by thermal decomposition of tetrathiomolybdate in the presence of oleylamine and high quality multiwalled carbon nanotubes (CNTs) previously prepared by the CCVD technique. The nanocomposite samples were characterized by the TEM, SEM TG-MS, Raman and XRD techniques and successfully tested as anti-friction and anti-wear additives for grease lubricants.

  10. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    NASA Astrophysics Data System (ADS)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  11. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    PubMed

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  12. Raman Spectrum of Er-Y-codoped ZrO2 and Fluorescence Properties of Er3+

    NASA Astrophysics Data System (ADS)

    He, Jun; Luo, Meng-fei; Jin, Ling-yun; He, Mai; Fang, Ping; Xie, Yun-long

    2007-02-01

    Er-Y-codoped ZrO2 mixed oxides with monoclinic, tetragonal and cubic structures were prepared by a sol-gel method. The crystal structure of ZrO2 matrix and the effect of the ZrO2 phases on the fluorescence properties of Er3+ were studied using Raman spectroscopy. The results indicated that the fluorescence properties of Er3+ depend on its local ZrO2 crystal structures. As ZrO2 matrix transferred from monoclinic to tetragonal and cubic phase, the Raman and fluorescence bands of Er3+ decreased in intensities and tended to form a single peak. With 632.8 nm excitation, the bands between 640 and 680 nm were attributed to the fluorescence of Er3+ in the ZrO2 environment. However, only the fluorescence was observed and no Raman spectra were seen under 514.5 nm excitation, while only Raman spectra were observed under 325 nm excitation. UV Raman spectroscopy was found to be more sensitive in the surface region while the information provided by XRD mainly came from the bulk. The phase with lower symmetry forms more easily on the surface than in the bulk.

  13. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy.

    PubMed

    Saerens, Lien; Ghanam, Dima; Raemdonck, Cedric; Francois, Kjell; Manz, Jürgen; Krüger, Rainer; Krüger, Susan; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-08-01

    The aim of this research was to use Raman spectroscopy for the in-line monitoring of the solid state of materials during pharmaceutical hot-melt extrusion in the die head of a 12 mm (development scale) twin-screw extruder during formulation development. A full factorial (mixed) design was generated to determine the influence of variations in concentration of Celecoxib (CEL) in Eudragit® E PO, three different screw configurations and varying barrel temperature profiles on the solid state, 'melt temperature' and die pressure of continuously produced extrudates in real-time. Off-line XRD and DSC analysis were used to evaluate the suitability of Raman spectroscopy for solid state predictions. First, principal component analysis (PCA) was performed on all in-line collected Raman spectra from the experimental design. The resulting PC 1 versus PC 2 scores plot showed clustering according to solid state of the extrudates, and two classes, one class where crystalline CEL is still present and a second class where no crystalline CEL was detected, were found. Then, a soft independent modelling of class analogy (SIMCA) model was developed, by modelling these two classes separately by disjoint PCA models. These two separate PCA models were then used for the classification of new produced extrudates and allowed distinction between glassy solid solutions of CEL and crystalline dispersions of CEL. All extrudates were classified similarly by Raman spectroscopy, XRD and DSC measurements, with exception of the extrudates with a 30% CEL concentration extruded at 130 °C. The Raman spectra of these experiments showed bands which were sharper than the amorphous spectra, but broader than the crystalline spectra, indicating the presence of CEL that has dissolved into the matrix and CEL in its crystalline state. XRD and DSC measurements did not detect this. Modifications in the screw configuration did not affect the solid state and did not have an effect on the solid state prediction of

  14. CdSxSe1-x quantum dots as colouring agents of Art Nouveau and contemporary stained glass: a combined transmission electron microscopy and Raman study

    NASA Astrophysics Data System (ADS)

    Fornacelli, C.; Sciau, Ph.; Colomban, Ph.

    2016-12-01

    The use of cadmium chalchogenide nanoprecipitates to obtain brightly coloured glasses enormously expanded by the beginning of the twentieth century, when the production of cadmium-based pigments was already well established. Six historical stained glass pieces produced between the late 1920s and modern days have been investigated in order to delineate the average size and the elemental composition of the nanocrystals. As non-invasive conditions are now mandatory when considering objects belonging to cultural heritage, Raman spectroscopy is used to measure the (average) elemental composition of the nanoparticles. Zinc substitution is also detected by the shifting of the Raman peak position. Moreover, a tentative evaluation of size distribution and crystallinity of the nanoparticles has been performed considering those parameters that are mainly influenced by the disorder of the system, such as Raman band width, surface phonons and the ratio between second and first order band intensities. A confirmation of the above-mentioned conclusion is searched by means of transmission electron microscopy (TEM) and local elemental analysis. Raman investigations allowed identifying a different and more pronounced disorder characterizing the oldest glasses, also verified by TEM observations, suggesting a different manufacture. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  15. CdSxSe1-x quantum dots as colouring agents of Art Nouveau and contemporary stained glass: a combined transmission electron microscopy and Raman study.

    PubMed

    Fornacelli, C; Sciau, Ph; Colomban, Ph

    2016-12-13

    The use of cadmium chalchogenide nanoprecipitates to obtain brightly coloured glasses enormously expanded by the beginning of the twentieth century, when the production of cadmium-based pigments was already well established. Six historical stained glass pieces produced between the late 1920s and modern days have been investigated in order to delineate the average size and the elemental composition of the nanocrystals. As non-invasive conditions are now mandatory when considering objects belonging to cultural heritage, Raman spectroscopy is used to measure the (average) elemental composition of the nanoparticles. Zinc substitution is also detected by the shifting of the Raman peak position. Moreover, a tentative evaluation of size distribution and crystallinity of the nanoparticles has been performed considering those parameters that are mainly influenced by the disorder of the system, such as Raman band width, surface phonons and the ratio between second and first order band intensities. A confirmation of the above-mentioned conclusion is searched by means of transmission electron microscopy (TEM) and local elemental analysis. Raman investigations allowed identifying a different and more pronounced disorder characterizing the oldest glasses, also verified by TEM observations, suggesting a different manufacture.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  16. Raman spectroscopic study of ancient South African domestic clay pottery

    NASA Astrophysics Data System (ADS)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  17. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  18. Synthesis and characterization of arsenic-doped cysteine-capped thoria-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Pereira, F. J.; Díez, M. T.; Aller, A. J.

    2013-09-01

    Thoria materials have been largely used in the nuclear industry. Nonetheless, fluorescent thoria-based nanoparticles provide additional properties to be applied in other fields. Thoria-based nanoparticles, with and without arsenic and cysteine, were prepared in 1,2-ethanediol aqueous solutions by a simple precipitation procedure. The synthesized thoria-based nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (ED-XRS), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and fluorescence microscopy. The presence of arsenic and cysteine, as well as the use of a thermal treatment facilitated fluorescence emission of the thoria-based nanoparticles. Arsenic-doped and cysteine-capped thoria-based nanoparticles prepared in 2.5 M 1,2-ethanediol solutions and treated at 348 K showed small crystallite sizes and strong fluorescence. However, thoria nanoparticles subjected to a thermal treatment at 873 K also produced strong fluorescence with a very narrow size distribution and much smaller crystallite sizes, 5 nm being the average size as shown by XRD and TEM. The XRD data indicated that, even after doping of arsenic in the crystal lattice of ThO2, the samples treated at 873 K were phase pure with the fluorite cubic structure. The Raman and FT-IR spectra shown the most characteristics vibrational peaks of cysteine together with other peaks related to the bonds of this molecule to thoria and arsenic when present.

  19. Evaluating mineralogy at terrestrial analogs for early Mars: Detection and characterization of clays with XRD and investigation of iron substitution in natroalunite

    NASA Astrophysics Data System (ADS)

    Beckerman, Laura Grace

    The Mars Science Laboratory (MSL) Curiosity rover is equipped with CheMin, the first x-ray diffraction (XRD) instrument on Mars, for in situ mineralogy as part of its mission to seek evidence of past habitability at Gale Crater. Detection and characterization of hydrated minerals like clays and sulfates provides crucial insight into Mars' early geochemistry. For example, clays are often interpreted as having formed in lacustrine environments at neutral pHs, while sulfates such as jarosite are evidence of acid sulfate alteration. However, CheMin's inability to remove non-clay minerals and to preferentially orient samples may pose significant challenges to clay detection and characterization at Gale Crater. To evaluate the effect of particle size separation (<0.2 microm), removal of non-clay minerals, preferred orientation, and ethylene glycol solvation on XRD analyses of clays, we used both a CheMin analog instrument and a traditional laboratory XRD to identify clays in acid sulfate altered basalt from Mars analog sites in Costa Rica. We detected kaolinite in four of the fourteen samples studied, one of which also contained montmorillonite. Kaolinite was not detected in two samples with the analog instrument prior to clay isolation. These results suggest that CheMin may miss detection of some clays at Gale Crater, which could affect interpretations of early Mars' habitability. Mistaking iron-rich natroalunite (Na[Al,Fe]3(SO4) 2(OH)6) for jarosite (KFe3(SO4) 2(OH)6) could also impact interpretations of early Mars, as natroalunite can form over a broader range of pH, water:rock ratios, and redox conditions than can jarosite. To determine if iron-rich natroalunite is a common alteration product at Mars analog sites, we assessed iron content in natroalunite from Costa Rica. We detected up to 30% iron substitution in natroalunite at diverse geochemical settings. We also evaluated the feasibility of using XRD or Raman spectroscopy for in situ iron-rich natroalunite

  20. Carbon-encapsulated cobalt nanoparticles: synthesis, properties, and magnetic particle hyperthermia efficiency

    NASA Astrophysics Data System (ADS)

    Kotoulas, A.; Dendrinou-Samara, C.; Sarafidis, C.; Kehagias, Th.; Arvanitidis, J.; Vourlias, G.; Angelakeris, M.; Kalogirou, Orestis

    2017-12-01

    A facile and low-cost method for structuring carbon-encapsulated cobalt nanoparticles (Co@C) is presented. Three samples were solvothermally prepared in one step at 220 °C and one in two steps at 200 °C. Three different polyols such as propylene glycol, triethylene glycol, and tetraethylene glycol were used as carbon sources, solvents, and reducing agents. The samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Concerning the crystal structure of the particles, a mixture of hcp/ fcc Co phases was obtained in three of the samples, independently of the polyol used. The coexistence of cubic and hexagonal phases was revealed both from XRD and high-resolution TEM (HRTEM). The formation of the cubic fcc structure, despite the relatively low reaction temperature, is attributed to the role of the interface between carbon coating and metallic core. The presence of carbon coating was demonstrated by Raman spectrometry, exhibiting the characteristic D and G graphitic bands, and by HRTEM observations. All samples showed ferromagnetic behavior with saturation magnetization up to 158 emu/g and coercivity up to 206 Oe. From the magnetic particle hyperthermia measurements recorded at a frequency of 765 kHz, a maximum SLP value of 241 W/g was obtained.

  1. Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume

    NASA Astrophysics Data System (ADS)

    Atchudan, Raji; Edison, Thomas Nesakumar Jebakumar Immanuel; Sethuraman, Mathur Gopalakrishnan; Lee, Yong Rok

    2016-10-01

    Highly fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized using the extract of unripe Prunus mume (P. mume) fruit by a simple one step hydrothermal-carbonization method. The N-CDs were synthesized at different pH ranges, 2.3, 5, 7, and 9. The pH of the P. mume extract was adjusted using an aqueous ammonia solution (25%). The optical properties of N-CDs were examined by UV-vis and fluorescence spectroscopy. The N-CDs synthesized at pH 9 emitted high fluorescence intensity compared to other obtained N-CDs. The N-CDs synthesized at pH 9 was further characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform-infra red (FT-IR) spectroscopy. HR-TEM showed that the average size of the synthesized N-CDs was approximately 9 nm and the interlayer distance was 0.21 nm, which was validated by XRD. The graphitic nature of the synthesized N-CDs were confirmed by Raman spectroscopy. XPS and FT-IR spectroscopy confirmed the doping of the nitrogen moiety over the synthesized CDs. The synthesized nitrogen doped CDs (N-CDs) were low toxicity and were used as a staining probe for fluorescence cell imaging.

  2. Raman analysis of non stoichiometric Ni1-δO

    NASA Astrophysics Data System (ADS)

    Dubey, Paras; Choudhary, K. K.; Kaurav, Netram

    2018-04-01

    Thermal decomposition method was used to synthesize non-stoichiometric nickel oxide at different sintering temperatures upto 1100 °C. The structure of synthesized compounds were analyzed by X ray diffraction analysis (XRD) and magnetic ordering was studied with the help of Raman scattering spectroscopy for the samples sintered at different temperature. It was found that due to change in sintering temperature the stoichiometry of the sample changes and hence intensity of two magnon band changes. These results were interpreted as the decomposition temperature increases, which heals the defects present in the non-stoichiometric nickel oxide and antiferromagnetic spin correlation changes accordingly.

  3. Raman analysis of ancient pigments on a tile from the Citadel of Algiers.

    PubMed

    Kock, L D; De Waal, D

    2008-12-15

    A micro-Raman spectroscopy study of a multi-coloured (yellow, blue, white, redish-brown and brown-black) tile shard from the Citadel of Algiers was undertaken. XRD and EDX were used as complementary techniques. The study shows that the heterogeneous three-shade yellow pigment on the tile is composed largely of the ancient ternary (Pb-Sn-Sb) pyrochlore oxide with a dominant Pb-O vibration at 127 cm(-1) consistent with the Pb2SnSbO6.5 structure as verified by XRD. The literature assignment of this band at 132 cm(-1) probably comes from a mixture of pigments. The redish-brown and the brown-black pigments are found to be Naples yellow (Pb2Sb2O7) and lead(II) stannate (Pb2SnO4), respectively, while cobalt blue (CoAl2O4) gives the blue colour and cassiterite (SnO2) is the origin of the white colour. The bulk of the tile body is composed mainly of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4) and Quartz (alpha-SiO2) with traces of calcite (CaCO3) and amorphous carbon. Micro-Raman spectroscopy proved to be very useful in the characterization of pigments as well as the tile body. These results further establish Raman spectroscopy as a technique of choice for the analysis of pigments on archaeological artifacts. The results obtained here could be used in the restoration and preservation programme of the Citadel itself which stands today as a symbol of pre-colonial Algerian heritage.

  4. Raman analysis of ancient pigments on a tile from the Citadel of Algiers

    NASA Astrophysics Data System (ADS)

    Kock, L. D.; De Waal, D.

    2008-12-01

    A micro-Raman spectroscopy study of a multi-coloured (yellow, blue, white, redish-brown and brown-black) tile shard from the Citadel of Algiers was undertaken. XRD and EDX were used as complementary techniques. The study shows that the heterogeneous three-shade yellow pigment on the tile is composed largely of the ancient ternary (Pb-Sn-Sb) pyrochlore oxide with a dominant Pb-O vibration at 127 cm -1 consistent with the Pb 2SnSbO 6.5 structure as verified by XRD. The literature assignment of this band at 132 cm -1 probably comes from a mixture of pigments. The redish-brown and the brown-black pigments are found to be Naples yellow (Pb 2Sb 2O 7) and lead(II) stannate (Pb 2SnO 4), respectively, while cobalt blue (CoAl 2O 4) gives the blue colour and cassiterite (SnO 2) is the origin of the white colour. The bulk of the tile body is composed mainly of hematite (α-Fe 2O 3), maghemite (γ-Fe 2O 3), magnetite (Fe 3O 4) and Quartz (α-SiO 2) with traces of calcite (CaCO 3) and amorphous carbon. Micro-Raman spectroscopy proved to be very useful in the characterization of pigments as well as the tile body. These results further establish Raman spectroscopy as a technique of choice for the analysis of pigments on archaeological artifacts. The results obtained here could be used in the restoration and preservation programme of the Citadel itself which stands today as a symbol of pre-colonial Algerian heritage.

  5. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    NASA Astrophysics Data System (ADS)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  6. Sub-micron Raman Mapping of Ultramafic Fault Rock Textures

    NASA Astrophysics Data System (ADS)

    Tarling, M. S.; Rooney, J. S.; Smith, S. A. F.; Gordon, K. C.

    2016-12-01

    Deciphering the often complex temporal and microstructural relationships between the serpentine group minerals - antigorite, chrysotile, lizardite and polygonal serpentine - is essential for a proper understanding of the serpentinization process in a range of geodynamic settings. Conventional techniques such as optical microscopy, quantitative XRD and SEM-EDS often fail to correctly identify the four varieties of serpentine. Transmission electron microscopy can be used to successfully identify these minerals, but complex sample preparation and very small sample sizes (1-10's microns) means that microstructural context is difficult to maintain. Building on previous work (Petriglieri et al. 2015, J. Raman Spectrosc.) that introduced a methodology for Raman mapping on thin sections, we present the initial results of large-area and high-resolution (at the optical limit) Raman mapping that allows us to unambiguously distinguish and contextualise the serpentine minerals within their microstructural context. Measurements were performed on flat, SYTON-polished petrographic thin sections using a Witec Raman microscope equipped with a piezoelectric nano-positioning x-y stage. With a laser wavelength of 532 nm and a 100x dry objective, spatial resolution approaching 360 nm, as predicted by the Abbe equation, can readily be achieved. Minerals are primarily discerned by examining the Raman peaks in the high wavenumber spectral range of 3600-3710 cm-1, corresponding to OH-stretching vibrations. To illustrate the technique, Raman maps were acquired on several samples from the Livingstone Fault, a major terrane boundary in New Zealand that is localized in a mélange of ultramafic rocks including harzburgite and serpentinite. The maps highlight fine-scale intergrowths of antigorite, lizardite, chrysotile and related minerals (e.g. brucite, magnetite) at a sub-micron level over large areas (10's of microns to mm scale), features that are inaccessible or not visible using other

  7. Different β-alanine dimeric forms in trifluoromethanesulfonic acid salts. XRD and vibrational studies.

    PubMed

    Wołoszyn, Łukasz; Ilczyszyn, Maria M

    2018-03-15

    Two new crystalline salts: β-alaninium trifluoromethanesulfonate (β-AlaOTf) and bis(β-alanine) trifluoromethanesulfonate (β-2AlaOTf) were obtained. The former one contains diprotonated β-alanine dimer, the latter one monoprotonated β-alanine dimer. Both compounds were studied by single crystal XRD, vibrational (IR and Raman) spectroscopy and calorimetric method. The quantum-mechanical calculations (DFT/B3LYP/6-311++G(2d,2p)) for the diprotonated dimer were carried out. The β-AlaOTf salt crystallizes in the P1¯ space group of triclinic system (Z=2), the β-2AlaOTf in the P2 1 /m space group of monoclinic system (Z=2). The vibrational data for the studied compounds are discussed in relation to their crystal structure, and provide insight into the character of hydrogen bonds and β-alanine protonation. The studied crystals do not exhibit phase transitions in the solid state. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Quantitative fiber-optic Raman spectroscopy for tissue Raman measurements

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Bergholt, Mads; Zheng, Wei; Huang, Zhiwei

    2014-03-01

    Molecular profiling of tissue using near-infrared (NIR) Raman spectroscopy has shown great promise for in vivo detection and prognostication of cancer. The Raman spectra measured from the tissue generally contain fundamental information about the absolute biomolecular concentrations in tissue and its changes associated with disease transformation. However, producing analogues tissue Raman spectra present a great technical challenge. In this preliminary study, we propose a method to ensure the reproducible tissue Raman measurements and validated with the in vivo Raman spectra (n=150) of inner lip acquired using different laser powers (i.e., 30 and 60 mW). A rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe was utilized for tissue Raman measurements. The investigational results showed that the variations between the spectra measured with different laser powers are almost negligible, facilitating the quantitative analysis of tissue Raman measurements in vivo.

  9. Potential drug - nanosensor conjugates: Raman, infrared absorption, surface - enhanced Raman, and density functional theory investigations of indolic molecules

    NASA Astrophysics Data System (ADS)

    Pięta, Ewa; Paluszkiewicz, Czesława; Oćwieja, Magdalena; Kwiatek, Wojciech M.

    2017-05-01

    An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface-enhanced Raman scattering (SERS) spectroscopic investigations of N-acetyl-5-methoxytryptamine (melatonin) and α-methyl-DL-tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6-311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  10. Photocatalytic degradation of methyl orange and bromophenol blue dyes in water using sol-gel synthesized TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, J.; Pathinettam Padiyan, D.

    2017-09-01

    TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.

  11. Enhanced Raman scattering of biological molecules

    NASA Astrophysics Data System (ADS)

    Montoya, Joseph R.

    The results presented in this thesis, originate from the aspiration to develop an identification algorithm for Salmonella enterica Serovar Enteritidis (S. enterica), Escherichia coli (E. coli), Bacillus globigii ( B. globigii), and Bacillus megaterium ( B. megaterium) using "enhanced" Raman scattering. We realized our goal, with a method utilizing an immunoassay process in a spectroscopic technique, and the direct use of the enhanced spectral response due to bacterial surface elements. The enhanced Raman signal originates from Surface Enhanced Raman Scattering (SERS) and/or Morphological Dependent Resonances (MDR's). We utilized a modified Lee-Meisel colloidal production method to produce a SERS active substrate, which was applied to a SERS application for the amino acid Glycine. The comparison indicates that the SERS/FRACTAL/MDR process can produce an increase of 107 times more signal than the bulk Raman signal from Glycine. In the extension of the Glycine results, we studied the use of SERS related to S. enterica, where we have shown that the aromatic amino acid contribution from Phenylalanine, Tyrosine, and Tryptophan produces a SERS response that can be used to identify the associated SERS vibrational modes of a S. enterica one or two antibody complexes. The "fingerprint" associated with the spectral signature in conjunction with an enhanced Raman signal allows conclusions to be made: (1) about the orientation of the secondary structure on the metal; (2) whether bound/unbound antibody can be neglected; (3) whether we can lower the detection limit. We have lowered the detection limit of S. enterica to 106 bacteria/ml. We also show a profound difference between S. enterica and E. coli SERS spectra even when there exists non-specific binding on E. coli indicating a protein conformation change induced by the addition of the antigen S. enterica. We confirm TEM imagery data, indicating that the source of the aromatic amino acid SERS response is originating from

  12. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    PubMed

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  13. Synthesis of CeO2 nanoparticles: Photocatalytic and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Reddy Yadav, L. S.; Lingaraju, K.; Daruka Prasad, B.; Kavitha, C.; Banuprakash, G.; Nagaraju, G.

    2017-05-01

    We have successfully synthesized CeO2 nanoparticles (Nps) via the solution combustion method using sugarcane juice as a novel combustible fuel. The structural features, optical properties and morphology of the nanoparticles were characterized using XRD, FTIR, and Raman spectroscopy, UV-Vis, SEM and TEM. Structural characterization of the product shows cubic phase CeO2 . FTIR and Raman spectrum show characteristic peaks due to the presence of Ce-O vibration. SEM images show a porous structure and, from TEM images, the size of the nanoparticles were found to be ˜ 50 nm. The photocatalytic degradation of the methylene blue (MB) dye was examined using CeO2 Nps under solar irradiation as well as UV light irradiation and we studied the effect of p H, catalytic load and concentration on the degradation of the MB dye. Furthermore, the antibacterial properties of CeO2 Nps were investigated against Gram+ve and Gram- ve pathogenic bacterial strains using the agar well diffusion method.

  14. Second Harmonic Generation Guided Raman Spectroscopy for Sensitive Detection of Polymorph Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Azhad U.; Ye, Dong Hye; Song, Zhengtian

    Second harmonic generation (SHG) was integrated with Raman spectroscopy for the analysis of pharmaceutical materials. Particulate formulations of clopidogrel bisulfate were prepared in two crystal forms (Form I and Form II). Image analysis approaches enable automated identification of particles by bright field imaging, followed by classification by SHG. Quantitative SHG microscopy enabled discrimination of crystal form on a per particle basis with 99.95% confidence in a total measurement time of ~10 ms per particle. Complementary measurements by Raman and synchrotron XRD are in excellent agreement with the classifications made by SHG, with measurement times of ~1 min and several secondsmore » per particle, respectively. Coupling these capabilities with at-line monitoring may enable real-time feedback for reaction monitoring during pharmaceutical production to favor the more bioavailable but metastable Form I with limits of detection in the ppm regime.« less

  15. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications

    PubMed Central

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-01-01

    Ruthenium active species containing Ruthenium Sulphide (RuS2) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS2 on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s−1 is 238 F g−1. This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications. PMID:29301192

  16. Graphene/Ruthenium Active Species Aerogel as Electrode for Supercapacitor Applications.

    PubMed

    Gigot, Arnaud; Fontana, Marco; Pirri, Candido Fabrizio; Rivolo, Paola

    2017-12-30

    Ruthenium active species containing Ruthenium Sulphide (RuS₂) is synthesized together with a self-assembled reduced graphene oxide (RGO) aerogel by a one-pot hydrothermal synthesis. Ruthenium Chloride and L-Cysteine are used as reactants. The hydrothermal synthesis of the innovative hybrid material occurs at 180 °C for 12 h, by using water as solvent. The structure and morphology of the hybrid material are fully characterized by Raman, XRD, XPS, FESEM and TEM. The XRD and diffraction pattern obtained by TEM display an amorphous nanostructure of RuS₂ on RGO crystallized flakes. The specific capacitance measured in planar configuration in 1 M NaCl electrolyte at 5 mV s -1 is 238 F g -1 . This supercapacitor electrode also exhibits perfect cyclic stability without loss of the specific capacitance after 15,000 cycles. In summary, the RGO/Ruthenium active species hybrid material demonstrates remarkable properties for use as active material for supercapacitor applications.

  17. Spectroscopic, DFT, and XRD Studies of Hydrogen Bonds in N-Unsubstituted 2-Aminobenzamides.

    PubMed

    Mphahlele, Malose Jack; Maluleka, Marole Maria; Rhyman, Lydia; Ramasami, Ponnadurai; Mampa, Richard Mokome

    2017-01-04

    The structures of the mono- and the dihalogenated N -unsubstituted 2-aminobenzamides were characterized by means of the spectroscopic (¹H-NMR, UV-Vis, FT-IR, and FT-Raman) and X-ray crystallographic techniques complemented with a density functional theory (DFT) method. The hindered rotation of the C(O)-NH₂ single bond resulted in non-equivalence of the amide protons and therefore two distinct resonances of different chemical shift values in the ¹H-NMR spectra of these compounds were observed. 2-Amino-5-bromobenzamide ( ABB ) as a model confirmed the presence of strong intramolecular hydrogen bonds between oxygen and the amine hydrogen. However, intramolecular hydrogen bonding between the carbonyl oxygen and the amine protons was not observed in the solution phase due to a rapid exchange of these two protons with the solvent and fast rotation of the Ar-NH₂ single bond. XRD also revealed the ability of the amide unit of these compounds to function as a hydrogen bond donor and acceptor simultaneously to form strong intermolecular hydrogen bonding between oxygen of one molecule and the NH moiety of the amine or amide group of the other molecule and between the amine nitrogen and the amide hydrogen of different molecules. DFT calculations using the B3LYP/6-311++G(d,p) basis set revealed that the conformer ( A ) with oxygen and 2-amine on the same side predominates possibly due to the formation of a six-membered intramolecular ring, which is assisted by hydrogen bonding as observed in the single crystal XRD structure.

  18. Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles.

    PubMed

    Ock, Kwang-Su; Ganbold, Erdene Ochir; Park, Jin; Cho, Keunchang; Joo, Sang-Woo; Lee, So Yeong

    2012-06-21

    We investigated glutathione (GSH)-induced purine or pyrimidine anticancer drug release on gold nanoparticle (AuNP) surfaces by means of label-free Raman spectroscopy. GSH-triggered releases of 6-thioguanine (6TG), gemcitabine (GEM), acycloguanosine (ACY), and fadrozole (FAD) were examined in a comparative way by means of surface-enhanced Raman scattering (SERS). The GSH-induced dissociation constant of GEM (or ACY/FAD) from AuNPs was estimated to be larger by more than 38 times than that of 6TG from the kinetic relationship. Tripeptide control experiments were presented to check the turn-off Raman signalling mechanism. Dark-field microscopy (DFM) and transmission electron microscopy (TEM) indicated the intracellular AuNP loads. After their cellular uptake, GEM, ACY, and FAD would not show SERS intensities as strong as 6TG. This may be due to easier release of GEM, ACY, and FAD than 6TG by intracellular reducing species including GSH. We observed fairly strong SERS signals of GEM and 6TG in cell culture media solution. Our CCK-8 cytotoxicity assay data support that 6TG-AuNPs did not exhibit a substantial decrease in cell viability presumably due to strong binding. Label-free confocal Raman spectroscopy can be utilized as an effective tool to access intracellular anticancer drug release.

  19. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.

    PubMed

    Turunen, Mikael J; Saarakkala, Simo; Rieppo, Lassi; Helminen, Heikki J; Jurvelin, Jukka S; Isaksson, Hanna

    2011-06-01

    The molecular composition of the organic and inorganic matrices of bone undergoes alterations during maturation. The aim of this study was to compare Fourier transform infrared (FT-IR) and near-infrared (NIR) Raman microspectroscopy techniques for characterization of the composition of growing and developing bone from young to skeletally mature rabbits. Moreover, the specificity and differences of the techniques for determining bone composition were clarified. The humeri of female New Zealand White rabbits, with age range from young to skeletally mature animals (four age groups, n = 7 per group), were studied. Spectral peak areas, intensities, and ratios related to organic and inorganic matrices of bone were analyzed and compared between the age groups and between FT-IR and Raman microspectroscopic techniques. Specifically, the degree of mineralization, type-B carbonate substitution, crystallinity of hydroxyapatite (HA), mineral content, and collagen maturity were examined. Significant changes during maturation were observed in various compositional parameters with one or both techniques. Overall, the compositional parameters calculated from the Raman spectra correlated with analogous parameters calculated from the IR spectra. Collagen cross-linking (XLR), as determined through peak fitting and directly from the IR spectra, were highly correlated. The mineral/matrix ratio in the Raman spectra was evaluated with multiple different peaks representing the organic matrix. The results showed high correlation with each other. After comparison with the bone mineral density (BMD) values from micro-computed tomography (micro-CT) imaging measurements and crystal size from XRD measurements, it is suggested that Raman microspectroscopy is more sensitive than FT-IR microspectroscopy for the inorganic matrix of the bone. In the literature, similar spectroscopic parameters obtained with FT-IR and NIR Raman microspectroscopic techniques are often compared. According to the present

  20. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    PubMed

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other

  1. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-11-01

    Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.

  2. Graphene oxide coated with porous iron oxide ribbons for 2, 4-Dichlorophenoxyacetic acid (2,4-D) removal.

    PubMed

    Nethaji, S; Sivasamy, A

    2017-04-01

    Graphene oxide (GO) was prepared from commercially available graphite powder. Porous iron oxide ribbons were grown on the surface of GO by solvothermal process. The prepared GO-Fe 3 O 4 nanocomposites are characterized by FT-IR, XRD, VSM, SEM, TEM, Raman spectroscopy, surface functionality and zero point charge studies. The morphology of the iron oxide ribbons grown on GO is demonstrated with TEM at various magnifications. The presence of magnetite nanoparticles is evident from XRD peaks and the magnetization value is found to be 37.28emu/g. The ratio of intensity of D-peak to G-peak from Raman spectrum is 0.995. The synthesized Graphene oxide-Fe 3 O 4 nanocomposites (GO-Fe 3 O 4 ) were explored for its surface adsorptive properties by using a model organic compound, 2,4-Dichlorophenoxy acetic acid (2,4-D) from aqueous solution. Batch adsorption studies were performed and the equilibrium data are modelled with Langmuir, Freundlich and Temkin isotherms. The maximum monolayer capacity from Langmuir isotherm is 67.26mg/g. Kinetic studies were also carried out and the studied adsorption process followed pseudo second-order rate equation. Mechanism of the adsorption process is studied by fitting the data with intraparticle diffusion model and Boyd plot. The studied adsorption process is both by film diffusion and intraparticle diffusion. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Green synthesis and characterization of graphene nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Farnosh; Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir; Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductantmore » but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.« less

  4. Phase-preserving wavefront amplification at 590 nm by stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wick, D. V.; Gruneisen, M. T.; Peterson, P. R.

    1998-03-01

    This paper presents an experimental demonstration of high-gain optical-wavefront amplification by stimulated Raman scattering near the D 1 resonance in atomic sodium vapor. Single-pass weak-field gain of nearly 400 is achieved with only 800 mW of pump power. Through judicious focusing, the weak wavefront is confined to the central region of the focused pump wave where saturation of the dispersion profile minimizes phase distortions due to self-focusing effects. Phase-preserving amplification is demonstrated by interferometric measurements of an amplified TEM 00 wavefront.

  5. Transmission electron microscopy, fluorescence microscopy, and confocal raman microscopic analysis of ultrastructural and compositional heterogeneity of Cornus alba L. wood cell wall.

    PubMed

    Ma, Jianfeng; Ji, Zhe; Zhou, Xia; Zhang, Zhiheng; Xu, Feng

    2013-02-01

    Transmission electron microscopy (TEM), fluorescence microscopy, and confocal Raman microscopy can be used to characterize ultrastructural and compositional heterogeneity of plant cell walls. In this study, TEM observations revealed the ultrastructural characterization of Cornus alba L. fiber, vessel, axial parenchyma, ray parenchyma, and pit membrane between cells, notably with the ray parenchyma consisting of two well-defined layers. Fluorescence microscopy evidenced that cell corner middle lamella was more lignified than adjacent compound middle lamella and secondary wall with variation in lignification level from cell to cell. In situ Raman images showed that the inhomogeneity in cell wall components (cellulose and lignin) among different cells and within morphologically distinct cell wall layers. As the significant precursors of lignin biosynthesis, the pattern of coniferyl alcohol and aldehyde (joint abbreviation Lignin-CAA for both structures) distribution in fiber cell wall was also identified by Raman images, with higher concentration occurring in the fiber secondary wall where there was the highest cellulose concentration. Moreover, noteworthy was the observation that higher concentration of lignin and very minor amounts of cellulose were visualized in the pit membrane areas. These complementary microanalytical methods provide more accurate and complete information with regard to ultrastructural and compositional characterization of plant cell walls.

  6. Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.

    Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less

  7. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  8. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  9. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  10. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  11. Amorphization of Ta2O5 under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.

    2017-09-01

    Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.

  12. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.

    PubMed

    Das, Nandan K; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya; Smith, Zachary J

    2017-07-07

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  13. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    PubMed Central

    Das, Nandan K.; Dai, Yichuan; Liu, Peng; Hu, Chuanzhen; Tong, Lieshu; Chen, Xiaoya

    2017-01-01

    Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field. PMID:28686212

  14. Surface enhanced Raman spectral studies of 2-bromo-1,4-naphthoquinone.

    PubMed

    Geetha, K; Umadevi, M; Sathe, G V; Vanelle, P; Terme, T; Khoumeri, O

    2015-03-05

    Silver nanoparticles have been synthesized by a simple and inexpensive solution combustion method with urea as fuel. The structural and morphology of the silver nanoparticles were investigated through X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersion Spectra (EDS) techniques. Structural and morphological results confirmed the nanocrystalline nature of the silver nanoparticles. Density Functional Theory (DFT) calculations were also performed to study the ground and excited state behavior of 2-bromo-1,4-naphthoquinone (2-BrNQ) and 2-BrNQ on silver nanoparticles. Surface-Enhanced Raman Scattering (SERS) spectra of 2-BrNQ adsorbed on silver nanoparticles were investigated. The CO, CH in-plane bending and CBr stretching modes were enhanced in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the 2-BrNQ adsorbed 'stand-on' orientation on the silver surface. Density Functional Theory (DFT) calculations are also performed to study the vibrational features of 2-BrNQ molecule and 2-BrNQ molecule on silver surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Size-dependent surface-enhanced Raman scattering of sodium benzoate on Silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Badr, Y.; Mahmoud, M. A.

    2005-07-01

    The absorption spectrum of silver nanoparticles (Ag NPs) with different size and the transmission electron microscopy (TEM) was recorded. Surface-enhanced Raman scattering (SERS) spectra of Sodium Benzoate (SB) adsorbed on Ag NPs with different particle size were studied. The carboxylic group bands were enhanced as the particle size decreases due to the chemisorption of SB on the Ag NPs through it in which the carboxyl group was perpendicular to the surface and the benzene ring parallel to the surface; the SB bands were enhanced as the coverage density of Ag NPs increased.

  16. Defect formation in MeV H+ implanted GaN and 4H-SiC investigated by cross-sectional Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Kai; Jia, Qi; You, Tiangui; Zhang, Shibin; Lin, Jiajie; Zhang, Runchun; Zhou, Min; Yu, Wenjie; Zhang, Bo; Ou, Xin; Wang, Xi

    2017-09-01

    Cross-sectional Raman spectroscopy is used to characterize the defect formation and the defect recovery in MeV H+ implanted bulk GaN and 4H-SiC in the high energy MeV ion-cut process. The Raman intensity decreases but the forbidden modes are activated at the damage region, and the intensity decrease is proportional to the damage level. The Raman spectrum is quite sensitive to detect the damage recovery after annealing. The main peak intensity increases and the forbidden mode disappears in both annealed GaN and 4H-SiC samples. The Raman spectra of GaN samples annealed at different temperatures suggest that higher annealing temperature is more efficient for damage recovery. While, the Raman spectra of SiC indicate that higher implantation temperature results in heavier lattice damage and other polytype clusters might be generated by high annealing temperature in the annealed SiC samples. The cross-sectional Raman spectroscopy is a straightforward method to characterize lattice damage and damage recovery in high energy ion-cut process. It can serve as a fast supplementary measurement technique to Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA) and transmission electron microscope (TEM) for the defect characterizations.

  17. Raman microscopic studies of PVD deposited hard ceramic coatings

    NASA Astrophysics Data System (ADS)

    Constable, Christopher Paul

    . This was then expanded to real wear situations in which tools were monitored after 3,6,12,64,120 and 130 minutes-in-cut. A PCA chemometrics model able to distinguish between component layers and oxides was developed.Raman microscopy was found to provide structural and compositional information on oxide scales formed on the surfaces of heat-treated coatings. Wear debris, generated as a consequence of sliding wear tests on various coatings, was also found to be primarily oxide products. The comparison of the oxide types within the debris to those formed on the surface of the same coating statically oxidised, facilitated a contact temperature during sliding to be estimated.Raman microscopy, owing to the piezo-spectroscopic effect, is sensitive to stress levels. The application of Raman microscopy for the determination of residual compressive stresses within PVD coatings was evaluated. TiAlN/VN superlattice coatings with engineered stresses ranging -3 to -11.3 GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm-1). The application of mechanical stresses on a TiAlCrN coating via a stress rig was investigated and tensile and compressive shifts were observed.

  18. FT-Raman Spectroscopy: A Catalyst for the Raman Explosion?

    ERIC Educational Resources Information Center

    Chase, Bruce

    2007-01-01

    The limitations of Fourier transform (FT) Raman spectroscopy, which is used to detect and analyze the scattered radiation, are discussed. FT-Raman has served to revitalize a field that was lagging and the presence of Raman instrumentation as a routine analytical tool is established for the foreseeable future.

  19. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.

    PubMed

    Potara, Monica; Maniu, Dana; Astilean, Simion

    2009-08-05

    In this study we present a clean, nontoxic, environmentally friendly synthesis procedure to generate a large variety of gold nanoparticles (GNPs) by using chitosan, a biocompatible, biodegradable, natural polymer, as reducing and stabilizing agent. The formation of gold-chitosan nanocomposites was characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy. The results show that the reaction temperature plays a crucial role in controlling the size, shape and crystalline structure of GNPs. In addition, it is demonstrated that chitosan can perform as a scaffold for the assembly of GNPs, which were successfully applied as substrate for surface-enhanced Raman scattering (SERS). To test the SERS activity, a relevant biological molecule--tryptophan--was adopted as the analyte.

  20. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Ruban Kumar, A.

    2014-06-01

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes.

  1. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Matthew W.

    2013-01-01

    This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include themore » inherently weak Raman cross section and susceptibility to fluorescence interference.« less

  2. Conformation analysis of 1″,4″-Dispirocyclohexane-6,6'-bis(benzothiazoline): Combined IR, Raman, XRD and DFT approach.

    PubMed

    P J, Arathi; Gupta, Parth; Babu N, Jagadeesh; C N, Sundaresan; Venkatnarayan, Ramanathan

    2016-03-15

    The subject of the study is the structure and conformation of 1″,4″-Dispiro-cyclohexane-6,6'-bis(benzothiazoline), a dispiro compound that has a cyclohexyl ring flanked by two benzothiazoline rings on either side. Using single crystal X-ray diffraction measurements, Infra-red absorption, and Raman spectroscopy techniques, it is found that the central cyclohexyl ring assumes the chair conformation and the sulfur, nitrogen atoms in both the benzothiazole rings are in the trans configurations. The experimental findings are further corroborated by geometry optimization and frequency calculations at B3LYP/6-311++G** level of theory using Gaussian 09 suite of program. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Technical Evaluation Motor No. 7 (TEM-7)

    NASA Technical Reports Server (NTRS)

    Hughes, Phil

    1991-01-01

    The Technical Evaluation Motor No. 7 (TEM-7) test was a full-scale, full duration static test firing of a high performance motor-configuration solid rocket motor with nozzle vectoring. The final test report documents the procedures, performance, and results of the static test firing of TEM-7. All observations, discussions, conclusions, and recommendations included in the report are complete and final except for the TEM-7 fixed housing unbond investigation. A presentation and discussion of TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107, Rev A, Space Shuttle Technical Evaluation Motor No. 7 (TEM-7) Static Fire Test Plan are included.

  4. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    PubMed

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  5. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6

    NASA Astrophysics Data System (ADS)

    Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.

    2014-10-01

    The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.

  6. Nanostructures formed by cyclodextrin covered procainamide through supramolecular self assembly - Spectral and molecular modeling study

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Mohandoss, T.; Sankaranarayanan, R. K.

    2015-02-01

    Inclusion complexation behavior of procainamide (PCA) with two cyclodextrins (α-CD and β-CD) were analyzed by absorption, fluorescence, scanning electron microscope (SEM), transmission electron microscope (TEM), Raman image, FT-IR, differential scanning colorimeter (DSC), Powder X ray diffraction (XRD) and 1H NMR. Blue shift was observed in β-CD whereas no significant spectral shift observed in α-CD. The inclusion complex formation results suggest that water molecules also present in the inside of the CD cavity. The present study revealed that the phenyl ring of the PCA drug is entrapped in the CD cavity. Cyclodextrin studies show that PCA forms 1:2 inclusion complex with α-CD and β-CD. PCA:α-CD complex form nano-sized particles (46 nm) and PCA:β-CD complex form self-assembled to micro-sized tubular structures. The shape-shifting of 2D nanosheets into 1D microtubes by simple rolling mechanism were analysed by micro-Raman and TEM images. Thermodynamic parameters (ΔH, ΔG and ΔS) of inclusion process were determined from semiempirical PM3 calculations.

  7. Direct synthesis of carbon nanofibers from South African coal fly ash

    NASA Astrophysics Data System (ADS)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  8. Fabrication of Poly(styrene-co-maleic anhydride)@Ag Spheres with High Surface Charge Intensity and their Self-Assembly into Photonic Crystal Films.

    PubMed

    Bi, Jiajie; Fan, Genrui; Wu, Suli; Su, Xin; Xia, Hongbo; Zhang, Shu-Fen

    2017-10-01

    Herein, we developed a method to prepare monodisperse poly(styrene-co-maleic anhydride)@Ag (PSMA@Ag) core-shell microspheres with high surface charge intensity by using an in situ reduction method. In this method, ethylenediamine tetraacetic acid tetrasodium salt (Na 4 EDTA) was used as a reducing agent to promote the growth of Ag, and at the same time endowed the PSMA@Ag spheres with a surface charge. The monodispersity of PSMA and PSMA@Ag and the ordered array of the photonic crystal films were characterized by using SEM. The formation of Ag nanoparticles was confirmed by using TEM, HR-TEM, and XRD characterizations. Due to the existence of surface charges, the obtained PSMA@Ag microspheres easily self-assembled to form photonic crystal structures. In addition, the surface-enhanced Raman scattering (SERS) activity of the PSMA@Ag photonic crystal films was evaluated by detecting the signal from Raman probe molecules, 4-aminothiophenol (4-ATP). The PSMA@Ag photonic crystal films exhibited a high SERS effect, a low detection limit of up to 10 -8 for 4-ATP, good uniformity, and reproducibility.

  9. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    PubMed

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  10. UV-visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles.

    PubMed

    Sangami, G; Dharmaraj, N

    2012-11-01

    Nanocrystalline, tin(IV) oxide (SnO(2)) particles has been prepared by thermal decomposition of tin oxalate precursor obtained from the reactions of tin(IV) chloride and sodium oxalate using eggshell membrane (ESM). The as-prepared SnO(2) nanoparticles were characterized by thermal studies, transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Raman, FT-IR and UV-visible studies and used as a photocatalyst for the degradation of rhodamine-B (Rh-B) dye. The size of the prepared nanoparticles was in the range of 5-12nm as identified from the TEM images. Powder XRD data revealed the presence of a tetragonal, rutile crystalline phase of the tin(IV) oxide nanoparticles. Thermal analysis showed that the decomposition of tin oxalate precursor to yield the titled tin(IV) oxide nanoparticles was completed below 500°C. The extent of degradation of Rh-B in the presence of SnO(2) monitored by absorption spectral measurements demonstrated that 94.48% of the selected dye was degraded upon irradiation with UV light for 60 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  12. Synthesis of SiC nanoparticles by SHG 532 nm Nd:YAG laser ablation of silicon in ethanol

    NASA Astrophysics Data System (ADS)

    Khashan, Khawla S.; Ismail, Raid A.; Mahdi, Rana O.

    2018-06-01

    In this work, colloidal spherical nanoparticles NPs of silicon carbide SiC have been synthesized using second harmonic generation 532 nm Nd:YAG laser ablation of silicon target dipped in ethanol solution at various laser fluences (1.5-5) J/cm2. X-Ray diffraction XRD, scanning electron microscopy SEM, transmission electron microscope TEM, Fourier transformed infrared spectroscopy FT-IR, Raman spectroscopy, photoluminescence PL spectroscopy, and UV-Vis absorption were employed to examine the structural, chemical and optical properties of SiC NPs. XRD results showed that all synthesised SiC nanoparticles are crystalline in nature and have hexagonal structure with preferred orientation along (103) plane. Raman investigation showed three characteristic peaks 764,786 and 954 cm-1, which are indexing to transverse optic TO phonon mode and longitudinal optic LO phonon mode of 4H-SiC structure. The optical absorption data showed that the values of optical energy gap of SiC nanoparticles prepared at 1.5 J/cm2 was 3.6 eV and was 3.85 eV for SiC synthesised at 5 J/cm2. SEM investigations confirmed that the nanoparticles synthesised at 5 J/cm2 are agglomerated to form larger particles. TEM measurements showed that SiC particles prepared at 1.5 J/cm2 have spherical shape with average size of 25 nm, while the particles prepared at 5 J/cm2 have an average size of 55 nm.

  13. Crystallinity and compositional changes in carbonated apatites: Evidence from 31P solid-state NMR, Raman, and AFM analysis

    NASA Astrophysics Data System (ADS)

    McElderry, John-David P.; Zhu, Peizhi; Mroue, Kamal H.; Xu, Jiadi; Pavan, Barbara; Fang, Ming; Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T.; Holl, Mark M. Banaszak; Tecklenburg, Mary M. J.; Ramamoorthy, Ayyalusamy; Morris, Michael D.

    2013-10-01

    Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and 31P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse 31P NMR linewidth and inverse Raman PO43-ν1 bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.3-10.3 wt% CO32- range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the 31P NMR chemical shift frequency and the Raman phosphate ν1 band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals.

  14. Technical Evaluation Motor No. 10 (TEM-10)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Technical Evaluation Motor No. 10 (TEM-10) was static fired on 27 Apr. 1993 at the Thiokol Corporation full-scale motor static test bay, T-24. This final test report documents the procedures, performance, and results of the static test firing of TEM-10. All observations, discussions, conclusions, and recommendations contained are final. Included is a presentation and discussion of TEM-10 performance, anomalies, and test results in concurrence with the objectives outlined in CTP-0110, Revision D, Space Shuttle Technical Evaluation Motor No. 10 (TEM-10) Static Fire Test Plan.

  15. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    PubMed

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  16. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  17. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Malherbe, C.; Hutchinson, I. B.; Ingley, R.; Boom, A.; Carr, A. S.; Edwards, H.; Vertruyen, B.; Gilbert, B.; Eppe, G.

    2017-11-01

    In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested.

  18. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  19. Local symmetry breaking in SnO2 nanocrystals with cobalt doping and its effect on optical properties.

    PubMed

    Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K

    2018-06-07

    X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.

  20. Raman spectroscopy in the study of hydrothermal cave minerals: Implications for research on Mars

    NASA Astrophysics Data System (ADS)

    Gázquez, Fernando; Rull, Fernando; Calaforra, José-María; Martínez-Frías, Jesús; Sanz, Aurelio; Audra, Philippe

    2013-04-01

    Regarding that the ExoMars mission of the ESA, scheduled for launch in 2018 will be equipped with a Raman spectrometer, investigations by Raman spectroscopy on Earth's minerals are essential to interpret data coming from this further mission to Mars. Among terrestrial minerals, cave minerals represent an opportunity to better understand the genesis of Martian minerals and the evolution of Mars itself, in particular by studying minerals formed in hydrothermal conditions, as well as those generated due to hydrothermal alteration of previous materials. The absence of solar radiation, practically constant temperature at daily and seasonal scale and the presence of liquid water are some of the attractions which make caves interesting for Martian research. In the present work, we have studied a great variety of cave minerals from hypogenic/thermal mine-caves like the Giant Geode of Pulpí (south-eastern Spain), the caves of the Naica mine (northern Mexico), the caves of the San Giovanni Mountain (Sardinia, Italy) and Baume Galinière Cave (south-eastern France). Carbonate, sulphate, sulphurs and polymetallic oxyhydroxides are the most common minerals found in these cavities. Among them, it is worth noting the presence of several minerals of the jarosite group and gypsum, since these minerals have been recently discovered on the Mars surface. Both of them are hydrated minerals, which genetic mechanisms are linked to the presence of liquid water. In the case of jarosite minerals, identification of species like argentojarosite and plumbojarosite confers worth to the Raman technique against other methodologies, like XRD by which the characterization of the jarosite group minerals is difficult. As a consequence of the recent discovery of Ca-rich sulphates (probably gypsum) on the surface of Mars, attention has been focused on the terrestrial gypsiferous formations. The gypsum samples from the Giant Geode of Pulpí and the caves of the Naica mine, which are subject of this

  1. Compressive Classification for TEM-EELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Weituo; Stevens, Andrew; Yang, Hao

    Electron energy loss spectroscopy (EELS) is typically conducted in STEM mode with a spectrometer, or in TEM mode with energy selction. These methods produce a 3D data set (x, y, energy). Some compressive sensing [1,2] and inpainting [3,4,5] approaches have been proposed for recovering a full set of spectra from compressed measurements. In many cases the final form of the spectral data is an elemental map (an image with channels corresponding to elements). This means that most of the collected data is unused or summarized. We propose a method to directly recover the elemental map with reduced dose and acquisitionmore » time. We have designed a new computational TEM sensor for compressive classification [6,7] of energy loss spectra called TEM-EELS.« less

  2. Photocatalytic characteristics of single phase Fe-doped anatase TiO{sub 2} nanoparticles sensitized with vitamin B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharagozlou, Mehrnaz, E-mail: gharagozlou@icrc.ac.ir; Bayati, R.

    Highlights: • Anatase TiO{sub 2}/B{sub 12} hybrid nanostructured catalyst was successfully synthesized by sol–gel technique. • The nanoparticle catalyst was doped with iron at several concentrations. • Nanoparticles were characterized in detail by XRD, Raman, TEM, EDS, and spectroscopy techniques. • The formation mechanism and role of point defects on photocatalytic properties were discussed. • A structure-property-processing correlation was established. - Abstract: We report a processing-structure-property correlation in B{sub 12}-anatase titania hybrid catalysts doped with several concentrations of iron. Our results clearly show that low-level iron doping alters structure, defect content, and photocatalytic characteristics of TiO{sub 2}. XRD and Ramanmore » studies revealed formation of a single-phase anatase TiO{sub 2} where no iron based segregation in particular iron oxide, was detected. FT-IR spectra clearly confirmed sensitization of TiO{sub 2} nanoparticles with vitamin B{sub 12}. TEM micrographs and diffraction patterns confirmed crystallization of anatase nanoparticles with a radius of 15–20 nm. Both XRD and Raman signals showed a peak shift and a peak broadening which are surmised to originate from creation of point defects, namely oxygen vacancy and titanium interstitial. The doped samples revealed a narrower band gap as compared to undoped samples. Photocatalytic activity of the samples was assessed through measuring the decomposition rate of rhodamine B. It was found that sensitization with vitamin B{sub 12} and Fe-doping significantly enhances the photocatalytic efficiency of the anatase nanoparticles. We also showed that there is an optimum Fe-doping level where the maximum photocatalytic activity is achieved. The boost of photocatalytic activity was qualitatively understood to originate from a more effective use of the light photons, formation of point defects, which enhance the charge separation, higher carrier mobility.« less

  3. Synthesis, characterization, in vitro anti-proliferative and hemolytic activity of hydroxyapatite.

    PubMed

    Palanivelu, R; Ruban Kumar, A

    2014-06-05

    Hydroxyapatite (Ca10(PO4)6(OH)2, HAP) nanoparticles are widely used in several biomedical applications due to its compositional similarities to bone mineral, excellent biocompatibility and bioactivity, osteoconductivity. In this present investigation, HAP nanoparticles synthesized by precipitation technique using calcium nitrate and di-ammonium phosphate. The crystalline nature and the functional group analysis are confirmed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman) respectively. The morphological observations are ascertained from field emission electron scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). In vitro anti-proliferative and hemolytic activities are carried out on the synthesized HAP samples and the studies reveals that HAP have mild activity against erythrocytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Identification of Dens Draconis and Os Draconis by XRD method].

    PubMed

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  5. MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA

    NASA Astrophysics Data System (ADS)

    Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.

    2018-04-01

    MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).

  6. Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).

    PubMed

    Strange, K Alicia; Paul, Kelly C; Angel, S Michael

    2017-02-01

    A spatial heterodyne Raman spectrometer (SHRS) was used to measure transmission Raman spectra of highly scattering compounds. Transmission Raman spectral intensities of ibuprofen were only 2.4 times lower in intensity than backscatter Raman spectra. The throughput was about eight times higher than an f/1.8 dispersive spectrometer, and the width of the area viewed was found to be seven to nine times higher, using 50.8 mm and 250 mm focal length collection lenses. However, the signal-to-noise (S/N) ratio was two times lower for the SHRS than the f/1.8 dispersive spectrometer, apparently due to high levels of stray light.

  7. Recognition and Resistance in TEM [superscript beta]-Lactamase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaojun; Minasov, George; Blazquez, Jesus

    Developing antimicrobials that are less likely to engender resistance has become an important design criterion as more and more drugs fall victim to resistance mutations. One hypothesis is that the more closely an inhibitor resembles a substrate, the more difficult it will be to develop resistant mutations that can at once disfavor the inhibitor and still recognize the substrate. To investigate this hypothesis, 10 transition-state analogues, of greater or lesser similarity to substrates, were tested for inhibition of TEM-1 beta-lactamase, the most widespread resistance enzyme to penicillin antibiotics. The inhibitors were also tested against four characteristic mutant enzymes: TEM-30, TEM-32,more » TEM-52, and TEM-64. The inhibitor most similar to the substrate, compound 10, was the most potent inhibitor of the WT enzyme, with a K(i) value of 64 nM. Conversely, compound 10 was the most susceptible to the TEM-30 (R244S) mutant, for which inhibition dropped by over 100-fold. The other inhibitors were relatively impervious to the TEM-30 mutant enzyme. To understand recognition and resistance to these transition-state analogues, the structures of four of these inhibitors in complex with TEM-1 were determined by X-ray crystallography. These structures suggest a structural basis for distinguishing inhibitors that mimic the acylation transition state and those that mimic the deacylation transition state; they also suggest how TEM-30 reduces the affinity of compound 10. In cell culture, this inhibitor reversed the resistance of bacteria to ampicillin, reducing minimum inhibitory concentrations of this penicillin by between 4- and 64-fold, depending on the strain of bacteria. Notwithstanding this activity, the resistance of TEM-30, which is already extant in the clinic, suggests that there can be resistance liabilities with substrate-based design.« less

  8. Raman spectroscopy and Raman imaging for early detection of cancer

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Ortega, Angel; Estrela, Jose Maria

    2004-06-01

    Raman spectroscopy is a powerful technique as it provides fundamental information about vibrational modes of a system. Eigenvalues of these modes are very sensitive to the strength of the chemical bonds and perturbations caused by the environment, particularly charge distribution and alterations in the dipole strength of the system. All these parameters are profoundly modified during the tumor formation process nad hence Raman technique could be a unique and also a direct approach for evaluating tumor genesis at early stages. for this pupose the present investigation was carried out. We used cultured wild type and c-ras transformed NIH 3T3 fibroblast. The samples were treated with methyl alcohol solution ina conventional manner and then Raman spectra nad images were obtained by a specially developed confocal Raman microscope. The present results reveal differences between both cell types in the spectral details as well as in the morphology. Raman images are able to detect the exact site where cancer-related changes have taken place. These results clearly indicate the superiority of the present technique over conventional methods such as images obtained by X-rays or Nuclear Magnetic Resonance (NMR). Moreover, unlike other approaches, Raman images detect alterations at the submicron level rather than in the centimeter or millimeter range. Being an optical method it can be applied in vivo as a non-invasive technique potentially useful to early detection of cancer (particularly easy accessible cancers such as those of the skin and the digestive tract). The obtained resulsts suggest the great potential of Raman imaging in premature clinical diagnostic approaches.

  9. In-SITU Raman Spectroscopy of Single Microparticle Li-Intercalation Electrodes

    NASA Technical Reports Server (NTRS)

    Dokko, Kaoru; Shi, Qing-Fang; Stefan, Ionel C.; Scherson, Daniel A.

    2003-01-01

    Modifications in the vibrational properties of a single microparticle of LiMn2O4 induced by extraction and subsequent injection of Li(+) into the lattice have been monitored in situ via simultaneous acquisition of Raman scattering spectra and cyclic voltammetry data in 1M LiC1O4 solutions in ethylene carbonate (EC):diethyl carbonate (DEC) mixtures (1:1 by volume). Statistical analyses of the spectra in the range 15 < SOD < 45%, where SOD represents the state of discharge (in percent) of the nominally fully charged material, i.e. lambda-MnO2, were found to be consistent with the coexistence of two distinct phases of lithiated metal oxide in agreement with information derived from in situ X-ray diffraction (XRD) measurements involving more conventional battery-type electrodes.

  10. Technical Evaluation Motor no. 5 (TEM-5)

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Technical Evaluation Motor No. 5 (TEM-5) was static test fired at the Thiokol Corporation Static Test Bay T-97. TEM-5 was a full scale, full duration static test fire of a high performance motor (HPM) configuration solid rocket motor (SRM). The primary purpose of TEM static tests is to recover SRM case and nozzle hardware for use in the redesigned solid rocket motor (RSRM) flight program. Inspection and instrumentation data indicate that the TEM-5 static test firing was successful. The ambient temperature during the test was 41 F and the propellant mean bulk temperature (PMBT) was 72 F. Ballistics performance values were within the specified requirements. The overall performance of the TEM-5 components and test equipment was nominal. Dissembly inspection revealed that joint putty was in contact with the inner groove of the inner primary seal of the ignitor adapter-to-forward dome (inner) joint gasket; this condition had not occurred on any previous static test motor or flight RSRM. While no qualification issues were addressed on TEM-5, two significant component changes were evaluated. Those changes were a new vented assembly process for the case-to-nozzle joint and the installation of two redesigned field joint protection systems. Performance of the vented case-to-nozzle joint assembly was successful, and the assembly/performance differences between the two field joint protection system (FJPS) configurations were compared.

  11. Reduction of Raman scattering and fluorescence from anvils in high pressure Raman scattering

    NASA Astrophysics Data System (ADS)

    Dierker, S. B.; Aronson, M. C.

    2018-05-01

    We describe a new design and use of a high pressure anvil cell that significantly reduces the Raman scattering and fluorescence from the anvils in high pressure Raman scattering experiments. The approach is particularly useful in Raman scattering studies of opaque, weakly scattering samples. The effectiveness of the technique is illustrated with measurements of two-magnon Raman scattering in La2CuO4.

  12. Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells.

    PubMed

    Tan, Xuebin; Wang, Zhuyuan; Yang, Jing; Song, Chunyuan; Zhang, Ruohu; Cui, Yiping

    2009-11-04

    A biocompatible and stable surface-enhanced Raman scattering (SERS) probe has been successfully synthesized through a simple route with silver aggregates. Polyvinylpyrrolidone (PVP), a biocompatible polymer, was utilized to control the aggregation process and improve the chemical stability of the aggregates. Extinction spectroscopy and TEM results show the aggregation degree and core-shell structure of the probe. It is found that when we employ 4-mercaptobenzoic acid (4MBA), crystal violet (CV), Rhodamine 6G (R6G) or 4,4'-bipyridine molecules as Raman reporters, the SERS signal from the proposed probe can remain at a high level under aggressive chemical environments, even after being incorporated into living cells. In comparison with the traditional probes without the PVP shell, the new ones exhibit strong surface-enhanced effects and low toxicity towards living cells. We demonstrate that the PVP-coated silver aggregates are highly SERS effective, for which the fabrication protocol is advantageous in its simplicity and reproducibility.

  13. Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  14. Structural characterization of titania by X-ray diffraction, photoacoustic, Raman spectroscopy and electron paramagnetic resonance spectroscopy.

    PubMed

    Kadam, R M; Rajeswari, B; Sengupta, Arijit; Achary, S N; Kshirsagar, R J; Natarajan, V

    2015-02-25

    A titania mineral (obtained from East coast, Orissa, India) was investigated by X-ray diffraction (XRD), photoacoustic spectroscopy (PAS), Raman and Electron Paramagnetic Resonance (EPR) studies. XRD studies indicated the presence of rutile (91%) and anatase (9%) phases in the mineral. Raman investigation supported this information. Both rutile and anatase phases have tetragonal structure (rutile: space group P4(2)/mnm, a=4.5946(1) Å, c=2.9597(1) Å, V=62.48(1) (Å)(3), Z=2; anatase: space group I4(1)/amd, 3.7848(2) Å, 9.5098(11) Å, V=136.22(2) (Å)(3), Z=4). The deconvoluted PAS spectrum showed nine peaks around 335, 370, 415,485, 555, 605, 659, 690,730 and 785 nm and according to the ligand field theory, these peaks were attributed to the presence of V(4+), Cr(3+), Mn(4+) and Fe(3+) species. EPR studies revealed the presence of transition metal ions V(4+)(d(1)), Cr(3+)(d(3)), Mn(4+)(d(3)) and Fe(3+)(d(5)) at Ti(4+) sites. The EPR spectra are characterized by very large crystal filed splitting (D term) and orthorhombic distortion term (E term) for multiple electron system (s>1) suggesting that the transition metal ions substitute the Ti(4+) in the lattice which is situated in distorted octahedral coordination of oxygen. The possible reasons for observation of unusually large D and E term in the EPR spectra of transition metal ions (S=3/2 and 5/2) are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Synthesis, photoluminescence and Magnetic properties of iron oxide (α-Fe2O3) nanoparticles through precipitation or hydrothermal methods

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Ammar, Salah; Gadri, Abdellatif

    2018-07-01

    In this work the iron oxide (α-Fe2O3) nanoparticles are synthesized using two different methods: precipitation and hydrothermal. Size, structural, optical and magnetic properties were determined and compared using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermogravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis, Superconducting QUantum Interference Device (SQUID) magnetometer and Photoluminescence (PL). XRD data further revealed a rhombohedral (hexagonal) structure with the space group (R-3c) and showed an average size of 21 nm for hydrothermal samples and 33 nm for precipitation samples which concorded with TEM and SEM images. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure α-Fe2O3 but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The decrease in the particle size of hematite of 33 nm for precipitation samples to 21 nm for hydrothermal samples is responsible for increasing the optical band gap of 1.94-2.10 eV where, the relation between them is inverse relationship. The products exhibited the attractive magnetic properties with good saturation magnetization, which were examined by a SQUID magnetometer. Photoluminescence measurements showed a strong emission band at 450 nm. Pure hematite prepared by hydrothermal method has smallest size, best crystallinity, highest band gap and best value of saturation magnetization compared to the hematite elaborated by the precipitation method.

  16. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  17. Enhanced broadband near-infrared luminescence from Pr3+-doped tellurite glass with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Zhou, Yaxun; Zhou, Minghan; Su, Xiue; Zhou, Zizhong; Yang, Gaobo

    2017-11-01

    Pr3+-doped tellurite glasses containing metallic silver NPs were synthesized by the conventional melt-quenching technique. Structural, thermal and optical properties of the synthesized glass samples were characterized by X-Ray diffraction (XRD) curves, Raman spectra, differential scanning calorimeter (DSC) curves, transmission electron microscopy (TEM) images, UV/Vis/NIR absorption and near-infrared fluorescence emission spectra. The XRD curves confirmed the amorphous structural nature of the synthesized glasses, the Raman spectra identified the presence of different vibrational groups, the DSC curves verified the good thermal stability, and the TEM images revealed the nucleated silver NPs with average diameter about 10 nm dispersed in the glass matrix and its surface Plasmon resonance (SPR) absorption band was located at around 510 nm. Besides, Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6) and other important spectroscopic parameters like transition probability, radiative lifetime, branching ratio were calculated to evaluate the radiative properties of Pr3+ levels from the measured optical absorption spectra. It was found that Pr3+-doped tellurite glasses could emit an ultra-broadband fluorescence extending from 1250 to 1650 nm under the 488 nm excitation, and this fluorescence emission increased further with the introduction of silver NPs. The enhanced fluorescence was mainly attributed to the increased local electric field around Pr3+ induced by silver NPs. The present results demonstrate that Pr3+-Ag codoped tellurite glass is a promising candidate for the near-infrared band ultra-broadband fiber amplifiers covering the expanded low-loss communication window.

  18. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    NASA Astrophysics Data System (ADS)

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-08-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm-1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10-12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands.

  19. Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment

    PubMed Central

    Saleh, Tawfik A.; Al-Shalalfeh, Mutasem M.; Al-Saadi, Abdulaziz A.

    2016-01-01

    Graphene functionalized with polyamidoamine dendrimer, decorated with silver nanoparticles (G-D-Ag), was synthesized and evaluated as a substrate with surface-enhanced Raman scattering (SERS) for methimazole (MTZ) detection. Sodium borohydride was used as a reducing agent to cultivate silver nanoparticles on the dendrimer. The obtained G-D-Ag was characterized by using UV-vis spectroscopy, scanning electron microscope (SEM), high-resolution transmission electron microscope (TEM), Fourier-transformed infrared (FT-IR) and Raman spectroscopy. The SEM image indicated the successful formation of the G-D-Ag. The behavior of MTZ on the G-D-Ag as a reliable and robust substrate was investigated by SERS, which indicated mostly a chemical interaction between G-D-Ag and MTZ. The bands of the MTZ normal spectra at 1538, 1463, 1342, 1278, 1156, 1092, 1016, 600, 525 and 410 cm−1 were enhanced due to the SERS effect. Correlations between the logarithmical scale of MTZ concentrations and SERS signal intensities were established, and a low detection limit of 1.43 × 10−12 M was successfully obtained. The density functional theory (DFT) approach was utilized to provide reliable assignment of the key Raman bands. PMID:27572919

  20. Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shakhov, Fedor M.; Abyzov, Andrey M.; Takai, Kazuyuki

    2017-12-01

    Boron doped diamond (BDD) was synthesized under high pressure and high temperature (HPHT) of 7 GPa, 1230 °C in a short time of 10 s from a powder mixtures of detonation nanodiamond (DND), pentaerythritol C5H8(OH)4 and amorphous boron. SEM, TEM, XRD, XPS, FTIR and Raman spectroscopy indicated that BDD nano- and micro-crystals have formed by consolidation of DND particles (4 nm in size). XRD showed the enlargement of crystallites size to 6-80 nm and the increase in diamond lattice parameter by 0.02-0.07% without appearance of any microstrains. Raman spectroscopy was used to estimate the content of boron atoms embedded in the diamond lattice. It was found that the Raman diamond peak shifts significantly from 1332 cm-1 to 1290 cm-1 without appearance of any non-diamond carbon. The correlation between Raman peak position, its width, and boron content in diamond is proposed. Hydrogenated diamond carbon in significant amount was detected by IR spectroscopy and XPS. Due to the doping with boron content of about 0.1 at%, the electrical conductivity of the diamond achieved approximately 0.2 Ω-1 cm-1. Reaction mechanism of diamond growth (models of recrystallization and oriented attachment) is discussed, including the initial stages of pentaerythritol pyrolysis and thermal desorption of functional groups from the surface of DND particles with the generation of supercritical fluid of low-molecular substances (H2O, CH4, CO, CO2, etc.), as well as byproducts formation (B2O3, B4C).

  1. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  2. Infrared and Raman Spectroscopic Studies of the Antimicrobial Effects of Garlic Concentrates and Diallyl Constituents on Foodborne Pathogens

    PubMed Central

    Lu, Xiaonan; Rasco, Barbara A.; Kang, Dong-Hyun; Jabal, Jamie M.F.; Aston, D. Eric; Konkel, Michael E.

    2012-01-01

    The antimicrobial effects of garlic (Allium sativum) extract (25, 50, 75, 100, and 200 μl/ml) and diallyl sulfide (5, 10 and 20 μM) on Listeria monocytogenes and Escherichia coli O157:H7 cultivated in tryptic soy broth at 4, 22 and 35°C for up to 7 days were investigated. L. monocytogenes was more resistant to garlic extract and diallyl compounds treatment than E. coli O157:H7. Fourier transform Infrared (FT-IR) spectroscopy indicated that diallyl constituents contributed more to the antimicrobial effect than phenolic compounds. This effect was verified by Raman spectroscopy and Raman mapping on single bacteria. Scanning electron microscope (SEM) and transmission electron microscope (TEM) showed cell membrane damage consistent with spectroscopic observation. The degree of bacterial cell injury could be quantified using chemometric methods. PMID:21553849

  3. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  4. MicroRaman Spectroscopy and Raman Imaging of Basal Cell Carcinoma

    NASA Astrophysics Data System (ADS)

    Short, M. A.; Zeng, H.; Lui, H.

    2005-03-01

    We have measured the Raman spectra of normal and cancerous skin tissues using a confocal microRaman spectrograph with a sub-micron spatial resolution. We found that the Raman spectrum of a cell nucleolus is different from the spectra measured outside the nucleolus and considerably different from those measured outside the nucleus. In addition, we found significant spectroscopic differences between normal and cancer-bearing sites in the dermis region. In order to utilize these differences for non-invasive skin cancer diagnosis, we have developed a Raman imaging system that clearly demonstrates the structure, location and distribution of cells in unstained skin biopsy samples. Our method is expected to be useful for the detection and characterization of skin cancer based on the known distinct cellular differences between normal and malignant skin.

  5. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  6. TEM Derivative-Producing Enterobacter aerogenes Strains: Dissemination of a Prevalent Clone

    PubMed Central

    Dumarche, P.; De Champs, C.; Sirot, D.; Chanal, C.; Bonnet, R.; Sirot, J.

    2002-01-01

    TEM-24 (CAZ-6) extended-spectrum β-lactamase (ESBL) was detected in 1988 in Clermont-Ferrand, France, in Klebsiella pneumoniae (blaTEM-24) and Enterobacter aerogenes (blaTEM-24b), and since 1994, a TEM-24-producing E. aerogenes clonal strain has been observed elsewhere in the country. To determine if the spread of this clonal strain was restricted to TEM-24-producing E. aerogenes strains, 84 E. aerogenes strains (non-TEM/SHV-producing strains, TEM-1- or -2-producing strains, and different ESBL-producing strains), isolated from 1988 to 1999 in Clermont-Ferrand (n = 59) and in 11 other French hospitals in 1998 (n = 25), were studied. A clonal strain was found for TEM-24- but also for TEM-3- and TEM-1- or 2-producing isolates. This study shows that there is a clonal strain dependent on acquisition of the TEM-type enzyme (TEM-24 and other TEM types). PMID:11897606

  7. Synthesis and evaluation of optical and antimicrobial properties of Ag-SnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Kumar Nair, Kishore; Kumar, Promod; Kumar, Vinod; Harris, R. A.; Kroon, R. E.; Viljoen, Bennie; Shumbula, P. M.; Mlambo, M.; Swart, H. C.

    2018-04-01

    We report on the sol-gel based room temperature synthesis of undoped SnO2 and Ag-SnO2 nanostructures. The synthesized nanostructures were characterized by Fourier transform infrared spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, High-resolution transmission electron microscopy (HR-TEM) and UV-visible spectroscopy. The XRD pattern confirmed that the obtained nanostructures have a tetragonally rutile structure. No extra phase changes were observed after Ag doping. UV-visible spectroscopy measurements indicated that the band gap of 3.59 eV for pure SnO2 nanostructures, decreased to 3.39 eV after doping. TEM analysis showed that no regular shape morphology existed and some rod-shaped particles were also detected in the nanostructures. The antibacterial activity of the nanostructures against E. coli was evaluated and a continuous decrease of microbial count was observed. The microbial population decreased from 6 × 105 cfu/ml to 7 × 104 cfu/ml and 5 × 104 cfu/ml on SnO2 and Ag-SnO2 treatments, respectively. Thus, the nanostructures can be used for the biorational management of E. coli for waste water treatment before discharge.

  8. Paper-based transparent flexible thin film supercapacitors

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-05-01

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c

  9. Mesoporous CdS via Network of Self-Assembled Nanocrystals: Synthesis, Characterization and Enhanced Photoconducting Property.

    PubMed

    Patra, Astam K; Banerjee, Biplab; Bhaumik, Asim

    2018-01-01

    Semiconduction nanoparticles are intensively studied due to their huge potential in optoelctronic applications. Here we report an efficient chemical route for hydrothermal synthesis of aggregated mesoporous cadmium sulfide (CdS) nanoparticles using supramolecular-assembly of ionic and water soluble sodium salicylate as the capping agent. The nanostructure, mesophase, optical property and photoconductivity of these mesoporous CdS materials have been characterized by using small and wide angle powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2-sorption, Raman analysis, Fourier transformed infrared (FT-IR), UV-Visible DSR spectroscopy, and photoconductivity measurement. Wide angle XRD pattern and high resolution TEM image analysis suggested that the particle size of the materials is within 10 nm and the nanoparticles are in well-crystallized cubic phase. Mesoporous CdS nanoparticles showed drastically enhanced photoelectrochemical response under visible light irradiation on entrapping a photosensitizer (dye) molecule in the interparticle spaces. Efficient synthesis strategy and the enhanced photo response in the mesoporous CdS material could facilitate the designing of other porous semiconductor oxide/sulfide and their applications in photon-to-electron conversion processes.

  10. TEM PSHA2015 Reliability Assessment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Wang, Y. J.; Chan, C. H.; Ma, K. F.

    2016-12-01

    The Taiwan Earthquake Model (TEM) developed a new probabilistic seismic hazard analysis (PSHA) for determining the probability of exceedance (PoE) of ground motion over a specified period in Taiwan. To investigate the adequacy of the seismic source parameters adopted in the 2015 PSHA of the TEM (TEM PSHA2015), we conducted several tests of the seismic source models. The observed maximal peak ground acceleration (PGA) of the ML > 4.0 mainshocks in the 23-year data period of 1993-2015 were used to test the predicted PGA of PSHA from the areal and subduction zone sources with the time-independent Poisson assumption. This comparison excluded the observations from 1999 Chi-Chi earthquake, as this was the only earthquake associated with the identified active fault in this past 23 years. We used tornado diagrams to analyze the sensitivities of these source parameters to the ground motion values of the PSHA. This study showed that the predicted PGA for a 63% PoE in the 23-year period corresponded to the empirical PGA and the predicted numbers of PGA exceedances to a threshold value 0.1g close to the observed numbers, confirming the parameter applicability for the areal and subduction zone sources. We adopted the disaggregation analysis from a hazard map to determine the contribution of the individual seismic sources to hazard for six metropolitan cities in Taiwan. The sensitivity tests of the seismogenic structure parameters indicated that the slip rate and maximum magnitude are dominant factors for the TEM PSHA2015. For densely populated faults in SW Taiwan, maximum magnitude is more sensitive than the slip rate, giving the concern on the possible multiple fault segments rupture with larger magnitude in this area, which was not yet considered in TEM PSHA2015. The source category disaggregation also suggested that special attention is necessary for subduction zone earthquakes for long-period shaking seismic hazards in Northern Taiwan.

  11. Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses

    NASA Astrophysics Data System (ADS)

    Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel

    2015-02-01

    Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out.

  12. The high-pressure behavior of spherocobaltite (CoCO3): a single crystal Raman spectroscopy and XRD study

    NASA Astrophysics Data System (ADS)

    Chariton, Stella; Cerantola, Valerio; Ismailova, Leyla; Bykova, Elena; Bykov, Maxim; Kupenko, Ilya; McCammon, Catherine; Dubrovinsky, Leonid

    2018-01-01

    Magnesite (MgCO3), calcite (CaCO3), dolomite [(Ca, Mg)CO3], and siderite (FeCO3) are among the best-studied carbonate minerals at high pressures and temperatures. Although they all exhibit the calcite-type structure ({R}\\bar{3}{c}) at ambient conditions, they display very different behavior at mantle pressures. To broaden the knowledge of the high-pressure crystal chemistry of carbonates, we studied spherocobaltite (CoCO3), which contains Co2+ with cation radius in between those of Ca2+ and Mg2+ in calcite and magnesite, respectively. We synthesized single crystals of pure spherocobaltite and studied them using Raman spectroscopy and X-ray diffraction in diamond anvil cells at pressures to over 55 GPa. Based on single crystal diffraction data, we found that the bulk modulus of spherocobaltite is 128 (2) GPa and K' = 4.28 (17). CoCO3 is stable in the calcite-type structure up to at least 56 GPa and 1200 K. At 57 GPa and after laser heating above 2000 K, CoCO3 partially decomposes and forms CoO. In comparison to previously studied carbonates, our results suggest that at lower mantle conditions carbonates can be stable in the calcite-type structure if the radius of the incorporated cation(s) is equal or smaller than that of Co2+ (i.e., 0.745 Å).

  13. Analysis of vibrational response in graphite oxide nanoplatelets

    NASA Astrophysics Data System (ADS)

    Prias Barragan, Jhon Jairo; Gross, Katherine; Lajaunie, Luc; Arenal, Raul; Ariza Calderon, Hernando; Prieto, Pedro

    In this work, we present a new low-cost fabrication process to obtain graphite oxide nanoplatelets from bamboo pyroligneous acid (GO-BPA) by thermal decomposition method using a pyrolysis system for different carbonization temperatures from 673 to 973 K. The GO-BPA samples were characterized by using Raman, FTIR, XRD, SEM and TEM techniques, whose results suggest that increased carbonization temperature increases graphite conversion, boundary defects, desorption of some organic compounds and phonon response, respectively. We discuss potential applications of the GO-BPA samples involving phonon response that would benefit from a fully scaled technology, advanced electronic sensors and devices.

  14. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Anand, Kanica; Kohli, Nipin; Kaur, Amanpreet; Singh, Ravi Chand

    2018-06-01

    Reduced graphene oxide (RGO) and Pd doped WO3 nanocomposites were fabricated by employing electrostatic interactions between poly (diallyldimethylammonium chloride) (PDDA) modified Pd doped WO3 nanostructures and graphite oxide (GO) and studied for their gas sensing application. XRD, Raman, FTIR, FESEM-EDX, TEM, TGA, XPS and Photoluminescence techniques were used for characterization of as-synthesized samples. Gas sensing studies revealed that the sensor with optimized doping of 1.5 mol% Pd and 1 wt% GO shows temperature dependent selectivity towards hydrogen and acetone. The role of WO3, Pd and RGO has been discussed in detail for enhanced sensing performance.

  15. Raman Signatures of Polytypism in Molybdenum Disulfide.

    PubMed

    Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik

    2016-02-23

    Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.

  16. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  17. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    PubMed

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  18. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy.

    PubMed

    Muzyka, Roksana; Drewniak, Sabina; Pustelny, Tadeusz; Chrubasik, Maciej; Gryglewicz, Grażyna

    2018-06-21

    In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

  19. In situ TEM of radiation effects in complex ceramics.

    PubMed

    Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C

    2009-03-01

    In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.

  20. XRD, Electron Microscopy and Vibrational Spectroscopy Characterization of Simulated SB6 HLW Glasses - 13028

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanovsky, S.V.; Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Moscow 119991; Nikonov, B.S.

    2013-07-01

    Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (∼1 μm) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen andmore » iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)« less

  1. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  2. Raman crystallography of RNA.

    PubMed

    Gong, Bo; Chen, Jui-Hui; Yajima, Rieko; Chen, Yuanyuan; Chase, Elaine; Chadalavada, Durga M; Golden, Barbara L; Carey, Paul R; Bevilacqua, Philip C

    2009-10-01

    Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.

  3. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.

    PubMed

    Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav

    2017-02-08

    We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).

  4. Near-field Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayars, Eric James

    2000-10-01

    The purpose of this research is to investigate differences observed between Raman spectra when seen through a Near-field Scanning Optical Microscope (NSOM) and spectra of the same materials in conventional Raman or micro-Raman configurations. One source of differences in the observed spectra is a strong z polarized component in the near-field radiation; observations of the magnitude of this effect are compared with theoretical predictions for the field intensity near an NSOM tip. Large electric field gradients near the sharp NSOM probe may be another source of differences. This Gradient-Field Raman (GFR) effect was observed, and there is good evidence that it plays a significant role in Surface-Enhanced Raman Spectroscopy (SERS). The NSOM data seen, however, are not sufficient to prove conclusively that the spectral variations seen are due to the field gradients.

  5. Comparing Time Domain Electromagnetics (TEM) and Early-Time TEM for Mapping Highly Conductive Groundwater in Mars Analog Environments

    NASA Astrophysics Data System (ADS)

    Jernsletten, J. A.

    2005-05-01

    Introduction: The purpose of this study is to evaluate the use of (diffusive) Time Domain Electromagnetics (TEM) for sounding of subsurface water in conductive Mars analog environments. To provide a baseline for such studies, I show data from two field studies: 1) Diffusive sounding data (TEM) from Pima County, Arizona; and 2) Shallower sounding data using the Fast-Turnoff TEM method from Peña de Hierro in the Rio Tinto region of Spain. The latter is data from work conducted under the auspices of the Mars Analog Research and Technology Experiment (MARTE). Pima County TEM Survey: A TEM survey was carried out in Pima County, Arizona, in January 2003. Data was collected using 100 m Tx loops and a ferrite-cored magnetic coil Rx antenna, and processed using commercial software. The survey used a 16 Hz sounding frequency, which is sensitive to slightly salty groundwater. Prominent features in the data from Arizona are the ~500 m depth of investigation and the ~120 m depth to the water table, confirmed by data from four USGS test wells surrounding the field area. Note also the conductive (~20-40 ω m) clay-rich soil above the water table. Rio Tinto Fast-Turnoff TEM Survey: During May and June of 2003, a Fast-Turnoff (early time) TEM survey was carried out at the Peña de Hierro field area of the MARTE project, near the town of Nerva, Spain. Data was collected using 20 m and 40 m Tx loop antennae and 10 m loop Rx antennae, with a 32 Hz sounding frequency. Data from Line 4 (of 16) from this survey, collected using 40 m Tx loops, show ~200 m depth of investigation and a conductive high at ~90 m depth below Station 20 (second station of 10 along this line). This is the water table, matching the 431 m MSL elevation of the nearby pit lake. The center of the "pileup" below Station 60 is spatially coincident with the vertical fault plane located here. Data from Line 15 and Line 14 of the Rio Tinto survey, collected using 20 m Tx loops, achieve ~50 m depth of investigation and

  6. Dynamic XRD, Shock and Static Compression of CaF2

    NASA Astrophysics Data System (ADS)

    Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav

    2017-06-01

    The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Multifunctional Fe3O4/ZnO nanocomposites with magnetic and optical properties.

    PubMed

    Zou, Peng; Hong, Xia; Chu, Xueying; Li, Yajun; Liu, Yichun

    2010-03-01

    Multifunctional Fe3O4/ZnO nanocomposites were successfully synthesized through two-step solution-based methods. Fe3O4 nanoparticles were used as seeds for the deposit and growth of ZnO nanocrystals. Transmission electron microscopy (TEM) images, X-ray diffraction (XRD) patterns, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were employed to observe the morphology, size, structure, and crystalline phase of the nanocomposites and confirm their chemical composition. The results of magnetization curves, resonant Raman scattering, and photoluminescence spectra revealed that the nanocomposites simultaneously possessed the super-paramagnetism of Fe3O4 and the multiphonon resonant Raman scattering and photoluminescence (PL) properties of ZnO. Compared with that of pure Fe3O4, the saturation magnetization of the Fe3O4 component within the nanocomposites was enhanced. The Raman spectroscopic fingerprint of ZnO component was preserved, and the fluorescent background was efficiently reduced. The interfacial effect was found to play an important role in modulating or improving the properties of the nanocomposites.

  8. Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses.

    PubMed

    Morillas, Héctor; Maguregui, Maite; Trebolazabala, Josu; Madariaga, Juan Manuel

    2015-02-05

    Bricks and mortar currently constitute one of the most important building materials used in the construction of most modern facades. The deterioration of these materials is caused primarily by the impact of numerous external stressors, while poor manufacturing quality, particularly of mortars, can also contribute to this process. In this work, the non-invasive Raman spectroscopy technique was used to identify the recently formed deterioration compounds (primarily sulfates and nitrates) in bricks, artificial stones, and joint mortars from detached houses in the Bilbao metropolitan area (Basque Country, North of Spain), as well as to investigate the deterioration processes taking place in these materials. Additionally, to confirm and in some cases complement the results obtained with Raman spectroscopy, SEM-EDS and XRD measurements were also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Probing the interaction of noble gases with pristine and nitrogen-doped graphene through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunha, Renato; Perea-López, Néstor; Elías, Ana Laura; Fujisawa, Kazunori; Carozo, Victor; Feng, Simin; Lv, Ruitao; dos Santos, Maria Cristina; Terrones, Mauricio; Araujo, Paulo T.

    2018-05-01

    The interactions of adsorbates with graphene have received increasing attention due to its importance in the development of applications involving graphene-based coatings. Here, we present a study of the adsorption of noble gases on pristine and nitrogen-doped graphene. Single-layer graphene samples were synthesized by chemical vapor deposition (CVD) and transferred to transmission electron microscopy (TEM) grids. Several noble gases were allowed to adsorb on the suspended graphene substrate at very low temperatures. Raman spectra show distinct frequency blue shifts in both the 2D and G bands, which are induced by gas adsorption onto high quality single layer graphene (1LG). These shifts, which we associate with compressive biaxial strain in the graphene layers induced by the noble gases, are negligible for nitrogen-doped graphene. Additionally, a thermal depinning transition, which is related to the desorption of a noble gas layer from the graphene surface at low temperatures (ranging from 20 to 35 K), was also observed at different transition temperatures for different noble gases. These transition temperatures were found to be 25 K for argon and 35 K for xenon. Moreover, we were able to obtain values for the compressive biaxial strain in graphene induced by the adsorbed layer of noble gases, using Raman spectroscopy. Ab initio calculations confirmed the correlation between the noble gas-induced strain and the changes in the Raman features observed.

  10. An effective approach to study the biocompatibility of Fe3O4 nanoparticles, graphene and their nanohybrid composite

    NASA Astrophysics Data System (ADS)

    Singh, Ashwani Kumar; Singh, Pallavi; Verma, Rajiv Kumar; Yadav, Suresh; Singh, Kedar; Srivastava, Amit

    2018-02-01

    The present manuscript describes a simple, facile and effective solvothermal route to synthesize Fe3O4 nanoparticles (Fe3O4 NPs), reduced graphene oxide nanosheets (rGO NSs) and Fe3O4/reduced graphene oxide nanohybrid composite (Fe3O4/rGO nanohybrid composite) and subsequently examines their comparative biocompatibilities. The as-obtained Fe3O4 NPs, rGO NSs and Fe3O4/rGO nanohybrid composite have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The XRD studies and scanning electron microscope confirmed the proper phase formation and the surface morphology of the as-synthesized products, respectively. The Raman spectra of Fe3O4 NPs show the strongest peak at 673 cm-1 which can be assigned to A1g peak of bare Fe3O4 NPs and it complements the XRD studies. Furthermore, the increment in the I D/I G ratio in the Fe3O4/rGO nanohybrid composite suggests the creation of defects in graphene sheets due to strain caused by Fe3O4 NPs. The biocompatibility of these samples has been tested using Lung cancer cell line H1299 through MTT assay. The MTT assay reveals that the nanohybrid composite endows more biocompatible and effectiveness than rGO NSs and Fe3O4 NPs individually, as anti-proliferative agent for cancer treatment.

  11. Polymer-coated surface enhanced Raman scattering (SERS) gold nanoparticles for multiplexed labeling of chronic lymphocytic leukemia cells

    NASA Astrophysics Data System (ADS)

    MacLaughlin, Christina M.; Parker, Edward P. K.; Walker, Gilbert C.; Wang, Chen

    2012-01-01

    The ease and flexibility of functionalization and inherent light scattering properties of plasmonic nanoparticles make them suitable contrast agents for measurement of cell surface markers. Immunophenotyping of lymphoproliferative disorders is traditionally undertaken using fluorescence detection methods which have a number of limitations. Herein, surface-enhanced Raman scattering (SERS) gold nanoparticles conjugated to monoclonal antibodies are used for the selective targeting of CD molecules on the surface of chronic lymphocytic leukemia (CLL) cells. Raman-active reporters were physisorbed on to the surface of 60 nm spherical Au nanoparticles, the particles were coated with 5kDa polyethylene glycol (PEG) including functionalities for conjugation to monoclonal IgG1 antibodies. A novel method for quantifying the number of antibodies bound to SERS probes on an individual basis as opposed to obtaining averages from solution was demonstrated using metal dots in transmission electron microscopy (TEM). The specificity of the interaction between SERS probes and surface CD molecules of CLL cells was assessed using Raman spectroscopy and dark field microscopy. An in-depth study of SERS probe targeting to B lymphocyte marker CD20 was undertaken, and proof-of-concept targeting using different SERS nanoparticle dyes specific for cell surface CD19, CD45 and CD5 demonstrated using SERS spectroscopy.

  12. Optical trapping and Raman spectroscopy of single nanostructures using standing-wave Raman tweezers

    NASA Astrophysics Data System (ADS)

    Wu, Mu-ying; He, Lin; Chen, Gui-hua; Yang, Guang; Li, Yong-qing

    2017-08-01

    Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped micro-particle, but is generally less effective for individual nano-sized objects in the 10-100 nm range. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion. Here, we present standing-wave Raman tweezers for stable trapping and sensitive characterization of single isolated nanostructures with a low laser power by combining a standing-wave optical trap (SWOT) with confocal Raman spectroscopy. This scheme has stronger intensity gradients and balanced scattering forces, and thus is more stable and sensitive in measuring nanoparticles in liquid with 4-8 fold increase in the Raman signals. It can be used to analyze many nanoparticles that cannot be measured with single-beam Raman tweezers, including individual single-walled carbon nanotubes (SWCNT), graphene flakes, biological particles, polystyrene beads (100 nm), SERS-active metal nanoparticles, and high-refractive semiconductor nanoparticles with a low laser power of a few milliwatts. This would enable sorting and characterization of specific SWCNTs and other nanoparticles based on their increased Raman fingerprints.

  13. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  14. MultiLaue: A Technique to Extract d-spacings from Laue XRD

    DOE PAGES

    Gainsforth, Zack; Marcus, Matthew A.; Tamura, Nobumichi; ...

    2016-07-25

    We present that broad spectrum X-ray Diffraction (XRD) is named Laue after Max von Laue, and is the original XRD technique. Today, monochromatic XRD is more common because Bragg's equation allows determination of d-spacings where Laue does not. Laue still remains in use for single crystal systems because it can be used to make very accurate unit cell determinations as well as for strain and orientation mapping. Lastly, a Laue technique which could provide unambiguous determination of lattice spacings, a la Bragg's equation would be a huge leap forward, especially for multiphase samples such as meteorites, interplanetary dust particles andmore » some geological specimens.« less

  15. Objective function analysis for electric soundings (VES), transient electromagnetic soundings (TEM) and joint inversion VES/TEM

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Bokhonok, Oleg; Porsani, Jorge Luís; Monteiro dos Santos, Fernando Acácio; Diogo, Liliana Alcazar; Slob, Evert

    2017-11-01

    Ambiguities in geophysical inversion results are always present. How these ambiguities appear in most cases open to interpretation. It is interesting to investigate ambiguities with regard to the parameters of the models under study. Residual Function Dispersion Map (RFDM) can be used to differentiate between global ambiguities and local minima in the objective function. We apply RFDM to Vertical Electrical Sounding (VES) and TEM Sounding inversion results. Through topographic analysis of the objective function we evaluate the advantages and limitations of electrical sounding data compared with TEM sounding data, and the benefits of joint inversion in comparison with the individual methods. The RFDM analysis proved to be a very interesting tool for understanding the joint inversion method of VES/TEM. Also the advantage of the applicability of the RFDM analyses in real data is explored in this paper to demonstrate not only how the objective function of real data behaves but the applicability of the RFDM approach in real cases. With the analysis of the results, it is possible to understand how the joint inversion can reduce the ambiguity of the methods.

  16. Integrated Raman and angular scattering of single biological cells

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the

  17. Raman Spectra of Glasses

    DTIC Science & Technology

    1986-11-30

    Howard University , Department of Chemistry, Washington, DC Distribution Unlimited Per.. .Dr. Donald Polk, ONR/Code 1131M .IL. OFFICE OF NAVAL...the specific facilities to perform this extremely high temperature Raman work at Howard university . Of course, we do have very extensive facilities at... Howard University for CW laser-Raman spectroscopy of melts to about 1600 or 1800 OC. We have four complete laser-Raman instruments; Lhree holographic

  18. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  19. Raman evidence of the formation of LT-LiCoO 2 thin layers on NiO in molten carbonate at 650°C

    NASA Astrophysics Data System (ADS)

    Mendoza, L.; Baddour-Hadjean, R.; Cassir, M.; Pereira-Ramos, J. P.

    2004-03-01

    The structural evolution of thin layers of Co 3O 4 elaborated on nickel-based substrates in the Li 2CO 3-Na 2CO 3 carbonate eutectic at 650 °C as a function of time immersion is reported. Raman microspectrometry has been applied in order to provide more information on the nature of the protective cobalt oxide layers. The typical Raman fingerprint of the LT-LiCoO 2 compound has been obtained, with four well defined bands at 449, 484, 590 and 605 cm -1, while XRD data are unable to distinguish the layered phase (HT) from the spinel one (LT). The mechanical stability of such films does not exceed 10 h in direct contact with the molten carbonate bulk at 650 °C; nevertheless, these conditions are much more corrosive than in a molten carbonate fuel cell (MCFC).

  20. Synthesis and characterization of titanate nanotube/single-walled carbon nanotube (TNT/SWCNT) porous nanocomposite and its photocatalytic activity on 4-chlorophenol degradation under UV and solar irradiation

    NASA Astrophysics Data System (ADS)

    Payan, A.; Fattahi, M.; Jorfi, S.; Roozbehani, B.; Payan, S.

    2018-03-01

    The titanate nanotube/single-wall carbon nanotube (TNT/SWCNT) nanocomposites from different titania precursors were prepared by a two-step hydrothermal process. These nanocomposites were characterized by XRD, BET, Raman, FESEM, TEM, EDX, EDS, EIS, UV-vis DRS and FTIR techniques. The FESEM and TEM images showed the high porous nanocomposites with two types of tubular structure relating to TNTs and SWCNTs which were interwoven together uniformly. The XRD and Raman analysis further corroborated the chemical interaction between the SWCNT and the TNT in the nanocomposites. The photocatalytic performance of the as-synthesized composites were examined by the photodegradation of 4-CP under solar and UV illumination. The results revealed an impressive enhancement in photocatalytic activity of the nanocomposites under both irradiation conditions comparison to bare TNPs and TNTs. Amongst the TNT/SWCNT nanocomposites, 10% loading of SWCNT under UV irradiation and 5% loading of SWCNT under solar irradiation exhibited the maximum photocatalytic performance while the photocatalytic degradation efficiency of nanocomposites were not affected considerably by the type of precursor. Moreover, the mechanism and role of SWCNT were investigated and the plausible degradation pathways of 4-CP was suggested. TOC analyses was performed for determination of 4-CP mineralization rate and results showed complete mineralization after 240 and 390 min under UV and solar irradiation, respectively. The trapping experiments corroborated the O2- and OH radicals as the main reactive species in 4-CP degradation process. Langmuir-Hinshelwood kinetic model was fittingly matched with the experimental data (R2: 0.9218 and 0.9703 for UV and solar irradiation). Additionally, the stability of the nanocomposites were investigated and revealed 8% decrease in degradation efficiency after four cycles.

  1. Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    Hematite (α-Fe2O3) nanoparticles were synthesized via a simple chemical precipitation method. The impact of varying the concentration of precursor on the crystalline phase, size and morphology of α-Fe2O3 products was explored. The characteristic of the synthesized hematite nanoparticles were evaluated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR) spectroscopy, Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA), Ultraviolet-Visible (UV-Vis) analysis and Photoluminescence (PL). XRD data revealed a rhombohedral (hexagonal) structure with the space group R-3c in all samples. Uniform spherical like morphology was confirmed by TEM and SEM. The result revealed that the particle sizes were varied between 21 and 82 nm and that the increase in precursor concentration (FeCl3, 6H2O) is accompanied by an increase in the particle size of 21 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.05 M at 82 nm for pure α-Fe2O3 synthesized with [Fe3+] = 0.4 M. FT-IR confirms the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we have synthesized pure hematite but also to identify their phonon modes. The thermal behavior of compound was studied by using TGA/DTA results: The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. Besides, the optical investigation revealed that samples have an optical gap of about 2.1 eV and that this value varies as a function of the precursor concentration.

  2. Efficient photocatalytic degradation of rhodamine-B by Fe doped CuS diluted magnetic semiconductor nanoparticles under the simulated sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Sreelekha, N.; Subramanyam, K.; Amaranatha Reddy, D.; Murali, G.; Rahul Varma, K.; Vijayalakshmi, R. P.

    2016-12-01

    The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5-10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.

  3. Technical Evaluation Motor No. 7 (TEM-07)

    NASA Technical Reports Server (NTRS)

    Hugh, Phil

    1991-01-01

    Technical Evaluation Motor Number 7 (TEM-7) was a full scale, full-duration static test firing of a high performance motor (HPM) configuration solid rocket motor (SRM) with nozzle vectoring. The static test fire occurred on 11 December 1990 at the Thiokol Corporation Static Test Bay T-97. Documented here are the procedures, performance, and results available through 22 January 1991. Critical post test hardware activities and assessment of the test data are not complete. A completed test report will be submitted 60 days after the test date. Included here is a presentation and discussion of the TEM-7 performance, anomalies, and test result concurrence with the objectives outlined in CTP-0107 Revision A, Space Shuttle Technical Evaluation Motor number 7 (TEM-07) Static Fire Test Plan.

  4. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  5. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.

    PubMed

    Stürzl, Ninette; Lebedkin, Sergei; Klumpp, Stefanie; Hennrich, Frank; Kappes, Manfred M

    2013-05-07

    We describe a micro-Raman setup allowing for efficient resonance Raman spectroscopy (RRS), i.e., mapping of Raman spectra as a function of tunable laser excitation wavelength. The instrument employs angle-tunable bandpass optical filters which are integrated into software-controlled Raman and laser cleanup filter devices. These automatically follow the excitation laser wavelength and combine tunability with high bandpass transmission as well as high off-band blocking of light. Whereas the spectral intervals which can be simultaneously acquired are bandpass limited to ~350 cm(-1), they can be tuned across the spectrum of interest to access all characteristic Raman features. As an illustration of performance, we present Raman mapping of single-walled carbon nanotubes (SWNTs): (i) in a small volume of water-surfactant dispersion as well as (ii) after deposition onto a substrate. A significant improvement in the acquisition time (and efficiency) is demonstrated compared to previous RRS implementations. These results may help to establish (micro) Raman spectral mapping as a routine tool for characterization of SWNTs as well as other materials with a pronounced resonance Raman response in the visible-near-infrared spectral region.

  6. Micro-mirror arrays for Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Duncan, W. M.

    2015-03-01

    In this research we study Raman and fluorescence spectroscopies as non-destructive and noninvasive methods for probing biological material and "living systems." Particularly for a living material any probe need be non-destructive and non-invasive, as well as provide real time measurement information and be cost effective to be generally useful. Over the past few years the components needed to measure weak and complex processes such as Raman scattering have evolved substantially with the ready availability of lasers, dichroic filters, low noise and sensitive detectors, digitizers and signal processors. A Raman spectrum consists of a wavelength or frequency spectrum that corresponds to the inelastic (Raman) photon signal that results from irradiating a "Raman active" material. Raman irradiation of a material usually and generally uses a single frequency laser. The Raman fingerprint spectrum that results from a Raman interaction can be determined from the frequencies scattered and received by an appropriate detector. Spectra are usually "digitized" and numerically matched to a reference sample or reference material spectra in performing an analysis. Fortunately today with the many "commercial off-the-shelf" components that are available, weak intensity effects such as Raman and fluorescence spectroscopy can be used for a number of analysis applications. One of the experimental limitations in Raman measurement is the spectrometer itself. The spectrometer is the section of the system that either by interference plus detection or by dispersion plus detection that "signal" amplitude versus energy/frequency signals are measured. Particularly in Raman spectroscopy, optical signals carrying desired "information" about the analyte are extraordinarily weak and require special considerations when measuring. We will discuss here the use of compact spectrometers and a micro-mirror array system (used is the digital micro-mirror device (DMD) supplied by the DLP® Products group of

  7. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  8. Preparation and characterization of silica-coated ZnSe nanowires with thermal stability and photoluminescence.

    PubMed

    Xiong, Shenglin; Xi, Baojuan; Wang, Weizhi; Zhou, Hongyang; Zhang, Shuyuan; Qian, Yitai

    2007-12-01

    Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

  9. Raman scattering tensors of tyrosine.

    PubMed

    Tsuboi, M; Ezaki, Y; Aida, M; Suzuki, M; Yimit, A; Ushizawa, K; Ueda, T

    1998-01-01

    Polarized Raman scattering measurements have been made of a single crystal of L-tyrosine by the use of a Raman microscope with the 488.0-nm exciting beam from an argon ion laser. The L-tyrosine crystal belongs to the space group P2(1)2(1)2(1) (orthorhombic), and Raman scattering intensities corresponding to the aa, bb, cc, ab and ac components of the crystal Raman tensor have been determined for each prominent Raman band. A similar set of measurements has been made of L-tyrosine-d4, in which four hydrogen atoms on the benzene ring are replaced by deuterium atoms. The effects of NH3-->ND3 and OH-->OD on the Raman spectrum have also been examined. In addition, depolarization ratios of some bands of L-tyrosine in aqueous solutions of pH 13 and pH 1 were examined. For comparison with these experimental results, on the other hand, ab initio molecular orbital calculations have been made of the normal modes of vibration and their associated polarizability oscillations of the L-tyrosine molecule. On the basis of these experimental data and by referring to the results of the calculations, discussions have been presented on the Raman tensors associated to some Raman bands, including those at 829 cm-1 (benzene ring breathing), 642 cm-1 (benzene ring deformation), and 432 cm-1 (C alpha-C beta-C gamma bending).

  10. Preparation of carbon-free TEM microgrids by metal sputtering.

    PubMed

    Janbroers, S; de Kruijff, T R; Xu, Q; Kooyman, P J; Zandbergen, H W

    2009-08-01

    A new method for preparing carbon-free, temperature-stable Transmission Electron Microscope (TEM) grids is presented. An 80% Au/20% Pd metal film is deposited onto a 'holey' microgrid carbon supported on standard mixed-mesh Au TEM grids. Subsequently, the carbon film is selectively removed using plasma cleaning. In this way, an all-metal TEM film is made containing the 'same' microgrid as the original carbon film. Although electron transparency of the foil is reduced significantly, the open areas for TEM inspection of material over these areas are maintained. The metal foil can be prepared with various thicknesses and ensures good electrical conductivity. The new Au/Pd grids are stable to at least 775K under vacuum conditions.

  11. Microcavity Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Petrak, Benjamin J.

    Raman scattering can accurately identify molecules by their intrinsic vibrational frequencies, but its notoriously weak scattering efficiency for gases presents a major obstacle to its practical application in gas sensing and analysis. This work explores the use of high finesse (≈50 000) Fabry-Perot microcavities as a means to enhance Raman scattering from gases. A recently demonstrated laser ablation method, which carves out a micromirror template on fused silica--either on a fiber tip or bulk substrates-- was implemented, characterized, and optimized to fabricate concave micromirror templates ˜10 mum diameter and radius of curvature. The fabricated templates were coated with a high-reflectivity dielectric coating by ion-beam sputtering and were assembled into microcavities ˜10 mum long and with a mode volume ˜100 mum 3. A novel gas sensing technique that we refer to as Purcell enhanced Raman scattering (PERS) was demonstrated using the assembled microcavities. PERS works by enhancing the pump laser's intensity through resonant recirculation at one longitudinal mode, while simultaneously, at a second mode at the Stokes frequency, the Purcell effect increases the rate of spontaneous Raman scattering by a change to the intra-cavity photon density of states. PERS was shown to enhance the rate of spontaneous Raman scattering by a factor of 107 compared to the same volume of sample gas in free space scattered into the same solid angle subtended by the cavity. PERS was also shown capable of resolving several Raman bands from different isotopes of CO2 gas for application to isotopic analysis. Finally, the use of the microcavity to enhance coherent anti-Stokes Raman scattering (CARS) from CO2 gas was demonstrated.

  12. ToTem: a tool for variant calling pipeline optimization.

    PubMed

    Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka

    2018-06-26

    High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .

  13. Structural and photocatalytic studies of hydrothermally synthesized Mn2+-TiO2 nanoparticles under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamble, Ravi; Sabale, Sandip; Chikode, Prashant; Puri, Vijaya; Mahajan, Smita

    2016-11-01

    Pure TiO2 and Mn2+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Mn2+ concentrations. Obtained samples were analysed to determine it’s structural, optical, morphological and compositional properties using x-ray diffraction, UV-DRS, Raman, photoluminescence, XPS, TEM and EDS analysis. The EDS micrograph confirms the existence of Mn2+ atoms in TiO2 matrix with 0.86, 1.60 and 1.90 wt%. The crystallite size as well as band gap decreases with increase in Mn2+ concentration. The average particle size obtained from TEM was found 8-11 nm which is in good agreement with XRD results. Raman bands at 640, 518 and 398 cm-1 further confirmed pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Mn2+ ions in the TiO2 host lattice. The intensity of PL spectra for Mn2+-TiO2 shows a gradual decrease in the peak intensity with increasing Mn2+ concentration in TiO2, it implies lower electron-hole recombination rate as Mn2+ ions increases. The obtained samples were further studied for its photocatalytic activities using malachite green dye under UV light and visible light.

  14. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  15. Raman technology for future planetary missions

    NASA Astrophysics Data System (ADS)

    Thiele, Hans; Hofer, Stefan; Stuffler, Timo; Glier, Markus; Popp, Jürgen; Sqalli, Omar; Wuttig, Andreas; Riesenberg, Rainer

    2017-11-01

    Scientific experiments on mineral and biological samples with Raman excitation below 300nm show a wealth of scientific information. The fluorescence, which typically decreases signal quality in the visual or near infrared wavelength regime can be avoided with deep ultraviolet excitation. This wavelength regime is therefore regarded as highly attractive for a compact high performance Raman spectrometer for in-situ planetary research. Main objective of the MIRAS II breadboard activity presented here (MIRAS: Mineral Investigation with Raman Spectroscopy) is to evaluate, design and build a compact fiber coupled deep-UV Raman system breadboard. Additionally, the Raman system is combined with an innovative scanning microscope system to allow effective auto-focusing and autonomous orientation on the sample surface for high precise positioning or high resolution Raman mapping.

  16. In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge.

    PubMed

    Wu, Jing; Dathar, Gopi Krishna Phani; Sun, Chunwen; Theivanayagam, Murali G; Applestone, Danielle; Dylla, Anthony G; Manthiram, Arumugam; Henkelman, Graeme; Goodenough, John B; Stevenson, Keith J

    2013-10-25

    Previous studies of the size dependent properties of LiFePO4 have focused on the diffusion rate or phase transformation pathways by bulk analysis techniques such as x-ray diffraction (XRD), neutron diffraction and electrochemistry. In this work, in situ Raman spectroscopy was used to study the surface phase change during charge and self-discharge on a more localized scale for three morphologies of LiFePO4: (1) 25 ± 6 nm width nanorods, (2) 225 ± 6 nm width nanorods and (3) ∼2 μm porous microspheres. Both the large nanorod and microsphere geometries showed incomplete delithiation at the end of charge, which was most likely caused by anti-site defects along the 1D diffusion channels in the bulk of the larger particles. Based on the in situ Raman measurements, all of the morphologies studied exhibited self-discharge with time. Among them, the smallest FePO4 particles self-discharged (lithiated) the fastest. While nanostructuring LiFePO4 can offer advantages in terms of lowering anti-site defects within particles, it also creates new problems due to high surface energies that allow self-discharge. The in situ Raman spectroscopy also showed that carbon coating did not provide significant improvement to the stability of the lithiated particles.

  17. Wide-Field Raman Imaging of Dental Lesions

    PubMed Central

    Yang, Shan; Li, Bolan; Akkus, Anna; Akkus, Ozan; Lang, Lisa

    2014-01-01

    Detection of dental caries at the onset remains as a great challenge in dentistry. Raman spectroscopy could be successfully applied towards detecting caries since it is sensitive to the amount of the Raman active mineral crystals, the most abundant component of enamel. Effective diagnosis requires full examination of a tooth surface via a Raman mapping. Point-scan Raman mapping is not clinically relevant (feasible) due to lengthy data acquisition time. In this work, a wide-field Raman imaging system was assembled based on a high-sensitivity 2D CCD camera for imaging the mineralization status of teeth with lesions. Wide-field images indicated some lesions to be hypomineralized and others to be hypermineralized. The observations of wide-field Raman imaging were in agreement with point-scan Raman mapping. Therefore, sound enamel and lesions can be discriminated by Raman imaging of the mineral content. In conclusion, wide-field Raman imaging is a potentially useful tool for visualization of dental lesions in the clinic. PMID:24781363

  18. Retrofit implementation of Zernike phase plate imaging for cryo-TEM

    PubMed Central

    Marko, Michael; Leith, ArDean; Hsieh, Chyongere; Danev, Radostin

    2011-01-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. PMID:21272647

  19. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  20. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  1. Design of a TEM cell EMP simulator

    NASA Astrophysics Data System (ADS)

    Sevat, Pete

    1991-06-01

    Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.

  2. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Huang, Zhiwei; Teh, Seng Khoon; Zheng, Wei; Mo, Jianhua; Lin, Kan; Shao, Xiaozhuo; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan

    2009-03-15

    We report an integrated Raman spectroscopy and trimodal (white-light reflectance, autofluorescence, and narrow-band) imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. A special 1.8 mm endoscopic Raman probe with filtering modules is developed, permitting effective elimination of interference of fluorescence background and silica Raman in fibers while maximizing tissue Raman collections. We demonstrate that high-quality in vivo Raman spectra of upper gastrointestinal tract can be acquired within 1 s or subseconds under the guidance of wide-field endoscopic imaging modalities, greatly facilitating the adoption of Raman spectroscopy into clinical research and practice during routine endoscopic inspections.

  3. UV Raman imaging--a promising tool for astrobiology: comparative Raman studies with different excitation wavelengths on SNC Martian meteorites.

    PubMed

    Frosch, Torsten; Tarcea, Nicolae; Schmitt, Michael; Thiele, Hans; Langenhorst, Falko; Popp, Jürgen

    2007-02-01

    The great capabilities of UV Raman imaging have been demonstrated on the three Martian meteorites: Sayh al Uhaymir, Dar al Gani, and Zagami. Raman spectra without disturbing fluorescence and with high signal-to-noise-ratios and full of spectral features were derived. This result is of utmost importance for the development of powerful instruments for space missions. By point scanning the surfaces of the meteorite samples, it was possible for the first time to construct UV-Raman images out of the array of Raman spectra. Deep-UV Raman images are to the best of our knowledge presented for the first time. The images were used for a discussion of the chemical-mineralogical composition and texture of the meteorite surfaces. Comparative Raman studies applying visible and NIR Raman excitation wavelengths demonstrate a much better performance for UV Raman excitation. This comparative study of different Raman excitation wavelengths at the same sample spots was done by constructing a versatile, robust sample holder with a fixed micro-raster. The overall advantages of UV resonance Raman spectroscopy in terms of sensitivity and selectivity are demonstrated and discussed. Finally the application of this new technique for a UV Raman instrument for envisaged astrobiological focused space missions is suggested.

  4. Spatially offset Raman spectroscopy based on a line-scan hyperspectral Raman system

    USDA-ARS?s Scientific Manuscript database

    Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. The current methods of SORS measurement are typically either slow due to mechanical move...

  5. Retrofit implementation of Zernike phase plate imaging for cryo-TEM.

    PubMed

    Marko, Michael; Leith, Ardean; Hsieh, Chyongere; Danev, Radostin

    2011-05-01

    In-focus phase-plate imaging is particularly beneficial for cryo-TEM because it offers a substantial overall increase in image contrast, without an electron dose penalty, and it simplifies image interpretation. We show how phase-plate cryo-TEM can be implemented with an appropriate existing TEM, and provide a basic practical introduction to use of thin-film (carbon) phase plates. We point out potential pitfalls of phase-plate operation, and discuss solutions. We provide information on evaluating a particular TEM for its suitability. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies.

  7. [Laser Raman spectrum analysis of carbendazim pesticide].

    PubMed

    Wang, Xiao-bin; Wu, Rui-mei; Liu, Mu-hua; Zhang, Lu-ling; Lin, Lei; Yan, Lin-yuan

    2014-06-01

    Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was 'rigisure' and reset mode was 'sln'. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400-2 000, 700-1 400 and 200-700 cm(-1). And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm(-1), respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm(-1) in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.

  8. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  9. Raman spectroscopy of oral bacteria

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  10. Polarized micro Raman spectroscopy of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Moon, Hyerim; Yoon, Duhee; Son, Young-Woo; Cheong, Hyeonsik

    2009-03-01

    The frequency of Raman 2D band of the graphite depends on the excitation laser energy. This phenomenon is explained with double resonance Raman process. In polarized micro-Raman spectroscopy of single layer graphene, Raman G band (˜1586 cm-1) is isotropic, and 2D band (˜2686 cm-1) strongly depends on relative polarizations of the incident and scattered photons. This strong polarization dependence originates from inhomogeneous optical absorption and emission mediated by resonant electron-phonon interaction. In bi-layer graphene, Raman 2D band can be decomposed into four Lorenztian peaks which can be interpreted in terms of the four transition paths in the double resonance Raman process. We investigated the polarization dependence of each Lorenztian peak in the Raman 2D band of bi-layer graphene for different excitation laser energies. Strong polarization dependence of the Raman 2D band, similar to the case of single layer graphene, is observed. The excitation energy dependence of the polarized Raman scattering is analyzed in terms of the band structure of bi-layer graphene.

  11. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  12. 3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms

    PubMed Central

    Pimentel, Ana; Araújo, Andreia; Águas, Hugo; Martins, Rodrigo; Fortunato, Elvira

    2017-01-01

    In the present study, zinc oxide (ZnO) nanorods (NRs) with a hexagonal structure have been synthesized via a hydrothermal method assisted by microwave radiation, using specialized cardboard materials as substrates. Cardboard-type substrates are cost-efficient and robust paper-based platforms that can be integrated into several opto-electronic applications for medical diagnostics, analysis and/or quality control devices. This class of substrates also enables highly-sensitive Raman molecular detection, amiable to several different operational environments and target surfaces. The structural characterization of the ZnO NR arrays has been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical measurements. The effects of the synthesis time (5–30 min) and temperature (70–130 °C) of the ZnO NR arrays decorated with silver nanoparticles (AgNPs) have been investigated in view of their application for surface-enhanced Raman scattering (SERS) molecular detection. The size and density of the ZnO NRs, as well as those of the AgNPs, are shown to play a central role in the final SERS response. A Raman enhancement factor of 7 × 105 was obtained using rhodamine 6 G (R6G) as the test analyte; a ZnO NR array was produced for only 5 min at 70 °C. This condition presents higher ZnO NR and AgNP densities, thereby increasing the total number of plasmonic “hot-spots”, their volume coverage and the number of analyte molecules that are subject to enhanced sensing.

  13. Optimizing laser crater enhanced Raman spectroscopy.

    PubMed

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  14. Characterization of Spitsbergen Disks by Transmission Electron Microscopy and Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Thomas-Keprta, K. L.; Clemett, S. J.; Le, L.; Ross, K.; McKay, David S.; Gibson, E. K., Jr.

    2010-01-01

    'Carbonate disks' found in the fractures and pores spaces of peridotite xenoliths and basalts from the island of Spitsbergen in the Norwegian Svalbard archipelago have been suggested to be "The best (and best documented) terrestrial analogs for the [Martian meteorite] ALH84001 carbonate globules ..." Previous studies have indicated that Spitsbergen carbonates show broadly comparable internal layering and mineral compositions to ALH84001 carbonate-magnetite disks. We report here for the first time, the detailed mineral characterization of Spitsbergen carbonates and their spatial relationship to the host mineral assemblages in the xenolith, using high resolution TEM (as used previously for ALH84001 carbonate disks). These studies were conducted in concert with complementary Raman and SEM analysis of the same samples. Our results indicate that there are significant chemical and physical differences between the disks in Spitsbergen and the carbonates present in ALH84001.

  15. Blood analysis by Raman spectroscopy.

    PubMed

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  16. Raman water vapor lidar calibration

    NASA Astrophysics Data System (ADS)

    Landulfo, E.; Da Costa, R. F.; Torres, A. S.; Lopes, F. J. S.; Whiteman, D. N.; Venable, D. D.

    2009-09-01

    We show here new results of a Raman LIDAR calibration methodology effort putting emphasis in the assessment of the cross-section ratio between water vapor and nitrogen by the use of a calibrated NIST traceable tungsten lamp. Therein we give a step by step procedure of how to employ such equipment by means of a mapping/scanning procedure over the receiving optics of a water vapor Raman LIDAR. This methodology has been independently used at Howard University Raman LIDAR and at IPEN Raman LIDAR what strongly supports its reproducibility and points towards an independently calibration methodology to be carried on within an experiment routine.

  17. Raman spectroscopy of the multi-anion mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2012-02-01

    The mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6, a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm -1, assigned to the symmetric stretching mode of the AsO 43- anion. Raman bands at 809 and 819 cm -1 are assigned to the antisymmetric stretching mode of AsO 43-. The sulphate anion is characterised by bands at 1000 cm -1 ( ν1), and at 1031, 1082 and 1139 cm -1 ( ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm -1 with bands observed at 2850, 2868, 2918 cm -1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm -1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

  18. Eye-Safe KGd(WO4)2:Nd Laser: Nano- and Subnanosecond Pulse Generation in Self-Frequency Raman Conversion Mode with Active Q-Switching

    NASA Astrophysics Data System (ADS)

    Dashkevich, V. I.; Orlovich, V. A.

    2017-03-01

    The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.

  19. Novel Raman Techniques for Imaging and Sensing

    NASA Astrophysics Data System (ADS)

    Edwards, Perry S.

    Raman scattering spectroscopy is extensively demonstrated as a label-free, chemically selective sensing and imaging technique for a multitude of chemical and biological applications. The ability to detect "fingerprint" spectral signatures of individual molecules, without the need to introduce chemical labelers, makes Raman scattering a powerful sensing technique. However, spectroscopy based on spontaneous Raman scattering traditionally suffers from inherently weak signals due to small Raman scattering cross-sections. Thus, considerable efforts have been put forth to find pathways towards enhancing Raman signals to bolster sensitivity for detecting small concentrations of molecules or particles. The development of coherent Raman techniques that can offer orders of magnitude increase in signal have garnered significant interest in recent years for their application in imaging; such techniques include coherent anti-Stokes Raman scattering and stimulated Raman scattering. Additionally, methods to enhance the local field of either the pump or generated Raman signal, such as through surface enhanced Raman scattering, have been investigated for their orders of magnitude improvement in sensitivity and single molecule sensing capability. The work presented in this dissertation describes novel techniques for performing high speed and highly sensitive Raman imaging as well as sensing applications towards bioimaging and biosensing. Coherent anti-Stokes Raman scattering (CARS) is combined with holography to enable recording of high-speed (single laser shot), wide field CARS holograms which can be used to reconstruct the both the amplitude and the phase of the anti-Stokes field therefore allowing 3D imaging. This dissertation explores CARS holography as a viable label-free bio-imaging technique. A Raman scattering particle sensing system is also developed that utilizes wave guide properties of optical fibers and ring-resonators to perform enhanced particle sensing. Resonator

  20. Kerr-gated picosecond Raman spectroscopy and Raman photon migration of equine bone tissue with 400-nm excitation

    NASA Astrophysics Data System (ADS)

    Morris, Michael D.; Goodship, Allen E.; Draper, Edward R. C.; Matousek, Pavel; Towrie, Michael; Parker, Anthony W.

    2004-07-01

    We show that Raman spectroscopy with visible lasers, even in the deep blue is possible with time-gated Raman spectroscopy. A 4 picosec time gate allows efficient fluorescence rejection, up to 1000X, and provides almost background-free Raman spectra with low incident laser power. The technology enables spectroscopy with better than 10X higher scattering efficiency than is possible with the NIR (785 nm and 830 nm) lasers that are conventionally used. Raman photon migration is shown to allow depth penetration. We show for the first time that Kerr-gated Raman spectra of bone tissue with blue laser excitation enables both fluorescence rejection and depth penetration.

  1. Development of a miRNA surface-enhanced Raman scattering assay using benchtop and handheld Raman systems.

    PubMed

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Cote, Gerard

    2018-01-01

    DNA-functionalized nanoparticles, when paired with surface-enhanced Raman spectroscopy (SERS), can rapidly detect microRNA. However, widespread use of this approach is hindered by drawbacks associated with large and expensive benchtop Raman microscopes. MicroRNA-17 (miRNA-17) has emerged as a potential epigenetic indicator of preeclampsia, a condition that occurs during pregnancy. Biomarker detection using an SERS point-of-care device could enable prompt diagnosis and prevention as early as the first trimester. Recently, strides have been made in developing portable Raman systems for field applications. An SERS assay for miRNA-17 was assessed and translated from traditional benchtop Raman microscopes to a handheld system. Three different photoactive molecules were compared as potential Raman reporter molecules: a chromophore, malachite green isothiocyanate (MGITC), a fluorophore, tetramethylrhodamine isothiocyanate, and a polarizable small molecule 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). For the benchtop Raman microscope, the DTNB-labeled assay yielded the greatest sensitivity under 532-nm laser excitation, but the MGITC-labeled assay prevailed at 785 nm. Conversely, DTNB was preferable for the miniaturized 785-nm Raman system. This comparison showed significant SERS enhancement variation in response to 1-nM miRNA-17, implying that the sensitivity of the assay may be more heavily dependent on the excitation wavelength, instrumentation, and Raman reporter chosen than on the plasmonic coupling from DNA/miRNA-mediated nanoparticle assemblies. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  2. Introduction to Raman chemical imaging technology

    USDA-ARS?s Scientific Manuscript database

    New developments in computer and imaging hardware have significantly advanced Raman spectroscopy and spectral imaging technologies, and have led to the recent emergence of new Raman detection techniques for rapid and online applications. This book chapter presents Raman chemical imaging technology a...

  3. A Novel Technique for Raman Analysis of Highly Radioactive Samples Using Any Standard Micro-Raman Spectrometer

    PubMed Central

    Colle, Jean-Yves; Naji, Mohamed; Sierig, Mark; Manara, Dario

    2017-01-01

    A novel approach for the Raman measurement of nuclear materials is reported in this paper. It consists of the enclosure of the radioactive sample in a tight capsule that isolates the material from the atmosphere. The capsule can optionally be filled with a chosen gas pressurized up to 20 bars. The micro-Raman measurement is performed through an optical-grade quartz window. This technique permits accurate Raman measurements with no need for the spectrometer to be enclosed in an alpha-tight containment. It therefore allows the use of all options of the Raman spectrometer, like multi-wavelength laser excitation, different polarizations, and single or triple spectrometer modes. Some examples of measurements are shown and discussed. First, some spectral features of a highly radioactive americium oxide sample (AmO2) are presented. Then, we report the Raman spectra of neptunium oxide (NpO2) samples, the interpretation of which is greatly improved by employing three different excitation wavelengths, 17O doping, and a triple mode configuration to measure the anti-stokes Raman lines. This last feature also allows the estimation of the sample surface temperature. Finally, data that were measured on a sample from Chernobyl lava, where phases are identified by Raman mapping, are shown. PMID:28448046

  4. Surface modified α-glycine - EuF3: Gd nanoparticles for upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Mahajan, Manoj P.; Khandpekar, M. M.

    2018-04-01

    Gadolinium doped EuF3 nanoparticles have been synthesized in the presence of α-glycine via chloride route with subsequent microwave drying. The XRD profile shows hexagonal phase structure with lattice parameters a = b = 6.920 A° and c = 7.085 A° (JCPDS No. 32-0373) with Debye-Scherer particle size of 51 nm. The SEM shows chipped morphology and TEM images exhibit shallow toroid like hexagonal - rounded nanostructures (30 - 50 nm) and their subsequent spontaneous transformation in to hyperboloid shaped nanostructures (200 - 600 nm) possibly with extension of the reaction time. SAED pattern confirms crystalline nature of nanoparticles and the planes are in agreement with XRD Peaks. Comparative FTTR and Raman spectrum shows presence of various functional groups confirming the capping of the glycine on EuF3:Gd core. A TGA/DTA spectrum shows decomposition in two stages. The photoluminescence spectrum shows up conversion luminescence at wavelength 653 nm (red).

  5. Optimization of surface enhanced Raman scattering (SERS) assay for the transition from benchtop to handheld Raman systems

    NASA Astrophysics Data System (ADS)

    Schechinger, Monika; Marks, Haley; Locke, Andrea; Choudhury, Mahua; Coté, Gerard

    2017-02-01

    Human biomarkers are indicative of the body's relative state prior to the onset of disease, and sometimes before symptoms present. While blood biomarker detection has achieved considerable success in laboratory settings, its clinical application is lagging and commercial point-of-care devices are rare. A physician's ability to detect biomarkers such as microRNA-17, a potential epigenetic indicator of preeclampsia in pregnant woman, could enable early diagnosis and preventive intervention as early as the 1st trimester. One detection approach employing DNA-functionalized nanoparticles to detect microRNA-17, in conjunction with surface-enhanced Raman spectroscopy (SERS), has shown promise but is hindered, in part, by the use of large and expensive benchtop Raman microscopes. However, recent strides have been made in developing portable Raman systems for field applications. Characteristics of the SERS assay responsible for strengthening the assay's plasmonic response were explored, whilst comparing the results from both benchtop and portable Raman systems. The Raman spectra and intensity of three different types of photoactive molecules were compared as potential Raman reporter molecules: chromophores, fluorophores, and highly polarizable small molecules. Furthermore, the plasmonic characteristics governing the formation of SERS colloidal nanoparticle assemblies in response to DNA/miRNA hybridization were investigated. There were significant variations in the SERS enhancement in response to microRNA-17 using our assay depending on the excitation lasers at wavelengths of 532 nm and 785 nm, depending on which of the three different Raman systems were used (benchtop, portable, and handheld), and depending on which of the three different Raman reporters (chromophore, fluorophore, or Raman active molecule) were used. Analysis of data obtained did indicate that signal enhancement was better for the chromophore (MGITC) and Raman active molecule (DTNB) than it was for the

  6. Quantitative determinations using portable Raman spectroscopy.

    PubMed

    Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D

    2017-03-20

    A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.

  7. Circularly polarized Raman study on diamond structure crystals

    NASA Astrophysics Data System (ADS)

    Lee, Je-Ho; Kim, Sera; Seong, Maeng-Je

    2018-01-01

    Circularly polarized Raman and/or photoluminescence (PL) analyses have recently been very important in studying physical properties of many layered materials that were either mechanically exfoliated or grown by chemical-vapor-deposition (CVD) on silicon substrates. Since silicon Raman signal is always accompanied by the circularly polarized Raman and/or PL signal from the layered materials, observation of proper circularly polarized Raman selection rules on silicon substrates would be extremely good indicator that the circularly polarized Raman and/or PL measurements on the layered materials were done properly. We have performed circularly polarized Raman measurements on silicon substrates and compared the results with the Raman intensities calculated by using Raman tensors of the diamond crystal structure. Our experimental results were in excellent agreement with the calculation. Similar circularly polarized Raman analysis done on germanium substrate also showed good agreement.

  8. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    PubMed

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  9. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules

    PubMed Central

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin

    2017-01-01

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-Mx (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-Mx complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS. PMID:28767053

  10. Near infrared Raman spectra of Rhizoma dioscoreae

    NASA Astrophysics Data System (ADS)

    Lin, Wenshuo; Chen, Rong; Chen, Guannan; Feng, Sangyuan; Li, Yongzeng; Huang, Zufang; Li, Yongsen

    2008-03-01

    A novel and compact near-infrared (NIR) Raman system is developed using 785-nm diode laser, volume-phase technology holographic system, and NIR intensified charge-coupled device (CCD). Raman spectra and first derivative spectra of Rhizoma Dioscoreae are obtained. Raman spectra of Rhizoma Dioscoreae showed three strong characteristic peaks at 477.4cm -1, 863.9cm -1, and 936.0cm -1. The major ingredients are protein, amino acid, starch, polysaccharides and so on, matched with the known basic biochemical composition of Rhizoma Dioscoreae. In the first derivative spectra of Rhizoma Dioscoreae, distinguishing characteristic peaks appeared at 467.674cm -1, 484.603cm -1, 870.37cm -1, 943.368cm -1. Contrasted with Rhizoma Dioscoreae Raman spectra, in 600cm -1 to 800cm -1, 1000cm -1 to 1400cm -1 regions, changes in Rhizoma Dioscoreae Raman first derivative spectra are represented more clearly than Rhizoma Dioscoreae Raman spectra. So Rhizoma Dioscoreae raman first derivative spectra can be an accurate supplementary analysis method to Rhizoma Dioscoreae Raman spectra.

  11. Detection of latent prints by Raman imaging

    DOEpatents

    Lewis, Linda Anne [Andersonville, TN; Connatser, Raynella Magdalene [Knoxville, TN; Lewis, Sr., Samuel Arthur

    2011-01-11

    The present invention relates to a method for detecting a print on a surface, the method comprising: (a) contacting the print with a Raman surface-enhancing agent to produce a Raman-enhanced print; and (b) detecting the Raman-enhanced print using a Raman spectroscopic method. The invention is particularly directed to the imaging of latent fingerprints.

  12. Miniature standoff Raman probe for neurosurgical applications

    NASA Astrophysics Data System (ADS)

    Stevens, Oliver A. C.; Hutchings, Joanne; Gray, William; Vincent, Rosa Louise; Day, John C.

    2016-08-01

    Removal of intrinsic brain tumors is a delicate process, where a high degree of specificity is required to remove all of the tumor tissue without damaging healthy brain. The accuracy of this process can be greatly enhanced by intraoperative guidance. Optical biopsies using Raman spectroscopy are a minimally invasive and lower-cost alternative to current guidance methods. A miniature Raman probe for performing optical biopsies of human brain tissue is presented. The probe allows sampling inside a conventional stereotactic brain biopsy system: a needle of length 200 mm and inner diameter of 1.8 mm. By employing a miniature stand-off Raman design, the probe removes the need for any additional components to be inserted into the brain. Additionally, the probe achieves a very low internal silica background while maintaining good collection of Raman signal. To illustrate this, the probe is compared with a Raman probe that uses a pair of optical fibers for collection. The miniature stand-off Raman probe is shown to collect a comparable number of Raman scattered photons, but the Raman signal to background ratio is improved by a factor of five at Raman shifts below ˜500 cm-1. The probe's suitability for use on tissue is demonstrated by discriminating between different types of healthy porcine brain tissue.

  13. High Fidelity Raman Chemical Imaging of Materials

    NASA Astrophysics Data System (ADS)

    Bobba, Venkata Nagamalli Koteswara Rao

    The development of high fidelity Raman imaging systems is important for a number of application areas including material science, bio-imaging, bioscience and healthcare, pharmaceutical analysis, and semiconductor characterization. The use of Raman imaging as a characterization tool for detecting the amorphous and crystalline regions in the biopolymer poly-L-lactic acid (PLLA) is the precis of my thesis. In the first chapter, a brief insight about the basics of Raman spectroscopy, Raman chemical imaging, Raman mapping, and Raman imaging techniques has been provided. The second chapter contains details about the successful development of tailored sample of PLLA. Biodegradable polymers are used in areas of tissue engineering, agriculture, packaging, and in medical field for drug delivery, implant devices, and surgical sutures. Detailed information about the sample preparation and characterization of these cold-drawn PLLA polymer substrates has been provided. Wide-field Raman hyperspectral imaging using an acousto-optic tunable filter (AOTF) was demonstrated in the early 1990s. The AOTF contributed challenges such as image walk, distortion, and image blur. A wide-field AOTF Raman imaging system has been developed as part of my research and methods to overcome some of the challenges in performing AOTF wide-field Raman imaging are discussed in the third chapter. This imaging system has been used for studying the crystalline and amorphous regions on the cold-drawn sample of PLLA. Of all the different modalities that are available for performing Raman imaging, Raman point-mapping is the most extensively used method. The ease of obtaining the Raman hyperspectral cube dataset with a high spectral and spatial resolution is the main motive of performing this technique. As a part of my research, I have constructed a Raman point-mapping system and used it for obtaining Raman hyperspectral image data of various minerals, pharmaceuticals, and polymers. Chapter four offers

  14. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  15. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach

    NASA Astrophysics Data System (ADS)

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j

  16. Temperature dependent and applied field strength dependent magnetic study of cobalt nickel ferrite nano particles: Synthesized by an environmentally benign method

    NASA Astrophysics Data System (ADS)

    Sontu, Uday Bhasker; G, Narsinga Rao; Chou, F. C.; M, V. Ramana Reddy

    2018-04-01

    Spinel ferrites have come a long way in their versatile applications. The ever growing applications of these materials demand detailed study of material properties and environmental considerations in their synthesis. In this article, we report the effect of temperature and applied magnetic field strength on the magnetic behavior of the cobalt nickel ferrite nano powder samples. Basic structural properties of spinel ferrite nano particles, that are synthesized by an environmentally benign method of auto combustion, are characterized through XRD, TEM, RAMAN spectroscopy. Diffuse Reflectance Spectroscopy (DRS) is done to understand the nickel substitution effect on the optical properties of cobalt ferrite nano particles. Thermo magnetic studies using SQUID in the temperature range 5 K to 400 K and room temperature (300 K) VSM studies are performed on these samples. Fields of 0Oe (no applied field: ZF), 1 kOe (for ZFC and FC curves), 5 kOe (0.5 T), 50 kOe (5T) (for M-H loop study) are used to study the magnetic behavior of these nano particles. The XRD,TEM analysis suggest 40 nm crystallites that show changes in the cation distribution and phase changes in the spinel structure with nickel substitution. Raman micrographs support phase purity changes and cation redistributions with nickel substitution. Diffuse reflectance study on powder samples suggests two band gap values for nickel rich compounds. The Magnetic study of these sample nano particles show varied magnetic properties from that of hard magnetic, positive multi axial anisotropy and single-magnetic-domain structures at 5 K temperature to soft magnetic core shell like structures at 300 K temperature. Nickel substitution effect is non monotonous. Blocking temperature of all the samples is found to be higher than the values suggested in the literature.

  17. Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs.,more » 17 figs., 6 tabs.« less

  18. Applications of Raman spectroscopy to gemology.

    PubMed

    Bersani, Danilo; Lottici, Pier Paolo

    2010-08-01

    Being nondestructive and requiring short measurement times, a low amount of material, and no sample preparation, Raman spectroscopy is used for routine investigation in the study of gemstone inclusions and treatments and for the characterization of mounted gems. In this work, a review of the use of laboratory Raman and micro-Raman spectrometers and of portable Raman systems in the gemology field is given, focusing on gem identification and on the evaluation of the composition, provenance, and genesis of gems. Many examples are shown of the use of Raman spectroscopy as a tool for the identification of imitations, synthetic gems, and enhancement treatments in natural gemstones. Some recent developments are described, with particular attention being given to the semiprecious stone jade and to two important organic materials used in jewelry, i.e., pearls and corals.

  19. RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Gan; B.D. Miller; D.D. Keiser Jr.

    2011-10-01

    The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of themore » U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.« less

  20. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  1. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black

    NASA Astrophysics Data System (ADS)

    Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai

    2018-07-01

    The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.

  2. Formation of randomly distributed nano-tubes, -rods and -plates of n-type and p-type bismuth telluride via molecular legation

    NASA Astrophysics Data System (ADS)

    Ram, Jasa; Ghosal, Partha

    2015-08-01

    Randomly distributed nanotubes, nanorods and nanoplates of Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 ternary compounds have been synthesized via a high yield solvo-thermal process. Prior to solvo-thermal heating at 230 °C for crystallization, we ensured molecular legation in room temperature reaction by complete reduction of precursor materials, dissolved in ethylene glycol and confirmed it by replicating Raman spectra of amorphous and crystalline materials. These nanomaterials have also been characterized using XRD, FE-SEM, EDS and TEM. Possible formation mechanism is also discussed. This single process will enable development of thermoelectric modules and random distribution of diverse morphology will be beneficial in retaining nano-crystallite sizes.

  3. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    NASA Astrophysics Data System (ADS)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  4. Synthesis and electrochemical property of few-layer molybdenum disulfide nanosheets

    NASA Astrophysics Data System (ADS)

    Fu, Yanjue; Wang, Chunrui; Wang, Linlin; Peng, Xia; Wu, Binhe; Sun, Xingqu; Chen, Xiaoshuang

    2016-12-01

    Large-scale few-layer MoS2 nanosheets have been fabricated via a simple hydrothermal route using molybdenum powder as precursors. The as-prepared MoS2 samples were characterized by X-ray powder diffraction (XRD) analysis, transmission electron microscopy (TEM), and Raman and photoluminescence (PL) spectral analyses at room temperature. The results confirm that the as-prepared MoS2 displays a sheet-like morphology with a thickness of few (bi- to tri-) layers. Electrochemical measurements showed that the as-prepared few-layer MoS2 exhibited the highest reversible capacity of 1127 mAh g-1 and a stable reversible capacity of 1057 mAh g-1 after 30 cycles.

  5. Novel Preparation of Calcium Borate/Graphene Oxide Nanocomposites and Their Tribological Properties in Oil

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Zhi-Lin; Liu, Zan

    2017-01-01

    The calcium borate/graphene oxide (CB/GO) nanocomposites have been successfully prepared by a liquid phase-based ultrasonic-assisted stripping method, which were subsequently explored as lubricant additive. The structure and morphology of the as-prepared nanocomposites were characterized by FT-IR, XRD, Raman, TEM, EDS and TGA, revealing that CB nanoparticles were uniformly loaded on GO surfaces. The nanocomposites were highly dispersed into the base oil by sand milling. The tribological properties of CB/GO nanocomposites as lubricating oil additive were investigated using a four-ball machine, and the wear scar surfaces were observed by the 3D Laser Scanning Microscope. The results indicated that CB/GO nanocomposites were of excellent antifriction, antiwear ability and load-carrying capacity.

  6. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  7. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Chongad, L. S.; Sharma, A.; Banerjee, M.; Jain, A.

    2016-10-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H2S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD.

  8. Cascaded-cladding-pumped cascaded Raman fiber amplifier.

    PubMed

    Jiang, Huawei; Zhang, Lei; Feng, Yan

    2015-06-01

    The conversion efficiency of double-clad Raman fiber laser is limited by the cladding-to-core area ratio. To get high conversion efficiency, the inner-cladding-to-core area ratio has to be less than about 8, which limits the brightness enhancement. To overcome the problem, a cascaded-cladding-pumped cascaded Raman fiber laser with multiple-clad fiber as the Raman gain medium is proposed. A theoretical model of Raman fiber amplifier with multiple-clad fiber is developed, and numerical simulation proves that the proposed scheme can improve the conversion efficiency and brightness enhancement of cladding pumped Raman fiber laser.

  9. Raman spectra of lignin model compounds

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  10. Raman spectroscopy of white wines.

    PubMed

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E. Victor; Swingle, James C.

    1985-01-01

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  12. Raman accumulator as a fusion laser driver

    DOEpatents

    George, E.V.; Swingle, J.C.

    1982-03-31

    Apparatus for simultaneous laser pulse amplification and compression, using multiple pass Raman scattering in one Raman cell and pulse switchout from the optical cavity through use of a dichroic device associated with the Raman cell.

  13. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Colmenero, Francisco; Bonales, Laura J.; Cobos, Joaquín; Timón, Vicente

    2017-03-01

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30 °C, in contrast with the higher temperatures published up to date ( 130 °C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90 °C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident.

  14. Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations.

    PubMed

    Colmenero, Francisco; Bonales, Laura J; Cobos, Joaquín; Timón, Vicente

    2017-03-05

    The design of a safe spent nuclear fuel repository requires the knowledge of the stability of the secondary phases which precipitate when water reaches the fuel surface. Studtite is recognized as one of the secondary phases that play a key-role in the mobilization of the radionuclides contained in the spent fuel. Thereby, it has been identified as a product formed under oxidation conditions at the surface of the fuel, and recently found as a corrosion product in the Fukushima-Daiichi nuclear plant accident. Thermal stability is one of the properties that should be determined due to the high temperature of the fuel. In this work we report a detailed analysis of the structure and thermal stability of studtite. The structure has been studied both by experimental techniques (SEM, TGA, XRD and Raman spectroscopy) and theoretical DFT electronic structure and spectroscopic calculations. The comparison of the results allows us to perform for the first time the Raman bands assignment of the whole spectrum. The thermal stability of studtite has been analyzed by in situ Raman spectroscopy, with the aim of studying the effect of the heating rate and the presence of water. For this purpose, a new cell has been designed. The results show that studtite is stable under dry conditions only at temperatures below 30°C, in contrast with the higher temperatures published up to date (~130°C). Opposite behaviour has been found when studtite is in contact with water; under these conditions studtite is stable up to 90°C, what is consistent with the encounter of this phase after the Fukushima-Daiichi accident. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite.

    PubMed

    Kora, Aruna Jyothi; Rastogi, Lori

    2016-10-01

    A facile and green method for the reduction of selenite was developed using a Gram-negative bacterial strain Pseudomonas aeruginosa, under aerobic conditions. During the process of bacterial conversion, the elemental selenium nanoparticles were produced. These nanoparticles were systematically characterized using various analytical techniques including UV-visible spectroscopy, XRD, Raman spectroscopy, SEM, DLS, TEM and FTIR spectroscopy techniques. The generation of selenium nanoparticles was confirmed from the appearance of red colour in the culture broth and broad absorption peaks in the UV-vis. The synthesized nanoparticles were spherical, polydisperse, ranged from 47 to 165 nm and the average particle size was about 95.9 nm. The selected-area electron diffraction, XRD patterns; and Raman spectroscopy established the amorphous nature of the fabricated nanoparticles. The IR data demonstrated the bacterial protein mediated selenite reduction and capping of the produced nanoparticles. The selenium removal was assessed at different selenite concentrations using ICP-OES and the results showed that the tested bacterial strain exhibited significant selenite reduction activity. The results demonstrate the possible application of P. aeruginosa for bioremediation of waters polluted with toxic and soluble selenite. Moreover, the potential metal reduction capability of the bacterial strain can function as green method for aerobic generation of selenium nanospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synthesis and characterization of γ-Fe2O3 NPs on silicon substrate for power device application

    NASA Astrophysics Data System (ADS)

    Hussein Nurul Athirah, Abu; Bee Chin, Ang; Yew Hoong, Wong; Boon Hoong, Ong; Aainaa Aqilah, Baharuddin

    2018-06-01

    Maghemite nanoparticles (γ-Fe2O3 NPs) were synthesized using Massart procedure. The formation reaction were optimized by varying the concentration of ferric nitrate solution (Fe(NO3)3) (0.1, 0.3, 0.5, 0.7 and 1.0 M). All samples were characterized by means of x-ray Diffractometer (XRD), Raman Spectroscopy, Transmission Electron Microscope (TEM) and Alternating Gradient Magnetometer (AGM). The smallest size of the NPs were chosen to be deposited on Silicon (100) substrate by spin coating technique. Annealing process of the samples were performed in Argon ambient at different temperatures (600, 700, 800 and 900°) for 20 min. Metal-oxide-semiconductor capacitors were then fabricated by depositing Aluminium as the gate electrode. The effect of the annealing process on the structural and electrical properties of γ-Fe2O3 NPs thin film were investigated. The structural properties of the deposited thin film were evaluated by XRD analysis, Atomic Force Microscopy (AFM) and Raman Analysis. On the other hand, the electrical properties was conducted by current-voltage analysis. It was revealed that the difference in the annealing temperature affect the grain size, surface roughness, distribution of the nanoparticles as well as the electrical performance of the samples where low annealing temperature (600 °C) gives low leakage current while high annealing temperature (900 °C) gives high electrical breakdown.

  17. Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel.

    PubMed

    Hall, David S; Lockwood, David J; Poirier, Shawn; Bock, Christina; MacDougall, Barry R

    2012-06-28

    The present work utilizes Raman and infrared (IR) spectroscopy, supported by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to re-examine the fine structural details of Ni(OH)(2), which is a key material in many energy-related applications. This work also unifies the large body of literature on the topic. Samples were prepared by the galvanostatic basification of nickel salts and by aging the deposits in hot KOH solutions. A simplified model is presented consisting of two fundamental phases (α and β) of Ni(OH)(2) and a range of possible structural disorder arising from factors such as impurities, hydration, and crystal defects. For the first time, all of the lattice modes of β-Ni(OH)(2) have been identified and assigned using factor group analysis. Ni(OH)(2) films can be rapidly identified in pure and mixed samples using Raman or IR spectroscopy by measuring their strong O-H stretching modes, which act as fingerprints. Thus, this work establishes methods to measure the phase, or phases, and disorder at a Ni(OH)(2) sample surface and to correlate desired chemical properties to their structural origins.

  18. Applications of Raman spectroscopy in life science

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  19. Enhanced Raman scattering in porous silicon grating.

    PubMed

    Wang, Jiajia; Jia, Zhenhong; Lv, Changwu

    2018-03-19

    The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

  20. Gain suppression involving both stimulated Raman and hyper-Raman photons in two-step stimulated emissions

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Garrett, W. R.; Payne, M. G.; Moore, M. A.

    1997-05-01

    We show that multiphoton destructive interference leading to gain suppression can be produced even when two different step-wise stimulated emissions, such as stimulated Raman and hyper-Raman emissions, are included in the interference loop.

  1. Condensing Raman spectrum for single-cell phenotype analysis.

    PubMed

    Sun, Shiwei; Wang, Xuetao; Gao, Xin; Ren, Lihui; Su, Xiaoquan; Bu, Dongbo; Ning, Kang

    2015-01-01

    In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  2. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  3. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  4. Double-tilt in situ TEM holder with ultra-high stability.

    PubMed

    Xu, Mingjie; Dai, Sheng; Blum, Thomas; Li, Linze; Pan, Xiaoqing

    2018-05-06

    A double tilting holder with high stability is essential for acquiring atomic-scale information by transmission electron microscopy (TEM), but the availability of such holders for in situ TEM studies under various external stimuli is limited. Here, we report a unique design of seal-bearing components that provides ultra-high stability and multifunctionality (including double tilting) in an in situ TEM holder. The seal-bearing subsystem provides superior vibration damping and electrical insulation while maintaining excellent vacuum sealing and small form factor. A wide variety of in situ TEM applications including electrical measurement, STM mapping, photovoltaic studies, and CL spectroscopy can be performed on this platform with high spatial resolution imaging and electrical sensitivity at the pA scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    PubMed

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  6. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  7. A tunable single-monochromator Raman system based on the supercontinuum laser and tunable filters for resonant Raman profile measurements.

    PubMed

    Liu, X-L; Liu, H-N; Tan, P-H

    2017-08-01

    Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.

  8. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  9. 2D Inversion of Transient Electromagnetic Method (TEM)

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most

  10. Structure, Elastic Constants and XRD Spectra of Extended Solids under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batyrev, I. G.; Coleman, S. P.; Ciezak-Jenkins, J. A.

    We present results of evolutionary simulations based on density functional calculations of a potentially new type of energetic materials called extended solids: P-N and N-H. High-density structures with covalent bonds generated using variable and fixed concentration methods were analysed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction (XRD) spectra. X-ray diffraction spectra were calculated using a virtual diffraction algorithm that computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculated XRD patterns were used to search for the structure of extended solids present at experimental pressures by optimizing data accordingmore » to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Elastic constants has been calculated for thermodynamically stable structures of P-N system.« less

  11. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.

    PubMed

    Romero-Pastor, Julia; Duran, Adrian; Rodríguez-Navarro, Alejandro Basilio; Van Grieken, René; Cardell, Carolina

    2011-11-15

    This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic University-Madrasah Yusufiyya-in Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.

  12. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    PubMed

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  13. Studies on the Fe3+ Doping Effect on Structural, Optical and Catalytic Properties of Hydrothermally Synthesized TiO2 Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamble, Ravi; Sabale, Sandip; Chikode, Prashant

    2017-08-01

    Pure TiO2 and Fe3+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Fe3+ concentrations. The synthesized nanoparticles are analysed to determine its structural, optical, morphological and compositional properties using X-ray diffraction, Raman, UV-DRS, photoluminescence, Mossbauer, XPS, TEM and SEM/EDS. The EDS micrograph confirms the existence of Fe3+ atoms in the TiO2 matrix with 0.85, 1.52 and 1.87 weight percent. The crystallite size and band gap decrease with increase in Fe3+concentration. The average particle size obtained from TEM is 7-11 nm which is in good agreement with XRD results. Raman bands at 640 cm-1, 517 cm-1 and 398 cm-1more » further confirm pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Fe3+ ions in the TiO2 host lattice. The intensity of PL spectra for Fe3+-TiO2 shows a gradual decrease in the peak intensity with increasing Fe3+ concentration in TiO2, and it indicates lower recombination rate as Fe3+ ions increases. These nanoparticles are further studied for its photocatalytic activities using malachite green dye under UV light, visible light and sunlight.« less

  14. Raman active components of skin cancer.

    PubMed

    Feng, Xu; Moy, Austin J; Nguyen, Hieu T M; Zhang, Jason; Fox, Matthew C; Sebastian, Katherine R; Reichenberg, Jason S; Markey, Mia K; Tunnell, James W

    2017-06-01

    Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis.

  15. Raman active components of skin cancer

    PubMed Central

    Feng, Xu; Moy, Austin J; Nguyen, Hieu T. M.; Zhang, Jason; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2017-01-01

    Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to in vivo skin cancer screening data. We expand upon previous models by utilizing in situ skin constituents as the building blocks, and validate the model using previous clinical screening data collected from a Raman optical fiber probe. We built an 830nm confocal Raman microscope integrated with a confocal laser-scanning microscope. Raman imaging was performed on skin sections spanning various disease states, and multivariate curve resolution (MCR) analysis was used to resolve the Raman spectra of individual in situ skin constituents. The basis spectra of the most relevant skin constituents were combined linearly to fit in vivo human skin spectra. Our results suggest collagen, elastin, keratin, cell nucleus, triolein, ceramide, melanin and water are the most important model components. We make available for download (see supplemental information) a database of Raman spectra for these eight components for others to use as a reference. Our model reveals the biochemical and structural makeup of normal, nonmelanoma and melanoma skin cancers, and precancers and paves the way for future development of this approach to noninvasive skin cancer diagnosis. PMID:28663910

  16. Raman scattering of Cisplatin near silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  17. Raman imaging of lipid bilayer membrane by surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Mori, Motoaki; Abe, Shunsuke; Kondo, Takahiro; Saito, Yuika

    2018-04-01

    We investigated two-dimensional lipid bilayers by spectroscopic imaging with surface enhanced Raman spectroscopy (SERS). A DSPC lipid bilayer incubated on a glass substrate was coated with a thin layer of silver. Due to the strong electromagnetic enhancement of the silver film and the affinity to lipid molecules, the Raman spectrum of a single bilayer was obtained in a 1 s exposure time with 0.1 mW of incident laser power. In the C-H vibrational region of the spectra, which is sensitive to bilayer configurations, a randomly stacked area was dominated by the CH3 asymmetric-stretch mode, whereas flat areas including double bilayers showed typical SERS spectra. The spectral features of the randomly stacked area are explained by the existence of many free lipid molecules, which is supported by DFT calculations of paired DSPC molecules. Our method can be applied to reveal the local crystallinity of single lipid bilayers, which is difficult to assess by conventional Raman imaging.

  18. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  19. Raman Hyperspectral Imaging of Microfossils: Potential Pitfalls

    PubMed Central

    Olcott Marshall, Alison

    2013-01-01

    Abstract Initially, Raman spectroscopy was a specialized technique used by vibrational spectroscopists; however, due to rapid advancements in instrumentation and imaging techniques over the last few decades, Raman spectrometers are widely available at many institutions, allowing Raman spectroscopy to become a widespread analytical tool in mineralogy and other geological sciences. Hyperspectral imaging, in particular, has become popular due to the fact that Raman spectroscopy can quickly delineate crystallographic and compositional differences in 2-D and 3-D at the micron scale. Although this rapid growth of applications to the Earth sciences has provided great insight across the geological sciences, the ease of application as the instruments become increasingly automated combined with nonspecialists using this techique has resulted in the propagation of errors and misunderstandings throughout the field. For example, the literature now includes misassigned vibration modes, inappropriate spectral processing techniques, confocal depth of laser penetration incorrectly estimated into opaque crystalline solids, and a misconstrued understanding of the anisotropic nature of sp2 carbons. Key Words: Raman spectroscopy—Raman imaging—Confocal Raman spectroscopy—Disordered sp2 carbons—Hematite—Microfossils. Astrobiology 13, 920–931. PMID:24088070

  20. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    PubMed

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  1. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications

    PubMed Central

    Lange, Sara E.S.; Zheleznyak, Alex; Studer, Matthew; O'Shannessy, Daniel J.; Lapi, Suzanne E.; Van Tine, Brian A.

    2016-01-01

    Purpose The complexity of sarcoma has led to the need for patient selection via in vivo biomarkers. Tumor endothelial marker-1 (TEM-1) is a cell surface marker expressed by the tumor microenvironment. Currently MORAb-004 (Ontuxizumab), an anti-TEM-1 humanized monoclonal antibody, is in sarcoma clinical trials. Development of positron emission tomography (PET) for in vivo TEM-1 expression may allow for stratification of patients, potentially enhancing clinical outcomes seen with Ontuxizumab. Results Characterization of cell lines revealed clear differences in TEM-1 expression. One high expressing (RD-ES) and one low expressing (LUPI) cell line were xenografted, and mice were injected with 89Zr-Ontuxizumab. PET imaging post-injection revealed that TEM-1 was highly expressed and readily detectable in vivo only in RD-ES. In vivo biodistribution studies confirmed high radiopharmaceutical uptake in tumor relative to normal organs. Experimental Design Sarcoma cell lines were characterized for TEM-1 expression. Ontuxizumab was labeled with 89Zr and evaluated for immunoreactivity preservation. 89Zr-Ontuxizumab was injected into mice with high or null expressing TEM-1 xenografts. In vivo PET imaging experiments were performed. Conclusion 89Zr-Ontuxizumab can be used in vivo to determine high versus low TEM-1 expression. Reliable PET imaging of TEM-1 in sarcoma patients may allow for identification of patients that will attain the greatest benefit from anti-TEM-1 therapy. PMID:26909615

  2. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    PubMed Central

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  3. Synthesis of core-shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

    NASA Astrophysics Data System (ADS)

    Du, Jinlong; Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Chen, Ping; Cui, Qingzhu; Cui, Zhixuan

    2017-12-01

    Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene.

  4. Synthesis of core–shell structured FAU/SBA-15 composite molecular sieves and their performance in catalytic cracking of polystyrene

    PubMed Central

    Du, Jinlong; Shi, Chunwei; Wu, Wenyuan; Bian, Xue; Chen, Ping; Cui, Qingzhu; Cui, Zhixuan

    2017-01-01

    Abstract Composite molecular sieves, FAU/SBA-15, having core-shell structure were synthesized. The synthesized composite sieves were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), pyrolysis fourier transform infrared (Py-FTIR) spectroscopy, temperature programmed desorption spectra (NH3-TPD), UV Raman spectroscopy, nuclear magnetic resonance (NMR) and other techniques. XRD, SEM, TEM, N2 adsorption-desorption, mass spectrometry, NMR and EDS results showed that the composite molecular sieve contained two pore channels. Py-FTIR results showed that the addition of HY molecular sieves improved the acidity of the composite zeolite. The crystallization mechanism during the growth of FAU/SBA-15 shell was deduced from the influence of crystallization time on the synthesis of FAU/SBA-15 core-shell structured composite molecular sieve. HY dissociated partially in H2SO4 solution, and consisted of secondary structural units. This framework structure was more stable than its presence in the isolated form on the same ring or in the absence of Al. Thus it played a guiding role and connected with SBA-15 closely through the Si-O bond. This resulted in the gradual covering of the exterior surface of FAU phase by SBA-15 molecular sieves. The presence of SBA-15 restricted the formation of the other high mass components and increased the selectivity towards ethylbenzene. PMID:29383044

  5. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    PubMed Central

    Laatar, Fakher; Moussa, Hatem; Alem, Halima; Balan, Lavinia; Girot, Emilien; Medjahdi, Ghouti; Ezzaouia, Hatem

    2017-01-01

    CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %)/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination. PMID:29354345

  6. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity.

    PubMed

    Laatar, Fakher; Moussa, Hatem; Alem, Halima; Balan, Lavinia; Girot, Emilien; Medjahdi, Ghouti; Ezzaouia, Hatem; Schneider, Raphaël

    2017-01-01

    CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO 2 nanoparticles (Aeroxide ® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO 2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO 2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV-visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO 2 particles. The UV-visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO 2 composites until ≈725 nm. The CdSe (2 wt %)/TiO 2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO 2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO 2 . Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO 2 heterostructured catalysts show high potential for real water decontamination.

  7. The Athena Raman Spectrometer

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

    2000-01-01

    Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

  8. Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses.

    PubMed

    Rivero, Clara; Stegeman, Robert; Couzi, Michel; Talaga, David; Cardinal, Thierry; Richardson, Kathleen; Stegeman, George

    2005-06-13

    Disagreements on the Raman gain response of different tellurite-based glasses, measured at different wavelengths, have been recently reported in the literature. In order to resolve this controversy, a multi-wavelength Raman cross-section experiment was conducted on two different TeO2-based glass samples. The estimated Raman gain response of the material shows good agreement with the directly-measured Raman gain data at 1064 nm, after correction for the dispersion and wavelength-dependence of the Raman gain process.

  9. Development of 873 nm Raman Seed Pulse for Raman-seeded Laser Wakefield Acceleration

    NASA Astrophysics Data System (ADS)

    Grigsby, F.; Peng, D.; Downer, M. C.

    2004-12-01

    By using a Raman-shifted seed pulse coincident with a main driving pulse, laser wakefields can be generated with sub-relativistic intensity, coherent control and high repetition rate in the self-modulated regime. Experimentally, the generation of a chirped Stokes laser pulse by inserting a solid state Raman shifter, Ba(NO3)2, into a CPA system before the compressor (to suppress self-phase modulation) will be described. We will also report on design, modeling and experimental demonstration of a novel compressor for the Stokes pulse that uses a mismatched grating pair to achieve a near transform-limited seed pulse. Finally, we will describe the design, simulation and current status of Raman-seeded LWFA experiments that use this novel source.

  10. Combination ring cavity and backward Raman waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1983-01-01

    A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.

  11. Raman fingerprints of amyloid structures.

    PubMed

    Flynn, Jessica D; Lee, Jennifer C

    2018-06-21

    Structural differences in pathological and functional amyloid fibrils have been investigated by Raman microspectroscopy. Second-derivative analyses of amide-I and amide-III bands distinguish parallel in-register β-sheets from a β-solenoid. Further, spatially resolved Raman spectra reveal molecular heterogeneity in amyloid structures.

  12. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinwei; Hurley, David H.

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less

  13. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra

    PubMed Central

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W.; Popp, Jürgen

    2017-01-01

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC. PMID:28749450

  14. Exploring the potential reservoirs of non specific TEM beta lactamase (bla(TEM)) gene in the Indo-Gangetic region: A risk assessment approach to predict health hazards.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Rani, Neetika; Amoah, Isaac Dennis; Stenström, Thor Axel; Shanker, Rishi

    2016-08-15

    The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of β-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores β-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Calculating two-dimensional THz-Raman-THz and Raman-THz-THz signals for various molecular liquids: the samplers.

    PubMed

    Ito, Hironobu; Hasegawa, Taisuke; Tanimura, Yoshitaka

    2014-09-28

    Recently, two-dimensional (2D) THz-Raman spectroscopy has been used to investigate the intermolecular modes of liquid water. We examine such 2D spectroscopy signals by means of full molecular dynamics (MD) simulations. In this way, we carry out a detailed analysis of intermolecular interactions that play an essential role in many important chemical processes. We calculate 2D Raman-THz-THz (RTT), THz-Raman-THz (TRT), and 2D Raman signals for liquid water, methanol, formamide, acetonitrile, formaldehyde, and dimethyl sulfoxide using an equilibrium-non-equilibrium hybrid MD simulation algorithm originally developed for 2D Raman spectroscopy. These signals are briefly analyzed in terms of anharmonicity and nonlinear polarizability of vibrational modes on the basis of the 2D Raman signals calculated from a Brownian oscillator model with a nonlinear system-bath interaction. We find that the anharmonic contribution is dominant in the RTT case, while the nonlinear polarizability contribution is dominant in the TRT case. For water and methanol, we observed vibrational echo peaks of librational motion in the 2D TRT signals. The predicted signal profiles and intensities that we obtained provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.

  16. Raman microspectroscopy of optically trapped micro- and nanoobjects

    NASA Astrophysics Data System (ADS)

    Jonáš, Alexandr; Ježek, Jan; Šerý, Mojmír; Zemánek, Pavel

    2008-12-01

    We describe and characterize an experimental system for Raman microspectroscopy of micro- and nanoobjects optically trapped in aqueous suspensions with the use of a single-beam gradient optical trap (Raman tweezers). This system features two separate lasers providing light for the optical trapping and excitation of the Raman scattering spectra from the trapped specimen, respectively. Using independent laser beams for trapping and spectroscopy enables optimizing the parameters of both beams for their respective purposes. Moreover, it is possible to modulate the position of the trapped object relative to the Raman beam focus for maximizing the detected Raman signal and obtaining spatially resolved images of the trapped specimen. Using this experimental system, we have obtained Raman scattering spectra of individual optically confined micron and sub-micron sized polystyrene beads and baker's yeast cells. Sufficiently high signal-to-noise ratio of the spectra could be achieved using a few tens of milliwatts of the Raman beam power and detector integration times on the order of seconds.

  17. The Back Scattering Micro-Raman Spectroscopy of Different Crystalline Phases of TiO2 Nanoparticles Produced by Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Malekfar, R.; Mihanyar, S.; Mozaffari, M.

    2007-09-01

    TiO2 is known to be one of the best photocatalysts among the semiconductors. In order to improve its photocatalytic features, it is necessary to be able to control factors such as the mean particle size, nanocrystalline system, grain shapes and diffraction. Nanocrystalline TiO2 sample powders were produced using H2O2 and Ti(OBu)4 as precursor materials and their above features were then characterized by using XRD, Raman spectroscopy and SEM. The grain size was calculated using the Debye Scherrer formula for anatase phase, 15 nm, which is in agreement with the value obtained by SEM imaging. Ti(OBu)4 was added dropwise to a very ice-cold solution of H2O2 under intensive stirring. This immediately yielded a red solution which was shortly followed by a strong exothermic reaction due to the unstable nature of the reaction at this stage. This process also involved rigorous giving off of H2O2, O2, and butyl alcohol. A yellow transparent peroxo-polytitanic (PPT) acid gel was thus prepared. This gel was then heated at 150 °C for 5 hours and was transformed into amorphous TiO2. The produced yellow powder was heated at 250 °C, 350 °C and 450 °C for one hour with a ramping up speed of 5 °C/min heating rate. It was later calcined at 550 °C, 750 °C and 950 °C for 30 minutes. By investigating the Raman spectra typically shown in figure 1 and also XRD patterns, it was confirmed that the anatase phase nanocrystalline powder, which is well known for its application as photocatalysts, was produced at the first three lower treatment temperatures mentioned above.

  18. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    NASA Astrophysics Data System (ADS)

    García-Bucio, María Angélica; Casanova-González, Edgar; Ruvalcaba-Sil, José Luis; Arroyo-Lemus, Elsa; Mitrani-Viggiano, Alejandro

    2016-12-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  19. Spectroscopic characterization of sixteenth century panel painting references using Raman, surface-enhanced Raman spectroscopy and helium-Raman system for in situ analysis of Ibero-American Colonial paintings

    PubMed Central

    2016-01-01

    Colonial panel paintings constitute an essential part of Latin-American cultural heritage. Their study is vital for understanding the manufacturing process, including its evolution in history, as well as its authorship, dating and other information significant to art history and conservation purposes. Raman spectroscopy supplies a non-destructive characterization tool, which can be implemented for in situ analysis, via portable equipment. Specific methodologies must be developed, comprising the elaboration of reference panel paintings using techniques and materials similar to those of the analysed period, as well as the determination of the best analysis conditions for different pigments and ground preparations. In order to do so, Raman spectroscopy at 532, 785 and 1064 nm, surface-enhanced Raman spectroscopy (SERS) and a helium-Raman system were applied to a panel painting reference, in combination with X-ray fluorescence analysis. We were able to establish the analysis conditions for a number of sixteenth century pigments and dyes, and other relevant components of panel paintings from this period, 1064 nm Raman and SERS being the most successful. The acquired spectra contain valuable specific information for their identification and they conform a very useful database that can be applied to the analysis of Ibero-American Colonial paintings. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799434

  20. Raman chemical imaging technology for food and agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This paper presents Raman chemical imaging technology for inspecting food and agricultural products. The paper puts emphasis on introducing and demonstrating Raman imaging techniques for practical uses in food analysis. The main topics include Raman scattering principles, Raman spectroscopy measurem...

  1. Q-Switched Raman laser system

    DOEpatents

    George, E. Victor

    1985-01-01

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predetermined frequency .nu.=.nu..sub.0, to ultimately produce a Raman or Brillouin pulse at frequency .nu.=.nu..sub.0 .+-..nu..sub.Stokes.

  2. Q-switched Raman laser system

    DOEpatents

    George, E.V.

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predeterimined frequency nu = nu/sub O/, to ultimately produce a Raman or Brillouin pulse at frequency nu = nu/sub O/ +- nu /sub Stokes/.

  3. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  4. Raman Antenna Effect in Semiconducting Nanowires.

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Xiong, Qihua; Eklund, Peter

    2007-03-01

    A novel Raman antenna effect has been observed in Raman scattering experiments recently carried out on individual GaP nanowires [1]. The Raman antenna effect is perfectly general and should appear in all semiconducting nanowires. It is characterized by an anomalous increase in the Raman cross section for scattering from LO or TO phonons when the electric field of the incident laser beam is parallel to the nanowire axis. We demonstrate that the explanation for the effect lies in the polarization dependence of the Mie scattering from the nanowire and the concomitant polarization-dependent electric field set up inside the wire. Our analysis involves calculations of the internal electric field using the discrete dipole approximation (DDA). We find that the Raman antenna effect happens only for nanowire diameters d<λ/4, where λ is the excitation laser wavelength. Our calculations are found in good agreement with recent experimental results for scattering from individual GaP nanowires. [1] Q. Xiong, G. Chen, G. D. Mahan, P. C. Eklund, in preparation, 2006.

  5. Citrus fruits freshness assessment using Raman spectroscopy.

    PubMed

    Nekvapil, Fran; Brezestean, Ioana; Barchewitz, Daniel; Glamuzina, Branko; Chiş, Vasile; Cintă Pinzaru, Simona

    2018-03-01

    The freshness of citrus fruits commonly available in the market was non-destructively assessed by Raman spectroscopy. Intact clementine, mandarin and tangerine species were characterised concerning their carotenoids skin Raman signalling in a time course from the moment they were acquired as fresh stock, supplying the market, to the physical degradation, when they were no longer attractive to consumers. The freshness was found to strongly correlate to the peel Raman signal collected from the same area of the intact fruits in a time course of a maximum of 20days. We have shown that the intensity of the carotenoid Raman signal is indeed a good indicator of fruit freshness and introduced a Raman coefficient of freshness (C Fresh ), whose time course is linearly decreasing, with different slope for different citrus groups. Additionally, we demonstrated that the freshness assessment could be achieved using a portable Raman instrument. The results could have a strong impact for consumer satisfaction and the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    PubMed

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  7. Characterization method for relative Raman enhancement for surface-enhanced Raman spectroscopy using gold nanoparticle dimer array

    NASA Astrophysics Data System (ADS)

    Sugano, Koji; Ikegami, Kohei; Isono, Yoshitada

    2017-06-01

    In this paper, a characterization method for Raman enhancement for highly sensitive and quantitative surface-enhanced Raman spectroscopy (SERS) is reported. A particle dimer shows a marked electromagnetic enhancement when the particle connection direction is matched to the polarization direction of incident light. In this study, dimers were arrayed by nanotrench-guided self-assembly for a marked total Raman enhancement. By measuring acetonedicarboxylic acid, the fabricated structures were characterized for SERS depending on the polarization angle against the particle connection direction. This indicates that the fabricated structures cause an effective SERS enhancement, which is dominated by the electromagnetic enhancement. Then, we measured 4,4‧-bipyridine, which is a pesticide material, for quantitative analysis. In advance, we evaluated the enhancement of the particle structure by the Raman measurement of acetonedicarboxylic acid. Finally, we compared the Raman intensities of acetonedicarboxylic acid and 4,4‧-bipyridine. Their intensities showed good correlation. The advantage of this method for previously evaluating the enhancement of the substrate was demonstrated. This developed SERS characterization method is expected to be applied to various quantitative trace analyses of molecules with high sensitivity.

  8. Correlation of TEM data with confined phonons to determine strain and size of Ge nanocrystals embedded in SixNy matrix

    NASA Astrophysics Data System (ADS)

    Bahariqushchi, Rahim; Gündoğdu, Sinan; Aydinli, Atilla

    2017-11-01

    Models that use phonon confinement fail to provide consistent results for nanocrystal sizes in differing dielectric matrices due to varying stress experienced by nanocrystals in different dielectric environments. In cases where direct measurement of stress is difficult, the possibility of stress saturation as a function of size opens up a window for the use of phonon confinement to determine size. We report on a test of this possibility in Ge: SixNy system. Ge nanocrystals (NCs) embedded in silicon nitride matrix have been fabricated using plasma enhanced chemical vapor deposition (PECVD) followed by post annealing in Ar ambient. Nanocrystal size dependence of Raman spectra was studied taking into account associated stress and an improved phonon confinement approach. Our analysis show same stress for NCs which have sizes below 7.0 nm allowing the use of phonon confinement to determine the nanocrystal size. The results are compared with TEM data and good agreement is observed.

  9. Microfluidics and Raman microscopy: current applications and future challenges.

    PubMed

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  10. Raman tensor elements of β-Ga2O3.

    PubMed

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  11. Raman tensor elements of β-Ga2O3

    PubMed Central

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-01-01

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga2O3 are investigated by experiment and theory. The low symmetry of β-Ga2O3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga2O3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations. PMID:27808113

  12. Raman spectroscopy in astrobiology.

    PubMed

    Jorge Villar, Susana E; Edwards, Howell G M

    2006-01-01

    Raman spectroscopy is proposed as a valuable analytical technique for planetary exploration because it is sensitive to organic and inorganic compounds and able to unambiguously identify key spectral markers in a mixture of biological and geological components; furthermore, sample manipulation is not required and any size of sample can be studied without chemical or mechanical pretreatment. NASA and ESA are considering the adoption of miniaturised Raman spectrometers for inclusion in suites of analytical instrumentation to be placed on robotic landers on Mars in the near future to search for extinct or extant life signals. In this paper we review the advantages and limitations of Raman spectroscopy for the analysis of complex specimens with relevance to the detection of bio- and geomarkers in extremophilic organisms which are considered to be terrestrial analogues of possible extraterrestial life that could have developed on planetary surfaces.

  13. Raman Scattering from Tin

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7448 ● SEP 2015 US Army Research Laboratory Raman Scattering from Tin by Patrick A Folkes, Patrick Taylor, Charles Rong...REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Raman Scattering from Tin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... tin as an analytical tool for discerning specific allotropic differences in ultra-thin tin films, and discerning differences between the tin and the

  14. [Study of the phase transformation of TiO2 with in-situ XRD in different gas].

    PubMed

    Ma, Li-Jing; Guo, Lie-Jin

    2011-04-01

    TiO2 sample was prepared by sol-gel method from chloride titanium. The phase transformation of the prepared TiO2 sample was studied by in-situ XRD and normal XRD in different gas. The experimental results showed that the phase transformation temperatures of TiO2 were different under in-situ or normal XRD in different kinds of gas. The transformation of amorphous TiO2 to anatase was controlled by kinetics before 500 degrees C. In-situ XRD showed that the growth of anatase was inhibited, but the transformation of anatase to rutile was accelerated under inactive nitrogen in contrast to air. Also better crystal was obtained under hydrogen than in argon. These all showed that external oxygen might accelerate the growth of TiO2, but reduced gas might partly counteract the negative influence of lack of external oxygen. The mechanism of phase transformation of TiO2 was studied by in-situ XRD in order to control the structure in situ.

  15. Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa-Aleman, Eliel; Wellons, Matthew S.

    The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  16. Characterization of uranium tetrafluoride (UF 4) with Raman spectroscopy

    DOE PAGES

    Villa-Aleman, Eliel; Wellons, Matthew S.

    2016-03-22

    The Raman spectrum of uranium tetrafluoride (UF 4) is unambiguously characterized with multiple Raman excitation laser sources for the first time. Across different laser excitation wavelengths, UF 4 demonstrates 16 distinct Raman bands within the 50-400 cm -1 region. The observed Raman bands are representative of various F-F vibrational modes. UF 4 also shows intense fluorescent bands in the 325 – 750 nm spectral region. Comparison of the UF 4 spectrum with the ZrF 4 spectrum, its crystalline analog, demonstrates a similar Raman band structure consistent with group theory predictions for expected Raman bands. Additionally, a demonstration of combined scanningmore » electron microscopy (SEM) and in situ Raman spectroscopy microanalytical measurements of UF 4 particulates shows that despite the inherent weak intensity of Raman bands, identification and characterization are possible for micron-sized particulates with modern instrumentation. The published well characterized UF 4 spectrum is extremely relevant to nuclear materials and nuclear safeguard applications.« less

  17. Raman imaging of molecular dynamics during cellular events

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa

    2017-07-01

    To overcome the speed limitation in Raman imaging, we have developed a microscope system that detects Raman spectra from hundreds of points in a sample simultaneously. The sample was illuminated by a line-shaped focus, and Raman scattering from the illuminated positions was measured simultaneously by an imaging spectrophotometer. We applied the line-illumination technique to observe the dynamics of intracellular molecules during cellular events. We found that intracellular cytochrome c can be clearly imaged by resonant Raman scattering. We demonstrated label-free imaging of redistribution of cytochrome c during apoptosis and osteoblastic mineralization. We also proposed alkyne-tagged Raman imaging to observe small molecules in living cells. Due to its small size and the unique Raman band, alkyne can tag molecules without strong perturbation to molecular functions and with the capability to be detected separately from endogenous molecules.

  18. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  19. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    NASA Astrophysics Data System (ADS)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (<10 cm-1) at wavelengths as short as 240 nm and the broadband DUV probe pulse (>1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  20. Highly crumpled solar reduced graphene oxide electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Mohanapriya, K.; Ahirrao, Dinesh J.; Jha, Neetu

    2018-04-01

    Highly crumpled solar reduced graphene oxide (CSRGO) was synthesized by simple and rapid method through freezing the solar reduced graphene oxide aqueous suspension using liquid nitrogen and used as electrode material for supercapacitor application. This electrode material was characterized by transmission electron microscope (TEM), X-Ray diffractometer (XRD) and Raman Spectroscopy techniques to understand the morphology and structure. The electrochemical performance was studied by cyclic voltammetry (CV), galvanostatic charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) using 6M KOH electrolyte. The CSRGO exhibit high specifc capacitance of 210.1 F g-1 at the current density of 0.5 A g-1 and shows excellent rate capability. These features make the CSRGO material as promising electrode for high-performance supercapacitors.

  1. Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach.

    PubMed

    Huang, Huajie; Wang, Xin

    2011-08-01

    Graphene nanoplate-MnO(2) composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO(2) nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. This journal is © The Royal Society of Chemistry 2011

  2. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  3. One-pot green synthesis of carbon quantum dot for biological application

    NASA Astrophysics Data System (ADS)

    Asghar, Khushnuma; Qasim, Mohd; Das, D.

    2017-05-01

    A one-pot microwave assisted method for synthesizing carbon quantum dots (CQDs) from honey is presented in this paper. The structural, morphological and optical properties of synthesized CQDs were characterized by XRD, TEM, UV-Vis spectrophotometer, and Raman techniques. The average particle size of CQDs is found to be 2 to 7 nm. The main advantage of this work is the use of inexpensive, less toxic and environmental friendly precursors and synthesis procedure for CQDs. In addition to this, the particle size of prepared CQDs was found to be ultrafine with narrow size distribution. The as-prepared CQDs, with smaller particle size, good stability, good optical properties, water dispersibility and low toxicity, show promising potential for applications in biomedical field.

  4. The promotional role of Ni in FeVO4/TiO2 monolith catalyst for selective catalytic reduction of NOx with NH3

    NASA Astrophysics Data System (ADS)

    Wu, Ganxue; Feng, Xi; Zhang, Hailong; Zhang, Yanhua; Wang, Jianli; Chen, Yaoqiang; Dan, Yi

    2018-01-01

    The promotional effect of nickel additive on the catalytic performance of the representative FeVO4/TiO2 for NH3-SCR reaction is systematically studied for the first time in the present work. The experimental results showed that NOx conversion at low temperature and N2 selectivity could be significantly improved by Ni doping and 0.4Ni-FeV-Ti exhibited the highest NOx removal efficiency. Analysis by XRD, SEM/HR-TEM, Raman, TPD, DRIFTS, TPR and XPS showed that nickel doping effectively promoted the interaction of FeVO4 nanoparticles with TiO2, consequently resulting in an enhanced acidity property, improved redox activity and giving rise to the formation of the surface oxygen vacancies and defect sites.

  5. Raman microscopic analysis in museology

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Derbyshire, Alan; Thiel, Sigrun; Hughes, Michael J.

    2000-09-01

    These portrait miniatures on ivory were analyzed by Raman microscopy to determine the identity of tiny, white crystals which occur under, within, or on top of their paint layers. In each case the crystals were identified as magnesium hydrogen phosphate trihydrate, newberyite (MgHPO4.3H2O). Small, white crystals which grow on the inner surface of ivory tusks were also identified as newberyite by means of Raman microscopy. Thus, it is concluded that the tiny, white crystals occurring on the portrait miniatures on ivory almost certainly originate from the ivory substrate. Resonance Raman spectroscopy using 632.8 nm excitations were found to be a sensitive probe for the detection of the blue pigment, indigo, even when it occurs in pigment mixtures on paintings. Raman microscopy was also used in analyze a fragment of opaque red Assyrian glass, dating from around the 9th-8th centuries BC, an opaque red Iron Age glass stud, dating from around the 1st century BC, and three opaque yellow Anglo-Saxon glass beads, dating from the 6th century AD.

  6. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, Tuan

    1994-01-01

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.

  7. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  8. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  9. Tunable infrared source employing Raman mixing

    DOEpatents

    Byer, Robert L.; Herbst, Richard L.

    1980-01-01

    A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.

  10. Sensitivity of Raman spectroscopy to normal patient variability

    NASA Astrophysics Data System (ADS)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  11. What Good is Raman Water Vapor Lidar?

    NASA Technical Reports Server (NTRS)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  12. Raman-based system for DNA sequencing-mapping and other separations

    DOEpatents

    Vo-Dinh, T.

    1994-04-26

    DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.

  13. Investigation of nanoscale voids in Sb-doped p-type ZnO nanowires.

    PubMed

    Pradel, Ken C; Uzuhashi, Jun; Takei, Toshiaki; Ohkubo, Tadakatsu; Hono, Kazuhiro; Fukata, Naoki

    2018-08-17

    While it has multiple advantageous optoelectronic and piezoelectric properties, the application of zinc oxide has been limited by the lack of a stable p-type dopant. Recently, it was discovered that antimony doping can lead to stable p-type doping in ZnO, but one curious side effect of the doping process is the formation of voids inside the nanowire. While previously used as a signifier of successful doping, up until now, little research has been performed on these structures themselves. In this work, the effect of annealing on the size and microstructure of the voids was investigated using TEM and XRD, finding that the voids form around a region of Zn 7 Sb 2 O 12 . Furthermore, using Raman spectroscopy, a new peak associated with successful doping was identified. The most surprising finding, however, was the presence of water trapped inside the nanowire, showing that this is actually a composite structure. Water was initially discovered in the nanowires using atom probe tomography, and verified using Raman spectroscopy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, S.; Mondal, A.; Dey, K.

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorptionmore » reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.« less

  15. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    PubMed

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  16. Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.

    PubMed

    Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U

    2015-08-01

    Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.

  17. Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier

    NASA Astrophysics Data System (ADS)

    Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.

    2017-02-01

    In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.

  18. Raman band intensities of tellurite glasses.

    PubMed

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  19. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization.

    PubMed

    Shen, Chong-Heng; Wang, Qin; Fu, Fang; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Su, Hang; Zheng, Xiao-Mei; Xu, Bin-Bin; Li, Jun-Tao; Sun, Shi-Gang

    2014-04-23

    In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission electron microscopy (TEM). Electrochemical results showed that the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material can deliver a discharge capacity of 250.8 mAhg(-1) in the 1st cycle at 0.1 C and capacity retention of 86.0% in 81 cycles. In situ X-ray diffraction technique (in situ XRD) and ex situ TEM were applied to study structural changes of the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material during charge-discharge cycles. The study allowed observing experimentally, for the first time, the existence of β-MnO2 phase that is appeared near 4.54 V in the first charge process, and a phase transformation of the β-MnO2 to layered Li0.9MnO2 is occurred in the initial discharge process by evidence of in situ XRD pattrens and selected area electron diffraction (SAED) patterns at different states of the initial charge and discharge process. The results illustrated also that the variation of the in situ X-ray reflections during charge-discharge cycling are clearly related to the changes of lattice parameters of the as-prepared Li-rich oxide during the charge-discharge cycles.

  20. Estimation of electron–phonon coupling and Urbach energy in group-I elements doped ZnO nanoparticles and thin films by sol–gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vettumperumal, R.; Kalyanaraman, S., E-mail: mayura_priya2003@yahoo.co.in; Santoshkumar, B.

    Highlights: • Comparison of group-I elements doped ZnO nanoparticles and thin films. • Calculation of electron–phonon coupling and phonon lifetime from Raman spectroscopy. • Estimation of interband states from Urbach energy. - Abstract: Group-I (Li, Na, K & Cs) elements doped ZnO nanoparticles (NPs) and thin films were prepared using sol–gel method. XRD data and TEM images confirm the absence of any other secondary phase different from wurtzite type ZnO. Spherical shapes of grains are observed from the surfaces of doped ZnO films by atomic force microscope images (AFM) and presences of dopants are confirmed from energy dispersive X-ray spectra.more » The Raman active E{sub 2} (high), E{sub 2} (low), E{sub 1} and A{sub 1} (LO) modes are observed from both ZnO NPs and thin films. First-order longitudinal optical (LO) phonon is found to have contributions from direct band transition and localized excitons. Electron–phonon coupling, phonon lifetime and deformation energy of ZnO are calculated based on the effect of dopants with respect to the multiple Raman LO phonon scattering. Presence of localized interbands states in doped ZnO NPs and thin films are found from the Urbach energy calculations.« less

  1. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    NASA Technical Reports Server (NTRS)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  2. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    NASA Astrophysics Data System (ADS)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  3. Experimental artifacts influencing polarization sensitive magneto-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Thirunavukkuarasu, K.; Lu, Z.; Su, L.; Yu, Y.; Cao, L.; Ballotin, M. V.; Christianen, P. C. M.; Zhang, Y.; Smirnov, D.

    Since the discovery of graphene, there has been an explosion of research on 2D layered materials such as transition metal dichalcogenides (TMDs). Among several experimental techniques utilized for studying these materials, Raman spectroscopy has proven to be a very powerful tool due to it's sensitivity to layer numbers, interlayer coupling etc. Layered MoS2, member of TMD family, is a typical example with promising applications in nano-optoelectronics. A recent magneto-Raman investigations on MoS2 published by J. Ji etal reported an observation of giant magneto-optical effect. In this work, the intensity of Raman modes exhibited dramatic change in intensities and was attributed to field-induced broken symmetry on Raman scattering cross-section. Due to the ambiguous nature of the interpretation presented in this publication, we performed further Raman studies on MoS2 at high magnetic fields to illustrate the experimental factors overlooked by the previous study. It is highly important to consider the magnetic field-induced rotation of the polarization of the light and its effect on the Raman active phonon modes in anisotropic materials. A detailed report of our magneto-Raman experiments and their outcomes will be presented.

  4. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  5. Synergistic effect on the visible light activity of Ti3+ doped TiO2 nanorods/boron doped graphene composite

    PubMed Central

    Xing, Mingyang; Li, Xiao; Zhang, Jinlong

    2014-01-01

    TiO2/graphene (TiO2-x/GR) composites, which are Ti3+ self-doped TiO2 nanorods decorated on boron doped graphene sheets, were synthesized via a simple one-step hydrothermal method using low-cost NaBH4 as both a reducing agent and a boron dopant on graphene. The resulting TiO2 nanorods were about 200 nm in length with exposed (100) and (010) facets. The samples were characterized by X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, X-band electron paramagnetic resonance (EPR), X-ray photoelectron spectra (XPS), transmission electron microscope (TEM), Raman, and Fourier-transform infrared spectroscopy (FTIR). The XRD results suggest that the prepared samples have an anatase crystalline structure. All of the composites tested exhibited improved photocatalytic activities as measured by the degradation of methylene blue and phenol under visible light irradiation. This improvement was attributed to the synergistic effect of Ti3+ self-doping on TiO2 nanorods and boron doping on graphene. PMID:24974890

  6. Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Singh, Arun

    2018-03-01

    We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2-200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ˜ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (˜ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.

  7. Optical and structural properties of Mo-doped NiTiO3 materials synthesized via modified Pechini methods

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo

    2017-07-01

    In this study, molybdenum (Mo)-doped nickel titanate (NiTiO3) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO3 structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO3 lattice was doped with Mo. On the other hand, Mo doping of NiTiO3 materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  8. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  9. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    PubMed

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  10. Matching 4.7-Å XRD Spacing in Amelogenin Nanoribbons and Enamel Matrix

    PubMed Central

    Sanii, B.; Martinez-Avila, O.; Simpliciano, C.; Zuckermann, R.N.; Habelitz, S.

    2014-01-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. PMID:25048248

  11. Cavity-enhanced Raman microscopy of individual carbon nanotubes

    PubMed Central

    Hümmer, Thomas; Noe, Jonathan; Hofmann, Matthias S.; Hänsch, Theodor W.; Högele, Alexander; Hunger, David

    2016-01-01

    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics. PMID:27402165

  12. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Chen, Peter (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  13. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  14. Rapid identification of staphylococci by Raman spectroscopy.

    PubMed

    Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Holá, Veronika; Ježek, Jan; Zemánek, Pavel; Sokolová, Jana; Petráš, Petr

    2017-11-01

    Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.

  15. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  16. Raman scattering or fluorescence emission? Raman spectroscopy study on lime-based building and conservation materials.

    PubMed

    Kaszowska, Zofia; Malek, Kamilla; Staniszewska-Slezak, Emilia; Niedzielska, Karina

    2016-12-05

    This work presents an in-depth study on Raman spectra excited with 1064 and 532nm lasers of lime binders employed in the past as building materials and revealed today as valuable conservation materials. We focus our interest on the bands of strong intensity, which are present in the spectra of all binders acquired with laser excitation at 1064nm, but absent in the corresponding spectra acquired with laser excitation at 532nm. We suggest, that the first group of spectra represents fluorescence phenomena of unknown origin and the second true Raman scattering. In our studies, we also include two other phases of lime cycle, i.e. calcium carbonate (a few samples of calcite of various origins) and calcium oxide (quicklime) to assess how structural and chemical transformations of lime phases affect the NIR-Raman spectral profile. Furthermore, we analyse a set of carbonated limewashes and lime binders derived from old plasters to give an insight into their spectral characteristics after excitation with the 1064nm laser line. NIR-Raman micro-mapping results are also presented to reveal the spatial distribution of building materials and fluorescent species in the cross-section of plaster samples taken from a 15th century chapel. Our study shows that the Raman analysis can help identify lime-based building and conservation materials, however, a caution is advised in the interpretation of the spectra acquired using 1064nm excitation. Copyright © 2016. Published by Elsevier B.V.

  17. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  18. The Impact of Array Detectors on Raman Spectroscopy

    ERIC Educational Resources Information Center

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  19. Investigation of Skin Cancers Using MicroRaman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Short, M. A.; Chen, X. K.; Zeng, H.; Ajlan, A. A.; McLean, D. I.; Hui, H.

    2004-03-01

    We have measured the Raman spectra of skin cancers, including melanoma and basal cell carcinoma, using a confocal microRaman spectrograph. In an attempt to identify the origin of the observed Raman modes, we investigated the spectra obtained from different locations of the samples, compared the observed spectra with those measured from normal human skin and pig skin, and studied the polarization dependence of the spectra. In addition, we will discuss the effects of fluorescence in the measurement of Raman spectra of skin samples.

  20. Raman lidar/AERI PBL Height Product

    DOE Data Explorer

    Ferrare, Richard

    2012-12-14

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  1. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950  cm⁻¹; 1750 to 3600  cm⁻¹) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600  cm⁻¹ within 1.0 s with a spectral resolution of 3 to 6  cm⁻¹ during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  2. In situ Raman mapping of art objects

    PubMed Central

    Brondeel, Ph.; Moens, L.; Vandenabeele, P.

    2016-01-01

    Raman spectroscopy has grown to be one of the techniques of interest for the investigation of art objects. The approach has several advantageous properties, and the non-destructive character of the technique allowed it to be used for in situ investigations. However, compared with laboratory approaches, it would be useful to take advantage of the small spectral footprint of the technique, and use Raman spectroscopy to study the spatial distribution of different compounds. In this work, an in situ Raman mapping system is developed to be able to relate chemical information with its spatial distribution. Challenges for the development are discussed, including the need for stable positioning and proper data treatment. To avoid focusing problems, nineteenth century porcelain cards are used to test the system. This work focuses mainly on the post-processing of the large dataset which consists of four steps: (i) importing the data into the software; (ii) visualization of the dataset; (iii) extraction of the variables; and (iv) creation of a Raman image. It is shown that despite the challenging task of the development of the full in situ Raman mapping system, the first steps are very promising. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799424

  3. Time-lapse Raman imaging of osteoblast differentiation

    PubMed Central

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-01-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable. PMID:26211729

  4. Time-lapse Raman imaging of osteoblast differentiation

    NASA Astrophysics Data System (ADS)

    Hashimoto, Aya; Yamaguchi, Yoshinori; Chiu, Liang-Da; Morimoto, Chiaki; Fujita, Katsumasa; Takedachi, Masahide; Kawata, Satoshi; Murakami, Shinya; Tamiya, Eiichi

    2015-07-01

    Osteoblastic mineralization occurs during the early stages of bone formation. During this mineralization, hydroxyapatite (HA), a major component of bone, is synthesized, generating hard tissue. Many of the mechanisms driving biomineralization remain unclear because the traditional biochemical assays used to investigate them are destructive techniques incompatible with viable cells. To determine the temporal changes in mineralization-related biomolecules at mineralization spots, we performed time-lapse Raman imaging of mouse osteoblasts at a subcellular resolution throughout the mineralization process. Raman imaging enabled us to analyze the dynamics of the related biomolecules at mineralization spots throughout the entire process of mineralization. Here, we stimulated KUSA-A1 cells to differentiate into osteoblasts and conducted time-lapse Raman imaging on them every 4 hours for 24 hours, beginning 5 days after the stimulation. The HA and cytochrome c Raman bands were used as markers for osteoblastic mineralization and apoptosis. From the Raman images successfully acquired throughout the mineralization process, we found that β-carotene acts as a biomarker that indicates the initiation of osteoblastic mineralization. A fluctuation of cytochrome c concentration, which indicates cell apoptosis, was also observed during mineralization. We expect time-lapse Raman imaging to help us to further elucidate osteoblastic mineralization mechanisms that have previously been unobservable.

  5. Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Markovski, C.; Byrne, J. M.; Lalla, E.; Lozano-Gorrín, A. D.; Klingelhöfer, G.; Rull, F.; Kappler, A.; Hoffmann, T.; Schröder, C.

    2017-11-01

    Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mössbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

  6. Raman scattering in the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Cochran, W. D.; Trafton, L. M.

    1978-01-01

    A technique is developed to calculate the detailed effects of Raman scattering in an inhomogeneous anisotropically scattering atmosphere. The technique is applied to evaluations of Raman scattering by H2 in the atmosphere of the major planets. It is noted that Raman scattering produces an insufficient decrease in the blue and ultraviolet regions to explain the albedos of all planets investigated. For all major planets, the filling-in of solar line cores and the generation of the Raman-shifted ghosts of the Fraunhofer spectrum are observed. With regard to Uranus and Neptune, Raman scattering is seen to exert a major influence on the formation and profile of strong red and near infrared CH4 bands, and Raman scattering by H2 explains the residual intensity in the cores of these bands. Raman scattering by H2 must also be taken into account in the scattering of photons into the cores of saturated absorption bands.

  7. Fourier-Transform Raman Spectroscopy Of Biological Assemblies

    NASA Astrophysics Data System (ADS)

    Levin, Ira W.; Lewis, E. Neil

    1989-12-01

    Although the successful coupling of Raman scattered near-infrared radiation to a Michelson interferometer has recently created an outburst of intense interest in Fourier-transform (FT) Raman spectrometry," extended applications of the technique to macromolecular assemblies of biochemical and biophysical relevance have not progressed as rapidly as studies directed primarily at more conventional chemical characterizations. Since biological materials sampled with visible laser excitation sources typically emit a dominant fluorescence signal originating either from the intrinsic fluorescence of the molecular scatterer or from unrelenting contaminants, the use of near-infrared Nd:YAG laser excitation offers a convenient approach for avoiding this frequently overwhelming effect. In addition, the FT-Raman instrumentation provides a means of eliminating the deleterious resonance and decomposition effects often observed with the more accessible green and blue laser emissions. However, in choosing the incident near-infrared wavelength at, for example, 1064nm, the Raman scattered intensity decreases by factors of eighteen to forty from the Raman emissions induced by the shorter, visible excitations. Depending upon the experiment, this disadvantage is offset by the throughput and multiplex advantages afforded by the interferometric design. Thus, for most chemical systems, near-infrared FT-Raman spectroscopy, clearly provides a means for obtaining vibrational Raman spectra from samples intractable to the use of visible laser sources. In particular, for neat liquids, dilute solutions or polycrystalline materials, the ability to achieve high quality, reproducible spectra is, with moderate experience and perhaps relatively high laser powers, as straightforward as the conventional methods used to obtain Raman spectra with visible excitation and dispersive monochromators. In using near-infrared FT techniques to determine the Raman spectra of biological samples, one encounters new

  8. Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015

    DTIC Science & Technology

    2017-05-01

    ARL-CR-0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting...0814 ● MAY 2017 US Army Research Laboratory Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 by...SUBTITLE Robotics Collaborative Technology Alliance (RCTA): Technical Exchange Meeting (TEM) 2015 5a. CONTRACT NUMBER W911NF-10-2-0016 5b. GRANT

  9. Lattice distortion and strain relaxation in epitaxial thin films of multiferroic TbMnO3 probed by X-ray diffractometry and micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Stender, D.; Medarde, M.; Lippert, T.; Wokaun, A.; Schneider, C. W.

    2013-08-01

    A detailed structural XRD analysis of (1 1 0)-oriented TbMnO3 thin films grown on (1 1 0)-YAlO3 substrates shows the co-existence of a strained and relaxed "sublayer" within the films due to strain relaxation during epitaxial growth by pulsed laser deposition. The substrate-film lattice mismatch yields a compressive strain anisotropy along the two in-plane directions, i.e. [1 -1 0] and [0 0 1] and a monoclinic distortion. A further manifestation of the growth-induced strain is the hardening of Raman active modes as a result of changed atomic motions along the [1 -1 0] and [0 0 1] directions.

  10. Study and application of new Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Qiushi; Zhang, Xiaohua

    2016-03-01

    Spatially Offset Raman Spectroscopy (SORS) is a new type of Raman Spectroscopy technology, which can detect the medium concealed in the opaque or sub-transparent material fast and nondestructively. The article summarized Spatially Offset Raman Spectroscopy`s international and domestic study and application progress on contraband detecting, medical science (bone ingredient, cancer diagnose etc.), agricultural products, historical relic identification etc. and stated the technology would become an effective measurement which had wide application prospect.

  11. Rotating samples in FT-RAMAN spectrometers

    NASA Astrophysics Data System (ADS)

    De Paepe, A. T. G.; Dyke, J. M.; Hendra, P. J.; Langkilde, F. W.

    1997-11-01

    It is customary to rotate samples in Raman spectroscopy to avoid absorption or sample heating. In FT-Raman experiments the rotation is always shown (typically 30-60 rpm) because higher speeds are thought to generate noise in the spectra. In this article we show that more rapid rotation is possible. A tablet containing maleic acid and one made up of sub-millimetre silica particles with metoprolol succinate as active ingredient were rotated at different speeds, up to 6760 rpm. The FT-Raman spectra were recorded and studied. We conclude that it is perfectly acceptable to rotate samples up to 1500 rpm.

  12. Study the chemical composition and biological outcomes resulting from the interaction of the hormone adrenaline with heavy elements: Infrared, Raman, electronic, 1H NMR, XRD and SEM studies

    NASA Astrophysics Data System (ADS)

    Ibrahim, Omar B.; Mohamed, Mahmoud A.; Refat, Moamen S.

    2014-01-01

    Heavy metal adrenaline complexes formed from the reaction of adrenaline with Al3+, Zn2+, Sn2+, Sb3+, Pb2+and Bi3+ ions in methanolic solvent at 60 °C. The final reaction products have been isolated and characterization using elemental analyses (% of carbon, hydrogen and nitrogen), conductivity measurements, mid infrared, Raman laser, UV-Vis, 1H NMR spectra, X-ray powder diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDX). Upon the spectroscopic, conductivity and elemental analyses, the stoichiometric reactions indicated that the data obtained refer to 1:2 (M:L) for Zn2+, Sn2+, Pb2+and Bi3+ complexes [Zn(Adr)2(Cl)2], [Sn(Adr)2]Cl2, [Pb(Adr)2](NO3)2 and [Bi(Adr)2(Cl)2]Cl, while the molar ratio 1:3 (M:L) for Al3+ and Sb3+ with formulas [Al(Adr)3](NO3)3 and [Sb(Adr)3]Cl3. The infrared and Raman laser spectra interpreted the mode of interactions which associated through the two phenolic groups of catechol moiety. The adrenaline chelates have been screened for their in vitro antibacterial activity against four bacteria, Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial and antifungal activities than the free adrenaline chelate.

  13. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  14. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  15. Application of laser Raman spectroscopy to dental diagnosis

    NASA Astrophysics Data System (ADS)

    Izawa, Takahiro; Wakaki, Moriaki

    2005-03-01

    The aim of this research is related with the diagnosis of caries by use of a laser. We study the fundamental characterization of the diagnosis method using both fluorescence and Raman scattering spectroscopy. We try to evaluate the possibility of the caries diagnosis using Raman spectroscopy and its clinical application. We focus on the PO34- ion that flows out with the dissolution of hydroxyapatite (HAp), and the fluorescence that increases in connection with caries. The Raman line of P-O vibration is overlapped on the continuous, background spectrum by fluorescence. Consequently, we try to find out the correlation between a healthy part and a carious part by analyzing both fluorescence and Raman spectra. It was found that Raman intensity of HAp at carious lesion was weaker than those of healthy parts and the florescence intensity at the same portions was stronger. We have obtained the feasibility to estimate the degree of caries and health condition by deriving the ratio between Raman and florescence intensity. And the trial measurements in vivo were carried out to verify the availability of the method by using a fiber probe type multi channel Raman spectrometer. The process of remineralization is under researching for the development of preventive medicine.

  16. FT-Raman study of dehydrogenation polymer (DHP) lignins

    Treesearch

    Umesh P. Agarwal; Noritsugu Terashima

    2003-01-01

    Compared to conventional Raman spectroscopy where samples are excited using visible light lasers, 1064 nm-excited FT-Raman technique has the single most important advantage that the sample-fluorescence is significantly suppressed for samples that are strongly fluorescent. DHPs are difficult to analyze in conventional Raman because small amounts of chromophores present...

  17. Raman spectroscopy of bone metastasis

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Karen A.; Sottnik, Joseph; Morris, Michael; Keller, Evan

    2012-02-01

    Raman spectroscopy of bone has been used to characterize chemical changes occurring in diseases such as osteoporosis, osteoarthritis and osteomyelitis. Metastasis of cancer into bone causes changes to bone quality that are similar to those observed in osteoporosis, such as decreased bone strength, but with an accelerated timeframe. In particular, osteolytic (bone degrading) lesions in bone metastasis have a marked effect on patient quality of life because of increased risk of fractures, pain, and hypercalcemia. We use Raman spectroscopy to examine bone from two different mouse models of osteolytic bone metastasis. Raman spectroscopy measures physicochemical information which cannot be obtained through standard biochemical and histological measurements. This study was reviewed and approved by the University of Michigan University Committee on the Care and Use of Animals. Two mouse models of prostate cancer bone metastasis, RM1 (n=3) and PC3-luc (n=4) were examined. Tibiae were injected with RM1 or PC3-luc cancer cells, while the contralateral tibiae received a placebo injection for use as controls. After 2 weeks of incubation, the mice were sacrificed and the tibiae were examined by Raman microspectroscopy (λ=785 nm). Spectroscopic markers corresponding to mineral stoichiometry, bone mineralization, and mineral crystallinity were compared in spectra from the cancerous and control tibiae. X-ray imaging of the tibia confirmed extensive osteolysis in the RM1 mice, with tumor invasion into adjoining soft tissue and moderate osteolysis in the PC3-luc mice. Raman spectroscopic markers indicate that osteolytic lesions are less mineralized than normal bone tissue, with an altered mineral stoichiometry and crystallinity.

  18. Combined raman spectrometer/laser-induced breakdown spectrometer design concept

    NASA Astrophysics Data System (ADS)

    Bazalgette Courrèges-Lacoste, Gregory; Ahlers, Berit; Boslooper, Erik; Rull-Perez, Fernando; Maurice, Sylvestre

    2017-11-01

    Amongst the different instruments that have been preselected to be on-board the Pasteur payload on ExoMars is the Raman/ Laser Induced Breakdown Spectroscopy (LIBS) instrument. Raman spectroscopy and LIBS will be integrated into a single instrument sharing many hardware commonalities. An international team under the lead of TNO has been gathered to produce a design concept for a combined Raman Spectrometer/ LIBS Elegant Bread-Board (EBB). The instrument is based on a specifically designed extremely compact spectrometer with high resolution over a large wavelength range, suitable for both Raman spectroscopy and LIBS measurements. Low mass, size and resources are the main drivers of the instrument's design concept. The proposed design concept, realization and testing programme for the combined Raman/ LIBS EBB is presented as well as background information on Raman and LIBS.

  19. The hallmarks of breast cancer by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  20. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    PubMed

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  1. Multifrequency Raman amplifiers

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-01

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the total fluence is split between the different spectral components.

  2. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.

    PubMed

    Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  3. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less

  4. Micro-Raman and FT-IR spectroscopic studies of ceramic shards excavated from ancient Stratonikeia city at Eskihisar village in West-South Turkey

    NASA Astrophysics Data System (ADS)

    Bahçeli, Semiha; Güleç, Gamze; Erdoğan, Hasan; Söğüt, Bilal

    2016-02-01

    In this study, micro-Raman and Fourier transformed infrared (FT-IR) spectroscopies, X-ray diffraction (XRD) and scanning electron microscope with energy dispersive X-ray (SEM-EDX) were used to characterize the mineralogical structures of pigments of four ceramic fragments in which one of them belongs to Hellenistic period (1st - IVth century BC) and other three ceramic shards belong to Early Rome (IVth century BC- 1st century AD) excavated from Stratonikeia ancient city. In the results of investigations on these four ceramic fragments, the various phases were identified: quartz, kaolinite, albit (or Na-feldspar), calcite, anastase, hematite and magnetite. Furthermore, the obtained findings indicate that firing temperature is about 800-850 °C for all the shards.

  5. Simultaneous neutron scattering and Raman scattering.

    PubMed

    Adams, Mark A; Parker, Stewart F; Fernandez-Alonso, Felix; Cutler, David J; Hodges, Christopher; King, Andrew

    2009-07-01

    The capability to make simultaneous neutron and Raman scattering measurements at temperatures between 1.5 and 450 K has been developed. The samples to be investigated are attached to one end of a custom-made center-stick suitable for insertion into a 100 mm-bore cryostat. The other end of the center-stick is fiber-optically coupled to a Renishaw in Via Raman spectrometer incorporating a 300 mW Toptica 785 nm wavelength stabilized diode laser. The final path for the laser beam is approximately 1.3 m in vacuo within the center-stick followed by a focusing lens close to the sample. Raman scattering measurements with a resolution of 1 to 4 cm(-1) can be made over a wide range (100-3200 cm(-1)) at the same time as a variety of different types of neutron scattering measurements. In this work we highlight the use of inelastic neutron scattering and neutron diffraction in conjunction with the Raman for studies of the globular protein lysozyme.

  6. Stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  7. Raman spectroscopy of biomedical polyethylenes.

    PubMed

    Pezzotti, Giuseppe

    2017-06-01

    With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data. Statement of Significance This review was dedicated to the

  8. Raman Spectroscopy of Ocular Tissue

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Sharifzadeh, Mohsen; Gellermann, Warner

    The optically transparent nature of the human eye has motivated numerous Raman studies aimed at the non-invasive optical probing of ocular tissue components critical to healthy vision. Investigations include the qualitative and quantitative detection of tissue-specific molecular constituents, compositional changes occurring with development of ocular pathology, and the detection and tracking of ocular drugs and nutritional supplements. Motivated by a better understanding of the molecular mechanisms leading to cataract formation in the aging human lens, a great deal of work has centered on the Raman detection of proteins and water content in the lens. Several protein groups and the hydroxyl response are readily detectable. Changes of protein compositions can be studied in excised noncataractous tissue versus aged tissue preparations as well as in tissue samples with artificially induced cataracts. Most of these studies are carried out in vitro using suitable animal models and conventional Raman techniques. Tissue water content plays an important role in optimum light transmission of the outermost transparent ocular structure, the cornea. Using confocal Raman spectroscopy techniques, it has been possible to non-invasively measure the water to protein ratio as a measure of hydration status and to track drug-induced changes of the hydration levels in the rabbit cornea at various depths. The aqueous humor, normally supplying nutrients to cornea and lens, has an advantageous anterior location for Raman studies. Increasing efforts are pursued to non-invasively detect the presence of glucose and therapeutic concentrations of antibiotic drugs in this medium. In retinal tissue, Raman spectroscopy proves to be an important tool for research into the causes of macular degeneration, the leading cause of irreversible vision disorders and blindness in the elderly. It has been possible to detect the spectral features of advanced glycation and advanced lipooxydation end products in

  9. Raman Imaging in Cell Membranes, Lipid-Rich Organelles, and Lipid Bilayers.

    PubMed

    Syed, Aleem; Smith, Emily A

    2017-06-12

    Raman-based optical imaging is a promising analytical tool for noninvasive, label-free chemical imaging of lipid bilayers and cellular membranes. Imaging using spontaneous Raman scattering suffers from a low intensity that hinders its use in some cellular applications. However, developments in coherent Raman imaging, surface-enhanced Raman imaging, and tip-enhanced Raman imaging have enabled video-rate imaging, excellent detection limits, and nanometer spatial resolution, respectively. After a brief introduction to these commonly used Raman imaging techniques for cell membrane studies, this review discusses selected applications of these modalities for chemical imaging of membrane proteins and lipids. Finally, recent developments in chemical tags for Raman imaging and their applications in the analysis of selected cell membrane components are summarized. Ongoing developments toward improving the temporal and spatial resolution of Raman imaging and small-molecule tags with strong Raman scattering cross sections continue to expand the utility of Raman imaging for diverse cell membrane studies.

  10. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.

    PubMed

    Acosta-Maeda, Tayro E; Misra, Anupam K; Porter, John N; Bates, David E; Sharma, Shiv K

    2017-05-01

    We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm -1 vibrational mode of cyclohexane is 4.55 × 10 -30 cm 2 sr -1 molecule -1 when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.

  11. Monitoring of aqueous humor metabolites using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wicksted, James P.; Erckens, Roel J.; Motamedi, Massoud; March, Wayne F.

    1994-05-01

    Laser Raman scattering has been used to monitor glucose and lactate metabolites within aqueous humor specimens obtained from nine human eyes during cataract surgery. Nine postmortem rabbit eyes were also investigated. Raman measurements were obtained using a single grating Raman spectrometer with a liquid nitrogen cooled CCD. A 514.5 nm line from an argon laser was used to illuminate capillaries containing several microliters of aqueous humor. A water background was subtracted from each of the aqueous humor Raman spectra. This experimental system was calibrated so that each metabolite in water could be measured down to 0.1 weight percent. Raman peaks indicative of the stretching vibrations of methylene and methyl groups associated with glucose and lactate, respectively, were observed in the human specimens. A second stretching mode characteristic of lactate between the carbon atom and either the carboxylic acid group or carboxylate ion group was also observed providing a distinguishing feature between the glucose and lactate Raman peaks. Similar structure was observed from the rabbit specimens, but these samples have recently been found to have been contaminated during euthanasia.

  12. Application of Mythen detector: In-situ XRD study on the thermal expansion behavior of metal indium

    NASA Astrophysics Data System (ADS)

    Du, Rong; Chen, ZhongJun; Cai, Quan; Fu, JianLong; Gong, Yu; Wu, ZhongHua

    2016-07-01

    A Mythen detector has been equipped at the beamline 4B9A of Beijing Synchrotron Radiation Facility (BSRF), which is expected to enable BSRF to perform time-resolved measurement of X-ray diffraction (XRD) full-profiles. In this paper, the thermal expansion behavior of metal indium has been studied by using the in-situ XRD technique with the Mythen detector. The indium was heated from 303 to 433 K with a heating rate of 2 K/min. The in-situ XRD full-profiles were collected with a rate of one profile per 10 seconds. Rietveld refinement was used to extract the structural parameters. The results demonstrate that these collected quasi-real-time XRD profiles can be well used for structural analysis. The metal indium was found to have a nonlinear thermal expansion behavior from room temperature to the melting point (429.65 K). The a-axis of the tetragonal unit cell expands with a biquadratic dependency on temperature, while the c-axis contracts with a cubic dependency on temperature. By the time-resolved XRD measurements, it was observed that the [200] preferred orientation can maintain to about 403.15 K. While (110) is the last and detectable crystal plane just before melting of the polycrystalline indium foil. This study is not only beneficial to the application of metal indium, but also exhibits the capacity of in-situ time-resolved XRD measurements at the X-ray diffraction station of BSRF.

  13. Response Time Measurements of the NIF DANTE XRD-31 X-Ray Diodes (Pre-print)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Pellinen and Michael Griffin

    2009-01-23

    The XRD-31 is a fast, windowless X-ray vacuum photodiode developed by EG&G. It is currently the primary fast X-ray detector used to diagnose the X-rays on NIF and OMEGA on the multichannel DANTE spectrometer. The XRD-31 has a dynamic range of less than 1e-12 amps to more than 10 amps. A technique is described to measure the impulse response of the diodes to a 150 fs pulse of 200 nm laser light and a method to calculate the “risetime” for a square pulse and compare it with the computed electron transit time from the photocathode to the anode. Measured responsemore » time for 5 XRD-31s assembled in early 2004 was 149.7 ps +-2.75 ps.« less

  14. Comparative studies by IR, Raman, and surface-enhanced Raman spectroscopy of azodicarbonamide, biurea and semicarbazide hydrochloride

    NASA Astrophysics Data System (ADS)

    Xie, Yunfei; Li, Pei; Zhang, Jin; Wang, Heya; Qian, He; Yao, Weirong

    2013-10-01

    Azodicarbonamide is widely applied in the food industry as a new flour gluten fortifier in China, Canada, the United States, and some other countries, whose metabolites of biurea and semicarbazide hydrochloride are reaction products during baking. In this study, IR, Raman and surface-enhanced Raman scattering (SERS) spectra of azodicarbonamide, biurea, and semicarbazide hydrochloride have been studied, and vibrational bands have been assigned on the basis of density functional theory (DFT) calculations. The calculated Raman spectra were in good agreement with experimental Raman spectra. The SERS method coupled with active gold substrates has also been applied for detection of the three chemicals with pure water as solvent, with the limit of detection of this method being as low as 10 μg/mL (less than 45 μg/mL). These results showed that azodicarbonamide and its metabolites could be detected by the vibrational spectra technique, which might be applied as a powerful tool for the rapid detection on these species derived from agents added to flour.

  15. Polarization Sensitive Coherent Raman Measurements of DCVJ

    NASA Astrophysics Data System (ADS)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  16. Raman q-plates for Singular Atom Optics

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.

    2016-05-01

    We use a coherent two-photon Raman interaction as the atom-optic equivalent of a birefringent optical q-plate to facilitate spin-to-orbital angular momentum conversion in a pseudo-spin-1/2 BEC. A q-plate is a waveplate with a fixed retardance but a spatially varying fast axis orientation angle. We derive the time evolution operator for the system and compare it to a Jones matrix for an optical waveplate to show that in our Raman q-plate, the equivalent orientation of the fast axis is described by the relative phase of the Raman beams and the retardance is determined by the pulse area. The charge of the Raman q-plate is determined by the orbital angular momentum of the Raman beams, and the beams contain umbilic C-point polarization singularities which are imprinted into the condensate as spin singularities: lemons, stars, spirals, and saddles. By tuning the optical beam parameters, we can create a full-Bloch BEC, which is a coreless vortex that contains every possible superposition of two spin states, that is, it covers the Bloch sphere.

  17. Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Zhai, Gang; Ru, Yu; Wu, Chuyu; Jia, Xiaowei; Sun, Yaping; Yu, Jiawen; Kang, Zhizhong; Sun, Baomin

    2018-03-01

    The Flame pyrolysis method used to synthesize carbon nanotubes was studied in this work. In order to improve the quality of synthesized carbon nanotubes, it is important to change the corresponding natures of the catalyst. Two catalyst preparation methods, namely, the sol-gel method and the impregnation method, were compared in this experiment. The properties of the catalyst are analyzed in depth by energy dispersive spectrometer (EDS), x-ray diffraction (XRD), temperature program reduction (TPR). The generation of carbon nanotubes was systematically analysed through scanning electron microscope (SEM), molecule dynamics (MD), raman spectroscopy and transmission electron microscope (TEM). The results show that the catalysts prepared by the impregnation method are stickier, dispersed and easier to dip onto the probe or substrate, which is beneficial for the large-scale production of carbon tubes. The specific surface area of alumina is larger and the iron and molybdenum oxide are more evenly dispersed on the surface of alumina. The carbon nanotubes produced by the catalysts prepared by impregnation method are flatter and have less impurities. The ratio of ID/IG+ is 29.7% lower than that of the sol-gel method in the Raman spectra. The TEM statistics show that the average diameter of the carbon tubes decreases by 23.3%. Therefore, the impregnation method can improve the quality of carbon nanotubes in the case of a similar degree of difficulty in the preparation of the catalyst.

  18. [Progress in Raman spectroscopic measurement of methane hydrate].

    PubMed

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  19. Abnormal cubic-tetragonal phase transition of barium strontium titanate nanoparticles studied by in situ Raman spectroscopy and transmission electron microscopy heating experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yin; Chen, Chen; Gao, Ran

    2015-11-02

    Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less

  20. Approximate chemical analysis of volcanic glasses using Raman spectroscopy

    PubMed Central

    Morgavi, Daniele; Hess, Kai‐Uwe; Neuville, Daniel R.; Borovkov, Nikita; Perugini, Diego; Dingwell, Donald B.

    2015-01-01

    The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd PMID:27656038

  1. Distribution of phthalocyanines and Raman reporters in human cancerous and noncancerous breast tissue as studied by Raman imaging.

    PubMed

    Brozek-Pluska, Beata; Jarota, Arkadiusz; Jablonska-Gajewicz, Joanna; Kordek, Radzislaw; Czajkowski, Wojciech; Abramczyk, Halina

    2012-08-01

    There is a considerable interest in the developing new diagnostic techniques allowing noninvasive tracking of the progress of therapies used to treat a cancer. Raman imaging of distribution of phthalocyanine photosensitizers may open new possibilities of Photodynamic Therapy (PDT) to treat a wide range of neoplastic lesions with improved effectiveness of treatment through precise identification of malignant areas. We have employed Raman imaging and Raman spectroscopy to analyze human breast cancer tissue that interacts with photosensitizers used in the photodynamic therapy of cancer. PCA (Principal Component Analysis) has been employed to analyze various areas of the noncancerous and cancerous breast tissues. The results show that the emission spectra combined with the Raman images are very sensitive indicators to specify the aggregation state and the distribution of phthalocyanines in the cancerous and noncancerous breast tissues. Our results provide experimental evidence on the role of aggregation of phthalocyanines as a factor of particular significance in differentiation of the normal and tumourous (cancerous or benign pathology) breast tissues. We conclude that the Raman imaging reported here has a potential to be a novel and effective photodynamic therapeutic method with improved selectivity for the treatment of breast cancer.

  2. Progress on Raman laser for sodium resonance fluorescence lidar

    NASA Astrophysics Data System (ADS)

    Li, Steven X.; Yu, Anthony W.; Krainak, Michael A.; Bai, Yingxin; Konoplev, Oleg; Fahey, Molly E.; Numata, Kenji

    2018-02-01

    We are developing a Q-switched narrow linewidth intra-cavity Raman laser for a space based sodium lidar application. A novel Raman laser injection seeding scheme is proposed and is experimentally verified. A Q-switched, diode pumped, c-cut Nd:YVO4 laser has been designed to emit a fundamental wavelength at 1066.6 nm. This fundamental wavelength is used as the pump in an intra-cavity Raman conversion in a Gd0.2Y0.8VO4 composite material. By tuning the temperature of the crystal, we tuned the Raman shifting to the desired sodium absorption line. A diode end pumped, T-shaped laser cavity has been built for experimental investigation. The fundamental pump laser cavity is a twisted mode cavity to eliminate the spatial hole burning for effective injection seeding. The Raman laser cavity is a linear standing wave cavity because Raman gain medium does not suffer spatial hole burning as traditional laser gain medium. The linewidth and temporal profile of the Raman laser is experimentally investigated with narrow and broadband fundamental pump emission. We have, for the first time, demonstrated an injection seeded, high peak power, narrow linewidth intra-cavity Raman laser for potential use in a sodium resonance fluorescence lidar.

  3. Raman spectroscopic instrumentation and plasmonic methods for material characterization

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki

    The advent of nanotechnology has led to incredible growth in how we consume, make and approach advanced materials. By exploiting nanoscale material properties, unique control of optical, thermal, mechanical, and electrical characteristics becomes possible. This thesis describes the development of a novel localized surface plasmon resonant (LSPR) color sensitive photosensor, based on functionalization of gold nanoparticles onto tianium dioxide nanowires and sensing by a metal-semiconducting nanowire-metal photodiode structure. This LSPR photosensor has been integrated into a system that incorporates Raman spectroscopy, microfluidics, optical trapping, and sorting flow cytometry into a unique material characterization system called the microfluidic optical fiber trapping Raman sorting flow cytometer (MOFTRSFC). Raman spectroscopy is utilized as a powerful molecular characterization technique used to analyze biological, mineralogical and nanomaterial samples. To combat the inherently weak Raman signal, plasmonic methods have been applied to exploit surface enhanced Raman scattering (SERS) and localized surface plasmon resonance (LSPR), increasing Raman intensity by up to 5 orders of magnitude. The resultant MOFTRSFC system is a prototype instrument that can effectively trap, analyze, and sort micron-sized dielectric particles and biological cells. Raman spectroscopy has been presented in several modalities, including the development of a portable near-infrared Raman spectrometer and other emerging technologies.

  4. XMCD and TEM studies of as-cast and rapidly quenched Fe50Nd50 alloys

    NASA Astrophysics Data System (ADS)

    Menushenkov, V. P.; Menushenkov, A. P.; Shchetinin, I. V.; Wilhelm, F.; Ivanov, A. A.; Rudnev, I. A.; Ivanov, V. G.; Rogalev, A.; Savchenko, A. G.; Zhukov, D. G.; Rafalskiy, A. V.; Ketov, S. V.

    2017-12-01

    We present the XMCD analysis of as-cast and melt spun Fe50Nd50 samples performed at L2,3 -Nd and K-Fe absorption edges at 5 and 50 K in comparison with macroscopic data of XRD, TEM and magnetic properties measurements. In addition, we have measured the magnetic field dependence of XMCD signal for both types of the samples in magnetic fields up/down to 17 T. The obtained results pointed to the strong difference between structure and magnetic properties of the as-cast and melt spun Fe50Nd50 alloys for both macroscopic and local measurements. The element selective XMCD loops for melt spun alloy show almost identical value of the coercive force Hci for L 2-Nd and K-Fe edges and practically do not depend on temperature. XMCD loop at K-Fe edge is a sum of contributions of the Fe-based phases. The main Fe-rich phase has high Hci ≈ 2,4 T as a highly anisotropic phase. The absence of the K-Fe XMCD loop saturation in the field up to 17 T points to presence of the second Nd-rich Nd-Fe phase which is ferromagnetic at temperature lower than 50 K. In accordance to the TEM results these both phases may coexist as the mixture of nanocrystals which was formed as a result of decomposition of the amorphous-like matrix phase. The XMCD loop at L2 -Nd edge with Hci ≈ 1,9 T is the sum of contributions from two Nd-based phases: hard Fe-rich phase (Hci ≈ 2,4 T) and Nd-Fe matrix phase of medium hardness with Hci ≈ 1,3 T. The macroscopic loop showed the higher Hci compared to XMCD loops. Such discrepancy may be caused by the fact that XMCD signal is collected from a 5-10 mcm thick surface layer, which contains many defects that reduce anisotropy and coercivity.

  5. Label-Free Raman Imaging to Monitor Breast Tumor Signatures

    NASA Astrophysics Data System (ADS)

    Ciubuc, John

    Methods built on Raman spectroscopy have shown major potential in describing and discriminating between malignant and benign specimens. Accurate, real-time medical diagnosis benefits in substantial improvements through this vibrational optical method. Not only is acquisition of data possible in milliseconds and analysis in minutes, Raman allows concurrent detection and monitoring of all biological components. Besides validating a significant Raman signature distinction between non-tumorigenic (MCF-10A) and tumorigenic (MCF-7) breast epithelial cells, this study reveals a label-free method to assess overexpression of epidermal growth factor receptors (EGFR) in tumor cells. EGFR overexpression sires Raman features associated with phosphorylated threonine and serine, and modifications of DNA/RNA characteristics. Investigations by gel electrophoresis reveal EGF induction of phosphorylated Akt, agreeing with the Raman results. The analysis presented is a vital step toward Raman-based evaluation of EGF receptors in breast cancer cells. With the goal of clinically applying Raman-guided methods for diagnosis of breast tumors, the current results lay the basis for proving label-free optical alternatives in making prognosis of the disease.

  6. Linear Regression Links Transcriptomic Data and Cellular Raman Spectra.

    PubMed

    Kobayashi-Kirschvink, Koseki J; Nakaoka, Hidenori; Oda, Arisa; Kamei, Ken-Ichiro F; Nosho, Kazuki; Fukushima, Hiroko; Kanesaki, Yu; Yajima, Shunsuke; Masaki, Haruhiko; Ohta, Kunihiro; Wakamoto, Yuichi

    2018-06-08

    Raman microscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra and transcriptomic profiles of Schizosaccharomyces pombe and Escherichia coli can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional Raman spectra and transcriptomes measured by RNA sequencing can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra, and vice versa. Highly expressed non-coding RNAs contributed to the Raman-transcriptome linear correspondence more significantly than mRNAs in S. pombe. This demonstration of correspondence between cellular Raman spectra and transcriptomes is a promising step toward establishing spectroscopic live-cell omics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Backward Raman amplification in the long-wavelength infrared

    NASA Astrophysics Data System (ADS)

    Johnson, L. A.; Gordon, D. F.; Palastro, J. P.; Hafizi, B.

    2017-03-01

    The wealth of work in backward Raman amplification in plasma has focused on the extreme intensity limit; however, backward Raman amplification may also provide an effective and practical mechanism for generating intense, broad bandwidth, long-wavelength infrared radiation (LWIR). An electromagnetic simulation coupled with a relativistic cold fluid plasma model is used to demonstrate the generation of picosecond pulses at a wavelength of 10 μm with terawatt powers through backward Raman amplification. The effects of collisional damping, Landau damping, pump depletion, and wave breaking are examined, as well as the resulting design considerations for an LWIR Raman amplifier.

  8. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  9. Raman and Photoluminescence Spectroscopy in Mineral Identification

    NASA Astrophysics Data System (ADS)

    Kuehn, J. W.

    2014-06-01

    Raman spectroscopy is particularly useful for rapid identification of minerals and gemstones. Raman spectrometers also allow PL studies for authentication of samples and geological provenance, diamond type screening and detection of HPHT treatments.

  10. Spectroscopy investigation of nanostructured nickel–zinc ferrite obtained by mechanochemical synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com; Milutinović, Aleksandra N.; Jovalekić, Čedomir D.

    2015-03-15

    Highlights: • Nano powder of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} prepared by a soft mechanochemicaly after 10 h milling. • Phase formation controlled by XRD, Raman and IR spectroscopy. • Spectroscopy measurements indicate that the prepared samples have spinel structure. • The average particles size are found to be around 20 nm. • The degree of inversion is δ = 0.36 for NZF obtained from hydroxides for 10 h. - Abstract: Nano crystalline samples of nickel–zinc ferrite, Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} were prepared by mechanochemical route in a planetary ball mill starting from two mixtures of the appropriate quantitiesmore » of the powders: case (1) oxide powders: NiO, ZnO and α-Fe{sub 2}O{sub 3} in one case, and in the second case (2) hydroxide powders: Ni(OH){sub 2}, Zn(OH){sub 2} and Fe(OH){sub 3}. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, IR and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.« less

  11. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  12. Silver Trees: Chemistry on a TEM Grid

    EPA Science Inventory

    The copper/carbon substrate of a TEM grid reacted with aqueous silver nitrate solution within minutes to yield spectacular tree-like silver dendrites, without using any added capping or reducing reagents. These results demonstrate a facile, aqueous, room temperature synthesis of...

  13. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.

    PubMed

    Singhania, Amit; Gupta, Shipra Mital

    2018-07-01

    In this work, in situ growth of Ni nanocatalysts to attach onto the ceria (CeO2) surface through direct Ni ex-solution from the NiO-CeO2 solid solution in a reducing atmosphere at high temperatures with an aim to improve the catalytic activity, and stability for low temperature carbon monoxide (CO) oxidation reaction have been reported. The NiO-CeO2 solid solutions were prepared by solution combustion method, and the results of XRD and RAMAN showed that doping of Ni increases the oxygen vacancies due to charge compensation. Ni is clearly visible in XRD and TEM of Ni ex-solved sample (R-UCe5Ni10) after reduction of NiO-CeO2 (UCe5Ni10) sample by 5% H2/Ar reduction at 1000 °C. TEM analysis revealed a size of 9.2 nm of Ni nanoparticle that is ex-solved on the surface CeO2. This ex-solved sample showed very high catalytic activity (T50 ~ 110 °C), and stability (100 h) for CO oxidation reaction as compared to prepared solid solution samples. This is due to the highly active metallic nano-phase which is ex-solved on the surface of CeO2 and strongly adherent to the support. The apparent activation energy Ni ex-solved sample is found out to be 48.4 kJ mol-1. Thus, the above Ni ex-solved sample shows a practical applicability for the CO reaction.

  14. Understanding the formation and growth of Ag nanoparticles on silver chromate induced by electron irradiation in electron microscope: A combined experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes

    Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less

  15. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    PubMed

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  16. Analysis of root surface properties by fluorescence/Raman intensity ratio.

    PubMed

    Nakamura, Shino; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Matsuo

    2017-11-01

    The aim of this study is to evaluate the existence of residual calculus on root surfaces by determining the fluorescence/Raman intensity ratio. Thirty-two extracted human teeth, partially covered with calculus on the root surface, were evaluated by using a portable Raman spectrophotometer, and a 785-nm, 100-mW laser was applied for fluorescence/Raman excitation. The collected spectra were normalized to the hydroxyapatite Raman band intensity at 960 cm -1 . Raman spectra were recorded from the same point after changing the focal distance of the laser and the target radiating angle. In seven teeth, the condition of calculus, cementum, and dentin were evaluated. In 25 teeth, we determined the fluorescence/Raman intensity ratio following three strokes of debridement. Raman spectra collected from the dentin, cementum, and calculus were different. After normalization, spectra values were constant. The fluorescence/Raman intensity ratio of calculus region showed significant differences compared to the cementum and dentin (p < 0.05). The fluorescence/Raman intensity ratio decreased with calculus debridement. For this analysis, the delta value was defined as the difference between the values before and after three strokes, with the final 2 delta values close to zero, indicating a gradual asymptotic curve and the change in intensity ratio approximating that of individual constants. Fluorescence/Raman intensity ratio was effectively used to cancel the angle- and distance-dependent fluctuations of fluorescence collection efficiency during measurement. Changes in the fluorescence/Raman intensity ratio near zero suggested that cementum or dentin was exposed, and calculus removed.

  17. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

    DOE PAGES

    Wang, Tianyu; Xu, Shen; Hurley, David H.; ...

    2015-12-18

    Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less

  18. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  19. Normal mode and experimental analysis of TNT Raman spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng

    2017-04-01

    In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.

  20. Multifrequency Raman amplifiers

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2018-03-08

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  1. Multifrequency Raman amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Ido; Fisch, Nathaniel J.

    In its usual implementation, the Raman amplifier features only one pump carrier frequency. However, pulses with well-separated frequencies can also be Raman amplified while compressed in time. Amplification with frequency-separated pumps is shown to hold even in the highly nonlinear, pump-depletion regime, as derived through a fluid model, and demonstrated via particle-in-cell (PIC) simulations. The resulting efficiency is similar to single-frequency amplifiers, but, due to the beat-wave waveform of both the pump lasers and the amplified seed pulses, these amplifiers feature higher seed intensities with a shorter spike duration. Advantageously, these amplifiers also suffer less noise backscattering, because the totalmore » fluence is split between the different spectral components.« less

  2. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    NASA Astrophysics Data System (ADS)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay

  3. Persistence of Mixed and Non-intermediate Valence in the High-Pressure Structure of Silver(I,III) Oxide, AgO: A Combined Raman, X-ray Diffraction (XRD), and Density Functional Theory (DFT) Study.

    PubMed

    Grzelak, Adam; Gawraczyński, Jakub; Jaroń, Tomasz; Somayazulu, Maddury; Derzsi, Mariana; Struzhkin, Viktor; Grochala, Wojciech

    2017-05-15

    The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or Ag I Ag III O 2 , which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [Ag III O 4 ] units typical of low-spin Ag III . The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.

  4. Comparison between measured and predicted turbulence frequency spectra in ITG and TEM regimes

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Arnichand, H.; Bernardo, J.; Bourdelle, C.; Garbet, X.; Jenko, F.; Hacquin, S.; Pueschel, M. J.; Sabot, R.

    2017-06-01

    The observation of distinct peaks in tokamak core reflectometry measurements—named quasi-coherent-modes (QCMs)—are identified as a signature of trapped-electron-mode (TEM) turbulence (Arnichand et al 2016 Plasma Phys. Control. Fusion 58 014037). This phenomenon is investigated with detailed linear and nonlinear gyrokinetic simulations using the Gene code. A Tore-Supra density scan is studied, which traverses through a linear (LOC) to saturated (SOC) ohmic confinement transition. The LOC and SOC phases are both simulated separately. In the LOC phase, where QCMs are observed, TEMs are robustly predicted unstable in linear studies. In the later SOC phase, where QCMs are no longer observed, ion-temperature-gradient (ITG) modes are identified. In nonlinear simulations, in the ITG (SOC) phase, a broadband spectrum is seen. In the TEM (LOC) phase, a clear emergence of a peak at the TEM frequencies is seen. This is due to reduced nonlinear frequency broadening of the underlying linear modes in the TEM regime compared with the ITG regime. A synthetic diagnostic of the nonlinearly simulated frequency spectra reproduces the features observed in the reflectometry measurements. These results support the identification of core QCMs as an experimental marker for TEM turbulence.

  5. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules.

    PubMed

    Hong, Senlian; Chen, Tao; Zhu, Yuntao; Li, Ang; Huang, Yanyi; Chen, Xing

    2014-06-02

    Alkynes can be metabolically incorporated into biomolecules including nucleic acids, proteins, lipids, and glycans. In addition to the clickable chemical reactivity, alkynes possess a unique Raman scattering within the Raman-silent region of a cell. Coupling this spectroscopic signature with Raman microscopy yields a new imaging modality beyond fluorescence and label-free microscopies. The bioorthogonal Raman imaging of various biomolecules tagged with an alkyne by a state-of-the-art Raman imaging technique, stimulated Raman scattering (SRS) microscopy, is reported. This imaging method affords non-invasiveness, high sensitivity, and molecular specificity and therefore should find broad applications in live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.

    2009-03-01

    Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.

  7. FT-Raman spectral analysis of human urinary stones.

    PubMed

    Selvaraju, R; Raja, A; Thiruppathi, G

    2012-12-01

    FT-Raman spectroscopy is the most useful tool for the purpose of bio-medical diagnostics. In the present study, FT-Raman spectral method is used to investigate the chemical composition of urinary calculi. Urinary calculi multi-components such as calcium oxalate, hydroxyl apatite, struvite and uric acid are studied. FT-Raman spectrum has been recorded in the range of 3500-400 cm(-1). Chemical compounds are identified by Raman spectroscopic technique. The quantitative estimations of calcium oxalate monohydrate (COM) 1463 cm(-1), calcium oxalate dehydrate (COD) 1478 cm(-1), hydroxyl apatite 959 cm(-1), struvite 575 cm(-1), uric acid 1283 cm(-1) and oxammite (ammonium oxalate monohydrate) 2129 cm(-1) are calculated using particular peaks of FT-Raman spectrum. The quantitative estimation of human urinary stones suitable for the single calibration curve was performed. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effect of capping and particle size on Raman laser-induced degradation of {gamma}-Fe{sub 2}O{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadwaj, K.S.K.; Panigrahi, M.K.; Ghose, J.

    2004-11-01

    Diol capped {gamma}-Fe{sub 2}O{sub 3} nanoparticles are prepared from ferric nitrate by refluxing in 1,4-butanediol (9.5nm) and 1,5-pentanediol (15nm) and uncapped particles are prepared by refluxing in 1,2-propanediol followed by sintering the alkoxide formed. X-ray diffraction (XRD) shows that all the samples have the spinel phase. Raman spectroscopy shows that the samples prepared in 1,4-butanediol and 1,5-pentanediol and 1,2-propanediol (sintered at 573 and 673K) are {gamma}-Fe{sub 2}O{sub 3} and the 773K-sintered sample is Fe{sub 3}O{sub 4}. Raman laser studies carried out at various laser powers show that all the samples undergo laser-induced degradation to {alpha}-Fe{sub 2}O{sub 3} at higher lasermore » power. The capped samples are however, found more stable to degradation than the uncapped samples. The stability of {gamma}-Fe{sub 2}O{sub 3} sample with large particle size (15.4nm) is more than the sample with small particle size (10.2nm). Fe{sub 3}O{sub 4} having a particle size of 48nm is however less stable than the smaller {gamma}-Fe{sub 2}O{sub 3} nanoparticles.« less

  9. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

    PubMed

    Lednev, Vasily N; Pershin, Sergey M; Sdvizhenskii, Pavel A; Grishin, Mikhail Ya; Fedorov, Alexander N; Bukin, Vladimir V; Oshurko, Vadim B; Shchegolikhin, Alexander N

    2018-01-01

    A new approach combining Raman spectrometry and laser induced breakdown spectrometry (LIBS) within a single laser event was suggested. A pulsed solid state Nd:YAG laser running in double pulse mode (two frequency-doubled sequential nanosecond laser pulses with dozens microseconds delay) was used to combine two spectrometry methods within a single instrument (Raman/LIBS spectrometer). First, a low-energy laser pulse (power density far below ablation threshold) was used for Raman measurements while a second powerful laser pulse created the plasma suitable for LIBS analysis. A short time delay between two successive pulses allows measuring LIBS and Raman spectra at different moments but within a single laser flash-lamp pumping. Principal advantages of the developed instrument include high quality Raman/LIBS spectra acquisition (due to optimal gating for Raman/LIBS independently) and absence of target thermal alteration during Raman measurements. A series of high quality Raman and LIBS spectra were acquired for inorganic salts (gypsum, anhydrite) as well as for pharmaceutical samples (acetylsalicylic acid). To the best of our knowledge, the quantitative analysis feasibility by combined Raman/LIBS instrument was demonstrated for the first time by calibration curves construction for acetylsalicylic acid (Raman) and copper (LIBS) in gypsum matrix. Combining ablation pulses and Raman measurements (LIBS/Raman measurements) within a single instrument makes it an efficient tool for identification of samples hidden by non-transparent covering or performing depth profiling analysis including remote sensing. Graphical abstract Combining Raman and laser induced breakdown spectroscopy by double pulse lasing.

  10. UV-Enhanced IR Raman System for Identifying Biohazards

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert; Moynihan, Philip; Lane, Arthur

    2003-01-01

    An instrumentation system that would include an ultraviolet (UV) laser or light-emitting diode, an infrared (IR) laser, and the equivalent of an IR Raman spectrometer has been proposed to enable noncontact identification of hazardous biological agents and chemicals. In prior research, IR Raman scattering had shown promise as a means of such identification, except that the Raman-scattered light was often found to be too weak to be detected or to enable unambiguous identification in practical applications. The proposed system would utilize UV illumination as part of a two-level optical-pumping scheme to intensify the Raman signal sufficiently to enable positive identification.

  11. Raman Spectra of High-κ Dielectric Layers Investigated with Micro-Raman Spectroscopy Comparison with Silicon Dioxide

    PubMed Central

    Borowicz, P.; Taube, A.; Rzodkiewicz, W.; Latek, M.; Gierałtowska, S.

    2013-01-01

    Three samples with dielectric layers from high-κ dielectrics, hafnium oxide, gadolinium-silicon oxide, and lanthanum-lutetium oxide on silicon substrate were studied by Raman spectroscopy. The results obtained for high-κ dielectrics were compared with spectra recorded for silicon dioxide. Raman spectra suggest the similarity of gadolinium-silicon oxide and lanthanum-lutetium oxide to the bulk nondensified silicon dioxide. The temperature treatment of hafnium oxide shows the evolution of the structure of this material. Raman spectra recorded for as-deposited hafnium oxide are similar to the results obtained for silicon dioxide layer. After thermal treatment especially at higher temperatures (600°C and above), the structure of hafnium oxide becomes similar to the bulk non-densified silicon dioxide. PMID:24072982

  12. Theory of raman scattering from molecules adsorbed at semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Ueba, H.

    1983-09-01

    A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.

  13. Hyper-Raman spectroscopy of Earth related materials

    NASA Astrophysics Data System (ADS)

    Hellwig, H.

    2004-12-01

    Raman and infrared spectroscopy proved extremely successful in obtaining structural information and thermodynamic data on samples under high pressure conditions in a diamond anvil cell [1,2]. With substantial advances in CCD detector technology and the possibility to focus visible laser light down to several microns, Raman spectroscopy can nowadays be regarded one of the standard techniques for diamond anvil cell investigations. Nevertheless, Raman scattering suffers from often strong fluorescence and the strong Raman signal of the diamonds. Infrared spectroscopy is limited by the sample size and the diffraction limit of mid- or far-infrared radiation. With increasing pressure, diamonds also show strong infrared activity, which can interfere with the signal from the sample. Detectors in the mid- and far-infrared are inherently noisy, often leading to low signal-to-noise ratios for infrared measurements. With new techniques and instrumentation available, such as low noise CCD cameras and stable diode-pumped solid state laser systems, more demanding techniques become feasible as well. Especially hyper-Raman scattering, a nonlinear optical variant of infrared spectroscopy, can be used on a more routine basis for the first time. Pioneering work in the 70s and 80s have explored some of the capabilities of Hyper-Raman spectroscopy [3]. Unlike infrared spectroscopy, Hyper-Raman is not limited by the diffraction limit of mid- or far-infrared radiation, typically restricting the lower frequency limit to several hundred wave numbers. The major advantages of hyper-Raman are essentially background free spectra and the use of wavelengths in the near-infrared and visible, making possible micro focusing and taking advantage of high efficiencies, low noise, and smooth wavelength dependencies of CCD detectors. Hyper-Raman does not suffer from saturation caused by strong absorption in the infrared and is therefore less sensitive to surface effects. For centrosymmetric materials

  14. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).

    PubMed

    Guo, Huiyuan; Zhang, Zhiyun; Xing, Baoshan; Mukherjee, Arnab; Musante, Craig; White, Jason C; He, Lili

    2015-04-07

    Silver nanoparticles (AgNPs) are the most commonly used nanoparticles in consumer products. Concerns over human exposure to and risk from these particles have resulted in increased interest in novel strategies to detect AgNPs. This study investigated the feasibility of surface-enhanced Raman spectroscopy (SERS) as a method for the detection and quantification of AgNPs in antimicrobial products. By using ferbam (ferric dimethyl-dithiocarbamate) as an indicator molecule that binds strongly onto the nanoparticles, AgNPs detection and discrimination were achieved based on the signature SERS response of AgNPs-ferbam complexes. SERS response with ferbam was distinct for silver ions, silver chloride, silver bulk particles, and AgNPs. Two types of AgNPs with different coatings, citrate and polyvinylpirrolidone (PVP), both showed strong interactions with ferbam and induced strong SERS signals. SERS was effectively applicable for detecting Ag particles ranging from 20 to 200 nm, with the highest signal intensity in the 60-100 nm range. A linear relationship (R(2) = 0.9804) between Raman intensity and citrate-AgNPs concentrations (60 nm; 0-20 mg/L) indicates the potential for particle quantification. We also evaluated SERS detection of AgNPs in four commercially available antimicrobial products. Combined with ICP-MS and TEM data, the results indicated that the SERS response is primarily dependent on size, but also affected by AgNPs concentration. The findings demonstrate that SERS is a promising analytical platform for studying environmentally relevant levels of AgNPs in consumer products and related matrices.

  15. [Raman spectra of monkey cerebral cortex tissue].

    PubMed

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  16. Raman spectroscopy of garnet-group minerals

    USGS Publications Warehouse

    Mingsheng, P.; Mao, Ho-kwang; Dien, L.; Chao, E.C.T.

    1994-01-01

    The Raman spectra of the natural end members of the garnet-group minerals, which include pyrope, almandine and spessarite of Fe-Al garnet series and grossularite, andradite and uvarovite of Ca-Fe garnet series, have been studied. Measured Raman spectra of these minerals are reasonably and qualitatively assigned to the internal modes, translational and rotatory modes of SiO4 tetrahedra, as well as the translational motion of bivalent cations in the X site. The stretch and rotatory Alg modes for the Fe-Al garnet series show obvious Raman shifts as compared with those for the Ca-Fe garnet series, owing to the cations residing in the X site connected with SiO4 tetrahedra by sharing the two edges. The Raman shifts of all members within either of the series are attributed mainly to the properties of cations in the X site for the Fe-Al garnet series and in the Y site for the Ca-Fe garnet series. ?? 1994 Institute of Geochemistry, Chinese Academy of Sciences.

  17. Dynamics of long ring Raman fiber laser

    NASA Astrophysics Data System (ADS)

    Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.

    2016-04-01

    The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.

  18. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags

    NASA Astrophysics Data System (ADS)

    Boca, Sanda C.; Astilean, Simion

    2010-06-01

    We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 °C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.

  19. Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex

    2014-10-15

    The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less

  20. Confocal Raman imaging for cancer cell classification

    NASA Astrophysics Data System (ADS)

    Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet

    2014-05-01

    We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.

  1. TEM Analysis of Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    NASA Technical Reports Server (NTRS)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y; Mori, S.; Asthana, R.

    2017-01-01

    Silicon Carbide (SiC) is a promising material for thermostructural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, Mo-B and TiCu. In this presentation, we report the microstructure of diffusion bonded SA-THX mainly with TiCu interlayers obtained by TEM observations, and the influence of metallic interlayers on the joint microstructure and microhardness will be discussed.

  2. Raman scattering of rare earth hexaborides

    NASA Astrophysics Data System (ADS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-06-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B6 vibrations were observed in the range 600 - 1400 cm-1. Anomalous peaks were detected below 200 cm-1, which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  3. Geoelectrical characterization by joint inversion of VES/TEM in Paraná basin, Brazil

    NASA Astrophysics Data System (ADS)

    Bortolozo, C. A.; Couto, M. A.; Almeida, E. R.; Porsani, J. L.; Santos, F. M.

    2012-12-01

    For many years electrical (DC) and transient electromagnetic (TEM) soundings have been used in a great number of environmental, hydrological and mining exploration studies. The data of both methods are interpreted usually by individual 1D models resulting in many cases in ambiguous models. This can be explained by how the two different methodologies sample the subsurface. The vertical electrical sounding (VES) is good on marking very resistive structures, while the transient electromagnetic sounding (TEM) is very sensitive to map conductive structures. Another characteristic is that VES is more sensitive to shallow structures, while TEM soundings can reach deeper structures. A Matlab program for joint inversion of VES and TEM soundings, by using CRS algorithm was developed aiming explore the best of the both methods. Initially, the algorithm was tested with synthetic data and after it was used to invert experimental data from Paraná sedimentary basin. We present the results of a re-interpretation of 46 VES/TEM soundings data set acquired in Bebedouro region in São Paulo State - Brazil. The previous interpretation was based in geoelectrical models obtained by single inversion of the VES and TEM soundings. In this work we present the results with single inversion of VES and TEM sounding inverted by the Curupira Program and a new interpretation based in the joint inversion of both methodologies. The goal is increase the accuracy in determining the underground structures. As a result a new geoelectrical model of the region is obtained.

  4. Resonant Raman spectra of diindenoperylene thin films

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Gisslén, L.; Schuster, B.-E.; Casu, M. B.; Chassé, T.; Heinemeyer, U.; Schreiber, F.

    2011-01-01

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A_g-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  5. Resonant Raman spectra of diindenoperylene thin films.

    PubMed

    Scholz, R; Gisslén, L; Schuster, B-E; Casu, M B; Chassé, T; Heinemeyer, U; Schreiber, F

    2011-01-07

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A(g)-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  6. Scanning Angle Raman spectroscopy in polymer thin film characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Vy H.T.

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directionsmore » for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.« less

  7. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  8. Micro-Raman spectroscopy for meat type detection

    NASA Astrophysics Data System (ADS)

    De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C. W.; Wiedemair, V.; Balthasar, D.

    2015-06-01

    The recent horse meat scandal in Europe increased the demand for optical sensors that can identify meat type. Micro-Raman spectroscopy is a promising technique for the discrimination of meat types. Here, we present micro-Raman measurements of chicken, pork, turkey, mutton, beef and horse meat test samples. The data was analyzed with different combinations of data normalization and classification approaches. Our results show that Raman spectroscopy can discriminate between different meat types. Red and white meat are easily discriminated, however a sophisticated chemometric model is required to discriminate species within these groups.

  9. [Laser Raman spectral investigations of the carbon structure of LiFePO4/C cathode material].

    PubMed

    Yang, Chao; Li, Yong-Mei; Zhao, Quan-Feng; Gan, Xiang-Kun; Yao, Yao-Chun

    2013-10-01

    In the present paper, Laser Raman spectral was used to study the carbon structure of LiFePO4/C positive material. The samples were also been characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), selected area electron diffraction (SEAD) and resistivity test. The result indicated that compared with the sp2/sp3 peak area ratios the I(D)/I(G) ratios are not only more evenly but also exhibited some similar rules. However, the studies indicated that there exist differences of I(D)/ I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample. And compared with the samples using citric acid or sucrose as carbon source, the sample which was synthetized with mixed carbon source (mixed by citric acid and sucrose) exhibited higher I(D)/I(G) ratios and sp2/sp3 peak area ratios. Also, by contrast, the differences of I(D)/I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample are less than the single carbon source samples' datas. In the scanning electron microscopy (sem) and transmission electron microscopy (sem) images, we can observed the uneven distributions of carbon coating of the primary particles and the secondary particles, this may be the main reason for not being uniform of difference data in the same sample. The obvious discreteness will affect the normal use of Raman spectroscopy in these tests.

  10. Characterization of Materials by Raman Scattering

    NASA Astrophysics Data System (ADS)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  11. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  12. Two dimensional Z-scheme AgCl/Ag/CaTiO3 nano-heterojunctions for photocatalytic hydrogen production enhancement

    NASA Astrophysics Data System (ADS)

    Jiang, Ziyuan; Pan, Jiaqi; Wang, Beibei; Li, Chaorong

    2018-04-01

    The two dimensional(2D) Z-scheme AgCl/Ag/Ca/TiO3 nano-heterojunction is synthesized via simple preparation of hydrothermal-chemical co-deposition method. The results of SEM, EDS, elemental mapping, XRD, TEM, XPS and Raman shift imply that the AgCl/Ag nanoparticles have deposited on the surfaces of CaTiO3 nanosheets successfully. Compared with the unmodified samples, the photocatalytic activity of the as-prepared 2D AgCl/Ag/CaTiO3 nano-heterojunction exhibits a remarkable enhancement by the hydrogen production. Further, the photocatalytic process has been studied and the mechanism of the photocatalytic hydrogen production enhancement has been provided, which could be ascribed to the Z-scheme heterojunction and 2D lamellar structure of the CaTiO3.

  13. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Glucose.

    PubMed

    Pan, Hui; Liu, Ruiqi; Li, Guanglong; Wang, Xiaodong; Ding, Tao

    2018-05-01

    In this paper, we develop a simple and facile approach to prepare graphene nanosheets through chemical reduction with glucose as reducing agent and modification agent. The reduced and modified graphene by glucose (denoted as g-rGO) was characterized with techniques of Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), etc. It is found that, besides the desired reduction capability to graphene oxide (denoted as GO), glucose plays an important role as a modifying reagent in stabilizing the as-prepared graphene nanosheets simultaneously and the g-rGO exhibits good dispersibility and stability in water and waterborne polyurethane matrix (denoted as WPU). Moreover, the g-rGO can improve evidently the mechanical properties, weather ability and water resistance of WPU.

  14. Removal of Carmine from Aqueous Solution by Carbonated Hydroxyapatite Nanorods

    PubMed Central

    Liu, Guanxiong; Xue, Caibao; Zhu, Peizhi

    2017-01-01

    In this study, carbonated hydroxyapatite (CHA) nanorods were prepared by a novel hydrothermal method. The crystallinity and chemical structure of synthesized CHA nanorods was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. Carmine was selected as representative organic dyes to study the adsorption capacities of CHA nanorods. Mechanistic studies of carmine adsorption by CHA nanorods show that the adsorption processes both follow the pseudo-second-order kinetic model and fit the Langmuir isotherm model well. The CHA nanorods exhibited a high adsorption capacity of 85.51 mg/g for carmine at room-temperature. The experimental results prove that CHA nanorods can be promising absorbents for removing organic dye pollutants in wastewater from paper and textile plants. PMID:28587250

  15. Synthesis of Fe5C2@SiO2 core@shell nanoparticles as a potential candidate for biomedical application

    NASA Astrophysics Data System (ADS)

    Ahmadpoor, Fatemeh; Shojaosadati, Seyed Abbas; Delavari H, Hamid; Christiansen, Gunna; Saber, Reza

    2018-05-01

    A new strategy for water-dispersibility of hydrophobic carbide nanostructures was proposed. In this regard, hydrophobic Fe5C2 nanoparticles (NPs) with size ranging 25–40 nm were synthesized and coated with 12–15 nm silica shell for biomedical applications. X-ray diffraction (XRD) results revealed that Fe5C2 NPs with monoclinic structure were successfully prepared. The crystalline structure of Fe5C2 NPs was remained unchanged and saturation magnetization of core remained nearly constant after coating with silica shell. Moreover, Raman spectroscopy identified D-band of amorphous carbon shells which was also confirmed by transmission electron microscopy (TEM). Finally, Fe5C2@SiO2 core@shell NPs demonstrated no significant cytotoxicity and appropriate heat generating which makes them a promising candidate for magnetic fluid hyperthermia applications.

  16. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts.

    PubMed

    Yang, Li; Yan, Xiaopei; Wang, Qiwu; Wang, Qiong; Xia, Haian

    2015-03-02

    A series of Pt nanoparticles supported on carbon nanotubes (CNTs) were synthesized using the incipient-wetness impregnation method. These catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM) techniques. The characterization results indicate that the Pt nanoparticles were highly dispersed on the surface of the CNTs, and the mean size was less than 5 nm. These catalysts were utilized to convert cellulose to hexitol, ethylene glycerol (EG), and 1,2-propylene glycol (1,2-PG) under low H2 pressure. The total yields were as high as 71.4% for EG and 1,2-PG using 1Pt/CNTs as the catalyst in the hydrolytic hydrogenation of cellulose under mild reaction conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Enhancement of visible light photocatalytic activity over bistructural SnO2 nanobelts

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Wang, Yongli; Su, Dezhi; Zhao, Yongjie

    2018-02-01

    SnO2 nanobelts were synthesized by hydrothermal method. The structure and morphology were investigated by XRD, Raman spectra, SEM and TEM. The results revealed that the synthesized SnO2 nanobelts were covered with amorphous surface. For the photocatalytic efficiency of methylene blue, the none-fully crystallized SnO2 nanobelts were over four times higher than bulk SnO2. Moreover, the photo-degradation rate constant with SnO2 nanobelts as photocatalysts was over six times higher than bulk SnO2. It was considered that the subtle structure of SnO2 nanobelts not only lowered the band gap but also improved the transfer of charge carriers and trapping effect of solar light. Furthermore, this strategy of enhancing photocatalytic performance could be extended to the other kinds of metal oxide photocatalyst.

  18. A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar

    NASA Technical Reports Server (NTRS)

    Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor

    2004-01-01

    High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.

  19. Raman spectroscopic analysis of Mexican natural artists' materials

    NASA Astrophysics Data System (ADS)

    Vandenabeele, Peter; Ortega-Avilès, Mayahuel; Castilleros, Dolores Tenorio; Moens, Luc

    2007-12-01

    This work represents the Raman spectra of 15 natural artists' materials that were obtained from local market in Mexico. Some of these products are not endemic to the region, but are often used in local conservation practice. Other materials are of local origin and have been used for centuries by local craftsmen. The Raman spectra that are reported here are: Chia oil, linseed oil, Campeche wax, beeswax, white copal, dammar, colophony, mastic, pixoy, chapopote, chucum, aje gum, gutta gum, peach gum and gum Arabic. The sample of pixoy was mixed with TiO 2, although it was not clear whether this was done intentionally or not. The Raman spectrum of chapopote, the local name for bitumen, contained features of carbonaceous and terpenoid matter. The Raman spectra of chapopote and chucum suffered severely from fluorescence, resulting in noisy Raman spectra. Aje gum and gutta gum are not gums, since they are resinous (terpenoid) in nature. Aje is a rare animal resin originating from Coccus axin.

  20. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy

    NASA Astrophysics Data System (ADS)

    Faulstich, Fabiano Richard Leite; Castro, Harlem V.; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner

    2011-10-01

    In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores.