Sample records for xrd uv-vis spectroscopy

  1. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    NASA Astrophysics Data System (ADS)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  2. UV-VIS absorption spectroscopy: Lambert-Beer reloaded.

    PubMed

    Mäntele, Werner; Deniz, Erhan

    2017-02-15

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The application of BTEM to UV-vis and UV-vis CD spectroscopies: the reaction of Rh4(CO)12 with chiral and achiral ligands.

    PubMed

    Cheng, Shuying; Gao, Feng; Krummel, Karl I; Garland, Marc

    2008-02-15

    Two different organometallic ligand substitution reactions were investigated: (1) an achiral reactive system consisting of Rh(4)(CO)(12)+PPh(3)right harpoon over left harpoonRh(4)(CO)(11)PPh(3)+CO in n-hexane under argon; and (2) a chiral reactive system consisting of Rh(4)(CO)(12)+(S)-BINAPright harpoon over left harpoonRh(4)(CO)(10)BINAP+2CO in cyclohexane under argon. These two reactions were run at ultra high dilution. In both multi-component reactive systems the concentrations of all the solutes were less than 40ppm and many solute concentrations were just 1-10ppm. In situ spectroscopic measurements were carried out using UV-vis (Ultraviolet-visible) spectroscopy and UV-vis CD spectroscopy on the reactive organometallic systems (1) and (2), respectively. The BTEM algorithm was applied to these spectroscopic data sets. The reconstructed UV-vis pure component spectra of Rh(4)(CO)(12), Rh(4)(CO)(11)PPh(3) and Rh(4)(CO)(10)BINAP as well as the reconstructed UV-vis CD pure component spectra of Rh(4)(CO)(10)BINAP were successfully obtained from BTEM analyses. All these reconstructed pure component spectra are in good agreement with the experimental reference spectra. The concentration profiles of the present species were obtained by performing a least square fit with mass balance constraints for the reactions (1) and (2). The present results indicate that UV-vis and UV-vis-CD spectroscopies can be successfully combined with an appropriate chemometric technique in order to monitor reactive organometallic systems having UV and Vis chromophores.

  4. Application of in operando UV/Vis spectroscopy in lithium-sulfur batteries.

    PubMed

    Patel, Manu U M; Dominko, Robert

    2014-08-01

    Application of UV/Vis spectroscopy for the qualitative and quantitative determination of differences in the mechanism of lithium-sulfur battery behavior is presented. With the help of catholytes prepared from chemically synthesized stoichiometric mixtures of lithium and sulfur, calibration curves for two different types of electrolyte can be constructed. First-order derivatives of UV/Vis spectra show five typical derivative peak positions in both electrolytes. In operando measurements show a smooth change in the UV/Vis spectra in the wavelength region between λ=650 and 400 nm. Derivatives are in agreement with derivative peak positions observed with catholytes. Recalculation of normalized reflections of UV/Vis spectra obtained in operando mode enable the formation of polysulfides and their concentrations to be followed. In such a way, it is possible to distinguish differences in the mechanism of polysulfide shuttling between two electrolytes and to correlate differences in capacity fading. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  6. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    ERIC Educational Resources Information Center

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  7. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M

    2018-03-02

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  8. X-ray diffraction, FTIR, UV-VIS and SEM studies on chromium (III) complexes

    NASA Astrophysics Data System (ADS)

    Mishra, Ashutosh; Dwivedi, Jagrati; Shukla, Kritika

    2015-06-01

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H2N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm-1. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designed for studying of the solid objects, using JEOL JSM 5600 instrument.

  9. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  10. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  11. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    PubMed

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags 1 . Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  12. Quantitative classification of cryptosporidium oocysts and giardia cysts in water using UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Bacon, Christina P.; Rose, J. B.; Patten, K.; Garcia-Rubio, Luis H.

    1995-05-01

    Cryptosporidium and Giardia are enteric protozoa which cause waterborne diseases. To date, the detection of these organisms in water has relied upon microscopic immunofluorescent assay technology which uses antibodies directed against the cyst and oocyst forms of the protozoa. In this paper, the uv/vis extinction spectra of aqueous dispersions of Cryptosporidium and Giardia have been studied to investigate the potential use of light scattering-spectral deconvolution techniques as a rapid method for the identification and quantification of protozoa in water. Examination of purified samples of Cryptosporidium and Giardia suggests that spectral features apparent in the short wavelength region of the uv/vis spectra contain information that may be species specific for each protozoa. The spectral characteristics, as well as the particle size analysis, determined from the same spectra, allow for the quantitative classification, identification, and possibly, the assessment of the viability of the protozoa. To further increase the sensitivity of this technique, specific antibodies direction against these organisms, labelled with FITC and rhodamine are being used. It is demonstrated that uv/vis spectroscopy provides an alternative method for the characterization of Giardia and Cryptosporidium. The simplicity and reproducibility of uv/vis spectroscopy measurements makes this technique ideally suited for the development of on-line instrumentation for the rapid detection of microorganisms in water supplies.

  13. The Classification of Ground Roasted Decaffeinated Coffee Using UV-VIS Spectroscopy and SIMCA Method

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Asnaning, A. R.; Suhandy, D.

    2018-05-01

    In this work, an investigation on the classification between decaffeinated and non- decaffeinated coffee samples using UV-VIS spectroscopy and SIMCA method was investigated. Total 200 samples of ground roasted coffee were used (100 samples for decaffeinated coffee and 100 samples for non-decaffeinated coffee). After extraction and dilution, the spectra of coffee samples solution were acquired using a UV-VIS spectrometer (Genesys™ 10S UV-VIS, Thermo Scientific, USA) in the range of 190-1100 nm. The multivariate analyses of the spectra were performed using principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). The SIMCA model showed that the classification between decaffeinated and non-decaffeinated coffee samples was detected with 100% sensitivity and specificity.

  14. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    PubMed

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2017-06-15

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O 2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    PubMed

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  16. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.

    PubMed

    Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M

    2018-06-18

    Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Non-contact assessment of COD and turbidity concentrations in water using diffuse reflectance UV-Vis spectroscopy.

    PubMed

    Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca

    2014-08-01

    Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.

  18. UV-Vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brant M.; Kaiser, Ralf I.; Strazzulla, Giovanni

    2014-02-01

    Ozone has been detected on the surface of Ganymede via observation of the Hartley band through the use of ultraviolet spectroscopy and is largely agreed upon to be formed by radiolytic processing via interaction of magnetospheric energetic ions and/or electrons with oxygen-bearing ices on Ganymede's surface. Interestingly, a clearly distinct band near 300 nm within the shoulder of the UV-Vis spectrum of Ganymede was also observed, but currently lacks an acceptable physical or chemical explanation. Consequently, the primary motivation behind this work was the collection of UV-Vis absorption spectroscopy of ozone formation by energetic electron bombardment of a variety ofmore » oxygen-bearing ices (oxygen, carbon dioxide, water) relevant to this moon as well as other solar system. Ozone was indeed synthesized in pure ices of molecular oxygen, carbon dioxide and a mixture of water and oxygen, in agreement with previous studies. The Hartley band of the ozone synthesized in these ice mixtures was observed in the UV-Vis spectra and compared with the spectrum of Ganymede. In addition, a solid state ozone absorption cross section of 6.0 ± 0.6 × 10{sup –17} cm{sup 2} molecule{sup –1} was obtained from the UV-Vis spectral data. Ozone was not produced in the irradiated carbon dioxide-water mixtures; however, a spectrally 'red' UV continuum is observed and appears to reproduce well what is observed in a large number of icy moons such as Europa.« less

  19. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  20. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    PubMed

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  1. A study of structural differences between TBM patients' and non-TBM persons' CSF using UV-Vis absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Fangcheng; Wang, Xin; Xu, Huajia; Wang, Kai

    2016-01-01

    Tuberculous meningitis (TBM) is a very common infectious disease in the central nervous system. The delay of diagnosing and treating TBM will lead to high disability and mortality of TBM. Hence, it is very important to promptly diagnose TBM early. In this work, we proposed a new method for diagnosing TBM with CSF samples by using UV-Vis absorption spectroscopy. CSF samples from TBM patients and non-TBM persons were compared, and the sensitivity, specificity, accuracy, positive predictive value reached 83.6%, 69.8%, 77.2%, 76.1% respectively. Our work indicated investigation of CSF using UV-Vis absorption spectroscopy might become a potentially useful method for TBM diagnosis.

  2. Blood characterization using UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Mattley, Yvette D.; Mitrani-Gold, F.; Orton, S.; Bacon, Christina P.; Leparc, German F.; Bayona, M.; Potter, Robert L.; Garcia-Rubio, Luis H.

    1995-05-01

    The current methods used for typing blood involve an agglutination reaction which results from the association of specific antibodies with antigens present on the erythrocyte cell surface. While this method is effective, it requires involved laboratory procedures to detect the cell surface antigens. As an alternative technique, uv/vis spectroscopy has been investigated as a novel way to characterize and differentiate the blood types. Typing with this technique is based on spectral differences which appear throughout portions of both the ultraviolet and visible range. The origin of these spectral differences is unknown and presently under investigation. They may be due to intrinsic absorption differences at the molecular level, and/or they may be due to scattering differences brought about by either subtle variation in cell surface characteristics, cell shape or state of aggregation. As the background optical density in these samples is identified and accounted for, the spectral differences become more defined. This work and the continuation of this project will be included in a general database encompassing a wide range of blood samples. In addition, long term goals involve the investigation of diseased blood with the potential of providing a more rapid diagnosis for blood borne pathogens.

  3. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.

    PubMed

    Martelo-Vidal, M J; Vázquez, M

    2014-09-01

    Spectral analysis is a quick and non-destructive method to analyse wine. In this work, trans-resveratrol, oenin, malvin, catechin, epicatechin, quercetin and syringic acid were determined in commercial red wines from DO Rías Baixas and DO Ribeira Sacra (Spain) by UV-VIS-NIR spectroscopy. Calibration models were developed using principal component regression (PCR) or partial least squares (PLS) regression. HPLC was used as reference method. The results showed that reliable PLS models were obtained to quantify all polyphenols for Rías Baixas wines. For Ribeira Sacra, feasible models were obtained to determine quercetin, epicatechin, oenin and syringic acid. PCR calibration models showed worst reliable of prediction than PLS models. For red wines from mencía grapes, feasible models were obtained for catechin and oenin, regardless the geographical origin. The results obtained demonstrate that UV-VIS-NIR spectroscopy can be used to determine individual polyphenolic compounds in red wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. UV-Vis Action Spectroscopy Reveals a Conformational Collapse in Hydrogen-Rich Dinucleotide Cation Radicals.

    PubMed

    Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František

    2017-09-07

    We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.

  5. Quantitative analysis by UV-Vis absorption spectroscopy of amino groups attached to the surface of carbon-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Saraswati, T. E.; Astuti, A. R.; Rismana, N.

    2018-03-01

    Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.

  6. Fluorescence and UV-vis Spectroscopy of Synovial Fluids

    NASA Astrophysics Data System (ADS)

    Pinti, Marie J.; Stojilovic, Nenad; Kovacik, Mark W.

    2009-10-01

    Total joint arthroplasty involves replacing the worn cartilaginous surfaces of the joint with man-made materials that are designed to be biocompatible and to withstand mechanical stresses. Commonly these bearing materials consist of metallic alloys (TiAlV or CoCrMo) and UHMWPE. Following joint arthroplasty, the normal generation of micro-metallic wear debris particles that dislodge from the prosthesis has been shown to cause inflammatory aseptic osteolysis (bone loss) that ultimately results in the failure of the implant. Here we report our results on the novel use of Fluorescence and UV-vis spectroscopy to investigate the metallic content of synovial fluid specimens taken from postoperative total knee arthroplasties. Preliminary finding showed presence of alumina and chromium is some specimens. The ability to detect and monitor the wear rate of these implants could have far reaching implications in the prevention of metallic wear-debris induced osteolysis and impending implant failure.

  7. Interaction between a cationic porphyrin and ctDNA investigated by SPR, CV and UV-vis spectroscopy.

    PubMed

    Xu, Zi-Qiang; Zhou, Bo; Jiang, Feng-Lei; Dai, Jie; Liu, Yi

    2013-10-01

    The interaction between ctDNA and a cationic porphyrin was studied in this work. The binding process was monitored by surface plasmon resonance (SPR) spectroscopy in detail. The association, dissociation rate constants and the binding constants calculated by global analysis were 2.4×10(2)±26.4M(-1)s(-1), 0.011±0.0000056s(-1) and 2.18×10(4)M(-1), respectively. And the results were confirmed by cyclic voltammetry and UV-vis absorption spectroscopy. The binding constants obtained from cyclic voltammetry and UV-vis absorption spectroscopy were 8.28×10(4)M(-1) and 6.73×10(4)M(-1) at 298K, respectively. The covalent immobilization methodology of ctDNA onto gold surface modified with three different compounds was also investigated by SPR. These compounds all contain sulfydryl but with different terminated functional groups. The results indicated that the 11-MUA (HS(CH2)10COOH)-modified gold film is more suitable for studying the DNA-drug interaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Artificial neural network associated to UV/Vis spectroscopy for monitoring bioreactions in biopharmaceutical processes.

    PubMed

    Takahashi, Maria Beatriz; Leme, Jaci; Caricati, Celso Pereira; Tonso, Aldo; Fernández Núñez, Eutimio Gustavo; Rocha, José Celso

    2015-06-01

    Currently, mammalian cells are the most utilized hosts for biopharmaceutical production. The culture media for these cell lines include commonly in their composition a pH indicator. Spectroscopic techniques are used for biopharmaceutical process monitoring, among them, UV-Vis spectroscopy has found scarce applications. This work aimed to define artificial neural networks architecture and fit its parameters to predict some nutrients and metabolites, as well as viable cell concentration based on UV-Vis spectral data of mammalian cell bioprocess using phenol red in culture medium. The BHK-21 cell line was used as a mammalian cell model. Off-line spectra of supernatant samples taken from batches performed at different dissolved oxygen concentrations in two bioreactor configurations and with two pH control strategies were used to define two artificial neural networks. According to absolute errors, glutamine (0.13 ± 0.14 mM), glutamate (0.02 ± 0.02 mM), glucose (1.11 ± 1.70 mM), lactate (0.84 ± 0.68 mM) and viable cell concentrations (1.89 10(5) ± 1.90 10(5) cell/mL) were suitably predicted. The prediction error averages for monitored variables were lower than those previously reported using different spectroscopic techniques in combination with partial least squares or artificial neural network. The present work allows for UV-VIS sensor development, and decreases cost related to nutrients and metabolite quantifications.

  9. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    PubMed

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Growth of block copolymer stabilized metal nanoparticles probed simultaneously by in situ XAS and UV-Vis spectroscopy.

    PubMed

    Nayak, C; Bhattacharyya, D; Jha, S N; Sahoo, N K

    2016-01-01

    The growth of Au and Pt nanoparticles from their respective chloride precursors using block copolymer-based reducers has been studied by simultaneous in situ measurement of XAS and UV-Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at INDUS-2 SRS at RRCAT, Indore, India. While the XANES spectra of the precursor give real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed at the intermediate stages of growth. The growth kinetics of both types of nanoparticles are found to be almost similar and are found to follow three stages, though the first stage of nucleation takes place earlier in the case of Au than in the case of Pt nanoparticles due to the difference in the reduction potential of the respective precursors. The first two stages of the growth of Au and Pt nanoparticles as obtained by in situ XAS measurements could be corroborated by simultaneous in situ measurement of UV-Vis spectroscopy also.

  11. [Measurement of Water COD Based on UV-Vis Spectroscopy Technology].

    PubMed

    Wang, Xiao-ming; Zhang, Hai-liang; Luo, Wei; Liu, Xue-mei

    2016-01-01

    Ultraviolet/visible (UV/Vis) spectroscopy technology was used to measure water COD. A total of 135 water samples were collected from Zhejiang province. Raw spectra with 3 different pretreatment methods (Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV) and 1st Derivatives were compared to determine the optimal pretreatment method for analysis. Spectral variable selection is an important strategy in spectrum modeling analysis, because it tends to parsimonious data representation and can lead to multivariate models with better performance. In order to simply calibration models, the preprocessed spectra were then used to select sensitive wavelengths by competitive adaptive reweighted sampling (CARS), Random frog and Successive Genetic Algorithm (GA) methods. Different numbers of sensitive wavelengths were selected by different variable selection methods with SNV preprocessing method. Partial least squares (PLS) was used to build models with the full spectra, and Extreme Learning Machine (ELM) was applied to build models with the selected wavelength variables. The overall results showed that ELM model performed better than PLS model, and the ELM model with the selected wavelengths based on CARS obtained the best results with the determination coefficient (R2), RMSEP and RPD were 0.82, 14.48 and 2.34 for prediction set. The results indicated that it was feasible to use UV/Vis with characteristic wavelengths which were obtained by CARS variable selection method, combined with ELM calibration could apply for the rapid and accurate determination of COD in aquaculture water. Moreover, this study laid the foundation for further implementation of online analysis of aquaculture water and rapid determination of other water quality parameters.

  12. Identification of the silver state in the framework of Ag-containing zeolite by XRD, FTIR, photoluminescence, 109Ag NMR, EPR, DR UV-vis, TEM and XPS investigations.

    PubMed

    Popovych, Nataliia; Kyriienko, Pavlo; Soloviev, Sergiy; Baran, Rafal; Millot, Yannick; Dzwigaj, Stanislaw

    2016-10-26

    Silver has been identified in the framework of Ag x SiBEA zeolites (where x = 3-6 Ag wt%) by the combined use of XRD, 109 Ag MAS NMR, FTIR, diffuse reflectance UV-visible, EPR and XPS spectroscopy. The incorporation of Ag ions into the framework of SiBEA zeolite has been evidenced by XRD. The consumption of OH groups as a result of their reaction with the silver precursor has been monitored by FTIR and photoluminescence spectroscopy. The changes in the silver state as a function of Ag content and thermal and hydrogen treatment at 573 K have been identified by 109 Ag MAS NMR, EPR, DR UV-visible, TEM and XPS investigations. The acidity of AgSiBEA has been investigated by FTIR spectroscopy of adsorbed CO and pyridine used as probe molecules.

  13. A Study of Photoluminiscence and UV-Vis in Enhanced GaN Nanofibers

    NASA Astrophysics Data System (ADS)

    Robles-Garcia, Joshua; Melendez-Zambrana, Anamaris; Ramos, Idalia

    2014-03-01

    The photoluminiscence (PL) and UV-Vis properties of Gallium Nitride (GaN) nanofibers were investigated for samples fabricated with a precursor solution containing Gallium Nitrate Hydrate, Cellulose Acetate, and Urea in the solvents Dimethylacetamide (DMA) and Acetone. GaN is a wide bandgap (3.4 eV) semiconductor that can be used in a variety of applications including solid-state lighting, high power, and high frequency devices. In previous work, we produced polycrystalline GaN nanofibers with wurtzite structure, using the electrospinning method and a thermal treatment in nitrogen and ammonia at 1000C. In this research we study the addition of urea to the precursor solution to enhance the crystallinity of the fibers at lower sintering temperatures. The molar ratios of urea added to the precursor range from 0 to 1.7 M. After electrospinning the fibers were sintered in Nitrogen at 450C for 3 hours and then, under ammonia gas flow at 900C for 5 hours. X-Ray Diffraction (XRD), UV-Vis spectroscopy, and PL measurements at room temperature were used to study the structural and optical properties of the fibers during the sintering process. This work was sponsored by UPRH PREM (NSF-DMR-0934195).

  14. Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions.

    PubMed

    Zak, Ali Khorsand; Hashim, Abdul Manaf; Darroudi, Majid

    2014-01-01

    Pure zinc oxide and zinc oxide/barium carbonate nanoparticles (ZnO-NPs and ZB-NPs) were synthesized by the sol-gel method. The prepared powders were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-Vis), Auger spectroscopy, and transmission electron microscopy (TEM). The XRD result showed that the ZnO and BaCO3 nanocrystals grow independently. The Auger spectroscopy proved the existence of carbon in the composites besides the Zn, Ba, and O elements. The UV-Vis spectroscopy results showed that the absorption edge of ZnO nanoparticles is redshifted by adding barium carbonate. In addition, the optical parameters including the refractive index and permittivity of the prepared samples were calculated using the UV-Vis spectra. 81.05.Dz; 78.40.Tv; 42.70.-a.

  15. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  16. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies.

    PubMed

    Dankowska, A; Domagała, A; Kowalewski, W

    2017-09-01

    The potential of fluorescence, UV-Vis spectroscopies as well as the low- and mid-level data fusion of both spectroscopies for the quantification of concentrations of roasted Coffea arabica and Coffea canephora var. robusta in coffee blends was investigated. Principal component analysis was used to reduce data multidimensionality. To calculate the level of undeclared addition, multiple linear regression (PCA-MLR) models were used with lowest root mean square error of calibration (RMSEC) of 3.6% and root mean square error of cross-validation (RMSECV) of 7.9%. LDA analysis was applied to fluorescence intensities and UV spectra of Coffea arabica, canephora samples, and their mixtures in order to examine classification ability. The best performance of PCA-LDA analysis was observed for data fusion of UV and fluorescence intensity measurements at wavelength interval of 60nm. LDA showed that data fusion can achieve over 96% of correct classifications (sensitivity) in the test set and 100% of correct classifications in the training set, with low-level data fusion. The corresponding results for individual spectroscopies ranged from 90% (UV-Vis spectroscopy) to 77% (synchronous fluorescence) in the test set, and from 93% to 97% in the training set. The results demonstrate that fluorescence, UV, and visible spectroscopies complement each other, giving a complementary effect for the quantification of roasted Coffea arabica and Coffea canephora var. robusta concentration in blends. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    PubMed

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-04-04

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  18. Use of UV-vis-NIR spectroscopy to monitor label-free interaction between molecular recognition elements and erythropoietin on a gold-coated polycarbonate platform.

    PubMed

    Citartan, Marimuthu; Gopinath, Subash C B; Tominaga, Junji; Chen, Yeng; Tang, Thean-Hock

    2014-08-01

    Label-free-based detection is pivotal for real-time monitoring of biomolecular interactions and to eliminate the need for labeling with tags that can occupy important binding sites of biomolecules. One simplest form of label-free-based detection is ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, which measure changes in reflectivity as a means to monitor immobilization and interaction of biomolecules with their corresponding partners. In biosensor development, the platform used for the biomolecular interaction should be suitable for different molecular recognition elements. In this study, gold (Au)-coated polycarbonate was used as a platform and as a proof-of-concept, erythropoietin (EPO), a doping substance widely abused by the athletes was used as the target. The interaction of EPO with its corresponding molecular recognition elements (anti-EPO monoclonal antibody and anti-EPO DNA aptamer) is monitored by UV-vis-NIR spectroscopy. Prior to this, to show that UV-vis-NIR spectroscopy is a suitable method for measuring biomolecular interaction, the interaction between biotin and streptavidin was demonstrated via this strategy and reflectivity of this interaction decreased by 25%. Subsequent to this, interaction of the EPO with anti-EPO monoclonal antibody and anti-EPO DNA aptamer resulted in the decrease of reflectivity by 5% and 10%, respectively. The results indicated that Au-coated polycarbonate could be an ideal biosensor platform for monitoring biomolecular interactions using UV-vis-NIR spectroscopy. A smaller version of the Au-coated polycarbonate substrates can be derived from the recent set-up, to be applied towards detecting EPO abuse among atheletes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Sharma, Vishal

    2017-03-01

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%).

  20. A novel combined approach of diffuse reflectance UV-Vis-NIR spectroscopy and multivariate analysis for non-destructive examination of blue ballpoint pen inks in forensic application.

    PubMed

    Kumar, Raj; Sharma, Vishal

    2017-03-15

    The present research is focused on the analysis of writing inks using destructive UV-Vis spectroscopy (dissolution of ink by the solvent) and non-destructive diffuse reflectance UV-Vis-NIR spectroscopy along with Chemometrics. Fifty seven samples of blue ballpoint pen inks were analyzed under optimum conditions to determine the differences in spectral features of inks among same and different manufacturers. Normalization was performed on the spectroscopic data before chemometric analysis. Principal Component Analysis (PCA) and K-mean cluster analysis were used on the data to ascertain whether the blue ballpoint pen inks could be differentiated by their UV-Vis/UV-Vis NIR spectra. The discriminating power is calculated by qualitative analysis by the visual comparison of the spectra (absorbance peaks), produced by the destructive and non-destructive methods. In the latter two methods, the pairwise comparison is made by incorporating the clustering method. It is found that chemometric method provides better discriminating power (98.72% and 99.46%, in destructive and non-destructive, respectively) in comparison to the qualitative analysis (69.67%). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quantitative and qualitative studies of silica in different rice samples grown in north of Iran using UV-vis, XRD and IR spectroscopy techniques.

    PubMed

    Samadi-Maybodi, Abdolraouf; Atashbozorg, Ebrahim

    2006-11-15

    Silicon is an essential trace element and is found in vegetables, fruits, cereals, water, pasta and rice (Oryza sativa). In this work, the silica content of different types of rice grains were measured. Here, we used the heteropoly blue photometric method with a double beam UV-vis spectrophotometer to determine the amount of silicon in rice samples (n=7) that were collected in the north of Iran. The samples were digested with wet-ashing method by microwave-assisted heating and then treated with ammonium molybdate to produce a yellow color compound in acidic solution (ca. pH 1.2) and then reduced to give a heteropoly compound with a blue color. Analyses were performed using standard addition method and absorbance values were measured with double beam UV-vis spectrophotometer at lambda(max)=815nm. Results indicated that the silica content was 307-451mg/kg for the samples. X-ray diffraction patterns and infra-red spectra were obtained from rice samples without any sample treatment.

  2. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  3. Thermal edible oil evaluation by UV-Vis spectroscopy and chemometrics.

    PubMed

    Gonçalves, Rhayanna P; Março, Paulo H; Valderrama, Patrícia

    2014-11-15

    Edible oils such as colza, corn, sunflower, soybean and olive were analysed by UV-Vis spectroscopy and Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS). When vegetable oils were heated at high temperatures (frying), oxidation products were formed which were harmful to human health in addition to degrading the antioxidants present, and this study aimed to evaluate tocopherol (one antioxidant present in oils) and the behaviour of oxidation products in edible oils. The MCR-ALS results showed that the degradation started at 110°C and 85°C, respectively, for sunflower and colza oils, while tocopherol concentration decreased and oxidation products increased starting at 70°C in olive oil. In soybean and corn oils, tocopherol concentration started to decrease and oxidation products increased at 50°C. The results suggested that sunflower, colza and olive oils offered more resistance to increasing temperatures, while soybean and corn oils were less resistant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The color of complexes and UV-vis spectroscopy as an analytical tool of Alfred Werner's group at the University of Zurich.

    PubMed

    Fox, Thomas; Berke, Heinz

    2014-01-01

    Two PhD theses (Alexander Gordienko, 1912; Johannes Angerstein, 1914) and a dissertation in partial fulfillment of a PhD thesis (H. S. French, Zurich, 1914) are reviewed that deal with hitherto unpublished UV-vis spectroscopy work of coordination compounds in the group of Alfred Werner. The method of measurement of UV-vis spectra at Alfred Werner's time is described in detail. Examples of spectra of complexes are given, which were partly interpreted in terms of structure (cis ↔ trans configuration, counting number of bands for structural relationships, and shift of general spectral features by consecutive replacement of ligands). A more complete interpretation of spectra was hampered at Alfred Werner's time by the lack of a light absorption theory and a correct theory of electron excitation, and the lack of a ligand field theory for coordination compounds. The experimentally difficult data acquisitions and the difficult spectral interpretations might have been reasons why this method did not experience a breakthrough in Alfred Werner's group to play a more prominent role as an important analytical method. Nevertheless the application of UV-vis spectroscopy on coordination compounds was unique and novel, and witnesses Alfred Werner's great aptitude and keenness to always try and go beyond conventional practice.

  5. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    PubMed

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun

    2014-02-01

    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.

  6. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  7. Instrumental Analysis in the High School Classroom: UV-Vis Spectroscopy

    ERIC Educational Resources Information Center

    Erhardt, Walt

    2007-01-01

    Note is presented on the standard lab from a second year chemistry course. The lab "Determining which of the Seven FD&C Food-Approved Dyes are Used in Making Green Skittles", familiarizes students with the operation of the CHEM2000 UV-Vis spectrophorometer.

  8. Measurement of phenols dearomatization via electrolysis: the UV-Vis solid phase extraction method.

    PubMed

    Vargas, Ronald; Borrás, Carlos; Mostany, Jorge; Scharifker, Benjamin R

    2010-02-01

    Dearomatization levels during electrochemical oxidation of p-methoxyphenol (PMP) and p-nitrophenol (PNP) have been determined through UV-Vis spectroscopy using solid phase extraction (UV-Vis/SPE). The results show that the method is satisfactory to determine the ratio between aromatic compounds and aliphatic acids and reaction kinetics parameters during treatment of wastewater, in agreement with results obtained from numerical deconvolution of UV-Vis spectra. Analysis of solutions obtained from electrolysis of substituted phenols on antimony-doped tin oxide (SnO(2)--Sb) showed that an electron acceptor substituting group favored the aromatic ring opening reaction, preventing formation of intermediate quinone during oxidation. (c) 2009 Elsevier Ltd. All rights reserved.

  9. Study of interaction between ionic liquids and orange G in aqueous solution with UV-vis spectroscopy and conductivity meter

    NASA Astrophysics Data System (ADS)

    Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong

    2018-05-01

    The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C10mimBF4, C12mimBF4, C16mimBF4) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C16mimBF4 > CTAB > C12mimBF4 > C10mimBF4. Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes.

  10. Study of interaction between ionic liquids and orange G in aqueous solution with UV-vis spectroscopy and conductivity meter.

    PubMed

    Zha, Jin-Ping; Zhu, Meng-Ting; Qin, Li; Wang, Xin-Hong

    2018-05-05

    The interactions between Orange G (OG) with three kinds of ionic liquid surfactants (C 10 mimBF 4 , C 12 mimBF 4 , C 16 mimBF 4 ) and CTAB were studied with UV-Vis spectra and conductivity measurements. The systematic changes in UV-Vis spectra with an increase of carbon-chain length may be observed in presence of OG. They correspond to CMC of every system, respectively, and the CMCs of four systems have exhibit the decrease of CMCs compared to pure surfactant. The binding constants are calculated from the results of conductivity measurements in the order of C 16 mimBF 4 >CTAB>C 12 mimBF 4 >C 10 mimBF 4 . Furthermore, system behaviors presented significant association of complex formation and micelles formation, i.e. the change in UV-Vis spectra before and after the formation of micelles in mixed systems. In addition, Fourier-transform infrared (FT-IR) spectroscopy and 1 H NMR analysis further confirmed that the complexes are formed by hydrogen bond and van der Waal force. These findings could provide scientific guidance for extraction and separation of dyes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Combination of UV-vis spectroscopy and chemometrics to understand protein-nanomaterial conjugate: a case study on human serum albumin and gold nanoparticles.

    PubMed

    Wang, Yong; Ni, Yongnian

    2014-02-01

    Study of the interactions between proteins and nanomaterials is of great importance for understanding of protein nanoconjugate. In this work, we choose human serum albumin (HSA) and citrate-capped gold nanoparticles (AuNPs) as a model of protein and nanomaterial, and combine UV-vis spectroscopy with multivariate curve resolution by an alternating least squares (MCR-ALS) algorithm to present a new and efficient method for comparatively comprehensive study of evolution of protein nanoconjugate. UV-vis spectroscopy coupled with MCR-ALS allows qualitative and quantitative extraction of the distribution diagrams, spectra and kinetic profiles of absorbing pure species (AuNPs and AuNPs-HSA conjugate are herein identified) and undetectable species (HSA) from spectral data. The response profiles recovered are converted into the desired thermodynamic, kinetic and structural parameters describing the protein nanoconjugate evolution. Analysis of these parameters for the system gives evidence that HSA molecules are very likely to be attached to AuNPs surface predominantly as a flat monolayer to form a stable AuNPs-HSA conjugate with a core-shell structure, and the binding process takes place mainly through electrostatic and hydrogen-bond interactions between the positively amino acid residues of HSA and the negatively carboxyl group of citrate on AuNPs surface. The results obtained are verified by transmission electron microscopy, zeta potential, circular dichroism spectroscopy and Fourier transform infrared spectroscopy, showing the potential of UV-vis spectroscopy for study of evolution of protein nanoconjugate. In parallel, concentration evolutions of pure species resolved by MCR-ALS are used to construct a sensitive spectroscopic biosensor for HSA with a linear range from 1.8 nM to 28.1 nM and a detection limit of 0.8 nM. © 2013 Published by Elsevier B.V.

  12. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy

    PubMed Central

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-01-01

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin–Ciocalteu method (R2 of 0.97 in calibration and R2 of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R2 of 0.93 in calibration and R2 of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R2 of 0.99 in calibration and R2 of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R2 of 0.96 in calibration and R2 of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content—the most important parameters to be measured in this type of liqueurs.  PMID:27735832

  13. Discrimination of Apple Liqueurs (Nalewka) Using a Voltammetric Electronic Tongue, UV-Vis and Raman Spectroscopy.

    PubMed

    Śliwińska, Magdalena; Garcia-Hernandez, Celia; Kościński, Mikołaj; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek; Śliwińska-Bartkowiak, Małgorzata; Jurga, Stefan; Garcia-Cabezon, Cristina; Rodriguez-Mendez, Maria Luz

    2016-10-09

    The capability of a phthalocyanine-based voltammetric electronic tongue to analyze strong alcoholic beverages has been evaluated and compared with the performance of spectroscopic techniques coupled to chemometrics. Nalewka Polish liqueurs prepared from five apple varieties have been used as a model of strong liqueurs. Principal Component Analysis has demonstrated that the best discrimination between liqueurs prepared from different apple varieties is achieved using the e-tongue and UV-Vis spectroscopy. Raman spectra coupled to chemometrics have not been efficient in discriminating liqueurs. The calculated Euclidean distances and the k-Nearest Neighbors algorithm (kNN) confirmed these results. The main advantage of the e-tongue is that, using PLS-1, good correlations have been found simultaneously with the phenolic content measured by the Folin-Ciocalteu method (R² of 0.97 in calibration and R² of 0.93 in validation) and also with the density, a marker of the alcoholic content method (R² of 0.93 in calibration and R² of 0.88 in validation). UV-Vis coupled with chemometrics has shown good correlations only with the phenolic content (R² of 0.99 in calibration and R² of 0.99 in validation) but correlations with the alcoholic content were low. Raman coupled with chemometrics has shown good correlations only with density (R² of 0.96 in calibration and R² of 0.85 in validation). In summary, from the three holistic methods evaluated to analyze strong alcoholic liqueurs, the voltammetric electronic tongue using phthalocyanines as sensing elements is superior to Raman or UV-Vis techniques because it shows an excellent discrimination capability and remarkable correlations with both antioxidant capacity and alcoholic content-the most important parameters to be measured in this type of liqueurs.

  14. Mono- and bimetallic nanoparticles decorated KTaO3 photocatalysts with improved Vis and UV-Vis light activity

    NASA Astrophysics Data System (ADS)

    Krukowska, Anna; Trykowski, Grzegorz; Winiarski, Michal Jerzy; Klimczuk, Tomasz; Lisowski, Wojciech; Mikolajczyk, Alicja; Pinto, Henry P.; Zaleska-Medynska, Adriana

    2018-05-01

    Novel mono- and bimetallic nanoparticles (MNPs and BNPs) decorated surface of perovskite-type KTaO3 photocatalysts were successfully synthesized by hydrothermal reaction of KTaO3 followed by photodeposition of MNPs/BNPs. The effect of noble metal type (MNPs = Au, Ag, Pt, Pd, Rh, Ru or BNPs = Au/Pt, Ag/Pd, Rh/Ru), amount of metal precursor (0.5, 1.0, 1.5 or 2.0 wt%) as well as photoreduction method (simultaneous (both) or subsequent (seq) deposition of two metals) on the physicochemical and photocatalytic properties of MNPs- and BNPs-KTaO3 have been investigated. All as-prepared photocatalysts were subsequently characterized by UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) emission spectroscopy. The crystal structure was performed using visualization for electronic and structural analysis (VESTA). The photocatalytic activity under Vis light irradiation was estimated in phenol degradation in aqueous phase and toluene removal in gas phase, while under UV-Vis light irradiation was measured amount of H2 generation from formic acid solution. The absorption properties of O2 and H2O molecules on KTaO3(1 0 0) surface supported by Au or Au/Pt NPs was also investigated using density-functional theory (DFT). The experimental results show that, both MNPs-KTaO3 and BNPs-KTaO3 exhibit greatly enhanced pollutant decomposition efficiency under Vis light irradiation and highly improved H2 production under UV-Vis light irradiation compared with pristine KTaO3. MNPs deposition on KTaO3 surface effects by disperse metal particle size ranging from 11 nm (Ru NPs) to 112 nm (Au NPs). Simultaneous addition of Au/Pt precursors results in formation of agglomerated

  15. UV-vis spectroscopy study of plasma-activated water: Dependence of the chemical composition on plasma exposure time and treatment distance

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Szili, Endre J.; Ogawa, Kotaro; Short, Robert D.; Ito, Masafumi; Furuta, Hiroshi; Hatta, Akimitsu

    2018-01-01

    Plasma-activated water (PAW) is receiving much attention in biomedical applications because of its reported potent bactericidal properties. Reactive oxygen and nitrogen species (RONS) that are generated in water upon plasma exposure are thought to be the key components in PAW that destroy bacterial and cancer cells. In addition to developing applications for PAW, it is also necessary to better understand the RONS chemistry in PAW in order to tailor PAW to achieve a specific biological response. With this in mind, we previously developed a UV-vis spectroscopy method using an automated curve fitting routine to quantify the changes in H2O2, NO2 -, NO3 - (the major long-lived RONS in PAW), and O2 concentrations. A major advantage of UV-vis is that it can take multiple measurements during plasma activation. We used the UV-vis procedure to accurately quantify the changes in the concentrations of these RONS and O2 in PAW. However, we have not yet provided an in-depth commentary of how we perform the curve fitting procedure or its implications. Therefore, in this study, we provide greater detail of how we use the curve fitting routine to derive the RONS and O2 concentrations in PAW. PAW was generated by treatment with a helium plasma jet. In addition, we employ UV-vis to study how the plasma jet exposure time and treatment distance affect the RONS chemistry and amount of O2 dissolved in PAW. We show that the plasma jet exposure time principally affects the total RONS concentration, but not the relative ratios of RONS, whereas the treatment distance affects both the total RONS concentration and the relative RONS concentrations.

  16. Chemical composition and surfactant characteristics of marine foams investigated by means of UV-vis, FTIR and FTNIR spectroscopy.

    PubMed

    Mecozzi, Mauro; Pietroletti, Marco

    2016-11-01

    In this study, we collected the ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and Fourier transform near-infrared (FTNIR) spectra of marine foams from different sites and foams produced by marine living organisms (i.e. algae and molluscs) to retrieve information about their molecular and structural composition. UV-vis spectra gave information concerning the lipid and pigment contents of foams. FTIR spectroscopy gave a more detailed qualitative information regarding carbohydrates, lipids and proteins in addition with information about the mineral contents of foams. FTNIR spectra confirmed the presence of carbohydrates, lipids and proteins in foams. Then, due to the higher content of structural information of FTIR spectroscopy with respect to FTNIR and UV-vis, we join the FTIR spectra of marine foams to those of humic substance from marine sediments and to the spectra of foams obtained by living organisms. We submitted this resulting FTIR spectral dataset to statistical multivariate methods to investigate specific aspects of foams such as structural similarity among foams and in addition, contributions from the organic matter of living organisms. Cluster analysis (CA) evidenced several cases (i.e. clusters) of marine foams having high structural similarity with foams from vegetal and animal samples and with humic substance extracted from sediments. These results suggested that all the living organisms of the marine environment can give contributions to the chemical composition of foams. Moreover, as CA also evidenced cases of structural differences within foam samples, we applied two-dimensional correlation analysis (2DCORR) to the FTIR spectra of marine foams to investigate the molecular characteristics which caused these structural differences. Asynchronous spectra of two-dimensional correlation analysis showed that the structural heterogeneity among foam samples depended reasonably on the presence and on the qualitative difference of

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  18. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  19. Determination of supplemental feeding needs for astaxanthin and canthaxanthin in salmonids by supramolecular solvent-based microextraction and liquid chromatography-UV/VIS spectroscopy.

    PubMed

    Caballo, Carmen; Costi, Esther María; Sicilia, María Dolores; Rubio, Soledad

    2012-09-15

    Development of simple and rapid analytical methods for predicting supplemental feeding requirements in aquaculture is a need to reduce production costs. In this article, a supramolecular solvent (SUPRAS) made up of decanoic acid (DeA) assemblies was proposed to simplify sample treatment in the total and individual determination of carotenoids (red-pink pigments) in farmed salmonids. The analytes were quantitatively extracted in a single step that spends a few minutes using a small volume of SUPRAS (i.e. 800 μL) and directly determined in extracts without the interference from fats or other matrix components. The methods based on the combination of microextraction with SUPRAS and photometry or HPLC-UV/VIS spectroscopy were developed for the determination of total and individual carotenoids, respectively. The applicability of the methods was demonstrated by analysing non-fortified and fortified samples of farmed Atlantic salmons and rainbow trouts. Recoveries obtained by photometry and HPLC-UV/VIS spectroscopy were within the intervals 98-104% and 94-106%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Lowest Triplet of Tetracyanoquinodimethane via UV-vis Absorption Spectroscopy with Br-Containing Solvents.

    PubMed

    Khvostenko, Olga G; Kinzyabulatov, Renat R; Khatymova, Laysan Z; Tseplin, Evgeniy E

    2017-10-05

    This study was undertaken to find the previously unknown lowest triplet of the isolated molecule of tetracyanoquinodimethane (TCNQ), which is a widely used organic semiconductor. The problem is topical because the triplet excitation of this compound is involved in some processes which occur in electronic devices incorporating TCNQ and its derivatives, and information on the TCNQ triplet is needed for better understanding of these processes. The lowest triplet of TCNQ was obtained at 1.96 eV using UV-vis absorption spectroscopy with Br-containing solvents. Production of the triplet band with sufficient intensity in the spectra was provided by the capacity of the Br atom to augment the triplet excitation and through using a 100 mm cuvette. The assignment of the corresponding spectral band to the triplet transition was made by observation that this band appeared only in the spectra recorded in Br-containing solvents but not in spectra recorded in other solvents. Additional support for the triplet assignment came from the overall UV-vis absorption spectra of TCNQ recorded in various solvents, using a 10 mm cuvette, in the 1.38-6.5 eV energy range. Singlet transitions of the neutral TCNQ o molecule and doublet transitions of the TCNQ ¯ negative ion were identified in these overall spectra and were assigned with TD B3LYP/6-31G calculations. Determination of the lowest triplet of TCNQ attained in this work may be useful for theoretical studies and practical applications of this important compound.

  1. Combined characterization of bovine polyhemoglobin microcapsules by UV-Vis absorption spectroscopy and cyclic voltammetry.

    PubMed

    Knirsch, Marcos Camargo; Dell'Anno, Filippo; Salerno, Marco; Larosa, Claudio; Polakiewicz, Bronislaw; Eggenhöffner, Roberto; Converti, Attilio

    2017-03-01

    Polyhemoglobin produced from pure bovine hemoglobin by reaction with PEG bis(N-succynimidil succinate) as a cross-linking agent was encapsulated in gelatin and dehydrated by freeze-drying. Free carboxyhemoglobin and polyhemoglobin microcapsules were characterized by UV-Vis spectroscopy in the absorption range 450-650 nm and cyclic voltammetry in the voltage range from -0.8 to 0.6 mV to evaluate the ability to break the bond with carbon monoxide and to study the carrier's affinity for oxygen, respectively. SEM used to observe the shape of cross-linked gelatin-polyhemoglobin microparticles showed a regular distribution of globular shapes, with mean size of ~750 nm, which was ascribed to gelatin. Atomic absorption spectroscopy was also performed to detect iron presence in microparticles. Cyclic voltammetry using an Ag-AgCl electrode highlighted characteristic peaks at around -0.6 mV that were attributed to reversible oxygen bonding with iron in oxy-polyhemoglobin structure. These results suggest this technique as a powerful, direct and alternative method to evaluate the extent of hemoglobin oxygenation.

  2. Post-discharge gas composition of a large-gap DBD in humid air by UV-Vis absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Moiseev, T.; Misra, N. N.; Patil, S.; Cullen, P. J.; Bourke, P.; Keener, K. M.; Mosnier, J. P.

    2014-12-01

    Large gap dielectric barrier discharges (DBD) provide non-thermal, non-equilibrium plasmas that can generate specific gas chemistry with enhanced bactericidal effects when working in humid air. The present study investigates the post-discharge gas composition of such plasmas operated in humid air using UV-Vis (200-800 nm) absorption spectroscopy. Absorbance spectra have been de-convoluted using direct deconvolution and iterative methods and results are correlated to the DBD electrical parameters. The high-voltage (56 and 70 kV rms) DBD plasma generated at 50 Hz frequency in a closed container over a 20 mm gap in air with relative humidity (RH) of 5-70% has been characterized by I-V and capacitive methods. The post-discharge gas composition at each RH is assessed by UV-Vis absorption spectroscopy for plasma exposure times of 15-120 s. The concentration of ozone and nitrogen oxides (O3, NO2, NO3, N2O4) increases with plasma exposure time but a strong decrease in [O3] levels is obtained with increase in RH. The decrease in [O3] and an abundance of nitrogen oxides is ascribed to high specific power densities in the closed container and to increasing RH levels. The absorbance residual following deconvolution shows a strong band at 230-270 nm consistent with the presence of pernitric acid (HNO4) and other HNOx (x = 1, 3) species. Humid air large gap DBD plasmas in closed containers generate along with O3, high levels of nitrogen oxides and HNOx (x = 1, 4) acids leading to increased bactericidal rates.

  3. Synthesis, spectroscopic (UV-Vis, FT-IR and NMR), single crystal XRD of 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate: A comprehensive experimental and computational study

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2017-01-01

    A piperidin-4-one containing picrate 3,5-diethyl -2,6-di(thiophen-2-yl)piperidin-4-on-1-ium picrate [3,5-DPPP] was synthesized. The molecular structure of 3,5-DPPP was confirmed by FT-IR, NMR, Uv-Vis, single crystal XRD analysis and DFT and HF methods with 6-31G(d,p) basis set. The XRD data confirm the transfer of protons from picric acid (O2) to piperidin-4-one ring (N1). The 3,5-DPPP compound is stabilized by the presence of intermolecular and intramolecular hydrogen bonds (N-H⋯O, C-H⋯S and C-H⋯O). Density functional theory and HF calculations have been used widely for calculating a wide variety of molecular properties such as optimized structure, FT-IR and Uv-Vis spectra, and provided reliable results which are in agreement with experimental data. The charge density data have been used to understand the properties of molecular systems. Furthermore, several quantum chemical insights have been obtained in the form of the total and partial density of states, the HOMO-LUMO energy gap and electrostatic potential map etc. In addition, the polarizability and first hyperpolarizability were calculated to show the potential applications of 3,5-DPPP in nonlinear optics.

  4. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Bartoszek, Mariola; Polak, Justyna

    2016-01-01

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH•) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples.

  5. Development of variable pathlength UV-vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring.

    PubMed

    Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau

    2014-03-01

    To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. PALS, MIR and UV-vis-NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials

    NASA Astrophysics Data System (ADS)

    Filipecka, Katarzyna; Budaj, Mariusz; Chamerski, Kordian; Miedziński, Rafał; Sitarz, Maciej; Miskowiak, Bogdan; Makowska-Janusik, Małgorzata; Filipecki, Jacek

    2017-11-01

    Studies on polymeric materials used in contactology for manufacturing of contact lenses are presented in the paper. Different types of brand new contact lenses were investigated: hydrogel, silicone-hydrogel and rigid gas permeable. Positron annihilation lifetime spectroscopy (PALS) was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. Measurements reveal significant differences between the materials. Namely differences in size and fraction of free volume were observed. These changes are strongly correlated with oxygen permeability in contact lenses. Middle infrared (MIR) spectroscopy was carried out in order to investigate the internal structure of materials. Furthermore, UV-vis-NIR studies were performed in order to determine the transmittance properties of contact lenses.

  7. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy.

    PubMed

    Ishida, Ryo; Hayashi, Shun; Yamazoe, Seiji; Kato, Kazuo; Tsukuda, Tatsuya

    2017-06-01

    We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH 4 . To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH 4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L 3 -edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.

  8. Application of ZnO Nanoparticle as Sulphide Gas Sensor Using UV/VIS/NIR-Spectrophotometer

    NASA Astrophysics Data System (ADS)

    Juliasih, N.; Buchari; Noviandri, I.

    2017-04-01

    The nanoparticle of metal oxides has great unique characteristics that applicable to the wide industrial as sensors and catalysts for reducing environmental pollution. Sulphide gas monitors and detectors are required for assessing safety aspects, due to its toxicity level. A thin film of ZnO as the sulphide gas sensor was synthesised by the simple method of chemical liquid deposition with variation of annealing temperature from 200 ºC to 500 ºC, and characterised by Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), and UV/VIS/NIR-Spectrophotometer. Characterization studies showed nanoparticle size from the range 62 - 92 nm of diameters. The application this ZnO thin film to sulfide gas, detected by UV/VIS/NIR Spectrophotometer with diffuse reflectance, showed specific chemical reaction by the shifting of maximum % Reflectance peak. The gas sensing using this method is applicable at room.

  9. Size determination of gold nanoparticles in silicate glasses by UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Ali, Shahid; Khan, Younas; Iqbal, Yaseen; Hayat, Khizar; Ali, Muhammad

    2017-01-01

    A relatively easier and more accurate method for the determination of average size of metal nanoparticles/aggregates in silicate glasses based on ultraviolet visible (UV-Vis) spectra fitted with the Mie and Mie-Gans models was reported. Gold ions were diffused into sodalime silicate and borosilicate glasses by field-assisted solid-state ion-exchange technique using the same experimental parameters for both glasses. Transmission electron microscopy was performed to directly investigate the morphology and distribution of the dopant nanoparticles. UV-Vis spectra of the doped glasses showed broad surface plasmon resonance peaks in their fingerprint regions, i.e., at 525 and 500 nm for sodalime silicate and borosilicate glass matrices, respectively. These spectra were fitted with the Mie model for spherical nanoparticles and the Mie-Gans model for spheroidal nanoparticles. Although both the models were developed for colloidal nanoparticles, the size of the nanoparticles/aggregates calculated was accurate to within ˜10% in both the glass matrices in comparison to the size measured directly from the transmission electron microscope images.

  10. Modified Fe3O4- hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems

    NASA Astrophysics Data System (ADS)

    Valizadeh, S.; Rasoulifard, M. H.; Dorraji, M. S. Seyed

    2014-11-01

    The magnetite-hydroxyapatite (M-HAP) nanocomposites were prepared by a chemical co- precipitation procedure and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectra (DRS). The ability of the synthesized catalyst for photocatalytic degradation of Acid Blue 25 (AB25), as an organic dye, under UV irradiation was studied. The catalyst was modified employing transition metals (Mn, Fe, Co, Ni, Cu and Zn) trying to improve the catalytic performance of HAP in absence of UV irradiation and in the presence of hydrogen peroxide i.e. a Fenton like reaction. The best results obtained for Cu and Co modified M-HAPs and the effect of operational parameters such pH, amount of catalyst and hydrogen peroxide concentration was studied. In order to investigate the performance of HAP based photocatalyst in visible light region, M-HAP was modified with silver ions. At the end, Langmuir-Hinshelwood kinetic expression used to evaluate and compare the catalytic systems. The strongest degradation activity was observed for Ag-M-HAP/Vis system because of Ag3PO4 formation. Apparent reaction rate constant (Kapp) by Ag-M-HAP/Vis was 63, 36 and 19 times faster than Cu-M-HAP(II)/H2O2, Co-M-HAP(II)/H2O2 and M-HAP (I)/UV systems, respectively.

  11. UV-vis spectroscopy and colorimetric models for detecting anthocyanin-metal complexes in plants: An overview of in vitro and in vivo techniques.

    PubMed

    Fedenko, Volodymyr S; Shemet, Sergiy A; Landi, Marco

    2017-05-01

    Although anthocyanin (ACN) biosynthesis is one of the best studied pathways of secondary metabolism in plants, the possible physiological and ecological role(s) of these pigments continue to intrigue scientists. Like other dihydroxy B-ring substituted flavonoids, ACNs have an ability to bind metal and metalloid ions, a property that has been exploited for a variety of purposes. For example, the metal binding ability may be used to stabilize ACNs from plant food sources, or to modify their colors for using them as food colorants. The complexation of metals with cyanidin derivatives can also be used as a simple, sensitive, cheap, and rapid method for determination concentrations of several metals in biological and environmental samples using UV-vis spectroscopy. Far less information is available on the ecological significance of ACN-metal complexes in plant-environment interactions. Metalloanthocyanins (protocyanin, nemophilin, commelinin, protodelphin, cyanosalvianin) are involved in the copigmentation phenomenon that leads to blue-pigmented petals, which may facilitate specific plant-pollinator interactions. ACN-metal formation and compartmentation into the vacuole has also been proposed to be part of an orchestrated detoxification mechanism in plants which experience metal/metalloid excess. However, investigations into ACN-metal interactions in plant biology may be limited because of the complexity of the analytical techniques required. To address this concern, here we describe simple methods for the detection of ACN-metal both in vitro and in vivo using UV-vis spectroscopy and colorimetric models. In particular, the use of UV-vis spectra, difference absorption spectra, and colorimetry techniques will be described for in vitro determination of ACN-metal features, whereas reflectance spectroscopy and colorimetric parameters related to CIE L * a * b * and CIE XYZ systems will be detailed for in vivo analyses. In this way, we hope to make this high-informative tool

  12. XRD and spectral dataset of the UV-A stable nanotubes of 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine.

    PubMed

    Govindhan, R; Karthikeyan, B

    2017-10-01

    The data presented in this article are related to the research entitled of UV-A stable nanotubes. The nanotubes have been prepared from 3,5-bis(trifluoromethyl)benzylamine derivative of tyrosine (BTTP). XRD data reveals the size of the nanotubes. As-synthesized nanotubes (BTTPNTs) are characterized by UV-vis optical absorption studies [1] and photo physical degradation kinetics. The resulted dataset is made available to enable critical or extended analyzes of the BTTPNTs as an excellent light resistive materials.

  13. A comparison of antioxidative capacities of fruit juices, drinks and nectars, as determined by EPR and UV-vis spectroscopies.

    PubMed

    Bartoszek, Mariola; Polak, Justyna

    2016-01-15

    The differences in the Trolox Equivalent Antioxidant Capacity (TEAC) values at the same incubation time obtained by two different techniques: electron paramagnetic resonance (EPR) spectroscopy and ultraviolet visible (UV-vis) spectroscopy, which use the same antioxidant-free radical reaction mechanism, were determined for fruit juices, nectars and drinks. For this study, the stable free radical 1,1-Diphenyl-2-picryl-hydrazyl (DPPH(•)) was used. The antioxidant capacity was presented in Trolox Equivalents, e.g., μM trolox per 100 ml of sample. All of the studied fruit juices, drinks and nectars showed antioxidative properties. Dependencies between TEAC values and the percent fruit content and sample color were observed for the studied beverages. It was found that EPR spectroscopy is the more adequate method for determining TEAC values for these kinds of samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Probing the Behaviors of Gold Nanorods in Metastatic Breast Cancer Cells Based on UV-vis-NIR Absorption Spectroscopy

    PubMed Central

    Zhang, Weiqi; Ji, Yinglu; Meng, Jie; Wu, Xiaochun; Xu, Haiyan

    2012-01-01

    In this work, behaviors of positively-charged AuNRs in a highly metastatic tumor cell line MDA-MB-231 are examined based on UV-vis-NIR absorption spectroscopy in combination with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and dark-field microscopic observation. It is found that characteristic surface plasmon resonance (SPR) peaks of AuNRs can be detected using spectroscopic method within living cells that have taken up AuNRs. The peak area of transverse SPR band is shown to be proportionally related to the amount of AuNRs in the cells determined with ICP-MS, which suggests a facile and real time quantification method for AuNRs in living cells. The shape of longitudinal SPR band in UV-vis-NIR spectrum reflects the aggregation state of AuNRs in the cells during the incubation period, which is proved by TEM and microscopic observations. Experimental results reveal that AuNRs are internalized by the cells rapidly; the accumulation, distribution and aggregation of AuNRs in the cells compartments are time and dose dependent. The established spectroscopic analysis method can not only monitor the behaviors of AuNRs in living cells but may also be helpful in choosing the optimum laser stimulation wavelength for anti-tumor thermotherapy. PMID:22384113

  15. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    PubMed

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  16. SAXS Combined with UV-vis Spectroscopy and QELS: Accurate Characterization of Silver Sols Synthesized in Polymer Matrices.

    PubMed

    Bulavin, Leonid; Kutsevol, Nataliya; Chumachenko, Vasyl; Soloviov, Dmytro; Kuklin, Alexander; Marynin, Andrii

    2016-12-01

    The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution these techniques should be used simultaneously. All applied methods were in good agreement for the characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles were not entirely spherical in form.

  17. Analysis of pure tar substances (polycyclic aromatic hydrocarbons) in the gas stream using ultraviolet visible (UV-Vis) spectroscopy and multivariate curve resolution (MCR).

    PubMed

    Weide, Tobias; Guschin, Viktor; Becker, Wolfgang; Koelle, Sabine; Maier, Simon; Seidelt, Stephan

    2015-01-01

    The analysis of tar, mostly characterized as polycyclic aromatic hydrocarbons (PAHs), describes a topic that has been researched for years. An online analysis of tar in the gas stream in particular is needed to characterize the tar conversion or formation in the biomass gasification process. The online analysis in the gas is carried out with ultraviolet-visible (UV-Vis) spectroscopy (190-720 nm). This online analysis is performed with a measuring cell developed by the Fraunhofer Institute for Chemical Technology (ICT). To this day, online tar measurements using UV-Vis spectroscopy have not been carried out in detail. Therefore, PAHs are analyzed as follows. The measurements are split into different steps. The first step to prove the online method is to vaporize single tar substances. These experiments show that a qualitative analysis of PAHs in the gas stream with the used measurement setup is possible. Furthermore, it is shown that the method provides very exact results, so that a differentiation of various PAHs is possible. The next step is to vaporize a PAH mixture. This step consists of vaporizing five pure substances almost simultaneously. The interpretation of the resulting data is made using a chemometric interpretation method, the multivariate curve resolution (MCR). The verification of the calculated results is the main aim of this experiment. It has been shown that the tar mixture can be analyzed qualitatively and quantitatively (in arbitrary units) in detail using the MCR. Finally it is the main goal of this paper to show the first steps in the applicability of the UV-Vis spectroscopy and the measurement setup on online tar analysis in view of characterizing the biomass gasification process. Due to that, the gasification plant (at the laboratory scale), developed and constructed by the Fraunhofer ICT, has been used to vaporize these substances. Using this gasification plant for the experiments enables the usage of the measurement setup also for the

  18. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  19. Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Coman, Ecaterina Oana

    Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.

  20. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P.; Nguyen, Huong T. H.; Dang, Andy; Tureček, František

    2018-01-01

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z4 + H]+● fragment ion-radicals of the R-C●H-CONH- type, initially formed by N-Cα bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [●DAAR + H]+ isomers and used to assign structures to the action spectra. The potential energy surface of [●DAAR + H]+ isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [●XAAR + H]+ ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone Cα positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H]●-ETD fragments containing Asp, Asn, Glu, and Gln residues. [Figure not available: see fulltext.

  1. Spontaneous Isomerization of Peptide Cation Radicals Following Electron Transfer Dissociation Revealed by UV-Vis Photodissociation Action Spectroscopy.

    PubMed

    Imaoka, Naruaki; Houferak, Camille; Murphy, Megan P; Nguyen, Huong T H; Dang, Andy; Tureček, František

    2018-01-16

    Peptide cation radicals of the z-type were produced by electron transfer dissociation (ETD) of peptide dications and studied by UV-Vis photodissociation (UVPD) action spectroscopy. Cation radicals containing the Asp (D), Asn (N), Glu (E), and Gln (Q) residues were found to spontaneously isomerize by hydrogen atom migrations upon ETD. Canonical N-terminal [z 4 + H] +● fragment ion-radicals of the R-C ● H-CONH- type, initially formed by N-C α bond cleavage, were found to be minor components of the stable ion fraction. Vibronically broadened UV-Vis absorption spectra were calculated by time-dependent density functional theory for several [ ● DAAR + H] + isomers and used to assign structures to the action spectra. The potential energy surface of [ ● DAAR + H] + isomers was mapped by ab initio and density functional theory calculations that revealed multiple isomerization pathways by hydrogen atom migrations. The transition-state energies for the isomerizations were found to be lower than the dissociation thresholds, accounting for the isomerization in non-dissociating ions. The facile isomerization in [ ● XAAR + H] + ions (X = D, N, E, and Q) was attributed to low-energy intermediates having the radical defect in the side chain that can promote hydrogen migration along backbone C α positions. A similar side-chain mediated mechanism is suggested for the facile intermolecular hydrogen migration between the c- and [z + H] ● -ETD fragments containing Asp, Asn, Glu, and Gln residues. Graphical Abstract ᅟ.

  2. Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis.

    PubMed

    Martins, Angélica Rocha; Talhavini, Márcio; Vieira, Maurício Leite; Zacca, Jorge Jardim; Braga, Jez Willian Batista

    2017-08-15

    The discrimination of whisky brands and counterfeit identification were performed by UV-Vis spectroscopy combined with partial least squares for discriminant analysis (PLS-DA). In the proposed method all spectra were obtained with no sample preparation. The discrimination models were built with the employment of seven whisky brands: Red Label, Black Label, White Horse, Chivas Regal (12years), Ballantine's Finest, Old Parr and Natu Nobilis. The method was validated with an independent test set of authentic samples belonging to the seven selected brands and another eleven brands not included in the training samples. Furthermore, seventy-three counterfeit samples were also used to validate the method. Results showed correct classification rates for genuine and false samples over 98.6% and 93.1%, respectively, indicating that the method can be helpful for the forensic analysis of whisky samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy.

    PubMed

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto; Isernia, Carla; Malgieri, Gaetano

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis 2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis 2 coordination an intense d - d transition band, blue-shifted with respect to the Cys 2 His 2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere.

  4. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    PubMed Central

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  5. UV-vis spectral property of a multi-hydroxyl Schiff-base derivative and its colorimetric response to some special metal ions.

    PubMed

    Xing, Lin; Zheng, Xiaoyu; Sun, Wenyu; Yuan, Hua; Hu, Lei; Yan, Zhengquan

    2018-06-05

    A multi-hydroxyl Schiff-base derivative, N-2'-hydroxyl-1'-naphthyl methylene-2-amino phenol (HNMAP), was synthesized and characterized by FTIR, 1 H NMR and UV-vis spectroscopy. It was noted to find there was great effect for solvent and pH on the UV-vis spectroscopy of HNMAP. Especially, some metal ions could make its UV-vis spectra changed regularly with different time-resolved effects. For example, a real-time and multi-wavelength response to Fe 2+ at 520 nm, 466 nm and 447 nm and a quite slow one about 26 min to Fe 3+ at 447 nm and 466 nm, respectively. Under the optimized conditions, the changes in the corresponding absorption intensities at above wavelengths were in proportion to c Fe 2+ or c Fe 3+ during respectively partitioned linear ranges, which realized to quantitatively detect Fe 2+ or Fe 3+ with a large linear range more than two orders of magnitude. A 1:1 complex mode for HNMAP-Fe 2+ and 1:2 for HNMAP-Fe 3+ were proposed from UV-vis spectral titration and Job's plot. HNMAP would be a potential sensor for colorimetric detection of Fe 2+ and Fe 3+ in practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Effect of the solvent on the size of clay nanoparticles in solution as determined using an ultraviolet-visible (UV-Vis) spectroscopy methodology.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-06-01

    Ultraviolet-visible (UV-Vis) spectroscopy methodology was developed and utilized for the in situ nanoscale measurement of the size of mineral clay agglomerates in various liquid suspensions. The clays studied were organomodified and unmodified montmorillonite clays (I.44p, Cloisite 93a, and PGN). The methodology was compared and validated against dynamic light scattering (DLS) analysis. The method was able to measure clay agglomerates in solvents in situations where DLS analysis was unsuccessful due to the shapes, polydispersity, and high aspect ratios of the clay particles and the complexity of the aggregates, or dispersion medium. The measured clay agglomerates in suspension were found to be in the nanometer range in the more compatible solvents, and their sizes correlated with the Hansen solubility parameter space distance between the clay modifiers and the solvents. Mass detection limits for size determination were in the range from 1 to 9 mg/L. The methodology thus provides simple, rapid, and inexpensive characterization of clays or particles in the nano- or microsize range in low concentrations in various liquid media, including complex mixtures or highly viscous fluids that are difficult to analyze with DLS. In addition, by combining UV-VIS spectroscopy with DLS it was possible to discern flocculation behavior in liquids, which otherwise could result in false size measurements by DLS alone.

  7. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials.

    PubMed

    Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha

    2012-06-01

    Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

  8. Effect of Molecular Guest Binding on the d-d Transitions of Ni2+ of CPO-27-Ni: A Combined UV-Vis, Resonant-Valence-to-Core X-ray Emission Spectroscopy, and Theoretical Study.

    PubMed

    Gallo, Erik; Gorelov, Evgeny; Guda, Alexander A; Bugaev, Aram L; Bonino, Francesca; Borfecchia, Elisa; Ricchiardi, Gabriele; Gianolio, Diego; Chavan, Sachin; Lamberti, Carlo

    2017-12-04

    We used Ni K-edge resonant-valence-to-core X-ray emission spectroscopy (RVtC-XES, also referred to as direct RIXS), an element-selective bulk-sensitive synchrotron-based technique, to investigate the electronic structure of the CPO-27-Ni metal-organic framework (MOF) upon molecular adsorption of significant molecular probes: H 2 O, CO, H 2 S, and NO. We compare RVtC-XES with UV-vis spectroscopy, and we show that the element selectivity of RVtC-XES is of strategic significance to observe the full set of d-d excitations in Ni 2+ , which are partially overshadowed by the low-energy π-π* transitions of the Ni ligands in standard diffuse-reflectance UV-vis experiments. Our combined RVtC-XES/UV-vis approach provides access to the whole set of d-d excitations, allowing us a complete discussion of the changes undergone by the electronic configuration of the Ni 2+ sites hosted within the MOF upon molecular adsorption. The experimental data have been interpreted by multiplet ligand-field theory calculations based on Wannier orbitals. This study represents a step further in understanding the ability of the CPO-27-Ni MOFs in molecular sorption and separation applications.

  9. Multi-spectroscopic analysis of cholesterol gallstone using TOF-SIMS, FTIR and UV-Vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaswal, Brij Bir S.; Kumar, Vinay; Swart, H. C.; Sharma, Jitendra; Rai, Pradeep K.; Singh, Vivek K.

    2015-10-01

    For the first time, spatial distribution of major and trace elements has been studied in cholesterol gallstones using time-of-flight secondary mass ion mass spectrometry (TOF-SIMS). The TOF-SIMS has been used to study the elemental constituents of the center and surface parts of the gallstone sample. We have classified the gallstone sample using Fourier transform spectroscopy. The detected elements in cholesterol gallstone sample were carbon (C), hydrogen (H), calcium (Ca), sodium (Na), potassium (K), strontium (Sr), copper (Cu), iron (Fe), chromium (Cr), mercury (Hg) and lead (Pb). The detected molecules in the cholesterol gallstone were CH3 +, CO3 +, CaCO3 + and C3H+. Our results revealed that the contents of these elements in cholesterol gallstone were higher in the center part than that in the surface part. In the present paper, we have also presented the UV-Vis spectroscopic studies of the center and surface parts of the gallstone sample which indicated the presence of a higher content of cholesterol in the surface part and bilirubin in the center part.

  10. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy.

    PubMed

    Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.

  11. Uric acid detection using uv-vis spectrometer

    NASA Astrophysics Data System (ADS)

    Norazmi, N.; Rasad, Z. R. Abdul; Mohamad, M.; Manap, H.

    2017-10-01

    The aim of this research is to detect uric acid (UA) concentration using Ultraviolet-Visible (UV-Vis) spectrometer in the Ultraviolet (UV) region. Absorption technique was proposed to detect different uric acid concentrations and its UV absorption wavelength. Current practices commonly take a lot of times or require complicated structures for the detection process. By this proposed spectroscopic technique, every concentration can be detected and interpreted into an absorbance value at a constant wavelength peak in the UV region. This is due to the chemical characteristics belong to the uric acid since it has a particular absorption cross-section, σ which can be calculated using Beer’s Lambert law formula. The detection performance was displayed using Spectrasuite sofware. It showed fast time response about 3 seconds. The experiment proved that the concentrations of uric acid were successfully detected using UV-Vis spectrometer at a constant absorption UV wavelength, 294.46 nm in a low time response. Even by an artificial sample of uric acid, it successfully displayed a close value as the ones reported with the use of the medical sample. It is applicable in the medical field and can be implemented in the future for earlier detection of abnormal concentration of uric acid.

  12. Method development and validation of potent pyrimidine derivative by UV-VIS spectrophotometer.

    PubMed

    Chaudhary, Anshu; Singh, Anoop; Verma, Prabhakar Kumar

    2014-12-01

    A rapid and sensitive ultraviolet-visible (UV-VIS) spectroscopic method was developed for the estimation of pyrimidine derivative 6-Bromo-3-(6-(2,6-dichlorophenyl)-2-(morpolinomethylamino) pyrimidine4-yl) -2H-chromen-2-one (BT10M) in bulk form. Pyrimidine derivative was monitored at 275 nm with UV detection, and there is no interference of diluents at 275 nm. The method was found to be linear in the range of 50 to 150 μg/ml. The accuracy and precision were determined and validated statistically. The method was validated as a guideline. The results showed that the proposed method is suitable for the accurate, precise, and rapid determination of pyrimidine derivative. Graphical Abstract Method development and validation of potent pyrimidine derivative by UV spectroscopy.

  13. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  14. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.

    2013-12-01

    We present the MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The MPI-Mainz UV/VIS Spectral Atlas is available on the Internet at uv-vis-spectral-atlas-mainz.org"target="_blank">http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the Web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.

  15. Biogenic unmodified gold nanoparticles for selective and quantitative detection of cerium using UV-vis spectroscopy and photon correlation spectroscopy (DLS).

    PubMed

    Priyadarshini, E; Pradhan, N; Panda, P K; Mishra, B K

    2015-06-15

    The ability of self-functionalized biogenic GNPs towards highly selective colorimetric detection of rare earth element cerium is being reported for the first time. GNPs underwent rapid aggregation on addition of cerium indicated by red shift of SPR peak followed by complete precipitation. Hereby, this concept of co-ordination of cerium ions onto the GNP surface has been utilized for detection of cerium. The remarkable capacity of GNPs to sensitively detect Ce without proves beneficial compared to previous reports of colorimetric sensing. MDL was 15 and 35 ppm by DLS and UV-vis spectroscopy respectively, suggesting DLS to be highly sensitive and a practical alternative in ultrasensitive detection studies. The sensing system showed a good linear fit favouring feasible detection of cerium in range of 2-50 ppm. Similar studies further showed the superior selectivity of biogenic GNPs compared to chemically synthesized counterparts. The sensing system favours on-site analysis as it overcomes need of complex instrumentation, lengthy protocols and surface modification of GNP. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. UV-Vis spectroscopy and density functional study of solvent effect on the charge transfer band of the n → σ* complexes of 2-Methylpyridine and 2-Chloropyridine with molecular iodine

    NASA Astrophysics Data System (ADS)

    Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar

    2017-03-01

    UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.

  17. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    NASA Astrophysics Data System (ADS)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically

  18. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion.

    PubMed

    Wesholowski, Jens; Prill, Sebastian; Berghaus, Andreas; Thommes, Markus

    2018-01-11

    Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.

  19. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  20. Improved analysis of Monascus pigments based on their pH-sensitive UV-Vis absorption and reactivity properties.

    PubMed

    Shi, Kan; Chen, Gong; Pistolozzi, Marco; Xia, Fenggeng; Wu, Zhenqiang

    2016-09-01

    Monascus pigments, a mixture of azaphilones mainly composed of red, orange and yellow pigments, are usually prepared in aqueous ethanol and analysed by ultraviolet-visible (UV-Vis) spectroscopy. The pH of aqueous ethanol used during sample preparation and analysis has never been considered a key parameter to control; however, this study shows that the UV-Vis spectra and colour characteristics of the six major pigments are strongly influenced by the pH of the solvent employed. In addition, the increase of solvent pH results in a remarkable increase of the amination reaction of orange pigments with amino compounds, and at higher pH (≥ 6.0) a significant amount of orange pigment derivatives rapidly form. The consequent impact of these pH-sensitive properties on pigment analysis is further discussed. Based on the presented results, we propose that the sample preparation and analysis of Monascus pigments should be uniformly performed at low pH (≤ 2.5) to avoid variations of UV-Vis spectra and the creation of artefacts due to the occurrence of amination reactions, and ensure an accurate analysis that truly reflects pigment characteristics in the samples.

  1. [The UV-Vis spectra and substituent effect of organoimido derivatives of polyoxometalates].

    PubMed

    Li, Qiang; Wei, Yong-ge; Wang, Yuan; Guo, Hong-you

    2005-06-01

    In the presence of a carbodiimine, i.e. DCC, a series of organoimido derivatives of polyoxometalates have been synthesized via the reaction of [alpha-Mo8O26]4- with aromatic amines and its hydrochloride salt. Elemental analysis, IR, 1H-NMR and UV-Vis spectra were used to characterize those hybrids, in particular their UV-Vis spectra have been studied. The results show that typical metal-ligand charge transfer (MLCT) transitions occur in the organic-inorganic hybrid molecules. There is a good linear relationship between the shift of UV-Vis absorptions (delta lamda max) and conjugation effect of the p-substituted group (sigmaR).

  2. A combined Surface Enhanced Raman Spectroscopy (SERS)/UV-vis approach for the investigation of dye content in commercial felt tip pens inks.

    PubMed

    Saviello, Daniela; Trabace, Maddalena; Alyami, Abeer; Mirabile, Antonio; Giorgi, Rodorico; Baglioni, Piero; Iacopino, Daniela

    2018-05-01

    The development of protocols for the protection of the large patrimony of works of art created by felt tip pen media since the 1950's requires detailed knowledge of the main dyes constituting commercial ink mixtures. In this work Surface Enhanced Raman Scattering (SERS) and UV-vis spectroscopy were used for the first time for the systematic identification of dye composition in commercial felt tip pens. A large selection of pens comprising six colors of five different brands was analyzed. Intense SERS spectra were obtained for all colors, allowing identification of main dye constituents. Poinceau 4R and Eosin dyes were found to be the main constituents of red and pink colors; Rhodamine and Tartrazine were found in orange and yellow colors; Erioglaucine was found in green and blue colors. UV-vis analysis of the same inks was used to support SERS findings but also to unequivocally assign some uncertain dye identifications, especially for yellow and orange colors. The spectral data of all felt tip pens collected through this work were assembled in a database format. The data obtained through this systematic investigation constitute the basis for the assembly of larger reference databases that ultimately will support the development of conservation protocols for the long term preservation of modern art collections. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Photocatalytic antibacterial effects on TiO2-anatase upon UV-A and UV-A/VIS threshold irradiation.

    PubMed

    Wu, Yanyun; Geis-Gerstorfer, Jürgen; Scheideler, Lutz; Rupp, Frank

    2016-01-01

    Photocatalysis mediated by the anatase modification of titanium dioxide (TiO2) has shown antibacterial effects in medical applications. The aim of this study was to investigate the possibility of expanding the excitation wavelengths for photocatalytic antibacterial effects from ultraviolet (UV) into the visible light range. After deposition of salivary pellicle and adhesion of Streptococcus gordonii on anatase, different irradiation protocols were applied to induce photocatalysis: ultraviolet A (UV-A) > 320 nm; ultraviolet/visible (UV-A/VIS) light > 380 nm and > 390 nm; and VIS light 400-410 nm. A quartz crystal microbalance with dissipation (QCM-D) tests and microscopic examination were used to observe the photoinduced antibacterial effects. Salivary pellicle could be photocatalytically decomposed under all irradiation protocols. In contrast, effective photocatalytic attack of bacteria could be observed by UV-A as well as by UV-A/VIS at 380 nm < λ < 390 nm only. Wavelengths above 380 nm show promise for in situ therapeutic antifouling applications.

  4. Interaction betwen Lead and Bone Protein to Affect Bone Calcium Level Using UV-Vis Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noor, Z.; Azharuddin, A.; Aflanie, I.; Kania, N.; Suhartono, E.

    2018-05-01

    This present study aim to evaluate the interactions between lead (Pb) and with bone protein by UV-Vis approach. In addition, this prsent study also aim to investigate the effect of Pb on bone calcium (Ca) level. The present study was a true experimental study design to examine the impact of Pb exposure in bone of male rats (Rattus novergicus). The study involved 5 groups, P1 was the control group, while the other (P2-P5) were the case group with exposure of Pb in different concentration within 4 weeks. At the end of the exposure, the interaction between Pb and protein was determined using UV-Vis spectrophotometric method, and the Ca level was determined using permanganometric method. The results shows that that there is an interaction between Pb and bone protein. The result also shows that the value of the binding constant of Protein-Pb is 32.71. It means Pb have an high affinity to bind with bone protein, which promote a further reaction to induced the release of bone Ca from the bone protein. In conclusion, this present study found an obvious relationship between Pb and bone protein which promote a further reaction to increase the releasing of bone calcium.

  5. A Raman and UV-Vis study of catecholamines oxidized with Mn(III)

    NASA Astrophysics Data System (ADS)

    Barreto, W. J.; Ponzoni, S.; Sassi, P.

    1998-12-01

    A UV-Vis and Raman spectroscopy study of three aminochromes generated through Mn 3+ oxidation of the dopamine, L-dopa and adrenaline molecules at physiological pH was performed. The UV-Vis spectra of the catecholamines oxidized using Mn 3+ in buffer solution at pH 7.2 show a band at ca. 300 nm, formed by two transitions at 280 nm and 300 nm assigned to an La and Lb transition respectively, and other at ca. 470 nm assigned to an n- π* transition localized in the carbonyl group. This assignment is suggested by the UV-Vis and Raman spectra of ortho-aminoquinone generated by MnO 2 oxidation of a dopamine aqueous acidic solution. The resonance Raman spectra of the three chromes at buffer pH 7.2 show a very similar feature and the most intense bands are observed in the spectral range 1100-1800 cm -1. The band around 1680 cm -1 for the three compounds is assigned to a ν(CO) stretching vibration, 1630 cm -1 to the ν(CC) ring mode, two bands at 1423, 1439 cm -1; 1427, 1438 cm -1 and 1456, 1475 cm -1 are assigned to a ν(CN +) vibration, for aminochrome, dopachrome and adrenochrome, respectively. The excitation profiles for the most intense bands for aminochrome and adrenochrome were obtained. The band assigned to the ν(CN +) present a red shift with respect to the visible band peak, however the band in adrenochrome at 1475 cm -1 shows a profile similar to ν(CO) and ν(CC) modes that reflects the methyl group effect on mixing this mode more effectively with the ν(CC) ring mode.

  6. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Keller-Rudek, H.; Moortgat, G. K.; Sander, R.; Sörensen, R.

    2013-08-01

    We present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of absorption cross sections and quantum yields in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at uv-vis-spectral-atlas-mainz.org"target="_blank">http://www.uv-vis-spectral-atlas-mainz.org. It now appears with improved browse and search options, based on new database software. In addition to the web pages, which are continuously updated, a frozen version of the data is available under the doi:10.5281/zenodo.6951.

  7. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    PubMed

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  8. UV-visible-DAD and 1H-NMR spectroscopy data fusion for studying the photodegradation process of azo-dyes using MCR-ALS.

    PubMed

    Fernández, Cristina; Pilar Callao, M; Larrechi, M Soledad

    2013-12-15

    The photodegradation process of three azo-dyes - Acid Orange 61, Acid Red 97 and Acid Brown 425 - was monitored simultaneously by ultraviolet-visible spectroscopy with diode array detector (UV-vis-DAD) and (1)H-nuclear magnetic resonance ((1)H-NMR). Multivariate curve resolution-alternating least squares (MCR-ALS) was applied to obtain the concentration and spectral profile of the chemical compounds involved in the process. The analysis of the H-NMR data suggests there are more intermediate compounds than those obtained with the UV-vis-DAD data. The fusion of UV-vis-DAD and the (1)H-NMR signal before the multivariate analysis provides better results than when only one of the two detector signals was used. It was concluded that three degradation products were present in the medium when the three azo-dyes had practically degraded. This study is the first application of UV-vis-DAD and (1)H-NMR spectroscopy data fusion in this field and illustrates its potential as a quick method for evaluating the evolution of the azo-dye photodegradation process. © 2013 Elsevier B.V. All rights reserved.

  9. Structural Identification of 19 Purified Isomers of the OPV Acceptor Material bisPCBM by 13C NMR and UV-Vis Absorption Spectroscopy and High-Performance Liquid Chromatography.

    PubMed

    Liu, Tong; Abrahams, Isaac; Dennis, T John S

    2018-04-26

    The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.

  10. Studies of structure of calcium-iron phosphate glasses by infrared, Raman and UV-Vis spectroscopies

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Liang, X. F.; Yu, H. J.; Yang, D. Q.; Yang, S. Y.

    2016-06-01

    Glasses in the ternary CaO-Fe2O3-P2O5 system were prepared and studied by means of density, differential scanning calorimetry, infrared, Raman and UV-Vis spectroscopies. The results showed that density and molar volume in the glass system decreased with increasing substitution of CaO for Fe2O3. The variation of glass transition temperature and thermal stability was strictly related to the nature of bonding in the vitreous network. Spectroscopic analysis showed that substitution of CaO for Fe2O3 induced an evolution of structural units from pyrophosphate to metaphosphate species indicating the polymerization of phosphate chains and the decrease of non-bridging oxygen concentrations. With increasing substitution of CaO for Fe2O3 The P-O-Ca linkage and (P-O- Ca2+ -O-P) chains participated in the glass network by replacing P-O-Fe bonds. The absorption band of the P-O-Ca stretching mode in the glasses with high CaO content (≥32 mol%) was assigned at around 1084 cm-1. The absorption edge would fall in the region between 332 and 420 nm which are the absorption bands of Fe3+ ions.

  11. Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy.

    PubMed

    Saito, Samuel T; Silva, Givaldo; Pungartnik, Cristina; Brendel, Martin

    2012-06-04

    Emodin, a plant- and fungus-derived anthraquinone, exerts genotoxic and antioxidative effects and shows promise in antitumor and antibacterial therapies. The aim of this study was to examine the molecular interactions of emodin with DNA in aqueous solution at physiological pH using spectroscopic methods. Fourier Transform Infrared (FTIR) Spectroscopy and UV absorption spectra were used to determine the structural features, the binding mode and the association constants. Our UV-spectroscopic results indicate that emodin interacts with DNA by intercalation and by external binding. FTIR results suggest that emodin interaction occurs preferably via adenine and thymine base pairs and also weakly with the phosphate backbone of the DNA double helix. The binding constant for emodin-DNA complex formation is estimated to be K=5.59×10(3)M(-1). No significant changes of DNA conformation were observed upon emodin-DNA complexation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.

    PubMed

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R

    2013-04-02

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  13. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.

    2015-09-01

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.

  14. NIR and UV-vis spectroscopy, artificial nose and tongue: comparison of four fingerprinting techniques for the characterisation of Italian red wines.

    PubMed

    Casale, M; Oliveri, P; Armanino, C; Lanteri, S; Forina, M

    2010-06-04

    Four rapid and low-cost vanguard analytical systems (NIR and UV-vis spectroscopy, a headspace-mass based artificial nose and a voltammetric artificial tongue), together with chemometric pattern recognition techniques, were applied and compared in addressing a food authentication problem: the distinction between wine samples from the same Italian oenological region, according to the grape variety. Specifically, 59 certified samples belonging to the Barbera d'Alba and Dolcetto d'Alba appellations and collected from the same vintage (2007) were analysed. The instrumental responses, after proper data pre-processing, were used as fingerprints of the characteristics of the samples: the results from principal component analysis and linear discriminant analysis were discussed, comparing the capability of the four analytical strategies in addressing the problem studied. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad

    2018-04-01

    Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.

  16. Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor.

    PubMed

    Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N

    2005-06-14

    With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.

  17. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less

  18. A rapid approach for measuring silver nanoparticle concentration and dissolution in seawater by UV-Vis.

    PubMed

    Sikder, Mithun; Lead, Jamie R; Chandler, G Thomas; Baalousha, Mohammed

    2018-03-15

    Detection and quantification of engineered nanoparticles (NPs) in environmental systems is challenging and requires sophisticated analytical equipment. Furthermore, dissolution is an important environmental transformation process for silver nanoparticles (AgNPs) which affects the size, speciation and concentration of AgNPs in natural water systems. Herein, we present a simple approach for the detection, quantification and measurement of dissolution of PVP-coated AgNPs (PVP-AgNPs) based on monitoring their optical properties (extinction spectra) using UV-vis spectroscopy. The dependence of PVP-AgNPs extinction coefficient (ɛ) and maximum absorbance wavelength (λ max ) on NP size was experimentally determined. The concentration, size, and extinction spectra of PVP-AgNPs were characterized during dissolution in 30ppt synthetic seawater. AgNPs concentration was determined as the difference between the total and dissolved Ag concentrations measured by inductively coupled plasma-mass spectroscopy (ICP-MS); extinction spectra of PVP-AgNPs were monitored by UV-vis; and size evolution was monitored by atomic force microscopy (AFM) over a period of 96h. Empirical equations for the dependence of maximum absorbance wavelength (λ max ) and extinction coefficient (ɛ) on NP size were derived. These empirical formulas were then used to calculate the size and concentration of PVP-AgNPs, and dissolved Ag concentration released from PVP-AgNPs in synthetic seawater at variable particle concentrations (i.e. 25-1500μgL -1 ) and in natural seawater at particle concentration of 100μgL -1 . These results suggest that UV-vis can be used as an easy and quick approach for detection and quantification (size and concentration) of sterically stabilized PVP-AgNPs from their extinction spectra. This approach can also be used to monitor the release of Ag from PVP-AgNPs and the concurrent NP size change. Finally, in seawater, AgNPs dissolve faster and to a higher extent with the decrease in NP

  19. Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations.

    PubMed

    Habibi, Mohammad Hossein; Parhizkar, Janan

    2015-11-05

    Cobalt ferrite nano-composite was prepared by hydrothermal route using cobalt nitrate, iron nitrate and ethylene glycol as chelating agent. The nano-composite was coated on glass by Doctor Blade method and annealed at 300 °C. The structural, optical, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy (UV-Vis DRS). Powder XRD analysis confirmed formation of CoFe2O4 spinel phase. The estimated particle size from FESEM data was 50 nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra was 1.3 eV. Photocatalytic degradation of Reactive Red 4 as an azo textile was investigated in aqueous solution under irradiation showed 68.0% degradation of the dye within 100 min. The experimental enhanced activity compare to pure Fe2O3 can be ascribed to the formation of composite, which was mainly attributable to the transfer of electron and hole to the surface of composite and hinder the electron hole recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesis, structural, spectroscopic, anti-cancer and molecular docking studies on novel 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol using XRD, FTIR, NMR, UV-Vis spectra and DFT

    NASA Astrophysics Data System (ADS)

    Pavitha, P.; Prashanth, J.; Ramu, G.; Ramesh, G.; Mamatha, K.; Venkatram Reddy, Byru

    2017-11-01

    The novel titled compound 2-[(Anthracene-9-ylmethylene)amino]-2-methylpropane-1,3-diol (AMD) has been synthesized by slow evaporation technique from mixed solvent system of methanol with anthracene-9-carbaldehyde and 2-amino-2-methylpropane-1,3-diol. The synthesized molecule AMD was characterized experimentally by single crystal XRD, FTIR, NMR and UV-Vis spectra and density functional theory (DFT) computations. The structure of the crystal has been determined as orthorhombic system with space group P 21 21 21 and the cell parameters are obtained using XRD data. The optimized ground state geometry of the molecule is determined by evaluating torsional potentials as a function of angle of free rotation around Csbnd C bonds of functional groups by DFT method employing B3LYP functional with 6-311++G(d,p) basis set. All the fundamental vibrations of the molecule are assigned unambiguously using potential energy distribution (PED) obtained in the DFT computations. The rms error between the observed and scaled frequencies is 6.20 cm-1. The values of dipole moment, polarizability and hyperpolarizability are evaluated to study the NLO behavior of the molecule. The HOMO-LUMO energies and thermodynamic parameters are also determined. The molecular electrostatic surface potential (MESP) is mapped to obtain the charge density distribution. The 1H and 13C NMR chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. UV-visible spectrum of the compound is also recorded in the region 200-800 nm to know the type of electronic transitions involved. The anti-cancer activity of AMD is determined against human breast cancer cell line MCF-7 and human prostate cancer cell line PC-3 and correlated the results with study of molecular docking against pharmacological protein IDO-1 receptor.

  1. Feasibility of UV-VIS-Fluorescence spectroscopy combined with pattern recognition techniques to authenticate a new category of plant food supplements.

    PubMed

    Boggia, Raffaella; Turrini, Federica; Anselmo, Marco; Zunin, Paola; Donno, Dario; Beccaro, Gabriele L

    2017-07-01

    Bud extracts, named also "gemmoderivatives", are a new category of natural products, obtained macerating meristematic fresh tissues of trees and plants. In the European Community these botanical remedies are classified as plant food supplements. Nowadays these products are still poorly studied, even if they are widely used and commercialized. Several analytical tools for the quality control of these very expensive supplements are urgently needed in order to avoid mislabelling and frauds. In fact, besides the usual quality controls common to the other botanical dietary supplements, these extracts should be checked in order to quickly detect if the cheaper adult parts of the plants are deceptively used in place of the corresponding buds whose harvest-period and production are extremely limited. This study aims to provide a screening analytical method based on UV-VIS-Fluorescence spectroscopy coupled to multivariate analysis for a rapid, inexpensive and non-destructive quality control of these products.

  2. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-01

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic)2·H2O]·H2O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis.

  3. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    PubMed

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fluorescence Lifetime and UV-Vis Spectroscopy to Evaluate the Interactions Between Quercetin and Its Yeast Microcapsule.

    PubMed

    Pham-Hoang, Bao-Ngoc; Winckler, Pascale; Waché, Yves

    2018-01-01

    Quercetin is a fragile bioactive compound. Several works have tried to preserve it by encapsulation but the form of encapsulation (mono- or supra-molecular structure, tautomeric form), though important for stability and bioavailability, remains unknown. The present work aims at developing a fluorescence lifetime technique to evaluate the structure of quercetin during encapsulation in a vector capsule that has already proven efficiency, yeast cells. Molecular stabilization was observed during a 4-month storage period. The time-correlated single-photon counting (TCSPC) technique was used to evaluate the interaction between quercetin molecules and the yeast capsule. The various tautomeric forms, as identified by UV-Vis spectroscopy, result in various lifetimes in TCSPC, although they varied also with the buffer environment. Quercetin in buffer exhibited a three-to-four longer long-time after 24 h (changing from 6-7 to 18-23 ns), suggesting an aggregation of molecules. In yeast microcapsules, the long-time population exhibited a longer lifetime (around 27 ns) from the beginning and concerned about 20% of molecules compared to dispersed quercetin. This shows that lifetime analysis can show the monomolecular instability of quercetin in buffer and the presence of interactions between quercetin molecules and their microcapsules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents.

    PubMed

    Kumar, Raj; Kumar, Vinay; Sharma, Vishal

    2015-06-01

    Diffuse reflectance ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy is applied as a means of differentiating various types of writing, office, and photocopy papers (collected from stationery shops in India) on the basis of reflectance and absorbance spectra that otherwise seem to be almost alike in different illumination conditions. In order to minimize bias, spectra from both sides of paper were obtained. In addition, three spectra from three different locations (from one side) were recorded covering the upper, middle, and bottom portions of the paper sample, and the mean average reflectivity of both the sides was calculated. A significant difference was observed in mean average reflectivity of Side A and Side B of the paper using Student's pair >t-test. Three different approaches were used for discrimination: (1) qualitative features of the whole set of samples, (2) principal component analysis, and (3) a combination of both approaches. On the basis of the first approach, i.e., qualitative features, 96.49% discriminating power (DP) was observed, which shows highly significant results with the UV-Vis-NIR technique. In the second approach the discriminating power is further enhanced by incorporating the principal component analysis (PCA) statistical method, where this method describes each UV-Vis spectrum in a group through numerical loading values connected to the first few principal components. All components described 100% variance of the samples, but only the first three PCs are good enough to explain the variance (PC1 = 51.64%, PC2 = 47.52%, and PC3 = 0.54%) of the samples; i.e., the first three PCs described 99.70% of the data, whereas in the third approach, the four samples, C, G, K, and N, out of a total 19 samples, which were not differentiated using qualitative features (approach no. 1), were therefore subjected to PCA. The first two PCs described 99.37% of the spectral features. The discrimination was achieved by using a loading plot between

  6. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    NASA Astrophysics Data System (ADS)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  7. Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV-Vis and NIR spectroscopy.

    PubMed

    Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P

    2015-09-05

    Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  9. The translucency of dental composites investigated by UV-VIS spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.; Prodan, D.; Boboia, S.; Codruta, S.; Moldovan, M.

    2013-11-01

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in the 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, RestacrilRO and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, RestacrilRO and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.

  10. Using UV-Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup.

    PubMed

    Diniz, Paulo Henrique Gonçalves Dias; Barbosa, Mayara Ferreira; de Melo Milanez, Karla Danielle Tavares; Pistonesi, Marcelo Fabián; de Araújo, Mário César Ugulino

    2016-02-01

    In this work we proposed a method to verify the differentiating characteristics of simple tea infusions prepared in boiling water alone (simulating a home-made tea cup), which represents the final product as ingested by the consumers. For this purpose we used UV-Vis spectroscopy and variable selection through the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA) for simultaneous classification of the teas according to their variety and geographic origin. For comparison, KNN, CART, SIMCA, PLS-DA and PCA-LDA were also used. SPA-LDA and PCA-LDA provided significantly better results for tea classification of the five studied classes (Argentinean green tea; Brazilian green tea; Argentinean black tea; Brazilian black tea; and Sri Lankan black tea). The proposed methodology provides a simpler, faster and more affordable classification of simple tea infusions, and can be used as an alternative approach to traditional tea quality evaluation as made by skilful tasters, which is evidently partial and cannot assess geographic origins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Laboratory spectroscopy of meteorite samples at UV-vis-NIR wavelengths: Analysis and discrimination by principal components analysis

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri

    2018-02-01

    Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.

  12. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy.

    PubMed

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories.

  13. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    NASA Astrophysics Data System (ADS)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  14. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    PubMed

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  15. TiO2/WO3 photoactive bilayers in the UV-Vis light region

    NASA Astrophysics Data System (ADS)

    Vasilaki, E.; Vernardou, D.; Kenanakis, G.; Vamvakaki, M.; Katsarakis, N.

    2017-04-01

    In this work, photoactive bilayered films consisting of anatase TiO2 and monoclinic WO3 were synthesized by a sol-gel route. Titanium isopropoxide and tungsten hexachloride were used as metal precursors and deposition was achieved by spin-coating on Corning glass substrates. The samples were characterized by X-ray diffraction, photoluminescence, UV-Vis, and Raman spectroscopy, as well as field emission scanning electron microscopy. The prepared immobilized catalysts were tested for their photocatalytic performance by the decolorization of methylene blue in aqueous matrices, under UV-Vis light irradiation. The annealing process influenced the crystallinity of the bilayered films, while the concentration of the tungsten precursor solution and the position of the tungsten trioxide layer further affected their photocatalytic performance. In particular, the photocatalytic performance of the bilayered films was optimized at a concentration of 0.1 M of the WO3 precursor solution, when deposited as an overlying layer on TiO2 by two annealing steps ( 76% methylene blue decolorization in 300 min of irradiation versus 59% in the case of a bare TiO2 film). In general, the coupled layer catalysts exhibited superior photoactivity compared to that of bare TiO2 films with WO3 acting as an electron trap, resulting, therefore, in a more efficient electron-hole separation and inhibiting their recombination.

  16. BSA adsorption onto nanospheres: Influence of surface curvature as probed by electrophoretic light scattering and UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, Julio A.; Gallardo-Moreno, Amparo M.; González-Martín, M. Luisa; Vadillo-Rodríguez, Virginia

    2015-10-01

    The influence of surface curvature on the adsorption of bovine serum albumin (BSA) was evaluated through the combination of two fairly simple techniques: electrophoretic light scattering and UV/vis spectroscopy. Measurements were carried out for a range of protein concentrations (0-320 μg/ml) at pH 3.5, 4.5 and 7 using hydrophobic polystyrene nanospheres of 38.8, 82 and 220 nm in diameter. The results obtained demonstrate that the charge of the BSA molecules in solution dictates the pH-dependent behavior of the protein-coated nanospheres, indicating in all cases a significant adsorption of BSA molecules. At a fixed pH, however, it is the zeta potential that characterizes the uncoated nanospheres normalized by their surface area that primarily controls protein adsorption. In particular, it is found that the rate at which BSA interact with the different nanospheres increases as their negative zeta potential per unit area (or diameter) increases (decreases) regardless of the pH. Moreover, provided that adsorption occurs away from the isoelectric point of the protein, highly curved surfaces are found to stabilize the native-like conformation of BSA upon adsorption by likely reducing lateral interactions between adsorbed molecules.

  17. Effects of gamma radiation on commercial food packaging films—study of changes in UV/VIS spectra

    NASA Astrophysics Data System (ADS)

    Moura, E. A. B.; Ortiz, A. V.; Wiebeck, H.; Paula, A. B. A.; Silva, A. L. A.; Silva, L. G. A.

    2004-09-01

    The effects of gamma irradiation doses up to 100 kGy on the optical properties of different commercial packaging films were studied in this paper. The packaging films analyzed were: polyethylene "LDPE", amide 6-amide 6.6 copolymer "PA6-PA6.6" and poly(ethylene terephthalate) "PET". An investigation on film samples before and after irradiation was performed by UV/VIS spectroscopy. The results showed that, in the absorption spectra of irradiated LDPE and PA6-PA6.6 films, a red-shift in the wavelength of the UV cutoff and a marked reduction in % transmittance (at low wavelengths) occur with increasing radiation dose. With respect to PET samples, no significant changes were observed in either light absorption or transmittance.

  18. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    PubMed Central

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  19. Sequential capillary electrophoresis analysis using optically gated sample injection and UV/vis detection.

    PubMed

    Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li

    2015-10-01

    We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular dynamics simulation and TDDFT study of the structures and UV-vis absorption spectra of MCT-β-CD and its inclusion complexes.

    PubMed

    Lu, Huijuan; Wang, Yujiao; Xie, Xiaomei; Chen, Feifei; Li, Wei

    2015-01-01

    In this research, the inclusion ratios and inclusion constants of MCT-β-CD/PERM and MCT-β-CD/CYPERM inclusion complexes were measured by UV-vis and fluorescence spectroscopy. The inclusion ratios are both 1:1, and the inclusion constants are 60 and 342.5 for MCT-β-CD/PERM and MCT-β-CD/CYPERM, respectively. The stabilities of inclusion complexes were investigated by MD simulation. MD shows that VDW energy plays a vital role in the stability of inclusion complex, and the destruction of inclusion complex is due to the increasing temperature. The UV-vis absorption spectra of MCT-β-CD and its inclusion complexes were studied by time-dependent density functional theory (TDDFT) method employing BLYP-D3, B3LYP-D3 and M06-2X-D3 functionals. BLYP-D3 well reproduces the UV-vis absorption spectrum and reveals that the absorption bands of MCT-β-CD mainly arise from n→π(∗) and n→σ(∗) transition, and those of inclusion complexes mainly arise from intramolecular charge transfer (ICT). ICT results in the shift of main absorption bands of MCT-β-CD. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    PubMed

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  2. Real-time activity monitoring of New Delhi metallo-β-lactamase-1 in living bacterial cells by UV-Vis spectroscopy.

    PubMed

    Yang, Ke-Wu; Zhou, Yajun; Ge, Ying; Zhang, Yuejuan

    2017-07-13

    We report an UV-Vis method for monitoring the hydrolysis of the β-lactam antibiotics inside living bacterial cells. Cell-based studies demonstrated that the hydrolysis of cefazolin was inhibited by three known NDM-1 inhibitors. This approach can be applied to the monitoring of reactions in a complex biological system, for instance in medical testing.

  3. The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest

    NASA Astrophysics Data System (ADS)

    Sander, Rolf; Keller-Rudek, Hannelore; Moortgat, Geert; Sörensen, Rüdiger

    2014-05-01

    Measurements from satellites can be used to obtain global concentration maps of atmospheric trace constituents. Critical parameters needed in the analysis of the satellite data are the absorption cross sections of the observed molecules. Here, we present the MPI-Mainz UV/VIS Spectral Atlas, which is a large collection of more than 5000 absorption cross section and quantum yield data files in the ultraviolet and visible (UV/VIS) wavelength region for gaseous molecules and radicals primarily of atmospheric interest. The data files contain results of individual measurements, covering research of almost a whole century. To compare and visualize the data sets, multicoloured graphical representations have been created. The Spectral Atlas is available on the internet at http://www.uv-vis-spectral-atlas-mainz.org. It has been completely overhauled and now appears with improved browse and search options, based on PostgreSQL, Django and Python database software. The web pages are continuously updated.

  4. The translucency of dental composites investigated by UV-VIS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrescu, L. Silaghi; Pastrav, O.; Prejmerean, C.

    Translucency is the property of a material to partially transmit and diffuse incident light, and can be described as a partial opacity or a state between complete opacity and complete transparency. The purpose of this study is to evaluate the translucency index of resin composites according to their chemical structure and to the light source used for curing. Our study was achieved on four commercial composite samples (30 mm × 2 mm) cured with two different lamps (Optilux - halogen bulb and Ultralight - LED). Measurements were made with a UV-VIS spectrophotometer, and the reflection spectrum was recorded in themore » 380-770 nm region on white and black, compared with a SPECTRALON standard white. For all materials cured with the LED lamp on the glossy sides, the best results were given by Tetric Evo Ceram followed by Filtek Supreme, Restacril{sup RO} and Premise. The measurements made on samples cured with an Optilux lamp, to the smooth and rough sides of the samples, revealed that the highest index of translucency is provided by Tetric Evo Ceram on the smooth side, followed by Filtek Supreme, Restacril{sup RO} and Premises. We can say that the translucency of the composites is mostly determined by the chemical composition of the material, which is observed from transmittance values recorded for each sample, and by the source of radiation applied on the sample.« less

  5. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-01

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.

  6. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    PubMed

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    PubMed

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  8. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    PubMed

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  9. Analysis of bacterial growth by UV/Vis spectroscopy and laser reflectometry

    NASA Astrophysics Data System (ADS)

    Peña-Gomar, Mary Carmen; Viramontes-Gamboa, Gonzalo; Peña-Gomar, Grethel; Ortiz Gutiérrez, Mauricio; Hernández Ramírez, Mariano

    2012-10-01

    This work presents a preliminary study on an experimental analysis of the lactobacillus bacterial growth in liquid medium with and without the presence of silver nanoparticles. The study aims to quantify the bactericidal effect of nanoparticles. Quantification of bacterial growth at different times was analyzed by spectroscopy UV/visible and laser reflectometry near the critical angle. From these two techniques the best results were obtained by spectroscopy, showing that as the concentration of silver nanoparticles increases, it inhibits the growth of bacteria, it only grows 63% of the population. Regarding Laser Reflectometry, the variation of reflectance near the critical angle is measured in real time. The observed results at short times are reasonable, since they indicate a gradual growth of the bacteria and the stabilization stage of the population. But at long time, the observed results show abrupt changes caused by temperature effects. The bacteria were isolated from samples taken from commercial yougurth, and cultured in MRS broth at pH 6.5, and controlled with citric acid and constant temperature of 32 °C. Separately, silver nanoparticles were synthesized at 3 °C from aqueous solutions of 1.0 mM silver nitrate and chemically reduced with sodium borohydride to 2.0 mM, with magnetic stirring.

  10. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin

    2018-05-01

    A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.

  11. Determination of successive complexation constants in an ionic liquid: complexation of UO(2)(2+) with NO(3)(-) in C(4)-mimTf(2)N studied by UV-Vis spectroscopy.

    PubMed

    Georg, Sylvia; Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde; Petitjean, Laetitia; Picquet, Michel; Solov'ev, Vitaly

    2010-04-01

    The complexation of UO(2)(2+) with NO(3)(-) has been investigated in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide by UV-vis spectroscopy at T = 18.5 degrees C. The complexation is evidenced through the appearance of four peaks at 425, 438, 453, and 467 nm. EXAFS data indicate that the trinitrato complex, UO(2)(NO(3))(3)(-), is dominating the speciation for a reagent ratio of [NO(3)(-)]/[UO(2)(2+)] > 3. Assuming three successive complexation steps, the conditional stability constants are calculated, the individual absorption spectra are derived, and a speciation plot is presented.

  12. Characterisation of PDO olive oil Chianti Classico by non-selective (UV-visible, NIR and MIR spectroscopy) and selective (fatty acid composition) analytical techniques.

    PubMed

    Casale, M; Oliveri, P; Casolino, C; Sinelli, N; Zunin, P; Armanino, C; Forina, M; Lanteri, S

    2012-01-27

    An authentication study of the Italian PDO (protected designation of origin) extra virgin olive oil Chianti Classico was performed; UV-visible (UV-vis), Near-Infrared (NIR) and Mid-Infrared (MIR) spectroscopies were applied to a set of samples representative of the whole Chianti Classico production area. The non-selective signals (fingerprints) provided by the three spectroscopic techniques were utilised both individually and jointly, after fusion of the respective profile vectors, in order to build a model for the Chianti Classico PDO olive oil. Moreover, these results were compared with those obtained by the gas chromatographic determination of the fatty acids composition. In order to characterise the olive oils produced in the Chianti Classico PDO area, UNEQ (unequal class models) and SIMCA (soft independent modelling of class analogy) were employed both on the MIR, NIR and UV-vis spectra, individually and jointly, and on the fatty acid composition. Finally, PLS (partial least square) regression was applied on the UV-vis, NIR and MIR spectra, in order to predict the content of oleic and linoleic acids in the extra virgin olive oils. UNEQ, SIMCA and PLS were performed after selection of the relevant predictors, in order to increase the efficiency of both classification and regression models. The non-selective information obtained from UV-vis, NIR and MIR spectroscopy allowed to build reliable models for checking the authenticity of the Italian PDO extra virgin olive oil Chianti Classico. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Charge-Transfer Complexes and Photochemistry of Ozone with Ferrocene and n-Butylferrocene: A UV-vis Matrix-Isolation Study.

    PubMed

    Pinelo, Laura F; Kugel, Roger W; Ault, Bruce S

    2015-10-15

    The reactions of ozone with ferrocene (cp2Fe) and with n-butylferrocene (n-butyl cp2Fe) were studied using matrix isolation, UV-vis spectroscopy, and theoretical calculations. The codeposition of cp2Fe with O3 and of n-butyl cp2Fe with O3 into an argon matrix led to the production of 1:1 charge-transfer complexes with absorptions at 765 and 815 nm, respectively. These absorptions contribute to the green matrix color observed upon initial deposition. The charge-transfer complexes underwent photochemical reactions upon irradiation with red light (λ ≥ 600 nm). Theoretical UV-vis spectra of the charge-transfer complexes and photochemical products were calculated using TD-DFT at the B3LYP/6-311G++(d,2p) level of theory. The calculated UV-vis spectra were in good agreement with the experimental results. MO analysis of these long-wavelength transitions showed them to be n→ π* on the ozone subunit in the complex and indicated that the formation of the charge-transfer complex between ozone and cp2Fe or n-butyl cp2Fe affects how readily the π* orbital on O3 is populated when red light (λ ≥ 600 nm) is absorbed. 1:1 complexes of cp2Fe and n-butyl cp2Fe with O2 were also observed experimentally and calculated theoretically. These results support and enhance previous infrared studies of the mechanism of photooxidation of ferrocene by ozone, a reaction that has considerable significance for the formation of iron oxide thin films for a range of applications.

  14. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  15. Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy

    PubMed Central

    2018-01-01

    In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the

  16. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    PubMed

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  17. Structural, optical and dielectric properties of pure and chromium (Cr) doped nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Gupta, Jhalak; Ahmed, Arham S.

    2018-05-01

    The pure and Cr doped nickel oxide (NiO) nanoparticles have been synthesized by cost effective co-precipitation method having nickel nitrate as initial precursor. The synthesized samples were characterized by X-Ray diffraction (XRD), UV-Visible Spectroscopy(UV-Vis) and LCR meter for structural, optical and dielectric properties respectively. The crystallite size of pure nickel oxide nanoparticles characterized by XRD using Debye Scherer's formula was found to be 21.7nm and the same decreases on increasing Cr concentration whereas optical and dielectric properties were analyzed by UV-Vis and LCR meter respectively. The energy band gaps were determined by UV-Vis using Tauc relation.

  18. Hydrogen bond controlled adduct formation of meso-tetra(4-sulfonatophenyl)porphyrin with protic acids: a UV-vis spectroscopic study.

    PubMed

    Zakavi, Saeed; Rahiminezhad, Hajar; Alizadeh, Robabeh

    2010-12-01

    Interaction of meso-tetra(4-sulfonatophenyl)porphyrin (H2tppS4) with weak and strong protic acid have been studied by UV-vis spectroscopy in water, dichloromethane and methanol. Different shifts of the Soret and Q(0,0) bands in the three solvents, the aggregation of diprotonated species and the stability of porphyrin-acid adducts in the solution, may be explained by the inter- and intramolecular hydrogen bonds. Whilst, the addition of excess amounts of tetra-n-butylammonium chloride to H2tppS4(Cl)2 in dichloromethane has little to no effect on the UV-vis spectrum of the dication, gradual addition of tetra-n-butylammonium hydrogen sulfate to the dichloromethane solution of H2tppS4(H2SO4)2 leads to the degradation of adducts and the release of porphryin. The results of this study clearly show the crucial role played by hydrogen bonds between the porphyrin diprotonated species and the counter ion in the stability of porphyrin diacids in solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.

    PubMed

    Yang, Bing; Ren, Lingling; Li, Luming; Tao, Xingfu; Shi, Yunhua; Zheng, Yudong

    2013-11-07

    Current and future applications of single-wall carbon nanotubes (SWCNTs) depend on the dispersion of the SWCNTs in aqueous solution and their quantitation. The concentration of SWCNTs is an important indicator to evaluate the dispersibility of the surfactant-dispersed SWCNTs suspension. Due to the complexity of the SWCNTs suspension, it is necessary to determine both the total concentration of the dispersed SWCNTs and the concentration of individually dispersed SWCNTs in aqueous suspensions, and these were evaluated through the absorbance and the resonance ratios of UV-Vis-NIR absorption spectra, respectively. However, there is no specific and reliable position assigned for either calculation of the absorbance or the resonance ratio of the UV-Vis-NIR absorption spectrum. In this paper, different ranges of wavelengths for these two parameters were studied. From this, we concluded that the wavelength range between 300 nm and 600 nm should be the most suitable for evaluation of the total concentration of dispersed SWCNTs in the suspension; also, wavelengths below 800 nm should be most suitable for evaluation of the concentration of individually dispersed SWCNTs in the suspension. Moreover, these wavelength ranges are verified by accurate dilution experiments.

  20. A versatile method for the determination of photochemical quantum yields via online UV-Vis spectroscopy.

    PubMed

    Stadler, Eduard; Eibel, Anna; Fast, David; Freißmuth, Hilde; Holly, Christian; Wiech, Mathias; Moszner, Norbert; Gescheidt, Georg

    2018-05-16

    We have developed a simple method for determining the quantum yields of photo-induced reactions. Our setup features a fibre coupled UV-Vis spectrometer, LED irradiation sources, and a calibrated spectrophotometer for precise measurements of the LED photon flux. The initial slope in time-resolved absorbance profiles provides the quantum yield. We show the feasibility of our methodology for the kinetic analysis of photochemical reactions and quantum yield determination. The typical chemical actinometers, ferrioxalate and ortho-nitrobenzaldehyde, as well as riboflavin, a spiro-compound, phosphorus- and germanium-based photoinitiators for radical polymerizations and the frequently utilized photo-switch azobenzene serve as paradigms. The excellent agreement of our results with published data demonstrates the high potential of the proposed method as a convenient alternative to the time-consuming chemical actinometry.

  1. Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers.

    PubMed

    Jerković, Igor; Kranjac, Marina; Marijanović, Zvonimir; Zekić, Marina; Radonić, Ani; Tuberoso, Carlo Ignazio Giovanni

    2016-03-21

    The samples of Satureja subspicata Vis. honey were confirmed to be unifloral by melissopalynological analysis with the characteristic pollen share from 36% to 71%. Bioprospecting of the samples was performed by HPLC-DAD, GC-FID/MS, and UV/VIS. Prephenate derivatives were shown to be dominant by the HPLC-DAD analysis, particularly phenylalanine (167.8 mg/kg) and methyl syringate (MSYR, 114.1 mg/kg), followed by tyrosine and benzoic acid. Higher amounts of MSYR (3-4 times) can be pointed out for distinguishing S. subspicata Vis. honey from other Satureja spp. honey types. GC-FID/MS analysis of ultrasonic solvent extracts of the samples revealed MSYR (46.68%, solvent pentane/Et2O 1:2 (v/v); 52.98%, solvent CH2Cl2) and minor abundance of other volatile prephenate derivatives, as well as higher aliphatic compounds characteristic of the comb environment. Two combined extracts (according to the solvents) of all samples were evaluated for their antioxidant properties by FRAP and DPPH assay; the combined extracts demonstrated higher activity (at lower concentrations) in comparison with the average honey sample. UV/VIS analysis of the samples was applied for determination of CIE Lab colour coordinates, total phenolics (425.38 mg GAE/kg), and antioxidant properties (4.26 mmol Fe(2+)/kg (FRAP assay) and 0.8 mmol TEAC/kg (DDPH assay)).

  2. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    PubMed

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. XRF and UV-Vis-NIR analyses of medieval wall paintings of al-Qarawiyyin Mosque (Morocco)

    NASA Astrophysics Data System (ADS)

    Fikri, I.; El Amraoui, M.; Haddad, M.; Ettahiri, A. S.; Bellot-Gurlet, L.; Falguères, C.; Lebon, M.; Nespoulet, R.; Ait Lyazidi, S.; Bejjit, L.

    2018-05-01

    Medieval wall painting fragments, taken at the medieval Mosque of al-Qarawiyyin in Fez, have been investigated by means of X-ray fluorescence and UV-Vis-NIR diffuse reflectance spectroscopies. The analyses permitted to determine the palette of pigments used by craftsmen of the time. Hematite or red ochre were used to obtain red brown colours, calcite for white, copper-based pigments for blue and blue-grey shades while a mixture of cinnabar, lead-based pigments and hematite was adopted to make red-orange colours. Furthermore, the analysis of mortars (external layer and plaster) on these wall painting samples revealed that they are composed mainly by calcite and sometimes by additional compounds such as quartz and gypsum.

  4. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  5. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  6. Development and validation of a FIA/UV-vis method for pK(a) determination of oxime based acetylcholinesterase reactivators.

    PubMed

    Musil, Karel; Florianova, Veronika; Bucek, Pavel; Dohnal, Vlastimil; Kuca, Kamil; Musilek, Kamil

    2016-01-05

    Acetylcholinesterase reactivators (oximes) are compounds used for antidotal treatment in case of organophosphorus poisoning. The dissociation constants (pK(a1)) of ten standard or promising acetylcholinesterase reactivators were determined by ultraviolet absorption spectrometry. Two methods of spectra measurement (UV-vis spectrometry, FIA/UV-vis) were applied and compared. The soft and hard models for calculation of pK(a1) values were performed. The pK(a1) values were recommended in the range 7.00-8.35, where at least 10% of oximate anion is available for organophosphate reactivation. All tested oximes were found to have pK(a1) in this range. The FIA/UV-vis method provided rapid sample throughput, low sample consumption, high sensitivity and precision compared to standard UV-vis method. The hard calculation model was proposed as more accurate for pK(a1) calculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    NASA Astrophysics Data System (ADS)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  8. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  9. Electronic structure and spectroscopic properties of mononuclear manganese(III) Schiff base complexes: a systematic study on [Mn(acen)X] complexes by EPR, UV/vis, and MCD spectroscopy (X = Hal, NCS).

    PubMed

    Westphal, Anne; Klinkebiel, Arne; Berends, Hans-Martin; Broda, Henning; Kurz, Philipp; Tuczek, Felix

    2013-03-04

    The manganese(III) Schiff base complexes [Mn(acen)X] (H2acen: N,N'-ethylenebis(acetylacetone)imine, X: I(-), Br(-), Cl(-), NCS(-)) are considered as model systems for a combined study of the electronic structure using vibrational, UV/vis absorption, parallel-mode electron paramagnetic resonance (EPR) and low-temperature magnetic circular dichroism (MCD) spectroscopy. By variation of the co-ligand X, the influence of the axial ligand field within a given square-pyramidal coordination geometry on the UV/vis, EPR, and MCD spectra of the title compounds is investigated. Between 25000 and 35000 cm(-1), the low-temperature MCD spectra are dominated by two very intense, oppositely signed pseudo-A terms, referred to as "double pseudo-A terms", which change their signs within the [Mn(acen)X] series dependent on the axial ligand X. Based on molecular orbital (MO) and symmetry considerations, these features are assigned to π(n.b.)(s, a) → yz, z(2) ligand-to-metal charge transfer transitions. The individual MCD signs are directly determined from the calculated MOs of the [Mn(acen)X] complexes. The observed sign change is explained by an inversion of symmetry among the π(n.b.)(s, a) donor orbitals which leads to an interchange of the positive and negative pseudo-A terms constituting the "double pseudo-A term".

  10. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Forecasting of UV-Vis absorbance time series using artificial neural networks combined with principal component analysis.

    PubMed

    Plazas-Nossa, Leonardo; Hofer, Thomas; Gruber, Günter; Torres, Andres

    2017-02-01

    This work proposes a methodology for the forecasting of online water quality data provided by UV-Vis spectrometry. Therefore, a combination of principal component analysis (PCA) to reduce the dimensionality of a data set and artificial neural networks (ANNs) for forecasting purposes was used. The results obtained were compared with those obtained by using discrete Fourier transform (DFT). The proposed methodology was applied to four absorbance time series data sets composed by a total number of 5705 UV-Vis spectra. Absolute percentage errors obtained by applying the proposed PCA/ANN methodology vary between 10% and 13% for all four study sites. In general terms, the results obtained were hardly generalizable, as they appeared to be highly dependent on specific dynamics of the water system; however, some trends can be outlined. PCA/ANN methodology gives better results than PCA/DFT forecasting procedure by using a specific spectra range for the following conditions: (i) for Salitre wastewater treatment plant (WWTP) (first hour) and Graz West R05 (first 18 min), from the last part of UV range to all visible range; (ii) for Gibraltar pumping station (first 6 min) for all UV-Vis absorbance spectra; and (iii) for San Fernando WWTP (first 24 min) for all of UV range to middle part of visible range.

  12. The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W

    2012-07-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

  13. Diagnostic spectroscopic and computer-aided evaluation of malignancy from UV/VIS spectra of clear pleural effusions

    NASA Astrophysics Data System (ADS)

    Jevtić, Dubravka R.; Avramov Ivić, Milka L.; Reljin, Irini S.; Reljin, Branimir D.; Plavec, Goran I.; Petrović, Slobodan D.; Mijin, Dušan Ž.

    2014-06-01

    The automated, computer-aided method for differentiation and classification of malignant (M) from benign (B) cases, by analyzing the UV/VIS spectra of pleural effusions is described. It was shown that by two independent objective features, the maximum of Katz fractal dimension (KFDmax) and the area under normalized UV/VIS absorbance curve (Area), highly reliable M-B classification is possible. In the Area-KFDmax space M and B samples are linearly separable permitting thus the use of linear support vector machine as a classification tool. By analyzing 104 samples of UV/VIS spectra of pleural effusions (88 M and 16 B) collected from patients at the Clinic for Lung Diseases and Tuberculosis, Military Medical Academy in Belgrade, the accuracy of 95.45% for M cases and 100% for B cases are obtained by using the proposed method. It was shown that by applying some modifications, which are suggested in the paper, the accuracy of 100% for M cases can be reached.

  14. UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.

    PubMed

    Lee, Roland A; Bédard, Charles; Berberi, Véronique; Beauchet, Romain; Lavoie, Jean-Michel

    2013-09-01

    In this short communication, UV/Vis was used as an analytical tool for the quantification of lignin concentrations in aqueous mediums. A significant correlation was determined between absorbance and concentration of lignin in solution. For this study, lignin was produced from different types of biomasses (willow, aspen, softwood, canary grass and hemp) using steam processes. Quantification was performed at 212, 225, 237, 270, 280 and 287 nm. UV-Vis quantification of lignin was found suitable for different types of biomass making this a timesaving analytical system that could lead to uses as Process Analytical Tool (PAT) in biorefineries utilizing steam processes or comparable approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Analysis of organophosphate-Zn metalloporphyrin interactions via UV-vis spectroscopy and molecular modeling.

    PubMed

    Rompoti, A; Dalal, N; Athanasopoulos, D; Rutan, S; Helburn, R

    2015-01-25

    UV-vis absorption spectra of zinc tetraphenylporphine (ZnTPP) on interaction with six organophosphorus (OP) compounds in cyclohexane were compared using ab initio methods and the molecular and solvation ligand descriptors π(*), Vx, and σ. OPs with polarizable hydrocarbon substituents in the homologous series tri-ethyl, -pentyl, -octyl, and -phenyl phosphates and the toxicologically relevant methyl paraoxon (1a-e) each gave a red shift in the Soret band (λsor) of ZnTPP in the range of 8-10 nm. Sensitivity as ΔAsor-b/Δug OP for the spectral band of the ligand bound ZnTPP (λsor-b) decreased with increasing extent of alkyl and aromatic substitution. Calculated and combined energies for OP and ZnTPP examined as a function of distance (Å) between ligand and porphyrin center suggest increased steric crowding with increasing Vx, and aromatic content of the OP. Spectrally fitted K1:1 and ΔAsor-b/ug OP each vary exponentially with Vx/σ. Lack of a red shift in λsor-b where ZnTPP was titrated with the toxic diethyl chlorophosphate (1g) is consistent with a model in which the magnitude of ΔEsor is proportional to the donor capacity of the phosphoryl-O ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  17. [Using UV-Vis Absorbance for Characterization of Maturity in Composting Process with Different Materials].

    PubMed

    Zhao, Yue; Wei, Yu-quan; Li, Yang; Xi, Bei-dou; Wei, Zi-min; Wang, Xing-lei; Zhao, Zhi-nan; Ding, Jei

    2015-04-01

    The present study was conducted to assess the degree of humification in DOM during composting using different raw materials, and their effect on maturity of compost based on UV-Vis spectra measurements and chemometrics method. The raw materials of composting studied included chicken manure, pig manure, kitchen waste, lawn waste, fruits and vegetables waste, straw waste, green waste, sludge, and municipal solid waste. During composting, the parameters of UV-Vis spectra of DOM, including SUVA254 , SUVA280 , E250/E365, E4/E6, E2/E4, E2/E6, E253/E203, E253/E220, A226-400, S275-295 and S350-400 were calculated, Statistical analysis indicated that all the parameter were significantly changed during composting. SUVA254 and SUVA280 of DOM were continuously increased, E250/E365 and E4/E6 were continuously decreased in DOM, while A226-400, S275-295 and S350-400 of DOM at the final stage were significantly different with those at other stages of composting. Correlation analysis indicated that the parameters were significantly correlated with each other except for E2/E4 and E235/E203. Furthermore, principal component analysis suggested that A226-400, SUVA254, S350-400, SUVA280 and S275~295 were reasonable parameters for assessing the compost maturity. To distinguish maturity degree among different composts, hierarchical cluster analysis, an integrated tool utilizing multiple UV-Vis parameters, was performed based on the data (A226-400, SUVA254, S350-400, SUVA280 and S275-295) of DOM derived from the final stage of composting. Composts from different sources were clustered into 2 groups. The first group included chicken manure, pig manure, lawn waste, fruits and vegetables waste, green waste, sludge, and municipal solid waste characterized by a lower maturity degree, and the second group contained straw waste and kitchen waste associated with a higher maturity degree. The above results suggest that a multi-index of UV-Vis spectra could accurately evaluate the compost maturity

  18. UV- Vis- NIR and luminescent characterization of PZCdO:Tm laser oxide glasses

    NASA Astrophysics Data System (ADS)

    Al-Assiri, M. S.; Algarni, H.; Reben, M.; Yousef, E.; Hegazy, H. H.; AbouDeif, Y. M.; Umar, Ahmad

    2017-11-01

    The luminescent oxide glasses with composition 50P2O5- 30ZnO- 20CdO (PZCdO pure) and 50P2O5- 30ZnO- 20CdO- 30000 ppm Tm2O3 (PZCdO:Tm) were synthesized by using melt- quenching technique. The optical energy gap and Urbach energy of these glasses were calculated by using UV-Vis-NIR spectroscopy. Judd- Ofelt parameters Ω2, Ω4 and Ω6, branching ratio, βR, and radiative lifetimes, τR, of Tm3+ ions doped PZCdO glasses were estimated. The spectroscopic results showed that the present glasses has the effective emission cross section bandwidth (Δλeff = 90 nm) and high stimulated emission cross-section (σem = 1.5 × 10-21 cm2). The blue up conversion emissions sharp band at 458 nm corresponding to transition 1D2 → 3F6 and weak emission band in NIR region assigned to 1G4→3H4 for the glasses PZCdO:Tm with UV- excited at 354 nm region were obtained. From result we can suggest that the present glasses can be used for blue light emitting diodes BLED chip.

  19. Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Denevi, B. W.

    2018-05-01

    We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?

  20. Photodegradation of ibuprofen under UV-Vis irradiation: mechanism and toxicity of photolysis products.

    PubMed

    Li, Fu Hua; Yao, Kun; Lv, Wen Ying; Liu, Guo Guang; Chen, Ping; Huang, Hao Ping; Kang, Ya Pu

    2015-04-01

    The photodegradation of ibuprofen (IBP) in aqueous media was studied in this paper. The degradation mechanism, the reaction kinetics and toxicity of the photolysis products of IBP under UV-Vis irradiation were investigated by dissolved oxygen experiments, quenching experiments of reactive oxygen species (ROS), and toxicity evaluation utilizing Vibrio fischeri. The results demonstrated that the IBP degradation process could be fitted by the pseudo first-order kinetics model. The degradation of IBP by UV-Vis irradiation included direct photolysis and self-sensitization via ROS. The presence of dissolved oxygen inhibited the photodegradation of IBP, which indicated that direct photolysis was more rapid than the self-sensitization. The contribution rates of ·OH and (1)O2 were 21.8 % and 38.6 % in self-sensitization, respectively. Ibuprofen generated a number of intermediate products that were more toxic than the base compound during photodegradation.

  1. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    PubMed

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Assessing Pearl Quality Using Reflectance UV-Vis Spectroscopy: Does the Same Donor Produce Consistent Pearl Quality?

    PubMed Central

    Mamangkey, Noldy Gustaf F.; Agatonovic, Snezana; Southgate, Paul C.

    2010-01-01

    Two groups of commercial quality (“acceptable”) pearls produced using two donors, and a group of “acceptable” pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis

  3. Assessing pearl quality using reflectance UV-Vis spectroscopy: does the same donor produce consistent pearl quality?

    PubMed

    Mamangkey, Noldy Gustaf F; Agatonovic, Snezana; Southgate, Paul C

    2010-09-20

    Two groups of commercial quality ("acceptable") pearls produced using two donors, and a group of "acceptable" pearls from other donors were analyzed using reflectance UV-Vis spectrophotometry. Three pearls with different colors produced by the same donor showed different absorption spectra. Cream and gold colored pearls showed a wide absorption from 320 to about 460 nm, while there was just slight reflectance around 400 nm by the white pearl with a pink overtone. Cream and gold pearls reached a reflectance peak at 560 to 590 nm, while the white pearl with pink overtone showed slightly wider absorption in this region. Both cream and gold pearls showed an absorption peak after the reflectance peak, at about 700 nm for the cream pearl and 750 nm for the gold pearl. Two other pearls produced by the same donor (white with cream overtone and cream with various overtones) showed similar spectra, which differed in their intensity. One of these pearls had very high lustre and its spectrum showed a much higher percentage reflectance than the second pearl with inferior lustre. This result may indicate that reflectance is a useful quantitative indicator of pearl lustre. The spectra of two white pearls resulting from different donors with the same color nacre (silver) showed a reflectance at 260 nm, followed by absorption at 280 nm and another reflectance peak at 340 nm. After this peak the spectra for these pearls remained flat until a slight absorption peak around 700 nm. Throughout the visible region, all white pearls used in this study showed similar reflectance spectra although there were differences in reflectance intensity. Unlike the spectral results from white pearls, the results from yellow and gold pearls varied according to color saturation of the pearl. The results of this study show that similarities between absorption and reflectance spectra of cultured pearls resulting from the same saibo donor are negligible and could not be detected with UV-Vis

  4. Simple and Precise Quantification of Iron Catalyst Content in Carbon Nanotubes Using UV/Visible Spectroscopy.

    PubMed

    Agustina, Elsye; Goak, Jeungchoon; Lee, Suntae; Seo, Youngho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Iron catalysts have been used widely for the mass production of carbon nanotubes (CNTs) with high yield. In this study, UV/visible spectroscopy was used to determine the Fe catalyst content in CNTs using a colorimetric technique. Fe ions in solution form red-orange complexes with 1,10-phenanthroline, producing an absorption peak at λ=510 nm, the intensity of which is proportional to the solution Fe concentration. A series of standard Fe solutions were formulated to establish the relationship between optical absorbance and Fe concentration. Many Fe catalysts were microscopically observed to be encased by graphitic layers, thus preventing their extraction. Fe catalyst dissolution from CNTs was investigated with various single and mixed acids, and Fe concentration was found to be highest with CNTs being held at reflux in HClO4/HNO3 and H2SO4/HNO3 mixtures. This novel colorimetric method to measure Fe concentrations by UV/Vis spectroscopy was validated by inductively coupled plasma optical emission spectroscopy, indicating its reliability and applicability to asses Fe content in CNTs.

  5. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    PubMed

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  6. The Use of UV-Visible Reflectance Spectroscopy as an Objective Tool to Evaluate Pearl Quality

    PubMed Central

    Agatonovic-Kustrin, Snezana; Morton, David W.

    2012-01-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl’s quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry. PMID:22851919

  7. Characterization of sp3 bond content of carbon films deposited by high power gas injection magnetron sputtering method by UV and VIS Raman spectroscopy.

    PubMed

    Zdunek, Krzysztof; Chodun, Rafał; Wicher, Bartosz; Nowakowska-Langier, Katarzyna; Okrasa, Sebastian

    2018-04-05

    This paper presents the results of investigations of carbon films deposited by a modified version of the magnetron sputtering method - HiPGIMS (High Power Gas Injection Magnetron Sputtering). In this experiment, the magnetron system with inversely polarized electrodes (sputtered cathode at ground potential and positively biased, spatially separated anode) was used. This arrangement allowed us to conduct the experiment using voltages ranging from 1 to 2kV and a power supply system equipped with 25/50μF capacitor battery. Carbon films were investigated by VIS/UV Raman spectroscopy. Sp 3 /sp 2 bonding ratio was evaluated basing the elementary components of registered spectra. Our investigation showed that sp 3 bond content increases with discharge power but up to specific value only. In extreme conditions of generating plasma impulses, we detected a reversed relation of the sp 3 /sp 2 ratio. In our opinion, a energy of plasma pulse favors nucleation of a sp 3 phase because of a relatively higher ionization state but in extreme cases the influence of energy is reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478

    NASA Astrophysics Data System (ADS)

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H. A.

    2016-07-01

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360 nm consisted of two partially overlapping bands at approximately 340 nm and 330 nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327 nm to 336 nm, while the lower energy absorption band demonstrated a change in peak position from 340 nm to 346 nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409 nm to 495 nm with the corresponding Stokes shift in the range of 64 nm to 155 nm (4536 cm- 1 to 9210 cm- 1). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.

  9. UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478.

    PubMed

    Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A

    2016-07-05

    The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360nm consisted of two partially overlapping bands at approximately 340nm and 330nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327nm to 336nm, while the lower energy absorption band demonstrated a change in peak position from 340nm to 346nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409nm to 495nm with the corresponding Stokes shift in the range of 64nm to 155nm (4536cm(-1) to 9210cm(-1)). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Compositional and surface characterization of HULIS by UV-Vis, FTIR, NMR and XPS: Wintertime study in Northern India

    NASA Astrophysics Data System (ADS)

    Kumar, Varun; Goel, Anubha; Rajput, Prashant

    2017-09-01

    This study (first attempt) characterizes HULIS (Humic Like Substances) in wintertime aerosols (n = 12 during day and nighttime each) from Indo-Gangetic Plain (IGP, at Kanpur) by using various state-of-the art techniques such as UV-VIS, FTIR, 1H NMR and XPS. Based on UV-Vis analysis the absorption coefficient at 365 nm (babs-365) of HULIS was found to average at 13.6 and 28.8 Mm-1 during day and nighttime, respectively. Relatively high babs-365 of HULIS during the nighttime is attributed to influence of fog-processing. However, the power fit of UV-Vis spectrum provided near similar AAE (absorption Angstrom exponent) value of HULIS centering at 4.9 ± 1.4 and 5.1 ± 1.3 during daytime and nighttime, respectively. FTIR spectra and its double derivative revealed the presence of various functional groups viz. alcohols, ketones aldehydes, carboxylic acids as well as unsaturated and saturated carbon bonds. 1H NMR spectroscopy was applied to quantify relative percentage of various types of hydrogen atoms contained in HULIS, whereas XPS technique provided information on surface composition and oxidation states of various elements present. A significantly high abundance of H‒C‒O group has been observed in HULIS (based on 1H NMR); 41.4± 2.7% and 30.9± 2.4% in day and nighttime, respectively. However, aromatic protons (Ar-H) were higher in nighttime samples (19.3± 1.8%) as compared to that in daytime samples (7.5 ± 1.9). XPS studies revealed presence of various species on the surface of HULIS samples. Carbon existed in 7 different chemical states while total nitrogen and sulfur exhibited 3 and 2 different oxidation states (respectively) on the surface of HULIS. This study reports structural information and absorption properties of HULIS which has implications to their role as cloud condensation nuclei and atmospheric direct radiative forcing.

  11. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour

    NASA Astrophysics Data System (ADS)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2018-06-01

    In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.

  12. Multiwavelength UV/visible spectroscopy for the quantitative investigation of platelet quality

    NASA Astrophysics Data System (ADS)

    Mattley, Yvette D.; Leparc, German F.; Potter, Robert L.; Garcia-Rubio, Luis H.

    1998-04-01

    The quality of platelets transfused is vital to the effectiveness of the transfusion. Freshly prepared, discoid platelets are the most effective treatment for preventing spontaneous hemorrhage or for stopping an abnormal bleeding event. Current methodology for the routine testing of platelet quality involves random pH testing of platelet rich plasma and visual inspection of platelet rich plasma for a swirling pattern indicative of the discoid shape of the cells. The drawback to these methods is that they do not provide a quantitative and objective assay for platelet functionality that can be used on each platelet unit prior to transfusion. As part of a larger project aimed at characterizing whole blood and blood components with multiwavelength UV/vis spectroscopy, isolated platelets and platelet in platelet rich plasma have been investigated. Models based on Mie theory have been developed which allow for the extraction of quantitative information on platelet size, number and quality from multi-wavelength UV/vis spectra. These models have been used to quantify changes in platelet rich plasma during storage. The overall goal of this work is to develop a simple, rapid quantitative assay for platelet quality that can be used prior to platelet transfusion to ensure the effectiveness of the treatment. As a result of this work, the optical properties for isolated platelets, platelet rich plasma and leukodepleted platelet rich plasma have been determined.

  13. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Guo, Jing; Tolstoy, Peter M; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-05-22

    Heteroconjugated hydrogen-bonded anions A···H···X(-) of phenols (AH) and carboxylic/inorganic acids (HX) dissolved in CD2Cl2 and CDF3/CDF2Cl have been studied by combined low-temperature UV-vis and (1)H/(13)C NMR spectroscopy (UVNMR). The systems constitute small molecular models of hydrogen-bonded cofactors in proteins such as the photoactive yellow protein (PYP). Thus, the phenols studied include the PYP cofactor 4-hydroxycinnamic acid methyl thioester, and the more acidic 4-nitrophenol and 2-chloro-4-nitrophenol which mimic electronically excited cofactor states. It is shown that the (13)C chemical shifts of the phenolic residues of A···H···X(-), referenced to the corresponding values of A···H···A(-), constitute excellent probes for the average proton positions. These shifts correlate with those of the H-bonded protons, as well as with the H/D isotope effects on the (13)C chemical shifts. A combined analysis of UV-vis and NMR data was employed to elucidate the proton transfer pathways in a qualitative way. Dual absorption bands of the phenolic moiety indicate a double-well situation for the shortest OHO hydrogen bonds studied. Surprisingly, when the solvent polarity is low the carboxylates are protonated whereas the proton shifts toward the phenolic oxygens when the polarity is increased. This finding indicates that because of stronger ion-dipole interactions small anions are stabilized at high solvent polarity and large anions exhibiting delocalized charges at low solvent polarities. It also explains the large acidity difference of phenols and carboxylic acids in water, and the observation that this difference is strongly reduced in the interior of proteins when both partners form mutual hydrogen bonds.

  14. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    PubMed

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ultraviolet-Visible (UV-Vis) Microspectroscopic System Designed for the In Situ Characterization of the Dehydrogenation Reaction Over Platinum Supported Catalytic Microchannel Reactor.

    PubMed

    Suarnaba, Emee Grace Tabares; Lee, Yi Fuan; Yamada, Hiroshi; Tagawa, Tomohiko

    2016-11-01

    An ultraviolet visible (UV-Vis) microspectroscopic system was designed for the in situ characterization of the activity of the silica supported platinum (Pt) catalyst toward the dehydrogenation of 1-methyl-1,4-cyclohexadiene carried out in a custom-designed catalytic microreactor cell. The in situ catalytic microreactor cell (ICMC) with inlet/outlet ports was prepared using quartz cover as the optical window to facilitate UV-Vis observation. A fabricated thermometric stage was adapted to the UV-Vis microspectrophotometer to control the reaction temperature inside the ICMC. The spectra were collected by focusing the UV-Vis beam on a 30 × 30 µm area at the center of ICMC. At 393 K, the sequential measurement of the spectra recorded during the reaction exhibited a broad absorption peak with maximum absorbance at 260 nm that is characteristic for gaseous toluene. This result indicates that the silica supported Pt catalyst is active towards the dehydrogenation of 1-methyl-1,4-cyclohexadiene at the given experimental conditions. The onset of coke formation was also detected based on the appearance of absorption bands at 300 nm. The UV-Vis microspectroscopic system developed can be used further in studying the mechanism of the dehydrogenation reaction. © The Author(s) 2016.

  16. Photodetachment and UV-Vis spectral properties of Cl2rad -·nHO clusters: Extrapolation to bulk

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2008-03-01

    Vertical detachment energy (VDE) and UV-Vis spectra of Cl2rad -·nHO clusters ( n = 1-11) are reported based on first principle electronic structure calculations. VDE of the hydrated clusters are calculated following second order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311++G(d,p) set of basis function. The excess electron in these hydrated clusters is mainly localized over the solute Cl atoms. A linear relationship is obtained for VDE vs. ( n + 2.6) -1/3 and bulk VDE of Cl2rad - aqueous solution is calculated as 10.61 eV at CCSD(T) level of theory. UV-Vis spectra of these hydrated clusters are calculated applying CI with single electron (CIS) excitation procedure. Simulated UV-Vis spectra of Cl2rad -·10HO cluster is noted to be in excellent agreement with the reported spectra of Cl2rad - (aq) system, λmax for Cl2rad -·11HO system is calculated to be red shifted though.

  17. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  18. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  19. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  20. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    NASA Astrophysics Data System (ADS)

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  1. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    PubMed

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  2. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    NASA Astrophysics Data System (ADS)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  3. In situ characterization of organo-modified and unmodified montmorillonite aqueous suspensions by UV-visible spectroscopy.

    PubMed

    Alin, Jonas; Rubino, Maria; Auras, Rafael

    2015-10-15

    UV-visible (UV-Vis) spectroscopy (Tyndall spectra) was applied and tested for its ability to measure organo-modified and unmodified montmorillonite (MMT) clays in aqueous suspensions. A full factorial design of experiments was used to study the influence of pH, NaCl and clay concentrations on the average particle size of the clay agglomerates. The methodology was evaluated by observing results that were consistent with previous research about the unmodified clay's behavior in aqueous suspensions. The results from this evaluation corresponded to accepted theories about the unmodified clay's behavior, indicating that the methodology is precise enough to distinguish the effects of the studied factors on these clay suspensions. The effect of clay concentration was related to the amount of ions per clay particle for the unmodified clay, but was not significant for the organo-modified MMT. The average particle size of the organo-modified MMT in suspension was significantly larger than that of the unmodified clay. Size of the organo-modified MMT agglomerates in suspension decreased in the presence of NaCl and at both high and low pH; this behavior was opposite to that of the unmodified clay. These results demonstrate that the UV-Vis methodology is well-suited for characterizing clay particle size in aqueous suspensions. The technique also is simple, rapid, and low-cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  5. Kyllinga brevifolia mediated greener silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Isa, Norain; Bakhari, Nor Aziyah; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-12-01

    Kyllinga brevifolia extract (KBE) was studied in this research as capping as well as reducing agent for the synthesis of greener plant mediated silver nanoparticles. This research was conducted in order to identify the compounds in the KBE that probable to work as reductant for the synthesis of Kyllinga brevifolia-mediated silver nanoparticles (AgNPs). Screening test such as Thin Layer Chromatography (TLC), Fourier Transform Infra-Red (FTIR), Carlo Erba Elemental analysis and Gas Chromatography-Mass Spectroscopy (GCMS) were used in identifying the natural compounds in KBE. The as-prepared AgNPs were characterized by UV-vis spectroscopy (UV-vis), Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). The TEM images showed that the as-synthesized silver have quasi-spherical particles are distributed uniformly with a narrow distribution from 5 nm to 40 nm. The XRD results demonstrated that the obtained AgNPs were face centre-cubic (FCC) structure. The catalytic activity of AgNPs on reduction of methylene blue (MB) using sodium borohydride (SB) was analyzed using UV-vis spectroscopy. This study showed that the efficacy of mediated AgNPs in catalysing the reduction of MB.

  6. Electrochemical synthesis of nanostructured Se-doped SnS: Effect of Se-dopant on surface characterizations

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Azizieh, Mahdi; Balak, Zohre

    2017-07-01

    SnS1-xSex nanostructures with different Se-dopant concentrations were deposited on fluorine doped tin oxide (FTO) substrate through cathodic electrodeposition technique. The pH, temperature, applied potential (E), and deposition time remained were 2.1, 60 °C, -1 V, and 30 min, respectively. SnS1-xSex nanostructures were characterized using X-ray diffraction (XRD), field emission scanning electron microcopy (FESEM), energy dispersive X-ray spectroscopy (EDX), room temperature photoluminescence (PL), and UV-vis spectroscopy. The XRD patterns revealed that the SnS1-xSex nanostructures were polycrystalline with orthorhombic structure. FESEM showed various kinds of morphologies in SnS1-xSex nanostructures due to Se-doping. PL and UV-vis spectroscopy were used to evaluate the optical properties of SnS1-xSex thin films. The PL spectra of SnS1-xSex nanostructures displayed four emission peaks, those are a blue, a green, an orange, and a red emission. UV-vis spectra showed that the optical band gap energy (Eg) of SnS1-xSex nanostructures varied between 1.22-1.65 eV, due to Se-doping.

  7. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem.

    PubMed

    Vaudour, Emmanuelle; Cerovic, Zoran G; Ebengo, Dav M; Latouche, Gwendal

    2018-04-10

    For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, N tot , CaCO₃, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca 2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K⁺, Na⁺, Mg 2+ , coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, N tot , CaCO₃, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field.

  8. Predicting Key Agronomic Soil Properties with UV-Vis Fluorescence Measurements Combined with Vis-NIR-SWIR Reflectance Spectroscopy: A Farm-Scale Study in a Mediterranean Viticultural Agroecosystem

    PubMed Central

    Vaudour, Emmanuelle; Cerovic, Zoran G.; Ebengo, Dav M.; Latouche, Gwendal

    2018-01-01

    For adequate crop and soil management, rapid and accurate techniques for monitoring soil properties are particularly important when a farmer starts up his activities and needs a diagnosis of his cultivated fields. This study aimed to evaluate the potential of fluorescence measured directly on 146 whole soil solid samples, for predicting key soil properties at the scale of a 6 ha Mediterranean wine estate with contrasting soils. UV-Vis fluorescence measurements were carried out in conjunction with reflectance measurements in the Vis-NIR-SWIR range. Combining PLSR predictions from Vis-NIR-SWIR reflectance spectra and from a set of fluorescence signals enabled us to improve the power of prediction of a number of key agronomic soil properties including SOC, Ntot, CaCO3, iron, fine particle-sizes (clay, fine silt, fine sand), CEC, pH and exchangeable Ca2+ with cross-validation RPD ≥ 2 and R² ≥ 0.75, while exchangeable K+, Na+, Mg2+, coarse silt and coarse sand contents were fairly predicted (1.42 ≤ RPD < 2 and 0.54 ≤ R² < 0.75). Predictions of SOC, Ntot, CaCO3, iron contents, and pH were still good (RPD ≥ 1.8, R² ≥ 0.68) when using a single fluorescence signal or index such as SFR_R or FERARI, highlighting the unexpected importance of red excitations and indices derived from plant studies. The predictive ability of single fluorescence indices or original signals was very significant for topsoil: this is very important for a farmer who wishes to update information on soil nutrient for the purpose of fertility diagnosis and particularly nitrogen fertilization. These results open encouraging perspectives for using miniaturized fluorescence devices enabling red excitation coupled with red or far-red fluorescence emissions directly in the field. PMID:29642640

  9. Study on fast measurement of sugar content of yogurt using Vis/NIR spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    In order to measuring the sugar content of yogurt rapidly, a fast measurement of sugar content of yogurt using Vis/NIR-spectroscopy techniques was established. 25 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The sugar content of yogurt on positions scanned by spectrum were measured by a sugar content meter. The mathematical model between sugar content and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS). The correlation coefficient of sugar content based on PLS model is more than 0.894, and standard error of calibration (SEC) is 0.356, standard error of prediction (SEP) is 0.389. Through predicting the sugar content quantitatively of 35 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0.934. The results show the good to excellent prediction performance. The Vis/NIR spectroscopy technique had significantly greater accuracy for determining the sugar content. It was concluded that the Vis/NIRS measurement technique seems reliable to assess the fast measurement of sugar content of yogurt, and a new method for the measurement of sugar content of yogurt was established.

  10. A multifrequency virtual spectrometer for complex bio-organic systems: vibronic and environmental effects on the UV/Vis spectrum of chlorophyll a.

    PubMed

    Barone, Vincenzo; Biczysko, Malgorzata; Borkowska-Panek, Monika; Bloino, Julien

    2014-10-20

    The subtle interplay of several different effects means that the interpretation and analysis of experimental spectra in terms of structural and dynamic characteristics is a challenging task. In this context, theoretical studies can be helpful, and as such, computational spectroscopy is rapidly evolving from a highly specialized research field toward a versatile and widespread tool. However, in the case of electronic spectra (e.g. UV/Vis, circular dichroism, photoelectron, and X-ray spectra), the most commonly used methods still rely on the computation of vertical excitation energies, which are further convoluted to simulate line shapes. Such treatment completely neglects the influence of nuclear motions, despite the well-recognized notion that a proper account of vibronic effects is often mandatory to correctly interpret experimental findings. Development and validation of improved models rooted into density functional theory (DFT) and its time-dependent extension (TD-DFT) is of course instrumental for the optimal balance between reliability and favorable scaling with the number of electrons. However, the implementation of easy-to-use and effective procedures to simulate vibrationally resolved electronic spectra, and their availability to a wide community of users, is at least equally important for reliable simulations of spectral line shapes for compounds of biological and technological interest. Here, such an approach has been applied to the study of the UV/Vis spectra of chlorophyll a. The results show that properly tailored approaches are feasible for state-of-the-art computational spectroscopy studies, and allow, with affordable computational resources, vibrational and environmental effects on the spectral line shapes to be taken into account for large systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    PubMed

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synthesis of ZnO nanopencils using wet chemical method and its investigation as LPG sensor

    NASA Astrophysics Data System (ADS)

    Shimpi, Navinchandra G.; Jain, Shilpa; Karmakar, Narayan; Shah, Akshara; Kothari, D. C.; Mishra, Satyendra

    2016-12-01

    ZnO nanopencils (NPCs) were prepared by a novel wet chemical process, using triethanolamine (TEA) as a mild base, which is relatively simple and cost effective method as compared to hydrothermal method. ZnO NPCs were characterized using powder X-ray diffraction (XRD), Fourier Transform Infra-Red (FTIR) spectroscopy in mid-IR and far-IR regions, X-ray Photoelectron Spectroscopy (XPS), UV-vis (UV-vis) absorption spectroscopy, room temperature Photoluminescence (PL) spectroscopy and Field Emission Scanning Electron Microscopy (FESEM). ZnO NPCs obtained, were highly pure, uniform and monodispersed.XRD pattern indicated hexagonal unit cell structure with preferred orientation along the c-axis. Sensing behaviour of ZnO NPCs was studied towards Liquefied Petroleum Gas (LPG) at different operating temperatures. The study shows that ZnO NPCs were most sensitive and promising candidate for detection of LPG at 250 °C with gas sensitivity > 60%. The high response towards LPG is due to high surface area of ZnO NPCs and their parallel alignment.

  13. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    PubMed

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  14. NIR absorbing diferrocene-containing meso-cyano-BODIPY with a UV-Vis-NIR spectrum remarkably close to that of magnesium tetracyanotetraferrocenyltetraazaporphyrin.

    PubMed

    Didukh, Natalia O; Zatsikha, Yuriy V; Rohde, Gregory T; Blesener, Tanner S; Yakubovskyi, Viktor P; Kovtun, Yuriy P; Nemykin, Victor N

    2016-10-04

    Diferrocene-containing meso-cyano-BODIPY (4) was prepared by the direct cyanation/oxidation reaction of symmetric BODIPY 1 followed by Knoevenagel condensation with ferrocenealdehyde. Ferrocene-containing BODIPY 4 was characterized by a variety of spectroscopic, electrochemical, and theoretical methods and its UV-Vis-NIR spectrum has a striking similarity with a UV-Vis-NIR spectrum of the previously reported magnesium 2(3),7(8),12(13),17(18)-tetracyano-3(2),8(7),13(12),18(17)-tetraferrocenyl-5,10,15,20-tetraazaporphyrin.

  15. UV-VIS backscattering measurements on atmospheric particles mixture using polarization lidar coupled with numerical simulations and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Francis, Mirvatte; Anselmo, Christophe; Rairoux, Patrick

    2015-04-01

    As underlined by the latest IPCC report [1], tropospheric aerosols are nowadays recognized as one of the main uncertainties affecting the Earth's climate and human health. This issue is not straightforward due to the complexity of these nanoparticles, which present a wide range of sizes, shapes and chemical composition, which vary as a function of altitude, especially in the troposphere, where strong temperature variations are encountered under different water vapour content (from 10 to 100 % relative humidity). During this oral presentation, I will first present the scientific context of this research. Then, the UV-VIS polarimeter instrument and the subsequent calibration procedure [2] will be presented, allowing quantitative evaluation of particles backscattering coefficients in the atmosphere. In this way, up to three-component particles external mixtures can be partitioned into their spherical and non-spherical components, by coupling UV-VIS depolarization lidar measurements with numerical simulations of backscattering properties specific to non-spherical particles, such as desert dust or sea-salt particles [3], by applying the T-matrix numerical code [4]. This combined methodology is new, as opposed to the traditional approach using the lidar and T-matrix methodologies separately. In complement, recent laboratory findings [5] and field applications [6] will be presented, enhancing the sensitivity of the UV-VIS polarimeter. References [1] IPCC report, Intergovernmental Panel on Climate Change, IPCC, (2013). [2] G. David, A. Miffre, B. Thomas, and P. Rairoux: "Sensitive and accurate dual-wavelength UV-VIS polarization detector for optical remote sensing of tropospheric aerosols," Appl. Phys. B 108, 197-216 (2012). [3] G. David, B. Thomas, T. Nousiainen, A. Miffre and P. Rairoux: "Retrieving simulated volcanic, desert dust, and sea-salt particle properties from two / three-component particle mixtures using UV-VIS polarization Lidar and T-matrix," Atmos. Chem Phys

  16. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    PubMed

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  17. PVP capped CdS nanoparticles for UV-LED applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram, H.; Selvakumar, D.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  18. A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and Vis radiations.

    PubMed

    Doná, Giovanna; Dagostin, João Luiz Andreoti; Takashina, Thiago Atsushi; de Castilhos, Fernanda; Igarashi-Mafra, Luciana

    2018-05-01

    Due to the widespread use of methylparaben (MEP) and its high chemical stability, it can be found in wastewater treatment plants and can act as an endocrine disrupting compound. In this study, the photocatalytic degradation and mineralization of MEP solutions were evaluated under UV-A, UV-C and Vis radiations in the presence of the photocatalyst TiO 2 . In this sense, the effects of the catalyst load, pH and MEP initial concentration were studied. Remarkably higher reaction rates and total photodegradation were achieved in systems assisted by UV-C radiation. The complete degradation was achieved after 60 min of reaction using the MEP concentration of 30 mg L -1 at pH 9 and 500 mg L -1 TiO 2 . The experimental data apparently followed a Langmuir-Hinshelwood kinetic model, which could predict 88-98% of the reaction behavior. For the best photodegradation condition, the model predicted an apparent reaction rate constant (k app ) equal to 0.0505 min -1 and an initial reaction rate of 1.5641 mg (L min) -1 . Mineralization analyses showed high removal for MEP and derived compounds from the initial solution when using UV-C after 90 min of reaction. The lower toxicity was also confirmed by in vivo tests using MEP solutions previously treated by photocatalysis.

  19. Synthesis of ZnSe and ZnSe:Cu quantum dots by a room temperature photochemical (UV-assisted) approach using Na2 SeO3 as Se source and investigating optical properties.

    PubMed

    Khafajeh, R; Molaei, M; Karimipour, M

    2017-06-01

    In this study, ZnSe and ZnSe:Cu quantum dots (QDs) were synthesized using Na 2 SeO 3 as the Se source by a rapid and room temperature photochemical (UV-assisted) approach. Thioglycolic acid (TGA) was employed as the capping agent and UV illumination activated the chemical reactions. Synthesized QDs were successfully characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and UV-visible (UV-vis) spectroscopy, Fourier transform-infrared (FT-IR), and energy dispersive X-ray spectroscopy (EDX). XRD analysis demonstrated the cubic zinc blend phase QDs. TEM images indicated that round-shaped particles were formed, most of which had a diameter of about 4 nm. The band gap of the ZnSe QDs was higher than that for ZnSe in bulk. PL spectra indicated an emission with three peaks related to the excitonic, surface trap states and deep level (DL) states. The band gap and QD emission were tunable only by UV illumination time during synthesis. ZnSe:Cu showed green emission due to transition of electrons from the Conduction band (CB) or surface trap states to the 2 T 2 acceptor levels of Cu 2 + . The emission was increased by increasing the Cu 2 + ion concentration, such that the optimal value of PL intensity was obtained for the nominal mole ratio of Cu:Zn 1.5%. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Submersible UV-Vis Spectroscopy for Quantifying Streamwater Organic Carbon Dynamics: Implementation and Challenges before and after Forest Harvest in a Headwater Stream

    PubMed Central

    Jollymore, Ashlee; Johnson, Mark S.; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro∷lyzer model, s∷can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss. PMID:22666002

  1. Submersible UV-Vis spectroscopy for quantifying streamwater organic carbon dynamics: implementation and challenges before and after forest harvest in a headwater stream.

    PubMed

    Jollymore, Ashlee; Johnson, Mark S; Hawthorne, Iain

    2012-01-01

    Organic material, including total and dissolved organic carbon (DOC), is ubiquitous within aquatic ecosystems, playing a variety of important and diverse biogeochemical and ecological roles. Determining how land-use changes affect DOC concentrations and bioavailability within aquatic ecosystems is an important means of evaluating the effects on ecological productivity and biogeochemical cycling. This paper presents a methodology case study looking at the deployment of a submersible UV-Vis absorbance spectrophotometer (UV-Vis spectro::lyzer model, s::can, Vienna, Austria) to determine stream organic carbon dynamics within a headwater catchment located near Campbell River (British Columbia, Canada). Field-based absorbance measurements of DOC were made before and after forest harvest, highlighting the advantages of high temporal resolution compared to traditional grab sampling and laboratory measurements. Details of remote deployment are described. High-frequency DOC data is explored by resampling the 30 min time series with a range of resampling time intervals (from daily to weekly time steps). DOC export was calculated for three months from the post-harvest data and resampled time series, showing that sampling frequency has a profound effect on total DOC export. DOC exports derived from weekly measurements were found to underestimate export by as much as 30% compared to DOC export calculated from high-frequency data. Additionally, the importance of the ability to remotely monitor the system through a recently deployed wireless connection is emphasized by examining causes of prior data losses, and how such losses may be prevented through the ability to react when environmental or power disturbances cause system interruption and data loss.

  2. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy.

    PubMed

    Depciuch, J; Sowa-Kućma, M; Nowak, G; Szewczyk, B; Doboszewska, U; Parlinska-Wojtan, M

    2017-05-01

    Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows

  3. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    NASA Astrophysics Data System (ADS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  4. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

    PubMed

    Pocoví-Martínez, Salvador; Parreño-Romero, Miriam; Agouram, Said; Pérez-Prieto, Julia

    2011-05-03

    Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nm < λ < 400 nm and ca. 240 nm < λ < 280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation, while the NPs were photostable under UV-A lamp illumination. Remarkably, laser excitation at 266 nm induced a fast (minutes time-scale) increase in the size of the NPs, producing huge spherical nanocrystals, while lamp-irradiation at UV-C wavelengths brought about nanonetworks of partially fused NPs with a larger diameter than the native NPs.

  5. Characterization of hydrothermally synthesized SnS nanoparticles for solar cell application

    NASA Astrophysics Data System (ADS)

    Rajwar, Birendra Kumar; Sharma, Shailendra Kumar

    2018-05-01

    In the present study, SnS nanoparticles were synthesized by simple hydrothermal method using stannous chloride and thiourea as tin (Sn) and sulfur (S) precursor respectively. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy and UV-Vis Spectroscopy techniques. XRD pattern reveals that as-prepared nanoparticles exhibit orthorhombic structure. Average particles size was calculated using Scherrer's formula and found to be 23 nm. FESEM image shows that the as-prepared nanoparticles are in plate like structure. Direct optical band gap (Eg) of as-synthesized nanoparticles was calculated through UV-Vis Spectroscopy measurement and found to be 1.34 eV, which is near to optimum need for photovoltaic solar energy conversion (1.5 eV). Thus this SnS, narrowband gap semiconductor material can be applied as an alternative absorber material for solar cell application.

  6. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex

    PubMed Central

    Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail

    2013-01-01

    [NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867

  7. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2017-09-01

    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  8. Unexpected solvent effects on the UV/Vis absorption spectra of o-cresol in toluene and benzene: in contrast with non-aromatic solvents

    PubMed Central

    Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng

    2018-01-01

    Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o-cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o-cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o-cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260–280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o-cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o-cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively. PMID:29657794

  9. Unexpected solvent effects on the UV/Vis absorption spectra of o-cresol in toluene and benzene: in contrast with non-aromatic solvents.

    PubMed

    Zheng, Dong; Yuan, Xiang-Ai; Ma, Haibo; Li, Xiaoxiong; Wang, Xizhang; Liu, Ziteng; Ma, Jing

    2018-03-01

    Cresol is a prototype molecule in understanding intermolecular interactions in material and biological systems, because it offers different binding sites with various solvents and protonation states under different pH values. It is found that the UV/Vis absorption spectra of o -cresol in aromatic solvents (benzene, toluene) are characterized by a sharp peak, unlike the broad double-peaks in 11 non-aromatic solvents. Both molecular dynamics simulations and electronic structure calculations revealed the formation of intermolecular π-complexation between o -cresol and aromatic solvents. The thermal movements of solvent and solute molecules render the conformations of o -cresol changing between trans and cis isomers. The π-interaction makes the cis configuration a dominant isomer, hence leading to the single keen-edged UV/Vis absorption peak at approximately 283 nm. The free conformation changes between trans and cis in aqueous solution rationalize the broader absorption peaks in the range of 260-280 nm. The pH dependence of the UV/Vis absorption spectra in aqueous solutions is also rationalized by different protonation states of o -cresol. The explicit solvent model with long-ranged interactions is vital to describe the effects of π-complexation and electrostatic interaction on the UV/Vis absorption spectra of o -cresol in toluene and alkaline aqueous (pH > 10.3) solutions, respectively.

  10. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  11. Teaching UV-Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer

    ERIC Educational Resources Information Center

    Grasse, Elise K.; Torcasio, Morgan H.; Smith, Adam W.

    2016-01-01

    Visible absorbance spectroscopy is a widely used tool in chemical, biochemical, and medical laboratories. The theory and methods of absorbance spectroscopy are typically introduced in upper division undergraduate chemistry courses, but could be introduced earlier with the right curriculum and instrumentation. A major challenge in teaching…

  12. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    NASA Astrophysics Data System (ADS)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  13. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    PubMed

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Study of Interaction between Cadmium and Bovine Serum Albumin with UV-Vis Spectrocopy Approach

    NASA Astrophysics Data System (ADS)

    Suhartono, E.; Thalib, I.; Aflanie, I.; Noor, Z.; Idroes, R.

    2018-05-01

    This study aims to explain the interaction of cadmium (Cd) with serum albumin through visible light (UV-Vis) spectroscopy approach. This study is an in vitro experimental study using Cd with several concentrations and Bovine Serum Albumin (BSA). Each solution was then incubated for 10 min at 37°C, and measured the absorbance at 220-300 nm. The absorbance data is then presented in graphical form. From the graph, a linear equation will appear to calculate the value of metal binding constants (K) to proteins. Also, in this present study we analsyed the ratio between A220 and A220 to identify changes in the protein region especially tyrosine and peptide bonds. The results show that the addition of Cd in different concentrations could increase the absorbance with a constant value (K) = 1.634. Based on the result, it seems the addition of Cd in different concentrations will lead the reaction to form BSA-Cd. Also, the result shows that the ration of A220/A280 were decreased with the increasing of Cd concentration. In conclusion, the addition of Cd could interact and changes the protein structure in BSA.

  15. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    PubMed

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  18. Structural, optical and photoelectric properties of sprayed CdS thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.

    2018-05-01

    In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.

  19. Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV-vis irradiation: Efficacy, kinetics and mechanism.

    PubMed

    Ding, Jiafeng; Long, Gaoyuan; Luo, Yang; Sun, Runze; Chen, Mengxia; Li, Yajun; Zhou, Yanfang; Xu, Xinhua; Zhao, Weirong

    2018-05-09

    Polychlorinated dibenzo-p-dioxins (PCDDs), as a group of notorious anthropogenic environmental toxicants, are arguably ubiquitous in nature. In this study, we investigated the photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin (2-CDD) over Pd/g-C 3 N 4 catalysts under UV-vis irradiation. The g-C 3 N 4 and a series of Pd/g-C 3 N 4 catalysts were prepared by thermal polymerization and mechanical mixing-illumination method and characterized by XRD, TEM, BET, SEM and UV-vis DRS analyses. Among all the samples, the Pd/g-C 3 N 4 (5 wt%) yielded the optimal dechlorination activity with a total 2-CDD conversion of 54% within 4 h, and 76% of those converted 2-CDD were evolved to dibenzo-p-dioxin (DD). The kinetics of dechlorination could be described as pseudo-first-order decay model (R 2  > 0.84). Corresponding rate constants (k) increased from 0.052 to 0.17 h -1 with Pd contents up to 5 wt% and decreased to 0.13 h -1 with a 10 wt% of Pd. The enhanced activities originated from the surface plasmonic resonance (SPR) effect of Pd nanoparticles and the formation of Schottky barrier between Pd and g-C 3 N 4 , which extend the spectrum responsive range and suppress the charge recombination of g-C 3 N 4 . This is the first report on the photocatalytic reductive removal of PCDDs and may provide a new approach for PCDDs pollution control. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Experimental, computational and chemometrics studies of BSA-vitamin B6 interaction by UV-Vis, FT-IR, fluorescence spectroscopy, molecular dynamics simulation and hard-soft modeling methods.

    PubMed

    Manouchehri, Firouzeh; Izadmanesh, Yahya; Aghaee, Elham; Ghasemi, Jahan B

    2016-10-01

    The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV-Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster's non-radiative energy transfer theory and were equal to 41.1% and 2.11nm. The collected UV-Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand

  1. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  2. Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation.

    PubMed

    Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine

    2014-02-01

    Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF<2, 12%: PIF 2-5, 66%: PIF>5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Estimation of water quality by UV/Vis spectrometry in the framework of treated wastewater reuse.

    PubMed

    Carré, Erwan; Pérot, Jean; Jauzein, Vincent; Lin, Liming; Lopez-Ferber, Miguel

    2017-07-01

    The aim of this study is to investigate the potential of ultraviolet/visible (UV/Vis) spectrometry as a complementary method for routine monitoring of reclaimed water production. Robustness of the models and compliance of their sensitivity with current quality limits are investigated. The following indicators are studied: total suspended solids (TSS), turbidity, chemical oxygen demand (COD) and nitrate. Partial least squares regression (PLSR) is used to find linear correlations between absorbances and indicators of interest. Artificial samples are made by simulating a sludge leak on the wastewater treatment plant and added to the original dataset, then divided into calibration and prediction datasets. The models are built on the calibration set, and then tested on the prediction set. The best models are developed with: PLSR for COD (R pred 2 = 0.80), TSS (R pred 2 = 0.86) and turbidity (R pred 2 = 0.96), and with a simple linear regression from absorbance at 208 nm (R pred 2 = 0.95) for nitrate concentration. The input of artificial data significantly enhances the robustness of the models. The sensitivity of the UV/Vis spectrometry monitoring system developed is compatible with quality requirements of reclaimed water production processes.

  4. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid

    NASA Astrophysics Data System (ADS)

    Maity, Anupam; Panda, Sovan Kumar

    2018-04-01

    Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.

  5. Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye.

    PubMed

    Ullah, Irfan; Haider, Ali; Khalid, Nasir; Ali, Saqib; Ahmed, Sajjad; Khan, Yaqoob; Ahmed, Nisar; Zubair, Muhammad

    2018-06-13

    Tungsten-doped TiO 2 (W@TiO 2 ) nanoparticles, with different percentages of atomic tungsten dopant levels (range of 0 to 6 mol%) have been synthesized by the sol-gel method and characterized by UV-Visible spectroscopy, XRD, SEM, EDX, ICP-OES and XPS analysis. By means of UV-Vis spectroscopy, it has been observed that with 6 mol% tungsten doping the wavelength range of excitation of TiO 2 has extended to the visible portion of spectrum. Therefore, we evaluated the photocatalytic activity of W@TiO 2 catalysts for the degradation of Congo red dye under varying experimental parameters such as dopant concentration, catalyst dosage, dye concentrations and pH. Moreover, 6 mol% W@TiO 2 catalyst was deposited on a glass substrate to form thin film using spin coating technique in order to make the photocatalyst effortlessly reusable with approximately same efficiency. The results compared with standard titania, Degussa P25 both in UV- and visible light, suggest that 6 mol% W@TiO 2 can be a cost-effective choice for visible light induced photocatalytic degradation of Congo red dye. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Interaction between morin and AOT reversed micelles--studies with UV-vis at 25 °C.

    PubMed

    Bhattarai, Ajaya; Wilczura-Wachnik, H

    2014-01-30

    The precise measurements of morin absorbance in presence of surfactant/solvent/water systems at 25 °C by UV-vis technique are reported. The surfactant used in presented study was sodium bis(2-ethylhexyl) sulfosuccinate called Aerosol-OT or AOT. The solvents selected were: ethanol, ethylene glycol, and n-decanol. The concentrations of AOT were varied between 0.001 and 0.4 mol/kg. Morin concentration in quvette during UV-vis registration was not equals in all solvent because of its different solubility and absorption intensity depending on the solvent. Water concentration in the studied systems was defined by R parameter according to relation: R=[H2O]/[AOT] and was equal 0, 30 and 40 in ethanol; 0, 10, 20 and 30 in ethylene glycol and 0, 10, 20, 30, and 40 in n-decanol. In presented work a Nernstian distribution of morin between the organic and micellar phases was assumed. The intensity of morin absorbance as a function of AOT concentration was analyzed. Using Non-linear Regression Procedure (NLREG) morin binding constant (K' [mol/kg]), and morin distribution constant (K) between organic phase and AOT micellar phase have been calculated. The experimental results have shown a significant influence of solvent, surfactant and water presence on morin UV-vis spectrum. Calculated data pointed out on different transfer of morin molecules from the organic to micellar phase depending on the solvent. Moreover, results of calculations indicate on competition between morin and water molecules interacting with AOT polar heads. Morin molecules privileged location in AOT reversed micelles strongly depends on the solvent. In case of systems with ethylene glycol as solvent is possible morin molecules location in polar cores of AOT reversed micelles as results of strong interaction between AOT polar heads and morin hydroxyl groups, whereas in case of ethanol and n-decanol morin molecules are located in palisade layer. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of fungal mycelia on the HPLC-UV and UV-vis spectrophotometric assessment of mycelium-bound epoxide hydrolase using glycidyl phenyl ether.

    PubMed

    Dolcet, Marta M; Torres, Mercè; Canela, Ramon

    2016-06-25

    The use of mycelia as biocatalysts has technical and economic advantages. However, there are several difficulties in obtaining accurate results in mycelium-catalysed reactions. Firstly, sample extraction, indispensable because of the presence of mycelia, can bring into the extract components with a similar structure to that of the analyte of interest; secondly, mycelia can influence the recovery of the analyte. We prepared calibration standards of 3-phenoxy-1,2-propanediol (PPD) in the pure solvent and in the presence of mycelia (spiked before or after extraction) from five fungi (Aspergillus niger, Aspergillus tubingensis, Penicillium aurantiogriseum, Penicillium sp. and Aspergillus terreus). The quantification of PPD was carried out by HPLC-UV and UV-vis spectrophotometry. The manuscript shows that the last method is as accurate as the HPLC method. However, the colorimetric method led to a higher data throughput, which allowed the study of more samples in a shorter time. Matrix effects were evaluated visually from the plotted calibration data and statistically by simultaneously comparing the intercept and slope of calibration curves performed with solvent, post-extraction spiked standards and pre-extraction spiked standards. Significant differences were found between the post- and pre-extraction spiked matrix-matched functions. Pre-extraction spiked matrix-matched functions based on A. tubingensis mycelia, selected as the reference, were validated and used to compensate for low recoveries. These validated functions were successfully applied to the quantification of PPD achieved during the hydrolysis of glycidyl phenyl ether by mycelium-bound epoxide hydrolases and equivalent hydrolysis yields were determined by HPLC-UV and UV-vis spectrophotometry. This study may serve as starting point to implement matrix effects evaluation when mycelium-bound epoxide hydrolases are studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Influence of UV irradiation on hydroxypropyl methylcellulose polymer films

    NASA Astrophysics Data System (ADS)

    Rao, B. Lakshmeesha; Shivananda, C. S.; Shetty, G. Rajesha; Harish, K. V.; Madhukumar, R.; Sangappa, Y.

    2018-05-01

    Hydroxypropyl Methylcellulose (HPMC) biopolymer films were prepared by solution casting technique and effects of UV irradiation on the structural and optical properties of the polymer films were analysed using X-ray Diffraction and UV-Visible studies. From XRD data, the microcrystalline parameters (crystallite size (LXRD) and crystallinity (Xc)) were calculated and found to be decreasing with UV irradiation due to photo-degradation process. From the UV-Vis absorption data, the optical bandgap (Eg), average numbers of carbon atoms per conjugation length (N) of the polymer chain and the refractive index (n) at 550 nm (average wavelength of visible light) of virgin and UV irradiated HPMC films were calculated. With increase in UV exposure time, the optical bandgap energy (Eg) increases, and hence average number of carbon atoms per conjugation length (N) decreases, supports the photo-degradation of HPMC polymer films. The refractive index of the HPMC films decreases after UV irradiation, due to photo-degradation induced chain rearrangements.

  9. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  10. Influence of Iron Doping on Structural, Optical and Magnetic Properties of TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zahid, R.; Manzoor, M.; Rafiq, A.; Ikram, M.; Nafees, M.; Butt, A. R.; Hussain, S. G.; Ali, S.

    2018-05-01

    In this study, various concentrations of Fe doped TiO2 nanoparticles have been successfully synthesized using the sol-gel method. A variety of characterization techniques as ultra-violet visible (UV-Vis) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometry (VSM) and field emission scanning electron microscopy (FESEM) were employed to analyze the prepared nanopowders. XRD measurement confirmed the substitution of Fe ion without disturbing the tetragonal crystal system of TiO2. The crystallite size was found to decrease and lattice strain increases upon doping estimated by Williamson Hall plot. Furthermore, the average grain size calculated by FESEM found was between 10 and 30 nm for pure and doped TiO2. UV-Vis spectroscopy showed an increase in absorption accompanied red shift and increase in band gap energies from 3.36 to 3.62 eV with the addition of Fe. The FTIR spectroscopy was employed to confirm the presence of functional groups in the fabricated nanopowders. Upon mixing the saturation magnetization (Ms) varying from (2.12 to 1.51)10-2 emu/g was observed.

  11. Synthesis, structural and optical properties of PVP coated transition metal doped ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, N. V.; Shaikh, I. A.; Rawal, K. G.; Shah, D. V.

    2018-05-01

    The room temperature photoluminescence (PL) of transition metal doped ZnS nanoparticles is investigated in the present study. The PVP coated ZnS nanoparticles doped with transition metals are synthesized by facile wet chemical co-precipitation method with the concentration of impurity 1%. The UV-Vis absorbance spectra have a peak at 324nm which shifts slightly to 321nm upon introduction of the impurity. The incorporation of the transition metal as dopant is confirmed by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The particle size and the morphology are characterized by scanning electron microscopy (SEM), XRD and UV-Vis spectroscopy. The average size of synthesized nanoparticles is about 2.6nm. The room temperature photoluminescence (PL) of undoped and doped ZnS nanoparticles show a strong and sharp peak at 782nm and 781.6nm respectively. The intensity of the PL changes with the type of doping having maximum for manganese (Mn).

  12. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    PubMed

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  13. A novel method for the elaboration of hydroxyapatite with high purity by sol-gel using the albumin and comparison with the classical methods

    NASA Astrophysics Data System (ADS)

    Mohammed, Eddya; Bouazza, Tbib; Khalil, El-Hami

    2018-02-01

    In this paper, we report the first synthesis of hydroxyapatite (Hap) by sol-gel using the albumin (egg white) compared with the four classical elaboration methods such as co-precipitation, solid state, and solid-liquid samples of hydroxyapatite. We use a reference sample of hydroxyapatite bought from Fluka Chemika company (Lot and Filling code 385330/1 14599). All samples are characterized by X-ray diffraction (XRD), Uv-visible spectroscopy (Uv-Vis), and Fourier transforms infrared spectroscopy (FT-IR). The XRD study showed the existence of a Hexagonal phase for all our samples prepared in our laboratory and an orthorhombic phase for the Fulka Chemika sample of Hap (Lot and Filling code 385330/1 14599). The study by Uv-visible spectroscopy was performed to determine and compare the optical gap and the disorder of each sample of Hap. The FT-IR spectroscopy demonstrated that all our Hap samples had a similar mode of vibration of the chemical bonds (OH-) and (PO4)3-.

  14. In situ, rapid, and temporally resolved measurements of cellulase adsorption onto lignocellulosic substrates by UV-vis spectrophotometry

    Treesearch

    Hao Liu; J. Y. Zhu; X. S. Chai

    2011-01-01

    This study demonstrated two in situ UV-vis spectrophotometric methods for rapid and temporally resolved measurements of cellulase adsorption onto cellulosic and lignocellulosic substrates during enzymatic hydrolysis. The cellulase protein absorption peak at 280 nm was used for quantification. The spectral interferences from light scattering by small fibers (fines) and...

  15. To study the effect of doping concentration of silver on structural and optical properties of cadmium oxide (CdO) nanostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajesh, E-mail: rkkaushik06@gmail.com; Dept. of Physics, Vaish College of Engineering, Rohtak-124001, Haryana; Sharma, Ashwani

    The present work deals with study of structural and optical properties of Silver (Ag) doped Cadmium oxide (CdO) nanostructured synthesized by Chemical Co-precipitation Techniques followed by calcinations at small temperature. The doping concentrations were changing from 0.1 to 10 at% respectively. Structural analysis study of these calcined materials is carried out by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of calcined samples were investigating by Fourier transformation infrared (FTIR)spectroscopy, UV-Visible Spectroscopy (UV-Vis). The structural properties analysis results revels that crystallite size are in the range of nano region and TEM results aremore » quite in accordance with XRD results.« less

  16. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.

    PubMed

    Attia, Amr A A; Cioloboc, Daniela; Lupan, Alexandru; Silaghi-Dumitrescu, Radu

    2016-12-01

    The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass

    NASA Astrophysics Data System (ADS)

    Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian

    2016-12-01

    A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.

  18. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  19. Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices

    NASA Astrophysics Data System (ADS)

    Thakur, Shashi; Gathania, Arvind K.

    2015-10-01

    YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.

  20. Characterization of cytochrome c as marker for retinal cell degeneration by uv/vis spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Schweizer, Julia; Steiner, Gerald; Knels, Lilla; Funk, Richard H. W.; Thalheim, Silko; Koch, Edmund

    2011-07-01

    Retinal diseases like age-related macular degeneration have become an important cause of visual loss depending on increasing life expectancy and lifestyle habits. Due to the fact that no satisfying treatment exists, early diagnosis and prevention are the only possibilities to stop the degeneration. The protein cytochrome c (cyt c) is a suitable marker for degeneration processes and apoptosis because it is a part of the respiratory chain and involved in the apoptotic pathway. The determination of the local distribution and oxidative state of cyt c in living cells allows the characterization of cell degeneration processes. Since cyt c exhibits characteristic absorption bands between 400 and 650 nm wavelength, uv/vis in situ spectroscopic imaging was used for its characterization in retinal ganglion cells. The large amount of data, consisting of spatial and spectral information, was processed by multivariate data analysis. The challenge consists in the identification of the molecular information of cyt c. Baseline correction, principle component analysis (PCA) and cluster analysis (CA) were performed in order to identify cyt c within the spectral dataset. The combination of PCA and CA reveals cyt c and its oxidative state. The results demonstrate that uv/vis spectroscopic imaging in conjunction with sophisticated multivariate methods is a suitable tool to characterize cyt c under in situ conditions.

  1. Facile preparation of N-doped TiO2 at ambient temperature and pressure under UV light with 4-nitrophenol as the nitrogen source and its photocatalytic activities.

    PubMed

    Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick

    2016-08-04

    To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).

  2. Coherent Spectroscopy of Ultra-Cold Mercury for the UV to VUV

    DTIC Science & Technology

    2015-11-20

    AFRL-AFOSR-VA-TR-2015-0388 COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV R Jason Jones ARIZONA UNIV BOARD OF REGENTS TUCSON Final...TITLE AND SUBTITLE COHERENT SPECTROSCOPY OF ULTRA-COLD MERCURY FOR THE UV TO VUV 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0563 5c. PROGRAM...NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A 13. SUPPLEMENTARY NOTES 14. ABSTRACT Narrow UV transitions in atomic Hg can be utilized

  3. Gas in Protoplanetary and Debris Disks: Insights from UV Spectroscopy

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Over the last two decades, observations of protoplanetary and debris disks have played an important role in the new field of extrasolar planetary studies. Many are familiar with the extensive work on the cold circumstellar dust present in these disks done using infrared and sub-millimeter photometry and spectroscopy. However. UV spectroscopy has made some unique contributions by probing the elusive but vital gas component in protoplanetary and debris disks. In this talk, I will outline our picture of the evolution of protoplanetary disks and discuss the importance of the gas component. New insights obtained from UV spectroscopy will be highlighted, as well as some new puzzles. Finally, I will touch on upcoming studies of gas in protoplanetary and debris disks, some at UV wavelengths, some at far-IR and sub-mm wavelengths.

  4. Facile and fast synthesis of SnS2 nanoparticles by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Johny, J.; Sepulveda-Guzman, S.; Krishnan, B.; Avellaneda, D.; Shaji, S.

    2018-03-01

    Nanoparticles (NPs) of tin disulfide (SnS2) were synthesized using pulsed laser ablation in liquid (PLAL) technique. Effects of different liquid media and ablation wavelengths on the morphology and optical properties of the nanoparticles were studied. Nd: YAG laser wavelengths of 532 nm and 1064 nm (frequency 10 Hz and pulse width 10 ns) were used to irradiate SnS2 target immersed in liquid for the synthesis of SnS2 nanoparticles. Here PLAL was a fast synthesis technique, the ablation was only for 30 s. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy were used to characterize the SnS2 NPs. TEM images showed that the liquid medium and laser wavelength influence the morphology of the NPs. SAED patterns and high resolution TEM (HRTEM) images confirmed the crystallinity of the particles. XRD and XPS analyses confirmed that SnS2 NPs were having exact crystalline structure and chemical states as that of the target. Raman analysis also supported the results obtained by XRD and XPS. Optical band gaps of the nanocolloids evaluated from their UV-vis absorption spectra were 2.4-3.05 eV. SnS2 NPs were having luminescence spectra in the blue-green region irrespective of the liquid media and ablation wavelength.

  5. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  6. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and EMI shielding applications

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Sai; Shen, Yong; Xu, Li-Hui; Wang, Li-Ming; Lu, Li-sha; Zhang, Ya-ting

    2016-11-01

    The flower-like CuS hierarchical structures were synthesized by solvothermal method. The as-prepared products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared(FTIR) spectroscopy, UV-vis optical absorption spectroscopy and thermogravimetric analysis (TGA). The results demonstrated that the as-prepared flower-like CuS with the diameter of 1-5 um was pure hexagonal phase CuS and had well-defined flower-like structures. (1) The as-prepared CuS was proved to possess high photocatalytic performance with band gap of 1.45 eV. The degradation rate of Methylene blue (MB) was up to, 98.26%, 100% after 30 min under UV and visible irradiation. (2)The UPF of cotton fabric treated with CuS reached up to 174 compared with the original untreated fabric with the UPF 20.62. (3) The electromagnetic interference shielding effectiveness (EMI SE) of CuS coating was up to 27-31 dB when the content of CuS increased to 28.6%wt in the frequency of 300 KHz-3 GHz. Furthermore, the influence of reaction conditions on the morphology of the as-prepared CuS was investigated systematically and the possible formation mechanism of the CuS hierarchical structure was also proposed.

  7. Charge transport mechanism analysis of Al/CdS:Sr{sup 2+}/ITO device under dark and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Joydeep; Das, Mrinmay; Dey, Arka

    2016-05-06

    In this study, we have synthesized CdS:Sr{sup 2+} by hydrothermal technique. Material property has been studied by X-ray diffraction (XRD), Scanning electron microscope (SEM) and UV-vis absorption spectroscopy. XRD data revealed that there are mixed phases of CdS and SrS in the synthesized sample. The optical band gap of the material was estimated as 3.15 eV from UV-vis data. The synthesized material has been applied in metal-semiconductor device and transport properties have been analyzed by measuring current–voltage characteristics under dark and light conditions at room temperature. Variation in different device parameters like ideality factor, barrier height and series resistance ofmore » Al/CdS:Sr{sup 2+}/ITO device were analyzed by using Cheung’s function.« less

  8. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.

    PubMed

    M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi

    2017-06-01

    In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. X-ray photoelectron spectroscopy investigations of band offsets in Ga0.02Zn0.98O/ZnO heterojunction for UV photodetectors

    NASA Astrophysics Data System (ADS)

    Singh, Karmvir; Rawal, Ishpal; Punia, Rajesh; Dhar, Rakesh

    2017-10-01

    Here, we report the valence and conduction band offset measurements in pure ZnO and the Ga0.02Zn0.98O/ZnO heterojunction by X-Ray photoelectron spectroscopy studies for UV photodetector applications. For detailed investigations on the band offsets and UV photodetection behavior of Ga0.02Zn0.98O/ZnO heterostructures, thin films of pristine ZnO, Ga-doped ZnO (Ga0.02Zn0.98O), and heterostructures of Ga-doped ZnO with ZnO (Ga0.02Zn0.98O/ZnO) were deposited using a pulsed laser deposition technique. The deposited thin films were characterized by X-ray diffraction, atomic force microscopy, and UV-Vis spectroscopy. X-ray photoelectron spectroscopy studies were carried out on all the thin films for the investigation of valence and conduction band offsets. The valence band was found to be shifted by 0.28 eV, while the conduction band has a shifting of -0.272 eV in the Ga0.02Zn0.98O/ZnO heterojunction as compared to pristine ZnO thin films. All the three samples were analyzed for photoconduction behavior under UVA light of the intensity of 3.3 mW/cm2, and it was observed that the photoresponse of pristine ZnO (19.75%) was found to increase with 2 wt. % doping of Ga (22.62%) and heterostructured thin films (29.10%). The mechanism of UV photodetection in the deposited samples has been discussed in detail, and the interaction of chemisorbed oxygen on the ZnO surface with holes generated by UV light exposure has been the observed mechanism for the change in electrical conductivity responsible for UV photoresponse on the present deposited ZnO films.

  10. Structural and dielectric studies on Ag doped nano ZnSnO3

    NASA Astrophysics Data System (ADS)

    Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.

    2018-04-01

    Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.

  11. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.

    PubMed

    Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody

    2018-04-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.

  12. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    PubMed

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  13. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue

    NASA Astrophysics Data System (ADS)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-01

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10 s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560 nm. The detection limit for phosphorylated proteins was estimated to be 100 nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection.

  14. The preparation and characterization of silk fibroin blended with low molecular weight hydroxypropyl methylcellulose (HPMC)

    NASA Astrophysics Data System (ADS)

    Shetty, G. Rajesha; Rao, B. Lakshmeesha; Gowda, Mahadeva; Shivananda, C. S.; Asha, S.; Sangappa, Y.

    2018-04-01

    In this work, the structure and optical properties of Silk Fibroin (SF), lower molecular weight Hydroxypropyl Methylcellulose (HPMC(L)) and its blend film of SF-HPMC(L) were studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron Microscope (SEM) and UV-Visible spectroscopy (UV-Vis). The results indicates that the homogeneous miscible blend of SF-HPMC(L) has lower crystallite size and lower optical band gap compared to virgin SF and HPMC(L). FTIR study confirms the presence of both SF and HPMC(L) molecules in the prepared blend films.

  15. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  16. Indonesian palm civet coffee discrimination using UV-visible spectroscopy and several chemometrics methods

    NASA Astrophysics Data System (ADS)

    Yulia, M.; Suhandy, D.

    2017-05-01

    Indonesian palm civet coffee or kopi luwak (Indonesian words for coffee and palm civet) is well known as the world’s priciest and rarest coffee. To protect the authenticity of luwak coffee and protect consumer from luwak coffee adulteration, it is very important to develop a simple and inexpensive method to discriminate between civet and non-civet coffee. The discrimination between civet and non-civet coffee in ground roasted (powder) samples is very challenging since it is very difficult to distinguish between the two by using conventional method. In this research, the use of UV-Visible spectra combined with two chemometric methods, SIMCA and PLS-DA, was evaluated to discriminate civet and non-civet ground coffee samples. The spectral data of civet and non-civet coffee were acquired using UV-Vis spectrometer (Genesys™ 10S UV-Vis, Thermo Scientific, USA). The result shows that using both supervised discrimination methods: SIMCA and PLS-DA, all samples were correctly classified into their corresponding classes with 100% rate for accuracy, sensitivity and specificity, respectively.

  17. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    PubMed

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  18. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    PubMed

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  19. [Identification of varieties of textile fibers by using Vis/NIR infrared spectroscopy technique].

    PubMed

    Wu, Gui-Fang; He, Yong

    2010-02-01

    The aim of the present paper was to provide new insight into Vis/NIR spectroscopic analysis of textile fibers. In order to achieve rapid identification of the varieties of fibers, the authors selected 5 kinds of fibers of cotton, flax, wool, silk and tencel to do a study with Vis/NIR spectroscopy. Firstly, the spectra of each kind of fiber were scanned by spectrometer, and principal component analysis (PCA) method was used to analyze the characteristics of the pattern of Vis/NIR spectra. Principal component scores scatter plot (PC1 x PC2 x PC3) of fiber indicated the classification effect of five varieties of fibers. The former 6 principal components (PCs) were selected according to the quantity and size of PCs. The PCA classification model was optimized by using the least-squares support vector machines (LS-SVM) method. The authors used the 6 PCs extracted by PCA as the inputs of LS-SVM, and PCA-LS-SVM model was built to achieve varieties validation as well as mathematical model building and optimization analysis. Two hundred samples (40 samples for each variety of fibers) of five varieties of fibers were used for calibration of PCA-LS-SVM model, and the other 50 samples (10 samples for each variety of fibers) were used for validation. The result of validation showed that Vis/NIR spectroscopy technique based on PCA-LS-SVM had a powerful classification capability. It provides a new method for identifying varieties of fibers rapidly and real time, so it has important significance for protecting the rights of consumers, ensuring the quality of textiles, and implementing rationalization production and transaction of textile materials and its production.

  20. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  1. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceumL.) peel extract and their photocatalytic activity on methyl orange dye

    NASA Astrophysics Data System (ADS)

    Karnan, Thenmozhi; Selvakumar, Stanly Arul Samuel

    2016-12-01

    In the present study, describes the synthesis of ZnO nanoparticles from rambutan (Nephelium lappaceumL.) peel extract via bio synthesis method and developed a new low cost technology to prepare ZnO nanoparticles. During the synthesis, fruit peel extract act as a natural ligation agent. The successfully prepared product was analyzed with some standard characterization studies like X-Ray Diffraction (XRD), UV-VIS Diffuse reflectance spectra (UV-Vis DRS), Field Emission Scanning Electron Microscope (FESEM), High resolution transmittance electron microscope (HR-TEM), N2 adsorption-desorption isotherm and UV-Vis absorption Spectroscopy. The photocatalytic activity of ZnO nanoparticles was evaluated by photodegradation of methyl orange (MO) dye under UV light and the result depicts around 83.99% decolorisation efficiency at 120 min of illumination. In addition with photodecolorisation, mineralization was also achieved. The mineralization has been confirmed by measuring Chemical Oxygen Demand (COD) values.

  2. Screening analysis of biodiesel feedstock using UV-vis, NIR and synchronous fluorescence spectrometries and the successive projections algorithm.

    PubMed

    Insausti, Matías; Gomes, Adriano A; Cruz, Fernanda V; Pistonesi, Marcelo F; Araujo, Mario C U; Galvão, Roberto K H; Pereira, Claudete F; Band, Beatriz S F

    2012-08-15

    This paper investigates the use of UV-vis, near infrared (NIR) and synchronous fluorescence (SF) spectrometries coupled with multivariate classification methods to discriminate biodiesel samples with respect to the base oil employed in their production. More specifically, the present work extends previous studies by investigating the discrimination of corn-based biodiesel from two other biodiesel types (sunflower and soybean). Two classification methods are compared, namely full-spectrum SIMCA (soft independent modelling of class analogies) and SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm). Regardless of the spectrometric technique employed, full-spectrum SIMCA did not provide an appropriate discrimination of the three biodiesel types. In contrast, all samples were correctly classified on the basis of a reduced number of wavelengths selected by SPA-LDA. It can be concluded that UV-vis, NIR and SF spectrometries can be successfully employed to discriminate corn-based biodiesel from the two other biodiesel types, but wavelength selection by SPA-LDA is key to the proper separation of the classes. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    PubMed

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A UV-Vis photoacoustic spectrophotometer.

    PubMed

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  5. Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil

    We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.

  6. In-vitro Equilibrium Phosphate Binding Study of Sevelamer Carbonate by UV-Vis Spectrophotometry.

    PubMed

    Prasaja, Budi; Syabani, M Maulana; Sari, Endah; Chilmi, Uci; Cahyaningsih, Prawitasari; Kosasih, Theresia Weliana

    2018-06-12

    Sevelamer carbonate is a cross-linked polymeric amine; it is the active ingredient in Renvela ® tablets. US FDA provides recommendation for demonstrating bioequivalence for the development of a generic product of sevelamer carbonte using in-vitro equilibrium binding study. A simple UV-vis spectrophotometry method was developed and validated for quantification of free phosphate to determine the binding parameter constant of sevelamer. The method validation demonstrated the specificity, limit of quantification, accuracy and precision of measurements. The validated method has been successfully used to analyze samples in in-vitro equilibrium binding study for demonstrating bioequivalence. © Georg Thieme Verlag KG Stuttgart · New York.

  7. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  8. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS.

    PubMed

    Sales, A; Alvarez, A; Areal, M Rodriguez; Maldonado, L; Marchisio, P; Rodríguez, M; Bedascarrasbure, E

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  9. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Treesearch

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  10. Identification of intermediates in zeolite-catalyzed reactions by in situ UV/Vis microspectroscopy and a complementary set of molecular simulations.

    PubMed

    Hemelsoet, Karen; Qian, Qingyun; De Meyer, Thierry; De Wispelaere, Kristof; De Sterck, Bart; Weckhuysen, Bert M; Waroquier, Michel; Van Speybroeck, Veronique

    2013-12-02

    The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol-to-olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H-SAPO-34 and H-SSZ-13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol-treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time-dependent density functional theory (TDDFT) calculations. Static gas-phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Predicting water-holding capacity of intact chicken broiler breast fillets with Vis/NIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The ability of using visible and near-infrared (Vis/NIR) spectroscopy to predict water-holding capacity (WHC) of intact chicken broiler breast fillets (pectoralis major) was assessed in this study. Boneless and skinless chicken fillets (214 in total) were procured from a commercial processing plant ...

  12. Fusion of Ultraviolet-Visible and Infrared Transient Absorption Spectroscopy Data to Model Ultrafast Photoisomerization.

    PubMed

    Debus, Bruno; Orio, Maylis; Rehault, Julien; Burdzinski, Gotard; Ruckebusch, Cyril; Sliwa, Michel

    2017-08-03

    Ultrafast photoisomerization reactions generally start at a higher excited state with excess of internal vibrational energy and occur via conical intersections. This leads to ultrafast dynamics which are difficult to investigate with a single transient absorption spectroscopy technique, be it in the ultraviolet-visible (UV-vis) or infrared (IR) domain. On one hand, the information available in the UV-vis domain is limited as only slight spectral changes are observed for different isomers. On the other hand, the interpretation of vibrational spectra is strongly hindered by intramolecular relaxation and vibrational cooling. These limitations can be circumvented by fusing UV-vis and IR transient absorption spectroscopy data in a multiset multivariate curve resolution analysis. We apply this approach to describe the spectrodynamics of the ultrafast cis-trans photoisomerization around the C-N double bond observed for aromatic Schiff bases. Twisted intermediate states could be elucidated, and isomerization was shown to occur through a continuous complete rotation. More broadly, data fusion can be used to rationalize a vast range of ultrafast photoisomerization processes of interest in photochemistry.

  13. The photocatalytic investigation of methylene blue dye with Cr doped zinc oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Rajeev; Kumar, Ashavani, E-mail: ashavani@yahoo.com

    2015-08-28

    The present work reports eco-friendly and cost effective sol-gel technique for synthesis of Chromium doped ZnO nanoparticles at room temperature. In this process Zinc nitrate, Chromium nitrate were used as precursor. Structural as well as optical properties of Cr induced ZnO samples were analysed by X-ray diffraction technique (XRD), SEM, PL and UV-Visible spectroscopy (UV-Vis) respectively. XRD analysis shows that the samples have hexagonal (wurtzite) structure with no additional peak which suggests that Cr ions fit into the regular Zn sites of ZnO crystal structure. By using Scherrer’s formula for pure and Cr doped ZnO samples the average grain sizemore » was found to be 32 nm. Further band gap of pure and doped ZnO samples have been calculated by using UV-Vis spectra. The photo-catalytic degradation of methyl blue dye under UV irradiation was examined for synthesized samples. The results show that the concentration plays an important role in photo-catalytic activity.« less

  14. UV-Vis spectroscopic study and DFT calculation on the solvent effect of trimethoprim in neat solvents and aqueous mixtures.

    PubMed

    Almandoz, M C; Sancho, M I; Duchowicz, P R; Blanco, S E

    2014-08-14

    The solvatochromic behavior of trimethoprim (TMP) was analyzed using UV-Vis spectroscopy and DFT methods in neat and binary aqueous solvent mixtures. The effects of solvent dipolarity/polarizability and solvent-solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra of TMP and TMP:(solvent)n complexes in ACN and H2O using TD-DFT methods were in agreement with the experimental ones. Binary aqueous mixtures containing as co-solvents DMSO, ACN and EtOH were studied. Preferential solvation was detected as a nonideal behavior of the wavenumber curve respective to the analytical mole fraction of co-solvent in all binary systems. TMP molecules were preferentially solvated by the organic solvent over the whole composition range. Index of preferential solvation, as well as the influence of solvent parameters were calculated as a function of solvent composition. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ashutosh; Dwivedi, Jagrati, E-mail: hemu.dwi@gmail.com; Shukla, Kritika

    Five Chromium (III) complexes have been prepared using Schiff base ligands which derived from benzoin and five different amino acids (H{sub 2}N-R). Samples were characterized by XRD, FTIR, UV-VIS and SEM method. X-Ray diffraction pattern analyzed that all chromium (III) complexes have hexagonal structure and crystalline, in nature, using Bruker D8 Advance instrument. Using VERTAX 70, FTIR spectroscopy reveals that Samples have (C=N), (C-O), (M-N) and (M-O) bonds in the range of 4000-400cm{sup −1}. UV-VIS spectroscopy give information that samples absorb the visible light which is in the range of 380-780nm. For this, Lambda 960 spectrometer used. SEM is designedmore » for studying of the solid objects, using JEOL JSM 5600 instrument.« less

  16. Polyethyleneglycol/silver functionalized reduced graphene oxide aerogel for environmental application

    NASA Astrophysics Data System (ADS)

    Kumari, G. Vanitha; Asha, S.; Ananth, A. Nimrodh; Rajan, M. A. Jothi; Mathavan, T.

    2018-04-01

    Polyethylene glycol (PEG)/Silver (Ag) functionalized reduced graphene oxide aerogel (RGOA) was synthesized. PEG/Ag decorated reduced graphene oxide aerogel was characterized using XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR). The surface morphology of PEG/Ag/RGOA was analyzed using scanning electron microscope. The non-covalent interaction between reduced graphene oxide layers and the interaction between PEG and Ag on RGOA were studied by FT-IR spectra. It was observed that the interaction between Ag and PEG could enhance the properties of RGOA. Methyl Orange (MO) dye degradation was observed from UV-Vis Spectra. The process was studied by monitoring the simultaneous decrease in the height of UV-Vis absorption peak of dye solution. The results show that PEG/RGOA and PEG/Ag/RGOA are an efficient catalyst for dye degradation.

  17. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  18. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    NASA Astrophysics Data System (ADS)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  19. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    PubMed

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Solvatochromism and preferential solvation of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone by UV-vis absorption and laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Sasirekha, V.; Vanelle, P.; Terme, T.; Ramakrishnan, V.

    2008-12-01

    Solvation characteristics of 1,4-dihydroxy-2,3-dimethyl-9,10-anthraquinone ( 1) in pure and binary solvent mixtures have been studied by UV-vis absorption spectroscopy and laser-induced fluorescence techniques. The binary solvent mixtures used as CCl 4 (tetrachloromethane)-DMF ( N, N-dimethylformamide), AN (acetonitrile)-DMSO (dimethylsulfoxide), CHCl 3 (chloroform)-DMSO, CHCl 3-MeOH (methanol), and MeOH-DMSO. The longest wavelength band of 1 has been studied in pure solvents as well as in binary solvent mixtures as a function of the bulk mole fraction. The Vis absorption band maxima show an unusual blue shift with increasing solvent polarity. The emission maxima of 1 show changes with varying the pure solvents and the composition in the case of binary solvent mixtures. Non-ideal solvation characteristics are observed in all binary solvent mixtures. It has been observed that the quantity [ ν-(Xν+Xν)] serves as a measure of the extent of preferential solvation, where ν˜ and X are the position of band maximum in wavenumbers (cm -1) and the bulk mole fraction values, respectively. The preferential solvation parameters local mole fraction ( X2L), solvation index ( δs2), and exchange constant ( k12) are evaluated.

  1. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at R Ni-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  2. Group 12 dithiocarbamate complexes: Synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites

    NASA Astrophysics Data System (ADS)

    Ajibade, Peter A.; Ejelonu, Benjamin C.

    2013-09-01

    Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, 1H- and 13C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix.

  3. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    NASA Astrophysics Data System (ADS)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  4. Luminescence of Tb-doped Ca 3Y 2(Si 3O 9) 2 oxide upon UV and VUV synchrotron radiation excitation

    NASA Astrophysics Data System (ADS)

    Dobrowolska, Anna; Zych, Eugeniusz

    2011-07-01

    Powders of calcium yttrium silicate, Ca 3Y 2(Si 3O 9) 2, containing 0.1-3% Tb 3+ were prepared using a sol-gel method and characterized with XRD, IR, UV-vis and UV-VUV spectroscopies at room temperature and 10 K. Structural analysis revealed pure monoclinic phase of Ca 3Y 2(Si 3O 9) 2 after heat-treatment at 1000 °C. Infrared spectroscopy showed that between 800 and 900 °C a short-range structural organization of the components proceeded, yet without crystallization. A strong emission of Tb 3+ had been observed both in the green part of the spectrum due to the 5D4→ 7FJ transitions and in the blue-violet region owing to the 5D3→ 7FJ radiative relaxation. The color of the light could be tuned from yellowish-green to bluish-white both by means of the dopant content and the temperature of synthesis. Efficient luminescence of Tb 3+-doped Ca 3Y 2(Si 3O 9) 2 phosphors could also be obtained upon stimulation with vacuum ultraviolet synchrotron radiation demonstrating that an energy transfer from the host to the Tb 3+ ions takes place.

  5. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  6. UV-Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions.

    PubMed

    Zhang, Liangliang; Liu, Yuchen; Wang, Yongmei; Xu, Man; Hu, Xinyu

    2018-10-15

    The complex formation between a copper ion and the dietary flavonoid quercetin (QU) and its two glycosides hyperin (HY) and rutin (RU) was studied by the combined use of spectroscopic measurement and the chemometric method. The spectral changes of pH titration revealed two successively formed deprotonated species of QU: the first formed species was proposed to be the 3-hydroxyl group deprotonated QU, and the second was the quinone form QU, which was formed by oxidation after the hydroxyl groups in the B-ring were deprotonated at high pH values. Similar results were obtained for HY and RU with two deprotonated species forming at high pH values. UV/visible spectroscopy showed successive formation of CuL 2 and CuL species of QU at pH 6.0, while only Cu 2 L was formed for HY and RU at this pH. Glycoside moieties in the C-ring of flavonoids decrease the conditional associated constants between flavonoids and Cu 2+ . Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. UV photostability of insect repellents evaluated through Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bório, Viviane G.; Fernandes, Adjaci U.; Silveira, Landulfo

    2016-02-01

    The use of insect repellents either indoors or at places with incidence of solar radiation has been common due to dengue epidemics in Brazil. The lack of studies on the photostability of these substances has motivated this study, where the main goal was to verify the photostability and photodegradation of some of the commercially insect repellents available under the simulated ultraviolet (UV) radiation, by evaluating the molecular changes using dispersive Raman spectroscopy (830 nm excitation). A laboratory-made chamber was used for irradiating the repellents, where UV-A + UV-B radiations (UV-A: 5.5 mW/cm2 and UV-B 1.5 mW/cm2) can be obtained. The chamber internal temperature did not exceed 31 °C during experiments. The compounds n,n-diethyl-m-toluamide (DEET), IR-3535, andiroba and citronella oils, used as active ingredients in insect repellents, and commercial formula containing DEET (14.5% in ethanol and isopropyl myristate) and IR-3535 (16% in carbopol) were continuously irradiated for 8 h. The Raman spectrum of each sample was obtained before and after UV exposure. The compounds and the commercial formula containing IR-3535 showed photo-stability when irradiated, since no changes in the peaks were found. The commercial formula containing DEET showed spectral decrease at 524, 690, 1003 and 1606 cm-1, assigned to the DEET, and increase at 884 cm-1, assigned to the ethanol. These results indicate that the excipient could influence the photostability of the active ingredient. The Raman spectroscopy can be suitable to monitor the photodegradation under UV irradiation rapidly and reliably.

  8. Photocatalytic performance of crystalline titania polymorphs in the degradation of hazardous pharmaceuticals and dyes

    NASA Astrophysics Data System (ADS)

    Thuong Huyen Tran, Thi; Kosslick, Hendrik; Schulz, Axel; Liem Nguyen, Quang

    2017-03-01

    In the present work, nano-sized TiO2 polymorphs (anatase, brookite, and rutile) were synthesized via hydrothermal treatment of an amorphous titania. Three polymorphs were characterized by XRD, Raman spectroscopy, SEM, UV-Vis DRS, and N2-sorption measurements. The photocatalytic degradation experiments were performed with low catalyst concentration, high organic loading under a 60 W UV-Vis solarium lamp irradiation. The photocatalytic degradation was monitored by UV-Vis spectroscopy and TOC measurements. Cinnamic acid, ibuprofen, phenol, diatrizoic acid and the dyes rhodamine B and rose bengal were used as model pollutants. The formation of intermediates was studied by ESI-TOF-MS measurements. The presence of active species was checked by quenching the activity by addition of scavengers. The photocatalytic activity decreased in the order: anatase  ⩾  brookite  >  rutile, with growing recalcitrance of organic compounds. The differences in the activity are more pronounced in the degree of mineralization. The valence band holes and superoxide radicals were the major active species in the photocatalytic treatment with anatase and brookite, whereas hydroxyl radicals and superoxide radicals contributed mainly in the treatment with rutile explaining the lower activity of rutile. The complementary use of UV-Vis spectroscopy and TOC measurements was required to obtain a comprehensive realistic assessment on the photocatalytic performance of catalyst. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8-12 November 2016, Ha Long City, Vietnam.

  9. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA. Copyright © 2015 John Wiley & Sons, Ltd.

  10. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2.

    PubMed

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N; Stansbury, Jeffery; Sikes, Hadley D

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O 2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O 2 . Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O 2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O 2 in eosin-mediated initiation aids the design of O 2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing.

  11. UV-Vis/FT-NIR in situ monitoring of visible-light induced polymerization of PEGDA hydrogels initiated by eosin/triethanolamine/O2

    PubMed Central

    Kaastrup, Kaja; Aguirre-Soto, Alan; Wang, Chen; Bowman, Christopher N.; Stansbury, Jeffery; Sikes, Hadley D.

    2016-01-01

    In conjunction with a tertiary amine coinitiator, eosin, a photoreducible dye, has been shown to successfully circumvent oxygen inhibition in radical photopolymerization reactions. However, the role of O2 in the initiation and polymerization processes remains inconclusive. Here, we employ a UV-Vis/FT-NIR analytical tool for real-time, simultaneous monitoring of chromophore and monomer reactive group concentrations to investigate the eosin-activated photopolymerization of PEGDA-based hydrogels under ambient conditions. First, we address the challenges associated with spectroscopic monitoring of the polymerization of hydrogels using UV-Vis and FT-NIR, proposing metrics for quantifying the extent of signal loss from reflection and scattering, and showing their relation to microgelation and network formation. Second, having established a method for extracting kinetic information by eliminating the effects of changing refractive index and scattering, the coupled UV-Vis/FT-NIR system is applied to the study of eosin-activated photopolymerization of PEGDA in the presence of O2. Analysis of the inhibition time, rate of polymerization, and rate of eosin consumption under ambient and purged conditions indicates that regeneration of eosin in the presence of oxygen and consumption of oxygen occur via a nonchain process. This suggests that the uniquely high O2 resilience is due to alternative processes such as energy transfer from photo-activated eosin to oxygen. Uncovering the intricacies of the role of O2 in eosin-mediated initiation aids the design of O2 resistant free radical polymerization systems relevant to photonics, optoelectronics, biomaterials, and biosensing. PMID:26755925

  12. UV Photodissociation Action Spectroscopy of Haloanilinium Ions in a Linear Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Hansen, Christopher S.; Kirk, Benjamin B.; Blanksby, Stephen J.; O'Hair, Richard. A. J.; Trevitt, Adam J.

    2013-06-01

    UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag2 + is compared with a literature spectrum as a further benchmark.

  13. A new method for the quantification of monosaccharides, uronic acids and oligosaccharides in partially hydrolyzed xylans by HPAEC-UV/VIS.

    PubMed

    Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo

    2016-04-20

    A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The structure feature of layered M1/3TiNbO5 (M=Fe, Ce) and their photocatalytic oxidization performance for ethyl mercaptan

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Wang, Yuan; Wang, Ningning; Xu, Lei; He, Jie; Wu, Shanshan; Lan, Yunxiang; Hu, Jinsong

    2016-09-01

    Layered photocatalytic materials M1/3TiNbO5 (M = Fe, Ce) were prepared by ion-exchange of KTiNbO5 with M(NO3)3. The parent KTiNbO5 was synthesized with titanium (IV) isopropoxide and niobium oxalate by a novel polymerized complex (PC) method. The micro-structures and spectral response features of the as-prepared samples were characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), laser Raman spectroscopy (LRS) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results revealed that there was a significant interaction between the interlayer cation and the terminal Nbdbnd O (Tidbnd O) bond in the NbO6 (TiO6) unit of the laminates. Photocatalytic performance was evaluated in oxidation of ethyl mercaptan under natural and UV light irradiation. It can be deduced that the photocatalytic oxidization performance can be directly affected by the characteristics of the interlayer cations.

  15. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    PubMed

    Tomazzoli, Maíra M; Pai Neto, Remi D; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amelia R S; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-12-01

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( λ= 280-400 ηm), suggesting that besides the biological activities of those

  16. Discrimination of Brazilian propolis according to the seasoning using chemometrics and machine learning based on UV-Vis scanning data.

    PubMed

    Tomazzoli, Maíra Maciel; Pai Neto, Remi Dal; Moresco, Rodolfo; Westphal, Larissa; Zeggio, Amélia Regina Somensi; Specht, Leandro; Costa, Christopher; Rocha, Miguel; Maraschin, Marcelo

    2015-10-21

    Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plant's resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis' chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds (λ = 280-400ηm), suggesting that besides the biological activities of those

  17. Quality control of test iodine in urine by spectrophotometry UV-Vis

    NASA Astrophysics Data System (ADS)

    Huda, Thorikul; Nafisah, Durotun; Kumorowulan, Suryati; Lestari, Sri

    2017-12-01

    A quality control of iodine test in with UV-Vis spectrophotometry has been done. The purpose of this research is to find out whether the test results of samples conducted by Clinical Office of Research and Development Of GAKI (BP2GAKI) laboratory are still controlled, feasible and reliable, and still consistent over time, as indicated by the control chart. Quality control parameters are linearity, precision, accuracy, limit of detection, and limit of quantification. Based on the quality control that has been done, obtained linearity (r)= -0.9974, the detection limit and the limit of quantitation are respectively 2.26 µg/L and 7.54 µg/L, while the accuracy is calculated by %recovery and precision with value % RSD are 97.4161% and 1.7136% respectively. The quality control of iodine test in urine using the control chart shows excellent or stable results for 30 days and no variation of the results is very different for each day.

  18. Age determination of bottled Chinese rice wine by VIS-NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Haiyan; Lin, Tao; Ying, Yibin; Pan, Xingxiang

    2006-10-01

    The feasibility of non-invasive visible and near infrared (VIS-NIR) spectroscopy for determining wine age (1, 2, 3, 4, and 5 years) of Chinese rice wine was investigated. Samples of Chinese rice wine were analyzed in 600 mL square brown glass bottles with side length of approximately 64 mm at room temperature. VIS-NIR spectra of 100 bottled Chinese rice wine samples were collected in transmission mode in the wavelength range of 350-1200 nm by a fiber spectrometer system. Discriminant models were developed based on discriminant analysis (DA) together with raw, first and second derivative spectra. The concentration of alcoholic degree, total acid, and °Brix was determined to validate the NIR results. The calibration result for raw spectra was better than that for first and second derivative spectra. The percentage of samples correctly classified for raw spectra was 98%. For 1-, 2-, and 3-year-old sample groups, the sample were all correctly classified, and for 4- and 5-year-old sample groups, the percentage of samples correctly classified was 92.9%, respectively. In validation analysis, the percentage of samples correctly classified was 100%. The results demonstrated that VIS-NIR spectroscopic technique could be used as a non-invasive, rapid and reliable method for predicting wine age of bottled Chinese rice wine.

  19. Ultraviolet, Visible, and Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  20. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Singhal, Garima; Bhavesh, Riju; Kasariya, Kunal; Sharma, Ashish Ranjan; Singh, Rajendra Pal

    2011-07-01

    Development of green nanotechnology is generating interest of researchers toward ecofriendly biosynthesis of nanoparticles. In this study, biosynthesis of stable silver nanoparticles was done using Tulsi ( Ocimum sanctum) leaf extract. These biosynthesized nanoparticles were characterized with the help of UV-vis spectrophotometer, Atomic Absorption Spectroscopy (AAS), Dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Transmission electron microscopy (TEM). Stability of bioreduced silver nanoparticles was analyzed using UV-vis absorption spectra, and their antimicrobial activity was screened against both gram-negative and gram-positive microorganisms. It was observed that O. sanctum leaf extract can reduce silver ions into silver nanoparticles within 8 min of reaction time. Thus, this method can be used for rapid and ecofriendly biosynthesis of stable silver nanoparticles of size range 4-30 nm possessing antimicrobial activity suggesting their possible application in medical industry.

  1. Characterization of graphene oxide produced by Hummers method and its supercapacitor applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akgül, Ö., E-mail: omeraakgul@gmail.com; Tanrıverdi, A., E-mail: aa.kudret@hotmail.com; Alver, Ü., E-mail: ualver@ktu.edu.tr

    2016-03-25

    In this study, Graphene Oxide (GO) is produced using Hummers method. The produced GO were investigated by x-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), UV-Vis spectrum, Raman spectroscopy and scanning electron microscopy (SEM). GO films on Ni foam were prepared by doctor-blading technique. The electrochemical performances of the as-synthesized GO electrode was evaluated using cyclic voltammetry (CV) in 6 M KOH aqueous solution. Capacitances of GO electrode was measured as 0.76 F/g.

  2. UV-vis-DR study of VO x/SiO 2 catalysts prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Moussa, N.; Ghorbel, A.

    2008-12-01

    Vanadia-silica catalysts with different vanadium loadings were prepared by sol-gel process. UV-vis diffuse-reflectance spectroscopy was used to elucidate the effect of drying mode (i.e., xerogel vs. aerogel), vanadium loading and calcination on the molecular structure of supported vanadium species. The results indicate that for vanadium loading ranging from 2.8 to 11.2 wt.%, the band-gap energies of all catalysts varying from 2.28 to 2.68 eV which demonstrate that vanadium oxides are predominantly in octahedral structure with the presence of tetrahedral species. The discrimination of different surface VO x species has been based on their characteristic Ligand to Metal Charge Transfer (LMCT) O → V(V) and d-d transition. It was found that the LMCT band position of V dbnd O bond is not affected by calcination either in xerogels or in aerogels but the position and the shape of bands relative to bridging V sbnd O sbnd V bonds are affected by vanadium loading, calcination and drying mode. For the same V/Si ratio, band-gap energy of xerogel is lower than that of aerogel which indicate that vanadium species are more dispersed in aerogels than in xerogels. Drying and calcination led to rearrangement, dehydration, cleavage and crystallization of vanadium species which explain the presence of some amount of crystalline V 2O 5 in calcined samples.

  3. Tuning effect of polysaccharide Chitosan on structural, morphological, optical and photoluminescence properties of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.

    2018-05-01

    Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.

  4. Influence of the ultrasound-assisted synthesis of Cu-BTC metal-organic frameworks nanoparticles on uptake and release properties of rifampicin.

    PubMed

    Abbasi, Amir Reza; Rizvandi, Maryam

    2018-01-01

    In this work, we study uptake and release properties of rifampicin (denoted henceforth as Rif) from ultrasound-assisted synthesis Cu-BTC nanoparticles in comparison with bulk Cu-BTC and activated carbon. To explore the absorption ability of the Cu-BTC to Rif, fresh sample of Cu-BTC was immersed in an aqueous solution of Rif and were monitored in real time with UV/vis spectroscopy. Results show that the adsorbed quantity of Rif over nano Cu-BTC (denoted henceforth as I) is much higher than those over a bulk Cu-BTC (denoted henceforth as II) and activated carbon. In compound I and all of the nano-MOFs the channel length is decreased so that the amount of adsorption is increased a little. The samples were characterized with X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and UV/vis spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films

    NASA Astrophysics Data System (ADS)

    Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.

    2018-04-01

    In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.

  6. Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.

    2014-12-01

    A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.

  7. A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV-vis.

    PubMed

    Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco

    2010-02-10

    A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated samples. By an external validation process, when the adulterating agent concentration is less than 10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean correlation coefficient (estimated versus real concentration of low grade olive oil) greater than 0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not only to detect adulterations but also to measure impurities when, for instance, a higher grade olive oil is transferred to another storage tank in which lower grade olive oil was stored that had not been adequately cleaned.

  8. Structural and optical studies of Mg doped nanoparticles of chromium oxide (Cr2O3) synthesized by co-precipitation method

    NASA Astrophysics Data System (ADS)

    Singh, Jarnail; Verma, Vikram; Kumar, Ravi

    2018-04-01

    We present here the synthesization, structural and optical studies of Mg doped nanoparticles of Chromium oxide (Cr2O3) prepared using co-precipitation method. These samples were characterized using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman spectroscopy and UV-Vis spectroscopy techniques. We have demonstrated that there is negligible change in optical band gap with the Mg doping. The prepared Cr2O3 nanoparticles are spherical in shape, but they are transformed into platelets when doped with Mg. The XRD studies reveal that the Mg doping in Cr2O3 doesn't affect the structure of Chromium oxide (Cr2O3).

  9. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties.

    PubMed

    Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janeoo, Shashi; Sharma, Mamta, E-mail: mamta.phy85@gmail.com; Goswamy, J.

    Polyaniline-indium oxide (In{sub 2}O{sub 3}/PANI) nanocomposite have been prepared by in-situ polymerization of aniline and as-synthesized In{sub 2}O{sub 3} nanoparticles. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Fourier transformation infrared (FTIR) and UV/Vis spectroscopy techniques are used to investigate the structural and optical properties of In{sub 2}O{sub 3}/PANI nanocomposite. TEM analysis shows In{sub 2}O{sub 3} nanoparticles are embedded in PANI nanofibers. FTIR spectra show the good interactions between PANI nanofibers and In{sub 2}O{sub 3} nanoparticles. The band gap and electronic transitions in In{sub 2}O{sub 3}/PANI nanocomposite is determined by using UV/Vis spectra.

  12. LC-MS of Metmyoglobin at pH = 2: Separation and Characterization of Apomyoglobin and Heme by ESI-MS and UV-Vis

    ERIC Educational Resources Information Center

    Stynes, Helen Cleary; Layo, Araceli; Smith, Richard W.

    2004-01-01

    The protein species of apomyoglobin (apoMb) and heme are freed and segregated from the aqueous protein solution of metmyoglobin by liquid chromatography, and are distinguished by UV-Vis absorption or electrospray ionization mass spectrometry (ESI-MS). This is an ingenious and effective approach to characterize apomyoglobin and heme, while students…

  13. Soil Organic Carbon Estimation and Mapping Using "on-the-go" VisNIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, D. J.; Bricklemyer, R. S.; Christy, C.

    2007-12-01

    Soil organic carbon (SOC) and other soil properties related to carbon sequestration (eg. soil clay content and mineralogy) vary spatially across landscapes. To cost effectively capture this variability, new technologies, such as Visible and Near Infrared (VisNIR) spectroscopy, have been applied to soils for rapid, accurate, and inexpensive estimation of SOC and other soil properties. For this study, we evaluated an "on the go" VisNIR sensor developed by Veris Technologies, Inc. (Salinas, KS) for mapping SOC, soil clay content and mineralogy. The Veris spectrometer spanned 350 to 2224 nm with 8 nm spectral resolution, and 25 spectra were integrated every 2 seconds resulting in 3 -5 m scanning distances on the ground. The unit was mounted to a mobile sensor platform pulled by a tractor, and scanned soils at an average depth of 10 cm through a quartz-sapphire window. We scanned eight 16.2 ha (40 ac) wheat fields in north central Montana (USA), with 15 m transect intervals. Using random sampling with spatial inhibition, 100 soil samples from 0-10 cm depths were extracted along scanned transects from each field and were analyzed for SOC. Neat, sieved (<2 mm) soil sample materials were also scanned in the lab using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Fieldspec Pro FR spectroradiometer with a spectral range of 350-2500 and spectral resolution of 2-10 nm. The analyzed samples were used to calibrate and validate a number of partial least squares regression (PLSR) VisNIR models to compare on-the-go scanning vs. higher spectral resolution laboratory spectroscopy vs. standard SOC measurement methods.

  14. Egg-Citing! Isolation of Protoporphyrin IX from Brown Eggshells and Its Detection by Optical Spectroscopy and Chemiluminescence

    ERIC Educational Resources Information Center

    Dean, Michelle L.; Miller, Tyson A.; Bruckner, Christian

    2011-01-01

    A simple and cost-effective laboratory experiment is described that extracts protoporphyrin IX from brown eggshells. The porphyrin is characterized by UV-vis and fluorescence spectroscopy. A chemiluminescence reaction (peroxyoxalate ester fragmentation) is performed that emits light in the UV region. When the porphyrin extract is added as a fluor…

  15. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties.

    PubMed

    Saravanakumar, Arthanari; Peng, Mei Mei; Ganesh, Mani; Jayaprakash, Jayabalan; Mohankumar, Murugan; Jang, Hyun Tae

    2017-09-01

    Low cost and eco-friendly green synthesis of silver nanoparticles (AgNPs) from silver nitrate (AgNO 3 ) using Prunus japonica leaves extract as reducing agent by a simple method at room temperature. The biosynthesized nanoparticles (NPs) were characterized by UV-Vis, tunneling electron microscopy (HR-TEM), scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectrophotometer (EDAX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). In UV-Vis spectroscopy results, the λ max was observed at 441 nm. The AgNPs synthesized were spherical, hexagonal, and irregular in shapes. The EDAX and XRD spectrum confirmed the presence of silver ions and crystalline nature of synthesized AgNPs. FTIR showed the functional groups such as C = O, N-H and C-N groups involved in the reduction of Ag +  to Ag. 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was performed and it showed the percentage inhibition in concentration-dependent manner. The synthesized AgNPs showed antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus and Bacillus cereus to different extents and the higher activity was observed in Proteus vulgaris.

  16. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens.

    PubMed

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  17. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  18. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    PubMed Central

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-01-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology–fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01–0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics. PMID:27352840

  19. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    PubMed

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  20. UV spectroscopy with the CETUS multi-object spectrometer

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Woodruff, Robert; Hull, Anthony; Heap, Sara; Kutyrev, Alexander; Purves, Lloyd; Danchi, William

    2018-01-01

    The ultraviolet multi-object spectrograph (MOS) for the Cosmic Evolution Through UV Spectroscopy (CETUS) concept is a slit-based instrument allowing multiple simultaneous observations over a wide field of view. The UV MOS will be able to target up to 100 objects at a time without the issues of confusion with nearby sources or unwanted background like zodiacal stray light. The multiplexing will allow over 100,000 galaxies to be observed over a typical mission lifetime which greatly enhances the scientific yield. The MOS utilizes a next-generation micro-shutter array, an efficient aspheric Offner-like spectrometer design with a convex grating, and nanotube light traps for suppressing unwanted wavelengths. The optical coatings are also designed for optimizing the UV throughput while minimizing out-of-band signal at the detector.

  1. Ultra-Broadband Infrared Pulses from a Potassium-Titanyl Phosphate Optical Parametric Amplifier for VIS-IR-SFG Spectroscopy

    NASA Astrophysics Data System (ADS)

    Isaienko, Oleksandr; Borguet, Eric

    A non-collinear KTP-OPA to provide ultra-broadband mid-infrared pulses was designed and characterized. With proper pulse-front and phase correction, the system has a potential for high-time resolution vibrational VIS-IR-SFG spectroscopy.

  2. UV-vis and Raman spectroelectrochemical investigation of the redox behavior of poly(5-cyanoindole) in acidic aqueous solutions.

    PubMed

    Talbi, H; Billaud, D; Louarn, G; Pron, A

    2000-03-01

    Spectroelectrochemical properties of conducting poly(5-cyanoindole) films deposited on indium tin oxide (ITO) and platinum electrodes are investigated using UV-vis and resonant Raman spectroscopies. The transitions from undoped to semi-conducting state of P5CN require the partial oxidation of the polymer to create radical-cations by insertion of charge-neutralizing anions into the polymer. In order to obtain detailed structural information from the vibrational spectra, it is necessary to know the vibrational modes of oxidation-sensitive bands. Vibrational assignments were made on the basis of the results obtained on polyindole and P5CN in acetonitrile solution. The drastic changes in optical absorption and Raman spectra observed at various stage of oxidation were explained by the conversions between at least three different structures. On the basis of the Raman spectra, we have identified the vibrational modes associated with neutral and polaronic segments. The perturbation associated with the coexistence of these polaronic segments has been described as a quinoid structure growing on the expense of the benzoid one. The results obtained indicate that the molecular properties of the conducting polymers at various stages of an oxidation are better revealed by in-situ Raman spectra than by ex-situ studies.

  3. Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan

    NASA Astrophysics Data System (ADS)

    Fikriyyah, A. K.; Chaldun, E. R.; Indriyati

    2018-03-01

    Platinum nanoparticles on multiwall carbon nanotubes (Pt/MWCNT) play an important role in fuel cell to convert the chemical energy from a fuel into electricity. In this study, Pt/MWCNT electrocatalysts were prepared by chemical reduction of the metal salts in chitosan as the support. Firstly, commercial MWCNTs were functionalized by oxidative process using a mixture of nitric acid and sulfuric acid. Then, functionalized MWCNTs were mixed with chitosan-acetic acid solution to conduct grafting reaction with NH2 groups in chitosan by solution polymerization method. Platinum nanoparticles were loaded onto the surface of the MWCNTs after hexachloroplatinic acid was reduced by sodium hydroxide solution. The result showed that Pt was attached on MWCNT based on analysis from EDS, XRD, and UV Vis Spectroscopy. UV Vis analysis indicates the plasmon absorbance band of Pt nanoparticles in Pt/MWCNT, while XRD analysis confirmed the size of Pt particle in nanometer. This elucidates the potential procedure to synthesize Pt/MWCNT using chitosan.

  4. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L

    NASA Astrophysics Data System (ADS)

    Suman, T. Y.; Radhika Rajasree, S. R.; Ramkumar, R.; Rajthilak, C.; Perumal, P.

    2014-01-01

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size.

  5. The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L.

    PubMed

    Suman, T Y; Rajasree, S R Radhika; Ramkumar, R; Rajthilak, C; Perumal, P

    2014-01-24

    In the present work, we describe the synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia. UV-vis spectroscopy, XRD, FTIR, FE-SEM, EDX and TEM were performed to characterize the formation of gold nanoparticles. The synthesized gold nanoparticles were characterized by a peak at 540 nm in the UV-vis spectrum. The XRD peaks at 38°, 44°, 64° and 77° can be indexed to the (111), (200), (220) and (311) Bragg's reflections of cubic structure of metallic gold, respectively. The FTIR result showed that extract containing protein might be responsible for the formation of the nanoparticles and may play an important role in the stabilization of the formed nanoparticles. FESEM images revealed that the particles were triangle and mostly spherical in shape. TEM images clearly revealed the size of the nanoparticles were 12.17-38.26 nm in size. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synthesis and characterization of CdS/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Fang, Pengfei; Chen, Zhe; Wang, Shaojie

    2007-08-01

    A series CdS/PVA nanocomposite films with different amount of Cd salt have been prepared by means of the in situ synthesis method via the reaction of Cd 2+-dispersed poly vinyl-alcohol (PVA) with H 2S. The as-prepared films were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectra, Fourier transform infrared spectroscope (FTIR) and thermogravimetric analysis (TGA). The XRD results indicated the formation of CdS nanoparticles with hexagonal phase in the PVA matrix. The primary FTIR spectra of CdS/PVA nanocomposite in different processing stages have been discussed. The vibrational absorption peak of Cd sbnd S bond at 405 cm -1 was observed, which further testified the generation of CdS nanoparticles. The TGA results showed incorporation of CdS nanoparticles significantly altered the thermal properties of PVA matrix. The photoluminescence and UV-vis spectroscopy revealed that the CdS/PVA films showed quantum confinement effect.

  7. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  8. Complementary analysis of tissue homogenates composition obtained by Vis and NIR laser excitations and Raman spectroscopy.

    PubMed

    Staniszewska-Slezak, Emilia; Malek, Kamilla; Baranska, Malgorzata

    2015-08-05

    Raman spectroscopy and four excitation lines in the visible (Vis: 488, 532, 633 nm) and near infrared (NIR: 785 nm) were used for biochemical analysis of rat tissue homogenates, i.e. myocardium, brain, liver, lung, intestine, and kidney. The Vis Raman spectra are very similar for some organs (brain/intestines and kidney/liver) and dominated by heme signals when tissues of lung and myocardium were investigated (especially with 532 nm excitation). On the other hand, the NIR Raman spectra are specific for each tissue and more informative than the corresponding ones collected with the Vis excitations. The spectra analyzed without any special pre-processing clearly illustrate different chemical composition of each tissue and give information about main components e.g. lipids or proteins, but also about the content of some specific compounds such as amino acid residues, nucleotides and nucleobases. However, in order to obtain the whole spectral information about tissues complex composition the spectra of Vis and NIR excitations should be collected and analyzed together. A good agreement of data gathered from Raman spectra of the homogenates and those obtained previously from Raman imaging of the tissue cross-sections indicates that the presented here approach can be a method of choice for an investigation of biochemical variation in animal tissues. Moreover, the Raman spectral profile of tissue homogenates is specific enough to be used for an investigation of potential pathological changes the organism undergoes, in particular when supported by the complementary FTIR spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  10. UV-visible spectroscopy as an alternative to liquid chromatography for determination of everolimus in surfactant-containing dissolution media: a useful approach based on solid-phase extraction.

    PubMed

    Kamberi, Marika; Tran, Thu-Ngoc

    2012-11-01

    High-throughput 96-well solid phase extraction (SPE) plate with C-18 reversed phase sorbent followed by UV-visible (UV-Vis) microplate reader was applied to the analysis of hydrophobic drugs in surfactant-containing dissolution media, which are often used to evaluate the in-vitro drug release of drug eluting stents (DES). Everolimus and dissolution medium containing Triton X-405 were selected as representatives, and the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedure was capable of removing interfering components (Triton X-405 and its impurities), allowing for an accurate automated spectrophotometric analysis to be performed. The proposed UV-Vis spectrophotometric method yielded equivalent results compared to a classical LC analysis method. Linear regression analysis indicated that both methods have the ability to obtain test results that are directly proportional to the concentration of analyte in the sample within the selected range of 1.0-10 μg/ml for everolimus, with a coefficient of correlation (r(2)) value of >0.998 and standard deviation of the residuals (Syx) of <2%. The individual recoveries of everolimus ranged from 97 to 104% for the UV-Vis spectrophotometric method and from 98 to 102 for the HPLC method, respectively. The 95% CI of the mean recovery for the UV-Vis spectrophotometric method was 99-102% and for the HPLC method was 99-101%. No statistical difference was found between the mean recoveries of the methods (p=0.42). Hence the methods are free from interference due to Triton and other chemicals present in the dissolution medium. The variation in the amount of everolimus estimated by UV-Vis spectrophotometric and HPLC methods was ≤3.5%, and the drug release profiles obtained by both methods were found to be equivalent by evaluation with two-one-sided t-test (two-tailed, p=0.62; mean of differences, 0.17; 95% CI, 0

  11. High-accuracy deep-UV Ramsey-comb spectroscopy in krypton

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Altmann, Robert K.; Dreissen, Laura S.; Eikema, Kjeld S. E.

    2017-01-01

    In this paper, we present a detailed account of the first precision Ramsey-comb spectroscopy in the deep UV. We excite krypton in an atomic beam using pairs of frequency-comb laser pulses that have been amplified to the millijoule level and upconverted through frequency doubling in BBO crystals. The resulting phase-coherent deep-UV pulses at 212.55 nm are used in the Ramsey-comb method to excite the two-photon 4p^6 → 4p^5 5p [1/2 ]_0 transition. For the {}^{84}Kr isotope, we find a transition frequency of 2829833101679(103) kHz. The fractional accuracy of 3.7 × 10^{-11} is 34 times better than previous measurements, and also the isotope shifts are measured with improved accuracy. This demonstration shows the potential of Ramsey-comb excitation for precision spectroscopy at short wavelengths.

  12. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes

    NASA Astrophysics Data System (ADS)

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-01

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800 nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye.

  13. ALTIUS: a spaceborne AOTF-based UV-VIS-NIR hyperspectral imager for atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Dekemper, Emmanuel; Fussen, Didier; Van Opstal, Bert; Vanhamel, Jurgen; Pieroux, Didier; Vanhellemont, Filip; Mateshvili, Nina; Franssens, Ghislain; Voloshinov, Vitaly; Janssen, Christof; Elandaloussi, Hadj

    2014-10-01

    Since the recent losses of several atmospheric instruments with good vertical sampling capabilities (SAGE II, SAGE III, GOMOS, SCIAMACHY,. . . ), the scientific community is left with very few sounders delivering concentration pro les of key atmospheric species for understanding atmospheric processes and monitoring the radiative balance of the Earth. The situation is so critical that at the horizon 2020, less than five such instruments will be on duty (most probably only 2 or 3), whereas their number topped at more than 15 in the years 2000. In parallel, recent inter-comparison exercises among the climate chemistry models (CCM) and instrument datasets have shown large differences in vertical distribution of constituents (SPARC CCMVal and Data Initiative), stressing the need for more vertically-resolved and accurate data at all latitudes. In this frame, the Belgian Institute for Space Aeronomy (IASB-BIRA) proposed a gap-filler small mission called ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere), which is currently in preliminary design phase (phase B according to ESA standards). Taking advantage of the good performances of the PROBA platform (PRoject for On-Board Autonomy) in terms of pointing precision and accuracy, on-board processing ressources, and agility, the ALTIUS concept relies on a hyperspectral imager observing limb-scattered radiance and solar/stellar occultations every orbit. The objective is twofold: the imaging feature allows to better assess the tangent height of the sounded air masses (through easier star tracker information validation by scene details recognition), while its spectral capabilities will be good enough to exploit the characteristic signatures of many molecular absorption cross-sections (O3, NO2, CH4, H2O, aerosols,...). The payload will be divided in three independent optical channels, associated to separated spectral ranges (UV: 250- 450 nm, VIS: 440-800 nm, NIR: 900-1800 nm). This approach also

  14. Insights into dissociative electron transfer in esterified shikonin semiquinones by in situ ESR/UV-Vis spectroelectrochemistry.

    PubMed

    Armendáriz-Vidales, G; Frontana, C

    2015-11-21

    In this work, electrogenerated anion and dianion species from shikonin and its ester derivative isovalerylshikonin were characterized by means of ESR/UV-Vis spectroelectrochemistry. Analysis of the spectra supported the proposal that stepwise dissociative electron transfer (DET) takes place during the second reduction process of the esterified compound. Quantum chemical calculations were performed for validating the occurrence of this mechanistic pathway and for obtaining thermodynamic information on the electron transfer process; ΔG(cleavage)(0) was estimated to be -0.45 eV, considering that the two possible products of the overall reaction scheme are both a quinone and carboxylate anions.

  15. Increased photocatalytic activity of TiO 2 mesoporous microspheres from codoping with transition metals and nitrogen

    DOE PAGES

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; ...

    2015-11-06

    The composition of anatase TiO 2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO 2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under bothmore » UV-vis and visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO 2 was significantly enhanced relative to (N) TiO 2.« less

  16. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayanan, Kannan Badri; Sakthivel, Natarajan, E-mail: puns2005@gmail.com

    2011-10-15

    Highlights: {yields} Synthesis of AgNPs using the leaf extract of Coleus amboinicus L. was described. {yields} UV-vis absorption spectra showed the formation of isotrophic AgNPs at 437 nm in 6 h. {yields} XRD analysis showed intense peaks corresponding to fcc structure of AgNPs. {yields} HR-TEM analysis revealed the formation of stable anisotrophic and isotrophic AgNPs. -- Abstract: In the present investigation, Coleus amboinicus Lour. leaf extract-mediated green chemistry approach for the synthesis of silver nanoparticles was described. The nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and transmissionmore » electron microscopy (TEM). The influence of leaf extract on the control of size and shape of silver nanoparticles is reported. Upon an increase in the concentration of leaf extract, there was a shift in the shape of nanoparticles from anisotrophic nanostructures like triangle, decahedral and hexagonal to isotrophic spherical nanoparticles. Crystalline nature of fcc structured nanoparticles was confirmed by XRD spectrum with peaks corresponding to (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes and bright circular spots in the selected-area electron diffraction (SAED). Such environment friendly and sustainable methods are non-toxic, cheap and alternative to hazardous chemical procedures.« less

  17. Photothermal Activation of Metal-Organic Frameworks Using a UV-Vis Light Source.

    PubMed

    Espín, Jordi; Garzón-Tovar, Luis; Carné-Sánchez, Arnau; Imaz, Inhar; Maspoch, Daniel

    2018-03-21

    Metal-organic frameworks (MOFs) usually require meticulous removal of the solvent molecules to unlock their potential porosity. Herein, we report a novel one-step method for activating MOFs based on the photothermal effect induced by directly irradiating them with a UV-vis lamp. The localized light-to-heat conversion produced in the MOF crystals upon irradiation enables a very fast solvent removal, thereby significantly reducing the activation time to as low as 30 min and suppressing the need for time-consuming solvent-exchange procedures and vacuum conditions. This approach is successful for a broad range of MOFs, including HKUST-1, UiO-66-NH 2 , ZIF-67, CPO-27-M (M = Zn, Ni, and Mg), Fe-MIL-101-NH 2 , and IRMOF-3, all of which exhibit absorption bands in the light emission range. In addition, we anticipate that this photothermal activation can also be used to activate covalent organic frameworks (COFs).

  18. Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films

    NASA Astrophysics Data System (ADS)

    Patil, S. B.; Singh, A. K.

    2010-02-01

    In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density ( Jsc) and open circuit voltage ( Voc) i.e. 99 μA/cm 2 and 376 mV respectively, under 10 mW/cm 2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.

  19. Robust Ultraviolet-Visible (UV-Vis) Partial Least-Squares (PLS) Models for Tannin Quantification in Red Wine.

    PubMed

    Aleixandre-Tudo, José Luis; Nieuwoudt, Helené; Aleixandre, José Luis; Du Toit, Wessel J

    2015-02-04

    The validation of ultraviolet-visible (UV-vis) spectroscopy combined with partial least-squares (PLS) regression to quantify red wine tannins is reported. The methylcellulose precipitable (MCP) tannin assay and the bovine serum albumin (BSA) tannin assay were used as reference methods. To take the high variability of wine tannins into account when the calibration models were built, a diverse data set was collected from samples of South African red wines that consisted of 18 different cultivars, from regions spanning the wine grape-growing areas of South Africa with their various sites, climates, and soils, ranging in vintage from 2000 to 2012. A total of 240 wine samples were analyzed, and these were divided into a calibration set (n = 120) and a validation set (n = 120) to evaluate the predictive ability of the models. To test the robustness of the PLS calibration models, the predictive ability of the classifying variables cultivar, vintage year, and experimental versus commercial wines was also tested. In general, the statistics obtained when BSA was used as a reference method were slightly better than those obtained with MCP. Despite this, the MCP tannin assay should also be considered as a valid reference method for developing PLS calibrations. The best calibration statistics for the prediction of new samples were coefficient of correlation (R 2 val) = 0.89, root mean standard error of prediction (RMSEP) = 0.16, and residual predictive deviation (RPD) = 3.49 for MCP and R 2 val = 0.93, RMSEP = 0.08, and RPD = 4.07 for BSA, when only the UV region (260-310 nm) was selected, which also led to a faster analysis time. In addition, a difference in the results obtained when the predictive ability of the classifying variables vintage, cultivar, or commercial versus experimental wines was studied suggests that tannin composition is highly affected by many factors. This study also discusses the correlations in tannin values between the methylcellulose and protein

  20. The near-UV absorber OSSO and its isomers.

    PubMed

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  1. Combined micro-Raman/UV-visible/fluorescence spectrometer for high-throughput analysis of microsamples.

    PubMed

    Noh, Jermim; Suh, Yung Doug; Park, Yong Ki; Jin, Seung Min; Kim, Soo Ho; Woo, Seong Ihl

    2007-07-01

    Combined micro-Raman/UV-visible (vis)/fluorescence spectroscopy system, which can evaluate an integrated array of more than 10,000 microsamples with a minimuma size of 5 microm within a few hours, has been developed for the first time. The array of microsamples is positioned on a computer-controlled XY translation microstage with a spatial resolution of 1 mum so that the spectra can be mapped with micron precision. Micro-Raman spectrometers have a high spectral resolution of about 2 cm(-1) over the wave number range of 150-3900 cm(-1), while UV-vis and fluorescence spectrometers have high spectral resolutions of 0.4 and 0.1 nm over the wavelength range of 190-900 nm, respectively. In particular, the signal-to-noise ratio of the micro-Raman spectroscopy has been improved by using a holographic Raman grating and a liquid-nitrogen-cooled charge-coupled device detector. The performance of the combined spectroscopy system has been demonstrated by the high-throughput screening of a combinatorial ferroelectric (i.e., BaTi(x)Zr(1-x)O(3)) library. This system makes possible the structure analysis of various materials including ferroelectrics, catalysts, phosphors, polymers, alloys, and so on for the development of novel materials and the ultrasensitive detection of trace amounts of pharmaceuticals and diagnostic agents.

  2. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized

  3. FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron-lead-tellurate glasses.

    PubMed

    Rada, Simona; Dehelean, Adriana; Culea, Eugen

    2011-08-01

    In this work, the effects of iron ion intercalations on lead-tellurate glasses were investigated via FTIR, Raman and UV-Vis spectroscopies. This homogeneous glass system has compositions xFe(2)O(3)·(100-x)[4TeO(2)·PbO(2)], where x = 0-60 mol%. The presented observations in these mechanisms show that the lead ions have a pronounced affinity towards [TeO(3)] structural units, resulting in the deformation of the Te-O-Te linkages, and leading to the intercalation of [PbO( n )] (n = 3, 4) and [FeO( n )] (n = 4, 6) entities in the [TeO(4)] chain network. The formation of negatively charged [FeO(4)](1-) structural units implies the attraction of Pb(2+) ions in order to compensate for this electrical charge. Upon increasing the Fe(2)O(3) content to 60 mol%, the network can accommodate an excess of oxygen through the formation of [FeO(6)] structural units and the conversion of [TeO(4)] into [TeO(3)] structural units. For even higher Fe(2)O(3) contents, Raman spectra indicate a greater degree of depolymerization of the vitreous network than FTIR spectra do. The bands due to the Pb-O bond vibrations are very strongly polarized and the [TeO(4)] structural units convert into [TeO(3)] units via an intermediate coordination stage termed "[TeO(3+1)]" structural units. Our UV-Vis spectroscopic data show two mechanisms: (i) the conversion of the Fe(3+) to Fe(2+) at the same time as the oxidation of Pb(2+) to Pb(+4) ions for samples with low Fe(2)O(3) contents; (ii) when the Fe(2)O(3) content is high (x ≥ 50 mol%), the Fe(2+) ions capture positive holes and are transferred to Fe(3+) ions through a photochemical reaction, while the Pb(2+) ions are formed by the reduction of Pb(4+) ions. DFT calculations show that the addition of Fe(2)O(3) to lead-tellurate glasses seems to break the axial Te-O bonds, and the [TeO(4)] structural units are gradually transformed into [TeO(3+1)]- and [TeO(3)]-type polyhedra. Analyzing these data further indicates a gradual

  4. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-01

    Myricetin (3,3‧,4‧,5,5‧,7‧-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000 cm- 1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31 + G(d,p).

  5. Investigation of tin oxide nanofibers synthesized via bio-template technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Virender Singh, E-mail: vskundu-kuk@rediffmail.com; Dhiman, Jonny; Kumar, Suresh

    In the present paper tin oxide nanofibers have been by synthesized using cotton as bio-template via sol-gel route. This is comparatively a new synthesis technique. The structure and morphology of the obtained SnO{sub 2} nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX). The optical properties of the same have been studied by using UV-Vis spectroscopy. The observed XRD pattern showed that peaks are very narrow and sharp which indicates crystalline nature of samples. SEM images gave an idea about the sample morphology and confirm that the obtained sample were nanofibers. The optical absorbancemore » spectrum of the sample under study was recorded in UV-visible region (200nm- 800nm). The band gap of the sample was found to be 3.95 eV which is higher than their bulk counterpart.« less

  6. Photochemistry of PAHs in cosmic water ice. The effect of concentration on UV-VIS spectroscopy and ionization efficiency

    NASA Astrophysics Data System (ADS)

    Cuylle, Steven H.; Allamandola, Louis J.; Linnartz, Harold

    2014-02-01

    Context. Observations and models show that polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the interstellar medium. Like other molecules in dense clouds, PAHs accrete onto interstellar dust grains, where they are embedded in an ice matrix dominated by water. In the laboratory, mixed molecular ices (not containing PAHs) have been extensively studied using Fourier transform infrared absorption spectroscopy. Experiments including PAHs in ices have started, however, the concentrations used are typically much higher than the concentrations expected for interstellar ices. Optical spectroscopy offers a sensitive alternative. Aims: We report an experimental study of the effect PAH concentration has on the electronic spectra and the vacuum UV (VUV) driven processes of PAHs in water-rich ices. The goal is to apply the outcome to cosmic ices. Methods: Optical spectroscopic studies allow us to obtain in-situ and quasi real-time electronic solid state spectra of two prototypical PAHs (pyrene and coronene) embedded in water ice under VUV photoprocessing. The study is carried out on PAH:H2O concentrations in the range of 1:30 000 to pure PAH, covering the temperature range from 12 to 125 K. Results: PAH concentration strongly influences the efficiency of PAH cation formation. At low concentrations, ionization efficiencies are over 60% dropping to about 15% at 1:1000. Increasing the PAH concentration reveals spectral broadening in neutral and cation PAH spectra attributed to PAH clustering inside the ice. At the PAH concentrations expected for interstellar ices, some 10 to 20% may be present as cations. The presence of PAHs in neutral and ion form will add distinctive absorption bands to cosmic ice optical spectra and this may serve as a tool to determine PAH concentrations.

  7. Effect of solvent on the synthesis of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Virender; Singh, Karamjit; Singh, Kulwinder

    Tin oxide (SnO{sub 2}) nanoparticles have been synthesized by co-precipitation method. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD) and Ultraviolet-Visible spectroscopy (UV-VIS). XRD analysis confirmed the formation of single phase of SnO{sub 2} nanoparticles. It has been found that solvents played important role in controlling the crystallite size of SnO{sub 2} nanoparticles. The XRD analysis showed well crystallized tetragonal SnO{sub 2} nanoparticles. The crystallite size of SnO{sub 2} nanoparticles varies with the solvent. Tauc plot showed that optical band gap was also tailored by controlling the solvent during synthesis.

  8. Group 12 dithiocarbamate complexes: synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites.

    PubMed

    Ajibade, Peter A; Ejelonu, Benjamin C

    2013-09-01

    Zn(II), Cd(II) and Hg(II) dithiocarbamate complexes have been synthesized and characterized by elemental analysis, thermogravimetric analysis, UV-Vis, FTIR, (1)H- and (13)C NMR spectroscopy. The complexes were thermolysed at 180 °C and used as single molecule precursors for the synthesis of HDA capped ZnS, CdS and HgS nanoparticles and polymethylmethacrylate (PMMA) nanocomposites. The optical and structural properties of the nanoparticles and nanocomposites were studied by UV-Vis, PL, XRD and SEM. The crystallites sizes of the nanoparticles varied between 3.03 and 23.45 nm. SEM and EDX analyses of the nanocomposites confirmed the presence of the nanoparticles in the polymer matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Reduction of the 3,4,9,10-perylenediimides and the formation of eletrodeposited films based on their radical anions

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yuan; Gu, Shuang-Xi

    2014-09-01

    The reduction of the two 3,4,9,10-perylene diimide (PDI) derivatives in the mixture of hydrazine hydrate and N,N-dimethylformamide was investigated by the UV-vis absorption spectra, fluorescence spectra (FL) and electron spin resonance spectroscopy (ESR). The time dependence of the PDI content, as well as the structure of PDI aggregates were also investigated and discussed. Combining the electro-migration behavior of PDI-· with the molecular self-assembly properties, the films of two PDI derivatives (PDI-32 and PDI-123) were successfully fabricated via anode electro-deposition (AED). The difference of aggregation state between the two PDI films was studied by UV-vis absorption spectra, XRD and SEM. Based on these, the formation mechanism of PDI films was also deduced.

  10. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    PubMed

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  11. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  12. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens.

    PubMed

    Karthika, Viswanathan; Arumugam, Ayyakannu; Gopinath, Kasi; Kaleeswarran, Periyannan; Govindarajan, Marimuthu; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2017-02-01

    In the present study, we focused on a quick and green method to fabricate Ag, Au and Ag/Au alloy nanoparticles (NPs) using the bark extract of Guazuma ulmifolia L. Green synthesized metal NPs were characterized using different techniques, including UV-Vis spectroscopy, FT-IR, XRD, AFM and HR-TEM analyses. The production of Ag, Au and Ag/Au alloy NPs was observed monitoring color change from colorless to brown, followed by pink and dark brown, as confirmed by UV-Vis spectroscopy characteristic peaks at 436, 522 and 510nm, respectively. TEM shed light on the spherical shapes of NPs with size ranges of 10-15, 20-25 and 10-20nm. Biosynthesized NPs showed good catalytic activity reducing two organic dyes, 4-nitrophenol (4-NP) and Congo red (CR). UV-vis spectroscopy, fluorescence, circular dichroism spectroscopy and viscosity analyses were used to investigate the NP binding with calf thymus DNA. The binding constant of NPs with DNA calculated in UV-Vis absorption studies were 1.18×10 4 , 1.83×10 4 and 2.91×10 4 M -1 , respectively, indicating that NPs were able to bind DNA with variable binding affinity: Ag/Au alloy NPs>Ag NPs>Au NPs. Ag/Au alloy NPs also showed binding activity to bovine serum albumin (BSA) over the other NPs. Ag and Ag/Au alloy NPs exhibited good antimicrobial activity on 14 species of microbial pathogens. In addition, the cytotoxic effects of Ag/Au alloy NPs were studied on human cervical cancer cells (HeLa) using MTT assay. Overall, our work showed the promising potential of bark-synthesized Ag and Ag/Au alloy NPs as cheap sources to develop novel and safer photocatalytic, antimicrobial and anticancer agents. Copyright © 2017. Published by Elsevier B.V.

  13. Rapid ultrasound-assisted magnetic microextraction of gallic acid from urine, plasma and water samples by HKUST-1-MOF-Fe3O4-GA-MIP-NPs: UV-vis detection and optimization study.

    PubMed

    Asfaram, Arash; Ghaedi, Mehrorang; Dashtian, Kheibar

    2017-01-01

    Magnetite (Fe 3 O 4 nanoparticles (NPs)) HKUST-1 metal organic framework (MOF) composite as a support was used for surface imprinting of gallic acid imprinted polymer (HKUST-1-MOF-Fe 3 O 4 -GA-MIP) using vinyltrimethoxysilane (VTMOS) as the cross-linker. Subsequently, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP characterized by FT-IR, XRD and FE-SEM analysis and applied for fast and selective and sensitive ultrasound assisted dispersive magnetic solid phase microextraction of gallic acid (GA) by UV-Vis (UA-DMSPME-UV-Vis) detection method. Plackett-Burman design (PBD) and central composite design (CCD) according to desirability function (DF) indicate the significant variables among the extraction factors vortex (mixing) time (min), sonication time (min), temperature (°C), eluent volume (L), pH and HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass (mg) and their contribution on the response. Optimum conditions and values correspond to pH, HKUST-1-MOF-Fe 3 O 4 -NPs-GA-MIP mass, sonication time and the eluent volume were set as follow 3.0, 1.6mg, 4.0min and 180μL, respectively. The average recovery (ER%) of GA was 98.13% with desirability of 0.997, while the present method has best operational performance like wide linear range 8-6000ngmL -1 with a Limit of detection (LOD) of 1.377ngmL -1 , limit of quantification (LOQ) 4.591ngmL -1 and precision (<3.50% RSD). The recovery of GA in urine, human plasma and water samples within the range of 92.3-100.6% that strongly support high applicability of present method for real samples analysis, which candidate this method as promise for further application. Copyright © 2016. Published by Elsevier B.V.

  14. A combined experimental and computational study of 3-bromo-5-(2,5-difluorophenyl) pyridine and 3,5-bis(naphthalen-1-yl)pyridine: Insight into the synthesis, spectroscopic, single crystal XRD, electronic, nonlinear optical and biological properties

    NASA Astrophysics Data System (ADS)

    Ghiasuddin; Akram, Muhammad; Adeel, Muhammad; Khalid, Muhammad; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Asghar, Muhammad Adnan; Ullah, Malik Aman; Iqbal, Muhammad

    2018-05-01

    Carbon-carbon coupling play a vital role in the synthetic field of organic chemistry. Two novel pyridine derivatives: 3-bromo-5-(2,5-difluorophenyl)pyridine (1) and 3,5-bis(naphthalen-1-yl)pyridine (2) were synthesized via carbon-carbon coupling, characterized by XRD, spectroscopic techniques and also investigated by using density functional theory (DFT). XRD data and optimized DFT studies are found to be in good correspondence with each other. The UV-Vis analysis of compounds under study i.e. (1) and (2) was obtained by using "TD-DFT/B3LYP/6-311 + G(d,p)" level of theory to explain the vertical transitions. Calculated FT-IR and UV-Vis results are found to be in good agreement with experimental FT-IR and UV-Vis findings. Natural bond orbital (NBO) study was performed using B3LYP/6-311 + G(d,p) level to find the most stable molecular structure of the compounds. Frontier molecular orbital (FMO) analysis were performed at B3LYP/6-311 + G(d,p) level of theory, which indicates that the molecules might be bioactive. Moreover, the bioactivity of compounds (1) and (2) have been confirmed by the experimental activity in terms of zones of inhibition against bacteria and fungus. Chemical reactivity of compounds (1) and (2) was indicated by mapping molecular electrostatic potential (MEP) over the entire stabilized geometries of the compounds under study. The nonlinear optical properties were computed with B3LYP/6-311 + G(d,p) level of theory which are found greater than the value of urea due to conjugation effect. Two state model has been further employed to explain the nonlinear optical properties of compounds under investigation.

  15. UV-Vis microspectrophotometry as a method of differentiation between cotton fibre evidence coloured with reactive dyes.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-05-05

    The main purposes of this study was to assess the usefulness of microspectrophotometry (MSP), both in the ultraviolet (UV) and visible (Vis) range for discriminating single cotton fibres dyed with reactive dyes coming from the same manufacturer, as well as the possibility of evaluation of the concentration of dye in an examine fibre. This study utilised woven cotton fabrics dyed with different concentrations of one-compound reactive dyes with the commercial name Cibacron® (at present Novacron®) as the focus of the MSP analysis. The spectra were recorded in the UV-Vis range between 200 and 800nm, in transmission mode. The results from this study illustrated that all of the analysed cotton samples dyed with reactive dyes were distinguishable between each other with the use of MSP, mostly in the visible, and also in ultraviolet range. The limit for applied MSP techniques was 0.18% of the concentration of a dye in the textile sample. The results indicate that based on the absorbance measurements for fibres constituting e.g. forensic traces it was not possible to estimate the concentration of the dye in the fibre because Beer's law did not obey. The intra-sample, and inter- sample variation, as well as dichroism effect in a case of a cotton fibres dyed with reactive dye were observed. On the basis of the results obtained for each analysed cotton sample, it was concluded that there was no correlation between colour uniformity in cotton fabric (changes in lightness, red/green and yellow/blue colour) and concentration of the reactive dye. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electronic states of Myricetin. UV-Vis polarization spectroscopy and quantum chemical calculations.

    PubMed

    Vojta, Danijela; Karlsen, Eva Marie; Spanget-Larsen, Jens

    2017-02-15

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40,000-20,000cm -1 were characterized with respect to their wavenumbers, relative intensities, and transition moment directions. The observed bands were assigned to electronic transitions predicted with TD-B3LYP/6-31+G(d,p). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Explaining Space-Weathering Effects on UV-Vis-NIR Spectra with Light-Scattering Methods

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Väisänen, Timo; Martikainen, Julia; Kohout, Tomas; Muinonen, Karri

    2015-11-01

    Space-weathering (SW) introduces changes to the asteroid reflectance spectra. In silicate minerals, SW is known to darken the spectra and reduce the silicate absorption band depths. In olivine, the neutral slope in Vis and NIR wavelengths is becoming positive [1]. In pyroxene, the positive slope over the 1 µm absorption band is decreasing, and the negative slope over the 2 µm band is increasing towards positive values with increasing SW [2].The SW process generates small nanophase iron (npFe0) inclusions in the surface layers of mineral grains. The inclusions are some tens of nm in size. This mechanism has been linked to the Moon and to a certain extent also to the silicate-rich S-complex asteroids.We offer two simple explanations from light-scattering theory to explain the SW effects on the spectral slope. First, the npFe0 will introduce a posititive general slope (reddening) to the spectra. The npFe0 inclusions (~10 nm) are in the Rayleigh domain with the wavelength λ in the UV-Vis-NIR range. Their absorption cross-section follows approximately the 1/λ-relation from the Rayleigh theory. Absorption is more efficient in the UV than in the NIR wavelengths, therefore the spectra are reddening.Second, the effect of npFe0 absorption is more efficient for originally brighter reflectance values. Explanation combines the effective medium theory and the exponential attenuation in the medium. When adding a small amount of highly absorbing npFe0, the effective absorption coefficient k will increase approximately the same Δk for the typical values of silicates. This change will increase more effectively the exponential attenuation if the original k was very small, and thus the reflectance high. Therefore, both positive and negative spectral slopes will approach zero with SW.We conclude that the SW will introduce a general reddening, and neutralize local slopes. This is verified using the SIRIS code [3], which combines geometric optics with small internal diffuse

  18. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    PubMed

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Fe(Ⅲ) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate.

    PubMed

    Guo, Yujiao; Cui, Kuixin; Hu, Mingyi; Jin, Shengming

    2017-08-01

    The wire-like Fe 3+ -doped (BiO) 2 CO 3 photocatalyst was synthesized by a hydrothermal method. The photocatalytic property of Fe 3+ -doped (BiO) 2 CO 3 nanowires was evaluated through degradation of sodium isopropyl xanthate under UV-visible light irradiation. The as-prepared Fe 3+ -doped (BiO) 2 CO 3 nanowires were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-visible diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) in detail. The results of XRD showed that the crystallinity of (BiO) 2 CO 3 nanowires decreased when Fe 3+ ions were introduced into the solution system. XPS results illustrated that xanthate could be absorbed on the surface of Fe 3+ -doped (BiO) 2 CO 3 nanowires to produce BiS bond at the beginning of the reaction, which could broaden the visible light absorption. FTIR spectra confirmed the formation of SO 4 2- after photocatalytic decomposition of xanthate solution. The Fe 3+ -doped (BiO) 2 CO 3 nanowires showed an enhanced photocatalytic activity for decomposition of xanthate due to the narrower band gap and larger BET surface area, comparing with pure (BiO) 2 CO 3 nanowires. By the results of UV-vis spectra of the solution and FTIR spectra of recycled Fe 3+ -doped (BiO) 2 CO 3 , the xanthate was oxidized completely into CO 2 and SO 4 2- . The photocatalytic degradation process of xanthate followed a pseudo-second-order kinetics model. The mechanism of enhanced photocatalytic activity was proposed as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Study of cubic boron nitride crystal UV absorption spectroscopy].

    PubMed

    Liu, Hai-Bo; Jia, Gang; Chen, Gang; Meng, Qing-Ju; Zhang, Tie-Chen

    2008-07-01

    UV absorption spectroscopy of artificial cubic boron nitride (cBN) single crystal flake, synthesized under high-temperature and high-pressure, was studied in the present paper. UV WINLAB spectrometer was used in the experiments, and MOLECULAR SPECTROSCOPY software was used for data analysis. The UV-cBN limit of 198 nm was showed in this test by a special fixture quartz sample. We calculated the energy gap by virtue of the formula: lambda0 = 1.24/E(g) (microm). The energy gap is 6. 26 eV. There are many viewpoints about the gap of cBN. By using the first-principles theory to calculate energy band structure and density of electronic states of cBN, an indirect transition due to electronics in valence band jumping into conduction band by absorbing photon can be confirmed. That leads to UV absorption. The method of calculation was based on the quantum mechanics of CASTEP in the commercial software package of Cerius2 in the Co. Accerlrys in the United States. The theory of CASTEP is based on local density approximation or gradient corrected LDA. The crystal parameter of cBN was input to the quantum mechanics of CASTEP in order to construct the crystal parameter model of cBN. We calculated the energy gap of cBN by the method of gradient corrected LDA. The method underestimates the value of nonconductor by about 1 to 2 eV. We gaot some opinions as follows: cBN is indirect band semiconductor. The energy gap is 4.76 eV, less than our experiment. The reason may be defect that we ignored in calculating process. It was reported that the results by first principles method of calculation of the band generally was less than the experimental results. This paper shows good UV characteristics of cBN because of the good agreement of experimental results with the cBN band width. That is a kind of development prospect of UV photo-electronic devices and high-temperature semiconductor devices.

  1. Validation of methods on formalin testing in tofu and determination of 3,5-diacetyl-dihydrolutidine stability by UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Rohyami, Yuli; Pribadi, Rizki Maulana

    2017-12-01

    Formalin is a food preservative that is prohibited by the government, but the abuse of these chemicals is still widely found. The presence of formalin can be detected by using a typical reagent that can ensure the presence of formaldehyde qualitatively and quantitatively. This research was conducted to validate the method of determining formalin in tofu by using Nash reagent in UV-Vis spectrophotometry. The addition of Nash reagent will lead to the formation of diacetyldihydrolutidin complex. The study was performed by stability test of deacetyldihydrolutidine complex against time and pH. Validation of methods for formalin testing in tofu with diacetyldihydrolutidine by UV-Vis spectrophotometry. The results showed that 3,5-diacetyl-dihydrolutidine complex is stable at pH of 7 and stable in the range of 70-120 minutes. The validation shows that the method gives good precision and accuracy of 83.78%. The method has the limit of detection of 1.3681 µg/mL, limit of quantification of 4,5603 µg/mL, and the estimated uncertainty of measurement of 1.30 µg/mL. The test showed that the tofu contained formalin 3.09 ± 1.30 µg/mL. These values provide information that this method can be used as a procedure for the determination of formalin on tofu.

  2. Synthesis and characterization of graphene quantum dots/cobalt ferrite nanocomposite

    NASA Astrophysics Data System (ADS)

    Ramachandran, Shilpa; Sathishkumar, M.; Kothurkar, Nikhil K.; Senthilkumar, R.

    2018-02-01

    A facile method has been developed for the synthesis of a graphene quantum dots/cobalt ferrite nanocomposite. Graphene quantum dots (GQDs) were synthesized by a simple bottom-up method using citric acid, followed by the co-precipitation of cobalt ferrite nanoparticles on the graphene quantum dots. The morphology, structural analysis, optical properties, magnetic properties were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy, fluorescence spectroscopy, vibrating sample magnetometry (VSM) measurements. The synthesized nanocomposite showed good fluorescence and superparamagnetic properties, which are important for biomedical applications.

  3. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy

    PubMed Central

    Nordvang, Emily C; Borodina, Elena; Ruiz-Martínez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M

    2015-01-01

    The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results. PMID:26463581

  4. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity.

    PubMed

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Ultrafast Infrared and UV-vis Studies of the Photochemistry of Methoxycarbonylphenyl Azides in Solution

    PubMed Central

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.

    2012-01-01

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 108 L·mol−1·s−1 at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed towards the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is azirine to ketenimine formation, rendering the formation of the ester-ketenimine to be less favorable than the isomeric MeO-ketenimine. PMID:22568477

  6. Ultrafast infrared and UV-vis studies of the photochemistry of methoxycarbonylphenyl azides in solution.

    PubMed

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S V; Hadad, Christopher M; Platz, Matthew S

    2012-06-07

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 10(8) L·mol(-1)·s(-1) at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho-methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed toward the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is, azirine to ketenimine formation, rendering the formation of the ester-ketenimine (4d') to be less favorable than the isomeric MeO-ketenimine (4d).

  7. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application.

    PubMed

    Yang, Jiazhi; Yu, Junwei; Fan, Jun; Sun, Dongping; Tang, Weihua; Yang, Xuejie

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl(2) and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCI Flower-Like Microspheres.

    PubMed

    Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin

    2015-02-01

    Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.

  9. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  10. Detecting Kerogen as a Biosignature Using Co-located UV Time-Gated Raman and Fuorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shkolyar, S.; Eshelman, E.; Farmer, J. D.; Hamilton, D.; Daly, M. G.; Youngbull, C.

    2017-12-01

    The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest-priority targeted samples include aqueously formed sedimentary lithologies containing fossil biosignatures as aromatic carbon (kerogen). In this study, we analyze non-extracted, naturally preserved kerogen in a diverse suite of realistic Mars analogs using combined UV excitation time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopy. We interrogated kerogen and its host matrix in samples to: (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopy for detecting kerogen in high-priority targets in the search for a Martian fossil record; (2) assess the effectiveness of time-gating and UV laser wavelength in reducing fluorescence; and (3) identify sample-specific issues which could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that fluorescence features indicating kerogen are detectable. These data highlight the value of using both co-located Raman and fluorescence data sets together to strengthen the confidence of kerogen detection as a potential biosignature and are obtainable by SHERLOC onboard Mars 2020.

  11. Degradation of blue and red inks by Ag/AgCl photocatalyst under UV light irradiation

    NASA Astrophysics Data System (ADS)

    Daupor, Hasan; Chenea, Asmat

    2017-08-01

    Objective of this research, cubic Ag/AgCl photocatalysts with an average particle size of 500 nm has been successfully synthesized via a modified precipitation reaction between ZrCl4 and AgNO3. Method for analysis, the crystal structure of the product was characterized by X-ray powder diffraction (XRD). The morphology and composition were studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse-reflection spectra (DRS) and so on. The result showed that the optical absorption spectrum exhibited strong absorption in the visible region around 500-600 nm due to surface plasmon resonance (SPR) of metallic silver nanoparticles. SEM micrographs showed that the obtained Ag/AgCl had cubic morphology and appeared on the porous surface as the cubic cage morphology. As a result, this porous surface also positively affected the photocatalytic reaction. The photocatalytic activity of the obtained product was evaluated by the photodegradation of blue and red ink solutions under UV light irradiation, and it was interestingly, discovered that AgCl could degrade 0.25% and 0.10% in 7 hours for blue and red inks solution respectively, Which were higher than of commercial AgCl. The result suggested that the morphology of Ag/AgCl strongly affected their photocatalytic activities. O2-, OH- reaction. radicals and Cl° atom are main species during photocatalytic reaction.

  12. Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO2

    PubMed Central

    Che Ramli, Zatil Amali; Asim, Nilofar; Isahak, Wan N. R. W.; Emdadi, Zeynab; Ahmad-Ludin, Norasikin; Yarmo, M. Ambar; Sopian, K.

    2014-01-01

    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples. PMID:25013855

  13. Preparation of C60(O)n-ZnO nanocomposite under electric furnace and photocatalytic degradation of organic dyes.

    PubMed

    Cho, Bum Hwi; Oh, Youn Jun; Mun, Sang Mi; Ko, Weon Bae

    2012-07-01

    Zinc oxide (ZnO) nanoparticles were synthesized sonochemically by applying ultrasonic irradiation to a mixed aqueous-alcoholic solution of zinc nitrate with sodium hydroxide at room temperature. The morphology and optical properties of the ZnO nanoparticles were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis spectroscopy. The C60(O)n nanoparticles were synthesized by heating a mixture of C60 and 3-chloroperoxybenzoic acid in a benzene solvent under the reflux system. The heated C60(O)n-ZnO nanocomposite was synthesized in an electric furnace at 700 degrees C for two hours. The heated C60(O)n-ZnO nanocomposite was characterized by XRD, SEM, and TEM, and examined as a catalyst in the photocatalytic degradation of organic dyes by UV-vis spectroscopy. The photocatalytic effect of the heated C60(O)n-ZnO nanocomposite was evaluated by a comparison with that of unheated C60(O)n nanoparticles, heated C60(O)n nanoparticles, and unheated C60(O)n-ZnO in organic dyes, such as methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultraviolet light at 365 nm.

  14. Neoteric environmental detoxification of organic pollutants and pathogenic microbes via green synthesized ZnO nanoparticles.

    PubMed

    Jaffri, Shaan Bibi; Ahmad, Khuram Shahzad

    2018-06-13

    Present study has for the first time reported Prunus cerasifera leaf extract mediated zinc oxide nanoparticles in a green and one pot synthetic mode without utilization of any chemical reducing agents. Synthesized nanoparticles were analyzed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), fourier transmission infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). UV-Vis peak was detected at 380 nm due to surface plasmon resonance (SPR). Variety of biomolecules were revealed by FTIR involved in reduction cum stabilization of zinc oxide nanoparticles. Wurtzite hexagonal geometry with an average crystallite size of 12 nm was obtained from XRD diffraction pattern. SEM exhibited size ranges of 80-100 nm and 60- 100 nm for 200 ℃ and 600 ℃ calcination temperatures. Synthesized nanoparticles were used as bio-cleaning photocatalysts against organic pollutants i.e. bromocresol green, bromophenol blue, methyl red and methyl blue, which yielded pseudo first order reaction kinetics (R 2 = 0.98, 0.92, 0.92, 0.90 respectively). Pollutants expressed higher degradation percentages in less than 14 min in direct solar irradiance. Moreover, synthesized nanoparticles were tested against resistant microbes i.e. Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani, Lasiodiplodia theobromae, Xanthomonas axonopodis pv. citri and Psuedomonas syringae for development of new generation of antimicrobial agents.

  15. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    PubMed Central

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336

  16. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  17. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    NASA Astrophysics Data System (ADS)

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  18. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  19. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  20. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    NASA Astrophysics Data System (ADS)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  1. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    NASA Astrophysics Data System (ADS)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  2. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    NASA Astrophysics Data System (ADS)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  3. Organic Aerosols in the Presence of CO2 in the Early Earth and Exoplanets: UV-Vis Refractive Indices of Oxidized Tholins

    NASA Astrophysics Data System (ADS)

    Gavilan, Lisseth; Broch, Laurent; Carrasco, Nathalie; Fleury, Benjamin; Vettier, Ludovic

    2017-10-01

    In this experimental study we investigate the role of atmospheric CO2 on the optical properties of organic photochemical aerosols. To this end, we add CO2 to a N2:CH4 gas mixture used in a plasma typically used for Titan studies. We produce organic thin films (tholins) in plasmas where the CO2/CH4 ratio is increased from 0 to 4. We measure these films via spectrometric ellipsometry and apply a Tauc-Lorentz model, used for optically transparent materials, to obtain the thickness of the thin film, its optical band gap, and the refractive indices in the UV-visible (270-600 nm). All samples present a significant absorption band in the UV. According to the Tauc-Lorentz model, as the CO2/CH4 ratio is quadrupled, the position of the UV band is shifted from ˜177 nm to 264 nm while its strength is quadrupled. Consequently, we infer that oxidized organic aerosols absorb more efficiently at longer UV wavelengths than reduced aerosols. Our laboratory wavelength-tabulated UV-vis refractive indices provide new constraints to atmospheric models of the early Earth and Earth-like exoplanets including photochemical hazes formed under increasingly oxidizing conditions.

  4. Interplay of structural, optical and magnetic properties in Gd doped CeO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soni, S.; Dalela, S., E-mail: sdphysics@rediffmail.com; Kumar, Sudish

    In this research wok systematic investigation on the synthesis, characterization, optical and magnetic properties of Ce{sub 1-x}Gd{sub x}O{sub 2} (where x=0.02, 0.04, 0.06, and 0.10) synthesized using the Solid-state method. Structural, Optical and Magnetic properties of the samples were investigated by X-ray diffraction (XRD), UV-VIS-NIR spectroscopy and VSM. Fluorite structure is confirmed from the XRD measurement on Gd doped CeO{sub 2} samples. Magnetic studies showed that the Gd doped polycrystalline samples display room temperature ferromagnetism and the ferromagnetic ordering strengthens with the Gd concentration.

  5. ZnO nanorods decorated with ZnS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joicy, S.; Sivakumar, P.; Thangadurai, P., E-mail: thangaduraip.nst@pondiuni.edu.in

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showedmore » a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.« less

  6. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid

    NASA Astrophysics Data System (ADS)

    Karabacak, M.; Kose, E.; Sas, E. B.; Kurt, M.; Asiri, A. M.; Atac, A.

    2015-02-01

    The spectroscopic (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm-1 and 3500-10 cm-1, respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts (1H and 13C) were recorded in DMSO solution. The 1H and 13C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing.

  7. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    PubMed

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of Y2O3 nano-material: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Ahmad, Sheeraz; Faizan, Mohd; Ahmad, Shabbir; Ikram, Mohd

    2018-04-01

    We made an attempt to synthesize pure Y2O3 nanomaterial by using the sol-gel method followed by annealing at 600°C and 900°C. The synthesized Y2O3 nanoparticle was characterized by using XRD, FTIR, and UV-Vis spectroscopy. The structural refinement was performed using FULLPROF software by the Rietveld method. The refinement parameters such as lattice constant, atomic position, occupancy, R-factor and goodness of fit (χ2) were calculated. The nanoparticle has a single phase cubic structure with Ia -3 space group. The main absorption band in FTIR spectra centered at 560 cm-1 is attributed to Y-O vibration while the broadband at 3450 cm-1 arises due to O-H vibration. The band gap was obtained from the reflectance spectra using the K-M function F(R∞). The optimized structural parameters and UV-Vis spectrum were calculated using DFT and TD-DFT/B3LYP methods in bulk phase of Y2O3 and compared with experimental UV-Vis spectra in nanophase.

  9. Effect of UV-A and UV-B irradiation on the metabolic profile of aqueous humor in rabbits analyzed by 1H NMR spectroscopy.

    PubMed

    Tessem, May-Britt; Bathen, Tone F; Cejková, Jitka; Midelfart, Anna

    2005-03-01

    This study was conducted to investigate metabolic changes in aqueous humor from rabbit eyes exposed to either UV-A or -B radiation, by using (1)H nuclear magnetic resonance (NMR) spectroscopy and unsupervised pattern recognition methods. Both eyes of adult albino rabbits were irradiated with UV-A (366 nm, 0.589 J/cm(2)) or UV-B (312 nm, 1.667 J/cm(2)) radiation for 8 minutes, once a day for 5 days. Three days after the last irradiation, samples of aqueous humor were aspirated, and the metabolic profiles analyzed with (1)H NMR spectroscopy. The metabolic concentrations in the exposed and control materials were statistically analyzed and compared, with multivariate methods and one-way ANOVA. UV-B radiation caused statistically significant alterations of betaine, glucose, ascorbate, valine, isoleucine, and formate in the rabbit aqueous humor. By using principal component analysis, the UV-B-irradiated samples were clearly separated from the UV-A-irradiated samples and the control group. No significant metabolic changes were detected in UV-A-irradiated samples. This study demonstrates the potential of using unsupervised pattern recognition methods to extract valuable metabolic information from complex (1)H NMR spectra. UV-B irradiation of rabbit eyes led to significant metabolic changes in the aqueous humor detected 3 days after the last exposure.

  10. Using UHPLC and UV-vis Fingerprint Method to Evaluate Substitutes for Swertia mileensis: An Endangered Medicinal Plant.

    PubMed

    Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu

    2017-01-01

    exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide.

  11. Prediction of quality attributes of chicken breast fillets by using Vis/NIR spectroscopy combined with factor analysis method

    USDA-ARS?s Scientific Manuscript database

    Visible/near-infrared (Vis/NIR) spectroscopy with wavelength range between 400 and 2500 nm combined with factor analysis method was tested to predict quality attributes of chicken breast fillets. Quality attributes, including color (L*, a*, b*), pH, and drip loss were analyzed using factor analysis ...

  12. Optimisation of the Photonic Efficiency of TiO2 Decorated on MWCNTs for Methylene Blue Photodegradation.

    PubMed

    Abdullahi, Nura; Saion, Elias; Shaari, Abdul Halim; Al-Hada, Naif Mohammed; Keiteb, Aysar

    2015-01-01

    MWCNTs/TiO2 nanocomposite was prepared by oxidising MWCNT in H2SO4/HNO3 then decorating it with TiO2-p25 nanopowder. The composites were characterised using XRD, TEM, FT-IR PL and UV-vis spectroscopy. The TEM images have shown TiO2 nanoparticles immobilised onto the sidewalls of the MWCNTs. The UV-vis spectrum confirms that the nanocomposites can significantly absorb more light in the visible regions compared with the commercial TiO2 (P25). The catalytic activity of these nanocomposites was determined by photooxidation of MB aqueous solution in the presence of visible light. The MWCNTs/TiO2 (1:3) mass ratio showed maximum degradation efficiency. However, its activity was more favourable in alkaline and a neutral pH than an acidic medium.

  13. Catalytic degradation of Amlodipine Besylate using ZnO, Cu doped ZnO, and Fe doped ZnO nanoparticles from an aqueous solution: Investigating the effect of different parameters on degradation efficiency

    NASA Astrophysics Data System (ADS)

    Alizadeh, Elahe; Baseri, Hadi

    2018-04-01

    Some common nanoparticles, such as Zinc Oxide have been used as nanocatalysts in many processes, but they also have an important application in water purification processes. In this research, ZnO based nanoparticles were used for the degradation of Amlodipine Besylate (AMB) and the effect of some main parameters, e.g. initial concentration of AMB, nanocatalysts dose, pH of the solution, temperature of the solution, H2O2 dose, and the time of visible light irradiation, were investigated. The destruction amount was determined by UV-Vis spectroscopy. The synthesized nanoparticles were characterized by FE-SEM, XRD, FT-IR, BET, BJH, EDS, XRF and UV-Vis techniques. The maximum degradation of AMB was about 90% in 60 min of visible light irradiation with 100 μL of H2O2.

  14. One-step synthesis and characterizations of cerium oxide nanoparticles in an ambient temperature via Co-precipitation method

    NASA Astrophysics Data System (ADS)

    Pujar, Malatesh S.; Hunagund, Shirajahammad M.; Desai, Vani R.; Patil, Shivaprasadgouda; Sidarai, Ashok H.

    2018-04-01

    We report the simple Co-precipitation method for the synthesis of Cerium oxide (CeO2) nanoparticles (NPs) in an ambient temperature. We have taken the Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O) and Sodium hydroxide (NaOH) as the precursors. The obtained NPs were analyzed using the UV-Vis spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The obtained results signify that UV-Vis spectrum exhibited a well-defined absorption peak at 274 nm and the estimated energy gap (Eg) is 4.05 eV. The FT-IR analysis provides the supporting evidence for the presence of bonding of O-H, nitrates, alcohols and O-Ce-O vibrations. The XRD result reveals that the synthesized CeO2 NPs was crystallite with cubic phase structure and the estimated average crystallite size of CeO2 NPs using Scherer's and W-H method was significantly different due to their assumptions. Further, it is purposed to study their photocatalytic biological activities.

  15. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  16. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  17. Effects of slash-and-burn land management on soil spectral properties estimated with VIS-NIR-SWIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rosero-Vlasova, Olga Alexandra; Vlassova, Lidia; Rosero Tufiño, Pedro; Pérez-Cabello, Fernando; Montorio Llovería, Raquel

    2017-04-01

    Slash-and-burn land management is typical for low-income tropical countries, such as Ecuador. It involves conversion of forest into areas used for agriculture. At first trees are cut and the wood debris is burnt. After initial clearing, biomass burning is performed after each production cycle. Usually, cultivation cycles are followed by the fallow period. In the medium and long term, these practices have negative effect on soil fertility and there is the need for clearing more forest for agricultural use. This is one of the reasons for continuing deforestation with the consequent loss of biodiversity. Changes in physico-chemical properties due to periodic burning are accompanied by changes in soil spectral properties and can be determined using VIS-NIR-SWIR spectroscopy, which can be a cost-effective alternative for traditional methods of soil analysis. The purpose of the study is to assess the viability of VIS-NIR-SWIR spectroscopy for characterization of soils from land areas under slash-and-burn management system. Eighteen samples from soil surface layer were collected from two corn fields in the province of Los Rios, Ecuador, in September 2015. One of the areas has experienced six slash-and-burn cycles, while in the other the samples were collected at the end of the first corn cultivation cycle. Spectral measurements of sieved and air-dried samples were performed in the laboratory of the University of Zaragoza using ASD Fieldspec®4 spectroradiometer (350-2500nm spectral range) and ASD Illuminator Lamp as a light source. Statistically significant differences were observed between soil spectra of the samples from two soil groups. Reflectance of repeatedly burnt soils was 20% higher (mean value for the entire spectrum) for 65% of the samples, being especially important in VIS (>45%) and NIR ( 35%), probably due to the lower organic matter (OM) content. OM models built using Partial least Squares Regression demonstrated high predictive capacity (R2>0.8). Thus, the

  18. Multi-residue analysis of pesticide residues in mangoes using solid-phase microextraction coupled to liquid chromatography and UV-Vis detection.

    PubMed

    Filho, Adalberto M; dos Santos, Fábio N; Pereira, Pedro A de Paula

    2011-11-01

    A sensitive and efficient solid-phase microextraction method, based on liquid chromatography and UV-Vis detection, was developed and validated as an alternative method for sample screening prior to LC-MS analysis. It enables the simultaneous determination of ten pesticides in mango fruits. The fiber used was polydimethylsiloxane while optimum SPME conditions employed have been developed and optimized in a previous work. The desorption process was performed in static mode, using acetonitrile as a solvent. The results indicate that the DI-SPME/HPLC/UV-Vis procedure resulted in good linear range, accuracy, precision and sensibility and is adequate for analyzing pesticide residues in mango fruits. The limits of detection (0.6-3.3 μg/kg) and quantification (2.0-10.0 μg/kg) were achieved with values lower than the maximum residue levels (MRLs) established by Brazilian legislation for all pesticides in this study. The average recovery rates obtained for each pesticide ranged from 71.6 to 104.3% at three fortification levels, with the relative standard deviation ranging from 4.3 to 18.6%. The proposed method was applied for the determination of the aforementioned compounds in commercial mango samples and residues of azoxystrobin, fenthion, permethrin, abamectin and bifenthrin were detected in the mango samples, although below the MRLs established by Brazilian legislation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Grading of apples based on firmness and soluble solids content using VIS-SWNIR spectroscopy and spectral scattering techniques

    USDA-ARS?s Scientific Manuscript database

    Sorting apple fruit based on internal quality will enhance the industry’s competiveness and profitability and assure consumer satisfaction. In this research, visible and shortwave near-infrared (Vis-SWNIR) spectroscopy (460–1,100 nm) and spectral scattering (450–1,050 nm) were used for sorting apple...

  20. The structural and spectroscopic investigation of 2-chloro-3-methylquinoline by DFT method and UV-Vis, NMR and vibrational spectral techniques combined with molecular docking analysis

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Bardak, Fehmi

    2018-07-01

    This study comprises the structural and spectroscopic evaluation of a quinoline derivative, 2-chloro-3-methylquinoline (2Cl3MQ), via UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman techniques experimentally, theoretically with DFT and TD-DFT quantum chemical calculations at B3LYP/6-311++G (d, p) level of theory, and investigation of the in silico pharmaceutical potent of 2Cl3MQ in comparison to 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines. The experimental measurements were recorded as follows; UV-vis spectra were obtained in the range of 200-400 nm in the water and ethanol solvents. 1H and 13C NMR spectra were recorded in CDCl3. Vibrational spectra were obtained in the region of 4000-400 cm-1 and 3500-10 cm-1 for FT-IR and FT-Raman spectra, respectively. Structural and spectroscopic features obtained through theoretical evaluations include: electrostatic features, atomic charges and molecular electrostatic potential surface, the frontier molecular orbital characteristics, the density of states and their overlapping nature, the electronic transition properties, thermodynamical and nonlinear optical characteristics, and predicted UV-Vis, 1H and 13C NMR, FT-IR and FT-Raman spectra. Ligand-enzyme interactions of 2ClnMQ (n = 3,4,7,8,9,10) substituted quinolines with Malate Synthase from Mycobacterium Tuberculosis (MtbMS) were investigated via molecular docking. The role of position of methyl substitution on the inhibitor character of the ligands was discussed on the basis of noncovalent interaction profiles.

  1. Investigation on Structural and Optical Properties of Copper Telluride Thin Films with Different Annealing Temperature

    NASA Astrophysics Data System (ADS)

    Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.

    The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.

  2. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens

    PubMed Central

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-01-01

    Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. SUMMARY The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from

  3. Effects of copper on the preparation and characterization of Na-Ca-P borate glasses.

    PubMed

    Shailajha, S; Geetha, K; Vasantharani, P; Sheik Abdul Kadhar, S P

    2015-03-05

    Glasses in the system Na2O-CaO-B2O3-P2O5: CuO have been prepared by melt quenching at 1200°C and rapidly cooling at room temperature. The structural, optical and thermal properties have been investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectroscopy, thermogravimetric-differential thermal analysis (TG-DTA), Fourier transform infrared (FTIR) spectroscopy, high resolution scanning electron microscopy (HRSEM) with energy dispersive X-ray (EDX) spectroscopy and high resolution transmission electron microscope (HRTEM) with energy dispersive X-ray (EDAX). The amorphous and crystalline nature of these samples was verified by XRD. Glass transition, crystallization and thermal stability were determined by TG-DTA investigations. Direct optical energy band gaps before and after doping with different percents of copper oxide were evaluated from 4.81eV to 2.99eV indicated the role of copper in the glassy matrix by UV spectra. FTIR spectrum reveals characteristic absorption bands due to various groups of triangular and tetrahedral borate network. Due to the amorphous nature, the particles like agglomerates on the glass surface were investigated by the HRSEM analysis. The crystalline nature of the samples in XRD is confirmed by SAED pattern using HRTEM. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  5. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking.

    PubMed

    Jahanban-Esfahlan, Ali; Panahi-Azar, Vahid

    2016-07-01

    This study aims to investigate the interaction between glutathione and bovine serum albumin (BSA) using ultraviolet-visible (UV-vis) absorption, fluorescence spectroscopies under simulated physiological conditions (pH 7.4) and molecular docking methods. The results of fluorescence spectroscopy indicated that the fluorescence intensity of BSA was decreased considerably upon the addition of glutathione through a static quenching mechanism. The fluorescence quenching obtained was related to the formation of BSA-glutathione complex. The values of KSV, Ka and Kb for the glutathione and BSA interaction were in the order of 10(5). The thermodynamic parameters including enthalpy change (ΔH), entropy change (ΔS) and also Gibb's free energy (ΔG) were determined using Van't Hoff equation. These values showed that hydrogen bonding and van der Waals forces were the main interactions in the binding of glutathione to BSA and the stabilization of the complex. Also, the interaction of glutathione and BSA was spontaneous. The effects of glutathione on the BSA conformation were determined using UV-vis spectroscopy. Moreover, glutathione was docked in BSA using ArgusLab as a molecular docking program. It was recognized that glutathione binds within the sub-domain IIA pocket in domain II of BSA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Robertson, J.; Morrison, N. A.; Godet, C.

    2004-12-01

    In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5eV ) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted.

  7. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura

    NASA Astrophysics Data System (ADS)

    Lourenço Neto, M.; Agra, K. L.; Suassuna Filho, J.; Jorge, F. E.

    2018-03-01

    Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.

  8. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  9. Visible light driven photocatalytic degradation of methylene blue using novel camphor sulfonic acid doped polycarbazole/g-C3N4 nanocomposite

    NASA Astrophysics Data System (ADS)

    Praveena, P.; Dhanavel, S.; Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2018-04-01

    A novel polycabazole(PCz)/graphitic carbon nitride(g-C3N4) nanocomposite was synthesized via chemical oxidative polymerization method. In the present work, camphor sulfonic acid (CSA) was used as a dopantand ammonium peroxydisulphate (APS) was used as an oxidizing agent. The PCz/g-C3N4 nanocompositewas characterizedusing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and UV-Visible spectroscopy (UV-Vis). The obtained results confirm the successful formation of PCz/g-C3N4 nanocomposite. Visible light induced photocatalytic activity of the novel catalyst was demonstrated using methylene blue as a target pollutant. The results suggestthat PCz/g-C3N4 nanocomposite can be used as an effective catalyst for the degradation of organic pollutants from waste water.

  10. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus edulis Mushrooms in Combination with Chemometrics.

    PubMed

    Qi, Luming; Liu, Honggao; Li, Jieqing; Li, Tao; Wang, Yuanzhong

    2018-01-15

    Origin traceability is an important step to control the nutritional and pharmacological quality of food products. Boletus edulis mushroom is a well-known food resource in the world. Its nutritional and medicinal properties are drastically varied depending on geographical origins. In this study, three sensor systems (inductively coupled plasma atomic emission spectrophotometer (ICP-AES), ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared spectroscopy (FT-MIR)) were applied for the origin traceability of 192 mushroom samples (caps and stipes) in combination with chemometrics. The difference between cap and stipe was clearly illustrated based on a single sensor technique, respectively. Feature variables from three instruments were used for origin traceability. Two supervised classification methods, partial least square discriminant analysis (FLS-DA) and grid search support vector machine (GS-SVM), were applied to develop mathematical models. Two steps (internal cross-validation and external prediction for unknown samples) were used to evaluate the performance of a classification model. The result is satisfactory with high accuracies ranging from 90.625% to 100%. These models also have an excellent generalization ability with the optimal parameters. Based on the combination of three sensory systems, our study provides a multi-sensory and comprehensive origin traceability of B. edulis mushrooms.

  11. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus edulis Mushrooms in Combination with Chemometrics

    PubMed Central

    Qi, Luming; Liu, Honggao; Li, Jieqing; Li, Tao

    2018-01-01

    Origin traceability is an important step to control the nutritional and pharmacological quality of food products. Boletus edulis mushroom is a well-known food resource in the world. Its nutritional and medicinal properties are drastically varied depending on geographical origins. In this study, three sensor systems (inductively coupled plasma atomic emission spectrophotometer (ICP-AES), ultraviolet-visible (UV-Vis) and Fourier transform mid-infrared spectroscopy (FT-MIR)) were applied for the origin traceability of 184 mushroom samples (caps and stipes) in combination with chemometrics. The difference between cap and stipe was clearly illustrated based on a single sensor technique, respectively. Feature variables from three instruments were used for origin traceability. Two supervised classification methods, partial least square discriminant analysis (FLS-DA) and grid search support vector machine (GS-SVM), were applied to develop mathematical models. Two steps (internal cross-validation and external prediction for unknown samples) were used to evaluate the performance of a classification model. The result is satisfactory with high accuracies ranging from 90.625% to 100%. These models also have an excellent generalization ability with the optimal parameters. Based on the combination of three sensory systems, our study provides a multi-sensory and comprehensive origin traceability of B. edulis mushrooms. PMID:29342969

  12. Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer

    NASA Astrophysics Data System (ADS)

    Lei, Huibin; He, Deliang; Guo, Yanni; Tang, Yining; Huang, Houqiang

    2018-06-01

    A series of UV-absorbing fluorine-silicone acrylic resin polymers containing different amount of UV-absorbent were successfully prepared by solution polymerization, with 2-[3-(2H-Benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate (BHEM), vinyltrimethoxysilane (VTMS) and hexafluorobutyl methacrylate (HFMA) as modifying monomers. The acrylic polymers and the coatings thereof were characterized by Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) absorption spectrum, thermogravimetric analysis (TGA), water contact angle (CA) and Xenon lamp artificial accelerated aging tests. Results indicated that the resin exhibited high UV absorption performance as well as good thermal stability. The hydrophobicity of the coatings was of great improvement because of the bonded fluorine and silicone. Meanwhile, the weather-resistance was promoted through preferably colligating the protective effects of BHEM, organic fluorine and silicone. Also, a fitting formula about the weatherability with the BMHE content was tentatively proposed.

  13. Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor.

    PubMed

    Dayakar, T; Venkateswara Rao, K; Bikshalu, K; Rajendar, V; Park, Si-Hyun

    2017-06-01

    A non-enzymatic glucose biosensor was developed by utilizing the zinc oxide nanoparticles (ZnO NPs) synthesized by a novel green method using the leaf extract of Ocimum tenuiflorum. The structural, optical and morphological properties of ZnO NPs characterized by means of X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDAX) spectroscopy, and transmission electron microscopy (TEM). The XRD analysis revealed that the ZnO NPs were crystalline and had a hexagonal wurtzite structure. The crystallite size measured by XRD was the same as that measured using SEM and TEM. The UV-vis absorption spectrum estimates the band gap of ZnO NPs present in the range of 2.82 to 3.45eV. The reduction and formation of ZnO NPs mainly due to the involvement of leaf extract bio-molecular compounds analyzed from the FTIR spectra. The SEM result confirms the morphology of the NPs responsible from the various concentration of leaf extract in the synthesis process. HRTEM analysis depicts the spherical structure of ZnO NPs. The synthesized NPs have the average size ranges from 10 to 20nm. The fabricated GCE/ZnO glucose sensor represents superior electro catalytic activity that has been observed for ZnO NPs with a reproducible sensitivity of 631.30μAmM -1 cm -2 , correlation coefficient of R=0.998, linear dynamic range from 1-8.6mM, low detection limit of 0.043μM (S/N=3) and response time<4s. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy.

    PubMed

    D'Amico, Francesco; Cammisuli, Francesca; Addobbati, Riccardo; Rizzardi, Clara; Gessini, Alessandro; Masciovecchio, Claudio; Rossi, Barbara; Pascolo, Lorella

    2015-03-07

    We report on the use of the UV Raman technique to monitor the oxidative damage of deoxynucleotide triphosphates (dATP, dGTP, dCTP and dTTP) and DNA (plasmid vector) solutions. Nucleotide and DNA aqueous solutions were exposed to hydrogen peroxide (H2O2) and iron containing carbon nanotubes (CNTs) to produce Fenton's reaction and induce oxidative damage. UV Raman spectroscopy is shown to be maximally efficient to reveal changes in the nitrogenous bases during the oxidative mechanisms occurring on these molecules. The analysis of Raman spectra, supported by numerical computations, revealed that the Fenton's reaction causes an oxidation of the nitrogenous bases in dATP, dGTP and dCTP solutions leading to the production of 2-hydroxyadenine, 8-hydroxyguanine and 5-hydroxycytosine. No thymine change was revealed in the dTTP solution under the same conditions. Compared to single nucleotide solutions, plasmid DNA oxidation has resulted in more radical damage that causes the breaking of the adenine and guanine aromatic rings. Our study demonstrates the advantage of using UV Raman spectroscopy for rapidly monitoring the oxidation changes in DNA aqueous solutions that can be assigned to specific nitrogenous bases.

  15. Synthesis, single crystal X-ray, spectroscopic (FT-IR, UV-vis, fluorescence, 1H &13C NMR), computational (DFT/B3LYP) studies of some imidazole based picrates

    NASA Astrophysics Data System (ADS)

    Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Selvanayagam, S.; Sridhar, B.

    2018-04-01

    2,4,5-triphenyl-1H-imidazol-3-ium picrate (1), 2-(4-fluorophenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (2), 2-(4-methylphenyl)-4,5-diphenyl-1H-imidazol-3-ium picrate (3) were synthesised. These compounds 1-3 were characterized by elemental, FT-IR, 1H NMR and 13C NMR analyses. The structure of compound 3 was further confirmed by single crystal X-ray diffraction. The studies reveal that the molecule is associated with weak Nsbnd H⋯O and Csbnd H⋯N and van der Waals interactions which are responsible for the formation and strengthening of supramolecular assembly. The nature of the interactions and their importance are explored using the Hirshfeld surface method. The physicochemical properties of the compounds 1-3 were evaluated by UV-vis spectroscopy, fluorescence spectroscopy, and thermogravimetric analysis. According to thermal data the salts possess excellent thermal stabilities with decomposition temperatures ranging from 220 to 280 °C. Second-harmonic generation (SHG) results exposed that the picrates 1-3 were about 1.13-1.50 times greater than potassium dihydrogen phosphate (KDP). Here we also used Density functional theory (DFT) calculations in order to investigate the opto-electronic properties. The obtained theoretical results validate with available experimental data.

  16. Facile method for liquid-exfoliated graphene size prediction by UV-visible spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Zulhelmi, E-mail: helmie83@hotmail.com; Yusoh, Kamal, E-mail: kamal@ump.edu.my

    2016-07-19

    In this work, an application of UV spectroscopy for facile prediction of liquid –exfoliated graphene size is discussed. Dynamic light scattering method was used to estimate the graphene flake size ( whilst UV spectroscopy measurement was carried out for extinction coefficient value (ε) determination. It was found that the value of (ε) decreased gradually as the graphene size was further reduced after intense sonication time (7h). This observation showed the influence of sonication time on electronic structure of graphene. A mathematical equation was derived from log-log graph for correlation between () and (ε) value. Both values can be expressed inmore » a single equation as ( = (3.4 × 10{sup −2}) ε{sup 1.2}).« less

  17. Selective determination of gold(III) ion using CuO microsheets as a solid phase adsorbent prior by ICP-OES measurement.

    PubMed

    Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M; Alamry, Khalid A; Al-Youbi, Abdulrahman O

    2013-01-30

    We have prepared calcined CuO microsheets (MSs) by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM) etc. The detailed structural, compositional, and optical characterizations of the MSs were evaluated by XRD pattern, FT-IR, X-ray photoelectron spectroscopy (XPS), and UV-vis spectroscopy, respectively which confirmed that the obtained MSs are well-crystalline CuO and possessed good optical properties. The CuO MSs morphology was investigated by FESEM, which confirmed that the calcined nanomaterials were sheet-shaped and grown in large-quantity. Here, the efficiency of the CuO MS was applied for a selective adsorption of gold(III) ion prior to its detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of CuO MSs towards various metal ions, including Au(III), Cd(II), Co(II), Cr(III), Fe(III), Pd(II), and Zn(II) was analyzed. Based on the adsorption isotherm study, it was confirmed that the selectivity of MSs phase was mostly towards Au(III) ion. The static adsorption capacity for Au(III) was calculated to be 57.0 mg g(-1). From Langmuir adsorption isotherm, it was confirmed that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of adsorption sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Tuning the optical properties of ZnO nanorods by variation of precursor concentration through hydrothermal method

    NASA Astrophysics Data System (ADS)

    Kumari, Lakshmi; Kar, Asit Kumar

    2018-05-01

    ZnO nanorods with varying precursor concentration have been successfully synthesized by the hydrothermal method. The effect of the precursor concentration on the structural, morphological and optical properties of the resulting nanorods was investigated by means of X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. The crystalline structural characterization demonstrated that the synthesized materials crystallize in pure ZnO wurtzite structure without any other secondary phase. SEM micrographs demonstrate nanorod type features in all the samples. In addition, they show that increase of precursor concentration changes the length and diameter of nanorods. The UV-Vis studies show a strong absorption band in UV region at 373 nm attributed to the band-edge absorption of wurtzite hexagonal ZnO, blue shifted relative to its bulk form (380 nm). The PL spectra of obtained nanorods excited at 360 nm present broad visible emission. Moreover, as the visible region (from 510 to 550 nm) is concerned, it is speculated that the increase of the precursor concentration affects strongly the kind of interstitial defects (Oi, Zni and Vo) formed in ZnO nanorods. The luminescence intensity decreases with the increase of precursor concentration.

  20. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue.

    PubMed

    Khan, Arif Ullah; Yuan, Qipeng; Khan, Zia Ul Haq; Ahmad, Aftab; Khan, Faheem Ullah; Tahir, Kamran; Shakeel, Muhammad; Ullah, Sadeeq

    2018-05-07

    Plants mediated synthesis of noble metal nanoparticles is encountered as a clean, environment friendly, lucrative and benign loom. The current study consists of clean and green synthesis of Silver nanoparticles (AgNPs). Phytoconstituents from Longan (Euphorbia longana Lam.) fruit peel were used to reduce Ag + into AgNPs. Different analytical techniques i.e. UV-vis Spectroscopy, X-ray diffraction spectroscopy (XRD), electron dispersive X-ray (EDX), High-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the synthesized AgNPs. AgNPs have localized surface plasmon resonance (LSPR) peak at 445 nm which is confirmed by UV-vis spectroscopy. HRTEM showed that the prepared AgNPs are spheroid in shape and well dispersed while XRD results showed that the AgNPs are face centered cubic crystalline. EDX confirmed the elemental composition of AgNPs. The antiproliferative response of AgNPs was assayed by an exhaustive MTT assay. AgNPs showed potent anticancer activity (88%) against breast cancer cells MCF-7. Moreover, the green produced AgNPs effectively scavenged 91% of the stable and harmful 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical which confirms its' efficient antioxidant nature. AgNPs have profound photocatalytic degradation (99%) of methylene blue in a short period of time (7 min). The noteworthy biological and photocatalytic responses of the green and cleanly produced AgNPs are encountered to their well dispersion, petite volume and round shaped structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype.

    PubMed

    Yu, Lei

    2017-06-26

    A novel UV-VIS-NIR imaging spectrometer prototype has been presented for the remote sensing of the coastal ocean by air. The concept is proposed for the needs of the observation. An advanced design has been demonstrated based on the Dyson spectrometer in details. The analysis and tests present excellent optical performances in the spectral broadband, easy and low cost fabrication and alignment, low inherent stray light, and high signal to noise ratio. The research provides an easy method for the coastal ocean observation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deus, R.C.; Cortés, J.A., E-mail: leandrosrr89@gmail.com; Ramirez, M.A.

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in themore » cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.« less

  3. Preparation and characterization of PVP-PVA–ZnO blend polymer nano composite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, S., E-mail: divi.fysics@gmail.com; Saipriya, G.; Hemalatha, J., E-mail: hemalatha@nitt.edu

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV–vis spectra reveal that the absorption peak is centered around 235more » nm and 370 nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320 nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.« less

  4. Oxidation of refractory sulfur compounds over Ti-containing mesoporous molecular sieves prepared by using a fluorosilicon compound.

    PubMed

    Jeong, Kwang-Eun; Cho, Chin-Soo; Chae, Ho-Jeong; Kim, Chul-Ung; Jeong, Soon-Yong

    2010-05-01

    Titanium containing mesoporous molecular sieve (Ti-MMS) catalysts were studied for the oxidative desulfurization of refractory sulfur compounds. Ti-MMS catalysts were synthesized from fluorosilicon compounds and Ti with the hydrolysis reaction of H2SiF6 in an ammonia-surfactant mixed solution. The solid products were characterized by XRD, XRF, nitrogen adsorption, and diffuse reflectance UV-vis spectroscopy. Effects of Ti loading and oxidant/sulfur mole ratio, and sulfur species on ODS activity were investigated.

  5. Investigation of optical fibers for gas-phase, ultraviolet laser-induced-fluorescence (UV-LIF) spectroscopy.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Jiang, Naibo; Gord, James R; Roy, Sukesh

    2012-06-20

    We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N(2) jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

  6. Near-infrared spectroscopy for burning plasma diagnostic applications.

    PubMed

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  7. Cellulase assisted synthesis of nano-silver and gold: Application as immobilization matrix for biocatalysis.

    PubMed

    Mishra, Abhijeet; Sardar, Meryam

    2015-01-01

    In the present study, we report in vitro synthesis of silver and gold nanoparticles (NPs) using cellulase enzyme in a single step reaction. Synthesized nanoparticles were characterized by UV-VIS spectroscopy, Dynamic Light Spectroscopy (DLS), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Circular Dichroism (CD) and Fourier Transform Infrared Spectroscopy (FTIR). UV-visible studies shows absorption band at 415nm and 520nm for silver and gold NPs respectively due to surface plasmon resonance. Sizes of NPs as shown by TEM are 5-25nm for silver and 5-20nm for gold. XRD peaks confirmed about phase purity and crystallinity of silver and gold NPs. FTIR data shows presence of amide I peak on both the NPs. The cellulase assisted synthesized NPs were further exploited as immobilization matrix for cellulase enzyme. Thermal stability analysis reveals that the immobilized cellulase on synthesized NPs retained 77-80% activity as compared to free enzyme. While reusability data suggests immobilized cellulase can be efficiently used up to sixth cycles with minimum loss of enzyme activity. The secondary structural analysis of cellulase enzyme during the synthesis of NPs and also after immobilization of cellulase on these NPs was carried out by CD spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  9. Bonding Properties of a Novel Inorganometallic Complex, Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) (iPr-DAB = N,N'-Diisopropyl-1,4-diaza-1,3-butadiene), and its Stable Radical-Anion, Studied by UV-Vis, IR, and EPR Spectroscopy, (Spectro-) Electrochemistry, and Density Functional Calculations.

    PubMed

    Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín

    1996-09-11

    Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.

  10. Fuzzy clustering evaluation of the discrimination power of UV-Vis and (±) ESI-MS detection system in individual or coupled RPLC for characterization of Ginkgo Biloba standardized extracts.

    PubMed

    Medvedovici, Andrei; Albu, Florin; Naşcu-Briciu, Rodica Domnica; Sârbu, Costel

    2014-02-01

    Discrimination power evaluation of UV-Vis and (±) electrospray ionization/mass spectrometric techniques, (ESI-MS) individually considered or coupled as detectors to reversed phase liquid chromatography (RPLC) in the characterization of Ginkgo Biloba standardized extracts, is used in herbal medicines and/or dietary supplements with the help of Fuzzy hierarchical clustering (FHC). Seventeen batches of Ginkgo Biloba commercially available standardized extracts from seven manufacturers were measured during experiments. All extracts were within the criteria of the official monograph dedicated to dried refined and quantified Ginkgo extracts, in the European Pharmacopoeia. UV-Vis and (±) ESI-MS spectra of the bulk standardized extracts in methanol were acquired. Additionally, an RPLC separation based on a simple gradient elution profile was applied to the standardized extracts. Detection was made through monitoring UV absorption at 220 nm wavelength or the total ion current (TIC) produced through (±) ESI-MS analysis. FHC was applied to raw, centered and scaled data sets, for evaluating the discrimination power of the method with respect to the origins of the extracts and to the batch to batch variability. The discrimination power increases with the increase of the intrinsic selectivity of the spectral technique being used: UV-Vis

  11. Color change of tourmaline by heat treatment and electron beam irradiation: UV-Visible, EPR, and Mid-IR spectroscopic analyses

    NASA Astrophysics Data System (ADS)

    Maneewong, Apichate; Seong, Baek Seok; Shin, Eun Joo; Kim, Jeong Seog; Kajornrith, Varavuth

    2016-01-01

    The color of pink tourmaline gemstone changed to colorless when heating at temperature of 600 °C in air. This colorless tourmaline recovered its pink color when irradiated with an electron beam (e-beam) of 800 kGy. The origin of the color change was investigated in three types of tourmaline gemstones, two pink are from Afghanistan and one green are from Nigeria, by using Ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), Electron paramagnetic resonance (EPR), and Energy Dispersive X-ray Fluorescence (EDXRF). The UV-Vis absorption spectrum of the pink tourmaline with higher Mn concentration (T2, 0.24 wt%) showed characteristic absorption peaks originating from the Mn3+ color center: two absorption bands centered at wavelength of 396 and 520 nm, respectively. Both absorption bands disappeared when heated in air at 600 °C and then reappeared when irradiated with an e-beam at 800 kGy. EPR T2 spectra showed that the color change was related to the valence change of Mn3+ to Mn2+ and vice versa. The pink tourmaline of lower MnO content (T1, 0.08 wt%) also became colorless when heated, but the color was not recovered when the gemstone underwent e-beam irradiation. Instead, a yellow color was obtained. UV-Vis and FTIR spectra indicated that this yellow color originated from a decomposition of the hydroxyl group (-OH) into O- and Ho by the e-beam irradiation. Green tourmaline did not show any color change with either heat treatment or e-beam irradiation.

  12. Synthesis of ALD zinc oxide and thin film materials optimization for UV photodetector applications

    NASA Astrophysics Data System (ADS)

    Tapily, Kandabara Nouhoum

    Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an n-type material with numerous intrinsic defect levels responsible for the electrical and optical behaviors. Presently, there is no clear consensus about the origin of those defects. In this work, ZnO was synthesized by atomic layer deposition (ALD). ALD is a novel deposition technique suitable for nanotechnology engineering that provides unique features such as precise control of ZnO thin film with atomic resolution, high uniformity, good conformity and high aspect ratio. Using this novel deposition technique, the ALD ZnO deposition process was developed and optimized using diethyl zinc as the precursor for zinc and water vapor as the oxygen source. In order to optimize the film quality for use in electronic applications, the physical, mechanical and electrical properties were investigated. The structural and mechanical properties of the ALD ZnO thin films were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), spectroscopic Ellipsometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-VIS absorption and nanoindentation. The electrical characterizations were performed using C-V, I-V, DLTS, Hall Effect, and four-point probe. The intrinsic defects responsible

  13. Using UHPLC and UV-vis Fingerprint Method to Evaluate Substitutes for Swertia mileensis: An Endangered Medicinal Plant

    PubMed Central

    Li, Jie; Zhang, Ji; Jin, Hang; Wang, Yuan-Zhong; Huang, Heng-Yu

    2017-01-01

    Swertia.Swertiamarin is the unique common compounds for four plants, which exist are in leaves of S. davidii with the highest content.The obvious diversity in four plants was displayed from comprehensive point of view though similarity assay and PCA analysis.The UV fingerprint method offsets the defect that the UHPLC fingerprint reflected messages of secoiridoid glycosides only. Abbreviation used: UHPLC: Ultra high performance liquid chromatography, UV-vis: Ultraviolet-vis, HBV: Anti-hepatitis virus, DNA: Deoxyribonucleic acid, PCA: Principal component analysis, D-GaIN: D-Galactosamine, BCG: Bacille Calmette-Guerin, LPS: Lipopolysaccharide PMID:28216877

  14. Synthesis and characterization of Ag embedded graphitic carbon nitride

    NASA Astrophysics Data System (ADS)

    Patra, P. C.; Mohapatra, Y. N.

    2018-05-01

    Silver embedded graphitic carbon nitride (g-C3N4:Ag) was prepared by a simple wet chemical pathway using dimethylformamide (DMF) as a common solvent which facilitate homogenous distribution of Ag nanoparticles under ambient conditions. The phase, chemical structure and thermal stability of the as prepared g-C3N4:Ag composite was characterized by X-ray diffraction (XRD), Fourier transmission infrared (FTIR) spectroscopy and Thermo gravimetric analysis (TGA). The optical properties of g-C3N4:Ag were investigated by diffuse reflectance UV/vis spectroscopy and steady state photoluminescence (PL) spectroscopy. The bandgap of g-C3N4:Ag is determined to be 2.72 eV compared to 2.85 eV for that of pure g-C3N4 using Kubelka-Monk function. Comparing the UV/vis spectra, there is a broad spectrum in the region 2.3 to 2.6 eV in the case of g-C3N4:Ag, which is attributed to the presence of Ag nanoparticles. The emission peak of g-C3N4:Ag is slightly broadened and quenched in intensity to that of pure g-C3N4.

  15. Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Suganthi, A.; Min, Bong-Ki; Kang, Misook

    2015-01-01

    In this present work, BiOI sensitized zirconia (BiOI-ZrO2) nanoparticles were fabricated using a precipitation-deposition method. The physicochemical characteristics of BiOI/ZrO2 were studied through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), BET-surface area, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) and photoluminescence (PL) spectroscopy techniques. The absorption maximum of ZrO2 was shifted to the visible region after sensitization with BiOI. BET-surface area results inferred that the prepared hetero-junctions were meso-porous in nature. The photocatalytic activity of BiOI-ZrO2 for the degradation of methyl violet (MV) dye under simulated solar light irradiation was investigated in detail. 3% BiOI-ZrO2 exhibited the highest photocatalytic performance (98% of MV degradation) when compared with ZrO2 and BiOI. The enhancement in the photocatalytic activity of BiOI-ZrO2 is ascribed to the sensitization effect of BiOI, suppression of electron-hole recombination and the formation of p-n hetero-junction.

  16. The green hydrothermal synthesis of nanostructured Cu2ZnSnSe4 as solar cell material and study of their structural, optical and morphological properties

    NASA Astrophysics Data System (ADS)

    Vanalakar, S. A.; Agawane, G. L.; Kamble, A. S.; Patil, P. S.; Kim, J. H.

    2017-12-01

    Cu2ZnSnSe4 (CZTSe) has attracted intensive attention as an absorber material for the thin-film solar cells due to its high absorption coefficient, direct band gap, low toxicity, and abundance of its constituent elements. In this study nanostructured CZTSe nanoparticles are prepared via green hydrothermal synthesis without using toxic solvents, organic amines, catalysts or noxious chemicals. The structural, optical, and morphological properties of CZTSe nanostructured powder were studied using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), UV-vis absorption spectroscopy, and transmission electron microscope (TEM) techniques. Raman peaks at 170, 195, and 232 cm-1 confirm the formation of pure phase CZTSe nanostructured particles. In addition, the EDS and XPS results confirm the appropriate chemical purity of the annealed CZTSe nanoparticles. Meanwhile, the TEM analysis showed the presence of phase pure oval like CZTSe particle with size of about 80-140 nm. The UV-Vis-NIR absorption spectra analysis showed that the optical band gap of CZTSe nanostructured particles is about 1.14 eV. This band gap energy is close to the optimum value of a photovoltaic solar cell absorber material.

  17. Novel ZrO2 based ceramics stabilized by Fe2O3, SiO2 and Y2O3

    NASA Astrophysics Data System (ADS)

    Rada, S.; Culea, E.; Rada, M.

    2018-03-01

    Samples in the 5Fe2O3·10SiO2·xY2O3·(85-x)ZrO2 composition where x = 5, 10 and 15 mol% Y2O3 were synthesized and investigated by XRD, SEM, density measurements, FTIR, UV-Vis, EPR and PL spectroscopies. X-ray diffraction patterns confirm the presence of the tetragonal and cubic ZrO2 crystalline phases in all samples. The IR data show the overlaps of absorption bands assigned to Zrsbnd Osbnd Zr and Sisbnd Osbnd linkages in samples. UV-Vis and PL data indicate higher concentrations of intrinsic defects by doping with Y2O3 concentrations. The EPR spectra are characterized by two resonance lines situated at about g ∼ 4.3 and g ∼ 2 for lower Y2O3 contents.

  18. Capturing latent fingerprints from metallic painted surfaces using UV-VIS spectroscope

    NASA Astrophysics Data System (ADS)

    Makrushin, Andrey; Scheidat, Tobias; Vielhauer, Claus

    2015-03-01

    In digital crime scene forensics, contactless non-destructive detection and acquisition of latent fingerprints by means of optical devices such as a high-resolution digital camera, confocal microscope, or chromatic white-light sensor is the initial step prior to destructive chemical development. The applicability of an optical sensor to digitalize latent fingerprints primarily depends on reflection properties of a substrate. Metallic painted surfaces, for instance, pose a problem for conventional sensors which make use of visible light. Since metallic paint is a semi-transparent layer on top of the surface, visible light penetrates it and is reflected off of the metallic flakes randomly disposed in the paint. Fingerprint residues do not impede light beams making ridges invisible. Latent fingerprints can be revealed, however, using ultraviolet light which does not penetrate the paint. We apply a UV-VIS spectroscope that is capable of capturing images within the range from 163 to 844 nm using 2048 discrete levels. We empirically show that latent fingerprints left behind on metallic painted surfaces become clearly visible within the range from 205 to 385 nm. Our proposed streakiness score feature determining the proportion of a ridge-valley pattern in an image is applied for automatic assessment of a fingerprint's visibility and distinguishing between fingerprint and empty regions. The experiments are carried out with 100 fingerprint and 100 non-fingerprint samples.

  19. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra

    NASA Astrophysics Data System (ADS)

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-01

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420 nm, 420 nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420 nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420 nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD.

  20. Mixed Metal Oxides of the Type CoxZn1-xFe2O4 as Photocatalysts for Malachite Green Degradation Under UV Light Irradiation.

    PubMed

    Tzvetkov, Martin; Milanova, Maria; Cherkezova-Zheleva, Zara; Spassova, Ivanka; Valcheva, Evgenia; Zaharieva, Joana; Ivan, Mitov

    2017-06-01

    A combination of thermal and mechanical (high energy ball milling) treatment was applied in an attempt to obtain polycrystalline mixed metal binary and ternary oxides of the type CoxZn1-xFe2O4 (x = 0; 0.25; 0.5; 0.75; 1). The synthetic procedure used successfully produced single-phased, homogeneous ZnFe2O4, CoFe2O4, and Co0.75Zn0.25Fe2O4, as well as mixed oxides, whose composition depended both on the duration of the high energy ball milling and the ratio Zn(II)/Co(II). The formation of spinel-like structures was proved by XRD, Mössbauer spectroscopy and Raman spectroscopy. For the characterization of the samples low-temperature N2 adsorption, UV/Vis spectroscopy and transmission electron microscopy were applied. The energy band gap of the samples was calculated, suggesting they are promising photocatalysts. The decomposition of the Malachite Green in model water solutions under UV-light irradiation was successfully achieved in the presence of the samples as photocatalysts. The highest rate constant was obtained for the sample synthesized at longer milling time in combination with higher Zn(II)/Co(II) ratio. The photocatalytic activity of the ternary mixed oxides was compared with the pure hematite, α-Fe2O3, and the binary ZnFe2O4 and CoFe2O4 ferrites with spinel structure that were treated in the same way. A synergetic effect of α-Fe2O3 and the spinel-like structure on the photocatalytic properties of ternary mixed metal oxides was detected.

  1. UV Spectroscopy of Lucy Mission Targets

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina

    2017-08-01

    The Trojan asteroids are a significant population of primitive bodies trapped in Jupiter's stable L4 and L5 Lagrange regions. Their physical properties and existence in these particular orbits constrain the chemical and dynamical processes in our early Solar System. NASA's recently selected Lucy mission will perform the first reconnaissance of these asteroids and will answer many fundamental questions about the population. The compositions of the Trojans are not well understood. Spectroscopy and spectrophotometry in visible and near-infrared wavelengths show red slopes (spectra with reflectivity increasing towards the long wavelength end of the spectrum) and no diagnostic spectral absorption features. However, past spectral and photometric observations suggest there are unobserved features in ultraviolet wavelengths. We propose to obtain ultraviolet spectroscopy with WFC3 of four Trojan asteroids that are targets of the Lucy mission. Lucy will not have the capability to obtain ultraviolet spectra. The proposed observations can only be made using Hubble. We will determine if there are UV spectral features, as suggested by visible wavelength observations, and connect these features to candidate compositional components. These observations will enable connections between the compositions of Trojans and dynamical models of the early Solar System.

  2. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Lassoued, Abdelmajid; Lassoued, Mohamed Saber; Dkhil, Brahim; Gadri, Abdellatif; Ammar, Salah

    2017-11-01

    Pure and copper (Cu concentration varying from 2 to 8%) doped hematite (α-Fe2O3) nanocrystals were synthesized through co-precipitation method using simple equipment. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infra-Red (FT-IR), Raman spectroscopy, Differential Thermal Analysis (DTA), Thermo Gravimetric Analysis (TGA) and Ultraviolet-Visible (UV-Vis) techniques were used to characterize the synthesized samples. XRD measurements confirm that all the prepared nanocrystals consist only in nanocrystalline hematite phase. These results along with TEM and SEM show that the size of the nanoparticles decreases with Cu-doping down to 21 nm. FT-IR confirm the phase purity of the nanoparticles synthesized. The Raman spectroscopy was used not only to prove that we synthesized pure and Cu-doped hematite but also to identify their phonon modes. The TGA showed three mass losses, whereas DTA resulted in three endothermic peaks. The UV-Vis absorption measurements confirm that the decrease of particle size is accompanied by a decrease in the band gap value from 2.12 eV for pure α-Fe2O3 down to 1.91 eV for 8% Cu-doped α-Fe2O3. 8% Cu-doped hematite had the smallest size, the best crystallinity and the lowest band gap.

  3. Fabrication of solar light induced Fe-TiO{sub 2} immobilized on glass-fiber and application for phenol photocatalytic degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shaohua, E-mail: linsh75@163.com; Zhang, Xiwang; Sun, Qinju

    2013-11-15

    Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities weremore » evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.« less

  4. Coating of gold nanoparticles for medical application: UV-VIS

    NASA Astrophysics Data System (ADS)

    Martínez Espinosa, Juan Carlos; Ramírez, Nayem Amtanus Chequer; Funes Oliva, Luis Enrique; Córdova Fraga, Teodoro; Bernal Alvarado, Jesús; Reyes Pablo, Aldelmo; Núñez, Anita Rosa Elvira

    2014-11-01

    The use of nanostructured materials has gained strength in recent years in the biomedical area; new applications such as the detection of components in living cells have been used in pharmaceutical area, specifically to study the interaction of various antitumor drugs in living tissues, the detection of genes that are closely related to some type of cancer, as well as the detections of protein biomarkers for diseases also have been studied in various research laboratories around of the world. In this work, we characterize the variation of the absorbance of gold nanoparticles (GNPs) coated with different concentration of Bovine Serum Albumin (BSA) protein. We use GNPS of 60 nm of the trademark-TED PELLA, the BSA protein trademark of Sigma Aldrich and based on that proposed protocol by Chithrani et al., 2009 with purposes to obtain an alternative model to determine the optimal stability of the nanoparticles coated with the protein. The colloidal solutions were prepared with BSA at different concentrations (0.25, 0.5, 0.75 and 1% M/V), and were centrifuged at 15,000 rpm for 90 minutes (centrifuge Model Z383K) and a constant temperature of 25 °C. All the spectra sets were obtained within the range from 400 to 700 nm using an UV-VIS spectrophotometer (Thermo Scientific Model 51118650). The results showed a R2 of 0.99 for an exponential curve correlation between the concentration of BSA, and the absorbance measured. We found at higher concentrations of BSA, there is a decrease in the intensity of the absorption spectra in the plasmon resonance. This preliminary model obtained can be used in the stabilization of gold nanoparticles with different proteins of biomedical interest in future experiments and support for functionalization of GNPs with specific membrane markers.

  5. Studies on the thermal and electrical properties of polyethylene oxide/polyvinyl alcohol blend by incorporating of Cesium Chloride

    NASA Astrophysics Data System (ADS)

    Ragab, H. M.

    The composites PVA/PEO filled with various concentrations of CsCl samples, which were prepared for using a solvent casting technique and studied via Fourier transform infrared spectroscopy (FTIR), ultraviolet - visible (UV-Vis), X-ray spectroscopy, Scanning electron microscopy (SEM), AC conductivity and dielectric properties to use as sensor in electronic devices. The FTIR indicated the interaction between PVA/PEO and CsCl. From data of UV. Vis. was observed band gap (Eg) reduces with addition CsCl to polymer blend. The XRD shows the degree of crystallinity (χ%) decreasing with increasing concentration of CsCl from 2.93 to 2.45. The SEM of the surface of composite PVA/PEO filled with various concentrations of CsCl in magnification 1500 times its change with compare of pure blend. From TGA was observed improvement in the thermal stability of the samples after addition of CsCl. The AC conductivity rise more rapidly with temperature and associated with activation energy Ea, for conduction and enhanced with increasing both temperature and frequency.

  6. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Roy, M.; Mandal, B. P.; Dey, G. K.; Mukherjee, P. K.; Ghatak, J.; Tyagi, A. K.; Kale, S. P.

    2008-02-01

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO3 turns progressively dark brown within 5 d of incubation at 25 °C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at ~410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  7. Synthesis and characterization of TiO2/graphitic carbon nanocomposites with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wanag, Agnieszka; Kusiak-Nejman, Ewelina; Kowalczyk, Łukasz; Kapica-Kozar, Joanna; Ohtani, Bunsho; Morawski, Antoni W.

    2018-04-01

    In this paper titanium dioxide carbon modification with benzene as a carbon source is presented. A TiO2/graphitic carbon nanocomposites were synthesized by thermal modification in the presence of benzene vapours at different temperature (300-700 °C). The new materials were characterized by a various techniques, such as: X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (UV-vis/DR), surface-enhanced Raman spectroscopy. BET specific surface area was also measured. The photocatalytic activity of obtained nanocomposites was measured by the decomposition of acetic acid and methylene blue under UV-vis irradiation. The results show that photocatalytic activity increasing with increase in carbon concentration and temperature of modification. It can be noted that adsorption degree has a very high impact on methylene blue decomposition. The highest photocatalytic activity was found for the photocatalyst modified at 600 °C contains 1.13 wt% of carbon. It should be noted that, the influence of crystallite size, crystal structure changes and specific surface area for photocatalytic activity are presented.

  8. Novel Bi/BiOBr/AgBr composite microspheres: Ion exchange synthesis and photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Lyu, Jianchang; Li, Zhenlu; Ge, Ming

    2018-06-01

    Novel Bi/BiOBr/AgBr composite microspheres were prepared by a rational in situ ion exchange reaction between Bi/BiOBr microspheres and AgNO3. The characteristic of the as-obtained ternary microspheres was tested by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL). Under visible light irradiation, Bi/BiOBr/AgBr microspheres exhibited an excellent photocatalytic efficiency for rhodamine B (RhB) degradation, which was about 1.4 and 4.9 times as high as that of Bi/BiOBr and BiOBr/AgBr, demonstrating that the highest separation efficiency of charge carriers in the heterostructured Bi/BiOBr/AgBr. The photocatalytic activity of Bi/BiOBr/AgBr microspheres just exhibited a slight decrease after three consecutive cycles. The photocatalytic mechanism investigation confirmed that the superoxide radicals (O2•-) were the dominant reactive oxygen species for RhB degradation in Bi/BiOBr/AgBr suspension.

  9. Fe2O3/ZnO/ZnFe2O4 composites for the efficient photocatalytic degradation of organic dyes under visible light

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin

    2018-06-01

    In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.

  10. Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations

    NASA Astrophysics Data System (ADS)

    Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem

    2017-01-01

    (E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.

  11. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  12. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging.

    PubMed

    Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim

    2014-11-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    NASA Astrophysics Data System (ADS)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  14. Kinetic study on UV-absorber photodegradation under different conditions

    NASA Astrophysics Data System (ADS)

    Bubev, Emil; Georgiev, Anton; Machkova, Maria

    2016-09-01

    The photodegradation kinetics of two benzophenone derivative UV-absorbers (UVAs)-BP-4 (benzophenone-4) and 4-HBP (4-hydroxybenzophenone), as additives in polyvinyl acetate (PVAc) films, were studied. Solution-processed PVAc films were irradiated in different environments in order to study oxygen and atmospheric humidity influence on UVA photodegradation. Photodegradation was traced by absorption intensity loss via UV-vis spectroscopy. Both UVAs exhibited excellent photostability in an inert atmosphere. Rate constants showed that BP-4 has better permanence in absence of oxygen. Both film types experienced rapid absorption loss, when irradiated in an oxygen containing atmosphere. UVA degradation was treated as a two-stage process. The photodegradation kinetics in the first stage agreed with the adopted complex rate law, but the second stage was best described by pseudo-first order kinetics. BP-4 exhibited better stability. Oxygen was established as the main accelerating factor for photodegradation of benzophenone derivatives UV-absorbers in thin PVAc films.

  15. Formation, structural and optical characterization of neodymium doped-zinc soda lime silica based glass

    NASA Astrophysics Data System (ADS)

    Zamratul, M. I. M.; Zaidan, A. W.; Khamirul, A. M.; Nurzilla, M.; Halim, S. A.

    New glass system of neodymium - doped zinc soda lime silica glass has been synthesized for the first time by melt-quenching of glass waste soda lime silica (SLS) with zinc oxide (ZnO) as precursor glass and Nd2O3 as dopant. In order to examine the effect of Nd3+ on the structural and optical properties, the prepared sample of structure [(ZnO)0.5(SLS)0.5](Nd2O3)x (x = 0, 1, 2, 3, 4 and 5 wt%) was characterized through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectroscopy (UV-Vis) and the photoluminescence (PL). XRD pattern justifies the amorphous nature of synthesized glasses. FTIR spectroscopy has been used to observe the structural evolution of ZnO4 and SiO4 groups. The UV-Vis-NIR absorption spectra reveals seven peaks centered at excitation of electron from ground state 4I9/2 to 4D3/2 + 4D5/2 (∼360 nm), 2G9/2 + 2D3/2 + 2P3/2(∼470 nm), 2K13/2 + 4G7/2 + 4G9/2 (∼523 nm), 4G5/2 + 2G7/2 (∼583 nm), 4F9/2 (∼678 nm), 4S3/2 + 4F7/2 (∼748 nm) and 4F5/2 + 2H9/2 (∼801 nm). PL spectra under the excitation of 800 nm display four emission bands centered at 531 nm, 598 nm, 637 nm and 671 nm corresponding to 4G7/2 → 4I9/2, (4G7/2 → 4I11/2, 4G5/2 → 4I9/2), (4G5/2 → 4I11/2) and (4G7/2 → 4I13/2, 4G5/2 → 4I11/2) respectively.

  16. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virpal,, E-mail: virpalsharma.sharma@gmail.com; Hastir, Anita; Kaur, Jasmeet

    2015-05-15

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered atmore » 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states.« less

  17. Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties

    DTIC Science & Technology

    2014-01-01

    using both UVvis spectroscopy for ensemble measurements and optical micro- spectrophotometry for individual superlattice electric fi elds at...lated data). The red-shift seen between the micro-spectropho- tometer measurements (Figure 3 b) and the UVvis ensemble measurements (Figure 3 a...the measurements. Using UVvis spectroscopy ( Figure 3 a), red- shifting of the superlattices’ bulk LSPR with decreased nano- particle spacing is

  18. Investigation of polypyrrole/polyvinyl alcohol-titanium dioxide composite films for photo-catalytic applications

    NASA Astrophysics Data System (ADS)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long; Dan, Yi

    2015-07-01

    Polypyrrole/polyvinyl alcohol-titanium dioxide (PPy/PVA-TiO2) composite films used as photo-catalysts were fabricated by combining TiO2 sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO2 and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet-vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA-TiO2 composite films show better photo-catalytic properties than TiO2 film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA-TiO2 composite film was investigated and the results show that the photo-catalytic activity under both UV and visible light irradiation have no significant decrease after four times of recycle experiments, suggesting that the photo-catalyst film is stable during the photo-catalytic process, which was also confirmed by the XRD pattern and FT-IR spectra of the composite film before and after photo-catalytic.

  19. Study on fast discrimination of varieties of yogurt using Vis/NIR-spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Deng, Xunfei; Li, Xiaoli

    2006-09-01

    A new approach for discrimination of varieties of yogurt by means of VisINTR-spectroscopy was present in this paper. Firstly, through the principal component analysis (PCA) of spectroscopy curves of 5 typical kinds of yogurt, the clustering of yogurt varieties was processed. The analysis results showed that the cumulate reliabilities of PC1 and PC2 (the first two principle components) were more than 98.956%, and the cumulate reliabilities from PC1 to PC7 (the first seven principle components) was 99.97%. Secondly, a discrimination model of Artificial Neural Network (ANN-BP) was set up. The first seven principles components of the samples were applied as ANN-BP inputs, and the value of type of yogurt were applied as outputs, then the three-layer ANN-BP model was build. In this model, every variety yogurt includes 27 samples, the total number of sample is 135, and the rest 25 samples were used as prediction set. The results showed the distinguishing rate of the five yogurt varieties was 100%. It presented that this model was reliable and practicable. So a new approach for the rapid and lossless discrimination of varieties of yogurt was put forward.

  20. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  1. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    PubMed

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  3. MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-05-01

    Multi-walled carbon nanotubes (MWCNT)/CdS hybrid nanocomposite were synthesized by one step hydrothermal method. MWCNTs were used as a substrate for the growth of CdS nanoparticles. MWCNT/CdS nanocomposite and pure CdS were characterized by XRD, TEM, UV-vis and photoluminescence spectroscopy. HRTEM study confirms the intimate contact of CdS with MWCNT. The photocatalytic activity of nanocomposite was studied for the degradation of methylene blue dye under UV irradiation. The enhanced photocatalytic activity of MWCNT/CdS nanocomposite as compared to pure CdS has been attributed to reduced recombination of photogenerated charge carriers due to interfacial electron transfer from CdS to MWCNT.

  4. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  5. Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation

    NASA Astrophysics Data System (ADS)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The synthesis of metal nanoparticles through a green method is a rapid biogenic and offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we report synthesis of CuO NPs by using Drypetes sepiaria Leaf extract (DSLE). The synthesized CuO NPs was characterization using different technique such as UV, IR, XRD, and TEM. The formation of CuO NPs was confirmed by Surface Plasmon Resonance (SRP) at 298 nm using UV-Vis spectroscopy. Crystallinity of CuO NPs was confirmed by powder XRD and the characteristic functional groups of synthesised CuO NPs were identified by FTIR spectroscopy. The size and shape of the synthesized CuO NPs was determined by transmission electron microscopy (TEM). In addition, we performed photocatalytic activity to examine the photocatalytic degradation efficiency of CuO NPs to Congo Red. The colloidal solutions of CuO NPs showed good catalytic activity.

  6. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  7. Characterizing the weathering induced changes in optical performance and properties of poly(ethylene-terephthalate) via MaPd:RTS spectroscopy

    NASA Astrophysics Data System (ADS)

    Gordon, Devin A.; DeNoyer, Lin; Meyer, Corey W.; Sweet, Noah W.; Burns, David M.; Bruckman, Laura S.; French, Roger H.

    2017-08-01

    Poly(ethylene-terephthalate) (PET) film is widely used in photovoltaic module backsheets for its dielectric break- down strength, and in applications requiring high optical clarity for its high transmission in the visible region. However, PET degrades and loses optical clarity under exposure to ultraviolet (UV) irradiance, heat, and moisture. Stabilizers are often included in PET formulation to increase its longevity; however, even these are subject to degradation and further reduce optical clarity. To study the weathering induced changes in the optical properties in PET films, samples of a UV-stabilized grade of PET were exposed to heat, moisture, and UV irradiance as prescribed by ASTM-G154 Cycle 4 for 168 hour time intervals. UV-Vis reflection and transmission spectra were collected via Multi-Angle, Polarization-Dependent, Reflection, Transmission, and Scattering (MaPd:RTS) spectroscopy after each exposure interval. The resulting spectra were used to calculate the complex index of refraction throughout the UV-Vis spectral region via an iterative optimization process based upon the Fresnel equations. The index of refraction and extinction coefficient were found to vary throughout the UV-Vis region with time under exposure. The spectra were also used to investigate changes in light scattering behavior with increasing exposure time. The intensity of scattered light was found to increase at higher angles with time under exposure.

  8. A Simple Laser Induced Breakdown Spectroscopy (LIBS) System for Use at Multiple Levels in the Undergraduate Chemistry Curriculum

    ERIC Educational Resources Information Center

    Randall, David W.; Hayes, Ryan T.; Wong, Peter A.

    2013-01-01

    A LIBS (laser induced breakdown spectroscopy) spectrometer constructed by the instructor is reported for use in undergraduate analytical chemistry experiments. The modular spectrometer described here is based on commonly available components including a commercial Nd:YAG laser and a compact UV-vis spectrometer. The modular approach provides a…

  9. UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation.

    PubMed

    Peacock, Mike; Evans, Chris D; Fenner, Nathalie; Freeman, Chris; Gough, Rachel; Jones, Timothy G; Lebron, Inma

    2014-05-01

    Absorbance in the UV or visible spectrum (UV-vis) is commonly used as a proxy for DOC concentrations in waters draining upland catchments. To determine the appropriateness of different UV-vis measurements we used surface and pore water samples from two Welsh peatlands in four different experiments: (i) an assessment of single wavelength proxies (1 nm increments between 230-800 nm) for DOC concentration demonstrated that 254 nm was more accurate than 400 nm. The highest R(2) values between absorbance and DOC concentration were generated using 263 nm for one sample set (R(2) = 0.91), and 230 nm for the other three sample sets (respective R(2) values of 0.86, 0.81, and 0.93). (ii) A comparison of different DOC concentration proxies, including single wavelength proxies, a two wavelength model, a proxy using phenolic concentration, and a proxy using the area under a UV spectrum at 250-350 nm. It was found that both a single wavelength proxy (≤263 nm) and a two wavelength model performed well for both pore water and surface water. (iii) An evaluation of the E2 : E3, E2 : E4, E4 : E6 ratios, and SUVA (absorbance at 254 nm normalised to DOC concentration) as indicators of DOC quality showed that the E4 : E6 ratio was subject to extensive variation over time, and was highly correlated between surface water and pore water, suggesting that it is a useful metric to determine temporal changes in DOC quality. (iv) A repeated weekly analysis over twelve weeks showed no consistent change in UV-vis absorbance, and therefore an inferred lack of degradation of total DOC in samples that were filtered and stored in the dark at 4 °C.

  10. UV-Vis Spectroscopy and Dynamic Light Scattering Study of Gold Nanorods Aggregation

    PubMed Central

    Kanjanawarut, Roejarek; Yuan, Bo

    2013-01-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA+-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet–visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate– and dsDNA–AuNRs interactions in fine detail. PMID:23902360

  11. UV-vis spectroscopy and dynamic light scattering study of gold nanorods aggregation.

    PubMed

    Kanjanawarut, Roejarek; Yuan, Bo; XiaoDi, Su

    2013-08-01

    Gold nanorods (AuNRs) were used as spectroscopic sensing elements to detect specific DNA sequences with a single-base mismatch sensitivity. The assay was based on the observation that the stabilizing repulsive forces between CTA(+)-coated AuNRs can be removed by citrate ions, which causes aggregation among AuNRs; whereas nucleic acids of different structures[ i.e., peptide nucleic acid (PNA), single-stranded DNA (ssDNA), PNA-DNA complex, and double-stranded DNA (dsDNA)] can retard the aggregation. Moreover, the dsDNA PNA-DNA duplexes provide larger retardation than that by unhybridized ssDNA and PNA probe. This assay can differentiate single-base mismatched targets with base substitution at different locations (center and end) with AuNRs of a larger aspect ratio. Besides ultraviolet-visable spectroscopy measurement of particle assembly-induced plasmonic coupling that in turn provides a spectroscopic detection of the specific DNA, dynamic light scattering and transmission electron microscope (TEM) were used to measure smaller degree of aggregation that can reveal sodium citrate- and dsDNA-AuNRs interactions in fine detail.

  12. Investigation on intermolecular interaction between berberine and β-cyclodextrin by 2D UV-Vis asynchronous spectra.

    PubMed

    He, Anqi; Kang, Xiaoyan; Xu, Yizhuang; Noda, Isao; Ozaki, Yukihiro; Wu, Jinguang

    2017-10-05

    The interaction between berberine chloride and β-cyclodextrin (β-CyD) is investigated via 2D asynchronous UV-Vis spectrum. The occurrence of cross peaks around (420nm, 420nm) in 2D asynchronous spectrum reveals that specific intermolecular interaction indeed exists between berberine chloride and β-CyD. In spite of the difficulty caused by overlapping of cross peaks, we manage to confirm that the 420nm band of berberine undergoes a red-shift, and its bandwidth decreases under the interaction with β-CyD. The red-shift of the 420nm band that can be assigned to n-π* transition indicates the environment of berberine becomes more hydrophobic. The above spectral behavior is helpful in understanding why the solubility of berberine is enhanced by β-CyD. Copyright © 2017. Published by Elsevier B.V.

  13. Local symmetry breaking in SnO2 nanocrystals with cobalt doping and its effect on optical properties.

    PubMed

    Roy, S; Joshi, Amish G; Chatterjee, S; Ghosh, Anup K

    2018-06-07

    X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to study the structural and morphological characteristics of cobalt doped tin(iv) oxide (Sn1-xCoxO2; 0 ≤ x ≤ 0.04) nanocrystals synthesized by a chemical co-precipitation technique. Electronic structure analysis using X-ray photoemission spectroscopy (XPS) shows the formation of tin interstitials (Sni) and reduction of oxygen vacancies (VO) in the host lattice on Co doping and that the doped Co exists in mixed valence states of +2 and +3. Using XRD, the preferential position of the Sni and doped Co in the unit cell of the nanocrystals have been estimated. Rietveld refinement of XRD data shows that samples are of single phase and variation of lattice constants follows Vegard's law. XRD and TEM measurements show that the crystallite size of the nanocrystals decrease with increase in Co doping concentration. SAED patterns confirm the monocrystalline nature of the samples. The study of the lattice dynamics using Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy shows the existence of many disorder activated forbidden optical phonon modes, along with the corresponding classical modes, signifying Co induced local symmetry breaking in the nanocrystals. UV-Vis spectroscopy shows that the optical band gap has red shifted with increase in doping concentration. The study of Urbach energy confirms the increase in disorder in the nanocrystals with Co doping. Local symmetry breaking induced UV emission along with violet, blue and green luminescence has been observed from the PL study. The spectral contribution of UV emission decreases and green luminescence increases with increase in doping. Using PL, in conjunction with Raman spectroscopy, the type of oxygen vacancy induced in the nanocrystals on Co doping has been confirmed and the position of the defect levels in the forbidden zone (w.r.t. the optical band gap) has been studied.

  14. Optical properties of La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites in UV-vis-NIR region synthesized by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yifeng; Huang Jianfeng, E-mail: hjfnpu@163.com; Cao Liyun

    2012-02-15

    La{sub 2}CuO{sub 4} and La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites were prepared via a simple sol-gel process. The as-prepared La{sub 2}CuO{sub 4} and La{sub 2} {sub -x}Ca{sub x}CuO{sub 4} crystallites were characterized by X-ray diffraction, transmission electron microscope and UV-vis-NIR spectra. Results show that the grain size of La{sub 2}CuO{sub 4} crystallites increases with the increase of heat treatment temperature from 600 Degree-Sign C to 800 Degree-Sign C. Optical properties show that La{sub 2}CuO{sub 4} crystallites have broad absorption both in the UV-vis region and in the NIR region. The band gap of the as-prepared crystallites decreases from 1.367 eV tomore » 1.284 eV with the increase of calcination temperature from 600 Degree-Sign C to 800 Degree-Sign C. In the series of La{sub 2-x}Ca{sub x}CuO{sub 4} compounds (x = 0.05, 0.08, 0.10, 0.12, 0.15 and 0.20), all of the samples exhibit an orthogonal crystal structure and the solubility limit of Ca{sup 2+} in La{sub 2}CuO{sub 4} is within the range of x = 0.12-0.15. In the whole UV-vis-NIR region, La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites exhibit a broad absorption and the corresponding band gap first increases and then decreases with increasing of Ca{sup 2+} content. - Highlights: Black-Right-Pointing-Pointer The optical band gap can be tuned by adjusting the grain size and Ca{sup 2+} content. Black-Right-Pointing-Pointer La{sub 2}CuO{sub 4} crystallites exhibit a broad absorption band both in the UV-vis region and in the NIR region. Black-Right-Pointing-Pointer The band gap increases from 1.284 eV to 1.319 eV with the decrease of heat treatment temperature. Black-Right-Pointing-Pointer In the whole UV-vis-NIR region, the La{sub 2-x}Ca{sub x}CuO{sub 4} crystallites displayed a broad absorption. Black-Right-Pointing-Pointer The band gap of La{sub 2-x}Ca{sub x}CuO{sub 4} increases linearly with doping level when 0 {<=} x {<=} 0.12.« less

  15. Potential prospects in archaeological research by using optical spectroscopy through a black glass ocular

    NASA Astrophysics Data System (ADS)

    Cosyns, P.; Meulebroeck, W.; Thienpont, H.; Nys, K.

    The aim of this paper is to draw attention to the potential usefulness of optical spectroscopy within the archaeological discourse. We therefore use the standardized color coordinates and the transmittance spectra in the region between 350- 1650 nm of nine fragmented Roman black glass artifacts from archaeological contexts in Avenches (Switzerland) and an intact piece from Tongeren (Belgium). Firstly, we demonstrate how the use of UV-Vis-NIR spectroscopy can help the archaeologist in understanding the various excavated features containing glass artifacts. The analysis of the optical spectra of Roman black glass artifacts demonstrates in the first place that an object has a very homogenous composition. The clustering of the different fragments with characteristic spectra permits to connect the pieces from various areas of an excavation to one single object or to several objects from the same batch. These results provide the archaeologist the possibility to merge recognized layers or to connect different features in the surrounding area. Secondly, we demonstrate how the use of UV-Vis-NIR spectroscopy can help improve the analysis process. This inexpensive method can facilitate a more convenient and purposive sampling by means of a preliminary inquiry, selecting the most interesting pieces out of a large group of artifacts suitable for chemical analysis.

  16. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles

    PubMed Central

    Biao, Linhai; Tan, Shengnan; Meng, Qinghuan; Gao, Jing; Zhang, Xuewei; Liu, Zhiguo; Fu, Yujie

    2018-01-01

    Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution. PMID:29361727

  17. Prediction of pH of cola beverage using Vis/NIR spectroscopy and least squares-support vector machine

    NASA Astrophysics Data System (ADS)

    Liu, Fei; He, Yong

    2008-02-01

    Visible and near infrared (Vis/NIR) transmission spectroscopy and chemometric methods were utilized to predict the pH values of cola beverages. Five varieties of cola were prepared and 225 samples (45 samples for each variety) were selected for the calibration set, while 75 samples (15 samples for each variety) for the validation set. The smoothing way of Savitzky-Golay and standard normal variate (SNV) followed by first-derivative were used as the pre-processing methods. Partial least squares (PLS) analysis was employed to extract the principal components (PCs) which were used as the inputs of least squares-support vector machine (LS-SVM) model according to their accumulative reliabilities. Then LS-SVM with radial basis function (RBF) kernel function and a two-step grid search technique were applied to build the regression model with a comparison of PLS regression. The correlation coefficient (r), root mean square error of prediction (RMSEP) and bias were 0.961, 0.040 and 0.012 for PLS, while 0.975, 0.031 and 4.697x10 -3 for LS-SVM, respectively. Both methods obtained a satisfying precision. The results indicated that Vis/NIR spectroscopy combined with chemometric methods could be applied as an alternative way for the prediction of pH of cola beverages.

  18. The analysis of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 2: comparison with the traditional methods of fiber examination.

    PubMed

    Buzzini, Patrick; Massonnet, Genevieve

    2015-05-01

    In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. © 2015 American Academy of Forensic Sciences.

  19. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    PubMed

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  20. [Fast catalogue of alien invasive weeds by Vis/NIR spectroscopy].

    PubMed

    Yu, Jia-Jia; Zou, Wei; He, Yong; Xu, Zheng-Hao

    2009-11-01

    The feasibility of visible and short-wave near-infrared spectroscopy (VIS/WNIR) techniques as means for the nondestructive and fast detection of alien invasive weeds was evaluated. Selected sensitive bands were found validated. In the present study, 3 kinds of alien invasive weeds, Veronica persica, Veronica polita, and Veronica arvensis Linn, and one kind of local weed, Lamiaceae amplexicaule Linn, were employed. The results showed that visible and NIR (Vis/NIR) technology could be introduced in classification of the alien invasive weeds or local weed with the similar outline. Thirty x 4 weeds samples were randomly selected for the calibration set, while the remaining 20 x 4 samples for the prediction set. Smoothing methods of moving average and standard normal variate (SNV) were used to pretreat spectra data. Based on principal components analysis, soft independent models of class analogy (SIMCA) were applied to make the model. Four frontal principal components of each catalogues were applied as the input of SIMCA, and with a significance level of 0.05, recognition ratio of 78.75% was obtained. The average prediction result is 90% except for Veronica polita. According to the modeling power of each spectra data in SIMCA, some possible sensitive bands, 496-521, 589-626 and 789-926 nm, were founded. By using these possible sensitive bands as the inputs of least squares support vector machine (LS-SVM), and setting the result of LS-SVM as the object function value of genetic algorithm (GA), mutational rate, crossover rate and population size were set up as 0.9, 0.5 and 50 respectively. Finally recognition ratio of 95.63% was obtained. The prediction results of 95.63% indicated that the selected wavelengths reflected the main characteristics of the four weeds, which proposed a new way to accelerate the research on cataloguing alien invasive weeds.