Sample records for xrf core scan

  1. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  2. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical information can be used to infer temporal changes in parental magma compositions. Secondary sulfide mineralization and epidote-rich hydrothermal alteration zones in sheeted dikes and gabbros are clearly highlighted on element maps of S, Fe, Ca, Al, and Zn.

  3. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes for 30 samples.

  4. [Study on trace elements of lake sediments by ICP-AES and XRF core scanning].

    PubMed

    Cheng, Ai-Ying; Yu, Jun-Qing; Gao, Chun-Liang; Zhang, Li-Sha; He, Xian-Hu

    2013-07-01

    It is the first time to study sediment of Toson lake in Qaidam Basin. Trace elements including Cd, Cr, Cu, Zn and Pb in lake sediment were measured by ICP-AES method, studied and optimized from different resolution methods respectively, and finally determined a optimum pretreatment system for sediment of Toson lake, namely, HCl-HNO3-HF-HClO4-H2O2 system in the proportions of 5 : 5 : 5 : 1 : 1 was determined. At the same time, the data measured by XRF core scanning were compared, the use of moisture content correction method was analyzed, and the influence of the moisture content on the scanning method was discussed. The results showed that, compared to the background value, the contents of Cd and Zn were a little higher, the content of Cr, Cu and Pb was within the background value limits. XRF core scanning was controlled by sediment elements as well as water content in sediment to some extent. The results by the two methods showed a significant positive correlation, with the correlation coefficient up to 0.673-0.925, and they have a great comparability.

  5. Fine-resolved XRF geochemistry of bottom fills from Asian lakes

    NASA Astrophysics Data System (ADS)

    Phedorin (Fedorin), Mikhail

    2010-05-01

    Over the last fifteen years (1994-2009) several teams from Siberian Branch of Russian Academy of Science have carried out numerous studies of cores of bottom sediments from Asian lakes, to perform regional reconstructions of past climate changes. Within these researches, the method of x-ray fluorescence (XRF) has widely been used to predict downcore distributions of elements; high-resolution XRF scanning of cores has been employed since 1999. Experiments have been performed at XRF facilities of Siberian Synchrotron Center. In this presentation I report (1) ‘know-how's of quantitative processing of experimental fine-scanning XRF data for lacustrine cores, and (2) geochemical signatures of sediments from Asian lakes obtained after XRF fine-scanning of cores. (1) Quantitative prediction of concentrations of elements from fine-scanning XRF data is problematic because of varying water content along scanning profile, as well as due to varying matrix chemistry and sample optical thickness. All these cause varying inter-element influence that changes fluorescence flux through its absorption and/or secondary excitation. To overcome these difficulties we have used an adapted algorithm of fundamental parameters. The mathematical model based on this algorithm accounts for two events of photon/matter interaction. Element concentrations are estimated using reference samples and the internal standard procedure, both with correction of interference effects. The pore water content is inferred from its correlation with the coherent/incoherent scatter intensity ratio. Sediment density is found from water content by a reliable sedimentological law. Normalization to Compton scattering accounts for the irradiated mass of wet sediment controlled by porosity and sampling-related core disturbance. The mathematical model also includes these scattering variations related to lithology, water content, and density of samples. The new method was applied to XRF scans of cores to predict concentrations of ca. 20 elements. Tests against ICP-MS, neutron activation spectrometry and conventional XRF (with traditional pretreatment of samples) show good agreement. Neglect of the disturbing effects may cause errors up to 30-200% for different elements. (2) Cores studied represent three types of fills: terrigenous silicate sediments, sapropel muds and carbonate-reach deposits. The sediments were collected by bottom drilling from the following Asian lakes: Baikal (53°42'N, 108°21'E), Khubsugul (51°28'N, 100°25'E), Khakas Lakes (Shira: 54°30'N, 90°12'E and Bele: 54°41'N, 90°15'E), East Siberian lakes (Ochki: 51°30'N, 104°53'E; Kotokel: 52°49'N, 108°09'E; Tolondo: 58°18'N, 119°47'E; Kiran: 50°22'N, 106°27'E), West Siberian lakes (Beloye: 55°23'N, 82°41'E; Kirek: 56°12'N, 84°23'E; Teletskoye: 51°39'N, 87°40'E). In current report I also provide data obtained after studying stratified peat archives from East and West Siberia. The following elements have been determined for most of the cores: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Y, Zr, Nb, Mo, I, Ba, La, Ce, Pb, Th, U; in some experiments Cr, Ga, Ge, As, Se, Cd, Te, Sn, Pr, Nd were also determined. The vertical resolution of measurements was 0.1 to 1.0 mm. In this presentation I give examples of bigenic traces (Br, I and some other); of downcore variations of terrigenous clastic supply (marked by Ti, Zr, Th, as well K, Rb, Nb, La, Ce, etc.); of authigenic enrichment of layers with Fe, Mn; with Cu, Zn; of carbonate and sulphate layers (marked by Ca, Sr and some other); of sulphate/sulphide reducing (marked by Mo); of mobile elements enrichment (Sr, U, etc.); of using ratios of elements as very sensitive markers of changing sources of material supplied into deposits (Ti/Ca, Sr/Rb, Fe/Ti and other). The author is grateful to his colleagues from institutes of Siberian Branch of Russian Academy of Science (Institute of Nuclear Physics, Limnological Institute, Institute of Earths Crust, Institute of Geochemistry, Institute of Geology and Mineralogy, Institute of Biophysics) and from Novosibirsk State University and Irkutsk Polytechnic University for extensive collaboration.

  6. A novel approach to water polution monitoring by combining ion exchange resin and XRF-scanning technique

    NASA Astrophysics Data System (ADS)

    Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.

    2017-12-01

    Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of environmental monitoring and environmental forensics.

  7. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    NASA Astrophysics Data System (ADS)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  8. Maia Mapper: high definition XRF imaging in the lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  9. Maia Mapper: high definition XRF imaging in the lab

    DOE PAGES

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...

    2018-03-13

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  10. Maia Mapper: high definition XRF imaging in the lab

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.

    2018-03-01

    Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.

  11. X-ray fluorescence results from IODP Expedition 355 sediments in Laxmi Basin, eastern Arabian Sea: Insights into late Miocene and Pleistocene carbonate production and burial and possible variations in monsoon intensit

    NASA Astrophysics Data System (ADS)

    Bowen, M. G.; Kulhanek, D. K.; Lyle, M. W.; Hahn, A.

    2017-12-01

    Variations in CaCO3 accumulation on the seafloor depend on a number of factors, including productivity of carbonate-producing organisms in the overlying water column, input of siliciclastic material from nearby continents, and changes in ocean chemistry. These factors are affected by variations in tectonics and climate. Here we use X-ray fluorescence (XRF) core scanning data to develop high-resolution chemical profiles calibrated with discrete samples to examine changes in carbonate production and burial in the eastern Arabian Sea. International Ocean Discovery Program (IODP) Expedition 355 cored two sites in the Indus Fan in Laxmi Basin. We scanned the Pleistocene composite sections from both sites at 2 cm resolution ( 150-300 year sampling resolution) using the Avaatech XRF core scanner at the IODP Gulf Coast Repository. In addition, we scanned a hemipelagic interval dated to the late Miocene ( 8 to 6 Ma) that spans the late Miocene climate transition to drier conditions globally, as documented by an expansion in C4 plants. The 2 cm scanning resolution represents 500 years between samples for the upper Miocene section. We used carbonate measurements on discrete samples to calibrate the XRF data, supplemented by analysis using a quantitative benchtop XRF at the University of Bremen. We find large variability in carbonate content in the Pleistocene and upper Miocene, varying from 15-80 wt%, with higher carbonate content correlating with lighter colored sediment. The aluminosilicate composition varies in part because of carbonate dilution but also because of changes in the source of clays and turbidites through the section. We also explore the use of chemical ratios to better understand the variations through the section. Changes in Ca/Fe (biogenic/terrestrial component) and Rb/Zr (fine/coarse grained) match well with visual observation of sediment composition in the cores. We can combine these with the oxygen isotope-derived age model for the Pleistocene section to examine orbital-scale variations in carbonate production and terrigenous input at the sites. We also explore proxies for precipitation (Ti/Ca) and weathering (Fe/K and Al/K) to elucidate changes in monsoon strength during the Pleistocene, although these results are preliminary.

  12. XRF Core Scanning of Igneous Rocks: a Case Study of IODP Expeditions 367/368 Lava Flows, South China Sea

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; LeVay, B.; Stock, J. M.; Sun, Z.; Klaus, A.; Jian, Z.; Larsen, H. C.; Alvarez Zarikian, C. A.

    2017-12-01

    For three decades, X-ray fluorescence core scanning (XRF-CS) has been widely applied to split sediment cores to obtain continuous data sets of element intensities, serving as chemical proxies for paleoceanography and paleoclimate studies. In contrast, there is no record published on igneous rock cores. This study utilizes a remarkably consistent recovery of lava flows from the South China Sea (SCS), intersected during International Ocean Discovery Program (IODP) Expeditions 367/368, to gain preliminary insights into the chemical inventory of a volcanic suite. At IODP Site U1500, a drilled interval of 150 m, starting at 1379.1 meters below seafloor, yielded 115 m of intercalated fine-grained massive, sheet, and pillow lava flows of basaltic modal composition, consisting of aphyric to highly plagioclase-phyric rocks. The pillow lavas feature numerous well-preserved chilled and glassy margins. The whole succession of lavas is overall slightly to moderately altered and notably fresh in parts. The present XRF data, obtained from a third-generation energy dispersive Avaatech® core scanner at a step size of 2 cm, suggest the existence of two chemically distinct lava suites. The bottom six lava flows (in total 40 m thick) show low intensities of both Cr and Ti (e.g., Ti: 7000-8500 counts), while the upper 11 flows reflect higher concentrations of Cr and Ti (e.g., Ti: 8200-9500 counts). A massive flow, which marks the chemical transition, represents the top of the low-Cr and -Ti lava suite. The compositional change from low-Cr-Ti to high-Cr-Ti lavas reflects a clear temporal magmatic evolution of this submarine SCS volcanism, which is characterized by generally constant Fe/Mn ratios. Thus, this trend may be explained by a change to less fractionated and/or less contaminated lavas over time. On a smaller scale, the XRF-CS also enabled mapping of the compositional variations of crosscutting veins with depth as well as the transition from glassy margins to the micro- to cryptocrystalline interiors of lava flows. The present preliminary study demonstrates the great potential of XRF-CS of volcanic rocks for not only informational purposes for any subsequent sampling of certain depth intervals but also for offering a non-destructive approach to investigating the downhole chemical variation at high resolution.

  13. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes

    NASA Astrophysics Data System (ADS)

    Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.

    2011-04-01

    X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.

  14. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid periods

    NASA Astrophysics Data System (ADS)

    Grant, Katharine M.; Rohling, Eelco J.; Westerhold, Thomas; Zabel, Matthias; Heslop, David; Konijnendijk, Tiuri; Lourens, Lucas

    2017-09-01

    Mediterranean sediments are valuable archives of both African monsoon variability and higher-latitude climate processes, and can also be used to provide an environmental context for early human migrations and settlements. However, the long history of Mediterranean palaeoclimate studies largely pre-dates the advent of widespread x-ray fluorescence (XRF) core-scanning, so there are few continuous and high-resolution geochemical records from this key region that extend beyond the last glacial cycle. Here we present XRF core-scanning results for ODP Site 967 (Eastern Mediterranean) that have been fully-calibrated into element concentrations spanning the last 3 million years (My). Comparison with independent geochemical data from conventional XRF highlights disparities for certain element/element ratios, thus suggesting the need for caution when taking ratios of scanning XRF data. Principal component analysis of the calibrated XRF dataset reveals two dominant components: detrital inputs (PC1) and a 'sapropel' (≈monsoon run-off) signal (PC2), which we use to establish a new orbitally-tuned chronology. We observe inverse covariation between PC2 and a previously published aeolian dust record from ODP Site 967 (Larrasoaña et al., 2003), and combine these records to produce a composite index of humidity and aridity for the wider North African region over the past 3 My. We propose that by combining run-off and dust signals in a single metric, our index captures the effects of both strengthening/northward migration (increased run-off) and weakening/southward retreat (increased dust) of the North African monsoon. Comparison of the index with published records of Northwest and East African palaeohumidity suggests that it tracks the timing of ;Green Sahara Periods; throughout the Plio-Pleistocene, and that at least 30 of these intervals coincided with increased humidity across East Africa. We tentatively suggest that these specific episodes may be termed ;pan-African Humid Periods;, as a means to highlight large-scale climate trends and to provide an environmental framework for palaeo-anthropological research.

  15. High resolution HH-XRF scanning and XRD modelling as a tool in sedimentological analysis - A case study from the Enreca-3 core, Bach Long Vi Island, Vietnam

    NASA Astrophysics Data System (ADS)

    Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael

    2017-04-01

    To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.

  16. Geochemistry records from laminated sediments of Shira Lake (Russian Asia)

    NASA Astrophysics Data System (ADS)

    Phedorin, M.; Vologina, E.; Drebuschak, M.; Tolomeev, A.; Kirichenko, I.; Toyabin, A.

    2009-04-01

    We measured downcore elements distributions in five cores collected across the Shira Lake situated in Central part of Asia (E90o12', N54o30'). The lake is small (32km2), saline (ca.20g/l SO4-, Cl-, Na+, Mg+, K+), being filled with regional precipitation of about 300mm/year (mainly through one major tributary, river Son) and has no surface outflow. The aim of our study was to reconstruct history of changes in the regime of the lake that happened both before and during period of instrumental meteorological observations. In particular, we were interested in lake-level changes due to evaporation, water supply from surface and from underground sources, and in changes of bioproduction in the lake as well. To construct depth-age model for the cores, we measured Cs-137 and unsupported Pb-210 in top layers of the cores. The sedimentation rate thus identified varied in the range of 1-2 mm/year for different cores. We visually observed fine sedimentation ‘rhythms' having thickness of about 0.x-2.x mm: these layers may now be reliably identified as annual lamination. We also determined concentrations of elements in the sediments by recording x-ray fluorescence (XRF) spectra when continuously scanning the halves of the cores under sharp synchrotron radiation (SR) beam, using an instrument described in (Zolotarev et al., 2001). The resolution of the scanning was 0.1 mm. After processing of the measured XRF-SR data as in (Phedorin and Goldberg, 2005) we obtained downcore records of 20 elements. We correlated all five cores employing elements patterns. We qualitatively identified variations in surface-water supply treating markers of ‘clastic' material (Ti, Rb, Zr). We identified downcore variations in authgenic mineralization, which appeared to have different kinds: Ca-related, Sr-related, Ba-related, Fe-related. We tried to assess biogenic production changes from Br distribution, admitting analogy of Br in Shira sediments to Br in Lake Baikal sediments (Phedorin et al., 2000) and in Lake Khubsugul sediments (Phedorin et al., 2008). The cores we studied provide us with high-resolution geochemical records of last century for further meteorological correlations and regressions back to the past. We plan to reconstruct regional trends proceeding with the investigation of this kind and studying sediments of some other Khakas lakes. The investigation was supported by the grant from RFBR (09-05-98027) and grant from the Siberian Branch of Russian Academy of Science. Phedorin M.A., Goldberg E.L., Grachev M.A., Levina O.L., Khlystov O.M., Dolbnya I.P. The Comparison of Biogenic Silica, Br and Nd Distributions in the Sediments of Lake Baikal as Proxies of Changing Paleoclimates of the Last 480 ky. // Nuclear Instruments and Methods in Physics Research, 2000, V. A448, № 1-2, pp. 400-406. Phedorin M.A., Goldberg E.L. Prediction of absolute concentrations of elements from SR XRF scan measurements of natural wet sediments. Nuclear Instruments and Methods in Physics Research A 543 (2005), p. 274-279. Phedorin M.A., Fedotov A.P., Vorobieva S.S., Ziborova G.A.. Signature of long supercycles in the Pleistocene history of Asian limnic systems. J Paleolimnol, 2008, 40/1, pp. 445-452. Zolotarev K.V., Goldberg E.L., Kondratyev V.I., Kulipanov G.N., Miginsky E.G., Tsukanov V.M., Phedorin M.A., Kolmogorov Y.P. Scanning SR-XRF beamline for analysis of bottom sediments. // Nuclear Instruments and Methods in Physics Research, 2001, V. A470, N 1-2, pp. 376-379.

  17. A new high-resolution sediment record from Lake Gościąż (central Poland)

    NASA Astrophysics Data System (ADS)

    Bonk, Alicja; Błaszkiewicz, Mirosław; Brauer, Achim; Brykała, Dariusz; Gierszewski, Piotr; Kramkowski, Mateusz; Plessen, Brigit; Schwab, Markus; Słowiński, Michał; Tjallingii, Rik

    2017-04-01

    The varved sediments from Lake Gościąż, located in the Vistula Valley in Central Poland, are an iconic record for palaeoclimate and palaeoenvironmental reconstruction (Goslar et al. 2000, Hajdas et al. 1995, Ralska-Jasiewiczowa et al. 1998). Recently, we obtained a set of new sediment cores from Lake Gościąż and established a 21 m long sediment profile. Except of the topmost part of the core, it is continuously laminated down to glacial sands. We aim at applying a comprehensive multi-proxy core analyses combined with monitoring of present-day sedimentation processes. Sediment investigations will include new methods that have been developed or advanced since the previous studies on the Lake Gościąż sediments including continuous micro-facies analyses, μXRF core scanning and tephrochronology. The main aims of our new project are a revision of the existing floating chronology and to synchronise the Lake Gościąż sediment record based on independent isochrones with other European varved lake records like, e.g. Lake Meerfelder Maar, in order to investigate in detail proxy responses to climate change and to decipher regional leads and lags in climate change. Here, we will present (1) the objectives of our new project on this key record of past climate and environmental change and, (2) preliminary results including magnetic susceptibility, μ-XRF core scanning and microfacies images. This study is a contribution to scientific project financed by the National Science Centre, Poland - No DEC-2015/19/B/ST10/03039.

  18. High resolution analysis of northern Patagonia lake sediments

    NASA Astrophysics Data System (ADS)

    Jarvis, S. W.; Croudace, I. W.; Langdon, P. G.; Rindby, A.

    2009-04-01

    Sediment cores covering the period from the last glacial maximum through the Holocene to the present have been collected from sites in the Chacubuco valley, southern Chile (around 47°08'S, 72°25'W, to the east of the North Patagonian Icecap). Cores were taken from five lakes and one recently dried lake bed. Short cores (0.2 to 0.5m), covering approximately the last two hundred years, were taken from all the lakes. Additionally, long sequences were obtained from one of the lakes and from the dried lake bed, the latter sequence extending back to the last glacial maximum as indicated by thick clay at the base. Each of the lakes are small-medium sized and are open systems situated at 300-1000m above sea level. The shorter cores comprise predominantly clastic gyttja but show a number of distinct changes in colour and chemical composition that suggest major environmental changes over the period of sediment accumulation. This is also reflected in variations in the loss on ignition of samples from the cores and in elemental profiles produced by scanning the cores with the Itrax micro-XRF corescanner at 200μm resolution. The long sequence from the dried lake bed has very low organic content glacial clay at the base, interpreted as last glacial maximum basal clay following determination in the field that this layer exceeded 2m in thickness. Similar sediments occur within a stratigraphically discrete section of approximately 14cm and may relate to a stadial event. The latter section also shows a drop in organic content and appears to be glacial clay incorporating some coarse sandy components indicative of detrital input from the catchment. The second long sequence, from a carbonate lake, includes two mineral layers indicating increased detrital input from the catchment. The deeper and thicker of these layers appears similar to the 14cm layer in the first long sequence, while the upper layer comprises a fine grain size indicative of rock flour and hence also of glacial activity in the catchment. Variation of elemental composition of these ‘glacial' layers is also clear from the Itrax data. It therefore appears that there have been significant reglaciation events in the catchment since the last glacial maximum. Many cores contain tephra layers, identified both visually and from the Itrax scans. Some of these have been confirmed as volcanic ash from the 1991 eruption of Mt Hudson, which at 45°54'S, 72°58'W is the southern-most volcano in the Chilean Andes and only 140km from the study area. Further work is underway to confirm and identify the source and age of other suspected tephra layers. Sediment accumulation rates in the upper parts of the cores are of the order of 1mm/yr (as determined by lead-210, caesium-137 dating and the 1991 Hudson tephra). Given XRF scan resolutions of up to 200μm there is thus the potential for investigation of sub-annual variability. Funding has been obtained to determine carbon-14 dates for the lower parts of the longer cores. The reproducibility and accuracy of the Itrax data has been validated using conventional WD-XRF spectrometry and the work presented will also include geochemical interpretation of the XRF data and comparison with recorded and proxy-inferred climate data for the region.

  19. Paleoseismic events inferred from marine seismogenic turbidites of the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Okutsu, N.; Ashi, J.; Omura, A.; Yamaguchi, A.; Suganuma, Y.; Kanamatsu, T.; Murayama, M.

    2016-12-01

    Paleoseismology using marine seismogenic turbidites is a developing field especially in subduction margins. However, very fine-grained turbidites are difficult to distinguish from hemipelagic mud. The primary focus of this study is to understand the characteristics of the muddy turbidites. The second focus is to discuss the muddy turbidites distributions and their ages from a longer sediment core, and understand the paleoseismic records of eastern Nankai Trough, Japan. The samples used in this study include multiple cores and a piston core which were collected from the sedimentary basin southwest off Kii Peninsula during the R/V Shinsei Maru KS-14-8 cruise. The sampling site is located at the ENE-WSW elongated basin between the accretionary prism and the forearc basin off Kumano without terrestrial sediment supply. The basin exhibits a terminal basin that captures all sediments supplied from outside. From the multiple core samples, the Cs-137 and Pb- 210 concentration distribution indicates that the muddy sediment layer in the upper 17 cm was formed from the 2004 off the Kii Peninsula earthquake. Visual observation and X-ray CT scans were conducted alongside other measurements for anisotropy of magnetic susceptibility (AMS), paleomagnetism, rock magnetism, electrical resistivity, and X-ray fluorescence core scanning (XRF). Muddy seismogenic turbidites associated with the 2004 off the Kii Peninsula earthquake have thick homogeneous clay layer above the silty lamination. The magnetic susceptibility decreases upwards in the lamination. This specific feature is thought to have formed as the muddy turbiditity current slowly decelerated and slowly settled down the slope. From the results of XRF core scanning, Ca and Fe have a peak at basement of turbidites, and decrease upwards. Ca is thought to correspond to amount of the foraminiferas. In piston core, we observed the same sedimentary and magnetic characteristics as the multiple cores. Based on stratigraphic information from volcanic ash and radiocarbon age of the foraminifera, intercalation pattern of muddy turbidite layers almost consistent with the known past earthquake recurrence times in the Nankai subduction margin. Reversed age recognized beneath the thick turbidite layer suggests reworking of landslide deposits probably due to the strong shaking.

  20. Barium and calcium analyses in sediment cores using µ-XRF core scanners

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Çaǧatay, Namık; Genç, S. Can; Eriş, K. Kadir; Sarı, Erol; Uçarkus, Gülsen

    2017-04-01

    Barium and Ca are used as proxies for organic productivity in paleooceanographic studies. With its heavy atomic weight (137.33 u), barium is easily detectable in small concentrations (several ppm levels) in marine sediments using XRF methods, including the analysis by µ-XRF core scanners. Calcium has an intermediate atomic weight (40.078 u) but is a major element in the earth's crust and in sediments and sedimentary rocks, and hence it is easily detectable by µ-XRF techniques. Normally, µ-XRF elemental analysis of cores are carried out using split half cores or 1-2 cm thich u-channels with an original moisture. Sediment cores show variation in different water content (and porosity) along their length. This in turn results in variation in the XRF counts of the elements and causes error in the elemental concentrations. We tried µ-XRF elemental analysis of split half cores, subsampled as 1 cm thick u-channels with original moisture and 0.3 mm-thin film slices of the core with original wet sample and after air drying with humidity protector mylar film. We found considerable increase in counts of most elements, and in particular for Ba and Ca, when we used 0.3 mm thin film, dried slice. In the case of Ba, the counts increased about three times that of the analysis made with wet and 1 cm thick u-channels. The higher Ba and Ca counts are mainly due to the possible precipitation of Ba as barite and Ca as gypsum from oxidation of Fe-sulphides and the evaporation of pore waters. The secondary barite and gypsum precipitation would be especially serious in unoxic sediment units, such as sapropels, with considerable Fe-sulphides and bio-barite.It is therefore suggested that reseachers should be cautious of such secondary precipitation on core surfaces when analyzing cores that have long been exposed to the atmospheric conditions.

  1. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  2. Elemental concentration variations in Plio-Pleistocene sediments from ODP Site 1143 (southern South China Sea) obtained by XRF analyses

    NASA Astrophysics Data System (ADS)

    Tian, J.; Xie, X.; Jin, H.; Wang, P.; Jian, Z.

    2009-12-01

    Energy dispersive X-ray fluorescence (XRF) scanning technology provides the most accurate and most economic analytical methods for the determination of major and minor elements of the deep-sea sediment ranging from sodium (11) to uranium (92). Scanning on the smooth core surface by XRF Core scanner is reliable and non-destructive to the sediment, requiring little or no time to prepare the core. This method overcomes the drawback of the traditional analytical method by ICP-AES or ICP-MS which requires long time for sample preparation. Thus, it makes it viable to reconstruct long and high-resolution elemental time series from sediment cores. We have performed relatively elemental concentration analyses on the deep sea sediment cores from ODP site 1143 (southern SCS) down to 190.77 mcd (meters composite depth) by XRF core scanner. The depth resolution of the scanning is 1 cm, equivalent to a time resolution of ~250 years. The age model is based on tuning the benthic foraminiferal d18O at Site 1143 to obliquity and precession (Tian et al., 2002) which indicates that the 190.77 meters long sediment spans the past 5 Myr. We compared the records between 99.5 and 136.46 mcd with the elemental records from the same site obtained by Philips PW 2400 X-ray spectrometer (Wehausen et al., online publication). Comparison reveals, regardless of the absolute changes of the elements, that the elemental records (Si, Ti, Al, Fe, Mn, Ca, K, P, Ba, Rb, Sr) obtained by two methods are nearly the same. Results show that the relative concentration variations of the productivity related elements such as Ba and Ca display distinctive glacial-interglacial cycles for the past 5 Myr. These productivity cycles recorded show one-on-one relationship with the glacial-interglacial cycles of the global ice volume change recorded in the benthic foraminiferal d18O. The glacial-interglacial cycles in productivity and global ice volume changes are consistent with each other not only in amplitude but also in secular variations. The benthic d18O implies the final formation of the northern hemisphere glaciation between ~2.5 Ma and ~3.3 Ma, as indicated by gradually increased values of d18O. During this period, both Ba and Ca show gradually increased values of relative concentration, indicating increased productivity which was probably caused by intensified East Asia summer monsoon. The close relationship of the productivity related elemental variations with benthic foraminiferal d18O reveals that the Plio-Pleistocene variations of the East Asian monsoon have been greatly dominated by global ice volume change. Although the elements related to terrigenous detrital matter composition of site 1143 such as Ti, Fe, As, Co and Ni display distinct glacial-interglacial cycles for the past 5 Myr, they display different patterns in secular variation with that of the benthic foraminiferal d18O. The mismatch indicates that besides northern hemisphere glaciation other multiple processes including changes in provenance and weathering intensity caused by monsoonal climate variability and sea level fluctuations could have affected the terrigenous detrital matter composition of site 1143.

  3. 3D anatomy of Heinrich Layer 2

    NASA Astrophysics Data System (ADS)

    van Rooij, D.; Zaazi, N.; Fagel, N.; Boone, M.; Cnudde, V.; Dewanckele, J.; Pirlet, H.; Rohl, U.; Blamart, D.; Henriet, J.-P.; Jacobs, P.; Houbrechts, H.; Duyck, P.; Swennen, R.

    2009-04-01

    Heinrich Layers are found in the North Atlantic Ocean as well-constrained markers of catastrophic iceberg surges from the Pan-Atlantic ice sheets during the last glacial cycle. Their physical and geochemical characteristics allow for relatively fast diagnostics using the state-of-the-art core scanners such as a Multi-Sensor Core Logger and an XRF core scanner. The nature of these characteristics are predominantly due to the source sediments of the ice-rafted debris (IRD) on the one hand (magnetic susceptibility, color, carbonate content) and the response of the palaeo-environment on the other hand (carbonate content, foraminiferal assemblage). However, changes in (gamma) bulk density of the sediment within a Heinrich Layer cannot solely be explained due to the higher content of IRD. Sediment cores in the Porcupine Seabight (West off Ireland) have shown the presence of Heinrich Events without the diagnostic changes in magnetic susceptibility (MS), suggesting a more drastic change in oceanography which could cause widespread diagenesis on the seabed during Heinrich Events. In order to better understand the physical behavior of a Heinrich Layer, 2 cores were studied taken from the northern Porcupine Seabight by R/V Marion Dufresne campaign MD123 in September 2001. More specifically HL2 was studied since it carries the most typical HL signature. The main anatomical information, with a resolution of 0.5 mm, was obtained by means of medical computed tomography of half-core sections of 50 cm length from the Ghent University Hospital. This information was used for detailed sampling for mineralogy, grainsize measurements and palaeoenvironmental analyses. On one core section, XRF core scanning was performed at a 0.5 cm interval. Higher-resolution information was obtained from five 8 cc subsamples which underwent µCT scanning and cold-cathode luminescence microscopy. The results of this unique approach show a rather surprising 3D view of a Heinrich Layer. As expected, the concentration of ice-rafted debris (commonly referred to as the fraction > 150 µm) increases towards the culmination of HL2, marked by an increase in MS, XRF Ca and the percentage of N. pachyderma s. However, the zone where the density increases is marked by a cloud of fine and highly dense particles surrounding the IRD. It seems as if the fine clayey "background" matrix throughout the core consolidates near the centre of HL2. The same feature has been observed within the µCT samples, where the cold-cathode luminescence microscopy has indicated the presence of zoned dolomites. These dolomites might be the result of a diagenetic process that might explain the elevated density. Moreover, the mineralogical analyses show for a predominant volcanic source for the magnetic susceptibility. Contrastingly, both XRF Fe and Ti show significant decreases near the HL culmination, which calls again for diagenetic alteration of the sediment during or just after the Heinrich Event. At this stage of the research, the mechanisms of these diagenetic processes remain unclear. Nevertheless, these results call for a wider view on the depositional processes of Heinrich Layers and their impact upon the seabed geochemistry.

  4. Micro CT characterization of a coastal mine tailings deposit, Portmán Bay, SE Spain

    NASA Astrophysics Data System (ADS)

    Frigola, Jaime; Cerdà-Domènech, Marc; Barriuso, Eduardo; Sanchez-Vidal, Anna; Amblas, David; Canals, Miquel

    2017-04-01

    Scanning of sediment cores by means of high-resolution non-destructive techniques provides researchers with huge amounts of highly valuable data allowing fast and detailed characterization of the materials. In the last decades several devoted instruments have been developed and applied to the study of sedimentary sequences, mainly multi-sensor core loggers (MSCL) for the physical properties and XRF core scanners for the chemical elemental composition. The geoscientific community started using computed tomography (CT) systems about two decades ago. These were mainly medical systems as dedicated instruments were essentially lacking by that time. The resolution of those medical systems was limited to several hundreds of micrometres voxel size. Micro computed tomography (micro-CT) systems have also spread into geoscientific research, although their limited workspace dimensions prevents their use for large objects, such as long sediment cores. Recently, a new micro-CT system, the MultiTom Core X-ray CT, conceived by University of Barcelona (UB) researchers and developed by X-ray Engineering, became operational. It is able of scanning sediment cores up to 1.5 m long, and allows adjustable resolutions from 300 microns down to 3-4 microns. The system is now installed at UB's CORELAB Laboratory for non-destructive analyses of geological materials. Here we present, as an example, the results of MultiTom scans of a set of sediment cores recovered offshore Portmán Bay, SE Spain, in order to characterize at very high-resolution the metal-enriched deposit generated after 33 years of direct discharge into the sea of mine tailings resulting from the exploitation of Pb and Zn ores. In total 52 short cores and 6 long gravity cores from the mine tailings infilled bay were scanned with the MultiTom system at a mean voxel resolution of 125 microns. The integrated study of micro-CT data allowed differentiating the main tailings units from deposits formed after disposal cessation. Tailings units show higher radio-density values, which correspond to metal enrichments. A lower unit consists of highly laminated interbedded low radio-density and very high radio-density layers, while an upper mine tailings unit is more homogeneous and shows intermediate radio-density values. The limit between the tailings and the post-mining deposits is defined by a sharp surface associated with an abrupt decrease in the radio-densities. Post-mining deposits are also characterized by an increment in bioturbation marks, which are practically absent in the tailings units, and an increase in carbonate particles and organic matter patches. Micro CT scans allow observation of very small structures, which are indicative of the complexity of the sedimentation processes involved in the transport and final deposition of the mine tailings. Integration of micro CT scans together with XRF core scanner and MSCL data allows a better characterization of the metal concentrations and their distribution within the deposit, directly demonstrating the great value of non-destructive techniques for actually high-resolution sedimentological studies.

  5. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    PubMed

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  6. Comparing the Detection of Iron-Based Pottery Pigment on a Carbon-Coated Sherd by SEM-EDS and by Micro-XRF-SEM

    PubMed Central

    Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.

    2014-01-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333

  7. Recent developments in spectroscopic imaging techniques for historical paintings - A review

    NASA Astrophysics Data System (ADS)

    Alfeld, M.; de Viguerie, L.

    2017-10-01

    This paper provides an overview over the application of scanning macro-XRF with mobile instruments for the investigation of historical paintings. The method is compared to synchrotron based macro-XRF imaging and Neutron Activation Auto-Radiography. Full-Field XRF imaging instruments, a potential future alternative to scanning macro-XRF, and confocal XRF, providing complementary depth profiles and developing into a 3D imaging technique itself, are described with the focus on investigations of historical paintings. Recent developments of X-ray radiography are presented and the investigation of cultural heritage objects other than paintings by MA-XRF is summarized. In parallel to XRF, hyperspectral imaging in the visible and range has developed into a technique with comparable capabilities, providing insight in chemical compounds, where XRF imaging identifies the distribution of elements. Due to the complementary nature of these techniques the latter is summarized. Further, progress and state of the art in data evaluation for spectroscopic imaging is discussed. In general it could be observed that technical capabilities in MA-XRF and hyperspectral imaging have reached a plateau and that with the availability of commercial instruments the focus of recent studies has shifted from the development of methods to applications of the instruments. Further, that while simple instruments are easily available with medium budgets only few groups have high-end instrumentation available, bought or in-house built.

  8. Identification of green pigments from fragments of Roman mural paintings of three Roman sites from north of Germania Superior

    NASA Astrophysics Data System (ADS)

    Debastiani, Rafaela; Simon, Rolf; Goettlicher, Joerg; Heissler, Stefan; Steininger, Ralph; Batchelor, David; Fiederle, Michael; Baumbach, Tilo

    2016-10-01

    Roman mural green pigment painting fragments from three Roman sites in the north of the Roman province Germania Superior: Koblenz Stadtwald Remstecken (KOSR), Weißenthurm " Am guten Mann" (WEIS) and Mendig Lungenkärchen (MELU), dating from second and third centuries AD were analyzed. The experiments were performed nondestructively using synchrotron-based scanning macro-X-ray fluorescence (SR-MA-XRF), synchrotron-based scanning micro-X-ray fluorescence (SR-μ-XRF), synchrotron-based X-ray diffraction (SR-XRD) and Raman spectroscopy. Correlation between SR-MA-XRF, SR-μ-XRF elemental map distributions and optical images of scanned areas was mainly found for the elements Ca, Fe and K. With XRF, Fe and K were identified correlated with green pigment, but in samples from two sites, Mendig Lungenkärchen and Weißenthurm " Am guten Mann", also Cu was detected in minor concentration. The results of SR-XRD and Raman spectroscopy were limited to one sample from Weißenthurm " Am guten Mann". In this sample, green earth and calcium carbonate were identified by SR-XRD and, additionally, malachite by Raman spectroscopy.

  9. Combining X-Ray Fluorescence and Magnetic Techniques to Quantify Elemental Concentrations in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Goldfarb, L. A.; Kingsley, C.; Urbalejo, A. A.; Hangsterfer, A.; Gee, J. S.; Carilli, J.; Feinberg, J. M.; Mitra, R.; Bhattacharya, A.; Field, D.

    2017-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here is a progress and combination of two works presented at American Geophysical Union 2016 Fall Meeting; In this research, we explore the efficacy of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate detrital metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. Four coral cores together cover a period of 1862-2006. Trace, major and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core spanning to characterize materials present in coral skeletons. We compare the results from XRF to elemental concentrations reported from solution-based ICP-MS. Furthermore, we also compare our XRF data to magnetic measurements we have made in these same coral cores. Overall, it appears that the non-destructive XRF technique is a viable supplement to the ICP-MS in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.

  10. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  11. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.

    2014-01-01

    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 kV accelerating voltage, 800 mA beam current, 30 µm beam diameter, and a beam spacing of 30-120 micrometer. The micro-CT scan of 14305,483 (Figure 2) was able to identify several large lithic clasts (approx. 1 cm) within the interior of the slab. These clasts will be exposed by band-sawing or chipping of the slab, and their composition more fully characterized by subsequent micro-XRF analysis. In addition to lithic clasts, the micro-CT scans identified numerous mineral clasts, including many FeNi metal grains, as well as the prominent fractures within the slab. The micro-XRF analyses (Figure 1b,c) of the slab surfaces revealed the bulk chemical compositions (qualitative) of the different clast types observed. In particular, by looking at the ratios of major elements (e.g. Ca:Mg:Fe), differences among the many observed clast types are readily observed. Moreover, several clasts not apparent to the naked eye were revealed in the K:Al:Si ratio map. The scans are also able to identify small grains of Zr- and P-rich minerals (not shown), which could in turn yield important age dates for the samples.

  12. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  13. User Friendly Processing of Sediment CT Data: Software and Application in High Resolution Non-Destructive Sediment Core Data Sets

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Wiest, J.; Abbott, M. B.; Francus, P.; Lapointe, F.

    2015-12-01

    Computed Tomography (CT) of sediment cores allow for high resolution images, three dimensional volumes, and down core profiles, generated through the attenuation of X-rays as a function of density and atomic number. When using a medical CT-Scanner, these quantitative data are stored in pixels using the Hounsfield scale, which are relative to the attenuation of X-rays in water and air at standard temperature and pressure. Here we present MATLAB based software specifically designed for sedimentary applications with a user friendly graphical interface to process DICOM files and stitch overlapping CT scans. For visualization, the software allows easy generation of core slice images with grayscale and false color relative to a user defined Hounsfield number range. For comparison to other high resolution non-destructive methods, down core Hounsfield number profiles are extracted using a method robust to coring imperfections, like deformation, bowing, gaps, and gas expansion. We demonstrate the usefulness of this technique with lacustrine sediment cores from the Western United States and Canadian High Arctic, including Fish Lake, Oregon, and Sawtooth Lake, Ellesmere Island. These sites represent two different depositional environments and provide examples for a variety of common coring defects and lithologies. The Hounsfield profiles and images can be used in combination with other high resolution data sets, including sediment magnetic parameters, XRF core scans and many other types of data, to provide unique insights into how lithology influences paleoenvironmental and paleomagnetic records and their interpretations.

  14. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. We also compared our XRF results with coral biology, environmental and climate information (regional and global). Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.

  15. A ~600 kyr duration Early Pleistocene record from the West Turkana (Kenya) HSPDP drill site: elemental XRF variability to reconstruct climate change in Turkana Boy's backyard

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Beck, C. C.; Brown, E. T.; Cohen, A.; Deino, A. L.; Feibel, C. S.; Sier, M.

    2015-12-01

    Outcrops in the Kenyan and Ethiopian rift valleys document repeated occurrences of freshwater lakes and wooded landscapes over the past 4 million years at locations that are currently seasonally-dry savanna. Studies of the rich fossil records, in combination with outcropping lacustrine sequences, led to major breakthroughs in our knowledge of driving factors in human evolution. However, study of continuous drill core from ancient lake basins provides a basis for to unravel East African climate dynamics in an unseen fashion. The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project, recovered ~2 km of drill core since 2012. A major project goal is characterization of East African paleoclimate in order to evaluate its impact on hominin evolution. XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the HSPDP records contain complex lithologies reflecting repeated episodes of inundation and desiccation of the lake basins. Nevertheless, careful data evaluation based on detailed lithostratigraphy, which includes smear-slide microscopic analyses and X-radiographic images, allows disentanglement of complex signals and robust identification of continuous sequences for any cyclostratigraphic and statistical analysis. At the HSPDP Turkana Basin site a 175.6 m-long core the covers the Early Pleistocene time window during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. This drill site carries particular interest as it is located in only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Turkana Boy). Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive and environmentally meaningful paleoclimate timeseries. In addition, the XRF record of the changing hydroclimate of the West Turkana Basin from 1.3 to 1.9 kyrs will be explored in relation to regional reconstructions and marine stratigraphies.

  16. Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill; Taggart, Joseph E.

    2010-01-01

    This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.

  17. High-resolution paleoclimatology of the Santa Barbara Basin during the Medieval Climate Anomaly and early Little Ice Age based on diatom and silicoflagellate assemblages in Kasten core SPR0901-02KC

    USGS Publications Warehouse

    Barron, John A.; Bukry, David B.; Hendy, Ingrid L.

    2015-01-01

    Diatom and silicoflagellate assemblages documented in a high-resolution time series spanning 800 to 1600 AD in varved sediment recovered in Kasten core SPR0901-02KC (34°16.845’ N, 120°02.332’ W, water depth 588 m) from the Santa Barbara Basin (SBB) reveal that SBB surface water conditions during the Medieval Climate Anomaly (MCA) and the early part of the Little Ice Age (LIA) were not extreme by modern standards, mostly falling within one standard deviation of mean conditions during the pre anthropogenic interval of 1748 to 1900. No clear differences between the character of MCA and the early LIA conditions are apparent. During intervals of extreme droughts identified by terrigenous proxy scanning XRF analyses, diatom and silicoflagellate proxies for coastal upwelling typically exceed one standard deviation above mean values for 1748-1900, supporting the hypothesis that droughts in southern California are associated with cooler (or La Niña-like) sea surface temperatures (SSTs). Increased percentages of diatoms transported downslope generally coincide with intervals of increased siliciclastic flux to the SBB identified by scanning XRF analyses. Diatom assemblages suggest only two intervals of the MCA (at ~897 to 922 and ~1151 to 1167) when proxy SSTs exceeded one standard deviation above mean values for 1748 to 1900. Conversely, silicoflagellates imply extreme warm water events only at ~830 to 860 (early MCA) and ~1360 to 1370 (early LIA) that are not supported by the diatom data. Silicoflagellates appear to be more suitable for characterizing average climate during the 5 to 11 year-long sample intervals studied in the SPR0901-02KC core than diatoms, probably because diatom relative abundances may be dominated by seasonal blooms of a particular year.

  18. Mediterranean Outflow Water during the late Pliocene: New stratigraphic constraints from micropaleontology and XRF core-scanning (IODP Expedition 339, Hole U1389E)

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Balestra, Barbara; Flores, José-Abel; Garcia Gallardo, Ángela; Auer, Gerald; Röhl, Ulla; Piller, Werner E.

    2015-04-01

    IODP Hole U1389E, at present located in the lower core of the Mediterranean Outflow Water (MOW) at 640m water depth in the northern Gulf of Cadiz, represents a key-site for the understanding of changes in MOW contribution to the North Atlantic during the late Pliocene thermal optimum and the transition into the Pleistocene ice house climate. Zr/Al ratios of the recovered sediments as well as δ18O and Mg/Ca of benthic foraminifera imply major changes in MOW strength in the studied interval. However, to consider these data in a broader paleoceanographic and paleoclimatic context, a well-constrained age model is essential. New data from calcareous nannoplankton and XRF core-scanning suggest that the shipboard age model for the site has to be reconsidered as major changes in sedimentation rates have not been recognized in the original comparably low resolution data-sets. While the new, higher-resolution biostratigraphic data confirm the overall time frame of 2.6 to 3.6 Myrs, they also imply a potential sedimentary hiatus within the Pliocene thermal optimum and a significant increase in sedimentation rates thereafter. A distinct cyclic pattern is recognized in the CaCO3 and TOC contents as well as Ca/Ti ratios. Based on the estimated sedimentation rates these cycles are most likely linked to precessional forcing, resembling cyclic changes in riverine input from southern Spain recognized at several drill-sites at the northern shelf break. A detailed cyclostratigraphic analysis is currently in progress to confirm the precessional signal and to further constrain the duration of the sedimentary hiatus during the Pliocene thermal optimum. This study contributes to project P25831-N29 of the Austrian Science Fund (FWF) and is financially supported by grants of ECORD and the Max Kade Foundation.

  19. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  20. Trace Metal Variations Detected by Using Continuous XRF Core Scanning: Preliminary Results on Redox-sensitive Elements in East Sea, Korea

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Shin, D. H.; Kim, J. K.; Hyun, S.; Jang, S.; Kum, B. C.; Yoo, K. C.; Moh, T. J.

    2017-12-01

    The cruise of R/V ISABU focused on the detailed geological, geochemical and paleoceanographical investigations in the East Sea. The purpose of this cruise was the use of technically sophisticated Giant Piston Corer (GPC, OSIL) as well as the recovery of the longest piston core (20.7 m, ISA-16ESUB-2B) ever recorded in KIOST with a high resolution of stratigraphic sedimentary layer. The Late Pleistocene to the Holocene sediments in the Ulleung Basin are characterized by several volcanic tephra layers with alternations of fine light and dark clayey layers, reflecting variability in the paleoenvironment. Based on the previous researches and AMS results, we determine the ages of sedimentary layers from three tephra layers, 1.86 mbsf (U-Oki, 10.7 ka), 3.31 mbsf (AT, 29.4 ka), 11.67 mbsf (Aso-4, 88.0 ka) and 17.09 mbsf (Aso-3, 133.0 ka) respectively. Sediment textures are identified as hemipelagic mud, bioturbated mud and laminated mud with tephra layers. The sedimentation rates of each intervals are 0.174 m/kyr (present to U-Oki), 0.078 m/kyr (U-Oki to AT), 0.143 m/kyr (AT to Aso-4) and 0.120 m/kyr (Aso-4 to Aso-3) respectively. Sensitivity of XRF core scanner was obtained by establishing equivalences between peak areas. Element concentrations are analyzed by traditional techniques such as ICP-MS, ICP-OES. The Ca/Fe ratio reflects carbonate content and ISA-16ESUB-2B core shows strong correlation to sedimentary horizons. Sr/Ca ratio has good correlation with sedimentary units. Enhanced Sr contents indicates strong surface ocean production. Br/Cl ratio are high peak during MIS 5.5. Br content implies generally high organic rich sediments.

  1. Depositional History of a Saline Blue Hole on Eleuthera Island, Bahamas: Implications for Sea Level History and Climate Change

    NASA Astrophysics Data System (ADS)

    Brady, K.; Bernard, M.; Bender, S.; Roy, Z.; Boush, L. E.; Myrbo, A.; Brown, E. T.; Buynevich, I. V.; Berman, M.; Gnivecki, P.

    2013-12-01

    Physical, chemical and biological properties of Duck Pond Blue Hole (DPBH), located on the southern portion of Eleuthera Island, Bahamas, were examined to analyze its depositional history and the record of climate and anthropogenic changes on the island. DPBH is a small (.001 km2), circular inland blue hole with average salinity ranging from 20-28 ppt and a maximum depth of ~8 m. Sediment cores were recovered using standard piston coring techniques along a transect consisting of three sites yielding cores of varying lengths--170, 155 and 151 cm, respectively. Radiocarbon dating, x-ray fluorescence (XRF), grain size analysis, loss on ignition (LOI), smear slide and mollusk processing and identification were performed on the cores. The sediment recovered is dominated by brown, tan and white carbonate sand with varying amounts of organic matter. Sedimentation rates vary between 0.1-0.5 mm/year. Mollusks are found throughout the cores but gastropods dominate in the upper portions, which date from 2000 years BP to present day. Bivalves are abundant in intervals dating between 5000 and 2500 years BP. The most common bivalve species were Polymesoda maritima, Anomalocardis auberiana and Ervilia concentrica. The most common gastropods were Cerithidea costata and Cerithium lutosum. Drill holes made by predaceous gastropods occur on some of the gastropods, but on most of the bivalves. Drilling frequency is highest between 5000 and 2500 years BP even though gastropods are rarely preserved in that interval. Through smear slide analysis, diatoms, forams and ostracodes were also found to occur throughout the core record. Peaks in Fe and Sr from XRF scans at 0.5 cm intervals may represent records of high atmospheric dust concentrations and sea level fluctuations, respectively. Plotting mollusk bed depths versus calibrated age reveals a sea level rise over the last 6000 years that includes a rapid rise and subsequent fall at ~2500 year BP.

  2. Geochemical Dataset of the Rhone River Delta (Lake Geneva) Sediments - Disentangling Human Impacts from Climate Change

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Girardclos, S.; Loizeau, J. L.

    2016-12-01

    Lake sediment records are often the most complete continental archives. In the last 200 years, in addition to climatic variability, humans have strongly impacted lake watersheds around the world. During the 20th century the Rhone River and its watershed upstream Lake Geneva (Switzerland/France) have been subject to river channelization, dam construction, water flow regulation, water and sediment abstraction as well as various land use changes. Under the scope of the SEDFATE project (Swiss National Science Foundation nº147689) we address human and climatic impact on the sediment transfer from the Rhone River watershed to Lake Geneva. Nineteen short sediment cores were collected in the Rhone River delta area in May 2014. Cores have been scanned with MSCL and XRF, sub-sampled every 1cm and 8 cores were dated by radiometric methods (137Cs and 210Pb). Photographs taken right after core opening were used for lithological description and in addition to MSCL data were used to correlate cores. Core dating shows that mass accumulation rates decreased in the 1964-1986 interval and then increased again in the interval between 1986-2014. XRF elements and ratios, known to indicate detrital sources (Al, Al/Si, Fe, K, Mn, Rb, Si, Ti, Ti/Ca), show that clastic input diminished from 1964 to 1986 and re-increased to the present. Other elemental (Zr/Rb, Zr/K, Si/Ti) and geophysical data (magnetic susceptibility) combined with lithology identify density flow deposits vs hemipelagic sedimentation. Changes in frequency of these event deposits indicate changes in the sedimentation patterns in the Rhone River sublacustrine delta during the last century. From these results we hypothesize that a significant sediment amount was abstracted from the system after the major dam constructions in the 1950's and that, since the 1990's, a contrary signal is due to increased sediment loads that follows glacial melting due to global warming.

  3. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland

    NASA Astrophysics Data System (ADS)

    Wulf, Sabine; Ott, Florian; Słowiński, Michał; Noryśkiewicz, Agnieszka M.; Dräger, Nadine; Martin-Puertas, Celia; Czymzik, Markus; Neugebauer, Ina; Dulski, Peter; Bourne, Anna J.; Błaszkiewicz, Mirosław; Brauer, Achim

    2013-09-01

    Tephrochronological studies of partly varved sediments of Trzechowskie palaeolake in central Northern Poland led to the finding of the Late Allerød Laacher See Tephra (LST) from the Eifel Volcanic Field for the first time in a very distal site ca 840 km ENE from its volcanic source. The detection of glass shards of the LST involved a comprehensive combination of techniques, i.e. biostratigraphical constrains, high-resolution μ-XRF core scanning and areal μ-XRF mapping of impregnated sediment slabs as well as detailed visual inspection of sediments. The major element chemistry of volcanic glass confirmed the Laacher See Tephra composition in Trzechowskie palaeolake sediments suggesting a deposition from the Middle Laacher See Tephra (MLST-C) or Upper Laacher See Tephra (ULST) dispersal fans. The finding of the LST in this palaeolake enables direct synchronisation with other high-resolution archives in north-central Europe (i.e., Lake Meerfelder Maar, Rehwiese palaeolake) to investigate regional variations of environmental responses at the onset of the Younger Dryas along a West-East transect through north-central Europe.

  4. Development of a versatile XRF scanner for the elemental imaging of paintworks

    NASA Astrophysics Data System (ADS)

    Ravaud, E.; Pichon, L.; Laval, E.; Gonzalez, V.; Eveno, M.; Calligaro, T.

    2016-01-01

    Scanning XRF is a powerful elemental imaging technique introduced at the synchrotron that has recently been transposed to laboratory. The growing interest in this technique stems from its ability to collect images reflecting pigment distribution within large areas on artworks by means of their elemental signature. In that sense, scanning XRF appears highly complementary to standard imaging techniques (Visible, UV, IR photography and X-ray radiography). The versatile XRF scanner presented here has been designed and built at the C2RMF in response to specific constraints: transportability, cost-effectiveness and ability to scan large areas within a single working day. The instrument is based on a standard X-ray generator with sub-millimetre collimated beam and a SDD-based spectrometer to collected X-ray spectra. The instrument head is scanned in front of the painting by means of motorised movements to cover an area up to 300 × 300 mm2 with a resolution of 0.5 mm (600 × 600 pixels). The 15-kg head is mounted on a stable photo stand for rapid positioning on paintworks and maintains a free side-access for safety; it can also be attached to a lighter tripod for field measurements. Alignment is achieved with a laser pointer and a micro-camera. With a scanning speed of 5 mm/s and 0.1 s/point, elemental maps are collected in 10 h, i.e. a working day. The X-ray spectra of all pixels are rapidly processed using an open source program to derive elemental maps. To illustrate the capabilities of this instrument, this contribution presents the results obtained on the Belle Ferronnière painted by Leonardo da Vinci (1452-1519) and conserved in the Musée du Louvre, prior to its restoration at the C2RMF.

  5. Holocene Depositional History of Shad Pond, a Hypersaline Coastal Lagoon, Eleuthera, Bahamas and Its Influence on Lucayan Occupation

    NASA Astrophysics Data System (ADS)

    Boush, L. E.; Fentress, S.; Conroy, M.; Cook, A.; Miseridina, D.; Buynevich, I. V.; Myrbo, A.; Brown, E. T.; Berman, M.; Gnivecki, P.; Kjellmark, E.; Savarese, M.; Brady, K.

    2013-12-01

    Shad Pond, an enclosed hypersaline lagoon on the southeastern tip of Eleuthera, Bahamas reveals a ~5000-year record of hurricane activity, as well as sea-level and climate change history. Three sediment cores recovered 1.04-2.54 m of sediment over bedrock along a transect perpendicular to shoreline. Sediment composition and grain size, loss on ignition, X-ray fluorescence (XRF) measurements of the cores along with dune transects and ground-penetrating radar (GPR) profiles adjacent to the lake provide a comprehensive dataset to interpret the history of this coastal basin. The sedimentary sequence was composed of alternating lithofacies that included microbial mats, sand, and peat. Laminated mats often alternated with sandy layers in thin to medium-bedded units. Two peat layers were found in the basal part of the shore-distal core (Site 1) between 1.82-2.40 m and 2.53-2.54 m and were separated by a 13-cm-thick gray mud layer. In general, organic matter and carbonate content tracked granulometry and composition in all cores. High-resolution XRF scans of Ca and Sr at Site 1 show elevated levels ~3,700 cal yBP, which correlate with the top of the peat layer, but these elemental concentrations vary at Site 3. XRF measurements of Fe indicate a dust flux that has been recorded regionally throughout the Caribbean. Dune transects and GPR profiles indicate a phased history of the pond, beginning with initial stages as an open lagoon dominated by red mangrove, with black mangrove and buttonwood also present. The lake likely closed at approximately 3,700 cal yBP indicated by the transition between the upper peat and microbial mat layers. This could have been due to increased storm events in a regime of rising sea level. Aeolian aggradation continued to heighten the barrier between the bedrock headlands to its present position. Hurricane overwash deposits punctuated the algal mat accumulation throughout this time period. Present-day hypersaline conditions sustain algal mats throughout the lake bottom. It is likely that the occupation by Lucayan culture was influenced by the position of the shoreline along southern Eleuthera and this lake was already unsuitable as a water source at the time of their arrival and occupation during 1300-600 years BP (AD 700-1400).

  6. Computed Tomography Scanning and Geophysical Measurements of Core from the Coldstream 1MH Well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin M.; Brown, Sarah; Moore, Johnathan E.

    The computed tomography (CT) facilities and the Multi-Sensor Core Logger (MSCL) at the National Energy Technology Laboratory (NETL) Morgantown, West Virginia site were used to characterize core of the Marcellus Shale from a vertical well, the Coldstream 1MH Well in Clearfield County, PA. The core is comprised primarily of the Marcellus Shale from a depth of 7,002 to 7,176 ft. The primary impetus of this work is a collaboration between West Virginia University (WVU) and NETL to characterize core from multiple wells to better understand the structure and variation of the Marcellus and Utica shale formations. As part of thismore » effort, bulk scans of core were obtained from the Coldstream 1MH well, provided by the Energy Corporation of America (now Greylock Energy). This report, and the associated scans, provide detailed datasets not typically available from unconventional shales for analysis. The resultant datasets are presented in this report, and can be accessed from NETL's Energy Data eXchange (EDX) online system using the following link: https://edx.netl.doe.gov/dataset/coldstream-1mh-well. All equipment and techniques used were non-destructive, enabling future examinations to be performed on these cores. None of the equipment used was suitable for direct visualization of the shale pore space, although fractures and discontinuities were detectable with the methods tested. Low resolution CT imagery with the NETL medical CT scanner was performed on the entire core. Qualitative analysis of the medical CT images, coupled with x-ray fluorescence (XRF), P-wave, and magnetic susceptibility measurements from the MSCL were useful in identifying zones of interest for more detailed analysis as well as fractured zones. En echelon fractures were observed at 7,100 ft and were CT scanned using NETL’s industrial CT scanner at higher resolution. The ability to quickly identify key areas for more detailed study with higher resolution will save time and resources in future studies. The combination of methods used provided a multi-scale analysis of this core and provides both a macro and micro description of the core that is relevant for many subsurface energy-related examinations that have traditionally been performed at NETL.« less

  7. Increased Throughput and Sensitivity of Synchrotron-Based Characterization for Photovoltaic Materials

    DOE PAGES

    Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...

    2017-04-03

    Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less

  8. Drilling the Thuringian Syncline, Germany: core processing during the INFLUINS scientific deep drilling campaign

    NASA Astrophysics Data System (ADS)

    Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe

    2014-05-01

    Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.

  9. Chew Bahir, southern Ethiopia: an archive of environmental history during the evolution and dispersal of anatomically modern humans

    NASA Astrophysics Data System (ADS)

    Schaebitz, F.; Asrat, A.; Lamb, H. F.; Trauth, M. H.; Junginger, A.; Foerster, V. E.; Guenter, C.; Viehberg, F. A.; Just, J.; Roberts, H. M.; Chapot, M. S.; Leng, M. J.; Dean, J.; Cohen, A. S.

    2016-12-01

    Chew Bahir is a tectonic basin in the southern Ethiopian Rift, close to the Lower Omo valley, site of earliest known fossil of anatomically modern humans. It was drilled in Nov-Dec 2014 as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) and the Collaborative Research Center (CRC806) "Our Way to Europe". Two overlapping cores of mostly clayey silts, reaching a composite depths of 280m, were collected and may cover the last 500,000 years, thus providing a potential record of environmental history during the evolution and spread of anatomically modern humans. Here we present the lithology and stratigraphy of the composite core as well as results of high resolution MSCL and XRF scanning data. Initial sedimentological and geochemical results show that the Chew Bahir deposits are a sensitive record of changes in moisture, sediment influx, provenance, transport and diagenetic processes, evident from mineralogy, elemental concentration and physical properties. The potassium record is highly sensitive to changes in moisture balance (Foerster et al. 2015). XRF and XRD data suggest that the process linking climate with potassium concentrations is the diagenetic illitization of smectites during dry episodes with high alkalinity and salinity in the closed-basin lake. The core records will allow tests of the various hypotheses about the influence of environmental change on the evolution and dispersal of anatomically modern humans. Foerster, V., Vogelsang, R., Junginger, A., Asrat, A., Lamb, H.F., Schaebitz, F., Trauth, M.H. (2015): Environmental Change and Human Occupation of Southern Ethiopia and Northern Kenya during the last 20,000 years. Quaternary Science Reviews, 129: 333-340. doi:10.1016/j.quascirev.2015.10.026.

  10. Elemental Scanning Devices Authenticate Works of Art

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To better detect aluminum compounds, Marshall Space Flight Center partnered with KeyMaster Inc. (later acquired by Madison, Wisconsin-based Bruker AXS Inc.) to develop a vacuum pump system that could be attached to X-ray fluorescence (XRF) scanners. The resulting technology greatly expanded XRF scanner capabilities, and hundreds of museums now use them to authenticate artifacts and works of art.

  11. Late Holocene glacial history of Petermann Fjord, Northwest Greenland: Non-destructive CT, XRF, and magnetic results from OD1507 sediment cores

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.; Cheseby, M.; Albert, S. W.; Wiest, J.

    2016-12-01

    An international and interdisciplinary expedition to Nares Strait and Petermann Fjord, Northwest Greenland, onboard the Swedish Icebreaker Oden July-September 2015 (OD1507) sought to understand the Holocene history of the Petermann glacial system among other research objectives. Petermann Glacier, which terminates as a floating ice-tongue in Petermann Fjord, is thought to be especially sensitive to ice-ocean interactions. While limited historical observations dating back to 1876 suggest the Petermann Ice Tongue extends about 70-90 km from the grounding-line, large calving events in 2010 and 2012 reduced the ice-tongue extent to about 45 km from the grounding-line. A suite of 14 marine sediment cores recovered a range of glacio-marine facies that form an along fjord (15-80 km from the grounding-line) and an across fjord depth (473-1041 meters water depth) transect. CT scans clearly identify four primary fjord facies, including bioturbated, IRD-rich, laminated and mud with stratified graded sand layers. The latter of these occurs near the modern grounding-line. Additionally, a new MATLAB routine is used to quantify clasts >2 mm in size from the CT scans. XRF sediment geochemical changes mirror magnetic mineral concentrations and are driven by varying contribution of Ca-rich and Ca-poor sources, which we interpret as a reflection of the mixing of the local carbonate rocks and crystalline basement excavated by the ice sheet. Initial paleomagnetic results isolate a strong and stable characteristic remanent magnetization which show remarkable similarity to paleosecular variation (PSV) recorded in nearby mid-late Holocene varved lakes on Ellesmere Island. This non-destructive dataset provides robust correlations, indicating a coherent and dynamic record of changes in the Petermann glacial system during the late Holocene, including evidence for a significant grounding-line retreat followed by the growth and relative paleo-extent of the modern Petermann Ice Tongue.

  12. IRD evidence for Heinrich Events H1 and H2 on the NJ Margin

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Calabrese, J.; O'Neill, C.; Goff, J. A.

    2011-12-01

    Recent seismic reflection studies suggest icebergs grounded on the late Pleistocene New Jersey margin (Goff and Austin, 2009) during Heinrich events H1 (~17 cal Ka), H2 (~23 cal Ka), H3 (~30 cal Ka) and H4 (~37 cal Ka). We tested this hypothesis by analyzing sediments on the upper NJ continental slope, near the area where icebergs were found. Ocean Drilling Program Site 1073A is located at 39°13.5214'N, 72°16.5461'W in 639 m water depth. The greater water depth increases the likelihood of preservation and improves the stratigraphic control. We obtained elemental measurements for Site 1073A Cores 1-6 using the X-ray Fluorescence (XRF) Core Scanner at the MARUM IODP core repository, University of Bremen. Cores were scanned at 10kV and 30kV to obtain a full suite of elements for analysis, with XRF data collected between 1 and 10 cm intervals. The values are reported in areas for the elements and were then converted to elemental ratios (Ca/Sr, Si/Sr, K/Al, and Si/Ti) for analysis. The origin of a Heinrich layer within an IRD belt can be identified by geochemical measures along with magnetic susceptibility and the presence of detrital materials that reflect its provenance (Hemming, 2004). Following analyses for Atlantic Ocean IRD by Hodell et al. (2008), higher Si/Sr values indicate abundant detrital silicates and low biogenic carbonate. Abundant detrital carbonate is identified by higher Ca/Sr values. K/Al may be used as a proxy for weathered matter being deposited and is a good indicator of terrigenous material (Yarincik, 2000). Si/Ti ratios may be used as a proxy for organic and siliceous productivity (Agnihotri, 2008). The elemental analysis was ground-truthed with grain size analysis at 10 cm intervals. Grain size analysis reveals large particles in a finer matrix at 123 cm and 284 cm. We interpret these as IRD. A linear sedimentation age model places the IRD around the time of Heinrich events H1 and H2. Age control is provided for the late Pleistocene principally by radiocarbon methods (McHugh and Olsson, 2002); however, the age model is not unequivocal so we present results for a few interpretations (linear sedimentation rates, and modeled). Nonetheless, the IRD is consistent with the timing of H1 and H2. While the IRD are obvious from the grain size analysis, we were not able to identify IRD from XRF elemental analyses. This may because the sediments are derived locally rather than transported from the higher latitudes, rendering IRD identification a function of grain size (anomalously large particles in a marine setting) rather than geochemistry. Alternatively, the particles were not close enough to the surface to impact the XRF response. This study provides further evidence for the presence of icebergs on the late Pleistocene NJ margin.

  13. Influence of depositional environment in fossil teeth: a micro-XRF and XAFS study

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2014-04-01

    The formation of metal-rich phases during the fossilization of vertebrate fossil teeth, recovered from various deposition environments in northern Greece, is studied by means of synchrotron radiation X-ray fluorescence (SR-XRF) as well as Fe and Mn K edge X-ray absorption fine structure (XAFS) spectroscopy. XRF line-scans from the samples' cross-sections revealed different contamination paths for Mn and Fe. The two-dimensional XRF maps illustrate the spatial distribution of P, Ca, Mn and Fe as well as the precipitation of Fe-rich phases in cementum, dentin and dentinal tubules. Goethite, lepidocrocite and ferrihydrite were detected in the samples' cross-section by means of Fe K edge EXAFS spectroscopy. Moreover the Fe and Mn K edge EXAFS revealed the presence of vivianite and birnessite (MnO2) on the external surface of two samples.

  14. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  15. Compositional classification and sedimentological interpretation of the laminated lacustrine sediments at Baumkrichen (Western Austria) using XRF core scanning data

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim; Starnberger, Reinhard; Spötl, Christoph; Dulski, Peter

    2015-04-01

    The outcrop at Baumkirchen (Austria) encloses part of a unique sequence of laminated lacustrine sediments deposited during the last glacial cycle. A ~250m long composite sediment record recovered at this location now continuously covers the periods ~33 to ~45 ka BP (MIS 3) and ~59 to ~73 ka BP (MIS 4), which are separated by a hiatus. The well-laminated (mm-cm scale) and almost entirely clastic sediments reveal alternations of clayey silt and medium silt to very-fine sand layers. Although radiocarbon and optically stimulated luminescence (OSL) dating provide a robust chronology, accurate dating of the sediment laminations appears to be problematic due to very high sedimentation rates (3-8 cm/yr). X-ray fluorescence (XRF) core scanning provided a detailed ~150m long record of compositional changes of the sediments at Baumkirchen. Changes in the sediments are subtle and classification into different facies based on individual elements is therefore subjective. We applied a statistically robust clustering analysis to provide an objective compositional classification without prior knowledge, based on XRF measurements for 15 analysed elements (all those with an acceptable signal-noise ratio: Zr, Sr, Ca, Mn, Cu, Zn, Rb, Ni, Fe, K, Cr, V, Si, Ba, T). The clustering analysis indicates a distinct compositional change between sediments deposited below and above the stratigraphic hiatus, but also differentiates between individual different laminae. Preliminary results suggest variations in the sequence are largely controlled by the relative occurrence of different kinds of sediment represented by different clusters. Three clusters identify well-laminated sediments, visually similar in appearance, each dominated by an anti-correlation between Ca and one or more of the detrital elements K, Zr, Ti, Si and Fe. Two of these clusters occur throughout the entire sequence, one frequently and the other restricted to short sections, while the third occurs almost exclusively below the hiatus, indicating a geochemically distinct component that possibly represents a specific sediment source. In a similar manner, three other clusters identify event layers with different compositions of which two occur exclusively above the hiatus and one exclusively below. The variations in the occurrence of these clusters revealing distinct event layers suggest variations in dominant sediment source both above and below the hiatus and within the section above it. More detailed comparisons between compositional variations of the individual clusters obtained from biplots and microscopic observations on thin sections, grain-size analyses, and mineralogical analyses are needed to further differentiate between sediment sources and transport mechanisms.

  16. Digital Equivalent Data System for XRF Labeling of Objects

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A digital equivalent data system (DEDS) is a system for identifying objects by means of the x-ray fluorescence (XRF) spectra of labeling elements that are encased in or deposited on the objects. As such, a DEDS is a revolutionary new major subsystem of an XRF system. A DEDS embodies the means for converting the spectral data output of an XRF scanner to an ASCII alphanumeric or barcode label that can be used to identify (or verify the assumed or apparent identity of) an XRF-scanned object. A typical XRF spectrum of interest contains peaks at photon energies associated with specific elements on the Periodic Table (see figure). The height of each spectral peak above the local background spectral intensity is proportional to the relative abundance of the corresponding element. Alphanumeric values are assigned to the relative abundances of the elements. Hence, if an object contained labeling elements in suitably chosen proportions, an alphanumeric representation of the object could be extracted from its XRF spectrum. The mixture of labeling elements and for reading the XRF spectrum would be compatible with one of the labeling conventions now used for bar codes and binary matrix patterns (essentially, two-dimensional bar codes that resemble checkerboards). A further benefit of such compatibility is that it would enable the conversion of the XRF spectral output to a bar or matrix-coded label, if needed. In short, a process previously used only for material composition analysis has been reapplied to the world of identification. This new level of verification is now being used for "authentication."

  17. Magnetic signatures of Heinrich-like detrital layers in the Quaternary of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Hodell, D. A.

    2013-05-01

    Magnetic parameters are useful for distinguishing North Atlantic Heinrich-like detrital layers from background sediments. Here we compare magnetic properties with XRF scanning data back to 700 ka and 1.3 Ma at IODP Sites U1302-U1303 and U1308, respectively. Multi-domain magnetite, with grain sizes >20 µm, is characteristic of both Ca- and Si-rich detrital layers, as defined by XRF core scanning, confirming the contribution of ice rafting. Reflectance spectra and magnetic parameters distinguish Ca- and Si-rich IRD layers due the presence of high coercivity hematite in Si-rich layers. Heinrich layer 6 (H6) at Site U1302-U1303 is unlike other detrital layers, being marked by a 45-cm thick homogeneous cream-colored clay layer underlain by a thin (5-cm) graded coarse-sand. Comparison of Site U1302/03 and Site U1308 detrital layers implies a dominant Laurentide source for both Ca- and Si-rich detrital layers. At Site U1308, low benthic δ13C values during stadials are in-step with magnetic grain-size coarsening associated with Si-rich detrital layers back to 1.3 Ma, indicating a link between deep-sea ventilation and ice rafting. The surface-sediment tan-colored oxic layer (~2 m thick at Site U1308) yields magnetic hysteresis ratios that are offset from the single-domain to multi-domain (SD-MD) magnetite mixing-line in hysteresis-ratio diagrams. This offset is attributed to maghemite grain-coatings, that form on magnetite in surface sediment, and undergo dissolution as they pass through the oxic/anoxic boundary.

  18. Identifying cryptotephra units using correlated rapid, nondestructive methods: VSWIR spectroscopy, X-ray fluorescence, and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    McCanta, Molly C.; Hatfield, Robert G.; Thomson, Bradley J.; Hook, Simon J.; Fisher, Elizabeth

    2015-12-01

    Understanding the frequency, magnitude, and nature of explosive volcanic eruptions is essential for hazard planning and risk mitigation. Terrestrial stratigraphic tephra records can be patchy and incomplete due to subsequent erosion and burial processes. In contrast, the marine sedimentary record commonly preserves a more complete historical record of volcanic activity as individual events are archived within continually accumulating background sediments. While larger tephra layers are often identifiable by changes in sediment color and/or texture, smaller fallout layers may also be present that are not visible to the naked eye. These cryptotephra are commonly more difficult to identify and often require time-consuming and destructive point counting, petrography, and microscopy work. Here we present several rapid, nondestructive, and quantitative core scanning methodologies (magnetic susceptibility, visible to shortwave infrared spectroscopy, and XRF core scanning) which, when combined, can be used to identify the presence of increased volcaniclastic components (interpreted to be cryptotephra) in the sedimentary record. We develop a new spectral parameter (BDI1000VIS) that exploits the absorption of the 1 µm near-infrared band in tephra. Using predetermined mixtures, BDI1000VIS can accurately identify tephra layers in concentrations >15-20%. When applied to the upper ˜270 kyr record of IODP core U1396C from the Caribbean Sea, and verified by traditional point counting, 29 potential cryptotephra layers were identified as originating from eruptions of the Lesser Antilles Volcanic Arc. Application of these methods in future coring endeavors can be used to minimize the need for physical disaggregation of valuable drill core material and allow for near-real-time recognition of tephra units, both visible and cryptotephra. This article was corrected on 23 DEC 2015. See the end of the full text for details.

  19. The use of XRF core scanner technique to identify anthropogenic chronological markers for dating recent sediments and for mapping and estimating the quantity of contaminated sediments in different fjord settings in western Norway

    NASA Astrophysics Data System (ADS)

    Haflidason, H.; Thorsen, L.; Soldal, O. L.

    2016-12-01

    Following the initiation of the industrial revolution in Norway at the early 1900´s many of the heavy industrial factories established at that time were located in inner fjord systems of western Norway. The advantage was an easy access to cheap electricity, but the main disadvantage has been that the pollution from this industrial activity has been transported into fjord systems where the circulation of the water masses has been fairly limited leading to a high concentration of heavy metals in the fjord basin sediments. The recently developed non-destructive X-ray Fluorescence (XRF) core scanning technique offers new possibilities to obtain near-continuous records of bulk element composition in marine records. This new analytical geochemical method can measure the bulk element content directly from the surface sediment archives within a period of seconds and with a resolution up to 200 microns. By applying this method on rapidly deposited sediments one can reconstruct a continuous record of carbonate content on a sub-decadal to annual scale. This kind of high-resolution records can also be compared directly with historical and instrumental records from the same area. This offers new possibilities to identify in an effective way the geochemical anomalies in the sediment column and estimate the variability of the industrially produced elements as e.g. Cu, Zn and Pb and their distribution and thickness/quantity in fjord basin sediments. Examples will be presented demonstrating the close linkage between the industrial production history and the entrance of these elements in the fjord sediments. Identification of these elements offers an excellent opportunity to date the recent marine sediments using these elements as an event spike and also to reconstruct the history of pollution in these fjord basin sediments. As the precision of the XRF element detection is high the time of full recovery to natural conditions of the basin sediments, after close down of these factories, can be calculated.

  20. Lacustrine records of Holocene climate and environmental change from the Lofoten Islands, Norway

    NASA Astrophysics Data System (ADS)

    Balascio, Nicholas L.

    Lakes sediments from the Lofoten Islands, Norway, can be used to generate well resolved records of past climate and environmental change. This dissertation presents three lacustrine paleoenvironmental reconstructions that show evidence for Holocene climate changes associated with North Atlantic climate dynamics and relative sea-level variations driven by glacio-isostatic adjustment. This study also uses distal tephra deposits (cryptotephra) from Icelandic volcanic eruptions to improve the chronologies of these reconstructions and explores new approaches to crypto-tephrochronology. Past and present conditions at Vikjordvatnet, Fiskebolvatnet, and Heimerdalsvatnet were studied during four field seasons conducted from 2007--2010. Initially, each lake was characterized by measuring water column chemistry, logging annual temperature fluctuations, and conducting bathymetric and seismic surveys. Sediment cores were then collected and analyzed using multiple techniques, including: sediment density, magnetic susceptibility, loss-on-ignition, total carbon and nitrogen, delta13C and delta 15N of organic matter, and elemental compositions acquired by scanning X-ray fluorescence. Chronologies were established using radiocarbon dating and tephrochronology. A 13.8 cal ka BP record from Vikjordvatnet provides evidence for glacial activity during the Younger Dryas cold interval and exhibits trends in Ti, Fe, and organic content during the Holocene that correlate with regional millennial-scale climate trends and provide evidence for more rapid events. A 9.7 cal ka BP record from Fiskebolvatnet shows a strong signal of sediment inwashing likely driven by local geomorphic conditions, although there is evidence that increased inwashing at the onset of the Neoglacial could have been associated with increased precipitation. Heimerdalsvatnet provides a record of relative sea-level change. A 7.8 cal ka BP sedimentary record reflects changes in salinity and water column conditions as the lake was isolated and defines sea-level regression following the Tapes transgression. Cryptotephra horizons were identified in sediments of Heimerdalsvatnet, Vikjordvatnet, and Sverigedalsvatn. They were also found in a Viking-age boathouse excavated along the shore of Inner Borgpollen. These include the GA4-85, BIP-24a, SILK-N2, Askja, 860 Layer B, Hekla 1158, Hekla 1104, Vedde Ash, and Saksunarvatn tephra. This research project also explored the use of scanning XRF to locate cryptotephra in lacustrine sediments and presents experimental results of XRF scans of tephra-spiked synthetic sediment cores.

  1. Using lake sediments from Buarvatnet to reconstruct multiple episodic events found at Folgefonn Peninsula, Norway

    NASA Astrophysics Data System (ADS)

    Roethe, T.; Bakke, J.; Støren, E.

    2016-12-01

    Here we present work in progress from Buarvatnet at the Folgefonn Peninsula, located on the west coast of Norway. Earlier work from Buarvatnet indicated several distinct spikes in the Silica count rates, detected by the ITRAX surface XRF-scanner. However, the process behind these distinct spikes was not understood. The arrival of high-resolution and innovative instruments at EARTHLAB, in particular the computed tomography (CT) scanner and grain Morphometer, have the potential to get a process-based understanding of these distinct layers and unravel the frequency and timing of such events. Multiple sediment cores were retrieved using a modified piston corer and a Uwitech corer from Buarvatnet. The sediments have been analysed using a multi-proxy approach and the analyses included magnetic properties, loss-on-ignition, dry bulk density, grain size/shape, geochemical analysis (XRF scanning) and CT-scanning. Accurate age-control will be achieved through 210Pb dating of the top-most sediments and 14C dating of terrestrial macrofossils. The lithostratigraphy of the 3.6 m long master sediment core from Buarvatnet is divided into three distinct units. The lower most unit ( 87 cm) is massive with fine-grained greyish sediments, most likely representing the deglaciation of the area. A 224 cm long unit is found above, characterised as dark brown gyttja with multiple thin layers (sub-mm to cm thick) of fine grained sediments. Also in this unit is two distinct sub-units showing a finer upwards sequence. At top, a gradual transition from dark brown gyttja to grey fine-grained sediments is found in the upper-most 19 cm of the sediment core. In total 16 distinct layers is found in the gyttja sequence, including the two sub-units, based on the lithostratigraphy and the prelimnary results from the magnetic, physical and geochemical properties. A preliminary hypothesis is that these distinct layers are due to outburst floods from a glacier-dammed lake upstream from Buarvatnet. In such a scenario, a bedrock threshold dams the meltwater from the retreating glacier and an outburst flood is triggered when the glacier calves or advances into the lake. Understanding the processes behind the multiple events is therefore important in order to highlight the potential hazards in rapid outburst floods in a warming world.

  2. High-resolution responses of sedimentary δ15N to climate change in the southern California for the past 2000 years

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hendy, I. L.; Thunell, R.

    2017-12-01

    The short duration of instrumental records limits our understanding of nitrogen loss to denitrification on interannual to centennial time scales. Bulk sediment δ15N is widely applied as a proxy for water column denitrification in oxygen minimum zones (OMZ). Lying within the California OMZ, Santa Barbara Basin (SBB) provides an ideal location for producing a high-resolution δ15N record for denitrification reconstruction. Here we present a high-resolution ( 1-2 y) 2000-year record of δ15N from SPR0901-03KC (34°16.99'N, 120°2.408'W; 586 m depth). Grey flood layer sediments are associated with abrupt decreases of 0.9 to 2.5 ‰ in the δ15N record. After removal of flood-affected samples from the record, δ15N varies from 6.8 to 8.7 ‰ with an average of 7.7 ‰. After 1800 AD δ15N experienced a sustained decrease to its minimum at the core top. Comparison with the principal components (PCs) of scanning X-ray fluorescence (XRF) elemental counts allow for further investigation of factors driving δ15N variations. The first PC (PC1) of scanning XRF elemental records contains high loadings for lithogenic sediment components while the second PC (PC2) has high loadings for biogenic components. The δ15N record is positively correlated with PC2 (r=0.2521, p<0.01) throughout the core while negatively correlated with PC1 relationship (r=-0.2596, p<0.01) between AD 1000-1800. Peaks of δ15N and PC2 (high primary productivity) coincide with intensified upwelling intervals supported by high anchovy scale counts, and bloom-forming diatoms (Rhizosolenia spp.) and silicoflagellates (D. speculum) from a nearby core. These upwelling intervals coincide with low PC1 (low river runoff). The coherent variability appears to indicate an atmospheric influence on the marine environment through the relative intensity of North Pacific High (NPH). Enhanced NPH induces stronger coastal upwelling with associated upward advection of δ15N-enriched subsurface water and higher primary productivity in the surface ocean. Subsurface waters are fed by California Undercurrent originated from the north Eastern Tropical Pacific, where active water column denitrification occurs generating high δ15N values.

  3. Permeable reactive barrier of coarse sand-supported zero valent iron for the removal of 2,4-dichlorophenol in groundwater.

    PubMed

    Gao, Weichun; Zhang, Yongxiang; Zhang, Xiaoye; Duan, Zhilong; Wang, Youhao; Qin, Can; Hu, Xiao; Wang, Hao; Chang, Shan

    2015-11-01

    In this study, coarse sand-supported zero valent iron (ZVI) composite was synthesized by adding sodium alginate to immobilize. Composite was detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). SEM results showed that composite had core-shell structure and a wide porous distribution pattern. The synthesized composite was used for degradation of 2,4-dichlorophenol (2,4-DCP) contamination in groundwater. Experimental results demonstrated that degradation mechanism of 2,4-DCP using coarse sand-supported ZVI included adsorption, desorption, and dechlorination. 2,4-DCP adsorption was described as pseudo-second-order kinetic model. It was concluded that dechlorination was the key reaction pathway, ZVI and hydrogen are prime reductants in dechlorination of 2,4-DCP using ZVI.

  4. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  5. An Early Pleistocene high-resolution paleoclimate reconstruction from the West Turkana (Kenya) HSPDP drill site

    NASA Astrophysics Data System (ADS)

    Stockhecke, Mona; Beck, Catherine; Brown, Erik T.; Cohen, Andrew; Deocampo, Daniel M.; Feibel, Craig S.; Pelletier, Jon D.; Rabideaux, Nathane M.; Sier, Mark

    2016-04-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project (ODP), recovered ~2 km of drill core since 2012. At the HSPDP West Turkana Kaitio (WTK) site a 216 m-long core that covers the Early Pleistocene time window (1.3 to 1.87 Ma) during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. WTK carries particular interest for paleoclimate and paleoenvironmental reconstructions as it is located only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Nariokotome Boy). XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the record contains complex lithologies reflecting repeated episodes of inundation and desiccation along a dynamic lake margin. Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive paleoclimate timeseries. The power spectrum of the presented hydroclimate record peaks at Milankovitch cycles, qualifying HSPDP drill cores from the Turkana Basin to be used as high-resolution Early Pleistocene paleoclimate archive. Comparing these data with marine climate reconstructions sheds light into athmospheric processes and continental climate dynamics.

  6. High-Sensitivity High-Speed X-ray Fluorescence Scanning Cadmium Telluride Detector for Deep-Portion Cancer Diagnosis Utilizing Tungsten-Kα-Excited Gadolinium Mapping

    NASA Astrophysics Data System (ADS)

    Yanbe, Yutaka; Sato, Eiichi; Chiba, Hiraku; Maeda, Tomoko; Matsushita, Ryo; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays with energies beyond tantalum (Ta) K-edge energy 67.4 keV are absorbed effectively using a 100-µm-thick Ta filter, and the filtered X-rays including tungsten (W) Kα rays are absorbed by gadolinium (Gd) atoms in objects. The Gd XRF is then produced from Gd atoms in the objects and is counted by a cadmium telluride (CdTe) detector. Gd Kα photons with a maximum count rate of 1 kilo counts per second are dispersed using a multichannel analyzer, and the number of photons is counted by a counter card. The distance between the CdTe detector and the object is minimized to 40 mm to increase the count rate. The object is scanned using an x-y stage with a velocity of 5.0 mm/s, and Gd mapping are shown on a computer monitor. The scan steps of the x- and y-axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We obtained Gd XRF images at high contrast, and Gd Kα photons were easily detected from cancerous regions in a nude mouse placed behind a 20-mm-thick poly(methyl methacrylate) plate.

  7. Geochemical properties and environmental impacts of seven Campanian tephra layers deposited between 40 and 38 ka BP in the varved lake sediments of Lago Grande di Monticchio, southern Italy

    NASA Astrophysics Data System (ADS)

    Wutke, Kristina; Wulf, Sabine; Tomlinson, Emma L.; Hardiman, Mark; Dulski, Peter; Luterbacher, Jürg; Brauer, Achim

    2015-06-01

    We present the results of new tephrostratigraphical and environmental impact studies of the 40-38 ka varved sediment section of Lago Grande di Monticchio (southern Italy). The sediments in this time zone are correlated with the Heinrich H4-stadial that occurred between Greenland Interstadials GI-9 and GI-8, and include the widespread Campanian Ignimbrite (CI, 39.3 ka) as a thick tephra layer in the middle of the H4 stadial. The CI in the Monticchio record is overlain by the Schiava tephra from Vesuvius, c. 1240 varve-years younger than the CI, and preceded by four tephras from small-scale eruptions of the Phlegrean Fields and by an Ischia-derived tephra. The four Phlegrean Field-derived tephras were deposited 600 varve-years or fewer prior to the deposition of the CI and show very similar major, minor, and trace element glass compositions to those of the CI. This close similarity in composition and age could compromise the accurate linking and synchronisation of palaeoenvironmental records in the central Mediterranean area. Microfacies analyses and μ-XRF core scanning were used to characterise primary and secondary depositional features of all seven tephra layers and to evaluate environmental and ecological responses after tephra deposition. Higher concentrations of tephra-derived material (mainly glass shards and pumices) in primary and reworked layers were detected by elevated K-counts in μ-XRF elemental core scans. Reworked tephra derives mainly from in-washing from the littoral zone and the catchment and occurs within five to 30 years, and up to 1240 varve years, after the deposition of thinner (1-5 mm) and thicker (5-230 mm) tephra fallout deposits, respectively. An obvious response of diatom population growth directly after the primary tephra deposition was observed for the thicker tephra layers (>1 mm) during the first 1-8 years after deposition of the primary deposit indicating that the additional input of potential nutrients (glass shards) temporarily affected the ecological lake system.

  8. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.

  9. Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines

    NASA Astrophysics Data System (ADS)

    Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc

    2014-11-01

    Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.

  10. Initial Geochemistry Data of the Lake Ohrid (Macedonia, Albania) DEEP -Site Sediment Record: The ICDP Scopsco Drilling Project

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Leicher, N.; Gromig, R.; Krastel, S.; Lindhorst, K.; Wilke, T.

    2014-12-01

    Ancient lakes, with sediment records spanning >1 million years, are very rare. The UNESCO World Heritage site of Lake Ohrid on the Balkans is thought to be the oldest lake in Europe. With 212 endemic species described to date, it is also a hotspot of evolution. In order to unravel the geological and evolutionary history of the lake, an international group of scientists, conducted a deep drilling campaign in spring 2013 under the umbrella of the ICDP SCOPSCO project (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). Overall, about 2,100 m of sediments were recovered from four drill sites. At the main drill site (DEEP-site) in central parts of the lake where seismic data indicated a maximum sediment fill of ca. 700 m, a total of more than 1,500 m of sediments were recovered until a penetration depth of 569 m. Currently, core opening, core description, XRF and MSCL scanning, sub-sampling (16 cm resolution), and inorganic and organic geochemical as well as sedimentological analyses of the sediment cores from the DEEP site are in progress at the University of Cologne. Previous studies at Lake Ohrid have shown that interglacial periods are characterized by high TIC and TOC contents, likely associated with high contents of calcite and organic matter in the sediments. In contrast, during glacial periods negligible TIC and low TOC contents correspond to high K counts indicating enhanced supply of clastic material. Similar patterns can be observed in the biogeochemical analyses of the subsamples and in the XRF data of the DEEP site record. Following these variations on a glacial-interglacial time scale, TIC and TOC data obtained from the subsamples and from core catcher samples indicate that the DEEP site sequence provides a 1.2 million year old continuous record of environmental and climatological variability in the Balkan Region. The age control can be further improved by first findings of macroscopic tephra horizons. Peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of additional cryptotephra layers in the sediment sequence.

  11. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, A.C.; Zheng, W.; Haacke, E.M.

    To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximalmore » to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  12. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    NASA Astrophysics Data System (ADS)

    Habib, Charbel A.; Zheng, Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-07-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  13. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuichi; Ehara, Shigeru; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects, and XRF is emitted by absorbing X-ray photons with energies beyond the K-edge energy of the target atom. Narrow-energy-width bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter. These rays are absorbed by iodine media in objects, and iodine XRF is produced from the iodine atoms. Next, iodine Kα photons are discriminated by a multichannel analyzer and the number of photons is counted by a counter card. CT is performed by repeated linear scans and rotations of an object. The X-ray generator has a 100 μm focus tube with a 0.5-mm-thick beryllium window, and the tube voltage and the current for XRF were 80 kV and 0.50 mA, respectively. The demonstration of XRF-CT for mapping iodine atoms was carried out by selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  14. An Application of X-Ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    PubMed

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-06-01

    An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  15. Using Elemental Abundances and Petrophysical Properties to Trace Sediment Transport in the Hudson River

    NASA Astrophysics Data System (ADS)

    Chang, C.; Kenna, T. C.; Nitsche, F. O.

    2016-12-01

    The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.

  16. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Quezergue, Kimbra; Pope, Michael C.

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks.

  17. Bibliography of NRL Works on X-Ray Fluorescence Authored by L. S. Birks, D. B. Brown, J. W. Criss, H. Friedman, and J. V. Gilfrich

    DTIC Science & Technology

    2001-10-15

    by Friedman outside the field of XRF is available within the holdings of the NRL Ruth H. Hooker Research Library and Technical Information Center...Herbert Friedman. The extensive collection of publications by Friedman outside the field of XRF is available within the holdings of the NRL Ruth H. Hooker...and which includes other information and filenames of electronic scans of many of the entries) has been supplied to the NRL Ruth H. Hooker Research

  18. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  19. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, theremore » were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  20. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method

    NASA Astrophysics Data System (ADS)

    Billè, Fulvio; Kourousias, George; Luchinat, Enrico; Kiskinova, Maya; Gianoncelli, Alessandra

    2016-08-01

    XRF spectroscopy is among the most widely used non-destructive techniques for elemental analysis. Despite the known angular dependence of X-ray fluorescence (XRF), topological artefacts remain an unresolved issue when using X-ray micro- or nano-probes. In this work we investigate the origin of the artefacts in XRF imaging of topologically complex samples, which are unresolved problems in studies of organic matter due to the limited travel distances of low energy XRF emission from the light elements. In particular we mapped Human Embryonic Kidney (HEK293T) cells. The exemplary results with biological samples, obtained with a soft X-ray scanning microscope installed at a synchrotron facility were used for testing a mathematical model based on detector response simulations, and for proposing an artefact correction method based on directional derivatives. Despite the peculiar and specific application, the methodology can be easily extended to hard X-rays and to set-ups with multi-array detector systems when the dimensions of surface reliefs are in the order of the probing beam size.

  1. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  2. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for subsequent in-situ 40Ar/39Ar laser probe analysis; in the past such samples may have been characterised using SEM, but recent work [1] suggests that charging of a sample during electron-beam excitation can cause redistribution of K, thus disturb the 40Ar/39Ar system. Finally, we assess data accuracy and precision by presenting quantitative analyses of a number of standards. [1] Flude et al., The effect of SEM imaging on the Ar/Ar system in feldspars, V51C-2215 Poster, AGU Fall Meeting 2010

  3. Orbitally resolved records of Oligocene ice-sheet dynamics and deep-water chemistry from ODP Site 689 (Maud Rise, Weddell Sea)

    NASA Astrophysics Data System (ADS)

    Bohaty, Steven M.; Huck, Claire E.; Liebrand, Diederik; Röhl, Ursula; Wilson, Paul; van de Flierdt, Tina; Pälike, Heiko

    2016-04-01

    The early stages of the modern 'Icehouse' climate state first developed in the Oligocene following rapid global cooling and the onset of Antarctic glaciation at the Eocene-Oligocene Transition (34 Ma). However, the size and stability of the early Antarctic ice sheets that existed during the Oligocene under atmospheric CO2 levels higher than present day are poorly known. Here we report on an ongoing investigation of Oligocene (hemi)pelagic drillcores recovered at Ocean Drilling Program (ODP) Site 689, drilled on Maud Rise in the eastern Weddell Sea in late 1980s (Leg 113). Shipboard physical properties data were not routinely collected from pre-Quaternary cores at this site, and the lack of continuous composite sections and supporting data has previously been a considerable hindrance to high-resolution paleoceanographic studies. New high-resolution XRF scanning, discrete magnetic susceptibility, and benthic foraminiferal stable isotope records were collected from the upper Eocene-upper Oligocene interval of ODP Sites 689. The XRF datasets allow compositing of Holes 689B and 689D, which fortuitously contain offset cores throughout the sequence. Although condensed in two intervals, Site 689 contains a complete ~12-Myr record spanning Chron C17n.1n to Chron C8n.1n (~37 to 25 Ma). The composited records from Sites 689 exhibit prominent orbital-scale cyclicity in XRF-derived iron/calcium ratios, enabling development of an astronomical age model and detailed reconstruction of carbonate dissolution intensity of South Atlantic deep waters. These composited and well-dated records from Site 689 will, for the first-time, provide an Oligocene pelagic reference section for the Southern Ocean and serve as stratigraphic stepping stone between proximal Antarctic shelf records and high-resolution proxy records from lower latitude locations. Further development of high-resolution benthic foraminiferal and detrital neodymium isotope records at Site 689 will address the timing and frequency of East Antarctic ice-sheet advance and retreat events during cool intervals of the mid Oligocene and the onset of warming in the latest Oligocene. These data will both inform and test model results of ice-sheet behaviour and stability during different climatic phases of the Oligocene.

  4. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping.

    PubMed

    Tice, Michael M; Quezergue, Kimbra; Pope, Michael C

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.

  5. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.

  6. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  7. Multistage 8.2 kyr event revealed through high-resolution XRF core scanning of Cuban sinkhole sediments

    NASA Astrophysics Data System (ADS)

    Peros, Matthew; Collins, Shawn; G'Meiner, Anna Agosta; Reinhardt, Eduard; Pupo, Felipe Matos

    2017-07-01

    We use sediments from a flooded sinkhole (Cenote Jennifer) in northern Cuba to provide new, well-dated, high-resolution evidence for the 8.2 kyr event. From 7600 to 8700 cal yr B.P. the sinkhole contained shallow, low-salinity water, which supported a marsh dominated by cattail and grass. Peaks in Cl and Br—occurring at 8150, 8200, and 8250 cal yr B.P.—are attributable to increased evaporation due to regional drying associated with the 8.2 kyr event. The three peaks in these elements also closely correspond to the greyscale record from the Cariaco Basin, indicative of increased upwelling in the southern Caribbean Sea at this time, supporting the notion of a multistage 8.2 kyr event. Our work provides new data that help to clarify the initiation, behavior, and impacts of the 8.2 kyr event in the northern tropics.

  8. Temporary implementation and testing of a confocal SR- μXRF system for bone analysis at the X-ray Fluorescence beamline at Elettra

    NASA Astrophysics Data System (ADS)

    Perneczky, L.; Rauwolf, M.; Ingerle, D.; Eichert, D.; Brigidi, F.; Jark, W.; Bjeoumikhova, S.; Pepponi, G.; Wobrauschek, P.; Streli, C.; Turyanskaya, A.

    2018-07-01

    The confocal μXRF spectrometer of Atominstitut (ATI) was transported and set up at the X-ray Fluorescence beamline at Elettra - Sincrotrone Trieste. It was successfully adjusted to the incoming beam (9.2 keV). Test measurements on a free-standing Cu wire were performed to determine the size of the focused micro-beam (non-confocal mode, 56 × 35 μm2) and the size of the confocal volume (confocal mode, 41 × 24 × 34 μm2) for the Cu-K α emission. In order to test the setup's capabilities, two areas on different human bone samples were measured in confocal scanning mode. For one of the samples the comparison with a previous μ XRF measurement, obtained with a low power X-ray tube in the lab, is presented.

  9. Investigation of gunshot residue patterns using milli-XRF-techniques: first experiences in casework

    NASA Astrophysics Data System (ADS)

    Schumacher, Rüdiger; Barth, Martin; Neimke, Dieter; Niewöhner, Ludwig

    2010-06-01

    The investigation of gunshot residue (GSR) patterns for shooting range estimation is usually based on visualizing the lead, copper, or nitrocellulose distributions on targets like fabric or adhesive tape by chemographic color tests. The method usually provides good results but has its drawbacks when it comes to the examination of ammunition containing lead-free primers or bloody clothing. A milli-X-ray fluorescence (m-XRF) spectrometer with a large motorized stage can help to circumvent these problems allowing the acquisition of XRF mappings of relatively large areas (up to 20 x 20 cm) in millimeter resolution within reasonable time (2-10 hours) for almost all elements. First experiences in GSR casework at the Forensic Science Institute of the Bundeskriminalamt (BKA) have shown, that m-XRF is a useful supplementation for conventional methods in shooting ranges estimation, which helps if there are problems in transferring a GSR pattern to secondary targets (e.g. bloody or stained garments) or if there is no suitable color test available for the element of interest. The resulting elemental distributions are a good estimate for the shooting range and can be evaluated by calculating radial distributions or integrated count rates of irregular shaped regions like pieces of human skin which are too small to be investigated with a conventional WD-XRF spectrometer. Beside a mapping mode the milli-XRF offers also point and line scan modes which can also be utilized in gunshot crime investigations as a quick survey tool to identify bullet holes based on the elements present in the wipe ring.

  10. A 3,000-year quantitative drought record derived from XRF element data from a south Texas playa

    NASA Astrophysics Data System (ADS)

    Livsey, D. N.; Simms, A.; Hangsterfer, A.; Nisbet, R.; DeWitt, R.

    2013-12-01

    Recent droughts throughout the central United States highlight the need for a better understanding of the past frequency and severity of drought occurrence. Current records of past drought for the south Texas coast are derived from tree-ring data that span approximately the last 900 years before present (BP). In this study we utilize a supervised learning routine to create a transfer function between X-Ray Fluorescence (XRF) derived elemental data from Laguna Salada, Texas core LS10-02 to a locally derived tree-ring drought record. From this transfer function the 900 BP tree-ring drought record was extended to 3,000 BP. The supervised learning routine was trained on the first 100 years of XRF element data and tree-ring drought data to create the transfer function and training data set output. The model was then projected from the XRF elemental data for the next 800 years to create a deployed data set output and to test the transfer function parameters. The coefficients of determination between the model output and observed values are 0.77 and 0.70 for the 100-year training data set and 900-year deployed data set respectively. Given the relatively high coefficients of determination for both the training data set and deployed data set we interpret the model parameters are fairly robust and that a high-resolution drought record can be derived from the XRF element data. These results indicate that XRF element data can be used as a quantitative tool to reconstruct past drought records.

  11. Lake deposits record evidence of large post-1505 AD earthquakes in western Nepal

    NASA Astrophysics Data System (ADS)

    Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Van Der Beek, P.; Nomade, J.; Gajurel, A.

    2016-12-01

    According to historical records, the last large earthquake that ruptured the Main Frontal Thrust (MFT) in western Nepal occurred in 1505 AD. Since then, no evidence of other large earthquakes has been found in historical records or geological archives. In view of the catastrophic consequences to millions of inhabitants of Nepal and northern India, intense efforts currently focus on improving our understanding of past earthquake activity and complement the historical data on Himalayan earthquakes. Here we report a new record, based on earthquake-triggered turbidites in lakes. We use lake sediment records from Lake Rara, western Nepal, to reconstruct the occurrence of seismic events. The sediment cores were studied using a multi-proxy approach combining radiocarbon and 210Pb chronologies, physical properties (X-ray computerized axial tomography scan, Geotek multi-sensor core logger), high-resolution grain size, inorganic geochemistry (major elements by ITRAX XRF core scanning) and bulk organic geochemistry (C, N concentrations and stable isotopes). We identified several sequences of dense and layered fine sand mainly composed of mica, which we interpret as earthquake-triggered turbidites. Our results suggest the presence of a synchronous event between the two lake sites correlated with the well-known 1505 AD earthquake. In addition, our sediment records reveal five earthquake-triggered turbidites younger than the 1505 AD event. By comparison with historical archives, we relate one of those to the 1833 AD MFT rupture. The others may reflect successive ruptures of the Western Nepal Fault System. Our study sheds light on events that have not been recorded in historical chronicles. Those five MMI>7 earthquakes permit addressing the problem of missing slip on the MFT in western Nepal and reevaluating the risk of a large earthquake affecting western Nepal and North India.

  12. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  13. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  14. Submarine landslide identified in DLW3102 core of the northern continental slope, South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Yuanqin; Liu, Lejun; Zhou, Hang; Huang, Baoqi; Li, Ping; Ma, Xiudong; Dong, Feiyin

    2018-02-01

    In this paper, we take DLW3101 core obtained at the top of the canyon (no landslide area) and DLW3102 core obtained at the bottom of the canyon (landslide area) on the northern continental slope of the South China Sea as research objects. The chronostratigraphic framework of the DLW3101 core and elemental strata of the DLW3101 core and the DLW3102 core since MIS5 are established by analyzing oxygen isotope, calcium carbonate content, and X-Ray Fluorescence (XRF) scanning elements. On the basis of the information obtained by analyzing the sedimentary structure and chemical elements in the landslide deposition, we found that the DLW3102 core shows four layers of submarine landslides, and each landslide layer is characterized by high Si, K, Ti, and Fe contents, thereby indicating terrigenous clastic sources. L1 (2.15-2.44 m) occurred in MIS2, which is a slump sedimentary layer with a small sliding distance and scale. L2 (15.48-16.00 m) occurred in MIS5 and is a debris flow-deposited layer with a scale and sliding distance that are greater than those of L1. L3 (19.00-20.90 m) occurred in MIS5; its upper part (19.00-20.00 m) is a debris flow-deposited layer, and its lower part (20.00-20.90 m) is a sliding deposition layer. The landslide scale of L3 is large. L4 (22.93-24.27 m) occurred in MIS5; its upper part (22.93-23.50 m) is a turbid sedimentary layer, and its lower part (23.50-24.27 m) is a slump sedimentary layer. The landslide scale of L4 is large.

  15. Deglaciation in the High Andes - a Record from Laguna Piuray (Cusco, Peru)

    NASA Astrophysics Data System (ADS)

    Nederbragt, A.; Thurow, J.; Brumsack, H.; Lowe, J.; Pearce, R.; Ramsey, C.

    2007-12-01

    The Peruvian Andes lie in a crucial location for paleoclimate investigation. Fluctuating Pacific and Atlantic air masses compete for long-term dominance of the region, with the El-Nino Southern Oscillation (ENSO) system causing further variability. A laminated glacial/interglacial sediment sequence (6m) exposed around the shores of Laguna Piuray, near Cusco, offers not only the potential to reconstruct the climate history of the area but also to test for strength and frequency of the Atlantic monsoonal and Pacific ENSO influence. A suite of continuous cores was collected from deep trenches. The sedimentary record is characterized by postglacial diatom-rich chalk overlying organic-rich clayey chalk. Between these units are 3 distinct organic layers (80% TOC) deposited between 12-14 cal. kyr BP (14C). The base of the record is probably as old as 25kyrs (U/Th). We obtained a multi- proxy record of the section including continuous XRF scanning data of the entire sequence, and stable isotopes, XRF, XRD, TOC, biogenic opal, and carbonate analysis of discrete samples as well as a relative paleotemperature record from analyses of soil biomarkers. All the data profiles we obtained show a pronounced increase in temperature and decrease in precipitation at 13.8kyrs and are in good correlation with published regional Andean records using single proxies. Our results confirm that the Deglaciation Cold Reversal in central South America is not identical to the Younger Dryas event in the Northern Hemisphere.

  16. Towards improved cirque glacier reconstructions: differentiating glacial- from non-glacial sediments by means of environmental magnetism.

    NASA Astrophysics Data System (ADS)

    Kvisvik, Bjørn Christian; Paasche, Øyvind; Olaf Dahl, Svein

    2014-05-01

    Skriufonnen, a small cirque glacier (0.4 km2) in Southern Norway, has been monitored for the last 10 years, revealing a short response time to on-going climate change. This is the only remaining glacier in the central mountain massif known as Rondane where investigations of past climate variability are scarce. A series of short (HTH, n=8) and long (piston, n=6) cores from two lakes located downstream of Skriufonnen were retrieved and sediments were dated and analysed. In order to complement and validate lake sediment interpretations i.e., the potential connection to glacier variability, a number of soil samples was collected from the surrounding catchment. The six 110 mm piston cores (< 3.1 m length) and eight sediment surface cores were analysed for grain size distribution, geochemical elements (ITRAX XRF-scanning), organic matter content (LOI), magnetic parameters (magnetic susceptibility; surface and bulk), anhysteretic remanent magnetization (ARM) and Saturation Isothermal remanent magnetizations (sIRM). Consistent age-depth relationships were obtained by AMS-C14 and Pb210 dates showing that the cores cover at least the last 10 000 years. High-resolution analysis (XRF and MS) reveals centennial trends, but also distinct changes in frequency and amplitude. A quiescent period during the Holocene Thermal Optimum (9-6 ka) is followed by a sudden onset of Neoglacial (3.8 ka) activity peaking at 2.4 ka. The Little Ice Age (LIA) peaked at 1800 AD. A weak magnetic signal is observed in all cores. This is explained by the fact that Rondane is made of Sparagmite, an arkosic sandstone partly consisting of metamorphosed sandstone and conglomerate with high content of quarts (SiO2) (between 80 to 87 %) and Feldspar. The Sparagmite is resistant to chemical weathering, making the soils dry and sandy. Catchment sediment samples, running in a transect all the way up from the lakes to the glacier snout were sieved into various size classes (250, 125, 63, 38, 20 μm) prior to measuring bulk susceptibility (Ξbulk) at 293K and 77K. The ratio between the two measurements indicates the relative amount of paramagnetic versus ferromagnetic minerals, and results indicate not only that the finest fractions increase in strength as one gets closer to the glacier front, but also that there are long periods in the cores which is dominated by paramagnetic minerals. The approach employed here suggests that the combination of catchment samples with high-resolution analysis of lake sediment cores provide a more accurate reconstruction of past glacier variability, and has resulted in the first continuous cirque glacier reconstruction from this area.

  17. Evaluating Reflectance Spectroscopy as a Method of Rapid Cryptotephra Identification using Component Analysis: Tephrochronology of the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Fisher, E. A.

    2015-12-01

    The reactivation of Montserrat's South Soufrière-Soufrière Hills volcanic complex has impelled the creation of tephrochronologic records in the Lesser Antilles Arc in order to assess volcanic hazards to human safety. Developing an eruptive history of Montserrat by recording tephra layers preserved in marine sediment is hindered by the lack of a rapid, non-destructive method for detecting cryptotephra, tephra deposits invisible to the naked eye, in marine cores. Identifying cryptotephra is important because some cryptotephra layers represent primary tephra emplacement from small proximal eruptions, events that if excluded from a volcanic record could mischaracterize a volcano's eruptive frequency over time. VSWIR [0.4-2.5 μm] reflectance spectroscopy is a candidate for rapid, non-destructive cryptotephra detection in marine sediment cores because it can detect tephra in hemipelagic sediment using summary parameters sensitive to iron content and clay minerals (McCanta et al. 2014, AGU abstract OS53D-1086). Spectra from marine cores U1396C-1H-1A through U1396C-1H-5A, collected during International Ocean Discovery Program (IODP) mission 340, reveal 29 potential cryptotephra layers (McCanta et al. 2014, AGU abstract OS53D-1086). This study seeks to determine the effectiveness of reflectance spectroscopy at identifying cryptotephra by measuring the abundance of volcanic materials (i.e., glass shards/vesicular pumice and non-vesicular lava clasts) in these layers ( LeFriant et al. 2008; Cassidy et al. 2014). Component analysis was conducted on select core intervals with both cryptotephra-identifying peaks in reflectance parameters, and tephra-indicative peaks in core scanning XRF and magnetic susceptibility parameters (McCanta et al. 2014, AGU abstract OS53D-1086). Samples in this subset show abundances of non-vesicular lava and vesicular pumice clasts above expected background abundances, supporting the existence of cryptotephra at these locations (Fig. 1; LeFriant et al. 2008; Cassidy et al. 2014). This suggests that reflectance spectroscopy is an effective means of identifying cryptotephra in situ, and when employed in concert with other core scanning techniques could facilitate widespread rapid identification of cryptotephra in future tephrochronology studies.

  18. Updating the Framework Geology of Padre Island National Seashore: Validation of Geophysical Surveys through Sediment Cores

    NASA Astrophysics Data System (ADS)

    Tuttle, L. F., II; Wernette, P. A.; Houser, C.

    2016-12-01

    Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.

  19. Changes in the Indian summer monsoon intensity in Sri Lanka during the last 30 ky - A multiproxy record from a marine sediment core.

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.

    2016-12-01

    Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in monsoonal driven upwelling. Authors recorded similar increase in monsoonal wind strength during the late Holocene, with no increase in rainfall in another sediment core extracted from the western continental shelf of Sri Lanka.

  20. City Core - detecting the anthropocene in urban lake cores

    NASA Astrophysics Data System (ADS)

    Kjaer, K. H.; Ilsøe, P.; Andresen, C. S.; Rasmussen, P.; Andersen, T. J.; Frei, R.; Schreiber, N.; Odgaard, B.; Funder, S.; Holm, J. M.; Andersen, K.

    2011-12-01

    Here, we presents the preliminary results from lake cores taken in ditches associated with the historical fortifications enclosing the oldest - central Copenhagen to achieve new knowledge from sediment deposits related to anthropogenic activities. We have examined sediment cores with X-ray fluorescence (XRF) analyzers to correlate element patterns from urban and industrial emissions. Thus, we aim to track these patterns back in time - long before regular routines of recording of atmospheric environment began around 1978. Furthermore, we compare our data to alternative sources of information in order to constrain and expand the temporal dating limits (approximately 1890) achieved from 210Pb activity. From custom reports and statistic sources, information on imported volumes from coal, metal and oil was obtained and related contaminants from these substances to the sediment archives. Intriguingly, we find a steep increase in import of coal and metals matching the exponential increase of lead and zinc counts from XRF-recordings of the sediment cores. In this finding, we claim to have constrain the initiation of urban industrialization. In order to confirm the age resolution of the lake cores, DNA was extracted from sediments, sedaDNA. Thus we attempt to trace plantation of well documented exotic plants to, for instance, the Botanical Garden. Through extraction and sampling of sedaDNA from these floral and arboreal specimens we intend to locate their strataigraphic horizons in the sediment core. These findings may correlate data back to 1872, when the garden was established on the area of the former fortification. In this line of research, we hope to achieve important supplementary knowledge of sedaDNA-leaching frequencies within freshwater sediments.

  1. Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Systems for identifying objects by means of x-ray fluorescence (XRF) of encased labeling elements have been developed. The XRF spectra of objects so labeled would be analogous to the external bar code labels now used to track objects in everyday commerce. In conjunction with computer-based tracking systems, databases, and labeling conventions, the XRF labels could be used in essentially the same manner as that of bar codes to track inventories and to record and process commercial transactions. In addition, as summarized briefly below, embedded XRF labels could be used to verify the authenticity of products, thereby helping to deter counterfeiting and fraud. A system, as described above, is called an encased core product identification and authentication system (ECPIAS). The ECPIAS concept is a modified version of that of a related recently initiated commercial development of handheld XRF spectral scanners that would identify alloys or detect labeling elements deposited on the surfaces of objects. In contrast, an ECPIAS would utilize labeling elements encased within the objects of interest. The basic ECPIAS concept is best illustrated by means of an example of one of several potential applications: labeling of cultured pearls by labeling the seed particles implanted in oysters to grow the pearls. Each pearl farmer would be assigned a unique mixture of labeling elements that could be distinguished from the corresponding mixtures of other farmers. The mixture would be either incorporated into or applied to the surfaces of the seed prior to implantation in the oyster. If necessary, the labeled seed would be further coated to make it nontoxic to the oyster. After implantation, the growth of layers of mother of pearl on the seed would encase the XRF labels, making these labels integral, permanent parts of the pearls that could not be removed without destroying the pearls themselves. The XRF labels would be read by use of XRF scanners, the spectral data outputs of which would be converted to alphanumeric data in a digital equivalent data system (DEDS), which is the subject of the previous article. These alphanumeric data would be used to track the pearls through all stages of commerce, from the farmer to the retail customer.

  2. The Inception of the Colorado Plateau Coring Project: Filling the Triassic Geochronologic Gap and Providing a Continuous Record of Continental Environmental Change in Western Equatorial Pangea

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.

    2014-12-01

    The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several properties, including XRF data. The core will then be transported to the Rutgers University for sampling. The planning team is contemplating Phase Two options (e.g., the Middle to Lower Triassic marine-influenced section west of the Colorado Plateau (St. George, Utah) area or the Upper Triassic to Lower Jurassic sequence in the Comb Ridge area (Bluff, Utah)).

  3. The role of detrital anhydrite in diagenesis of aeolian sandstones (Upper Rotliegend, The Netherlands): Implications for reservoir-quality prediction

    NASA Astrophysics Data System (ADS)

    Henares, S.; Bloemsma, M. R.; Donselaar, M. E.; Mijnlieff, H. F.; Redjosentono, A. E.; Veldkamp, H. G.; Weltje, G. J.

    2014-12-01

    The Rotliegend (Upper Permian) reservoir interval in the Southern Permian Basin (SPB) contains low-permeability streaks corresponding to anhydrite-cemented intervals. An integrated study was conducted using core, cuttings, thin sections and well-log data from a gas exploration well and two geothermal wells that target the zone of interest. This study aims at understanding the origin and nature of these low-permeability streaks, as well as their impact on reservoir properties, and to establish a predictive model of their spatial distribution. High-resolution XRF core-scanning analysis allowed to extrapolate spot observations in thin sections to the entire core. Diagenetic history includes grain rearrangement and anhydrite, haematitic clay coatings, dolomite rims, quartz overgrowths, kaolinite and second-generation carbonates as cementing phases. Coupling of all data reveals the detrital origin of the anhydrite/gypsum grains which were deposited together with the coarse-grained sand fraction in an aeolian sandflat environment. Such partially or completely dissolved grains acted as local sources of anhydrite cement and as nuclei for precipitation, explaining its preferential occurrence in coarse-grained laminae. Thick gypscretes in the vicinity likely supplied the anhydrite/gypsum grains. A conceptual model is proposed, including the location of nearby gypscretes and the prevailing west-southwest aeolian transport direction on the southern rim of the SPB.

  4. A new long sediment record from Padul, southern Spain records orbital- and suborbital-scale environmental and climate changes during the middle and late Quaternary

    NASA Astrophysics Data System (ADS)

    Jimenez-Moreno, Gonzalo; Camuera, Jon; Ramos-Roman, Maria J.; Toney, Jaime L.; Anderson, R. Scott; Jimenez-Espejo, Francisco J.; Kaufman, Darrell; Bright, Jordon; Webster, Cole

    2017-04-01

    Long paleoenvironmental records are necessary in order to understand recurrent climatic or paleoenvironmental changes occurring with a certain periodicity (i.e., glacial-interglacial cycles). In this respect, the Padul peat bog has one of the best available records of Pleistocene sediments in semiarid Southern Europe. The sedimentary sequence is more than 100 m thick and has been used to study palaeoenvironmental change for the past ca. 1 Ma. Since the 1960s several cores have already been taken from this basin showing oscillations in many proxies (pollen, organic geochemistry and sedimentation) related with paleoclimatic and paleohydrological changes. However, a more detailed and higher resolution study, using new dating and analytical techniques (AMS 14C, AAR, continuous XRF-scanning, high-resolution pollen analysis and geochemistry), needs to be done in such an interesting site. Here we present preliminary paleoenvironmental data from a new sediment core, Padul-15-05, which shows significant changes in the environment and lake sedimentation, probably related with glacial-interglacial climate dynamics during the past ca. 300,000 years. These data confirm that orbital- as well as suborbital-scale variability (i.e., Heinrich, D-O events) are recorded in the studied core. This unique record thus has very high potential for paleoenvironmental and paleoclimatic reconstructions for, at least, the two last climatic cycles in this semiarid Mediterranean area.

  5. End-Pleistocene to Holocene paleoenvironmental record from piston corer samples and the challenge of stratigraphic correlation of playa sediment data with a connected alluvial apron from Damghan Basin, Iran

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Hoelzmann, Philipp; Wennrich, Volker; Majid Padashi, Sajed; Baumhauer, Roland

    2015-04-01

    The study yields a first characterization and correlation of the end-Pleistocene to Holocene sediment archive of playa and playa lake deposits in the Damghan Basin, northern Iran. The Basin sediments are deposited since Mio- and Pliocene, which is valid for the connected alluvial fans, too. These are covering the area between the playa and mountains and while prograding from the mountain ranges they deliver gravels and fine-sediments to the basins sink. The processes on the studied alluvial apron are described and dated already and can be explained in seven morphodynamic phases, which are linked to a general lake level high-stand in north-east Iran at about 8000-9000 years ago. If and how these phases are passed on from the alluvial record down to the playa sediment record is aim of this study. Today the salt pans margins are highly affected by salt tectonic drifting and access was suboptimal. Only here drilling could be performed through about 280 centimeters of salt-crust unfrequently intercalated with loamy layers. For yielding undisturbed playa sediment records sampling was performed with inliner-tubes deployed in a piston corer (Kullenberg type). Thus at two different drilling sites in summation seven cores could be taken, down to a maximum depth of 129 cm and 1000 cm. Back in Germany the cores had been opened and initially described, photographed and optically scanned with a core logger. Regarding future studies, the aim was a best possible comprehensive documentation of the cores. Therefore basically grainsize measurements (laser diffraction), multi element analyses (XRF, ICP-OES, titrimetry) and mineralogical measurements (XRD) had been deployed on samples taken from every single previously identified layer. Continuous elemental data was secured by use of a XRF-scanning core logger. The sedimentological description together with laboratory element analyses shows saline conditions in the first three meters coincide with general coarser grain sizes. The next three meters are made up by homogenous partly laminated deposits, rich auf clay and silt and with a decreased content of sulphur and halite. Regular Peaks of sulfate and calcium within this unit presumably indicate post-sedimentary precipitation of gypsum. The homogenous sediment unit is followed by layers clearly set up in three major phases of up-fining sediments. Higher Al and Mg contents following this sedimentation phases suggest a considerable amount of syn-sedimentary clay mineral enrichment. The alignment of alluvial fan phases and phases recorded in the playa is challenging. As figured out before, the focused signals in the study are linked to non-local factors affecting supra-regional land surface alteration. But 0 to less than 1 % organic carbon contents decrease the chance of deriving a valid sediment dating and the possibility of chrono-stratigraphic correlation. Anyway, the clear transitional zone from halite dominated to more or less halite-free sediments can serve as a guideline to the development of further correlations.

  6. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays.

    PubMed

    Bergmann, Uwe; Manning, Phillip L; Wogelius, Roy A

    2012-01-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  7. Structural analysis of bioceramic materials for denture application

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  8. Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.

  9. Conventional X-ray fluorescence camera with a cadmium-telluride detector and its application to cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-04-01

    X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.

  10. XAFS imaging of Tsukuba gabbroic rocks: area analysis of chemical composition and local structure.

    PubMed

    Mizusawa, Mari; Sakurai, Kenji

    2004-03-01

    Gabbroic rocks were collected at Mount Tsukuba in Japan, and their XAFS images were studied using a projection-type X-ray fluorescence (XRF) microscope, which is a powerful new tool recently developed for extremely rapid imaging. The instrument employs a grazing-incidence arrangement in order that primary X-rays illuminate the whole sample surface, as well as parallel-beam optics and an extremely close geometry in order to detect XRF by a high-performance X-ray CCD system with 1024 x 1024 pixels. The XRF image indicated that black amphibole and white feldspar, both of which are typical mineral textures of the rock, contain iron. The origin has been suggested to be several small yellowish-brown minerals contained there. The XAFS imaging has been carried out by repeating the exposure of XRF images during the energy scan of the primary X-rays. It has been found that the structure is qualitatively close to that of olivine, and the main differences found in both areas can be explained as a difference in iron and magnesium concentration, i.e. the mixed ratio of forsterite (Mg(2)SiO(4)) and fayalite (Fe(2)SiO(4)). The feasibility of the present XAFS imaging method has been demonstrated for realistic inhomogeneous minerals.

  11. PIXE and XRF Analysis of Roman Denarii

    NASA Astrophysics Data System (ADS)

    Fasano, Cecilia; Raddell, Mark; Manukyan, Khachatur; Stech, Edward; Wiescher, Michael

    2017-09-01

    A set of Roman Denarii from the republican to the imperial period (140BC-240AD) has been studied using X-ray fluorescent (XRF) scanning and proton induced x-ray emission (PIXE) techniques. XRF and PIXE are commonly used in the study of cultural heritage objects because they are nondestructive. The combination of these two methods is also unique because of the ability to penetrate the sample with a broader spectrum of depths and energies than either could achieve on its own. The coins are from a large span of Roman history and their analysis serves to follow the economic and political change of the era using the relative silver and copper contents in each sample. In addition to analyzing the samples, the study sought to compare these two common analysis techniques and to explore the use of a standard to examine any shortcomings in either of the methods. Data sets were compared and then adjusted to a calibration curve which was created from the analysis of a number of standard solutions. The concentrations of the standard solutions were confirmed using inductively coupled plasma spectroscopy. Through this we were able to assemble results which will progress the basis of understanding of PIXE and XRF techniques as well as increase the wealth of knowledge of Ancient Roman currency.

  12. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  13. Mapping Henry: Synchrotron-sourced X-ray fluorescence mapping and ultra-high-definition scanning of an early Tudor portrait of Henry VIII

    NASA Astrophysics Data System (ADS)

    Dredge, Paula; Ives, Simon; Howard, Daryl L.; Spiers, Kathryn M.; Yip, Andrew; Kenderdine, Sarah

    2015-11-01

    A portrait of Henry VIII on oak panel c. 1535 has recently undergone technical examination to inform questions regarding authorship and the painting's relationship to a group of similar works in the collections of the National Portrait Gallery, London, and the Society of Antiquaries. Due to previous conservation treatments of the painting, the conventional transmission X-radiograph image was difficult to interpret. As a result, the painting underwent high-definition X-ray fluorescence (XRF) elemental mapping on the X-ray fluorescence microscopy beamline of the Australian Synchrotron. Scans were conducted at 12.6 and 18.5 keV, below and above the lead (Pb) L edges, respectively. Typical scan parameters were 120 μm pixel size at 7 ms dwell time, with the largest scan covering an area 545 × 287 mm2 collected in 23 h (10.8 MP). XRF mapping of the panel has guided the conservation treatment of the painting and the revelation of previously obscured features. It has also provided insight into the process of making of the painting. The informative and detailed elemental maps, alongside ultra-high-definition scans of the painting undertaken before and after varnish and over-paint removal, have assisted in comparison of the finely painted details with the London paintings. The resolution offered by the combination of imaging techniques identifies pigment distribution at an extremely fine scale, enabling a new understanding of the artist's paint application.

  14. Sedimentological, mineralogical, and geochemical results from surface sediments and the sediment record from Site 2 of the ICDP drilling project at Lake Towuti, Indonesia

    NASA Astrophysics Data System (ADS)

    Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.

    2017-12-01

    More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement ( 30 m) that were formed during the past 50 cal kyr. In this period, the data reflect significant climatic and environmental changes, in particular in precipitation and lake level. These changes seem to be coupled to prominent paleoclimatic events.

  15. Simultaneous fast scanning XRF, dark field, phase-, and absorption contrast tomography

    NASA Astrophysics Data System (ADS)

    Medjoubi, Kadda; Bonissent, Alain; Leclercq, Nicolas; Langlois, Florent; Mercère, Pascal; Somogyi, Andrea

    2013-09-01

    Scanning hard X-ray nanoprobe imaging provides a unique tool for probing specimens with high sensitivity and large penetration depth. Moreover, the combination of complementary techniques such as X-ray fluorescence, absorption, phase contrast and dark field imaging gives complete quantitative information on the sample structure, composition and chemistry. The multi-technique "FLYSCAN" data acquisition scheme developed at Synchrotron SOLEIL permits to perform fast continuous scanning imaging and as such makes scanning tomography techniques feasible in a time-frame well-adapted to typical user experiments. Here we present the recent results of simultaneous fast scanning multi-technique tomography performed at Soleil. This fast scanning scheme will be implemented at the Nanoscopium beamline for large field of view 2D and 3D multimodal imaging.

  16. Storm-generated Holocene and historical floods in the Manawatu River, New Zealand

    NASA Astrophysics Data System (ADS)

    Fuller, Ian C.; Macklin, Mark G.; Toonen, Willem H. J.; Holt, Katherine A.

    2018-06-01

    This paper reports the first reconstruction of storm-generated late Holocene and historical river floods in the North Island of New Zealand. The sedimentary infills of nine palaeochannels were studied in the lower alluvial reaches of the Manawatu River. Floods in these palaeochannels were recorded as a series of sand-rich units set within finer-grained fills. Flood chronologies were constrained using a combination of radiocarbon dating, documentary sources, geochemical markers, and palynological information. Flood units were sedimentologically and geochemically characterised using high resolution ITRAX™ X-Ray Fluorescence (XRF) core scanning and laser diffraction grain-size analysis. The longest palaeoflood record extends back ca.3000 years. The temporal resolution and length of the Manawatu record reflects accommodation space for fluvial deposits, channel dynamics and mobility, and high sediment supply. Floods that occurred in the Manawatu during the mid-1800s at the time of European land clearance and in the first decade of the twentieth century appear to be among the largest recorded in the last 3000 years.

  17. The Plio-Pleistocene Evolution of the Indian Ocean Monsoonal System: Evidence from the Arabian Sea and East Africa

    NASA Astrophysics Data System (ADS)

    Wilson, K. E.; Maslin, M. A.; Mackay, A. W.; Leng, M. J.; Kingston, J.; Deino, A.

    2011-12-01

    It is important to identify the teleconnections between high latitude forcing and tropical monsoonal circulation in order to understand climate change in East Africa during the Plio-Pleistocene. Here we present a record of aeolian dust transport to the Arabian Sea between approximately 2.9 and 2.3 million years ago (Ma), constructed from the high-resolution XRF scanning of sediment cores from ODP Sites 721 and 722. Variations in the delivery of aeolian dust to the Arabian Sea, reflected in normalised flux of titanium, show that monsoonal circulation prior to 2.6 Ma, and after 2.5 Ma, was highly variable and primarily driven by orbitally-forced changes in tropical summer insolation, strongly modulated by the 400,000 year cycle of orbital eccentricity. This is confirmed by the presence of lakes in the East African Rift Valley during key eccentricity maxima. The dust record is coupled with the analysis of a well-dated series of diatomite units from the Baringo-Bogoria Basin which document the rhythmic cycling of large, precessionally-driven freshwater lakes which periodically occupied the Central Kenyan Rift Valley between 2.7 and 2.58 Ma. Analysis of one of these lake sequences using stable oxygen isotope measurements of diatom silica, combined with the XRF analysis of whole-sample geochemistry, reveals that the deep lake phase was characterised by fluctuations in rainfall and lake depth over cycles lasting, on average, 1,400 years. The presence of these millennial-scale fluctuations is confirmed by evidence of abrupt climate cycles in the oceanic dust record from the Arabian Sea.

  18. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  19. High-resolution, multi-proxy characterization of the event deposit generated by the catastrophic events associated with the Mw 6.2 earthquake of 21 April 2007 in Aysén fjord (Chile)

    NASA Astrophysics Data System (ADS)

    De Batist, M. A.; Van Daele, M. E.; Cnudde, V.; Duyck, P.; Tjallingii, R. H.; Pino, M.; Urrutia, R.

    2012-12-01

    In 2007, a seismic swarm with more than 7000 recorded earthquakes affected the region around Aysén fjord, Chile (45°25'S). The series of seismic events reached a maximum on 21 April 2007, with an Mw 6.2 earthquake. Intensities as high as VIII to IX on the Modified Mercalli scale were reported around the epicenter. Multiple debris flows, rock slides and rock avalanches were triggered along the fjord's coastline, and several of these caused impact waves or tsunamis with wave heights of up to 6 m, which inundated the fjord shorelines and caused heavy damage and 10 casualties. In order to characterize in detail the imprint left by this series of catastrophic events in the sedimentary record of the fjord, we conducted a multi-disciplinary survey of the inner fjord region in December 2009. Multibeam bathymetry and high-resolution reflection seismic data reveal that large parts of the fjord basin floor, mostly at the foot of the fjord's steep underwater slopes, are covered by recent mass-wasting deposits or consist of mass-wasting-induced deformed basin-plain sediments. A series of short sediment cores collected throughout the inner fjord contain also the more distal deposits of this significant basin-wide mass-wasting event. By combining classical sedimentological techniques (i.e. grain-size analysis, LOI and magnetic susceptibility measurements, all at high resolution) with X-ray CT scanning and XRF scanning we were able to demonstrate that the event deposits encountered in the cores have a very complex signature and actually consist of a succession of several sub-deposits, comprising distal mass-flow deposits from different source areas (as evidenced by XRF-derived geochemical provenance indications) and with a different flow direction (as evidenced by CT-derived 3D flow-direction indications, such as imbricated rip-up mud clasts, cross and convolute laminations) and tsunami- or seiche-generated deposits. This allowed us to reconstruct the succession of sedimentary events that affected the inner fjord region and got imprinted in the fjord's sedimentary record. The improved characterization of such a complex event deposit may help to reconstruct the exact nature and basin-wide effects of past similar events (i.e. the seismic data show clear evidence of 3-4 similar prehistoric events) and to establish a reliable hazard assessment for the region.

  20. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  1. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051more » Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.« less

  3. Analysis of Historical Coins by X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khatchatur; Aprahamian, Ani; Jordan, Louis

    2016-09-01

    Using different setups of the EDAX Orbis Micro X-ray Fluorescence (XRF) Analyzer, we have learned more about the limitations and optimizations of the XRF method and collected data about early British and Spanish colonial silver coins. XRF spectrometry was used to study Mexican, Bolivian, and Massachusetts silver coins from the University of Notre Dame's Rare Books and Special Collections Department. Runs were performed in both air and vacuum conditions, and the x-ray beam diameter was compared between 1 and 0.03 mm. Using these methods we were able to contribute to the understanding of the historical coinage as well as learn about the best ways to use the method. During analysis we found significant differences in the spectra for silver L shell excitation and silver K shell excitation when switching from 0.03 to 1mm x-ray beam widths. Our data trends also fit with the historical theory that the coinage from the Massachusetts' mint were created by melting down Spanish silver coins (like the ones made from Mexico and Bolivia) and adding a small percent more of copper. We have the intent to build on what we have learned by also studying some Roman Denarii in the future, and by trying to create a custom designed version of the XRF which can be moved more easily and provide quick scans for a larger number of artifacts.

  4. Using XRF Geochemical Data to Differentiate Storm Event Deposits in a Backbarrier Lake in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.; McCloskey, T.

    2016-12-01

    Hurricanes Gustav and Ike consecutively impacted coastal Louisiana in 2008 and generated significant storm surges. Three sediment cores taken from Bay Champagne, a coastal backbarrier lake near Port Fourchon, Louisiana, clearly show a deposition layer of clastic sediment up to 17 cm thick attributable to these two storms. X-ray fluorescence (XRF) analysis indicates that the two storm events can be distinguished from one another based on contrasting geochemical profiles. The bottom layer, presumably deposited by Hurricane Gustav, has high concentrations of S, Cl, Ca, and Sr, suggesting a strong marine influence. The top layer, presumably attributed to Hurricane Ike, has high concentrations of Ti, Mn, Fe and Zn, indicative of material of terrestrial origin. The elemental concentration profiles suggest that the storm deposits in each core were deposited through two distinct hydrological processes: a storm surge -driven marine intrusion during Hurricane Gustav, followed by intensive freshwater flooding during Hurricane Ike. Using these deposits as modern analogs, this technique could be applied to characterize older storm layers in the sedimentary record and potentially provide information about their respective depositional mechanisms.

  5. Past collapse and late Holocene reestablishment of the Petermann Ice Tongue, Northwest Greenland

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Mix, A. C.; Jakobsson, M.; Jennings, A. E.; Walczak, M.; Dyke, L. M.

    2017-12-01

    Petermann Glacier, Northwest Greenland, has been a stable outlet glacier of the Greenland Ice Sheet on historical timescales. Yet, anomalous calving events in 2010 and 2012 and oceanographic studies over the last decade indicate that Petermann Glacier and its ice tongue are especially sensitive to ice-ocean interactions, leading many to speculate on its future stability. To place these observations in the context of a longer timeframe and better understand the sensitivity of Petermann Glacier to future climate change, a 2015 international and interdisciplinary expedition of the Icebreaker Oden collected a suite of sediment cores from Petermann Fjord, spanning the mid to late Holocene and forming a transect from beneath the modern ice tongue to the mouth of the fjord (25 - 80 km from the modern grounding line). We characterize the stratigraphy ( 5.5 - 6.5 m at piston core sites) using a combination of X-ray fluorescence (XRF) scanning geochemistry, computed tomography (CT) scanning, and particle-size specific magnetic measurements on these cores and nearby terrestrial samples. Age-depth modeling, based on radiocarbon dated benthic foraminifera, is in progress with reservoir age corrections assessed using paleomagnetic comparisons to regional and global records. We observe changes in the composition and spatial pattern of ice rafted debris (IRD) and sediment fabric that reveal a dynamic history. Following early Holocene deglaciation of the region, a paleo-ice tongue broke up and an extended period of seasonally open marine conditions ensued through the middle Holocene. This ice-tongue collapse was followed by a large increase in the relative abundance of Petermann sourced IRD of non-local granitic composition. This granitic IRD component steadily declined through the middle Holocene, reaching negligible contributions when the ice tongue was reestablished in the late Holocene. Regional paleoenvironmental studies suggest warmer oceanographic and atmospheric conditions around Northwest Greenland in the middle Holocene, offering an opportunity to study the sensitivity of one of Greenland's major outlet glaciers to environmental forcing.

  6. Development of a high resolution chemostratigraphy for the Late Triassic-Early Jurassic Newark Basin

    NASA Astrophysics Data System (ADS)

    Kinney, S.; Olsen, P. E.; Chang, C.

    2017-12-01

    The 6.7 km of continuous core recovered from the paleo-tropical Triassic-Jurassic Newark rift basin during the Newark Basin Coring Project (NBCP) has provided a wealth of data since the conclusion of drilling 25 years ago. These cores comprise the longest ( 30 Myr) continuously-cored record of orbitally-paced environmental change and have informed our understanding in several different areas including tropical climate change, history of CO­2, mass extinctions, the geological time scale, and solar system dynamics. Despite the utility of NBCP cores for these endeavors, a critical missing dataset is a comprehensive characterization of their geochemical variations relevant to paleoenvironmental and paleoclimatic interests, largely a consequence of the cost of analyses at an appropriate resolution using conventional techniques. With the advent of new technology permitting the rapid acquisition of reliable geochemical data, such limitations may no longer be an obstacle for constructing a high-resolution chemostratigraphic record for the NBCP. We present the results of a proof-of-concept study using both ICP-MS-calibrated scanning ITRAX XRF and handheld Laser Induced Breakdown Spectroscopy (LIBS) using the SciAps Z-300. We will show elemental abundances at resolutions as high as 500 mm obtained using these methods from correlative sections of the Titusville and Nursery cores (Lockatong Fm.). These sections are sufficiently long to capture orbital variations and include the range of lithologies present throughout the entire section. Our preliminary results are consistent with previous, semi-quantitative means (e.g., depth ranks) of assessing Milankovitch-scale orbital variations and are also consistent with core and hole geophysical data, demonstrating that these methods can acquire meaningful geochemical data from the entire NBCP. With continued work, we aim to provide an objective characterization of orbitally-paced lake level cyclicity using geochemical proxy variations, leading to an improved basis for disentangling the links between basin evolution, the evolution of the CO2-climate system, orbitally paced cyclicity, and solar system chaos.

  7. Cretaceous honeycomb oysters (Pycnodonte vesicularis) as palaeoseasonality records: A multi-proxy study

    NASA Astrophysics Data System (ADS)

    de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Petersen, Sierra V.; Meyer, Kyle W.; Speijer, Robert P.; Claeys, Philippe

    2017-04-01

    Pycnodonte or "honeycomb-oysters" (Bivalvia: Gryphaeidea) is an extinct genus of calcite-producing bivalves which is found in abundance in Cretaceous to Pleistocene fossil beds worldwide. As such, Pycnodonte shells could be ideal tracers of palaeoclimate through time, with the capability to reconstruct sea water conditions and palaeotemperatures in a range of palaeoenvironmental settings. Only few studies have attempted to reconstruct palaeoclimate based on Pycnodonte shells and with variable degrees of success (e.g. Videt, 2003; Huyge et al., 2015). Our study investigates the shell growth, structure and chemical characteristics of Maastrichtian Pycnodonte vesicularis from Bajada de Jaguel in Argentina and aims to rigorously test the application of multiple palaeoenvironmental proxies on the shells of several Maastrichtian Pycnodonte oysters for palaeoclimate reconstruction. The preservation state of four calcite shells was assessed by fluorescence microscopy, cathodoluminescence and micro X-Ray Fluorescence (XRF) mapping. Their shell structure was investigated using a combination of XRF mapping, high-resolution color scanning and microCT scanning. Long integration time point-by-point XRF line scanning yielded high-resolution trace element profiles through the hinge of all shells. Microdrilled samples from the same locations on the shell were analyzed for trace element composition by ICP-MS and for stable carbon and oxygen isotopes by IRMS. Preservation of the calcite microstructure was found to be of sufficient quality to allow discussion of original shell porosity, annual growth increments and pristine chemical signatures of the bivalves. The combination of fluorescence and cathodoluminescence microscopy with XRF mapping and microCT scanning sheds light on the characteristic internal "honeycomb" structure of these extinct bivalves and allows comparison with that of the related extant Neopycnodonte bivalves (Wisshak et al., 2009). Furthermore, high resolution trace element and stable isotope records allow discussion of the degree to which Pycnodonte shells record their palaeoenvironment and can be used to reconstruct past sea water conditions. Preliminary results indicate that stable isotope and trace element ratios in Pynodonte shells record different seasonally changing sea water conditions in the Maastrichtian and reconstructed temperatures are consistent with results from clumped isotope analysis on the same shells and TEX86 analysis on the surrounding rocks. This multi-proxy study sheds light on the shell structure of Pycnodonte oysters, their chemical signature and growth pattern and investigates the expression of palaeoenvironmental proxies in the pristine shell calcite of these bivalves. This investigation shows the potential of using fossil Pycnodonte bivalves as a new archive for palaeoclimate reconstruction on a seasonal scale over a wide range of palaeolatitudes from the Cretaceous until the Pleistocene. References Huyghe et al. (2015) J. Geol Soc 172.5: 576-587. Videt (2003) Diss. Université Rennes 1. Wisshak, et al. (2009) Deep-Sea Res Pt I 56.3: 374-407.

  8. Late Pliocene-Early Pleistocene oscillations in Mediterranean Overflow water: a new perspective from the Iberian Margin

    NASA Astrophysics Data System (ADS)

    Alonso-Garcia, M.; Salgueiro, E.; Rodrigues, T.; Alvarez Zarikian, C. A.; Kuhnert, H.; Roehl, U.; Voelker, A. H. L.; Sierro, F. J.; Abrantes, F. F. G.

    2016-12-01

    During the Late Pliocene to the Early Pleistocene the Earth experienced a transition from the warm Pliocene climate, with high greenhouse gases concentrations, to a colder climate with significant expansion of ice-sheets in the Northern Hemisphere and alternation between glacial and interglacial periods. Several hypotheses have been put forward to explain this climate transition, and recently, the enhancement of the Mediterranean Overflow Water (MOW) was suggested to have played a major role since it contributes high salinity water to the North Atlantic. Sedimentary records from the last glacial cycle and modelling experiments evidenced this link and suggested that the MOW injection of salty water to intermediate depths may have enhanced the upper branch of NADW, which ultimately reinvigorated the whole Atlantic Meridional overturning circulation. Here we present sedimentological and paleontological data from Site U1391 (37° N; 9° W; 1085 m water depth), recovered on the Southwest Iberian Margin during the Integrated Ocean Drilling Program (IODP) Expedition 339. This site is located in a plastered drift in the path of the MOW and offers high sedimentation rates to perform high resolution studies of past climatic and oceanographic conditions. In this study, we combined XRF geochemical data (from X-ray fluorescence core scanning) with grain-size, benthic foraminifer δ18O and δ13C, and ostracod records to reconstruct deep water circulation and climatic conditions during the Plio-Pleistocene transition. The high-resolution record of the XRF analysis indicates a switch in the response of MOW to climate changes across this transition. Early Pleistocene glacial-interglacial cycles show a stronger coupling between MOW oscillations (as indicated by the Zr/Al ratio) and sea surface temperature conditions (as indicated by the Ca/Ti ratio).

  9. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  10. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  11. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  12. Earthquake Records of North Anatolian Fault from Sapanca Lake Sediments, NW Anatolia

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Cagatay, Namık; Acar, Dursun; Demirbag, Emin; Gungor, Emin; Gungor, Nurdan; Gulen, Levent

    2014-05-01

    We determined earthquake records in sediment cores of Sapanca Lake which is a pull-apart basin located along the North Anatolian Fault zone in NW Anatolia. The lake has a maximum depth of 55 m, and a surface area of 46.8 km2, measuring 16 km in E-W and 5 km in N-S directions. A systematic study of the sedimentological, physical and geochemical properties of three water-sediment interface cores, up to 75.7 cm long, located along depth transects ranging from 43 to 51.5 m water depths. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Content (TOC) and Total Inorganic Carbon (TIC) analysis, Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The geochronology was determined using AMS radiocarbon and radionuclide methods. The Sapanca Lake earthquake records are characterized by mass flow units consisting of grey or dark grey coarse to fine sand and silty mud with sharp basal and transional upper boundaries. The units commonly show normal size grading with their basal parts showing high density, and high magnetic susceptibility and enrichment in one or more elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the mass flow units are correlated with 1999 İzmit and Düzce earthquakes (Mw=7.4 and 7.2, respectively) , 1967 Mudurnu earthquake (Mw= 6,8), and 1957 Abant (Mw= 7.1) earthquake. Keywords: Sapanca Lake, North Anatolian Fault, Earthquake, Grain size, Itrax-XRF, MSCL

  13. Late Quaternary carbonate accumulation along eastern South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Crabill, K.; Slowey, N. C.; Foreman, A. D.; Charles, C.

    2016-12-01

    Water masses originating from both the North Atlantic Ocean and the Southern Ocean intersect the Walvis Ridge and Namibian margin of southwest Africa. Changes in the distribution and properties of these water masses through time are reflected by variations in the nature of the sediments accumulating along this margin. A suite of piston and gravity cores that possess sediment records corresponding to the most recent glacial-interglacial cycles were collected from the water depth range of 550 to 3700 meters. Sediment dry bulk density, XRF analyses and the concentration of CaCO3 were precisely determined at regular depth intervals in these cores. Foraminiferal δ18O along with XRF Fe/Ca data provide an age-depth model for key cores. The age-depth model and dry bulk density will be used with the calcium carbonate contents to calculate the accumulation rates of CaCO3 during each MIS 1-5e. The spatial and temporal variability in both the CaCO3 content and the CaCO3 mass accumulation rates along the Namibian continental slope will be described. Based on comparisons of these two parameters, inferences will be made about how variations of CaCO3 production, dilution of by non-CaCO3 sediment components, and dissolution of CaCO3 due to changes in ocean circulation/climate have occurred during intervals of the last glacial-interglacial cycle.

  14. Slag-Based Nanomaterial in the Removal of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Baalamurugan, J.; Ganesh Kumar, V.; Govindaraju, K.; Naveen Prasad, B. S.; Bupesh Raja, V. K.; Padmapriya, R.

    Slag-based nanomaterial is a by-product obtained during steel production and has wide range of components in the form of oxides. In this study, Induction Furnace (IF) steel slag-based application in adsorption of hexavalent chromium is investigated. IF slag has mixture of oxides mainly Fe2O3 and Chromium (VI) a highly toxic pollutant leads to environmental pollution and causes problem to human health mainly, carcinogenetic diseases. Slag-based nanomaterial is characterized using High Resolution Scanning Electron Microscope (HR-SEM) in which the size was around 100nm and X-ray Fluorescence (XRF) spectroscopy. Further inductively coupled plasma mass spectroscopy and Fourier transform infrared spectroscopy were used for adsorption studies. Slag activation using NaOH (alkali activation) to the intent of surface hydroxyl (-OH) group attachment will be a cost-effective process in the removal of hexavalent chromium. Cr(VI) ions are adsorbed on the surface of alkali activated slag material. The core-shell formation of Fe(II)/Fe(III)/Cr(VI) and the adsorption are investigated in detail in the present study.

  15. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF

    NASA Astrophysics Data System (ADS)

    Alfeld, Matthias; Siddons, D. Peter; Janssens, Koen; Dik, Joris; Woll, Arthur; Kirkham, Robin; van de Wetering, Ernst

    2013-04-01

    In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting—other than in localized cross-sections—have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity.

  16. Precipitation Rate Investigation on synthesis of precipitated calcium carbonate

    NASA Astrophysics Data System (ADS)

    Sulistiyono, E.; Handayani, M.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    Study on the formation of precipitated calcium carbonate from natural limestone Sukabumi with the influenced of various parameters such as precipitation rate, concentration of CaCl2 and amplitudes were investigated. We also investigated the result with the precipitated calcium carbonate from Merck (p.a) for comparison. The higher concentration of CaCl2 would give effect to the lower of the precipitation rate. It was observed that precipitation rate of calcium carbonate from limestone Sukabumi at concentration of 0.08 molar was 3.66 cm/minutes and showing the optimum condition, while the precipitation rate of calcium carbonate Merck at the concentration 0.08 molar was 3.53 cm/minutes. The characterization of precipitated calcium carbonate was done using X-ray fluorescence (XRF) and scanning electron microscope (SEM). The characterization using XRF showed that CaO content of precipitated calcium carbonate from natural limestone Sukabumi had high purity of 99.16%. The particle distribution using scanning electron microscope (SEM) showed that precipitated calcium carbonate from natural limestone Sukabumi revealed 1.79 µm – 11.46 µm, meanwhile the particle distribution of precipitated calcium carbonate Merck showed larger particles with the size of 3.22 µm – 10.68 µm.

  17. X-ray fluorescence camera for imaging of iodine media in vivo.

    PubMed

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  18. Profile of a city: characterizing and classifying urban soils in the city of Ghent

    NASA Astrophysics Data System (ADS)

    Delbecque, Nele; Verdoodt, Ann

    2017-04-01

    Worldwide, urban lands are expanding rapidly. Conversion of agricultural and natural landscapes to urban fabric can strongly influence soil properties through soil sealing, excavation, leveling, contamination, waste disposal and land management. Urban lands, often characterized by intensive use, need to deliver many production, ecological and cultural ecosystem services. To safeguard this natural capital for future generations, an improved understanding of biogeochemical characteristics, processes and functions of urban soils in time and space is essential. Additionally, existing (inter)national soil classification systems, based on the identification of soil genetic horizons, do not always allow a functional classification of urban soils. This research aims (1) to gain insight into urban soils and their properties in the city of Ghent (Belgium), and (2) to develop a procedure to functionally incorporate urban soils into existing (inter)national soil classification systems. Undisturbed soil cores (depth up to 1.25 m) are collected at 15 locations in Ghent with different times since development and land uses. Geotek MSCL-scans are taken to determine magnetic susceptibility and gamma density and to obtain high resolution images. Physico-chemical characterization of the soil cores is performed by means of detailed soil profile descriptions, traditional lab analyses, as well as proximal soil sensing techniques (XRF). The first results of this research will be presented and critically discussed to improve future efforts to characterize, classify and evaluate urban soils and their ecosystem services.

  19. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  20. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close approximation of their host rock's depositional age, along with significant populations of early Paleozoic and Proterozoic zircons which will be used to identify provenance. Thermal demagnetization of paleomagnetic samples show that most Moenkopi and some fine-grained Chinle lithologies preserve a primary magnetization, and thus will allow the construction of a robust magnetostratigraphy for portions of the Triassic section. Soil carbonates are abundant throughout the cored section. All data will be integrated to construct an exportable chronostratigraphic framework that will allow us to test a number of major questions with global implications for understanding the early Mesozoic world, including: 1) do independent U-Pb ages support the accuracy of the Newark astronomically-calibrated geomagnetic polarity timescale? 2) is the mid-Late Triassic biotic turnover observable in the western US coincident with the Manicouagan bolide impact? and 3) are cyclical climate variations apparent in the cored record, and do they reflect variations in atmospheric CO2?

  1. Geochemical characteristics and early diagenesis of recent carbonate mound sediments in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy

    2010-05-01

    Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to investigate the influence of early diagenesis. Along with the dating that has been performed, the obtained geochemical data give an overview of the extent to which palaeo-environmental conditions and diagenesis have influenced the carbonate mound sediments in the Gulf of Cádiz. References Foubert, A., Depreiter, D., Beck, T., Maignien, L., Pannemans, B., Frank, N., Blamart, D., Henriet, J.P., 2008. Carbonate mounds in a mud volcano province off north-west Morocco: Key to processes and controls. Marine Geology, 248, 74-96. Wienberg, C., Hebbeln, D., Fink, H.G., Mienis, F., Dorschel, B., Vertino, A., López Correa, M., Freiwald, A., 2009. Scleractinian cold-water corals in the Gulf of Cádiz - First clues about their spatial and temporal distribution, Deep-Sea Research I, 56, 1873-1893.

  2. Decoupled Changes in Western Niger Delta Primary Productivity and Niger River Discharge Across the Last Deglacial

    NASA Astrophysics Data System (ADS)

    Parker, A. O.; Schmidt, M. W.; Slowey, N. C.; Jobe, Z. R.; Marcantonio, F.

    2014-12-01

    Abrupt droughts in West Africa impart significant socio-economic impacts on the developing countries of this region, and yet a comprehensive understanding of the causes and duration of such droughts remains elusive. Much of the summertime rainfall associated with the West African Monsoon (WAM) falls within the Niger River basin and eventually drains into the eastern Gulf of Guinea, contributing to the low sea-surface salinity of this region. Of the limited number of studies that reconstruct Gulf of Guinea salinity through the deglacial, the most comprehensive of those is located ~ 400 km east of the Niger delta and may not be solely influenced by WAM runoff. Here, we present XRF and foraminiferal trace metal data from two new cores located less than 100 km from the Western Niger Delta. Radiocarbon dating of cores Grand 21 (4.72oN, 4.48oE) and Fan 17 (4.81oN, 4.41oE) produced near linear sedimentation rates of 20 cm/kyr and 15 cm/kyr respectively. Elemental sediment compositions from XRF core scanning reveal an abrupt 50% increase in SiO2 between 17-15 ka during Heinrich Event 1. This increase, coeval with increases of CaCO3 (+12%) content and Ba/Ti ratios suggests a large increase in primary productivity during H1. Values then decrease at the onset of the Bolling-Allerod (~14.6 kyr) until a similar, albeit smaller increase is recorded during the Younger Dryas beginning at 12.7 kyr. In contrast, FeO2 and TiO2 are thought to be a proxies of Niger River discharge strength and suggest a more gradual change in riverine discharge across the deglacial that is most likely driven by precession. These proxies suggest Niger River runoff was low from the LGM through Heinrich 1, gradually increasing around 13 ka. FeO2 and TiO2 values then peak between 11.5-7.5 kyr, consistent with the African Humid Period, before gradually decreasing through the mid-late Holocene. This deglacial pattern of riverine input is markedly different from previous reconstructions of WAM variability and does not appear to explain the large increases in primary production during H1 or the YD. To further investigate Niger River runoff and water column hydrography change in the Niger Delta across the deglacial, we will also present data from three planktonic foraminifera: Globigerinoides ruber, Neogloboquadrina dutertrei and Globorotalia crassaformis.

  3. Terrigenous provenance follows climate variability at IODP Site U1474, southwestern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Babin, D. P.; Hemming, S. R.; Simon, M.; Hall, I. R.; Franzese, A. M.; Goldstein, S. L.; Cai, Y.; Liu, T.; Johns, M. A.; Tejada, L.; LeVay, L.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 361 `South African Climates' sought records to document the role of the greater Agulhas Current system in global climate variability and southeast African hydroclimate over the past 5 Ma. IODP Site U1474 is located at the headwaters of the fully constituted Agulhas Current. Being close to the southeast African margin, the core location is ideally situated to track variations of terrigenous sediment delivery to the site, which may relate to climatic changes in southern Africa that follow variability in the Agulhas Current heat content. To analyze climate variability, we consider an XRF record for the site in combination with major and trace element chemistry and K-Ar ages from the clay fraction (<2um) plus bulk major element chemistry of 60 shipboard moisture and density samples spanning 4.8 Ma. These data are interpreted with a sea surface temperature (SST) record from Mg/Ca measurements spaced at 40 kyr on the surface dwelling (mixed layer) planktonic foraminifera Globigerinoides ruber. Both long-term trend and precessionally-paced changes in the terrigenous composition are evident. Fe/K ratios from XRF core scanning data are consistent with those previously reported (Simon et al. 2015 Sci. Reports) in a nearby core that spans the last 270 ka. Terrigenous mass accumulation rates are relatively constant at 3 g/cm3/ky from 5-2.5 Ma, then gradually decrease to 2 g/cm3/ky at the top. This declining flux is accompanied by older and more weathered and mafic sources, possibly a result of reduced precipitation in proximal catchments. It is suggested that the relationships between these proxies is explained by a greater relative contribution of sediment supplied from the Limpopo catchment compared to nearby drainage basins such as the Tugela. The SST record shows a cooling trend from the 27 °C average between 4.5-2.5 Ma to 25 °C at 1.0 Ma, followed by high amplitude changes (6 °C changes instead of °3 C) in SST in the 0-1.0 Ma interval, with minimum SST estimates of 21 °C. These changes are consistent with, but could lag behind models predicting aridification in Africa associated with a drop in Indian Ocean temperatures around 3-4 Ma, caused by tectonic changes in the Indonesian Throughflow that shifted its Pacific source waters further north (Cane & Molnar 2001 Science).

  4. The sedimentary records of Holocene environmental changes from the Central High of the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Filikci, Betul; Çağatay, Namık; Kadir Eriş, Kürşad; Akyol, Mustafa; Yalamaz, Burak; Uçarkuş, Gülsen; Henry, Pierre

    2015-04-01

    The Sea of Marmara (SoM) is located between the Aegean Sea and the Black Sea, to which it is connected via the Istanbul (Bosphorus) and Canakkale (Dardanelles) straits having sill depths of 65 and 35 m, respectively. It has a two-way water mass exchange with a permanent pycnocline located at 20-25 m water depth. With the objective of determining Holocene paleoenvironmental changes, we studied a 8.36 m-long piston core recovered from the Central High of the SoM at a water depth of 835 m, using multiproxy analyses such as total organic and inorganic carbon, high resolution µ-XRF core scanner analysis, grain size, magnetic susceptibility and density. A 2 cm-thick tephra layer with high K and Zr and relatively low magnetic susceptibility occurs at 2.1 meter below sea floor (mbsf), which is correlated with the Avellino (Somma-Vesuvius, Italy) eruption dated at 3.9 ka BP, according to the previous studies. Using this age and assuming a uniform sedimentation rate, the base of the core dates back to ca 8 ka BP. The core includes organic-rich (sapropelic) sediments with 1.5 % to 2.2%) in its top 3.5 m and bottom 1 m. Sapropelic layers are olive green and in part laminated, and contain occasional reddish brown spots and laminae formed by oxidation of iron monosulphides. The core also contains some few mm- to cm-thick sandy-silty mass-flow units below 2.4 mbsf, some of which could have been triggered by the earthquake activity on the Central High segment of the North Anatolian Fault, just a few km away from the core location. Variations in Ca-Ti ratio suggest millennial-scale climatic changes during the Holocene. Keywords: Sea of Marmara, Holocene paleoenvironmental records, tephra, turbidites, TOC analysis, XRF analysis, physical properties.

  5. Holocene laminated biogenic mud in Wood Bay (western Ross Sea, Antarctica): geochemical data and preliminary paleoclimatic interpretation.

    NASA Astrophysics Data System (ADS)

    Colizza, Ester; Finocchiaro, Furio; Giglio, Federico; Kuhn, Gerhard; Langone, Leonardo; Presti, Massimo

    2010-05-01

    The study of LGM and Holocene marine sediments is an important goal in Antarctic research and needs high-resolution sequences to reconstruct paleoclimatic events in detail. Literature reports a large number of data coming from inner-shelf bays and fjords, especially around Antarctic peninsula, but also from western Ross Sea. In this note we discuss compositional data from a gravity core (BAY05-45c; 74° 09.7' S, 165° 57.7' E; water depth: 1058 m; core length: 445.5 cm) collected in 2005 during the Italian PNRA cruise into the inner part of Wood Bay, in front of the Aviator Ice tongue. Wood Bay sea floor morphology is charcterised by a narrow basin, deeper than 1,000 m, oriented WNW-ESE, and transversally connected, by a 800-m deep sill, to the Drygalski basin, streching NE-SW. Core sediment is composed by laminated biosiliecous mud, with a strong hydrogen sulphide odour and black in colour. Within a few days from core sampling, sediment became oxidized: laminae colour ranges from dark (from dark olive grey to black) to light (from olive grey to olive). Some lighter laminae have cotton-like texture. Data set include X-ray images, magnetic susceptibility, AMS 14C dating, organic carbon, biogenic silica, XRF-scan of major and minor elements. Discussion of the data will point out inferences about sedimentary processes, paleoproductivity and oceanographic conditions during the Holocene. The most apparent feature is the occurrence, down-core, of at least two intervals of increased productivity, characterised by higher organic carbon and biogenic silica. Within such intervals, a few cm-thick levels show peaks of biogenic silica, as well as of barium, which correspond to relatively lows in organic carbon contents. Organic carbon content is higher in darker laminae, whereas lighter and fluffy laminae display an increased percentage of biogenic silica. Such levels probably mark a rapid and not persistent change in phytoplankton assemblage compositions.

  6. Equatorial Pacific Productivity Events and Intervals in the Middle and late Miocene through XRF-Scanned Bulk Sediment Composition Data

    NASA Astrophysics Data System (ADS)

    Lyle, M. W.; Stepanova, A.; Wilson, J. K.; Marcantonio, F.

    2014-12-01

    The equatorial Pacific is the largest open ocean productivity center, responsible for nearly half of global marine new production and about 40% of CaCO3 burial. Understanding how the equatorial Pacific upwelling system has evolved over the Neogene is critical to understand the evolution of the global carbon cycle. We know from reconnaissance studies that productivity in equatorial Pacific surface waters as well as dissolution driven by deep waters have strongly affected the sediment record. We have used calibrated XRF scanning to capture anomalies in equatorial Pacific upwelling and productivity at Milankovitch-resolving resolution since the early Miocene. The 8 elements calibrated in the XRF scans can be used to distinguish intervals of high carbonate dissolution from those of high productivity. Carbonate dissolution intervals are recorded by a drop of CaCO3 relative to Aeolian clays, with little change in the ratio between estimated opal and clay (estimated by TiO2). In contrast, high production intervals have high opal/TiO2 and low CaCO3. Low CaCO3 contents are caused partly by dilution, since high production skews tropical particulate rain to be more opal-rich relative to carbonate, and additional C-org rain can help to increase CaCO3 dissolution within near-surface sediments. We observe long-lived high production anomalies modulated by orbitally-driven climate variability. Prominent intervals are found at the end of the Miocene climate optimum (~ 14 Ma), interspersed with dissolution intervals in the Carbonate Crash interval (~9-11 Ma), and in the Biogenic Bloom interval (8-4.5 Ma). Using relationships among biogenic fluxes in modern equatorial sediment trap studies, especially the positive correlations between biogenic Ba , C-org, and CaCO3 fluxes, we find that the highest production intervals have much higher opal/C-org in the particulate rain, implying an inefficient carbon pump to the deep ocean. If confirmed, productivity was not as strong a feedback to atmospheric CO2 in the Miocene as it is in the Holocene.

  7. Relative paleointensity (RPI) in the latest Pleistocene (10-45 ka) and implications for the "mystery interval" in atmospheric radiocarbon production at 17 ka.

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Hodell, D. A.

    2017-12-01

    Relative paleointensity (RPI) proxies have been used to improve the resolution of Quaternary stratigraphies, and have been matched to oxygen isotope stratigraphies over the last 2 Myrs. The archeomagnetic archive has been important for the Holocene RPI record, and the older Quaternary record has come largely from ODP/IODP and MD (Marion Dufresne - Calypso) marine cores. Beyond the range of archeomagnetic data, published RPI stacks have poor consistency in the 10-30 ka (latest Pleistocene) interval, possibly due to poor quality of ODP/IODP and MD cores in the upper few meters of the sedimentary sections. We report RPI data from a suite of conventional piston cores and Kasten cores from the SW Iberian margin collected during cruise JC089 of the RSS James Cook in August 2013. The age models were acquired by correlation of Ca/Ti XRF core-scanning data to L* reflectance from the Cariaco Basin that is tied to the Greenland ice-core chronology. Mean sedimentation rates are in the 10-20 cm/kyr range. The Holocene RPI record from these marine cores can be broadly correlated to the archeomagnetic RPI compilations. The preceding RPI data are characterized by a short-lived minimum at 13-15 ka, a high in RPI at 17-20 ka, preceded by a discontinuous RPI decrease to 40 ka at the time of the well-documented Laschamp geomagnetic excursion. A stack of 12 RPI records from the SW Iberian margin for the 0-45 ka interval are compared with 11 records from elsewhere, including marine and lake records from the Pacific and South Atlantic realms, chosen on the basis of mean sedimentation rates (>20 cm/kyr) and superior age models. The resulting stacks are very different to previously published RPI stacks, particularly for the 10-30 ka interval, and imply a global (dipole-field) high at 17-20 ka that has implications for the 190 ‰ drop in atmospheric 14C during the so-called "mystery interval" (17.5-14.5 ka).

  8. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    NASA Astrophysics Data System (ADS)

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  9. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    NASA Astrophysics Data System (ADS)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  10. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  11. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  12. Application of principal component analysis for improvement of X-ray fluorescence images obtained by polycapillary-based micro-XRF technique

    NASA Astrophysics Data System (ADS)

    Aida, S.; Matsuno, T.; Hasegawa, T.; Tsuji, K.

    2017-07-01

    Micro X-ray fluorescence (micro-XRF) analysis is repeated as a means of producing elemental maps. In some cases, however, the XRF images of trace elements that are obtained are not clear due to high background intensity. To solve this problem, we applied principal component analysis (PCA) to XRF spectra. We focused on improving the quality of XRF images by applying PCA. XRF images of the dried residue of standard solution on the glass substrate were taken. The XRF intensities for the dried residue were analyzed before and after PCA. Standard deviations of XRF intensities in the PCA-filtered images were improved, leading to clear contrast of the images. This improvement of the XRF images was effective in cases where the XRF intensity was weak.

  13. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent testing of meteorite and Apollo samples on micro-XRF instruments has shown that they can easily detect small zircons and phosphates (approx. 10 m), distinguish different clast lithologies within breccias, and identify different lithologies within small rock fragments (2-4 mm soil Apollo soil fragments).

  14. Prostate-cancer diagnosis by non-invasive prostatic Zinc mapping using X-Ray Fluorescence (XRF)

    NASA Astrophysics Data System (ADS)

    Cortesi, Marco

    At present, the major screening tools (PSA, DRE, TRUS) for prostate cancer lack sensitivity and specificity, and none can distinguish between low-grade indolent cancer and high-grade lethal one. The situation calls for the promotion of alternative approaches, with better detection sensitivity and specificity, to provide more efficient selection of patients to biopsy and with possible guidance of the biopsy needles. The prime objective of the present work was the development of a novel non-invasive method and tool for promoting detection, localization, diagnosis and follow-up of PCa. The method is based on in-vivo imaging of Zn distribution in the peripheral zone of the prostate, by a trans-rectal X-ray fluorescence (XRF) probe. Local Zn levels, measured in 1--4 mm3 fresh tissue biopsy segments from an extensive clinical study involving several hundred patients, showed an unambiguous correlation with the histological classification of the tissue (Non-Cancer or PCa), and a systematic positive correlation of its depletion level with the cancer-aggressiveness grade (Gleason classification). A detailed analysis of computer-simulated Zn-concentration images (with input parameters from clinical data) disclosed the potential of the method to provide sensitive and specific detection and localization of the lesion, its grade and extension. Furthermore, it also yielded invaluable data on some requirements, such as the image resolution and counting-statistics, requested from a trans-rectal XRF probe for in-vivo recording of prostatic-Zn maps in patients. By means of systematic table-top experiments on prostate-phantoms comprising tumor-like inclusions, followed by dedicated Monte Carlo simulations, the XRF-probe and its components have been designed and optimized. Multi-parameter analysis of the experimental data confirmed the simulation estimations of the XRF detection system in terms of: delivered dose, counting statistics, scanning resolution, target-volume size and the accuracy of locating at various depths of small-volume tumor-like inclusions in tissue-phantoms. The clinical study, the Monte Carlo simulations and the analysis of Zn-map images provided essential information and promising vision on the potential performance of the Zn-based PCa detection concept. Simulations focusing on medical-probe design and its performance at permissible radiation doses yielded positive results - confirmed by a series of systematic laboratory experiments with a table-top XRF system.

  15. Late Holocene Environmental History of the Los Osos Watershed, Morro Bay, CA

    NASA Astrophysics Data System (ADS)

    Broadman, E.; Reidy, L. M.; Wahl, D.

    2014-12-01

    A comprehensive understanding of past changes in wetland ecosystems is integral for creating policies for modern land use practices. The Morro Bay salt marsh is home to a large wetland that has experienced significant environmental impacts in the last few centuries. In this study, sediment cores from the Morro Bay salt marsh were analyzed to discern changes in environment since the time of European contact, which occurred in 1772. The marsh is fed by two creeks (Chorro and Los Osos) and their associated watersheds. Sediment cores taken from a portion of the marsh fed by Los Osos creek were analyzed and the results compared to those from previous studies on cores taken from the Chorro and Los Osos portions of the marsh. Magnetic susceptibility, loss on ignition, pollen, radiocarbon, and X-ray fluorescence (XRF) analyses were conducted. An age-depth model was established for the Los Osos cores using two radiocarbon dates, as well as Erodium cicutarium as a chronological marker. Preliminary pollen analysis from Chorro marsh cores indicates vegetation shifts at the time of contact, when the salt marsh formed. Magnetic susceptibility and XRF data indicate dramatically increased rates of erosion from the time of contact consistently until the present. Influx of non-carbonate inorganic material also indicates a rapid increase in sedimentation in the marsh starting at the time of contact. Comparison of sedimentation rates between the two creeks suggests that differences in watershed geomorphology and land use practices have had pronounced impacts on erosional processes. Over the last decade, the Morro Bay National Estuary Program (MBNEP) has taken more measures to reduce erosion and sedimentation rates in the Chorro watershed, as is reflected by reduced sedimentation rates in MBNEP data collected within the last few years. Our study helps to elucidate the impacts of anthropogenic land use change on wetland systems, and provides much needed data to policy makers seeking to understand and attenuate anthropogenic impacts on sensitive coastal ecosystems.

  16. Lake Sediment Particle Size Analysis for Holocene Paleoenvironmental Study of Steens Mountain, Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Morris, J.; Stoner, J. S.; Reilly, B. T.; Hatfield, R. G.; Konyndyk, D.; Abbott, M. B.; Finkenbinder, M. S.; Hillman, A. L.

    2016-12-01

    In order to better understand climate trends in the late Pleistocene and Holocene in southeast Oregon, we present a sedimentological analysis of Fish Lake, Harney County, Oregon. Fish Lake (42° 44' 15" N, 118° 38' 57" W, 2,246.7 m) sits on the west slope of Steens Mountain, a fault-block mountain of Miocene basalt, adjacent to a glacial moraine. The present environment is high desert with sub alpine steppe vegetation, receiving approximately 12" of precipitation annually. The lake was cored in August 2013 with a series of overlapping drives, correlated by six distinct tephra and magnetic susceptibility. The composite section provides a 7.5 m continuous record of at least the last 13 ka, constrained by an age model built with 13 terrestrial macrofossil 14C dates. The recovered sediments, consisting of fine terrigenous and biogenous material in varying proportions, were analyzed with computed tomography (CT) scans, x-ray fluorescence (XRF) scans, magnetic measurements, loss on ignition (LOI), and sediment grain-size. CT and LOI data reveal a low density, high organic interval in the early Holocene ( 8.5-11 ka) with relatively coarse and well-sorted grain-size, suggesting an extended period of low lake level and low precipitation. Sediment grain-sizes are variable through the middle and late Holocene with high amplitude longer period features from 3 ka to the present. We investigate these grain-size fluctuations in the context of regional Holocene records.

  17. A 20-15 ka high-resolution paleomagnetic secular variation record from Black Sea sediments - no evidence for the 'Hilina Pali excursion'?

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert R.; Frank, Ute; Arz, Helge W.

    2018-06-01

    A comprehensive magnetostratigraphic investigation on sixteen sediment cores from the southeastern Black Sea yielded a very detailed high-quality paleosecular variation (PSV) record spanning from 20 to 15 ka. The age models are based on radiocarbon dating, stratigraphic correlation, and tephrochronology. Further age constraints were obtained by correlating four meltwater events, described from the western Black Sea, ranging in age from about 17 to 15 ka, with maxima in K/Ti ratios, obtained from X-ray fluorescence (XRF) scanning, and minima in S-ratios, reflecting increased hematite content, in the studied cores. Since the sedimentation rates in the investigated time window are up to 50 cm ka-1, the obtained PSVs records enabled a stacking using 50-yr bins. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in relative paleointensity (rPI), is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60°N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean.

  18. Lake ecosystem response to late Allerød climatic fluctuation (northern Poland)

    NASA Astrophysics Data System (ADS)

    Słowiński, Michał; Zawiska, Izabela; Ott, Florian; Noryśkiewicz, Agnieszka M.; Plessen, Birgit; Apolinarska, Karina; Lutyńska, Monika; Michczyńska, Danuta J.; Wulf, Sabine; Skubała, Piotr; Błaszkiewicz, Mirosław; Brauer, Achim

    2014-05-01

    The aim of this study is a better understanding, how local lake ecosystems responded to climate changes during the late Allerød - Younger Dryas transition. Therefore, we carried out a detailed high-resolution multi-proxy case study on the partly laminated sediments from the Trzechowskie palaeolake, located in the Pomeranian Lakeland, northern Poland (53°52'40"N, 18°12'93"E). We reconstructed the ecosystem response to climatic and environmental changes using biotic proxies (macrofossils, pollen, Cladocera, diatoms) and classical geochemical proxies (δ18O, δ13C, loss-on-ignition, CaCO3 content) in combination with high-resolution µ-XRF element core scanning. The core chronology has been established by biostratigraphy, AMS 14C-dating on plant macro remains, varve counting within the laminated intervals and the Laacher See Tephra (12880 varve yrs BP) as a precise isochrone. Framework of our investigation is a period covering 367 varve years of the late Allerød and the beginning of the Younger Dryas period where varve preservation gradually ceases. The pronounced changes at the late Allerød - Younger Dryas transition is well-reflected in all environmental indicators but with conspicuous leads and lags reflecting complex responses of lake ecosystems to climate variation. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association. The research was supported by the National Science Centre Poland (grants No. NN 306085037 and NCN 2011/01/B/ST10/07367).

  19. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  20. The CASEIS project: toward a better understanding of the seismic cycle and paleoseismology of the Lesser Antilles megathrust

    NASA Astrophysics Data System (ADS)

    Nathalie, F.; Seibert, C.; Morena, P.; Bieber, A.; Beck, C.; Carlut, J. H.; Caron, B.; Cattaneo, A.; Ducassou, E.; Goldfinger, C.; Klingelhoefer, F.; Le Friant, A.; Moreno, E.; Mulder, T.; Ratzov, G.; St-Onge, G.

    2017-12-01

    The Lesser Antilles arc results from the subduction of the Caribbean and North American plates at rate of 2cm/yr. Although this area is the site of multiple natural hazards, the seismic potential of this subduction zone remains poorly constrained. The historical catalog of earthquakes is short, and any very large earthquakes that may have occurred, were prior to modern times. Consequently this subduction system has often been assumed to be aseismic. Since the occurrence of three M9-class earthquakes in the recent years, many questions have arisen concerning the behavior and seismic history of megathrusts. We cannot exclude any subduction zone from producing such large events, and it becomes urgent to re-evaluate the seismic potential of the Lesser Antilles subduction zone. To this goal, we conducted the CASEIS cruise (doi 10.17600/16001800) aboard the French R/V Pourquoi Pas ? between May 27 and July 5 2016. We collected 42 giant piston cores up to 30 m-long in isolated slope basins, slope canyons, at the subduction trench, in turbidite channels and levee systems, above the plate interface, to address long-term earthquake recurrence by using the turbidite paleoseismology method. Petrophysical data including gamma density, P-wave velocity, magnetic susceptibility, resistivity, color reflectivity, and color imagery were systematically acquired aboard on the 500 m of sediment cores we collected. Later analysis included XRF profiles, CT-scanning, laser microgranulometry, anisotropy of magnetic susceptibility, isotopic stratigraphy, and 14C dating on several cores. We documented and established the chronology of several sedimentary facies including turbidites and homogenites interbedded with hemipelagites and tephra in numerous cores. Analysis of chirp data shows that some events can be correlated between multiple core sites over a large distance and may have been triggered by large earthquakes on the plate interface. Several cores offshore Guadeloupe, in the area struck by the 1843 earthquakes show four alternations of several meters-thick turbitites (Tu) and/or homogenites (Hm) and hemipelagites. Such Hm or Tu deposits have been documented elsewhere and may have emplaced during megathrust events and tsunamis repeating at intervals of several tens of millennia.

  1. Characterization of soils from an industrial complex contaminated with elemental mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L., E-mail: millercl@ornl.gov; Watson, David B.; Lester, Brian P.

    2013-08-15

    Historical use of liquid elemental mercury (Hg(0){sub l}) at the Y-12 National Security Complex in Oak Ridge, TN, USA, resulted in large deposits of Hg(0){sub l} in the soils. The fate and distribution of the spilled Hg(0) are not well characterized. In this study we evaluated analytical tools for characterizing the speciation of Hg in the contaminated soils and then used the analytical techniques to examine the speciation of Hg in two soil cores collected at the site. These include x-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorptionmore » (HgT). XRF was not found to be suitable for evaluating Hg concentrations in heterogeneous soils containing low concentration of Hg or Hg(0) because Hg concentrations determined using this method were lower than those determined by HgT analysis and the XRF detection limit is 20 mg/kg. Hg(0){sub g} headspace analysis coupled with HgT measurements yielded good results for examining the presence of Hg(0){sub l} in soils and the speciation of Hg. The two soil cores are highly heterogeneous in both the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. In the first core, Hg(0){sub l} was distributed throughout the 3.2 m depth, whereas the second core, from a location 12 m away, contained Hg(0){sub l} in a 0.3 m zone only. Sequential extractions showed organically associated Hg dominant at depths with low Hg concentration. Soil from the zone of groundwater saturation showed reducing conditions and the Hg is likely present as Hg-sulfide species. At this depth, lateral Hg transport in the groundwater may be a source of Hg detected in the soil at the deeper soil depths. Overall, characterization of soils containing Hg(0){sub l} is difficult because of the heterogeneous distribution of Hg within the soils. This is exacerbated in industrial facilities where fill materials make up much of the soils and historical and continued reworking of the subsurface has remobilized the Hg. -- Highlights: • Presence of Hg(0) and chemical transformations control the Hg speciation in soil. • Redox reactions can result in the mobilization and sequestration of Hg in soils. • Analysis of soils containing Hg(0) is complex due to sample heterogeneity.« less

  2. Provenance and flux of detrital materials in Lake Suigetsu sediment (SG12 core) and their temporal changes during the last 20 kyrs based on color and XRF data

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Tada, R.; Nakagawa, T.; Gotanda, K.; Haraguchi, T.; Nagashima, K.; Irino, T.; Sugisaki, S.; Kojima, H.; Horiuchi, D.

    2013-12-01

    Lake Suigetsu in Central Japan is known for its annual lamination (varve) starting from 70kys ago. Extremely precise Age-depth model is established for SG06 core based on over 800 14C dates obtained on terrestrial leaf fossils and wiggle-matched to stalagmite 14C records constrained by varve counts (Staff et al., 2013). By projecting this age model to newly drilled core from the same site, we can obtain precisely age-controlled high resolution paleoenvironmental record around the Lake Suigetsu drainage. It is likely that detrital materials in Lake Suigetsu sediments have several different sources such as soil on the slopes around the lake itself, aeolian dust from inland Asia, and suspended particles supplied from Hasu river through lake Mikata, which is located immediately upstream of Lake Suigetsu and trapping most of coarse detrital grains. However, the relative contribution from each detrital source and its temporal changes are poorly known. The lack of knowledge on relative contribution of different detrital sources limits utility of detrital materials as proxies of paleo-environments. In this study, we are aiming to reconstruct the history of precipitation changes in the drainage area of Lake Suigetsu during the Holocene to explore the relationship between precipitation in the Japan Sea side of SW Japan, behavior of Asian monsoon system as an important component of the global climate system. It is well known that flux of suspended particles in rivers increases with precipitation. In order for us to be able to use the Hasu river's flux of suspended particles as the precipitation proxy, however, we first need to establish a simple and swift way to estimate the contribution of detrital materials from Hasu River flowing through Lake Mikata into Lake Suigetsu. We carried out color measurement with 5mm resolution on split half core surface of the sediment drilled in the summer of 2012(SG12), and compared these values to chemical composition data by XRF microscanner data obtained from SG06 core (Horiuchi, 2006 MS). Color vs. chemical composition plots suggest that there are at least three end members (reddish light gray, greenish light gray, and dark part; likely to correspond to two different source of detrital material and organic matter, respectively) to explain the variation of color data for 0 to 18 m core depth interval. Then, we compare the chemical and mineral composition of 3 end-members acquired by XRF and XRD analysis of detrital materials collected from Hasu River, local slope surrounding the lake, and aeolian dust corrected from the lakeside of Lake Mikata. The possibility to estimate the flux of suspended materials from color or chemical composition data is explored and the result will be presented.

  3. Millennial-scale climate variations in western Mediterranean during late Pleistocene-early Holocene: multi-proxy analyses from Padul peatbog (southern Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Toney, Jaime L.; Anderson, R. Scott; Kaufman, Darrell; Bright, Jordon; Sachse, Dirk

    2017-04-01

    Padul peatbog, located in southern Iberian Peninsula (western Mediterranean region) is a unique area for palaeoenvironmental studies due to its location, between arid and temperate climates. Previous studies showed that the Padul peatbog contains a continuous record of the last ca. 0.8-1 Ma, so it is an extraordinary site to identify glacial-interglacial phases as well as Heinrich and D-O events, linked to orbital- and suborbital-scale variations. In 2015, a new 42 m long core was taken from this area, providing an excellent sediment record probably for the last ca. 300,000 years. This study is focused on the paleoenvironmental and climatic reconstruction of the late Pleistocene and the early Holocene (ca. from 50,000 to 9,500 cal. yrs BP), using AMS 14C and AAR dating, high-resolution pollen analysis, lithology, continuous XRF-scanning, X-ray diffraction, magnetic susceptibility and organic geochemistry. These different proxies provide information not only about the regional environment change but also about local changes in the conditions of the Padul lake/peatbog due to variations in water temperature, pH or nutrients.

  4. The Influence of Sampling Density on Bayesian Age-Depth Models and Paleoclimatic Reconstructions - Lessons Learned from Lake Titicaca - Bolivia/Peru

    NASA Astrophysics Data System (ADS)

    Salenbien, W.; Baker, P. A.; Fritz, S. C.; Guedron, S.

    2014-12-01

    Lake Titicaca is one of the most important archives of paleoclimate in tropical South America, and prior studies have elucidated patterns of climate variation at varied temporal scales over the past 0.5 Ma. Yet, slow sediment accumulation rates in the main deeper basin of the lake have precluded analysis of the lake's most recent history at high resolution. To obtain a paleoclimate record of the last few millennia at multi-decadal resolution, we obtained five short cores, ranging from 139 to 181 cm in length, from the shallower Wiñaymarka sub-basin of of Lake Titicaca, where sedimentation rates are higher than in the lake's main basin. Selected cores have been analyzed for their geochemical signature by scanning XRF, diatom stratigraphy, sedimentology, and for 14C age dating. A total of 72 samples were 14C-dated using a Gas Ion Source automated high-throughput method for carbonate samples (mainly Littoridina sp. and Taphius montanus gastropod shells) at NOSAMS (Woods Hole Oceanographic Institute) with an analytical precision higher than 2%. The method has lower analytical precision compared with traditional AMS radiocarbon dating, but the lower cost enables analysis of a larger number of samples, and the error associated with the lower precision is relatively small for younger samples (< ~8,000 years). A 172-cm-long core was divided into centimeter long sections, and 47 14C dates were obtained from 1-cm intervals, averaging one date every 3-4 cm. The other cores were radiocarbon dated with a sparser sampling density that focused on visual unconformities and shell beds. The high-resolution radiocarbon analysis reveals complex sedimentation patterns in visually continuous sections, with abundant indicators of bioturbated or reworked sediments and periods of very rapid sediment accumulation. These features are not evident in the sparser sampling strategy but have significant implications for reconstructing past lake level and paleoclimatic history.

  5. Drilling the leading edge of the mantle wedge and the underlying metamorphic sole of the Samail Ophiolite: Hole BT1B, Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Morishita, T.; Kelemen, P. B.; Coggon, J. A.; Harris, M.; Matter, J. M.; Michibayashi, K.; Takazawa, E.; Teagle, D. A. H.

    2017-12-01

    Hole BT1B (23°21.861' N, 58°10.957' E) was drilled by the Oman Drilling Project (OmDP) on the north side of Wadi Mansah in the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole BT1B was cored from 6 to 23 March 2017, to a depth of 300.05 m. The outer surfaces of the cores were imaged and described onsite before being curated, boxed and shipped to the IODP drill ship Chikyu. Hole BT1B sampled carbonated peridotite (listvenite), 2 carbonate-veined serpentinite bands at 80-100 and 180-185 m depth, a few cm of ultracataclasite and 70 cm of fault gouge at 197 m depth, followed by 103 m metamorphic sole. Onboard Chikyu, BT1B underwent X-ray computed tomography (CT) and multi-sensor logging, imaging and spectroscopy, macroscopic and thin section observations, physical properties measurements, and XRF, XRD and ICP-MS analyses. 1st authors of abstracts reporting initial results are Beinlich (matrix characteristics), de Obeso (modeling mass transfer), Godard (XRF and ICP-MS whole rock data), Greenberger (infrared spectroscopy), Johnson (XRF core scanner), Kelemen (overall petrology), Manning (veins), and Michibayashi (X-ray CT). Listvenite is composed of carbonate + quartz + Fe-oxyhydroxides, + minor relict spinel ± chromian mica (fuchsite). The mineralogy suggests formation at < 150°C. The bulk rock density is similar to that of gabbro but the P-wave velocity is generally higher. Rock textures suggest viscous deformation, while additional brittle deformation is recorded by older veins and younger breccias and faults. The metamorphic sole consists of fine-grained to microcrystalline metasediments and metabasalts. Metasediments have qtz + plag and mica + amphibole layers, with minor epidote, and become less abundant and poorer in K downhole. Metabasalts are massive, epidote-rich with less qtz and mica. Actinolite and possible pumpellyite needles in quartz suggest low T/P. Sediment and basalt compositions resemble alkali basalt.

  6. Synthesis and characterization of NiO nanopowder by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms weremore » produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.« less

  7. X-Ray Fluorescence Imaging of Ancient Artifacts

    NASA Astrophysics Data System (ADS)

    Thorne, Robert; Geil, Ethan; Hudson, Kathryn; Crowther, Charles

    2011-03-01

    Many archaeological artifacts feature inscribed and/or painted text or figures which, through erosion and aging, have become difficult or impossible to read with conventional methods. Often, however, the pigments in paints contain metallic elements, and traces may remain even after visible markings are gone. A promising non-destructive technique for revealing these remnants is X-ray fluorescence (XRF) imaging, in which a tightly focused beam of monochromatic synchrotron radiation is raster scanned across a sample. At each pixel, an energy-dispersive detector records a fluorescence spectrum, which is then analyzed to determine element concentrations. In this way, a map of various elements is made across a region of interest. We have succesfully XRF imaged ancient Greek, Roman, and Mayan artifacts, and in many cases, the element maps have revealed significant new information, including previously invisible painted lines and traces of iron from tools used to carve stone tablets. X-ray imaging can be used to determine an object's provenance, including the region where it was produced and whether it is authentic or a copy.

  8. Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emission.

    PubMed

    Kozachuk, Madalena S; Sham, Tsun-Kong; Martin, Ronald R; Nelson, Andrew J; Coulthard, Ian; McElhone, John P

    2018-06-22

    A daguerreotype image, the first commercialized photographic process, is composed of silver-mercury, and often silver-mercury-gold amalgam particles on the surface of a silver-coated copper plate. Specular and diffuse reflectance of light from these image particles produces the range of gray tones that typify these 19 th century images. By mapping the mercury distribution with rapid-scanning, synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging, full portraits, which to the naked eye are obscured entirely by extensive corrosion, can be retrieved in a non-invasive, non-contact, and non-destructive manner. This work furthers the chemical understanding regarding the production of these images and suggests that mercury is retained in the image particles despite surface degradation. Most importantly, μ-XRF imaging provides curators with an image recovery method for degraded daguerreotypes, even if the artifact's condition is beyond traditional conservation treatments.

  9. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  10. Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr

    NASA Astrophysics Data System (ADS)

    Hendrizan, Marfasran; Kuhnt, Wolfgang; Holbourn, Ann

    2017-10-01

    We present a high-resolution ( 20 to 100 years temporal resolution) reconstruction of hydrological changes in the Makassar Strait over the last 14 kyr from Core SO217-18517 retrieved off the Mahakam Delta (1°32.198'S, 117°33.756'E; 698 m water depth) during the SO217 Makassar-Java Cruise. Sea surface temperatures, based on Mg/Ca of Globigerinoides ruber and alkenone UK'37, and seawater δ18O reconstructions, based on G. ruber δ18O and Mg/Ca, in combination with sortable silt grain size measurements and X-ray fluorescence (XRF) core scanner derived elemental data provide evidence for increased precipitation during the Bølling-Allerød (BA) and early Holocene and for warmer and more saline surface waters and a decrease in the intensity of the Indonesian Throughflow (ITF) during the Younger Dryas (YD). XRF derived Log (Zr/Rb) records, sortable silt data and increased sedimentation rates indicate decreased winnowing, interpreted as a slowdown of the ITF thermocline flow during the YD. We attribute this decline in ITF intensity to slowdown of the Atlantic meridional overturning circulation during the YD. We suggest that changes in Makassar Strait surface hydrology during this interval of Northern Hemisphere cooling and Southern Hemisphere warming were related to a southward displacement of the Intertropical Convergence Zone.

  11. Late Holocene sedimentation in coastal areas of the northwestern Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Colizza, Ester; Finocchiaro, Furio; Kuhn, Gerhard; Langone, Leonardo; Melis, Romana; Mezgec, Karin; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Stenni, Barbara; Braida, Martina

    2013-04-01

    Sediment cores and box cores collected in two coastal areas of the northwestern Ross Sea (Antarctica) highlight the possibility of studying the Late Holocene period in detail. In this work we propose a study on two box cores and two gravity cores collected in the Cape Hallett and Wood Bay areas during the 2005 PNRA oceanographic cruise. The two sites are feed by Eastern Antarctic Ice Shelf (EAIS) and previous studies have highlighted a complex postglacial sedimentary sequence, also influenced by local morphology. This study is performed within the framework of the PNRA-ESF PolarCLIMATE HOLOCLIP (Holocene climate variability at high-southern latitudes: an integrated perspective) Project. The data set includes: magnetic susceptibility, X-ray analyses, 210Pb, 14C dating, diatoms and foraminifera assemblages, organic carbon, and grain-size analyses. Furthermore XRF core scanner analyses, colour analysis from digital images, and major, minor and trace element concentration analyses (ICP-AES) are performed. Data show that the box core and upper core sediments represent a very recent sedimentation in which it is possible to observe the parameter variability probably linked to climate variability/changes: these variation will be compared with isotopic record form ice cores collected form the same Antarctic sector.

  12. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  13. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.

    2008-05-20

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less

  14. Suspected Offshore Chalcolithic/Early Bronze Age Tsunamigenic Sediments: Jisr al Zarka, Israel

    NASA Astrophysics Data System (ADS)

    Tiulienieva, N.; Braun, Y.; Katz, T.; Goodman-Tchernov, B. N.; Suchkov, I.

    2017-12-01

    Offshore tsunami deposits are a potentially important sedimentological archive for past tsunamis. They have been identified offshore of Israel using granulometric, geoarchaeological, and micropaleontological indicators. Recent advances in tsunami sedimentological research have put forth a series of new proxies that may be useful tools for tsunami deposit identification. The well-studied offshore deposits of Israel provide a unique opportunity to test some of these proxies because they present good distinction between tsunami and non-tsunami deposits and they can be associated with a rich historical record and archaeological artifacts. In this study, a 219 cm long sediment core, retrieved from a 15.3 m water depth, situated in about 5 km to the north from well studied shallow shelf, offshore Caesarea. Based on the previously used criteria three layers in the new core were identified as tsunami-generated. Two of these correlated to previously described tsunami events in Caesarea; 749 AD and 1500 BC. The third layer gave the time frame from 5.6 to 6 ka BP, making this event the oldest identified in the Eastern Mediterranean to date. Identified unusual layers were attributed to tsunami-generated sedimentary sequences, based on both visually recognizable indicators and the results of laboratory analyses. FT-IR, XRD, and XRF analysis were also applied. The results of this study allow to make following conclusions: (1) visual tsunami indicators in the studied core are similar to those in Caesarea, but lack archaeological debris; (2) while distinct deviation of granulometric coefficients (mean, median, standard deviation, skewness, kurtosis) correlated to tsunami layers, the additional proxies of deposition rate and mollusk assemblage excluded one deviated layer from tsunamigenic-designation; (3) the results of XRF, FT-IR, XRD showed that they are not useful as independent methods at this study site.

  15. Sea ice proxies, marine environmental change, and human societies in Northwest Greenland over the past ca. 4500 years

    NASA Astrophysics Data System (ADS)

    Ribeiro, Sofia; Weckström, Kaarina; Tallberg, Petra; Risager Kjøller, Marianne; Limoges, Audrey; Massé, Guillaume; Nissen, Martin; Toudal Pedersen, Leif; Mikkelsen, Naja

    2016-04-01

    Greenland has been inhabited for only ca. 4500 years, but several human colonization events and cultural transitions occurred during this period. This work is part of the ICE-ARC project - Ice, Climate and Economics in the Arctic (EU FP7), aimed at understanding and quantifying the multiple stresses involved in the change in the Arctic marine environment, with particular focus on the rapid retreat and collapse of the Arctic sea ice cover. The overall goal of the project is to assess the climatic (ice, ocean, atmosphere and ecosystem), economic and social impacts of these stresses on regional and global scales. Marine sediment cores were retrieved from the Inglefield Bredning fjord system in the Qaanaaq region, Northwest Greenland, and are being analysed for various climate and environmental proxies, including biological indicators (e.g. dinoflagellate cysts, diatoms), biogeochemical elements (biogenic silica, XRF scanning), and sea-ice specific biomarkers (IP25). We will present the first data from this core material, consisting of a spatial study of sea ice and productivity proxies in 13 surface sediment samples (IP25, biogenic silica, diatoms, and dinoflagellate cysts) which will be compared with satellite-derived sea ice cover data for the Qaanaaq region/ northern Baffin Bay. This spatial study will serve as basis to reconstruct sea ice variability in the area over the past ca. 4500 years, and will be combined with historical and archaeological data in order to identify possible links between past changes in climate and sea ice conditions, and events of human migration and cultural transition in Greenland.

  16. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    PubMed

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  17. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass.

    PubMed

    El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris

    2014-08-01

    A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  19. Pots, plates and provenance: sourcing Indian coarse wares from Mleiha using X-ray fluorescence (XRF) spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Reddy, A.; Attaelmanan, A. G.; Mouton, M.

    2012-07-01

    The identification of more than 25% of the pottery sherds from the late PIR.D period (ca. 2nd - mid. 3rd c. AD) assemblage from the recently excavated building H at Mleiha as Indian is based on form and fabric, but using only visual assessment. Petrographic analysis of the fabrics can provide more precise indicators of the geographical origin of the wares. In this study, a total of 21 sherds from various key sites in Western India were compared with 7 different 'Indian' coarse-ware vessels sampled at Mleiha using X-ray fluorescence (XRF) spectrometry. The analyses were conducted on powdered samples collected from the core of each sherd. Each sample was irradiated for 1000 seconds using a 1.2 mm diameter X-ray beam. The resulting spectra were used for quantification of the X-ray intensity and elemental concentration. Levels of correlation in the elemental ratios of the sherds were statistically tested using an F-test as well as a Chi-test. Initial review of the XRF results indicates that the Maharashtra and Gujarat regions of India are probable source areas for at least two of the types of wares. Collection of additional samples from these areas and other regions of India, and further statistical analysis through methods such as Principal Component Analysis will help to isolate groups of wares from India and correlate them with types of vessels imported into the Oman peninsula in antiquity.

  20. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  1. Characterization of the Basalt of Broken Tank, NM for the 'in situ' Calibration Target for the Alpha-Particle X-ray Spectrometer (APXS) on the Upcoming Mars Science Laboratory (MSL) Rover

    NASA Astrophysics Data System (ADS)

    Burkemper, L.; King, P. L.; Gellert, R.; Spilde, M. N.; Chamberlin, R. M.

    2008-12-01

    The MSL rover mission will launch in Fall 2009. It is equipped with an APXS for analyzing the bulk chemistry of rocks and soils. To monitor the APXS performance in situ on the martian surface over the extended mission, a calibration target will be included on the MSL rover. Engineering constraints led to a 4.2 cm diameter, 3 mm thick, homogeneous rock disc that would survive vibrations during launch. The basalt from Broken Tank, NM was chosen for the flight disc from ~200 volcanic rocks. The basalt is relatively homogeneous, fine- and even-grained, vesicle-free, and extremely dense and hard due to its ophitic texture. Other volcanic rocks - even well characterized samples of BCR - were ruled out due to vesicles, or high contents of glass, phenocrysts, secondary minerals, or fractures. The flight disc was prepared by hand- polishing to a 0.05 micron finish. We obtained scanning electron microscope back-scattered electron maps and X-ray maps (Al, Mg, Ca, Fe, Ti, Na, and K) on the polished, uncoated surface of the target. One pit (~0.03 mm2) and three tiny surface imperfections (<0.04 mm2) were observed on the surface. Electron microprobe analyses on two C-coated thin sections give the following compositions: olivine cores Fa23Fo77 and rims Fa40Fo60; plagioclase cores Ab42An56Or2 and discrete rims Ab62An7Or31; oxides Ilm67Hm33 and also trace chromite, apatite, chlorite, clays and devitrified glass. The NIH software Scion Image was used to determine the modal abundance of each phase in the basalt disk and in two thin sections. Bulk composition was established with multiple XRF laboratory analyses. There is no significant heterogeneity on the scale of the APXS analysis (~1.5 cm). Sulfides were not observed and XRF verified low Ni (<90 ppm) and S (70 ppm), making these elements ideal to monitor any Martian dust build-up during the surface operation. The rock slab is glued into a Ni frame, mounted vertically and accessible with a brush tool. The K- and L- X-ray lines of Ni can be used to monitor the energy efficiency of the X-ray detector. This work was supported by the Space Science Enhancement Program of the Canadian Space Agency and the New Mexico Space Grant Consortium.

  2. A con-focal setup for micro-XRF experiments using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Wilke, Max; Rickers, Karen; Vincze, Laszlo; Schmidt, Christian; Borchert, Manuela; Pascarelli, Sakura

    2010-05-01

    In this contribution we introduce an experimental setup to perform con-focal micro X-ray fluorescence measurements in situ in samples at high temperatures and pressures in diamond anvil cells (DAC) (e.g. Schmidt et al. 2007). The con-focal arrangement is used to suppress the background in X-ray fluorescence (XRF) spectra that stems from elastic and inelastic scattering of the diamond anvils. The setup is based on a focusing optic in the incident beam that reaches a spot of 5-10 μm and a focusing poly-capillary in front of an energy-dispersive solid-state detector. The detector poly-capillary is designed to work at a very long working distance of 50 mm in order to collect the radiation from the center of the DAC at 90° to the incident beam. The probing volume is defined by the two foci and has a size of ca. 300 μm at 8 keV and 150 μm at 19 keV as measured by scans through thin metal foils. Comparison of XRF spectra acquired with a usual detector collimator and spectra recorded with the detector capillary shows a strong suppression of XRF signal generated outside the probed volume, i.e. XRF from the gasket material and signal from elastic and Compton scattering by the diamond anvils. The ratio of the Zr K-alpha fluorescence peak to the peak of the Compton scattering changes from 0.5 (collimator) to 1.26 (detector capillary) for a ca. 1000 ppm Zr standard solution and an incident beam energy of 20 keV. For a standard solution containing ca. 1000 ppm Hf, the ratio of the L-alpha to the Compton signal increases to 6 using the detector capillary and an incident beam energy of 9.7 keV. Thus, the con-focal setup substantially improves the fluorescence to background ratio. This will result in higher sensitivities for dilute elements in the sample chamber of the DAC. Furthermore, the possibilities of interference of the sample's signal with signal from the sample environment are greatly reduced. In a broader sense, the setup can also be applied to other confined samples that require long working distances. Schmidt et al. (2007) Lithos 95, 87-102

  3. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT NITON XLT700 SERIES XRF ANALYZER

    EPA Science Inventory

    The Niton XLt 700 Series (XLt) XRF Services x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at ...

  4. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT OXFORD X-MTE 3000TX XRF ANALYZER

    EPA Science Inventory

    The Elvatech, Ltd. ElvaX (ElvaX) x-ray fluorescence (XRF) analyzer distributed in the United States by Xcalibur XRF Services (Xcalibur), was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field por...

  5. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT RIGAKU ZSX MINI 11 XRF ANALYZER

    EPA Science Inventory

    The Rigaku ZSX Mini II (ZSX Mini II) XRF Services x-ray fluorescence (XRF) analyzer was demon-strated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2...

  6. Usefulness of a Dual Macro- and Micro-Energy-Dispersive X-Ray Fluorescence Spectrometer to Develop Quantitative Methodologies for Historic Mortar and Related Materials Characterization.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Romera-Fernández, Miriam; Queralt, Ignasi; Margui, Eva; Madariaga, Juan Manuel

    2018-05-01

    Wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry has been widely used for elemental quantification of mortars and cements. In this kind of instrument, samples are usually prepared as pellets or fused beads and the whole volume of sample is measured at once. In this work, the usefulness of a dual energy dispersive X-ray fluorescence spectrometer (ED-XRF), working at two lateral resolutions (1 mm and 25 μm) for macro and microanalysis respectively, to develop quantitative methods for the elemental characterization of mortars and concretes is demonstrated. A crucial step before developing any quantitative method with this kind of spectrometers is to verify the homogeneity of the standards at these two lateral resolutions. This new ED-XRF quantitative method also demonstrated the importance of matrix effects in the accuracy of the results being necessary to use Certified Reference Materials as standards. The results obtained with the ED-XRF quantitative method were compared with the ones obtained with two WD-XRF quantitative methods employing two different sample preparation strategies (pellets and fused beads). The selected ED-XRF and both WD-XRF quantitative methods were applied to the analysis of real mortars. The accuracy of the ED-XRF results turn out to be similar to the one achieved by WD-XRF, except for the lightest elements (Na and Mg). The results described in this work proved that μ-ED-XRF spectrometers can be used not only for acquiring high resolution elemental map distributions, but also to perform accurate quantitative studies avoiding the use of more sophisticated WD-XRF systems or the acid extraction/alkaline fusion required as destructive pretreatment in Inductively coupled plasma mass spectrometry based procedures.

  7. Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles.

    PubMed

    Gonçalves, Lidiane Patrícia; Miñán, Alejandro; Benítez, Guillermo; de Mele, Mónica Fernández Lorenzo; Vela, María Elena; Schilardi, Patricia L; Ferreira-Neto, Elias Paiva; Noveletto, Júlia Cristina; Correr, Wagner Rafael; Rodrigues-Filho, Ubirajara Pereira

    2018-04-01

    Medical device-related infections represent a major healthcare complication, resulting in potential risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonization and biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal, and consequently they must be used in combination with other antimicrobials in order to reach the eradication condition (no viable microorganisms). In this study, a straightforward and robust antibacterial coating based on Phosphotungstate Ormosil doped with core-shell (SiO 2 @TiO 2 ) was developed using sol-gel process, chemical tempering, and Ag nanoparticle photoassisted synthesis (POrs-CS-Ag). The coating was characterized by X-ray Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy (XPS). The silver free coating displays low antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate these strains. Moreover, the antimicrobial activity of these substrates remains high until three reutilization cycles, which make them a promising strategy to develop self-sterilizing materials, such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, among other materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Natural and Anthropogenic Causes of Accelerated Sediment Accumulation Rates in Nehalem Bay Salt Marshes, Oregon

    NASA Astrophysics Data System (ADS)

    Molino, G. D.; Wheatcroft, R. A.; Peck, E. K.; Brophy, L.

    2016-12-01

    Vertical sediment accretion in estuarine salt marshes occurs as sediments settle out of the water column and onto marsh soils during periods of tidal inundation - thus accretion is influenced by both relative sea level rise (RSLR) and sediment flux to the estuary. Oregon estuaries are understudied compared to their East and Gulf Coast counterparts, but provide a unique opportunity to disentangle these effects. A broader study in three Oregon estuaries (Peck et al., this session) indicates RSLR as the dominant factor controlling sedimentation rates. Working in Nehalem Bay (northern Oregon coast), replicate sediment cores were taken along several transects across an elevation gradient for analysis of sediment and carbon accumulation using CT scans, gamma detection of Pb-210, X-Ray Fluorescence (XRF) and Loss-on-Ignition (LOI). Preliminary results indicate sediment accumulation rates over the past century are higher than rates seen in other comparable Oregon salt marshes; this is consistent with past studies and preliminary analysis of remote sensing data that show significant horizontal expansion of Nehalem marshes. A number of possible causes for the high sediment accumulation rates - hydroclimate of Nehalem River, extensive timber harvesting, forest fires such as the so-called Tillamook Burns, and diking of adjacent marshes - are being explored.

  9. Correlations of trace elements in breast human tissues: Evaluation of spatial distribution using μ-XRF

    NASA Astrophysics Data System (ADS)

    Silva, Marina Piacenti da; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo

    2012-05-01

    The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.

  10. A high-resolution paleosecular variation record from Black Sea sediments indicating fast directional changes associated with low field intensities during marine isotope stage (MIS) 4

    NASA Astrophysics Data System (ADS)

    Nowaczyk, Norbert R.; Jiabo, Liu; Frank, Ute; Arz, Helge W.

    2018-02-01

    A total of nine sediment cores recovered from the Archangelsky Ridge in the SE Black Sea were systematically subjected to intense paleo- and mineral magnetic analyses. Besides 16 accelerator mass spectrometry (AMS) 14C ages available for another core from this area, dating was accomplished by correlation of short-term warming events during the last glacial monitored by high-resolution X-ray fluorescence (XRF) scanning as maxima in both Ca/Ti and K/Ti ratios in Black Sea sediments to the so-called 'Dansgaard-Oeschger events' recognized from Greenland ice cores. Thus, several hiatuses could be identified in the various cores during the last glacial/interglacial cycle. Finally, core sections documenting marine isotope stage (MIS) 4 at high resolution back to 69 ka were selected for detailed analyses. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred, with the Laschamp geomagnetic excursion at 41 ka being associated with the lowest field intensities. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I = 61 °, D = 0 °) still can not yet be termed as 'excursional', since latitudes of corresponding virtual geomagnetic poles (VGP) only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of a geomagnetic excursion with partly reversed inclinations found at several sites much further North in Arctic marine sediments between 69°N and 81°N. Thus, the pronounced intensity minimum at 64.5 ka and described directional variations might be the effect of a weak geomagnetic field with a multi-polar geometry in the middle of MIS 4.

  11. Characterization of soils from an industrial complex contaminated with elemental mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L; Watson, David B; Liang, Liyuan

    2013-01-01

    Historic use of liquid elemental mercury (Hg(0)l) at the Y-12 National Security Complex in Oak Ridge, TN, USA resulted in large deposits of Hg(0)l in the soils. An evaluation of analytical tools for characterizing the speciation of Hg in the soils at the Y-12 facility was conducted and these tequniques were used to examine the speciation of Hg in two soil cores collect at the site. These include X-ray fluorescence (XRF), soil Hg(0) headspace analysis, and total Hg determination by acid digestion coupled with cold vapor atomic absorption. Hg concentrations determined using XRF, a tool that has been suggestions formore » quick onsite characterization of soils, were lower than concentrations determined by HgT analysis and as a result this technique is not suitable for the evaluation of Hg concentrations in heterogeneous soils containing Hg(0)l. Hg(0)g headspace analysis can be used to examine the presence of Hg(0)l in soils and when coupled with HgT analysis an understanding of the speciation of Hg in soils can be obtained. Two soil cores collected within the Y-12 complex highlight the heterogeneity in the depth and extent of Hg contamination, with Hg concentrations ranging from 0.05 to 8400 mg/kg. At one location Hg(0)l was distributed throughout 3.2 meters of core whereas the core from a location only 12 meters away only contained Hg(0)l in 0.3 m zone of the core. Sequential extractions, used to examine the forms of Hg in the soils, indicated that at depths within the core that have low Hg concentrations organically associated Hg is dominant. Soil from the zone of groundwater inundation showed reduced characteristics and the Hg is likely present as Hg-sulfide species. At this location it appears that Hg transported within the groundwater is a source of Hg to the soil. Overall the characterization of Hg in soils containing Hg(0) l is difficult due to the heterogeneous distribution within the soils and this challenge is enhanced in industrial facilities in which fill material comprise most of the soils and historical and continuing reworking of the subsurface has remobilized the Hg.« less

  12. The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.

    2013-12-01

    Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins. Whole-rock XRF analyses show Al and Ca content decrease with increasing Si, whereas Na increases towards the core. This can be interpreted as compositional changes of plagioclase to albite-rich ones due to chloritic-propylitic alteration. In the damage zone, LOI increases towards the core but decreases inside of it. This is explained by H2O-rich clays and gypsum in the fault core boundary represented as fault gouge zones whereas in the cataclastic core zone, the decrease in LOI is explained by epidote. Our results show the JF had an evolving permeability structure where a cataclasite-rich core is formed at an early stage, and then a gouge-bounded core is developed which acted as a barrier to fluid from east to west of the fault.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun, E-mail: scho@mdanderson.org

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of leadmore » (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.« less

  14. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  15. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  16. A Hidden Portrait by Edgar Degas

    NASA Astrophysics Data System (ADS)

    Thurrowgood, David; Paterson, David; de Jonge, Martin D.; Kirkham, Robin; Thurrowgood, Saul; Howard, Daryl L.

    2016-08-01

    The preservation and understanding of cultural heritage depends increasingly on in-depth chemical studies. Rapid technological advances are forging connections between scientists and arts communities, enabling revolutionary new techniques for non-invasive technical study of culturally significant, highly prized artworks. We have applied a non-invasive, rapid, high definition X-ray fluorescence (XRF) elemental mapping technique to a French Impressionist painting using a synchrotron radiation source, and show how this technology can advance scholarly art interpretation and preservation. We have obtained detailed technical understanding of a painting which could not be resolved by conventional techniques. Here we show 31.6 megapixel scanning XRF derived elemental maps and report a novel image processing methodology utilising these maps to produce a false colour representation of a “hidden” portrait by Edgar Degas. This work provides a cohesive methodology for both imaging and understanding the chemical composition of artworks, and enables scholarly understandings of cultural heritage, many of which have eluded conventional technologies. We anticipate that the outcome from this work will encourage the reassessment of some of the world’s great art treasures.

  17. A Hidden Portrait by Edgar Degas

    PubMed Central

    Thurrowgood, David; Paterson, David; de Jonge, Martin D.; Kirkham, Robin; Thurrowgood, Saul; Howard, Daryl L.

    2016-01-01

    The preservation and understanding of cultural heritage depends increasingly on in-depth chemical studies. Rapid technological advances are forging connections between scientists and arts communities, enabling revolutionary new techniques for non-invasive technical study of culturally significant, highly prized artworks. We have applied a non-invasive, rapid, high definition X-ray fluorescence (XRF) elemental mapping technique to a French Impressionist painting using a synchrotron radiation source, and show how this technology can advance scholarly art interpretation and preservation. We have obtained detailed technical understanding of a painting which could not be resolved by conventional techniques. Here we show 31.6 megapixel scanning XRF derived elemental maps and report a novel image processing methodology utilising these maps to produce a false colour representation of a “hidden” portrait by Edgar Degas. This work provides a cohesive methodology for both imaging and understanding the chemical composition of artworks, and enables scholarly understandings of cultural heritage, many of which have eluded conventional technologies. We anticipate that the outcome from this work will encourage the reassessment of some of the world’s great art treasures. PMID:27490856

  18. Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.

    PubMed

    Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich

    2007-06-01

    Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.

  19. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  20. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    PubMed

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  1. The preglacial sediment record of Lake Ladoga, NW Russia - first results from a multi-proxy study on a 23 m sediment record

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Melles, M.; Wagner, B.; Krastel, S.; Andreev, A.; Fedorov, G.; Just, J.; Wennrich, V.; Savelieva, L.; Subetto, D.; Shumilovskikh, L.

    2016-12-01

    The joint German-Russian project 'PLOT - Paleolimnological Transect' aims to recover lake sediment sequences along a more than 6000 km long longitudinal transect across the Eurasian Arctic in order to study the Late Quaternary climatic and environmental history. The eastern end of the PLOT transect is formed by the well-studied record from Lake El'gygytgyn (NE Siberia). Lake Ladoga (N 60°50' E 31°30') is Europe's largest lake, both by size and volume and forms the westernmost end of the transect. Whereas modern sedimentation as well as the Holocene and Late Glacial history of Lake Ladoga have intensely been studied, the preglacial history of the lake is poorly studied to date by sediment cores drilled in the 1930's. A seismic survey of Lake Ladoga in summer 2013 revealed unconformities in the western lake basin, which may separate preglacial sediments in isolated depressions from Late Glacial and Holocene sediment successions above. A 23 m long sediment core (Co1309) was retrieved from one of these depressions. Core Co1309 was investigated by XRF-scanning, magnetic susceptibility measurements, as well as pollen, grain-size, and bio-geochemical analyses. An age-depth model combining radiocarbon, OSL, and paleomagnetic dates is in progress. Both, the pollen results and the OSL ages from the base of the record indicate a deposition during MIS 5e (Eemian). The well sorted reddish sands from this interval contain dinoflagellates suggesting at least brackish conditions, likely due to the existence of a gateway connecting a precursor of the Baltic Sea with the White Sea via Lake Ladoga. The Late Glacial sequence consists of greyish varved clays of decreasing thickness upwards with sporadically intercalated sand layers. The Holocene sequence is composed of brownish diatomaceous silty clay with minor proportions of sand.

  2. Holocene environmental change of the northern Caribbean inferred from the sediments of a flooded sinkhole, Cayo Coco, Cuba

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Agosta G'meiner, A. M.; Collins, S.

    2016-12-01

    We present new data on the Holocene environments of the northern Caribbean inferred from the sediments of a flooded sinkhole (Cenote Jennifer) on the island of Cayo Coco in north-central Cuba. Cenote Jennifer is located several meters above sea level and has an average depth of 13 meters. Water chemistry measurements indicate that the water in the sinkhole is highly stratified with a halocline at about 8 meters depth and an anoxic base. A series of sediment cores collected at the center of the sinkhole were analyzed for fossil pollen, microcharcoal, dinoflagellate cysts, elemental geochemistry (by high-resolution XRF core-scanning), and grain size and were dated by Pb-210 and AMS radiocarbon techniques (using well-preserved macrofossils of leaves, bark, and twigs). The results show that sediments first began to accumulate in Cenote Jennifer approximately 9000 years ago and continued until the present. The elemental geochemistry results record increases in elements such as Br, Cl, Ni, and Cu during the 8.2 kyr event which may reflect enhanced deep-ocean upwelling at this time. The fossil pollen data record a succession in vegetation that included cattail marsh, thorny coastal scrubland, dry evergreen forest, and secondary forest communities over the course of the Holocene. Changes in vegetation were driven mostly by relative sea level rise in the early Holocene but climate change was more important by the middle to late Holocene. Hundreds of mm- to cm-scale laminations are also present in the core, many of which represent past hurricane strikes. The microcharcoal and pollen evidence also suggests that prehistoric humans may have settled the area and practiced agriculture as early as 2800 cal yr BP. The findings from Cenote Jennifer highlight the utility of flooded sinkholes as paleoenvironmental archives in tropical kart regions and provide important new data on the hydroclimatology of the northern Caribbean.

  3. Responses to the 2800 years BP climatic oscillation in shallow- and deep-basin sediments from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Dulski, Peter; Frank, Ute; Hadzhiivanova, Elitsa; Kitagawa, Hiroyuki; Litt, Thomas; Schiebel, Vera; Taha, Nimer; Waldmann, Nicolas

    2015-04-01

    Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is considered being especially sensitive to changing climatic conditions. In the study presented here, we aim to reconstruct palaeoclimatic changes and their relation to the frequency of flood/erosion and dust deposition events as archived in the Dead Sea basin for the time interval from ca 3700 to 1700 years BP. A ca 4 m thick, mostly annually laminated (varved) sediment section from the western margin of the Dead Sea (shallow-water DSEn - Ein Gedi profile) was analysed and correlated to the new ICDP Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, µXRF element scanning and magnetic susceptibility measurements, supported by grain size and palynological analyses. Based on radiocarbon and varve dating two pronounced dry periods were detected at ~3500-3300 yrs BP and ~2900-2400 yrs BP that are characterized by a sand deposit during the older dry period and enhanced frequency of coarse detrital layers during the younger dry period in the shallow-water DSEn core, both interpreted as increased erosion processes. In the 5017-1 deep-basin core these dry periods are depicted by halite deposits. The timing of the younger dry period broadly coincides with the Homeric Minimum of solar activity at ca 2800 yrs BP. Our results suggest that during this period the Dead Sea region experienced a change in synoptic weather patterns leading to an increased occurrence of flash-flood events, overprinting the overall dry climatic conditions. Following this dry spell, a 250-yrs period of increased dust deposition is observed, coinciding with more regular aragonite precipitation during less arid climatic conditions.

  4. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.

  5. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and model simulations of Holocene temperature around the Arctic. 1. von Gunten, L., D'Andrea, W.J., Bradley, R.S. and Huang, Y., 2012, Proxy-to-proxy calibration: Increasing the temporal resolution of quantitative climate reconstructions. Scientific Reports, v. 2, 609. doi: 10:1038/srep00609.

  6. A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.

    2015-12-01

    Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis, scanning XRF, TOC and carbon isotopic analyses as well as compound specific carbon and hydrogen work.

  7. New Insights Into the Climate and Vegetation History of the subtropical Crater Lake 'Tswaing', South Africa, for the Last 300,000 Year

    NASA Astrophysics Data System (ADS)

    Kristen, I.; Fuhrmann, A.; Haug, G. H.; Horsfield, B.; Oberhänsli, H.; Partridge, T. C.; Thorpe, J.; Wilkes, H.

    2005-12-01

    Deeper time palaeoclimate reconstructions are still rare on the continental southern hemisphere. Here we present new biogeochemical data from a core retrieved in crater lake 'Tswaing' (formerly 'Pretoria saltpan'). This opens a novel chance to get a more detailed view into climate variability of the subtropical region of South Africa on the glacial/interglacial time scale. The crater 'Tswaing' was formed around 220±52 kyr ago by a meteorite impact. However, new U/Th analyses of authigenic carbonates provide preliminary evidence that the lake might be older than 300 kyr. Today the basin contains a shallow (< 3 m water depth), hypersaline (pH ~10) lake with a diameter of about 300 m in an about 1 km wide crater. Hence, the lake catchment is small with no water in- or outflow. Therefore, the lake is sensitive for variations in rainfall and probably wind stress. Our 90 m composite core profile consists of partly fine-laminated lake sediments intercalated with mudflow deposits. Previous investigations and our new data reveal a considerable variability of bulk geochemical proxies such as total inorganic carbon (TIC), total organic carbon (TOC) and the C/N ratio. The upper half of the core is dominated by fluctuations in TOC while TIC controls the variation in the lower half of the core. These data argue for substantial changes in the depositional environment of the lake system. They are complemented by facies analyses in thin sections, major element patterns derived from μXRF scanning , the carbon isotopic composition of the bulk sediment, maceral analysis, and lipid biomarkers of the organic material in the sediments. First results allow to distinguish intervals with completely different ecosystems and hydrology during lake history. Intervals with dinoflagellates and algae as main primary producers alternate with phases dominated by bacteria and ciliates feeding on them. Future detailed analyses will provide new insights into the development of these climate sensitive lacustrine habitats as well as the surrounding vegetation in the catchment area over two to four glacial cycles.

  8. Recent marine deposits reconstruction of two depositional environments of the French Atlantic coast

    NASA Astrophysics Data System (ADS)

    Pouzet, Pierre; Maanan, Mohamed; Schmidt, Sabine; Athimon, Emmanuelle; Robin, Marc

    2017-04-01

    This work provides a 300-yr high-resolution record of past storm and/or tsunami events using a multi-proxy analysis (137Cs and 210Pb dating, chemical composition and grain size) of sedimentary deposits from two coastal depositional environments of the French Atlantic coast. We analyse two wetland areas situated just behind a narrow coastal sand strip: 1) the Mer Blanche and 2) the Turballe. Evidence for strong extratropical storms and /or tsunamis events can be identified in this central part of the Bay of Biscay from the XIXth to the XXth century. Nine short sediment cores were collected in August 2016 using gravity type corer of 10 inner diameter and 100 cm length. Each core was longitudinally sliced, each half section photographed and described. High-resolution elemental analyses of split sediment cores were done using an Avaatech XRF core scanner. Then sediment cores were sampled every 0.5 cm. Grain size analysis was done using a Malvern 2600 laser beam grain sizer; organic carbon was measured by Leco induction furnace. 137Cs, 210Pb and 226Ra activities were measured on about 2 g dried sediment using a low background, well-type γ spectrometer (Canberra). The 210Pb in excess, which is used for dating, was calculated as the difference of measured 210Pb and of its supported activities (226Ra). The history information is performed using historical documents including narrative sources, ancient maps, records of cities repairs, surveys conducted after a disaster, newspaper from different departmental and national archives, and meteorological data. Coastal depositional environments were affected hardest by extreme environmental and climatological events during the last century. In the Mer Blanche core, three extreme episodes can be observed: i) at 36 cm, sediment is characterized by coarser sand and higher Sr/Al ratio, this episode coincides with a high tidal wave in spring 1937; ii) at 55 cm, we observe the presence of many gravels, they dates back to the high tidal wave of 1924 and iii) at 65 cm, the presence of another coarse pebble layer is attributed to a series of severe storms associated with coastal flooding episodes between 1910 and 1913. Acknowledgements The authors gratefully acknowledge Isabelle Billy (EPOC, University of Bordeaux 1) for XRF spectrometric core scanner analysis. This work was supported by grants from the Fondation de France through the research program « Quels littoraux pour demain? » and OR2C PDL regional framework.

  9. Timing and pacing of Pliocene climate and paleoenvironmental change in southwestern Australia (IODP Exp. 356, Site U1459).

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Bogus, K.; Auer, G.; Christensen, B. A.; Baranwal, S.; Fulthorpe, C.; Gallagher, S. J.; Groeneveld, J.; Henderiks, J.; Mamo, B. L.; Petrick, B.

    2016-12-01

    The Pliocene Epoch was a globally-warm, high-CO2 period, which nevertheless experienced four globally-recognized glacial events (De Schepper et al., 2014). Brief (<100 kyr) but intense glacials interrupted the relatively warm Pliocene climate at 4.9, 4.0, 3.6 and 3.3 Ma. Different hypotheses exist to explain why these glaciation events were so intense, and why the global climate system returned to warm conditions relatively quickly. Some of these hypotheses ascribe a key-role to the Indonesian Throughflow, as a regulator of equator-to-pole heat transfer. IODP Site U1459 (28°40'S, 113°34'E; Perth Basin) lies directly seaward of the Houtman-Abrolhos main reef complex. The development of a reef complex at 28°S is possible because of the "modern" Leeuwin Current, which is mainly fed by the Indonesian Throughflow. The Leeuwin Current transports warm, low-salinity, nutrient-deficient water southward along the west coast of Australia. However, the Pliocene oceanography of southwest Australia and the possible influence of a Leeuwin-like current are not well known. Here, we present orbital scale elemental data, obtained by X-ray fluorescence (XRF) core scanning to provide insight into the long-term evolution of the Leeuwin Current. The XRF-derived calcium-iron ratio time-series exhibits two distinct minima, marking two intervals where the unlithified packstones and grainstones have relatively low carbonate content. These intervals are dated at 4.0 and 3.3 Ma and thus correspond with two globally-recognized Pliocene glaciation events. During these glacials, the equator-to-pole heat transfer was likely reduced due to a restriction of the Indonesian Throughflow, which could imply that Site U1459 was under the relatively stronger influence of a colder, northwards-flowing West Australian Current at 4.0 and 3.3 Ma. De Schepper, S., et al. (2014). "A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch." Earth-Science Reviews 135: 83-102.

  10. Evidence For Decadal and Century Scale Climate and Oceanic Variability in the Guaymas Basin, Gulf of California, Over the Last Millenium

    NASA Astrophysics Data System (ADS)

    Pineda, L.; Ravelo, A. C.; Aiello, I. W.; Stewart, Z.; Sauthoff, W.

    2015-12-01

    Linda Pineda1Ana Christina Ravelo2Ivano Aiello3Zach Stewart2Wilson Sauthoff2 Earth and Planetary Sciences Department, UCSC Ocean Sciences Department, UCSC Moss Landing Marine Lab Natural climate change affects coastal water resources, human land use, and marine biological productivity. In particular, the seasonal migration of the Intertropical Convergence Zone (ITCZ) is influenced by changes in global-scale temperature and pressure gradients and is responsible for spatial changes in summertime rainfall in Mesoamerica impacting regional water resources and the strength of upwelling. In October 2014, aboard the Research Vessel El Puma, a 3.9 meter long core (G14-P12) was recovered from the Northeast flank of the Guaymas Basin in the Gulf of California within the oxygen minimum zone (27˚52.11'N, 111˚41.51'W, water depth of 677m) to investigate changes in seasonal upwelling and Central Mexico rainfall over the last ~1000 years. The age model was developed using Pb210, C14 and lamination counting. The time interval includes the Little Ice Age and the Medieval Warm Period. Biological productivity and precipitation proxy records were produced using an X-Ray Fluorescence (XRF) core-scanner and a color line scanner to generate a record of bulk chemistry and color reflectance. The records indicate marked decadal and centennial scale variability in the lithologic composition of the sediment superimposed on millimeter-scale variability that reflects the presence of seasonally laminated sediments. Nitrogen isotopic and nitrogen weight % measurements were used, in combination with the scanned data, to interpret changes in nitrate utilization and biological productivity. These new records will have broad implications on the link between regional coastal environmental conditions in the Gulf of California and global climate change.

  11. Phyllosilicate weathering pathways in chlorite-talc bearing soil parent materials, D.R. Congo: early findings.

    NASA Astrophysics Data System (ADS)

    Dumon, Mathijs; Oostermeyer, Fran; Timmermans, Els; De Meulemeester, Aschwin; Mees, Florias; Van Driessche, Isabel; Erens, Hans; Bazirake Mujinya, Basile; Van Ranst, Eric

    2015-04-01

    The study of the formation and transformation of clay minerals is of the upmost importance to understand soil formation and to adjust land-use management to the land surface conditions. These clay minerals determine to a large extent the soil physical and chemical properties. It is commonly observed that over time the mineralogy of any parent material is transformed to a simple assemblage composed mostly of Al and Fe oxides and low-activity clays, e.g. kaolinite. This is especially obvious in the humid tropics, which have been protected from glacial erosion, allowing deep, highly weathered soils to form. Despite the abundant presence of kaolinite in these soils, its formation pathways are still under debate: either neoformation by dissolution-crystallisation reactions or solid-state transformation of 2:1 phyllosilicates. To elucidate this, weathering sequences in a unique 40 m core taken below a termite mound, reaching a talc-chlorite bearing substrate in the Lubumbashi area, Katanga, DR Congo are being investigated in detail using a.o. quantitative X-ray diffraction analysis, chemical characterization, micromorphology and µXRF-scanning with the main objective to improve the understanding of the formation pathways of kaolinite subgroup minerals in humid tropical environments. Based on an initial characterization of the core, two zones of interest were selected for more detailed analysis, for which the early findings will be presented. The first zone extends from ca. 9 m to 11 m below the surface is dominated by kaolinite but shows early traces of primary talc and micas. The second zone extends from 34 to 36 m below the surface and contains large amounts of chlorite, with smaller amounts of talc, micas and kaolinite.

  12. Late Holocene environmental reconstruction of Lake Issyk-Kul (Rep. Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Giralt, Santiago; Hernández, Armand; Sáez, Alberto; José Pueyo, Juan; Cañellas-Boltà, Núria; Margalef, Olga

    2010-05-01

    Lake Issyk-Kul is an endorheic mountain lake located at 1608 m a.s.l., in the northern Tien Shan ranges, in the Republic of Kyrgyzstan, Central Asia. It has an area of 6236 km2, a length of 180 km, a width of 60 km, and a maximum depth of 668 m making it the fifth deepest lake in the world. The lake is monomictic, brackish (6 g/l), oligotrophic to ultra-oligotrophic (2 - 3.8 ?g/l of phosphorous), and it has high values of dissolved oxygen (6.5 - 7.5 mg/l at the bottom of the lake). In August 2000, a gravity 150 cm long core (C142a, 42°34'312' N - 77°20'030' E) was recovered at 150 m of water depth at the central northern shore of the lake. This core was characterized using X-Ray Fluorescence (XRF) core scanner (measurements every 300 μm), X-Ray Diffraction (XRD) every 3 mm, and elemental (TC and TN) and isotopic composition (δ13C and δ15N) of bulk organic matter every centimeter. The preliminary chronological framework was constructed with 4 AMS 14C dates. Statistical analyses (clusters, Principal Component (PCA) and Redundant (RDA) Analyses) were employed to identify and isolate the environmental forcings that have triggered the input, distribution and deposition of sediments within the lake. The core records the last ca. 4,000 cal. yrs BP and, during this time its primary productivity has steadily increased (higher values of TC and TN). δ13C and δ15N values suggest that the main primary producer are blue-green algae. The last ca. 100 years, the primary productivity has experienced a dramatic increase. Furthermore, PCA on XRF data also highlights that more than the 50% of the total variance is related to changes in primary productivity (the first eigenvector (EV) is tied by the opposition of the terrigenous - organic matter geochemical indicators). This EV shows that the primary productivity oscillated at decadal and centennial frequencies. The main forcing of these primary productivity fluctuations seems to be temperature changes linked to both solar activity (11 years Schwabe cycles) and anthropogenic global warming.

  13. Evaluation of the uncertainties associated with in vivo X-ray fluorescence bone lead calibrations

    NASA Astrophysics Data System (ADS)

    Lodwick, Jeffrey C.

    An anthropometric leg phantom developed at the University of Cincinnati (UC) was used to evaluate the effects that changes in leg position and variation between subjects has on in vivo x-ray fluorescence (XRF) measurements of stable lead in bone. The changes in leg position that were evaluated include changes in source-phantom distance ranging between 0.0 mm and 30.0 mm and phantom rotation over 40 degrees. Source-phantom distance was determined to have a significant effect on XRF measurement results particularly at source-phantom distances greater than 10.0 mm. Rotation of the leg phantom through 40 degrees was determined to have no significant effect on XRF measurement results. Between subject factors that were evaluated include bone calcium content and overlying tissue thickness. Bone calcium content was determined to have a significant effect on XRF measurements when measuring lead in micrograms per gram bone material. However, if measurement results of micrograms of lead per gram calcium (or per gram bone mineral) is used the normalization method makes the change in calcium content not significant. Overlying tissue thickness was determined to have no significant effect on XRF measurement results with tissue thickness ranging between 5.7 and 11.62 mm. The UC leg phantom was modified to include a fibula bone phantom so that the effect that the fibula has on XRF measurement results could be evaluated. The fibula was determined to have no significant effect on XRF measurement results and in the future need not be incorporated into in vivo XRF calibration phantoms. A knee phantom was also developed for purposes of calibrations of in vivo XRF measurement of lead in the patella. XRF measurement results using this phantom were compared to results of XRF measurements made using the plaster-of-Paris (POP) phantoms. A significant difference was observed between the normalized count rates of the two phantom types when either micrograms of lead per gram of bone material or micrograms of lead per gram calcium (bone mineral) is used as the lead content. This difference is consistent with what is observed in real in vivo XRF measurements and indicates the need for the correction factors that are used.

  14. A radiographic scanning technique for cores

    USGS Publications Warehouse

    Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.

    1979-01-01

    A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.

  15. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  16. The abrupt installation of the euxinic environment as reflected by the unconsolidated sediments of the western slope of the Black Sea off the Romanian shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Oaie, Gheorghe; Bojar, Ana-Voica; Zinicovscaia, Inga; Culicov, Otilia-Ana; Frontasyeva, Marina V.; Gradinaru, Janet

    2016-04-01

    A 4,5 m long core containing unconsolidated sediments collected at a depth of 500 m on the western slope of the Black Sea, off Romanian shore was analyzed by Computed Tomography (CT), X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Instrumental Neutron Activation Analysis (INAA) in order to investigate the changes in the Black Sea environment during the past 10.5 - 12 ky. The most relevant information regarding unconsolidated sediments was furnished by the CT images, clearly indicating the moment when the euxinic environment settled on this sector of the Black Sea, presumably 2.7 ky ago. This event is represented by the sedimentation of a coccolithic mud consisting of alternation of dark and light thin laminae composed of terigenous and respectively coccoliths rich material. This type of mud is characteristic for the sedimentary unit 1, filling the uppermost 50 cm of the core. The observation was confirmed by subsequent XRF and INAA determinations, which show a high content of calcium carbonate related to accumulation of Emilliania huxley coccoliths as well as of minor elements such as iron, molybdenum and uranium, a typical characteristic of euxinic environment. For instance, the average content of Mo and U is 28 and respectively 4 time higher than the corresponding content of the Upper Continental Core (UCC), while the Fe/Al ratio is around 0.52. Moreover, the average chondrite normalized Ce content of sedimentary unite 1 is 1.37 ± 0.17, slightly higher than 1.22, the characteristic value for the UCC. The Ce data indicate a weak positive anomaly, characteristic also for an euxinic reducing environment. All these investigations confirm the abrupt installation at a depth of 500 m of an euxinic environment on the western slope of the Black Sea, euxinic environment persisting to present time.

  17. Coring the deep critical zone in the Jemez River Basin Critical Zone Observatory, Valles Caldera National Preserve, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Moravec, B. G.; White, A. M.; Paras, B.; Sanchez, A.; McGuffy, C.; Fairbanks, D.; McIntosh, J. C.; Pelletier, J. D.; Gallery, R. E.; Rasmussen, C.; Carr, B.; Holbrook, W. S.; Chorover, J.

    2016-12-01

    The Critical Zone (CZ) is the focus of current interdisciplinary Earth surface science research that aims to describe the interactions between geological and biological processes that influence ecosystem function, soil formation, nutrient and carbon cycling, hydrologic partitioning, biological activity and diversity, and mineral weathering. Prior research at the Catalina-Jemez (C-J) CZO has focused on the CZ near-surface, including remote sensing, and sampling/analysis of vegetation and soil microbiota, soils and saprolite, and surface water. However, the extent to which weathering, water/rock interaction, and solute mobility along flowpaths in the deep CZ respond to near surface CZ processes (i.e. water, energy, and mass fluxes) is not well understood. The goal of the present research is to understand depth-dependent trends in weathering dynamics from the mobile soil to unweathered bedrock in relation to landscape position (hillslope aspect and downgradient hollow). We used diamond core drilling techniques to excavate three boreholes to depths of 18.9, 41.8, and 46.3 meters in an instrumented forested sub-catchment of the C-J CZO in northern New Mexico. Here we present field methodology and preliminary data collected during the field campaign conducted during summer 2016. Element concentrations were measured during core extractions using portable X-ray fluorescence (XRF), which was subsequently validated against bench-scale XRF. Depth-dependent trends in both regolith depth and chemical depletion patterns show significant variation with landscape position. All three boreholes show complex weathering profiles with differences potentially due to textural controls on weathering, development of preferential flowpaths, and differing hydrologic base levels. Preliminary data indicate that chemical depletion patterns are not monotonic, but rather comprise large excursions that are being investigated for their relation to variation in local mineralogical composition and incongruent weathering reactions.

  18. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes. PMID:25281958

  19. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    PubMed

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.

  20. Leaching behavior and ESEM characterization of water-sensitive mudstone in southwestern Taiwan.

    PubMed

    Chen, Hung-Ta; Lin, Tzong-Tzeng; Chang, Juu-En

    2003-05-01

    This investigation attempts to understand the critical soluble salts in natural mudstone and the leaching, microstructural, and microchemical characteristics in soaked mudstone using scanning electron microscopy (SEM)/energy-dispersive X-ray analysis (EDAX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), conductivity measurement, ion chromatography (IC), and environmental scanning electron microscopy (ESEM)/EDAX techniques. Natural mudstone probably includes soluble salts such as Na2SO4, NaCl, NaCO3, and CaCO3. The dissolution of Na2SO4 controls water-sensitive mudstone very susceptible to slaking and dispersion. ESEM micrographs clearly show evidence of mudstone-slaking during soaking since the visible pores are filled with small aggregative masses. A calcium-bearing precipitate from the soaked mudstone is speculated to be attributable to the decomposition of the hydrated product of the fresh mudstone.

  1. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  2. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  3. In Vivo Quantification of Lead in Bone with a Portable X-ray Fluorescence (XRF) System – Methodology and Feasibility

    PubMed Central

    Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG

    2013-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629

  4. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  5. Mineralogical, micromorphological and geochemical transformations in the initial steps of the weathering process of charnockite from the Caparaó Range, southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno

    2014-12-01

    X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.

  6. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Publications - GMC 418 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 418 Publication Details Title: Porosity, permeability, grain density core analysis (CT scans , permeability, grain density core analysis (CT scans), and core photos from the ConocoPhillips N. Cook Inlet

  8. Secondary sulfate minerals from Alum Cave Bluff: Microscopy and microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauf, R.J.

    1997-07-01

    Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains National Park, were examined by scanning electron microscopy and identified by X-ray fluorescence (XRF) in the SEM. Among the samples the author discovered three new rare-earth sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite, slavikite, magnesiocopiapite, and diadochite. Additional specimens whose identification is more tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a ``Dana locality`` for apjohnite and potash alum, and is the first documented North American occurrence of slavikite.

  9. A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead

    NASA Astrophysics Data System (ADS)

    Hussin, F.; Aroua, M. K.

    2017-06-01

    In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.

  10. High-resolution multi-proxy reconstruction of Lake Ighiel (Western Carpathians, Romania): processes and controlling factors of lacustrine dynamics during the mid and late Holocene

    NASA Astrophysics Data System (ADS)

    Haliuc, Aritina; Veres, Daniel; Hubay, Katalin; Begy, Robert; Brauer, Achim; Hutchinson, Simon; Braun, Mihaly

    2016-04-01

    Concerns about current and prospective environmental change have increased the interest in past climate variability and its impact on the bio-hydro-atmosphere and human society. Acting as high-resolution terrestrial archives, lacustrine sediments are the result of the complex interaction between internal and external forcing and an important tool in efforts to resolve questions related to the palaeoclimatic and palaeoenvironmental conditions of the recent past. Here we discuss a new, high-resolution sedimentary record from the Romanian Carpathians (central-eastern Europe). Lake Ighiel (46° 10'50"N, 23° 22'00"E) is a small lake located in a mid-altitude mountain belt (Trascau Mountains) at an altitude of 924 m ( lake maximum depth 9 m; catchment area 487 ha). We employ detailed 210Pb and 14C dating coupled with high-resolution X-ray fluorescence scanning (μ-XRF) measurements, long-core sedimentary logging, environmental magnetic proxies (susceptibility, natural and induced remanences) in an attempt to trace the 6000 years evolution of lake-catchment system. More specifically, we discuss: i) the temporal evolution of the main sedimentation phases of the lake based on sedimentological, geochemical and magnetic proxies; ii) the amplitude and interplay of processes (natural and/or anthropogenic) controlling the depositional environment through time; iii) assess the contribution of each controlling factors and reconstruct the evolution of lacustrine system and palaeoclimate forcing using multivariate statistics. The sedimentary record can be divided into six phases based on alternating high and low detrital fluxes, oscillating lacustrine productivity and redox conditions. A series of detrital events (5200; 4800; 5400; 5250; 4500; 4050; 3800; 3500; 3250; 3050; 2650; 2350; 2250; 1400; 1100; 500; 100 cal yr BP) were identified by microfacies analyses and X-ray fluorescence scanning (μ-XRF) analysis. These events are reflected in most of the parameters and appear synchronous with climatically induced forcing such as increased regional precipitation and decreased total solar radiation. These changes are superimposed on clear anthropogenic derived contributions reflecting natural and mineral resource exploitation during the early metal ages, the Roman and Medieval periods, as well as during the recent period. The comparison of the our proxies with similarly resolved records from central-eastern Europe highlight the potential of Lake Ighiel as a record of palaeoclimatic and palaeohydrological conditions in a region still lacking high-resolution multi-proxy palaeoenvironmental archives. The authors acknowledge financial support from project PN-II-ID-PCE-2012-4-0530 "Millennial-scale geochemical records of anthropogenic impact and natural climate change in the Romanian Carpathians", contract nr. 15/02.09.2013.

  11. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT RONTEC PICOTAX XRF ANALYZER

    EPA Science Inventory

    The Rontec PicoTAX x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Rec...

  12. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Rigaku ZSX Mini II (ZSX Mini II) XRF Services x-ray fluorescence (XRF) analyzer was demon-strated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ZSX Mini II analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ZSX Mini II analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element con

  13. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Niton XLt 700 Series (XLt) XRF Services x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the XLt analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the XLt analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy

  14. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Elvatech, Ltd. ElvaX (ElvaX) x-ray fluorescence (XRF) analyzer distributed in the United States by Xcalibur XRF Services (Xcalibur), was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ElvaX analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ElvaX analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as s

  15. The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.

    2012-12-01

    The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.

  16. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.

  17. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies. PMID:20526948

  18. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    PubMed

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies.

  19. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT OXFORD ED2000 XRF ANALYZER

    EPA Science Inventory

    The Oxford ED2000 x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recr...

  20. NHEXAS PHASE I ARIZONA STUDY--METALS-XRF IN DUST ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Dust data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 384 dust samples over 384 households. Samples were taken by collecting dust from the indoor floor areas in the main room and in the bedroom of the primary ...

  1. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT XCALIBUR ELVAX XRF ANALYZER

    EPA Science Inventory

    The Innov-X XT400 Series (XT400) x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kenned...

  2. In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, C.; Allen, C.; Mosie, A.; Hodges, K. V.

    2011-01-01

    Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer.

  3. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  4. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    NASA Astrophysics Data System (ADS)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  5. Synthesis of Pd₃Co₁@Pt/C core-shell catalysts for methanol-tolerant cathodes of direct methanol fuel cells.

    PubMed

    Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo

    2014-08-18

    A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS/XRF IN DUST ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Dust data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 91 dust samples over 91 households. Samples were taken by collecting dust from the indoor floor areas in the main room and in the bedroom of the primary re...

  7. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    PubMed

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  8. Na, Mg, Ni and Cs distribution and speciation after long-term alteration of a simulated nuclear waste glass: A micro-XAS/XRF/XRD and wet chemical study

    NASA Astrophysics Data System (ADS)

    Curti, Enzo; Dähn, Rainer; Farges, François; Vespa, Marika

    2009-04-01

    Microscopic distribution and speciation of Na, Mg, Ni and Cs in a simulated (inactive) nuclear waste glass were studied using micro X-ray fluorescence (μ-XRF) and micro X-ray absorption spectroscopy (μ-XAS), after aqueous leaching during 12 years at 90 °C. Na and Mg are major constituents of the glass that can be used to determine the progress of the glass corrosion process and the nature of secondary alteration phases. Ni and Cs represent dose determining long-lived radionuclides ( 59Ni, 135Cs) in vitrified nuclear waste. The Na-Mg μ-XRF maps revealed that the core regions of the glass fragments are apparently unaltered and compositionally homogeneous, whereas rims and interstitial spaces are enriched with Mg-rich smectite formed during the leaching process. The micro X-ray absorption near edge structure (μ-XANES) spectra collected at the Mg K-edge in the altered zones show three sharp resonances typical for crystalline Mg-silicates. These resonances are distinctive of Mg occupying undistorted octahedral positions. In contrast, the μ-XANES spectra collected in the core zones of the glass fragments lack this resonance pattern and are identical to the spectra measured on the pristine (unleached) MW glass. Micro extended X-ray absorption fine structure (μ-EXAFS) and μ-XANES analyses at the Ni K-edge revealed three distinct Ni(II) species: (a) Ni uniformly distributed in the glass matrix, (b) micro-inclusions with high Ni concentrations and (c) Ni associated to the Mg-clay. The comparison with reference spectra of unleached MW and other Ni-bearing silicate glasses indicated that species (a) represents the original coordinative environment of Ni in the glass. The μ-EXAFS analyses revealed that species (b) is structural Ni in trevorite (NiFe 2O 4), which probably formed through unmixing processes during the cooling of the glass melt. The μ-EXAFS of species (c) could be successfully modeled assuming specific adsorption or incorporation of Ni into the lattice of trioctahedral Mg-clay minerals. Alternative models assuming other elements (Ni, Al, Fe) in addition to Mg in the second shell could not be fitted successfully. Aqueous concentration data were used to calculate the speciation of the leaching solutions. Saturation index (SI) calculations indicate undersaturation with respect to NiCO 3 and NiSO 4·7H 2O, but oversaturation with respect to β-Ni(OH) 2. The latter result is probably due to the omission of Ni borate and Ni silicate complexes in the speciation calculations, for which formation constants are not available. With the help of estimation techniques, we could infer that such complexes would dominate the Ni speciation and consequently reduce the SI below the saturation of β-Ni(OH) 2. The μ-XRF maps show that Cs is uniformly distributed in the MW glass, since no region with high Cs concentration could be detected. The Cs L III-edge μ-XAS spectra were all very similar independently of the degree of alteration, indicating similar coordination environments of Cs in the core regions of the glass as well as in the secondary clays. These spectra largely differ from that measured for pollucite (a potential secondary Cs-phase in altered glasses) implying that the coordination environments of Cs in the MW glass and in pollucite are fundamentally different. The present study shows that μ-XRF and μ-XAS are essential tools in determining the fate and the retention mechanisms of radionuclides released from nuclear waste during aqueous alteration. Our spectroscopic analyses allowed us to exclude formation of specific Ni and Cs secondary solids (e.g. nepouite, β-Ni(OH) 2, pollucite) during the aqueous alteration. Ni and Cs are instead distributed as trace elements in the alteration phases formed by major elements during the leaching process. Our results imply that solid solution and/or adsorption equilibria, rather than pure phase solubility equilibria, are the adequate chemical models to determine Ni and Cs aqueous concentrations in performance assessments for radioactive waste repositories.

  9. Microstructural and thermal study of Al-Si-Mg/melon shell ash particulate composite

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Umaru, O. B.; Bawa, M. A.; Jibo, H. A.

    The microstructural study via scanning electron microscope (SEM) and thermal study via differential scanning calorimetric (DSC) study of Al-7%Si-0.3Mg/melon shell ash particulate composite has been carried out. The melon shell ash was used in the production of MMC ranging from 5% to 20% at interval of 5% addition using stir casting method. The melon shell ash was characterized using X-ray fluorescent (XRF) that reveal the presence of CaO, SiO2, Al2O3, MgO, and TiO2 as major compounds. The composite was machined and subjected to heat treatment. Microstructural analyses of the composite produced were done using scanning electron microscope (SEM). The microstructure obtained reveals a dark ceramic (reinforcer) and white metallic phase. Equally, the 5 wt% DSC result gives better thermal conductivity than other proportions (10 wt%, 15 wt%, and 20 wt%). These results showed that an improved property of Al-Si-Mg alloy was achieved using melon shell ash particles as reinforcement up to a maximum of 20 wt% for microstructural and 5% wt DSC respectively.

  10. PyXRF: Python-based X-ray fluorescence analysis package

    NASA Astrophysics Data System (ADS)

    Li, Li; Yan, Hanfei; Xu, Wei; Yu, Dantong; Heroux, Annie; Lee, Wah-Keat; Campbell, Stuart I.; Chu, Yong S.

    2017-09-01

    We developed a python-based fluorescence analysis package (PyXRF) at the National Synchrotron Light Source II (NSLS-II) for the X-ray fluorescence-microscopy beamlines, including Hard X-ray Nanoprobe (HXN), and Submicron Resolution X-ray Spectroscopy (SRX). This package contains a high-level fitting engine, a comprehensive commandline/ GUI design, rigorous physics calculations, and a visualization interface. PyXRF offers a method of automatically finding elements, so that users do not need to spend extra time selecting elements manually. Moreover, PyXRF provides a convenient and interactive way of adjusting fitting parameters with physical constraints. This will help us perform quantitative analysis, and find an appropriate initial guess for fitting. Furthermore, we also create an advanced mode for expert users to construct their own fitting strategies with a full control of each fitting parameter. PyXRF runs single-pixel fitting at a fast speed, which opens up the possibilities of viewing the results of fitting in real time during experiments. A convenient I/O interface was designed to obtain data directly from NSLS-II's experimental database. PyXRF is under open-source development and designed to be an integral part of NSLS-II's scientific computation library.

  11. Heterometric sediment and benthic micro-habitat: In situ and experimental approaches.

    NASA Astrophysics Data System (ADS)

    Navon, Maxime; Dauvin, Jean-Claude; Lesourd, Sandric

    2016-04-01

    The eastern Bay of Seine and its estuary are characterized by complex sediment structures with high temporal, spatial and vertical heterogeneities. As the result of different hydrodynamics forcing, estuary is a particular area with fine sediment accumulation since the last decades. This complex system involves particular relationships between benthic species and the environment. Dominant species show particular traits of life: bentho-pelagic reproductive cycle, burrowing, tubicoulous, surface and subsurface species. Moreover, species behaviours are different according to the sediment properties: grain size, stratification, texture, silt and clay contents… Although benthic macrofauna and sediment relationship is often describe as the major factor structuring benthic communities, no spatial and temporal relationships has been highlighted in this area. So, our study is focused on the relationship between species and sediment at the individual scale and on micro-habitats. The aim of the study is to define the macrofauna vertical distribution to understand how the sediment structure acts on organisms and the organism behaviour in a heterometric sediment context, i.e. how organisms act in return on the sediment structure. An in situ approach is used to answer these questions with four campaigns on board on the Oceanographic Vessel 'Le Côtes de la Manche'. A total of 43 cores (16 cm diameter, 35 cm high) in three typical sediment facies are sampled. Cores are analysed with Computer-Aided Tomography scan (Cyceron Laboratory, Caen) to 3D visualize organisms and to determine volumetric space occupation by biogenic structures. The same cores are transversally cut to check the species out and to analyse sediment parameters (grain size, organic matter and other chemical components on XRF device). Results show that most of the organism are closed to the surface sediment but also that some species, even small size individuals, are found deeper in the sediment-column until 9 cm depth. This approach gives nondestructive 3D picture on the organism position in sediment and provides information on the manner how sediment structure acts on organisms and in return how organisms disturb sediment structure.

  12. Sedimentary and geochemical conditions in the "Helgoland Mud Area" (SE North Sea) during the past 1000 years

    NASA Astrophysics Data System (ADS)

    Hass, H. Christian; Kuhn, Gerhard

    2017-04-01

    Helgoland is a small rocky island in the German Bight with an exposed rocky shore. The working area, SE of Helgoland, is a halotectonic depression filled with muddy sediment. Earlier studies suggest that this depression became rapidly filled with muddy sediments likely originating from the Elbe river that changed its bed eastwards in the course of the rising sealevel during the Late Holocene. Today, the water depth is between 20 and 30 m. A RoxAnn acoustic ground discrimination unit and shallow seismics together with seafloor sampling were applied to analyze the recent sedimentary conditions. Five sediment cores spanning the past millennium were investigated to reconstruct the sedimentary conditions through time. In addition one core was geochemically investigated using an XRF scanning device. Today, the area is about 500 km2 large characterized mostly by muddy, fine-skewed sediment. Its soft and smooth surface forms a clear contrast to the surrounding sandy areas that reveal typically rippled surfaces. The grain-size records show medium silt during the later part of the Medieval Warm Period (MWP, until the 14th century AD), followed by coarse silt during the Little Ice Age (LIA, until c. 1900 AD) and again finer sediments during the 20th century AD. The changes in grain size likely mirror calmer weather conditions during the MWP and the increased frequency and strength of severe storms during the LIA. This includes a calmer period during the Maunder Sun-Spot Minimum (around AD 1700) that was most likely supported by an increased number of negative NAO situations. Among the elements investigated in Core HE215/4-2 the contents of the heavy metals Pb and Zn show two- and threefold increases starting already between 1600 and 1700 AD. Mining and extended metal production in the Oberharz Mountains in northern Germany became a blooming industry during the 17th century AD. It can be speculated that signals of this early industrialization were also transported into the North Sea via the Elbe and Weser rivers.

  13. Sedimentological characteristics of lake sediment of the Lake Jelonek (North Poland)

    NASA Astrophysics Data System (ADS)

    Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-04-01

    Lake Jelonek is located in Northern Poland (53°45'58N, 18°23'30E). The lake is surrounded by forest, covers an area of 19,9 ha and has a maximum depth of 13,8 m. In 2013 and 2014 three overlapping and parallel series of long sediment cores JEL14-A-(1445 cm), JEL14-B-(1430 cm), JEL14-C-(1435 cm) and seven short gravity cores JEL13 (K1-K7) have been recovered from the deepest part of the lake. A continuous composite profile JEL14 covering 1426 cm has been established by correlation based on 28 distinct macroscopic marker layers. The sediment sequence can be divided into 15 (I-XV) lithological units. These units comprise biochemical calcite varves, homogeneous calcite-rich gyttja, homogeneous organic-diatomaceous gyttja, and sandy layers. The chronology established so far is based on 14 AMS 14C dates from terrestrial plant remains and tephrochronology (Askja AD-1875) and covers the interval from the Younger Dryas to present times. Based on the chronology and sedimentological characteristics the composite profile has been correlated to a previous core from which a detailed pollen diagram had been established (Filbrandt-Czaja 2009). Here we present initial results from thin section analyses for two intervals from the new composite record JEL14, (I) the uppermost 0-256 cm and (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with μ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Preliminary varve counting reveals that the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD), while the lower floating varve interval covers the time period from 1850 - 10500 cal a BP. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415. References: Filbrandt-Czaja, A. 2009: Studia nad historią szaty roślinnej i krajobrazu Borów Tucholskich. pp. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika.

  14. Providing the climatic component in human-climate interaction studies: 550,000 years of climate history in the Chew Bahir basin, a key HSPDP site in southern Ethiopia.

    NASA Astrophysics Data System (ADS)

    Foerster, V. E.; Asrat, A.; Bronk Ramsey, C.; Chapot, M. S.; Cohen, A. S.; Dean, J. R.; Deocampo, D.; Deino, A. L.; Guenter, C.; Junginger, A.; Lamb, H. F.; Leng, M. J.; Roberts, H. M.; Schaebitz, F.; Trauth, M. H.

    2017-12-01

    As a contribution towards an enhanced understanding of human-climate interactions, the Hominin Sites and Paleolakes Drilling Project (HSPDP) has cored six predominantly lacustrine archives of climate change spanning much of the last 3.5 Ma in eastern Africa. All six sites in Ethiopia and Kenya are adjacent to key paleoanthropological sites encompassing diverse milestones in human evolution, dispersal, and technological innovation. The 280 m-long Chew Bahir sediment core, recovered from a tectonically-bound basin in the southern Ethiopian rift in late 2014, covers the past 550 ka of environmental history, an interval marked by intense climatic changes and includes the transition to the Middle Stone Age and the origin and dispersal of modern Homo sapiens. We present the outcome of lithologic and stratigraphic investigations, first interpretations of high resolution MSCL and XRF scanning data, and initial results of detailed multi-indicator analysis of the Chew Bahir cores. These analyses are based on more than 14,000 discrete samples, including grain size analyses and X-ray diffraction. An initial chronology, based on Ar/Ar and OSL dating, allows temporal calibration of our reconstruction of dry-wet cycles. Both geochemical and sedimentological data show that the Chew Bahir deposits are sensitive recorders of climate change on millennial to centennial timescales. Initial statistical analyses identify phases marked by abrupt climatic changes, whereas several long-term wet-dry oscillations reveal variations mostly in the precession ( 15-25 kyr), but also in the obliquity ( 40 kyr) and eccentricity frequency bands ( 90-120 kyr). The Chew Bahir record will help decode climate variation on several different time scales, as a consequence of orbitally-driven high-latitude glacial-interglacial shifts and variations in greenhouse gases, Indian and Atlantic Ocean sea-surface temperatures, as well as local solar irradiance. This 550 ka record of environmental change in eastern Africa will ultimately be used to test hypotheses regarding the impact of climate variability on human evolution, dispersal and technological innovation.

  15. Holocene vegetation changes through Lac Ledro sediments (Trentino, Italy).

    NASA Astrophysics Data System (ADS)

    Joannin, Sebastien; Vannière, Boris; Galop, Didier; Magny, Michel; Gilli, Adrian; Chapron, Emmanuel; Wirth, Stéfanie; Anselmetti, Flavio; Desmet, Marc

    2010-05-01

    Lake Ledro is part of the French program ANR LAMA (coordinators: M. Magny and N. Combourieu Nebout) which aims to link Holocene paleoenvironmental changes along a north-south transect in Italy. Lake Ledro (652 m a.s.l.; Trentino, north-eastern Italy) is the northward component of the transect. It is located on the southern slope of the Alps and its catchment area covers 131 km2 with mountains culminating at 1500-2000 m. A multi-proxy approach based on biotic and abiotic indicators (lake-level, palynology, geochemistry and geophysic) was developed from deep and littoral cores, including sediment sequences in Early and Middle Bronze Age lake-shore archaeological sites. We aim reconstructing paleoenvironmental changes resulting from both climate and anthropic influences trough the entire Holocene. A deep master core was built after extracting twin cores from a non disturbed sediment zone recognised by seismic-reflexion investigations. The age-depth model is based on 13 AMS 14C ages measured on terrestrial plant macrofossils and the mean temporal resolution for analyses is ca 60 years. Palynological study shows the usual vegetation succession for the southern slope of the Alps. During the first part of the Holocene, abrupt changes are observed in pollen assemblages in relation to changes in other proxies (XRF and Magnetic Susceptibility) and correlate with cold events associated to the deglaciation in the North-Atlantic area. Cool episodes corresponding to the PreBoreal Oscillation (ca 11.3 ka cal BP) and 8.2 ka event are respectively characterized by stopping afforestation and a strong development of Abies in the local ecosystem. During the second part of the Holocene, two declines of arboreal pollen abundance are observed in relation with occurrences in both cereal and anthropic pollen indicators. These two phases are confirmed by increase in soil erosion as indicated by abiotic proxies. They give evidence of two successive steps for human settlement (Early-Middle Bronze Age and Iron Age) separated by forest development. In addition, XRF data allow two successive distinct palaeohydrological periods to be recognized into the Holocene. Finally, comparison between littoral and deep cores reinforces our interpretation and helps to disentangle climate and anthropic influences on the Holocene environment in the Central Mediterranean region.

  16. Physical and chemical properties of the creeping fault ruptured in the 2008 Mw 7.9 Wenchuan earthquake from the WFSD-3P cores, eastern Tibet

    NASA Astrophysics Data System (ADS)

    He, X.; Li, H.; Wang, H.; Zhang, L., Jr.; Chevalier, M. L.

    2016-12-01

    The Anxian-Guanxian Fault (AGF) is a frontal fault of the Longmen Shan thrust belt, which ruptured during the 2008 Mw 7.9 Wenchuan earthquake in the eastern margin of the Tibetan Plateau. This study focuses on the 551.54 m-depth cores from the shallow hole of the Wenchuan earthquake Fault Scientific Drilling Project WFSD-3P which drilled across the AGF. Detailed core petrological study, geophysical downhole logs, rock magnetism and XRF analyses were conducted to explore the physical and chemical properties of the AGF, which is helpful to reveal the faulting mechanism and provides a reference to determine behaviors of other faults. The AGF zone in the WFSD-3p mainly consists of fault gouge and fault breccia from 442.41-510.14 m depth cores ( 48 m thick), with a dip angle of 45°. Fine-grained fault gouge and pressolution structures are commonly observed under optical microscope, which indicate the AGF is in creeping. The average magnetic susceptibility value of the fault gouge is slightly less than that of the country rock and the main magnetic carriers are pyrrhotite on the basis of low-temperature magnetic measurement. This phenomenon is different from the characteristics of other seismic faults with high magnetic susceptibility value due to heating by rapid slip friction. In terms of chemical properties, the fault gouge is characterized by relatively low concentration of iron, manganese and calcium, as well as high concentration of copper, vanadium and sulfur according to XRF analyses. In addition, the fluid samples are reductive, with a PH value of 10 and a negative value for redox potential. Combined with the grey-green sandstone along the rupture zone, they indicate that the AGF creeping is in a reducing environment. There are partly locked areas with clasts by rapid slip during the earthquake in the AGF zone. This observation was present at the boundary of the Triassic and Jurassic units ( 507 m depth), near the bottom of the fault zone. It represents the location of the Principle Slip Zone (PSZ) of the 2008 Wenchuan earthquake and shows earthquakes might occur along a creeping fault in certain cases.

  17. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.

    PubMed

    Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G

    2011-02-07

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.

  18. Characteristics of Volcanic Soils in Landslide during the 2016 Kumamoto Earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Hazarika, H.; Fukuoka, H.; Kokusho, T.; Sumartini, O.; Bhoopendra, D.

    2017-12-01

    There were many seismic subsidence, debris flows, landslides and slope failures, which occurred in Aso area due to the 2016 Kumamoto earthquake, Japan. This research aims to determine the failure mechanism of many mild slopes, and elucidate the strength characteristics of volcanic soils collected from the sites. A series of undrained static and cyclic triaxial tests, ring shear tests and direct shear tests were performed. Also, for further understanding of volcanic soils' material strength, X-ray powder diffraction analysis (XRD), X-ray fluorescence analysis (XRF), and Scanning electron microscope analysis (SEM) were performed. In this paper, preliminary results of the experimental testing program are discussed.

  19. Study of CT Scan Flooding System at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  20. Developments in the use of high-resolution X-Ray fluorescence core scanning data of varved sediments for paleoclimate studies: an example of Lake Meerfelder Maar, Germany.

    NASA Astrophysics Data System (ADS)

    Martin-Puertas, Celia; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim

    2015-04-01

    The annually laminated record of the Lake Meerfelder Maar (Germany) is one of the most significant paleoclimatic archives in central Europe because of i) its robust chronology based on varve counting and tephrochronology, and ii) its very high sensitivity to the North Atlantic climate variability. In this study, varve thickness and micro X-ray fluorescence (XRF) data are combined with the published decadal to centennial resolved pollen assemblage between 11,700 to 9,000 yr BP. This period covers two major biostratigraphic stages in Europe, i.e. the Preboreal and the Boreal climatic periods. We focus on the timing and duration of the Preboreal-Boreal climatic transition, as well as short-lived cooling events in the North Atlantic region such as the Preboreal Oscillation (PBO). Due to the predominantly basaltic composition of the MFM catchment, we use normalized Titanium (Ti) intensities as a proxy for detrital influx. This is in close agreement with changes in varve thickness indicating that the lake variability is mainly driven by the annual detrital discharge into the lake. Statistical clustering of the XRF data reveals six chemo-stratigraphic units coinciding with major changes in local vegetation. The stratigraphical boundary coinciding with the Preboreal-Boreal transition is dated at 10,690 varve yr BP. This is characterized by an abrupt increase in detrital material, likely because of a change to wetter conditions in the central Europe. Although the PBO is not clearly identified in the MFM pollen record, a individual cluster from 11,230 to 11,020 varve yr BP broadly coincides with the timing of the PBO in the North Atlantic region, suggesting this cool event lasted ca 200 years in central Europe. The most significant change in the lake occurred between 9,655 and 10,530 varve yr BP, when detrital influx nearly completely ceased and varves were poorly preserved. However, this interval within the Boreal period has no counterpart in the pollen record and, therefore, no clear climatic cause. Alternatively, an elevated lake level and the development of a river delta might have blocked detrital supply to the deeper part of the lake during this period.

  1. Astrochronology of a Late Oligocene to Early Miocene Magnetostratigraphy from the Northwest Atlantic

    NASA Astrophysics Data System (ADS)

    van Peer, T. E.; Xuan, C.; Liebrand, D.; Lippert, P. C.; Wilson, P. A.

    2016-12-01

    The Oligocene-Miocene Boundary is defined by the geomagnetic polarity reversal C6Cn.2n/C6Cn.2r with an astronomically tuned age of 23 Ma. For late Oligocene to early Miocene reversals, only a few records (mainly from the equatorial Pacific and South Atlantic) integrate magneto- and cyclo-stratigraphy with astronomical tuning. Reversal ages acquired from these records show differences up to 100 kyr. We report new astronomically tuned ages for reversals between 21-26.5 Ma, based on integrated palaeomagnetic and X-Ray Fluorescence (XRF) data from rapidly accumulated drift sediments (mean sedimentation rate of 2.5 cm/kyr) at Integrated Ocean Drilling Program (IODP) Site U1406 (northwest Atlantic). The natural remanence preserved in the sediments is relatively weak (especially at high demagnetisation steps) and prone to influence from measurement noise. We introduce an optimisation protocol to improve the estimation of component directions used to define the reversals. For each 1-cm interval measurement, the protocol searches for the combination of a fixed number of steps of demagnetisation data that minimises the maximum angular deviation, statistically excluding the noisy measurement steps. For the tuning, we use the logarithm of the calcium over potassium ratio ln(Ca/K) from XRF core scanning data, a proxy of carbonate content in the sediment. Spectral and wavelet analyses of the 140-m long ln(Ca/K) record highlight dominant obliquity (including the 178 and 1200 kyr modulation) and additional eccentricity forcing. Supported by preliminary stable isotope analysis on benthic foraminifera, we tuned ln(Ca/K) minima to obliquity minima and eccentricity maxima. The resulting age model yield new independent ages for all reversals between C6Ar/C6AAn to C8r/C9n. Our results are generally consistent (within an obliquity cycle) with the Ocean Drilling Program (ODP) Site 1090 age model [Billups et al., 2004], but deviate up to 80 kyr relative to ODP Site 1218 [Pälike et al., 2006] and ATNTS2004 [Lourens et al., 2004] age models. The concurrent high-fidelity reversal ages from ODP Site 1090 and IODP Site U1406 reconcile discrepancies in the early Miocene GPTS, and provide improved temporal constraints, which are critical to the study of palaeomagnetic and environmental changes of this time interval.

  2. Development of a micro-XRF system for biological samples based on proton-induced quasimonochromatic X-rays

    NASA Astrophysics Data System (ADS)

    Ploykrachang, K.; Hasegawa, J.; Kondo, K.; Fukuda, H.; Oguri, Y.

    2014-07-01

    We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface.

  3. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  4. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  5. Reconstructing Late Pleistocene air temperature variability based on branched GDGTs in the sedimentary record of Llangorse Lake (Wales)

    NASA Astrophysics Data System (ADS)

    Maas, David; Hoek, Wim; Peterse, Francien; Akkerman, Keechy; Macleod, Alison; Palmer, Adrian; Lowe, John

    2015-04-01

    This study aims to provide a temperature reconstruction of the Lateglacial sediments of Llangorse Lake. A new temperature proxy is used, based on the occurrence of different membrane lipids of soil bacteria (de Jonge et al., 2014). Application of this proxy on lacustrine environments is difficult because of in situ (water column) production and co-elution of isomers. Pollen analysis provides a palynological record that can be used for biostratigraphical correlation to other records. Llangorse Lake lies in a glacial basin just northeast of the Brecon Beacons in Powys, South Wales. The lake is located upstream in the Afon Llynfi valley, at the edge of the watershed of the River Wye. The lake consists of two semi-separated basins with a maximum water depth of 7.5 m, arranged in an L-shape with a surface area of roughly 1.5 km2. Previous studies have focused on the Holocene development of the lake and its surrounding environment (Jones et al., 1985). This study focuses on the deglacial record that appeared to be present in the basal part of the sequence. The lake was cored in the September, 2014 with a manual operated 3 m piston corer from a small coring platform. Overlapping cores were taken to form a continuous 12 m core, spanning the Holocene and the Lateglacial sediments. Six adjacent Lateglacial core segments from the southern basin of Llangorse lake were scanned for their major element composition using XRF scanning at 5 mm resolution to discern changes in sediment origin. Furthermore, loss on ignition (LOI) analysis was used to determine the changes in organic content of the sediments. Subsamples of the Lateglacial sedimentary record were analyzed for the occurrence of different bacterial membrane lipids (brGDGTs: branched glycerol dialkyl glycerol tetraethers) by means of HPLC-MS (high performance liquid chromatography and mass spectrometry) using two silica columns to achieve proper separation of isomers (de Jonge et al., 2013). Air temperatures are reconstructed using a multiple linear regression index based on the relative abundance of the brGDGTs. This allows for the quantification of the temperature fluctuation in the events leading up to the Holocene warming, especially the Interstadial (GI-1) warming, subsequent Stadial (GS-1) cooling and eventual transition into the Interglacial period. References: Jones, R., Benson-Evans, K. and Chambers, F.M. (1985) Human influence upon sedimentation in Llangorse Lake, Wales, Earth Surface Processes and Landforms, Vol 10, p 227-235 De Jonge, C., Hopmans, E., Zell, C.I., Kim, J-H., Schouten, S. and Sinninghe-Damsté, J. (2014) Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction, Geochimica et Cosmochimica Acta, Vol 141, p 97-112 De Jonge C., Hopmans E. C., Stadnitskaia A., Rijpstra W. I. C., Hofland R., Tegelaar E. and Sinninghe-Damste, J.S. (2013) Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. Organic Geochemistry, Vol 54, p 78-82.

  6. A long record of extreme wave events in coastal Lake Hamana, Japan

    NASA Astrophysics Data System (ADS)

    Boes, Evelien; Yokoyama, Yusuke; Schmidt, Sabine; Riedesel, Svenja; Fujiwara, Osamu; Nakamura, Atsunori; Garrett, Ed; Heyvaert, Vanessa; Brückner, Helmut; De Batist, Marc

    2017-04-01

    Coastal Lake Hamana is located near the convergent tectonic boundary of the Nankai-Suruga Trough, along which the Philippine Sea slab is subducted underneath the Eurasian Plate, giving rise to repeated tsunamigenic megathrust earthquakes (Mw ≥ 8). A good understanding of the earthquake- and tsunami-triggering mechanisms is crucial in order to better estimate the complexity of seismic risks. Thanks to its accommodation space, Lake Hamana may represent a good archive for past events, such as tsunamis and tropical storms (typhoons), also referred to as "extreme wave" events. Characteristic event layers, consisting of sediment entrained by these extreme waves and their backwash, are witnesses of past marine incursions. By applying a broad range of surveying methods (reflection-seismic profiling, gravity coring, piston coring), sedimentological analyses (CT-scanning, XRF-scanning, multi-sensor core logging, grain size, microfossils etc.) and dating techniques (210Pb/137Cs, 14C, OSL, tephrochronology), we attempt to trace extreme wave event deposits in a multiproxy approach. Seismic imagery shows a vertical stacking of stronger reflectors, interpreted to be coarser-grained sheets deposited by highly energetic waves. Systematic sampling of lake bottom sediments along a transect from ocean-proximal to ocean-distal sites enables us to evaluate vertical and lateral changes in stratigraphy. Ocean-proximal, we observe a sequence of eight sandy units separated by silty background sediments, up to a depth of 8 m into the lake bottom. These sand layers quickly thin out and become finer-grained land-inward. Seismic-to-core correlations show a good fit between the occurrence of strong reflectors and sandy deposits, hence confirming presumptions based on acoustic imagery alone. Sand-rich intervals typically display a higher magnetic susceptibility, density and stronger X-ray attenuation. However, based on textural and structural differences, we can make the distinction between different types of sand units: i) massive to layered sands with a sharp, erosive lower contact, ii) thin, discontinuous sand lenses with a sharp lower contact and iii) inter-fingered sand-rich and silt-rich intervals with a gradual lower contact. Variability in appearance suggests a variety in triggering events too, going from tsunamis, over storm surges (typhoons) to the impact of sea-level changes on the interaction between tidal delta and lacustrine sedimentation. Preliminary dating (210Pb/137Cs) results in sedimentation rates of 0.4 cm/yr for the last 100-150 yr. Two closely-spaced tephra layers are tentatively linked with the reported Osawa Fuji scoria (3090 BP) and Kawago-daira pumice (3150 BP). However, more absolute ages (14C and OSL) are essential in order to obtain an accurate age-depth model and to position events in time. We are proceeding with the age determination of event sand beds based on single-grain OSL dating of feldspars. Whereas quartz appeared to be not suitable for dating, research in onshore archives close to Lake Hamana already proved the suitability of the IRSL50 signal of feldspar.

  7. Long Valley Coring Project, Inyo County, California, 1998, preliminary stratigraphy and images of recovered core

    USGS Publications Warehouse

    Sackett, Penelope C.; McConnell, Vicki S.; Roach, Angela L.; Priest, Susan S.; Sass, John H.

    1999-01-01

    Phase III of the Long Valley Exploratory Well, the Long Valley Coring Project, obtained continuous core between the depths of 7,180 and 9,831 ft (2,188 to 2,996 meters) during the summer of 1998. This report contains a compendium of information designed to facilitate post-drilling research focussed on the study of the core. Included are a preliminary stratigraphic column compiled primarily from field observations and a general description of well lithology for the Phase III drilling interval. Also included are high-resolution digital photographs of every core box (10 feet per box) as well as scanned images of pieces of recovered core. The user can easily move from the stratigraphic column to corresponding core box photographs for any depth. From there, compressed, "unrolled" images of the individual core pieces (core scans) can be accessed. Those interested in higher-resolution core scans can go to archive CD-ROMs stored at a number of locations specified herein. All core is stored at the USGS Core Research Center in Denver, Colorado where it is available to researchers following the protocol described in this report. Preliminary examination of core provided by this report and the archive CD-ROMs should assist researchers in narrowing their choices when requesting core splits.

  8. The last 1000 years of ocean change in Monterey Bay, California: insights from the marine sedimentary record

    NASA Astrophysics Data System (ADS)

    Schwartz, V.; Addison, J. A.; Carlin, J.; Wagner, A. J.; Barron, J. A.

    2017-12-01

    In Monterey Bay, seasonal upwelling of cold nutrient-rich waters from the California Current sustains a diverse and abundant marine phytoplankton community, serving as the base of the local marine ecosystem, and contributing to atmospheric CO2 fixation. The response of this productive area to future climate change remains uncertain, thus this study looks to examine the Monterey Bay sediment record over the last millennia to provide perspective on future changes. To accomplish this, we examined biogenic sediment as a proxy for upwelling. While there is no existing sea surface temperature (SST) record for this time frame in Monterey Bay as an independent proxy of upwelling, we compare our data against the Santa Barbara Basin (SBB) alkenone SST record, and the global PAGES Ocean2K SST synthesis products to examine variability associated with the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the recent onset of industrial-era warming. Utilizing a pair of newly acquired sediment cores from the southern nearshore sector of Monterey Bay, PS1410-08GC (36.42°N, 121.54°W, depth 85 m) and PS1410-09GC (36.46°N, 121.51°W, depth 71 m), we performed sedimentological and geochemical analyses including multi-sensor core logging, computerized tomography (CT) scans, X-ray fluorescence (XRF), biogenic silica (opal), and HCNS elemental analysis. Age control for each core was determined by linearly interpolating basal 14C dates, and both sites represent high sedimentation rate areas (PS1410-08GC: 0.75 mm/yr, PS1410-09GC: 1.2 mm/yr). Despite being from a highly productive region, both cores contain relatively low concentrations of TOC, opal, and CaCO3, with total mean biogenic fractions of 7.38% and 6.67% for PS1410-08GC and -09GC, respectively, indicating significant terrigenous input throughout both records. Both cores show a decrease in bulk density and an increase in biogenic material from the MCA into the LIA at 1500 CE. A sharp increase in Monterey Bay bulk density after 1900 CE generally coincides with the onset of industrial-era warming in the SBB SST record. PS1410-09GC shifts toward higher opal concentrations after 1600 CE, which is similar to the onset of centennial-scale SST oscillations in SBB, suggestive of forcing mechanisms involving ocean-atmosphere interactions.

  9. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    PubMed

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P 2 O 5 and Mn with LOI and C org . Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au 0 particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Rontec PicoTAX x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the PicoTAX analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the PicoTAX analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was assessed by c

  11. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Oxford ED2000 x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ED2000 analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ED2000 analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was assessed by com

  12. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

    PubMed Central

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-01-01

    Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835

  13. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Innov-X XT400 Series (XT400) x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the XT400 analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the XT400 analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was as

  14. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    PubMed

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  15. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  16. Portable X-ray fluorescence for the detection of POP-BFRs in waste plastics.

    PubMed

    Sharkey, Martin; Abdallah, Mohamed Abou-Elwafa; Drage, Daniel S; Harrad, Stuart; Berresheim, Harald

    2018-05-17

    The purpose of this study was to establish the efficacy of portable X-ray fluorescence (XRF) instrumentation as a screening tool for a variety of end of life plastics which may contain excess amounts of brominated flame retardants (BFRs), in compliance with European Union (EU) and United Nations Environment Programme (UNEP) legislative limits (low POP concentration limits - LPCLs). 555 samples of waste plastics were collected from eight waste and recycling sites in Ireland, including waste electrical and electronic equipment (WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the results of which were statistically compared to mass spectrometry (MS)-based measurements of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. Regression between XRF and MS for WEEE samples shows that, despite an overall favourable trend, large deviations occur for a cluster of samples indicative of other bromine-based compounds in some samples; even compensating for false-positives due to background interference from electronic components, XRF tends to over-estimate MS-determined BFR concentrations in the 100 to 10,000 mg kg -1 range. Substantial deviations were additionally found between results for PUFs, textiles and polystyrene samples, with the XRF over-estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in these materials. XRF proved much more reliable as a "pass/fail" screening tool for LPCL compliance (including a prospective LPCL on Deca-BDE based on REACH). Using a conservative threshold of BFR content exceeding legislative limits (710 mg kg -1 bromine attributed to Penta-BDE), XRF mistakenly identifies only 6 % of samples (34/555) as exceeding legislative limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Location of core diagnostic information across various sequences in brain MRI and implications for efficiency of MRI scanner utilization.

    PubMed

    Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth

    2015-04-01

    Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.

  18. Integrated stratigraphy and astronomical tuning of Smirra cores, lower Eocene, Umbria-Marche basin, Italy.

    NASA Astrophysics Data System (ADS)

    Lauretano, Vittoria; Turtù, Antonio; Hilgen, Frits; Galeotti, Simone; Catanzariti, Rita; Reichart, Gert Jan; Lourens, Lucas J.

    2016-04-01

    The early Eocene represents an ideal case study to analyse the impact of increase global warming on the ocean-atmosphere system. During this time interval, the Earth's surface experienced a long-term warming trend that culminated in a period of sustained high temperatures called the Early Eocene Climatic Optimum (EECO). These perturbations of the ocean-atmosphere system involved the global carbon cycle and global temperatures and have been linked to orbital forcing. Unravelling this complex climatic system strictly depends on the availability of high-quality suitable geological records and accurate age models. However, discrepancies between the astrochronological and radioisotopic dating techniques complicate the development of a robust time scale for the early Eocene (49-54 Ma). Here we present the first magneto-, bio-, chemo- and cyclostratigraphic results of the drilling of the land-based Smirra section, in the Umbria Marche Basin. The sediments recovered at Smirra provide a remarkably well-preserved and undisturbed succession of the early Palaeogene pelagic stratigraphy. Bulk stable carbon isotope and X-Ray Fluorescence (XRF) scanning records are employed in the construction of an astronomically tuned age model for the time interval between ~49 and ~54 Ma based on the tuning to long-eccentricity. These results are then compared to the astronomical tuning of the benthic carbon isotope record of ODP Site 1263 to evaluate the different age model options and improve the time scale of the early Eocene by assessing the precise number of eccentricity-related cycles comprised in this critical interval.

  19. Proposal for a prototype of portable μXRF spectrometer

    NASA Astrophysics Data System (ADS)

    Polese, C.; Dabagov, S. B.; Esposito, A.; Liedl, A.; Hampai, D.; Bartùli, C.; Ferretti, M.

    2015-07-01

    μXRF is a powerful instrument for non-destructive characterization of materials of cultural interest. At the XLab Frascati Laboratory this technique is already well performed thanks to the polyCO set equipment allowing simultaneous μXRF 2D mapping. However, due to the strict demand for in situ analysis in this particular field, a new portable μXRF spectrometer equipped with a full polycapillary lens conjugated with a transmission anode X-ray tube is proposed. Many cultural objects are characterized by elements (Ag, Sn, etc.) with high energy fluorescence K-lines. Thus, the capability of a full lens to deliver a high energy fraction of X-ray spectrum, in order to excite the fluorescence K-lines of such elements, is tested.

  20. Sedimentological and geochemical characteristic of varved lake sediment of the Lake Jelonek (North Poland)

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Filbrandt-Czaja, A.; Ott, F.; Slowinski, M. M.; Tjallingii, R.; Błaszkiewicz, M.; Brauer, A.

    2016-12-01

    Lake Jelonek is located in Northern Poland. The lake covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. The cores were split in half, lithologically described, photographed and correlated with each other by 28 marker layers to construct a composite profile covering 1426cm. Here we present detailed varve micro-facies for different sediment intervals and the preliminary chronology based on AMS 14C dating of 10 terrestrial macro remains samples and the Askja AD-1875 tephra. Here we present initial results from thin section analyses for two intervals. First (I) the uppermost 0-256 cm and second (II) the interval from 768-1296 cm. Intercalated between these two varved interval is a thick section (512 cm) of homogeneous organic-ditomaceous sediments. We present varve micro-facies data in combination with µ-XRF element scanning for comprehensive reconstruction of the sedimentation processes in Lake Jelonek. Varve counting reveals that the lower floating varve interval covers the time period from 1850 - 10500 cal a BP, while the uppermost 256 cm varved sediments comprise ca 925 years (2008-1083 AD). The main goal is to synchronize the sediment record from Lake Jelonek with European and Worldly records, to achieve a comprehensive knowledge of landscape forming processes and to distinguish between local, regional and global impacts during the past. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415, National Science Centre, Poland grant 2015/19/N/ST10/02655 and from the Science and Research Funds for 2015-2016 allocated to a co-financed international project, CONTRACT No. 3500/ICLEA/15/2016/0.

  1. Mediterranean Outflow Water at the Pliocene/Pleistocene transition: New stratigraphic constraints from IODP Site U1389 (Gulf of Cadiz, IODP Expedition 339)

    NASA Astrophysics Data System (ADS)

    Grunert, Patrick; Balestra, Barbara; Auer, Gerald; Flores, José-Abel; Richter, Carl; García Gallardo, Ángela; Röhl, Ulla; Piller, Werner E.

    2016-04-01

    IODP Hole U1389E, at present located in the lower core of the Mediterranean Outflow Water (MOW) at 640m water depth in the northern Gulf of Cadiz, represents a key-site for the understanding of changes in MOW contribution to the North Atlantic during the late Pliocene and the transition into the Pleistocene ice house climate. Integrated geophysical, micropalaeontological and geochemical proxy records of the recovered sediments imply major changes in MOW strength over the studied interval. However, to consider these data in a broader paleoceanographic and paleoclimatic context, a well-constrained age model is essential. New bio-, chemo-, magnetostratigraphic data and XRF core-scanning suggest that the shipboard age model for the site has to be reconsidered as major changes in the depositional environment have not been recognized in the original, comparably low resolution data-sets. While the new, high-resolution biostratigraphic data confirm the overall time frame of 2.6 to 3.6 Myrs for the studied interval, they also indicate that the last occurrence of Discoaster tamalis in the succession should be reconsidered. New palaeomagnetic data constrain the Gauss normal chron and its subchrons more accurately. Finally, a high-resolution δ18O-record of the planktic foraminifer Globigerinoides ruber allows the identification of many marine isotopic chrons, further refining the stratigraphic framework. Cyclic patterns are recognized in the CaCO3 and TOC contents as well as Ca/Ti- and Zr/Al-ratios. A preliminary cyclostratigraphic analysis of these records in well-recovered intervals suggests an interplay of obliquity and precessional forcing reflected in a change from deposits strongly influenced by terrestrial input (3.0-2.8 Myrs) to deposits strongly affected by MOW (2.8-2.6 Myrs). This study contributes to project P25831-N29 of the Austrian Science Fund (FWF) and is financially supported by grants of ECORD and the Max Kade Foundation.

  2. Late Quaternary Palaeoceanographic Changes in Sea Surface Conditions in the Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Fischel, Andrea; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Nürnberg, Dirk

    2013-04-01

    Palaeoceanographic changes and the variability in surface water mass hydrography are reconstructed in order to track tropical ocean and climate variability and inter-hemispheric heat exchange through the last 42,000 year BP. Our studies are based on the relative abundance of planktonic foraminifera combined with sea surface temperature approximation based Mg/Ca measurements, XRF scanning and stable oxygen isotope analyses in a 5 m long gravity core Ga307-Win-12GC (17°50.80N, 64°48.7290W), retrieved in the Virgin Island Basin in approx. 3,960 m water depth. The Virgin Island Basin is the deepest part of the Anegada-Jungfern Passage in the northeast Caribbean, one of the most important pathways for water mass exchange between the Central Atlantic and the Caribbean Sea. Due to its bathymetry surface waters as well as deep water mass strata from the northern and southern hemisphere enter the basin, comprising Caribbean Surface Water (CSW), Antarctic Intermediate Water (AAIW), Atlantic Intermediate Water (AIW) and North Atlantic Deep Water (NADW). The planktonic foraminiferal assemblage suggests rather stable sea-surface conditions during the Holocene in the NE Caribbean. However, major changes in the hydrographic setting could be identified within the glacial period. During the glacial period, clear millennial-scale variability in sea-surface temperature and productivity are present. Fluctuations in the relative abundance of Globigerinoides ruber in the sediment core may be correlated to Dansgaard-Oeschger events in the northern North Atlantic. Furthermore an increase in relative abundance of Globorotalia rubescens occurs synchronous with ice rafted debris layers described from the North Atlantic. The faunal changes in the tropical Atlantic may thus be correlated to major climate changes in the North Atlantic, mainly D-O cyclicity as well as Heinrich events. Thus, the synchronous change in water mass distribution and hydrographic cyclicity suggests a possible linkage between tropical and North Atlantic Ocean variability during the Late Quaternary.

  3. Western Tropical Atlantic Hydrologic change during the last 130,000 years

    NASA Astrophysics Data System (ADS)

    McGrath, S. M.; Lavoie, N.; Oppo, D.

    2016-12-01

    Abrupt climate changes in the North Atlantic during the last 130,000 years are associated with hydrologic changes in the western tropical Atlantic Ocean. Previous studies on marine sediment cores from between 4°S and the equator have documented pulses of terrigenous sediment recording increased precipitation and weathering on the Brazilian Nordeste associated with Heinrich events. We worked on cores KNR197-3-11CDH (7°40'N, 53°49'W, water depth 550 m) and KNR 197-3-46CDH (7°50.1621'N, 53°39.8051'W, 947m water depth) located farther north along the South American continental slope, where sediment derives from the Amazon river basin and is transported by the North Brazilian Current. Preliminary stratigraphy based on magnetic susceptibility shows a possible correlation with the Greenland ice core δ18O stratigraphy. We use sediment elemental composition, determined by x-ray fluorescence (XRF) to evaluate variations in terrigenous sediment runoff and δ18O of the planktonic foraminifers Globierinoides ruber to evaluate variations in western tropical North Atlantic surface hydrography across North Atlantic abrupt climate events. Similarities and differences among our records and the records from the more southerly cores will help understand the mechanisms of hydrologic changes in the regions on abrupt climate time scales.

  4. Micro-XRF for In Situ Geological Exploration of Other Planets

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Hodyss, Robert P.; Allwood, Abigail C.; Gao, Ning; Kozaczek, Kris

    2013-01-01

    In situ analysis of rock chemistry is a fundamental tool for exploration of planets. To meet this need, a high-spatial-resolution micro x-ray fluorescence (Micro-XRF) instrument was developed that is capable of determining the elemental composition of rocks (elements Na U) with 100 microns spatial resolution, thus providing insight to the composition of features as small as sand grains and individual laminae. The resulting excitation beam is of sufficient intensity that high signal-to-noise punctual spectra are acquired in seconds to a few minutes using an Amptek Silicon Drift Detector (SDD). The instrument features a tightly focused x-ray tube and HVPS developed by Moxtek that provides up to 200 micro-A at 10 to 50 keV, with a custom polycapillary optic developed by XOS Inc. and integrated into a breadboard Micro-XRF (see figure). The total mass of the complete breadboard instrument is 2.76 kg, including mounting hardware, mounting plate, camera, laser, etc. A flight version of this instrument would require less than 5W nominal power and 1.5 kg mass. The instrument includes an Amptek SDD that draws 2.5 W and has a resolution of 135 to 155 eV FWHM at 5.9 keV. It weighs 180 g, including the preamplifier, digital pulse processor, multichannel analyzer, detector and preamp power supplies, and packaging. Rock samples are positioned relative to the instrument by a three-axis arm whose position is controlled by closed-loop translators (mimicking the robotic arm of a rover). The distance from the source to the detector is calculated from the position of a focused laser beam on the sample as imaged by the camera. The instrument enables quick scans of major elements in only 1 second, and rapid acquisition (30 s) of data with excellent signal-to-noise and energy resolution for trace element analysis

  5. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, Aaron L.; Narrows, William; Christian, Jonathan H.

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination.more » This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.« less

  6. An initial examination of carbonate production in the western equatorial Pacific: XRF results from the Pliocene-Pleistocene of IODP Site U1490

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Pliocene to recent (4-0 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Pliocene Warm Period, the initiation of Northern Hemisphere Glaciation, and the Mid-Pleistocene Transition. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Pliocene to recent sediment primarily consists of foraminifer-rich nannofossil ooze, with the sedimentation rate varying between 1.5 and 3 cm/kyr. Initial shipboard measurement of calcium carbonate content shows little variation at low resolution (1 sample every few meters), varying between 90 and 95 wt%. We collected X-ray fluorescence (XRF) data at 2 cm resolution along the composite stratigraphic section to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison between records obtained from these cores located in the western equatorial Pacific to those obtained in the eastern and central Pacific, which will better elucidate the nature of the carbon system during the Plio-Pleistocene.

  7. High-resolution stratigraphic analyses of Permian-Triassic core material recovered in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group

    2017-04-01

    The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic conditions. The maximum flooding surface is recorded 6 m above the base of the Vikinghøgda Formation, in the middle of the laminated black shale and indicates that the lower ash-layers are tied to igneous activity at a time of relatively high sea level. The remaining succession above the laminated black shale is an overall aggradational interval of interbedded clay- and siltstones of the Vikinghøgda Formation, marking the return of biological activity at its base. The Vikinghøgda Formation includes 18 preserved zircon-bearing ash-layers, providing an opportunity for accurate U/Pb dating. Detailed cyclostratigraphic analyses of the laminated black shale suggest a sedimentation rate of approximately 0.5 cm/kyr, and provides thus, together with the U/Pb zircon ages, a great tool for high-resolution documentation of the PTB interval.

  8. Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?

    NASA Astrophysics Data System (ADS)

    Westerhold, Thomas; Röhl, Ursula; Frederichs, Thomas; Agnini, Claudia; Raffi, Isabella; Zachos, James C.; Wilkens, Roy H.

    2017-09-01

    To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56-47.8 Ma) covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF) core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise), 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge) recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405 kyr eccentricity cyclostratigraphic framework was established, revealing a 300-400 kyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS). The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred ˜ 52 Ma. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised magnetostratigraphy provide robust ages and durations for Chrons C21n to C24n (47-54 Ma), revealing a major change in spreading rates in the interval from 51.0 to 52.5 Ma. This major change in spreading rates is synchronous with a global reorganization of the plate-mantle system and the chaotic diffusion of the planetary orbits. The newly provided YATS also includes new absolute ages for biostratigraphic events, magnetic polarity reversals, and early Eocene hyperthermal events. Our new bio- and magnetostratigraphically calibrated stable isotope compilation may act as a reference for further paleoclimate studies of the Ypresian, which is of special interest because of the outgoing warming and increasingly cooling phase. Finally, our approach of integrating the complex comprehensive data sets unearths some challenges and uncertainties but also validates the high potential of chemostratigraphy, magnetostratigraphy, and biostratigraphy in unprecedented detail being most significant for an accurate chronostratigraphy.

  9. The holy grail of soil metal contamination site assessment: reducing risk and increasing confidence of decision making using infield portable X-ray Fluorescence (pXRF) technology

    NASA Astrophysics Data System (ADS)

    Rouillon, M.; Taylor, M. P.; Dong, C.

    2016-12-01

    This research assesses the advantages of integrating field portable X-ray Fluorescence (pXRF) technology for reducing the risk and increase confidence of decision making for metal-contaminated site assessments. Metal-contaminated sites are often highly heterogeneous and require a high sampling density to accurately characterize the distribution and concentration of contaminants. The current regulatory assessment approaches rely on a small number of samples processed using standard wet-chemistry methods. In New South Wales (NSW), Australia, the current notification trigger for characterizing metal-contaminated sites require the upper 95% confidence interval of the site mean to equal or exceed the relevant guidelines. The method's low `minimum' sampling requirements can misclassify sites due to the heterogeneous nature of soil contamination, leading to inaccurate decision making. To address this issue, we propose integrating infield pXRF analysis with the established sampling method to overcome sampling limitations. This approach increases the minimum sampling resolution and reduces the 95% CI of the site mean. Infield pXRF analysis at contamination hotspots enhances sample resolution efficiently and without the need to return to the site. In this study, the current and proposed pXRF site assessment methods are compared at five heterogeneous metal-contaminated sites by analysing the spatial distribution of contaminants, 95% confidence intervals of site means, and the sampling and analysis uncertainty associated with each method. Finally, an analysis of costs associated with both the current and proposed methods is presented to demonstrate the advantages of incorporating pXRF into metal-contaminated site assessments. The data shows that pXRF integrated site assessments allows for faster, cost-efficient, characterisation of metal-contaminated sites with greater confidence for decision making.

  10. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites.

    PubMed

    Rouillon, Marek; Taylor, Mark P; Dong, Chenyin

    2017-10-01

    This study evaluates the in-situ use of field portable X-ray Fluorescence (pXRF) for metal-contaminated site assessments, and assesses the advantages of increased sampling to reduce risk, and increase confidence of decision making at a lower cost. Five metal-contaminated sites were assessed using both in-situ pXRF and ex-situ inductively coupled plasma mass spectrometry (ICP-MS) analyses at various sampling resolutions. Twenty second in-situ pXRF measurements of Mn, Zn and Pb were corrected using a subset of parallel ICP-MS measurements taken at each site. Field and analytical duplicates revealed sampling as the major contributor (>95% variation) to measurement uncertainties. This study shows that increased sampling led to several benefits including more representative site characterisation, higher soil-metal mapping resolution, reduced uncertainty around the site mean, and reduced sampling uncertainty. Real time pXRF data enabled efficient, on-site decision making for further judgemental sampling, without the need to return to the site. Additionally, in-situ pXRF was more cost effective than the current approach of ex-situ sampling and ICP-MS analysis, even with higher sampling at each site. Lastly, a probabilistic site assessment approach was applied to demonstrate the advantages of integrating estimated measurement uncertainties into site reporting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. XRF Experiment for Elementary Surface Analysis

    NASA Astrophysics Data System (ADS)

    Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.

    2014-04-01

    The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.

  12. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.

    PubMed

    Sterling, D A; Lewis, R D; Luke, D A; Shadel, B N

    2000-06-01

    Dust wipe samples collected in the field were tested by nondestructive X-ray fluorescence (XRF) followed by laboratory analysis with flame atomic absorption spectrophotometry (FAAS). Data were analyzed for precision and accuracy of measurement. Replicate samples with the XRF show high precision with an intraclass correlation coefficient (ICC) of 0.97 (P<0.0001) and an overall coefficient of variation of 11.6%. Paired comparison indicates no statistical difference (P=0.272) between XRF and FAAS analysis. Paired samples are highly correlated with an R(2) ranging between 0.89 for samples that contain paint chips and 0.93 for samples that do not contain paint chips. The ICC for absolute agreement between XRF and laboratory results was 0.95 (P<0.0001). The relative error over the concentration range of 25 to 14,200 microgram Pb is -12% (95% CI, -18 to -5). The XRF appears to be an excellent method for rapid on-site evaluation of dust wipes for clearance and risk assessment purposes, although there are indications of some confounding when paint chips are present. Copyright 2000 Academic Press.

  13. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  14. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence.

    PubMed

    O'Neil, Glen D; Newton, Mark E; Macpherson, Julie V

    2015-01-01

    The development and application of a new methodology, in situ electrochemical X-ray fluorescence (EC-XRF), is described that enables direct identification and quantification of heavy metals in solution. A freestanding film of boron-doped diamond serves as both an X-ray window and the electrode material. The electrode is biased at a suitable driving potential to electroplate metals from solution onto the electrode surface. Simultaneously, X-rays that pass through the back side of the electrode interrogate the time-dependent electrodeposition process by virtue of the XRF signals, which are unique to each metal. In this way it is possible to unambiguously identify which metals are in solution and relate the XRF signal intensity to a concentration of metal species in solution. To increase detection sensitivity and reduce detection times, solution is flown over the electrode surface by use of a wall-jet configuration. Initial studies focused on the in situ detection of Pb(2+), where concentration detection limits of 99 nM were established in this proof-of-concept study (although significantly lower values are anticipated with system refinement). This is more than 3 orders of magnitude lower than that achievable by XRF alone in a flowing solution (0.68 mM). In situ EC-XRF measurements were also carried out on a multimetal solution containing Hg(2+), Pb(2+), Cu(2+), Ni(2+), Zn(2+), and Fe(3+) (all at 10 μM concentration). Identification of five of these metals was possible in one simple measurement. In contrast, while anodic stripping voltammetry (ASV) also revealed five peaks, peak identification was not straightforward, requiring further experiments and prior knowledge of the metals in solution. Time-dependent EC-XRF nucleation data for the five metals, recorded simultaneously, demonstrated similar deposition rates. Studies are now underway to lower detection limits and provide a quantitative understanding of EC-XRF responses in real, multimetal solutions. Finally, the production of custom-designed portable in situ EC-XRF instrumentation will make heavy metal analysis at the source a very realistic possibility.

  15. Analytical methods to characterize heterogeneous raw material for thermal spray process: cored wire Inconel 625

    NASA Astrophysics Data System (ADS)

    Lindner, T.; Bonebeau, S.; Drehmann, R.; Grund, T.; Pawlowski, L.; Lampke, T.

    2016-03-01

    In wire arc spraying, the raw material needs to exhibit sufficient formability and ductility in order to be processed. By using an electrically conductive, metallic sheath, it is also possible to handle non-conductive and/or brittle materials such as ceramics. In comparison to massive wire, a cored wire has a heterogeneous material distribution. Due to this fact and the complex thermodynamic processes during wire arc spraying, it is very difficult to predict the resulting chemical composition in the coating with sufficient accuracy. An Inconel 625 cored wire was used to investigate this issue. In a comparative study, the analytical results of the raw material were compared to arc sprayed coatings and droplets, which were remelted in an arc furnace under argon atmosphere. Energy-dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) analysis were used to determine the chemical composition. The phase determination was performed by X-ray diffraction (XRD). The results were related to the manufacturer specifications and evaluated in respect to differences in the chemical composition. The comparison between the feedstock powder, the remelted droplets and the thermally sprayed coatings allows to evaluate the influence of the processing methods on the resulting chemical and phase composition.

  16. X-ray fluorescence analysis of wear metals in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Maddox, W. E.; Kelliher, W. C.

    1986-01-01

    Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.

  17. Surface-coated fly ash used as filler in biodegradable poly(vinyl alcohol) composite films: Part 1—The modification process

    NASA Astrophysics Data System (ADS)

    Nath, D. C. D.; Bandyopadhyay, S.; Gupta, S.; Yu, A.; Blackburn, D.; White, C.

    2010-02-01

    The surfaces of fly ash (FA) particles were modified by surfactant, sodium lauryl sulphate (SLS) and used in fabrication of composite films with polyvinyl alcohol (PVA). Both unmodified fly ash (FA) and modified fly ash (SLS-FA) samples were examined using a range of analytical tools including X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). The distribution patterns of SLS-FA particles were shifted to the higher regions compared to FA by adding 1.2-4.2 μm in the ranges between 2 and 25 μm, whereas the modification process reduced the size of the particles over 25 μm due to grinding during the activation process. The increased 1.2-4.2 μm in average can be considered the thickness of the surfactant on the SLS-FA surface. On the oxides based chemical analysis by XRF, the compositions were almost unchanged. SEM and TEM were visualised the irregular sizes morphology mostly spherical of the particles, although it is impossible to capture the images of exactly same particles in modified and unmodified forms. The composite films reinforced with SLS-FA showed 33% higher strength than those of FA filled films. The enhancement of tensile strength attributed from the level of physical bonding between SLS-FA and PVA surfaces.

  18. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  19. Identifying the source of fluvial terrace deposits using XRF scanning and Canonical Discriminant Analysis: A case study of the Chihshang terraces, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Queenie; Lee, Jian-Cheng; Hunag, Jyh-Jaan; Wei, Kuo-Yen; Chen, Yue-Gau; Byrne, Timothy B.

    2018-05-01

    The source of fluvial deposits in terraces provides important information about the catchment fluvial processes and landform evolution. In this study, we propose a novel approach that combines high-resolution Itrax-XRF scanning and Canonical Discriminant Analysis (CDA) to identify the source of fine-grained fluvial terrace deposits. We apply this approach to a group of terraces that are located on the hanging wall of the Chihshang Fault in eastern Taiwan with two possible sources, the Coastal Range on the east and the Central Range on the west. Our results of standard samples from the two potential sources show distinct ranges of canonical variables, which provided a better separation ability than individual chemical elements. We then tested the possibility of using this approach by applying it to several samples with known sediment sources and obtain positive results. Applying this same approach to the fine-grained sediments in Chihshang terraces indicates that they are mostly composed of Coastal Range material but also contain some inputs from the Central Range. In two lowest terraces T1 and T2, the fine-grained deposits show significant Central Range component. For terrace T4, the results show less Central Range input and a trend of decreasing Central Range influences up section. The Coastal Range material becomes dominant in the two highest terraces T7 and T10. Sediments in terrace T5 appear to have been potentially altered by post-deposition chemical alteration processes and are not included in the analysis. Our results show that the change in source material in the terraces deposits was relatively gradual rather than the sharp changes suggested by the composition of the gravels and conglomerates. We suggest that this change in sources is related to the change in dominant fluvial processes that controlled by the tectonic activity.

  20. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  1. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.

    PubMed

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-01

    This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC-MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Publications - GMC 354 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 354 Publication Details Title: XRF Analyses of Husky Oil NPR Operations Inc U.S. Geological Statewide Bibliographic Reference Advanced Instrumentation Laboratory, 2008, XRF Analyses of Husky Oil NPR

  3. Lake Biel Holocene sediment record before and after the Aare river deviation (1878 AD)

    NASA Astrophysics Data System (ADS)

    Jeannet, Alice; Corella, Juan Pablo; Kremer, Katrina; Girardclos, Stéphanie

    2014-05-01

    Lake sediments are excellent archives of environmental and climate changes as well as human impact on lake- and river-systems. Lake Biel is a medium-sized peri-alpine lake in Switzerland, with a maximum depth of 74 m, and lies at an altitude of 429 m a.s.l. Lake Biel, which formed during the Pleistocene by glacial erosion, is part of the Aare river system. Our study focuses on the south-west part of the lake basin where the lake sedimentation was originally (i.e. naturally) mainly controlled by autochthonous sedimentation. This area is currently under a strong influence of water and sediment input from this river catchment since the Aare river deviation through the Hagneck canal in 1878. A 10.05 m long composite sediment sequence, cored from a 52 m water depth in September 2011, was built from two long cores retrieved with the ETH Zurich/Eawag Uwitec system. A radiocarbon age model indicates that the retrieved sedimentary sequence spans the last 7500 years. The upper sediments were correlated to previous short core radionuclide stratigraphy for the 1.5 m upper part (Thevenon et al., 2013). Magnetic susceptibility and density were measured by Geotek MultiSensor Core Logger at 0.5 cm resolution. Granulometry was measured with a CILAS grain sizer every 10 cm, and X-ray fluorescence (XRF) was carried out using an Avaatech core scanner at 1-cm resolution. This technique provides semi-quantitative information of the sediment elemental composition and shows how runoff and river input (Ti, Al, Si) or redox conditions (Fe/Mn) vary through time. Lake Biel sediment record suggests marked environmental changes with runoff decrease linked to climate and vegetation change during Atlantic chronobiozone, as well as a complex climate-human impact during the 'La Tène' and Roman cultural times. The most prominent recorded feature is the 10-times increase of sediment rate that occurred after the Aare river deviation through the Hagneck canal into Lake Biel in 1878. This artificial new river input is also linked to a massive and sudden Ti increase, and inversely abrupt Ca decrease in XRF data. This record reveals the significant alteration in the sediment dynamics, and the lake oxygenation changes that the lake experienced when it shifted from a relatively closed basin to a river and delta-influenced basin. Thank you to Flavio S. Anselmetti, Christine Guido and Frédéric Arlaud for help coring on the field and Stefanie Wirth for help at Limnogeology Laboratory. This study, undertaken as a Master thesis, was financed by the Swiss National Foundation projects 121666 and 146889. Reference Thevenon F. et al. 2013. Human impact on the transport of terrigenous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquatic Sciences 75: 413-424.

  4. Acquiring Sediment and Element Compositional Changes Based on a Diffuse Reflectance Spectrophotometry Technology from Cores Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Pan, H. J.; Chen, M. T.

    2014-12-01

    Heavy summer monsoon rainfall along with typhoon-induced extreme precipitation cause frequent geological hazards that often threaten the human's safety and property in Taiwan. These geological hazards can be triggered by both natural factors, and/or have become deteriorated by perturbations from more and more human activities ever since few thousand years ago. However, due to the limit of instrumental records for observing long-term environmental changes in Taiwan, few evidence exist for distinguishing the human-induced impacts from natural climate change. Here we report a study on a high quality marine sediment core (MD103264) which were retrieved from the high sedimentation rate area from offshore southwestern Taiwan and present evidence for the long-term climate and possibly human-induced environmental changes since the last glacial. We are using the VIS-NIR Diffuse Reflectance Spectrophotometry (DRS) methods to study the cores. Interpreting the VIS-NIR reflectance spectra through the VARIMAX-rotation, principle component analysis (VPCA) helps conducting rapid and inexpensive measurements for acquiring high-resolution biogenic component, clay, and iron oxide mineral compositional data from the cores. We are also using X-Ray Fluorescence (XRF) analysis, which is also useful in determining the element compositional changes in the core. Our studies aim toward understanding the sediment and element compositional changes that reflect the patterns of changes in precipitation and soil erosion on land since the last glacial to the Holocene, during which the human activities (deforestation, agriculture, and land uses change) may have increased drastically. We will report and interpret the preliminary results of the optical analyses of the core.

  5. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  6. A 27 ka paleoenvironmental lake sediment record from Taro Co, central Tibetan Plateau: implications for the interplay between monsoon and the Westerlies

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ma, Q.; Huang, L.; Ju, J.; Guo, Y.; Lin, X.; Li, Y.; Zhu, L.

    2017-12-01

    The climate of Tibetan Plateau (TP) is mainly influenced by the Indian Ocean Summer Monsoon (IOSM) and the Westerlies. The interaction of these two air masses is therefore a crucial scientific issue to understand how they impact the climate in this area, especially in the geological times. However, constrained by the available archives, researches on this topic are still very few in the hinterland of the TP, especially covering the Last Glacial Maximum (LGM) period. Here we present a new lake sediment record retrieved from Taro Co covering the last 27 ka to elucidate how the IOSM and the Westerlies interact and the possible mechanisms. Taro Co (486 km2, Dmax: 132m, 4565 m a.s.l., currently closed), located on the central TP, is a fresh lake with the major supply from glaciers. Two parallel piston cores as well as several gravity cores were retrieved from the deepest parts. These cores were correlated based on high resolution XRF scanning and a continuous 1069 cm-long core was finally integrated. Chronology was determined by 210Pb, 137Cs and AMS 14C measurements. Multidiscipline analyses including grain size, total organic carbon (TOC), total nitrogen, diatom, ostracod, pollen and n-alkanes were accomplished to reconstruct paleoenvironmental changes. The lake level of Taro Co was low since 27 cal ka BP indicated by very coarse materials and diatom assemblages with gradually increased temperature and salinity (TOC and carbonate getting higher). The terrestrial water input decreased continuously reflected by such elements as Si, Ti, Fe, K. It is likely that there was a sedimentation gap between 961-954cm, corresponding to 23.4 to 18.6 cal ka BP probably demonstrated Taro Co was very shallow at that period. The first prominent abrupt change of most proxies was observed at 14.7 cal ka BP showing a great lake deepening which likely indicated an enhancement of IOSM. There were several spells with abrupt changes of cold/warm stages before the Holocene and the Younger Dryas event occurred at 11.8 cal ka BP. During the Holocene, carbonate dissolution was identified at 9.76 to 3.44 cal ka BP which indicated a high moisture availability hence high lake level even the lake became an open system. More detailed results and comparison with other studies are still in progress to have an insight into the record and its possible controlling mechanism.

  7. Determination of minor and trace elements concentration in kidney stones using elemental analysis techniques

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. The X-ray fluorescence (XRF) and neutron activation analysis (NAA) experiments were performed and different kidney stones were analyzed. The interactions of X-ray photons and neutrons with matter are complementary in nature, resulting in distinctly different materials detection. This is the first approach to utilize combined X-ray fluorescence and neutron activation analysis for a comprehensive analysis of the kideny stones. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. The use of open source program Python Multi-Channel Analyzer was utilized to unfold the XRF spectrum. A new type of experimental set-up was developed and utilized for XRF and NAA analysis of the kidney stone. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF and NAA technique. The elements which were identified from XRF technique are Br, Cu, Ga, Ge, Mo, Nb, Ni, Rb, Se, Sr, Y, Zr. And, by using Neutron Activation Analysis (NAA) are Au, Br, Ca, Er, Hg, I, K, Na, Pm, Sb, Sc, Sm, Tb, Yb, Zn. This thesis presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF and NAA instrumental activation analysis techniques.

  8. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    PubMed

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  9. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Astrophysics Data System (ADS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-09-01

    Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET.

  10. Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.

    NASA Astrophysics Data System (ADS)

    Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.

    2014-12-01

    The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).

  11. The dissolution kinetics of industrial brine sludge wastes from a chlor-alkali industry as a sorbent for wet flue gas desulfurization (FGD).

    PubMed

    Masilela, E; Lerotholi, L; Seodigeng, T; Rutto, H

    2018-02-01

    The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step. The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.

  12. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact

    NASA Astrophysics Data System (ADS)

    Longman, Jack; Veres, Daniel; Ersek, Vasile; Salzmann, Ulrich; Hubay, Katalin; Bormann, Marc; Wennrich, Volker; Schäbitz, Frank

    2017-07-01

    Reconstructions of dust flux have been used to produce valuable global records of changes in atmospheric circulation and aridity. These studies have highlighted the importance of atmospheric dust in marine and terrestrial biogeochemistry and nutrient cycling. By investigating a 10 800-year-long paleoclimate archive from the Eastern Carpathians (Romania) we present the first peat record of changing dust deposition over the Holocene for the Carpathian-Balkan region. Using qualitative (X-ray fluorescence (XRF) core scanning) and quantitative inductively coupled plasma optical emission spectrometer(ICP-OES) measurements of lithogenic (K, Si, Ti) elements, we identify 10 periods of major dust deposition between 9500-9200, 8400-8100, 7720-7250, 6350-5950, 5450-5050, 4130-3770, 3450-2850, 2000-1450, 800-620, and 60 cal yr BP to present. In addition, we used testate amoeba assemblages preserved within the peat to infer local palaeohydroclimatic conditions. Our record highlights several discrepancies between eastern and western European dust depositional records and the impact of highly complex hydrological regimes in the Carpathian region. Since 6100 cal yr BP, we find that the geochemical indicators of dust flux have become uncoupled from the local hydrology. This coincides with the appearance of millennial-scale cycles in the dust input and changes in geochemical composition of dust. We suggest that this is indicative of a shift in dust provenance from local-regional (likely loess-related) to distal (Saharan) sources, which coincide with the end of the African Humid Period and the onset of Saharan desertification.

  13. Patterns of volcanism, weathering, and climate history from high-resolution geochemistry of the BINGO core, Mono Lake, California, USA

    NASA Astrophysics Data System (ADS)

    Zimmerman, S. R.; Starratt, S.; Hemming, S. R.

    2012-12-01

    Mono Lake, California is a closed-basin lake on the east side of the Sierra Nevada, and inflow from snowmelt dominates the modern hydrology. Changes in wetness during the last glacial period (>12,000 years ago) and over the last 2,000 years have been extensively described, but are poorly known for the intervening period. We have recovered a 6.25 m-long core from ~3 m of water in the western embayment of Mono Lake, which is shown by initial radiocarbon dates to cover at least the last 10,000 years. The sediments of the core are variable, ranging from black to gray silts near the base, laminated olive-green silt through the center, to layers of peach-colored carbonate nodules interbedded with gray and olive silts and pea-green organic ooze. Volcanic tephras from <1 to 8 cm thick occur throughout. Results of 0.5 cm-resolution scanning-X-Ray fluoresence (XRF) analysis describe changes in lithology due to volcanism, erosion, and changing lake level and chemistry. Titanium (Ti) is chemically and biologically unreactive, and records the dominant input, from weathering of Sierra Nevada granite to the west and Miocene and Pliocene volcanic rocks of the Bodie and Adobe Hills to the north, east, and south. The rhyolitic tephras of the Mono-Inyo Craters are much lower in TiO2 than the bedrock (<0.1% vs. 1-2%), and are an unweathered source of K2O (3.5-5%), and thus form dramatic peaks in the K/Ti ratio. Calcium (Ca) and Sr are well correlated throughout the core, and normalization of both by K (detritus + tephra) corresponds with occurrence of carbonate-rich layers. These are a mixture of authigenic precipitates directly precipitated and eroded into the lake during periods of regression. The lowermost 1.5 m of the BINGO core contains the highest proportion of detrital input to Mono Lake over the last ~12,000 years, recorded by high Si, Ti, K, and Fe, in black to dark-gray, fine-grained silts above 10 cm of pure light gray silt. Based on radiocarbon dates of >10,000 calibrated years before present (cal yr BP) higher in the core, and significant disruption of the fine layers, this interval likely indicates a relatively deep lake persisting into the early Holocene, after the initial dramatic regression from late Pleistocene levels. The finely laminated olive-green silt of the period ~10,700 to ~7500 cal yr BP is very homogenous chemically, probably indicating a stable, stratified lake and a relatively wet climate. This section merits mm-scale scanning and petrographic examination in the future. The upper boundary of the laminated section shows rising Ca/K and decreasing Ti and Si/K, marking the appearance of authigenic carbonate layers. After ~7500 cal yr BP, the sediment in BINGO becomes highly variable, with increased occurrence of tephra layers and carbonate, indicating a lower and more variable lake level. A short interval of olive-green, laminated fine sand/silt just above a radiocarbon date of 3870 ± 360 cal yr BP may record the Dechambeau Ranch highstand of Stine (1990; PPP v. 78 pp 333-381), and is marked by a distinct low in Ca/K, lasting ~1000 years. The low terminates in a dramatic rise in Ca/K to some of the highest levels in the core, suggesting a period of ~1000 years of extremely dry climate, dwarfing all of the variability in Ca/K, and likely lake level, over the last 2000 years.

  14. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  15. Global warming stops in Altai and Northern Mongolia in 2010-2015.

    NASA Astrophysics Data System (ADS)

    Darin, A.; Kalugin, I.; Maksimov, M.

    2010-03-01

    We studied the cores of bottom sediments of Lake Teletskoe (Mountain Altai) [1] and Lake Telmen (Northern Mongolia) [2]. The method of constructing the forecast includes the following steps: 1) Geochemical analysis of lakes bottom sediment cores with spatial resolution 0.1 mm using synchrotron radiation [3]. It corresponds to the time resolution ~ 0.2-0.3 year (sedimentation rates are equal 0.51 mm/year for Teletskoe Lake and 0.64 mm/year for Telmen Lake). 2) Creating a time series of geochemical indicators of climate change.We used the following geochemical proxies: Ti, Br, Rb, Sr, Mo contents and X-ray density. 3) Calibration transfer functions on the regional meteodata during the last 80-120 years. Regression equation such as: annual T = function (proxy) were calculated. 4) Reconstruction of climatic parameters on the depth of the core. Annual temperature change for the Altai region (0 - 3000 years ago) and Northern Mongolia region (0 - 2000 years ago) have been reconstructed with time resolution ~ 0.2-0.3 year. 5) A Fourier analysis showed the same frequency of climate change for both regions. Have been identified as the main periods (frequency): 2750, 1500, 1015, 825, 615, 500, 375, 325, 290, 230, 215, 203, 190, 157, 135, 109, 88, 65, 48, 37, 24 and 10 years. The sum of 22 sinusoid correlates with the reconstruction of annual temperature with the coefficient +0.87 (for more than 3000 points). 6) Based on the discovered periodicities forecast the environment change for the period 2010-2050 was calculated. According to our estimates at this time is expected sharp fall of annual regional temperature. The study was funded by grant 09-05-13505 from the Russian Foundation for Basic Research, by grant 92 from the Siberian Branch of the Russian Academy of Sciences. [1] I.A.Kalugin et all. Rhythmic fine-grained sediment deposition in Lake Teletskoye... Quaternary International, 136 (2005), 5-13. [2] S. J. Fowell et all. Mid to late Holocene climate evolution of the Lake Telmen Basin . . . // Quaternary Research 59 (2003) 353-363 [3] A. Daryin et all. Use of a scanning XRF analysis on SR beams from VEPP-3 storage ...// Nucl. Instrum. and Methods in Physics Research A 543 (2005) 255-258.

  16. Hydroclimatic variability in the Levant during the early last glacial (∼ 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.

    2015-08-01

    The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by μXRF scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca 117-75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several meters thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ∼110-108 ± 5 and ∼93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during MIS 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in-situ beach deposit. Two intervals of higher lake stands at ∼108-93 ± 6 and ∼87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and GI 24 + 23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.

  17. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  18. Elemental analysis using ED-XRF and 14C dating of Cuman wall paintings samples

    NASA Astrophysics Data System (ADS)

    Brocchieri, J.; Sabbarese, C.; Marzaioli, F.; Passariello, I.; Terrasi, F.; De Maio, C.; Ferrara, L.

    2018-04-01

    The aim of the present research was to analyse pigments and mortars of fresco fragments located at Cuma (Naples, Italy). The ED-XRF technique and 14C dating were used to establish the nature of the pigments and the age of mortars, respectively. ED-XRF results allowed to determine the elemental composition of the pigments that identified the colours and, hence, the historical period of completion. The 14C dating, applied to mortars using a particular preparation, provided results that are in accordance with the archaeological information within the 2σ interval range.

  19. Iron meteorite fragment studied by atomic and nuclear analytical methods

    NASA Astrophysics Data System (ADS)

    Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel

    2016-10-01

    Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.

  20. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  1. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  2. In vivo X-ray fluorescence of lead in bone: review and current issues.

    PubMed Central

    Todd, A C; Chettle, D R

    1994-01-01

    Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846

  3. Investigating Eastern Equatorial Pacific Export Production and Carbonate Dissolution with XRF Core Scanning at ODP Site 846 Over the Last 5 Million Years

    NASA Astrophysics Data System (ADS)

    Jones, C.; Robinson, R. S.

    2015-12-01

    Coastal and equatorial upwelling in the Eastern Equatorial Pacific (EEP) are responsible for about 10% of the ocean's total production. The deep, cold, nutrient-rich waters supplied by upwelling originate in high latitudes, linking changes at high latitudes to the tropics. The Pliocene/Pleistocene transition which started around 2.7-3 million years ago (Ma) marked a period of higher variability in biological production and sea surface temperatures dominated by glacial/interglacial cycles. In addition, secular changes in the development of both Walker and Hadley cells appear to have impacted the strength of equatorial upwelling. However, the large positive production excursions, such as those found from 1.6 to 2.2 Ma, remain only moderately well characterized and both changes in high latitude nutrient supply and regional upwelling strength are implicated. ODP Site 846 is located in the heart of the EEP upwelling cold tongue and has ideal characteristics for examining these links and excursions. We present high-resolution (~0.5 ky) X-Ray Fluorescence (XRF) chemical profiles of Ca, Si, Ba, Mn, Fe, Al, and Ti, as well as a total nitrogen (TN%) record for the last 5 million years from ODP Site 846. We use these high resolution profiles in conjunction with other regional data to assess biogeochemical processes in the EEP over the last 5 million years. CaCO3 and SiO2 are the two dominant biogenic components and account for more than 95% of the sediment. BaSO4 and the discrete TN% measurements record total productivity. MnO and Fe2O3 are redox-sensitive species and are particularly suited to tracing dissolution related to excess bottom-water metabolic processes driven by high export production at the high-alkalinity Site 846. Al2O3 and TiO2 are tracers of terrigenous input. A transition between low amplitude and high amplitude carbonate cycles occurs at 2.8 Ma, coinciding with the Pliocene/Pleistocene transition to higher amplitude glacial cycles. Notable excursions from the baseline high carbonate system occur between 3.8 and 4.2 Ma, between 1.6 and 2.2 Ma, at 0.75 Ma, and within the last 0.1 Ma. These excursions are explored, and causes include heavy contributions from productivity-driven dissolution, some extended instances of CCD-driven dissolution and shifts in overlying productivity towards diatoms.

  4. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at; Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at; Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television setsmore » (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.« less

  5. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.

  6. Unravelling the Paleoenvironmental and Diagenetic History of Fluviolacustrine Sediments from a Northern Kenya Rift Basin Through Analysis of HSPDP West Turkana-Kaitio Core Material

    NASA Astrophysics Data System (ADS)

    Rabideaux, N. M.; Chaudhary, M. S.; Deocampo, D.; Feibel, C. S.; Cohen, A. S.

    2016-12-01

    The Hominin Sites and Paleolakes Drilling Project (HSPDP) collected sediment cores from six rift basins in Ethiopia and Kenya. The goal of HSPDP is to construct high-resolution records of environmental change, and to understand how those changes relate to early human evolution and cultural adaptations. The West Turkana-Kaitio (WTK) site was targeted due to the abundant archeological and paleontological artifacts and fossils discovered around the basin. We conducted XRD and XRF analyses on HSPDP-WTK core material to construct a high-resolution record of paleoenvironmental conditions in the Kenya Rift during the Early Pleistocene ( 1.9-1.35 Ma). Mineralogical and geochemical trends were also used to identify the diagenetic history of fluviolacustrine sediments in the basin. The bulk mineralogy is comprised of mostly detrital feldspars, muscovite, α-quartz, and carbonates. Zeolites are present in intervals throughout the core, possibly suggesting pulses of increased salinity. Oxides and S-bearing minerals are abundant from 100-170 mbs, which may be indicative of redox and or hydrothermal processes in that interval. The lowermost portion of the core contains α- and β-quartz, pyrite and zeolites, suggesting either low-oxygen saline conditions or hydrothermal activity. Oriented clay analysis indicated multiple intervals of diagenesis, with the illitization of smectite related to hydrothermal and or microbial activity. Clay analysis provided evidence for a low degree of illitization in the upper portion of the core, whereas mixed-layered illite-smectite (I/S) contained 30-50% illite proximal to fault breccia and up to 70% illite below the faulted section, indicative of significant alteration in the lowermost portion of the core. Coupled mineralogical and geochemical analysis revealed a complex alteration history in the basin indicated by: 1) the presence of mixed-layer I/S throughout the 216 m core; 2) pronounced alteration proximal to faulting; and 3) authigenic silicates and pyrite in the basal section of the core.

  7. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.

    PubMed

    Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio

    2016-06-01

    In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

  8. Application of micro-X-ray fluorescence to chemical mapping of polar ice

    NASA Astrophysics Data System (ADS)

    Fourcade, M. C. Morel; Barnola, J. M.; Susini, J.; Baker, R.; Durand, G.; de Angelis, M.; Duval, P.

    Synchrotron-based micro-X-ray fluorescence (μXRF) equipment has been used to analyze impurities in polar ice. A customized sample holder has been developed and the μXRF equipment has been adapted with a thermal control system to keep samples unaltered during analyses. Artificial ice samples prepared from ultra-pure water were analyzed to investigate possible contamination and/or experimental artefacts. Analyses of polar ice from Antarctica (Dome C and Vostok) confirm this μXRF technique is non-destructive and sensitive. Experiments can be reproduced to confirm or refine results by focusing on interesting spots such as crystal grain boundaries or specific inclusions. Integration times and resolution can be adjusted to optimize sensitivity. Investigation of unstable particles is possible due to the short analysis time. In addition to identification of elements in impurities, μXRF is able to determine their speciations. The accuracy and reliability of the results confirm the potential of this technique for research in glaciology.

  9. EUTERPE, a small electron storage ring for XRF

    NASA Astrophysics Data System (ADS)

    Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.

    1990-04-01

    A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.

  10. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE PAGES

    Sarrazin, P.; Blake, D.; Gailhanou, M.; ...

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  11. Polycapillary based μXRF station for 3D colour tomography

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Cherepennikov, Yu. M.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Azzutti, C.; Gladkikh, Yu. P.; Marcelli, A.; Dabagov, S. B.

    2018-04-01

    The "Rainbow X-Ray" (RXR) experimental station at XLab Frascati of the Frascati's National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energies. The confocal geometry combined with a 3-axes fine motion system makes possible 3D μXRF elemental tomographic acquisitions (colour tomography). At present this station in operation at high XRF energies is used for cultural heritage and geological applications. We present and discuss here the analytical performances of this experimental station pointing out the advantages in different application areas.

  12. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  13. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrazin, P.; Blake, D.; Gailhanou, M.

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  14. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.

    Rice husk was thermally decomposed to yield powder composed of silica (SiO{sub 2}). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO{sub 2}) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO{sub 2}) and Amorphous Rice Husk Silica (A-RHSiO{sub 2}). Moreover, it was found that SS-SiO{sub 2} was ofmore » Quartz phase, C-RHSiO{sub 2} was of Trydimite and Cristobalite. Through XRF detection, the highest SiO{sub 2} purity was detected in SS-SiO{sub 2} followed by C-RHSiO{sub 2} and A-RHSiO{sub 2} with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO{sub 2}) bonding 1056, 1064, 1047, 777, 790 and 798 cm{sup −1}) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO{sub 2} at the wavelength of 620 cm{sup −1}. Morphological features as observed by FESEM analyses confirmed that, SS-SiO{sub 2} and C-RH SiO{sub 2} showed prominent coarse granular morphology.« less

  16. µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS

    EPA Science Inventory

    Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...

  17. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  18. Final report: Mapping Interactions in Hybrid Systems with Active Scanning Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezovsky, Jesse

    2017-09-29

    This project aimed to study and map interactions between components of hybrid nanodevices using a novel scanning probe approach. To enable this work, we initially constructed a flexible experimental apparatus allowing for simultaneous scanning probe and confocal optical microscopy measurements. This setup was first used for all-optical measurements of nanostructures, with the focus then shifting to hybrid devices in which single coherent electron spins are coupled to micron-scale ferromagnetic elements, which may prove useful for addressing single spins, enhanced sensing, or spin-wave-mediated coupling of spins for quantum information applications. A significant breakthrough was the realization that it is not necessarymore » to fabricate a magnetic structure on a scanning probe – instead a ferromagnetic vortex core can act as an integrated, solid state, scanning probe. The core of the vortex produces a very strong, localized fringe field which can be used analogously to an MFM tip. Unlike a traditional MFM tip, however, the vortex core is scanned within an integrated device (eliminating drift), and can be moved on vastly faster timescales. This approach allows the detailed investigation of interactions between single spins and complex driven ferromagnetic dynamics.« less

  19. In situ insights to Se (S) partitioning between silicate and metallic melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Borchert, M.; Petitgirard, S.; Appel, K.; Watenphul, A.; Morgenroth, W.

    2012-12-01

    The Earth's core mainly consists of a metallic Fe-Ni mixture. However, seismic observations show that the density is about 5-10% lower than expected for an Fe-Ni alloy under similar pressure and temperature conditions (e.g., [1,2]). This discovery initiated numerous studies to identify and quantify light elements in the Earth0s core. Among others, sulphur has been suggested to be a promisingly candidate to alloy with the metallic core because of its depletion in the crust and the mantle relative to other volatile elements by several orders of magnitude (e.g., [3-5]). In the last decades, several experimental studies have aimed to quantify the sulphur content in the Earth's core and to determine its influence on the physical properties (e.g., [6]). However, experimental data on sulphur partitioning between silicate and metallic liquids at pressures and temperatures relevant for core-mantle boundary conditions are missing. This lack is due to pressure and temperature limitations of conventional experimental approaches (up to 25 GPa and 2200 K). New developments, like laser-heated diamond-anvil cells (LDAC), allow studies at core-mantle boundary conditions, but in-situ chemical analysis of sulphur in LDACs is impossible due to the high absorption of S fluorescence in the diamonds. Instead of sulphur, selenium can be used to model sulphur partitioning between silicate and metallic melts at elevated PT conditions. This is based on the fact that sulphur and selenium can be considered as geochemical twins ([7,8]). The main advantage of this approach is the much higher excitation energy of selenium compared to sulphur, which enables in-situ XRF analysis in LDACs. Here, we present preliminary data on Se partitioning between silicate and metallic melt at extreme conditions. The experiments have been performed in double-sided laser-heated LDACs at the high pressure beamlines P02.2 (DESY, Germany) and ID27 (ESRF, France) as described in [9]. Micro-XRF mappings are used to visualise changes of the Se distribution before and after laser heating. Micro-XRD is used to determine the experimental pressure, the onset of melting and also provides information on distribution of high-pressure / high temperature phases (XRD map). In order to fully apply the observed in-situ Se results to the S partitioning, the recovered samples will be additionally analysed ex-situ for Se and S by EMP, SEM and HRTEM. This will also set constraints on the effect of quenching. [1] Birch (1952) J. Geophys. Res. 57, 227-286. [2] McDonough (2003) Treatise on Geochemistry, Vol. 2, pp. 547-568. [3] Manson (1966) Nature 211, 616-618. [4] Rama Murthy and Hall (1970) Phys. Earth. Planet. Inter. 2, 276-282. [5] Dreibus and Palme (1996) Geochim. Cosmochim Acta. 60, 1125-1130. [6] Morard et al. (2008) Earth. Planet Sci Lett. 272, 620-626. [7] Jenner et al. (2009) Geostand. Geoanal. Res. 33, 309-317. [8] Wykes et al. (2010) Ontario Geological Survey, Miscellaneous Release-Data 269. [9] Petitgirard et al. (2012) Rev. Sci. Instrum. 83, 013904.

  20. DELAMINATION AND XRF ANALYSIS OF NIST LEAD IN PAINT FILM STANDARDS

    EPA Science Inventory

    The objectives of this protocol were to remove the laminate coating from lead paint film standards acquired from NIST by means of surface heating. The average XRF value did not change after removal of the polymer coating suggesting that this protocol is satisfactory for renderin...

  1. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  2. Nanoscopium: a Scanning Hard X-ray Nanoprobe Beamline at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Polack, F.; Moreno, T.

    2010-06-01

    Nanoscopium is the single scanning hard X-ray nano-probe beamline planned at SOLEIL. This ˜155 m long beamline will fully exploit the high brilliance and coherence characteristics of the X-ray beam both for diffraction limited focusing and for contrast formation. It will offer the most advanced imaging techniques in multimodal mode and will be a research tool for a wide user community working in the fields of earth-, environmental-, and life-sciences. The different μ-μnano-probe techniques offered by the beamline will permit elemental mapping at trace (ppm) levels (scanning XRF), speciation mapping (XANES), phase gradient mapping (scanning differential phase contrast), and density-contrast based imaging of internal structures (coherent diffraction imaging) in the 30 nm to 1 μm spatial resolution range, also in "in situ conditions". Nanoscopium will cover the 5-20 keV energy range. The stability of the nanobeam will be ensured by horizontally reflecting beamline optics (a sagitally and a tangentially pre-focusing mirror, horizontally reflecting monochromators) in front of the overfilled secondary source. Trade-off between high energy resolution (ΔE/E˜10-4) and high flux (1011 ph/s with ΔE/E˜10-2) will be achieved by two interchangeable monochromators (a double crystal and a double multilayer one). KB mirror and FZP lenses will be used as focusing devices. The beamline is in the design and construction phase. It is foreseen to be open for users at the beginning of 2013.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Noriyuki, E-mail: noriyuki.igarashi@kek.jp; Nitani, Hiroaki; Takeichi, Yasuo

    BL-15A is a new x-ray undulator beamline at the Photon Factory. It will be dedicated to two independent research activities, simultaneous XAFS/XRF/XRD experiments, and SAXS/WAXS/GI-SAXS studies. In order to supply a choice of micro-focus, low-divergence and collimated beams, a double surface bimorph mirror was recently developed. To achieve further mirror surface optimization, the pencil beam scanning method was applied for “in-situ” beam inspection and the Inverse Matrix method was used for determination of optimal voltages on the piezoelectric actuators. The corrected beam profiles at every focal spot gave good agreement with the theoretical values and the resultant beam performance ismore » promising for both techniques. Quick and stable switching between highly focused and intense collimated beams was established using this new mirror with the simple motorized stages.« less

  4. Silver/oxygen depth profile in coins by using laser ablation, mass quadrupole spectrometer and X-rays fluorescence

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Caridi, F.; Sayed, R.; Gentile, C.; Mondio, G.; Serafino, T.; Castrizio, E. D.

    2013-05-01

    Silver coins belonging to different historical periods were investigated to determine the Ag/O atomic ratio depth profiles. Laser ablation has been employed to remove, in high vacuum, the first superficial layers of the coins. Mass quadrupole spectrometry has been used to detect the Ag and the O atomic elements vaporized from the coin surface. The depth profile allowed to determine the thickness of the oxidation layer indicating that, in general, it is high in old coins. A complementary technique, using scanning electron microscope and the associated XRF microprobe, have been devoted to confirm the measurements of Ag/O atomic ratio measured with the laser-coupled mass spectrometry. The oxidation layer thicknesses range between about 25 and 250 microns.

  5. Physicochemical characterisation of natural K-clinoptilolite and heavy-metal forms from Gördes (Manisa, western Turkey)

    NASA Astrophysics Data System (ADS)

    Ünaldı, Tevfik; Mızrak, İbrahim; Kadir, Selahattin

    2013-12-01

    Physicochemical characterisation of natural K-clinoptilolite and heavy-metal (Ag+, Cd2+, Cr3+ and Co3+) forms was accomplished through ion exchange by batch, X-ray diffractometric (XRD), X-ray fluorescence (XRF), infrared-spectral (FT-IR), differential thermal analysis-thermal gravimetric (DTA-TG) and scanning-electron microscopic (SEM) methods. Increasing the normality in the cases of heavy-metal forms resulted in decrease in crystallinity and increases in unit-cell volume, rate of ion exchange, and percentage of ion selectivity. In this study, the order of ion-selectivity percentages (rather than ion selectivity) of heavy-metal forms was determined to be Ag+ > Cd2+ > Cr3+ > Co3+. This finding is consistent with the results of worldwide research on the order of ion selectivity in modified clinoptilolite.

  6. Late Pleistocene-Holocene phytoplankton productivity in the Gulf of Alaska, IODP Site U1419

    NASA Astrophysics Data System (ADS)

    LeVay, L. J.; Romero, O. E.; McClymont, E.; Müller, J.; Penkrot, M. L.; Jaeger, J. M.; Mix, A.; Walczak, M.

    2016-12-01

    The modern Gulf of Alaska (GoA) is a high-nutrient, low-chlorophyll region that is iron-limited; however, the coastal region of Alaska is macronutrient-limited. Vertical mixing of these shallow coastal and deep basinal waters produce high seasonal productivity across the shelf. Previous studies on the Alaskan shelf showed that productivity varied across the Pleistocene-Holocene transition, likely related to climate and sea level change that brought nutrients from estuaries into the Gulf. Here we explore an extended record through the Late Pleistocene-Holocene to reconstruct the productivity of phytoplankton groups in the GoA and to understand the impact of glacial/interglacial climates on primary production and nutrient availability near the shelf. International Ocean Discovery Program (IODP) Site U1419 was cored during Expedition 341 on the upper continental slope in the GoA. A high-resolution sedimentary sequence was recovered that records Late Pleistocene-Holocene glacial and paleoceanographic dynamics. Both calcareous nannoplankton and diatoms are well-represented at Site U1419. Very few studies have explored the competition of these two phytoplankton groups in the geologic record. Because calcareous nannoplankton and diatoms favor differing nutrient conditions, changes in their abundance can aid in reconstructing shifts in primary productivity as well as the causes, such as stratification or nutrient limitation. We present a multi-proxy record, including the group and species abundance of diatoms and calcareous nannoplankton, biogenic bulk components content, alkenone-based sea surface temperatures, and XRF core scanning elemental composition, which is used to interpret fluctuations in phytoplankton and identify the underlying causes. Initial results show the group abundance of nannoplankton and diatoms fluctuates greatly and appears to covary. Calcareous nannoplankton abundance increases with sea surface temperature and is related to higher alkenone concentrations in the sediments. The occurrence of diatoms is sporadic and could be linked to silica-limitation in surface waters. These findings will provide new insights into the processes governing fossil phytoplankton interactions and how this affects production and carbon cycling on the shelf.

  7. Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years

    NASA Astrophysics Data System (ADS)

    Zielhofer, Christoph; Fletcher, William J.; Mischke, Steffen; De Batist, Marc; Campbell, Jennifer F. E.; Joannin, Sebastien; Tjallingii, Rik; El Hamouti, Najib; Junginger, Annett; Stele, Andreas; Bussmann, Jens; Schneider, Birgit; Lauer, Tobias; Spitzer, Katrin; Strupler, Michael; Brachert, Thomas; Mikdad, Abdeslam

    2017-02-01

    The limited availability of high-resolution continuous archives, insufficient chronological control, and complex hydro-climatic forcing mechanisms lead to many uncertainties in palaeo-hydrological reconstructions for the Western Mediterranean. In this study we present a newly recovered 19.63 m long core from Lake Sidi Ali in the North African Middle Atlas, a transition zone of Atlantic, Western Mediterranean and Saharan air mass trajectories. With a multi-proxy approach based on magnetic susceptibility, carbonate and total organic C content, core-scanning and quantitative XRF, stable isotopes of ostracod shells, charcoal counts, Cedrus pollen abundance, and a first set of diatom data, we reconstruct Western Mediterranean hydro-climatic variability, seasonality and forcing mechanisms during the last 12,000 yr. A robust chronological model based on AMS 14C dated pollen concentrates supports our high-resolution multi-proxy study. Long-term trends reveal low lake levels at the end of the Younger Dryas, during the mid-Holocene interval 6.6 to 5.4 cal ka BP, and during the last 3000 years. In contrast, lake levels are mostly high during the Early and Mid-Holocene. The record also shows sub-millennial- to centennial-scale decreases in Western Mediterranean winter rain at 11.4, 10.3, 9.2, 8.2, 7.2, 6.6, 6.0, 5.4, 5.0, 4.4, 3.5, 2.9, 2.2, 1.9, 1.7, 1.5, 1.0, 0.7, and 0.2 cal ka BP. Early Holocene winter rain minima are in phase with cooling events and millennial-scale meltwater discharges in the sub-polar North Atlantic. Our proxy parameters do not show so far a clear impact of Saharan air masses on Mediterranean hydro-climate in North Africa. However, a significant hydro-climatic shift at the end of the African Humid Period (∼5 ka) indicates a change in climate forcing mechanisms. The Late Holocene climate variability in the Middle Atlas features a multi-centennial-scale NAO-type pattern, with Atlantic cooling and Western Mediterranean winter rain maxima generally associated with solar minima.

  8. Archimedes Brought to Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, U.; /SLAC, SSRL

    Just over 100 years ago in the summer of 1906, a Danish scholar called Johan Ludvig Heiberg travelled to the famous Metochion library of the Church of the Holy Sepulcher in Constantinople. He had got wind of an intriguing medieval prayer book that had recently been found at the library, and which contained a series of Christian prayers written on parchment recycled from older books. But underneath the scrawlings of a 13th-century medieval monk, the battered manuscript also appeared to contain some strange Greek writing as well as mysterious drawings and mathematical symbols. When Heiberg saw the book, he soonmore » realized that the hidden material in fact contained the thoughts of Archimedes of Syracuse (287-212 BC) - one of the greatest thinkers of the ancient world. It was in November 2003, while on my way to a conference in Germany, that I first realized that the technique might help to uncover the hidden writings in the Archimedes Palimpsest. I had been reading an article in the German magazine GEO about the manuscript and, having previously used X-rays to detect metals in biological systems, realized that XRF could help to detect iron and other common elements in the ink. I immediately e-mailed Abigail Quandt, a conservator at the Walters Art Museum, who was part of a team that had been put in charge of the Archimedes manuscript. I was delighted to find that the team, led by her colleague William Noel, was looking for new ways to study this ancient book. Indeed, it turned out that two other researchers - Gene Hall from Rutgers University and Bob Morton from the oil firm ConocoPhillips - had also suggested using XRF imaging. Another team member - Johns Hopkins University physicist Bill Christens-Barry - had already been thinking of using X-rays too. In March 2004 Hall and the team carried out the first tests on the Palimpsest using X-rays from a commercial generator. Although these tests were promising, the results confirmed my belief that synchrotron radiation could be much better because it would allow the book to be scanned much faster and with higher resolution. Indeed, I had already begun collaborating with my SLAC colleague Martin George, who helped to develop an XRF system that could image and scan the Palimpsest at high speed. It consisted of a computer-controlled stage that could hold a single leaf from the book and be moved from side to side so that the X-ray beam from SLAC's powerful SPEAR3 accelerator could be scanned across the sample. A 2D image of the page could then be built up by plotting the intensity of the fluorescent X-rays at a particular energy. The problem with imaging a delicate object like the Palimpsest using intense beams of X-rays is that it can be damaged if exposed for too long. Working with Gregory Young from the Conservation Institute in Ottawa, Canada, we carried out tests on a piece of parchment from a will written in 1870 that had been given to us by Quandt at the Walters Art Museum from her private collection. We found that if the parchment is moved sufficiently quickly so that the beam dwells for no longer than 0.1 s on every area through which it is passing, then no measurable damage occurs to the document's fibers. The only snag was that when the beam reached the edges of a particular line of the document, the stage holding the individual pages had to stop briefly and step down to the next line - a process that could take as long as 1 s. To avoid overexposure during these stops, we added a fast pneumatic beam shutter to the computerized scanning system, which remained open only when the parchment was moving. Our tests at SLAC proved so successful that we were able to persuade the Archimedes team to let us use our equipment on the real Palimpsest. The team arrived in May 2005 with 3 test pages and we were soon able to image half of one page at a resolution of 250 dots per centimeter in just 30 hours (Nature 435 257). We then used algorithms developed by Keith Knox, a physicist from Boeing, to convert the raw data into 2D images. In all of our measurements we were most interested in the fluorescence from iron, which is the most common element in the ink. But by placing suitable electronic 'windows' on the detector, we were able to simultaneously also record the signal from other elements, including calcium, zinc, barium and copper. The iron XRF image clearly revealed Archimedes writing under one of the forged paintings that had been added in the 20th century and - in the next two runs during March and August last year - we were able to scan various texts that could not be revealed with other techniques as well as some writings that do not appear anywhere else. By installing better detectors and by including a new readout system that had been developed by our colleague Alex Garachtchenko, we can now scan a whole page in just 12 hours with the X-ray beam sweeping over each 40 {micro}m2 area of the sample in just 3 ms.« less

  9. Using Instruments as Applied Science, Multipurpose Tools During Human Exploration: An XRD/XRF Demonstration Strategy for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.

    2018-02-01

    Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.

    Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craswell, P.W.; Price, J.; Boyle, P.D.

    EDTA (calcium disodium edetate) lead mobilization and x-ray fluorescence (XRF) finger bone lead tests were done in 42 patients with chronic renal failure and without persisting lead intoxication. Nineteen of 23 patients with gout and 8 of 19 without gout had positive EDTA lead mobilization tests. Those patients with gout excreted significantly more excess lead chelate than those without gout. In the gout group 17 patients denied any childhood or industrial exposure to lead. They had a greater number of positive tests and excreted significantly more excess lead chelate than 14 patients with neither gout nor lead exposure. These resultsmore » confirm that gout in the presence of chronic renal failure is a useful marker of chronic lead poisoning. Of 27 patients with positive lead mobilization tests, only 13 had elevated XRF finger bone lead concentrations (sensitivity 48%). Three of 15 patients with negative lead mobilization tests had elevated XRF finger bone lead concentrations (specificity 80%). Although the XRF finger bone lead test is a convenient noninvasive addition to the diagnostic evaluation of patients with chronic renal failure and gout, its application is limited due to the lack of sensitivity of the method.« less

  12. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  13. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  14. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  15. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.

    PubMed

    Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G

    2018-02-15

    Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  17. Morphology of the ferritin iron core by aberration corrected scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.

    2016-11-01

    As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.

  18. Rapid, non-destructive coral paleothermometry by synchrotron XR

    NASA Astrophysics Data System (ADS)

    Tangri, N.; Mehta, A.; Marks, R.; Dunbar, R. B.

    2016-12-01

    We present advances in the use of synchrotron x-ray fluorescence (XRF) to recover climate signals from coral exoskeleton. Corals record sea surface temperature (SST), salinity, and other environmental conditions in the density and composition of their exoskeletons; in particular, SST is reflected in both the Sr/Ca ratio and the annual density banding. Synchrotron XRF has previously been used to examine the fine-scaled variability of Sr concentrations in the exoskeleton structure, but has not yet yielded any long-term SST reconstructions. Modern XRF techniques allow the detection of sub-ppm trace element concentrations and appear ideally suited to long climate reconstructions, as they are non-destructive, high-resolution (250 um) and potentially quite rapid ( 40 years of sample in 24 hours of instrument time). The low Sr content of the coral and its low change in concentration require a high brightness synchrotron source to generate a high signal-to-background ratio. However, difficulties arise from the local heterogeneity of Sr that is unrelated to environmental conditions. These variations of biological origin in Sr concentrations often mask the smaller-amplitude, annual and interannual SST signals. The challenge is to normalize the local variability in order to extract the climate signal. Other techniques have normalized against Ca, but in XRF the Ca signal is sensitive to only the surface 50 um of material, whereas the Sr signal comes from 1mm, so the values are not comparable. Instead, we normalize against density as calculated from beam transmission. We also explore the use of Rb normalization to filter out collection artifacts. Both Sr and Rb show strong annual signals and interesting departures from the density signal. Finally, we pair the XRF results with δ18O measurements to recover a convincing record of SST variation. Although challenges remain, we believe that synchrotron XRF techniques hold considerable promise to rapidly and accurately recover climate signals from corals.

  19. Mathematical simulations of photon interactions using Monte Carlo analysis to evaluate the uncertainty associated with in vivo K X-ray fluorescence measurements of stable lead in bone

    NASA Astrophysics Data System (ADS)

    Lodwick, Camille J.

    This research utilized Monte Carlo N-Particle version 4C (MCNP4C) to simulate K X-ray fluorescent (K XRF) measurements of stable lead in bone. Simulations were performed to investigate the effects that overlying tissue thickness, bone-calcium content, and shape of the calibration standard have on detector response in XRF measurements at the human tibia. Additional simulations of a knee phantom considered uncertainty associated with rotation about the patella during XRF measurements. Simulations tallied the distribution of energy deposited in a high-purity germanium detector originating from collimated 88 keV 109Cd photons in backscatter geometry. Benchmark measurements were performed on simple and anthropometric XRF calibration phantoms of the human leg and knee developed at the University of Cincinnati with materials proven to exhibit radiological characteristics equivalent to human tissue and bone. Initial benchmark comparisons revealed that MCNP4C limits coherent scatter of photons to six inverse angstroms of momentum transfer and a Modified MCNP4C was developed to circumvent the limitation. Subsequent benchmark measurements demonstrated that Modified MCNP4C adequately models photon interactions associated with in vivo K XRF of lead in bone. Further simulations of a simple leg geometry possessing tissue thicknesses from 0 to 10 mm revealed increasing overlying tissue thickness from 5 to 10 mm reduced predicted lead concentrations an average 1.15% per 1 mm increase in tissue thickness (p < 0.0001). An anthropometric leg phantom was mathematically defined in MCNP to more accurately reflect the human form. A simulated one percent increase in calcium content (by mass) of the anthropometric leg phantom's cortical bone demonstrated to significantly reduce the K XRF normalized ratio by 4.5% (p < 0.0001). Comparison of the simple and anthropometric calibration phantoms also suggested that cylindrical calibration standards can underestimate lead content of a human leg up to 4%. The patellar bone structure in which the fluorescent photons originate was found to vary dramatically with measurement angle. The relative contribution of lead signal from the patella declined from 65% to 27% when rotated 30°. However, rotation of the source-detector about the patella from 0 to 45° demonstrated no significant effect on the net K XRF response at the knee.

  20. A new varved late Glacial and Holocene sediment record from Lake Jelonek (North Poland) - preliminary results

    NASA Astrophysics Data System (ADS)

    Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Anually laminated (varved) lake deposits are suitable natural archives for reconstructing past climatic and environmental changes at seasonal resolution. A major advantage of such records is that varve counting allows constructing robust and independent chronologies, a key challenge for paleoclimate research. Recently, a new annually laminated sediment record has been obtained from Lake Jelonek, located in the eastern part of the Pomeranian Lakeland in northern Poland (Tuchola Pinewoods). The lake is surrounded by forest and covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. A continuous master composite profile has been established comprising the entire postglacial lacustrine sediment infill. Preliminary analyses including micro-facies analyses on thin sections from selected intervals as well as X-ray fluorescence element scanning (µ-XRF) reveal that the sediments are to a large part annually laminated. Here we present detailed varve models for different sediment intervals and discuss high-resolution geochemical variation in the entire sediment record. A preliminary age model based on radiocarbon dating and major biostratigraphical boundaries based on pollen data will be presented as well. These data will form the fundament for the planned multi-proxy study for detailed reconstructions of climatic and environmental variability during the late glacial and Holocene in the southern Baltic. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association and National Science Centre Poland NCN 2011/01/B/ST10/07367.

  1. Relationship between annual precipitation variability and ENSO in Southern California for the Common Era (last 2,000 years)

    NASA Astrophysics Data System (ADS)

    DU, X.; Hendy, I. L.; Hinnov, L.; Brown, E. T.; Schimmelmann, A.; Pak, D. K.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) has a major influence on Southern California's hydroclimate as demonstrated by both historical observations and model simulations. Santa Barbara Basin (SBB) off Southern California preserves a unique varved (i.e. annually laminated) marine sedimentary archive of modern and Holocene hydroclimate variability, notably including the transition from the regionally dry Medieval Climate Anomaly (MCA) to the wetter Little Ice Age (LIA). Here we present sub-annually resolved scanning XRF elemental counts for the last 2,000 years in SBB from core SPR0901-03KC. Titanium (associated with silicate minerals) is delivered more efficiently to SBB sediments during times of enhanced river flow and in the Mediterranean climate of Southern California, river flow only occurs after precipitation. The Ti record suggests that the precipitation frequency was reduced during the MCA except for a pluvial episode at CE 1075-1121, but increased during the LIA. Time series analysis of Ti counts indicates ENSO variability robustly increased during the intervals CE 450-520, 650-720, 980-1150, 1380-1550 and 1720-1750, and experienced relatively quiescent intervals between CE 50-150, 250-400, 550-650, 750-950, 1150-1280 and 1580-1620. Generally the LIA in Southern California is characterized by more active ENSO variability with long periodicities (4-7 yr) and multi-decadal variability (54 yr). MCA drought episodes were associated with less active ENSO. Active ENSO variability in Southern California during the last 2,000 years coincided with reconstructed southward migration of the Intertropical Convergence Zone (ITCZ) suggesting the ITCZ may play a role in the waxing and waning of ENSO teleconnections between the central Pacific and the west coast of North America.

  2. Anatomy of Heinrich Layer 1 and its role in the last deglaciation

    NASA Astrophysics Data System (ADS)

    Hodell, David A.; Nicholl, Joseph A.; Bontognali, Tomaso R. R.; Danino, Steffan; Dorador, Javier; Dowdeswell, Julian A.; Einsle, Joshua; Kuhlmann, Holger; Martrat, Belen; Mleneck-Vautravers, Maryline J.; Rodríguez-Tovar, Francisco Javier; Röhl, Ursula

    2017-03-01

    X-ray fluorescence (XRF) core scanning and X-ray computed tomography data were measured every 1 mm to study the structure of Heinrich Event 1 during the last deglaciation at International Ocean Discovery Program Site U1308. Heinrich Layer 1 comprises two distinct layers of ice-rafted detritus (IRD), which are rich in detrital carbonate (DC) and poor in foraminifera. Each DC layer consists of poorly sorted, coarse-grained clasts of IRD embedded in a dense, fine-grained matrix of glacial rock flour that is partially cemented. The radiocarbon ages of foraminifera at the base of the two layers indicate a difference of 1400 14C years, suggesting that they are two distinct events, but the calendar ages depend upon assumptions made for surface reservoir ages. The double peak indicates at least two distinct stages of discharge of the ice streams that drained the Laurentide Ice Sheet through Hudson Strait during HE1 or, alternatively, the discharge of two independent ice streams containing detrital carbonate. Heinrich Event 1.1 was the larger of the two events and began at 16.2 ka (15.5-17.1 ka) when the polar North Atlantic was already cold and Atlantic Meridional Overturning Circulation (AMOC) weakened. The younger peak (H1.2) at 15.1 ka (14.3 to 15.9 ka) was a weaker event than H1.1 that was accompanied by minor cooling. Our results support a complex history for Heinrich Stadial 1 (HS1) with reduction in AMOC during the early part ( 20-16.2 ka) possibly driven by melting of European ice sheets, whereas the Laurentide Ice Sheet assumed a greater role during the latter half ( 16.2-14.7 ka).

  3. Seasonal climate variability in historical and prehistorical times deduced from varved lake sediments: Calibration of records from Lakes Woseriner See and Tiefer See

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Kienel, Ulrike; Dreibrodt, Stefan; Brauer, Achim

    2013-04-01

    Societies are susceptible to the effects of even short-term climate variations on water supply, health, and agricultural productivity. However, understanding of human-climate interactions is limited due to the lack of high-resolution climate records in space and time. Varved lake sediments provide long time-series of seasonal climate variability directly from populated areas that can be compared to historical and archeological records. Calibration against meteorological data enables process-based insights into sediment deposition within the lake that can be extrapolated into the past using transfer functions. Lakes Woseriner See (53°40'N/12°2'E; 37 m asl.) and Tiefer See (53°23'N/13°97'E, 65 m asl.) in northeastern Germany are located only 35 km apart. Situated within the former settlement areas, the lakes are well suited for studying climate influences on society related to the Neolithic Funnelbeaker culture or the Slavic colonization. Sub-recent annual laminations allow to establish climate proxy data-series at seasonal resolution that can be calibrated against the long meteorological record from the nearby City of Schwerin. Seasonal climate proxy data-series covering the last 90 years have been obtained from short sediment cores applying a combination of microfacies analyses, X-ray fluorescence scanning (µ-XRF), and varve counting. Main sediment microfacies in both lakes are endogenic calcite varves comprising calcite and organic layer couplets of varying thickness, diatom layers, and dispersed detrital grains. Calibration against meteorological data indicates that variations in sediment layer thickness and composition are not stationary through time but influenced by inter-annual variations in meteorological conditions.

  4. IODP Site 1476: 7.5 Million Year Record of Southeast African Climate

    NASA Astrophysics Data System (ADS)

    Cantu, K.; Norris, R. D.

    2017-12-01

    The primary focus of IODP Expedition 361 was Southeast African Climate. Site 1476 in the northern Mozambique Channel yielded a sediment record going back roughly 7.6 million years, a time frame particularly interesting due to its relevance to hominid evolution. Previous paleoclimate studies from the region have included lake sediments and soil carbonate isotopes, which have been interpreted as showing a long-term trend toward increasing aridity. Lake Malawi records from the last 1.3 million years show a change during the Mid-Pleistocene Transition (MPT) from high frequency variability and generally lower lake levels to higher amplitude variability and higher lake levels punctuated by long, severe droughts resulting in extreme and long-lasting low-stands. Site 1476 cores were scanned using X-Ray Fluorescence (XRF), which gives semi-quantitative elemental abundances. Elemental abundance ratios are used as proxies for a variety of climate-related signals, such as changes in weathering rates, the nature of terrigenous material, and grain size. Looking at the site's Fe/Ca, K/Ca, and Rb/Zr ratios, the period of 4.5 to about 1.5 million years ago shows higher terrigenous flux, higher clay flux, and a smaller grain size respectively than most of the previous 3 million years, followed by a steep decline before the MPT, before transitioning to a pattern of high amplitude oscillations post-MPT. These higher amplitude oscillations seem to correspond to Lake Malawi low stands in the post-MPT period, suggesting that the higher flux of terrigenous material to site 1476 is due to higher aridity resulting in lower vegetative cover. This data also point to high climate variability in the last million years, likely contributing to the evolution and ecological adaptability of our species.

  5. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka

    NASA Astrophysics Data System (ADS)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.

    2017-12-01

    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  6. How does the Textural Character of Alpine Fault Rocks Influence their Elasticity and Anisotropy

    NASA Astrophysics Data System (ADS)

    Guerin-Marthe, S.; Adam, L.; Townend, J.; Toy, V.; Doan, M. L.; Faulkner, D.

    2015-12-01

    The DFDP-1A and DFDP-1B boreholes drilled in 2011 enabled the collection of samples of unaltered Alpine Fault Zone rock. We present laboratory measurements of the elastic properties of these samples, as well as protoliths collected at outcrops. These data were collected with a unique non-contacting laser ultrasonic system, and transducers under a range of pressure conditions representative of the upper-crust. Based on the laser measurements we conclude that there is strong anisotropy in the foliated protoliths, particularly in the protomylonites. We also show that even at core scale, the anisotropy is scale dependent (there are systematic relationships between wavelength and mineral foliation). For the cataclasites, preliminary data show that elastic wave anisotropy decreases as we approach the Principal Slip Zone, in the two boreholes. The P-wave velocities exhibit a high pressure dependence for the borehole samples, meaning that most of the cracks are closed before an effective pressure of 5MPa, reducing the elastic anisotropy. However, on a cataclasite sample, the S-wave velocity measurements, polarized perpendicular and parallel to the fractures, exhibit weak anisotropy (γ=13%) at 20MPa, even when the P-wave velocity - pressure curve displays an asymptotic shape. This observation probably indicates that elastic anisotropy results from preferred mineral orientation rather than fractures. The elastic wave measurements are complemented with petrographical, XRD, XRF, SEM and CT scan analyses to understand the source of the elastic wave anisotropic behavior in the Alpine Fault damaged zone. Finally, the laboratory data are compared to the P-wave sonic log to understand the effect of elastic wave anisotropy, fluid pressures and mineralogy.

  7. Nong Thale Pron - a key site from southern Thailand for studying monsoon variability during the past 15000 years

    NASA Astrophysics Data System (ADS)

    Bredberg, Camilla; Chawchai, Sakonvan; Chabangborn, Akkaneewut; Kylander, Malin; Fritz, Sherilyn; Reimer, Paula J.; Wohlfarth, Barbara

    2014-05-01

    Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.

  8. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  9. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... either energy or wavelength dispersive X-ray flourescent (XRF) spectrometry instrumental analyzers. In both types of XRF spectrometers, the instrument irradiates the sample with high energy (primary) x-rays and the elements in the sample absorb the x-rays and then re-emit secondary (fluorescent) x-rays of...

  10. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... either energy or wavelength dispersive X-ray flourescent (XRF) spectrometry instrumental analyzers. In both types of XRF spectrometers, the instrument irradiates the sample with high energy (primary) x-rays and the elements in the sample absorb the x-rays and then re-emit secondary (fluorescent) x-rays of...

  11. Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.

    X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a 60Co radiography camera to observe effects from high-energy gamma emissions and an 192Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the 192Ir and 60Co sources.

  12. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning.

    PubMed

    Specht, Aaron J; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects' bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children.

  13. Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement

    NASA Astrophysics Data System (ADS)

    Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe

    2017-11-01

    Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.

  14. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  15. Benthic macrofaunal colonization patterns and preservation of laminated sediments: Observations in an extreme coastal basin environment in the lower Gulf of California

    NASA Astrophysics Data System (ADS)

    Herguera, J.; Paull, C. K.; Anderson, K.; Gwiazda, R.; Lundsten, E. M.; Kundz, L.; Edwards, B. D.; McGann, M. L.

    2012-12-01

    New observations and cores obtained with the ROV Doc Ricketts operated from the RV/Western Flyer provide a glimpse into a macrofauna barren sea-floor where laminated sediments are known to accumulate on the sea-floor of Alfonso Basin. This basin, located north of La Paz Bay, Baja California, is known to be an important repository of laminated sediments due to a combination of the relatively high input of terrigenous sediments brought in by summer rains, a moderate to high export productivity from its surface waters, and the very low oxygen concentrations at depth bathed by tropical subsurface waters. These laminated sediments are unique repositories of paleoceanographic and paleoclimatic information for its very high resolution records of past conditions comparable to ice core, tree ring, coral and cave records although spanning continuously much further back in time. However, the paleoceanographic community rarely has had the opportunity to visualize the seafloor surface where these sediments are accumulating and examine the biological abundance patterns in these extreme environments. Here we will show results from ROV Doc Ricketts quantitative video transects providing benthic faunal abundance patterns on the seafloor in these highly oxygen depleted bottom waters. These observations are further compared with the underlying stratigraphy. A coring system carried on the ROV allowed us to replicate cores and to collect a transect of 5 closely spaced cores to evaluate the horizontal extent of the observed variability down-core. We will also show some preliminary results from x-radiographs showing the nature of the laminations and its sediment composition based on elemental analysis on organic carbon, carbonate and biogenic opal analysis. New XRF results from a box core will be used to calibrate its terrigenous components with the historical rainfall record and evaluate its potential to reconstruct summer precipitation patterns in this region.

  16. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  17. Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Kulkarni, Bhaskar D

    2016-10-01

    The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer-Emmett-Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K 2 O (18.55 %), and P 2 O 5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2  > 0.99), with the highest k 2 value of the order 10 5 . Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).

  18. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).

    PubMed

    Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo

    2018-06-24

    Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.

  19. Micro-XRF complemented by x-radiography and digital microscopy imaging for the study of hidden paintings

    NASA Astrophysics Data System (ADS)

    Gasanova, Svetlana; Hermon, Sorin

    2017-07-01

    The present study describes a novel approach to the study of hidden by integrating the non-invasive micro-X-Ray Fluorescence spectroscopy, X-radiography and digital microscopy. The case study analysed is a portrait of a male figure discovered under the painting of Ecce Homo, attributed to Titian's studio with an estimated date in the 1550s. The X-radiography images exposed the details of the underpainting, which appeared to be a nearly finished portrait of a standing man, overpainted by the current composition of Ecce Homo at a 180° angle. The microscopy observations of the upper painting's cracks and flaked areas enabled the study of the exposed underlayers in terms of their colour appearance and pigment particles. The subsequent pigment analysis was performed by micro-XRF. Since the described XRF analysis was performed not in scanner mode, the correct selection of the measurement spots for the micro analysis and separation between pigments of the lower and the upper painting was of paramount importance. The described approach for spot selection was based on the results of the preceding X-radiography and digital microscopy tests. The presence of lead white, vermilion, copper green and iron earth in the underlying portrait was confirmed by the multiple point XRF analysis of Pb, Hg, Cu, Fe and Mn lines. The described investigation method proved to be useful in the identification of the pigments of the underlying painting and consequently assisted in the tentative reconstruction of its colour palette. Moreover, the undertaken approach allowed discovering the potential of micro-XRF technique in the study of hidden compositions.

  20. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.

    PubMed

    Durkee, Jenna; Bartrem, Casey; Möller, Gregory

    2017-02-01

    From the early 1900s to the 1950s, Yakima Valley orchards were commonly treated with lead arsenate (LA) insecticides. Lead (Pb) and arsenic (As) soil contamination has been identified on former orchard lands throughout Central Washington and pose a threat to human health and the environment. The levels of Pb and As in soil and interior dust at participating childcare centers in the Upper Yakima Valley (Yakima County), Washington were sampled to explore exposure potential for young children. Childcare center soils were collected from two soil depths, homogenized, and analyzed in bulk by a field-portable X-ray fluorescence spectrometer (XRF). Interior dust wipes samples were collected from at least two locations in each facility. All soil samples >250 mg/kg Pb and/or >20 As mg/kg were sieved to 250 μm, tested by XRF a second time, and analyzed via acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Bulk and sieved XRF results, as well as ICP-MS to XRF results were strongly correlated. Maximum Pb and As XRF results indicated that 4 (21%) and 8 (42%) of the 19 childcare centers surveyed exceeded the regulatory standard for Pb and As, respectively. Historic land use was significantly associated with elevated Pb and As levels. Interior dust loadings were below United States Environmental Protection Agency (EPA) guidelines. Childcare centers are areas of intensive use for children and when coupled with potential residential exposure in their homes, the total daily exposure is a potential hazard to children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. New conducted electrical weapons: Electrical safety relative to relevant standards.

    PubMed

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  2. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study

    PubMed Central

    McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.

    2014-01-01

    With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136

  3. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.

    PubMed

    Ytreberg, Erik; Lagerström, Maria; Holmqvist, Albin; Eklund, Britta; Elwing, Hans; Dahlström, Magnus; Dahl, Peter; Dahlström, Mia

    2017-06-01

    The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies. To bridge this gap, we have developed a novel method using a handheld X-Ray Fluorescence spectrometer (XRF) to determine the cumulative release of Cu and Zn from antifouling paints. The results showed a strong linear relationship between XRF K α net intensities and metal concentrations, as determined by ICP-MS. The release of Cu and Zn were determined for coated panels exposed in harbors located in the Baltic Sea and in Kattegat. The field study showed salinity to have a strong impact on the release of Cu, i.e. the release increased with salinity. Contrary, the effect of salinity on Zn was not as evident. As exemplified in this work, the XRF method also makes it possible to identify the governing parameters to the release of Cu and Zn, e.g. salinity and type of paint formulation. Thus, the XRF method can be used to measure environmentally relevant releases of metallic compounds to design more efficient and optimized antifouling coatings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence.

    PubMed

    Kaščáková, Slávka; Kewish, Cameron M; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart-Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos-Vallée, Jean-Charles; Guettier, Catherine; Le Naour, François

    2016-07-01

    Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

  5. Electrospinning β-SiC fibers from SiC nanoparticles dispersed in various polymer solutions as the electrospinning agents

    NASA Astrophysics Data System (ADS)

    Fuad, A.; Fatriani, N.; Yogihati, C. I.; Taufiq, A.; Latifah, E.

    2018-04-01

    Silicon carbide (SiC) fibers were synthesized by electrospinning method from SiC nanoparticles dispersed in polymer solutions, i.e., polyethylene glycol (PEG) and polyvinyl alcohol (PVA). The SiC nanoparticle used in this research was synthesized from sucrose and natural silica via a sonochemical method. The natural silica was extracted from local pyrophyllite by a sol-gel method. The characterization was performed via x-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM). The XRD characterization results showed that the sample possessed a β-SiC phase and formed a cubic-structured crystal with a lattice parameter of a = b = c = 4.3448 Å. The use of PEG and PVA in the electrospinning process resulted in fractal and fiber structured SiC, respectively.

  6. MICROSCANNING XRF, XANES, AND XRD STUDIES OF THEDECORATED SURFACE OF ROMAN TERRA SIGILLATA CERAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirguet, C.; Sciau, P.; Goudeau, P.

    Different microscanning synchrotron techniques were used to better understand the elaboration process and origins of Terra Sigillata potteries from the Roman period. A mixture Gallic slip sample cross-section showing red and yellow colors was studied. The small (micron) size of the X-ray beam available at Stanford Synchrotron Radiation Laboratory (SSRL) and Advanced Light Source (ALS) synchrotron sources, coupled with the use of a sample scanning stage allowed us to spatially resolve the distribution of the constitutive mineral phases related to the chemical composition. Results show that red color is a result of iron-rich hematite crystals and the yellow part ismore » a result of the presence of Ti-rich rutile-type phase (brookite). Volcanic-type clay is at the origin of these marble Terra Sigillata.« less

  7. Some Aspects of the Wavelength Dispersive X-Ray Determination of Fluorine Content in Various Matrices

    NASA Astrophysics Data System (ADS)

    Boča, M.; Gurišová, V.; Šimko, F.

    2017-05-01

    X-ray fluorescent signals of F Kα, Na Kα, Cl Kα, K Kα, and Ta Lα were measured by WD-XRF for various fluorine-containing systems: K2TaF7, Na3AlF6, K2ZrF6, NaF, and LiF (with NaCl and wax as additional additives). The data were recorded for 41 samples (in the form of pellets prepared in the laboratory) by more than 200 scans. The analysis of the measured fluorine X-ray fluorescence intensities demonstrated that the balance between absorption and enhancement effects depends strongly on the presence and concentration of other elements in the system. The experimental intensities of X-ray fluorescent radiation of fluorine for different systems with comparable fluorine content could differ by as much as 500%.

  8. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  9. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    NASA Astrophysics Data System (ADS)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  10. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  11. Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution

    DOE PAGES

    Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.; ...

    2016-12-19

    Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less

  12. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  13. High-resolution characterization of individual flood deposits

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Paasche, Øyvind; Hirt, Ann

    2014-05-01

    In most fluvial landscapes rivers transport sediments within and across catchments throughout the year. During flood events the capacity and competence of the river manifolds, and consequently more sediment are eroded and transported within the catchment. Whenever such sediment-laden rivers reach lakes, sediments are deposited at rate much faster than background sedimentation. For this reason alone, lakes can provide exceptionally rich archives of paleofloods. Flood sediments carry information not only about frequency variability through time, but also about source area(s), the time of the deposit (on a seasonal scale), as well as the evolution of the flood. In order to scrutinize the information that can be extracted from such pristine lake records we have developed an approach where high-resolution data are compared to high-precision measurements of selected samples. More specifically, data from high-resolution X-ray fluorescence (XRF) scanning (Itrax) and magnetic susceptibility (Bartington MS2 point sensor) can potentially provide information on annual to decadal resolution. These fast and effective surface scanning methods are subjected to well-known uncertainties, which can impact the interpretation of individual layers. To overcome this challenge - and obtain the highest possible precision and resolution - precise quantitative analysis of discrete flood layers using magnetic hysteresis measurements and First-order reversal curves (FORCs) as well as conventional X-ray fluorescence spectrometer (Philips PW1404) have been conducted. FORCs are obtained with an Alternating Gradient Force Magnetometer and have exceptional high sensitivity (1 x 10-11 A m2) that allows samples smaller than 200 milligrams to be measured. This means that sediments representing a band of less than a couple of millimeters in the lake sediment cores can be sampled without notable contamination from adjacent non-flood sediments, and analyzed with a high degree of precision (analytical error ±2%). Analyses are carried out on a well-documented lake sediment flood-archive from Meringsdalsvatnet in Southern Norway, which is proven to contain the sedimentary imprint of over hundred floods during the last ca. 10 000 years, including well-known historical events. Preliminary results indicate only minor changes in magnetic mineralogy throughout the record, but notable changes are seen in saturation magnetization, which reflects variations in concentration of the ferromagnetic mineralogy. When these results are compared to corresponding concentration of iron (Fe) and rubidium (Rb) it becomes evident that the core contains two statistical populations, which may indicate two contrasting flood systems. There are at least three potential explanations for this pattern: (1) a dual source area; (2) different mechanisms that trigger floods (spring snowmelting versus intense summer rainstorms); (3) the magnitude of the floods, which influences the sedimentary composition; or 4) a combination of the above.

  14. Micro-investigation of EPICA Dome C bottom ice: evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Tison, J.-L.; Morel-Fourcade, M.-C.; Susini, J.

    2013-10-01

    The EPICA Dome C ice core (EDC) reached a final depth of 3260 m, at a maximum height of about 15 m above the ice-bedrock interface in December 2004. We present here data gained from a detailed investigation of selected samples of the deeper part of the core located below 3200 m and referred to as bottom ice. This part of the core has been poorly investigated so far mainly because there are significant challenges in interpreting paleo-records that were very likely modified by long term in situ processes. Our study combines high resolution ion chromatography, high resolution synchrotron X-Ray micro-fluorescence (micro XRF), scanning, and transmission electron microscopy. Our aim was to identify the long term physico-chemical processes at work close to the bedrock, to determine how they have altered the initial registers, and, ultimately to extract information on the very ancient Antarctic environment. The ubiquitous presence of nanometer iron oxide crystals at the surface of wind-borne dust aggregates containing also large amount of organic matter raises the possibility that the consolidation of windborne dust clusters formed during ice recrystallization could be related to microbial iron reduction and, thus, to the progressive reactivation of dormant bacterial activity in warming ice. Inclusions of size and number density increasing with depth observed in the 12 last meters (3248-3260 m) contain liquid and solid species, among them marine biogenic acids, numerous wind-borne dust aggregates and clusters of large reversible calcium carbonate particles precipitated once the inclusion was formed and often covered by secondary gypsum. The refreezing of slush lenses is discussed as a potential cause of the formation of such heterogeneous and complex mixtures. In addition to the very fine micrometer size minerals windborne from extra-Antarctic continental sources and often accreted in large aggregates, single medium size particles (a few to ca 20 μm and among them organic debris) are commonly encountered. Their size, surface shape, and mineralogy suggest that aerosol transport from Antarctic ice-free areas played a significant role at the time EDC bottom ice was formed. Concentrations and concentration ratios of biogenic sulfur species also advocate for the strengthening of peri-Antarctic meteorological patterns that favor the inland penetration of disturbed flow carrying local material. Very large well preserved mineral particles several tens of micrometers in diameter, and biotope relics in deeper ice close to 3260 m likely come from the sub-glacial environment.

  15. A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    NASA Astrophysics Data System (ADS)

    Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P. C.; Abrantes, Fatima; Acton, Gary D.; Alvarez Zarikian, Carlos A.; Bahr, André; Balestra, Barbara; Barranco, Estefanìa Llave; Carrara, Gabriela; Ducassou, Emmanuelle; Flood, Roger D.; Flores, José-Abel; Furota, Satoshi; Grimalt, Joan; Grunert, Patrick; Hernández-Molina, Javier; Kim, Jin Kyoung; Krissek, Lawrence A.; Kuroda, Junichiro; Li, Baohua; Lofi, Johanna; Margari, Vasiliki; Martrat, Belen; Miller, Madeline D.; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Rodrigues, Teresa; Rodríguez-Tovar, Francisco J.; Roque, Ana Cristina Freixo; Sanchez Goñi, Maria F.; Sierro Sánchez, Francisco J.; Singh, Arun D.; Sloss, Craig R.; Stow, Dorrik A. V.; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Xuan, Chuang; Williams, Trevor

    2015-10-01

    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meter composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene ('41-kyr world') when boundary conditions differed significantly from those of the late Pleistocene ('100-kyr world'). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.

  16. Sedimentary Evidence for a Rapid Sea Level Rise at 7,600 cal yr BP from North-Central Cuba

    NASA Astrophysics Data System (ADS)

    Peros, M. C.; Agosta G'meiner, A. M.; Collins, S.

    2016-12-01

    A lack of high-resolution relative sea level (RSL) proxy data has meant that the pattern of early Holocene RSL change in the Caribbean is poorly understood. A RSL curve published by Toscano and Macintyre (2003) using inter-tidal mangrove peats and submerged corals suggests RSL underwent a relatively fast and `smooth' curvilinear increase during the Holocene. However, others, such as Blanchon and Shaw (1995), suggest that RSL increased rapidly at around 7600 cal yr BP, in response to the final stages of the melting of the Laurentide Ice Sheet (melt water pulse 1C or catastrophic rise event 3). We investigated this question using multi-proxy data from a flooded sinkhole (Cenote Jennifer) on the north coast of central Cuba. Cenote Jennifer is located 7 m above mean sea level and 2 km from the Bahamas Channel and appears to have a high degree of connectivity with the ocean through a network of underground caverns. The water depth is 13 m and the bottommost 5 m is anoxic. A sediment core collected from Cenote Jennifer was studied using loss-on-ignition, pollen analysis, high-resolution XRF core-scanning, and grain size analysis. An age-depth model was generated for the core by AMS dating. The results show that the bottommost stratigraphic unit ( 9000 to 7600 cal yr BP) is a fine-grained carbonate-rich mud (i.e., marl). This unit abruptly transitions into finely laminated organic-rich sediment from 7600 cal yr BP to the present. The pollen analysis shows that the sinkhole supported a cattail (Typha) community until 7600 cal yr BP, indicating low water levels ( 1 m). At 7600 cal yr BP, the cattail community disappeared and the vegetation of the surrounding bedrock became dominated by a thorny coastal scrubland. In addition, a 3 cm thick fining-upward siliciclastic unit is present immediately above the marl-organic contact, suggesting: 1) a marine sediment source given the limestone-dominated nature of the region, and 2) the presence of a short-duration, high-energy depositional event. We interpret the change in vegetation and the siliciclastic layer as representing a rise in water level of 2-3 m in the sinkhole driven by a sudden rise in RSL at 7600 cal yr BP that inundated the cattail community and transported marine sediment into it. Our results provide new information to support the view of a "step-like" pattern of early Holocene sea level.

  17. Hydroclimatic variability in the Levant during the early last glacial (˜ 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments

    NASA Astrophysics Data System (ADS)

    Neugebauer, I.; Schwab, M. J.; Waldmann, N. D.; Tjallingii, R.; Frank, U.; Hadzhiivanova, E.; Naumann, R.; Taha, N.; Agnon, A.; Enzel, Y.; Brauer, A.

    2016-01-01

    The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (µXRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i.e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at ˜ 110-108 ± 5 and ˜ 93-87 ± 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at ˜ 108-93 ± 6 and ˜ 87-75 ± 7 ka correspond to interstadial conditions in the central Mediterranean, i.e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period.

  18. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry.

    PubMed

    Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata

    2006-07-01

    Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.

  19. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batuman, V.; Wedeen, R.P.; Bogden, J.D.

    1989-02-01

    A stained-glass artist with longstanding exposure to lead presented with neuropsychiatric symptoms. He was evaluated before and after chelation treatment by the CaNa2 EDTA lead mobilization test, iliac crest bone lead measurement, and in vivo tibial X-ray fluorescence (XRF). The three methods showed a progressive fall in body lead stores during chelation therapy in association with improvement in symptoms and a fall in blood lead and zinc protoporphyrin levels. In vivo tibial XRF is a safe, rapid, and noninvasive technique for detecting excessive body lead burdens. XRF measurement of bone lead content is a practical method for monitoring the efficacymore » of therapy as well as for establishing the diagnosis.« less

  20. Innovative instrumentation for mineralogical and elemental analyses of solid extraterrestrial surfaces: The Backscatter Moessbauer Spectrometer/X Ray Fluorescence analyzer (BaMS/XRF)

    NASA Technical Reports Server (NTRS)

    Shelfer, T. D.; Morris, Richard V.; Nguyen, T.; Agresti, D. G.; Wills, E. L.

    1994-01-01

    We have developed a four-detector research-grade backscatter Moessbauer spectrometer (BaMS) instrument with low resolution x-ray fluorescence analysis (XRF) capability. A flight-qualified instrument based on this design would be suitable for use on missions to the surfaces of solid solar-system objects (Moon, Mars, asteroids, etc.). Target specifications for the flight instrument are as follows: mass less than 500 g; volumes less than 300 cu cm; and power less than 2 W. The BaMS/XRF instrument would provide data on the oxidation state of iron and its distribution among iron-bearing mineralogies and elemental composition information. This data is a primary concern for the characterization of extraterrestrial surface materials.

  1. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF.

    PubMed

    Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang

    2014-08-01

    Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.

    PubMed

    Guerra, M; Longelin, S; Pessanha, S; Manso, M; Carvalho, M L

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  3. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC.

    PubMed

    Yuan, Jie; Xiao, Jin; Li, Fachuang; Wang, Bingjie; Yao, Zhen; Yu, Bailie; Zhang, Liuyun

    2018-03-01

    Spent cathode carbon (SCC) from aluminum electrolysis has been treated in ultrasonic-assisted caustic leaching and acid leaching process, and purified SCC used as carbon source to synthesize silicon carbide (SiC) was investigated. Chemical and mineralogical properties have been characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and thermogravimetry and differential scanning calorimetry (TGA-DSC). Various experimental factors temperature, time, liquid-solid ratio, ultrasonic power, and initial concentration of alkali or acid affecting on SCC leaching result were studied. After co-treatment with ultrasonic-assisted caustic leaching and acid leaching, carbon content of leaching residue was 97.53%. SiC power was synthesized by carbothermal reduction at 1600 °C, as a result of yield of 76.43%, and specific surface area of 4378 cm 2 /g. This is the first report of using purified SCC and gangue to prepare SiC. The two industrial wastes have been used newly as secondary sources. Furthermore, ultrasonic showed significant effect in SCC leaching process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative study of two active faults in different stages of the earthquake cycle in central Japan -The Atera fault (with 1586 Tensho earthquake) and the Nojima fault (with 1995 Kobe earthquake)-

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Omura, K.; Ikeda, R.

    2003-12-01

    National Research Institute for Earth Science and Disaster Prevention (NIED) has been conducting _gFault zone drilling_h. Fault zone drilling is especially important in understanding the structure, composition, and physical properties of an active fault. In the Chubu district of central Japan, large active faults such as the Atotsugawa (with 1858 Hietsu earthquake) and the Atera (with 1586 Tensho earthquake) faults exist. After the occurrence of the 1995 Kobe earthquake, it has been widely recognized that direct measurements in fault zones by drilling. This time, we describe about the Atera fault and the Nojima fault. Because, these two faults are similar in geological situation (mostly composed of granitic rocks), so it is easy to do comparative study of drilling investigation. The features of the Atera fault, which have been dislocated by the 1586 Tensho earthquake, are as follows. Total length is about 70 km. That general trend is NW45 degree with a left-lateral strike slip. Slip rate is estimated as 3-5 m / 1000 years. Seismicity is very low at present and lithologies around the fault are basically granitic rocks and rhyolite. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes (Hatajiri, Fukuoka, Ueno and Kawaue) are located on a line crossing in a direction perpendicular to the Atera fault. In the Kawaue well, mostly fractured and alternating granitic rock continued from the surface to the bottom at 630 m. X-ray fluorescence analysis (XRF) is conducted to estimate the amount of major chemical elements using the glass bead method for core samples. The amounts of H20+ are about from 0.5 to 2.5 weight percent. This fractured zone is also characterized by the logging data such as low resistivity, low P-wave velocity, low density and high neutron porosity. The 1995 Kobe (Hyogo-ken Nanbu) earthquake occurred along the NE-SW-trending Rokko-Awaji fault system, and the Nojima fault appeared on the surface on Awaji Island when this rupture occurred. It is more than 10 km long with 1-2 m offset along the Nojima fault. About one year after the earthquake, NIED drilled a borehole (the Hirabayashi NIED borehole) and penetrated the Nojima fault. The Hirabayashi NIED borehole was drilled to a depth of 1838 m and recovered the drill core. The main types of rock intersected by the borehole are granodiorite and cataclastic fault rocks. Three fracture zones were recognized in cores at approximate depth of 1140 m, 1300 m and 1800 m. There is remarkable foliated blue-gray gouge at a depth of 1140 m. We investigate chemical compositions by XRF analysis in the fracture zone. The amounts of H20+ are about from 1.0 to 15.0 weight percent. We investigate mineral assemblage in both drilling cores by X-ray powder diffraction analysis. From the results, we can_ft recognize so difference between the two faults. But the amount of H2O+ is very different. In the Hirabayashi NIED core at a depth of 1140 m, there is about ten times as much as the average of the Kawaue core. This is probably due to the greater degree of wall-rock fracturing in the fracture zone. We suggest that this characteristic is associated with the fault activity at the time of the 1995 Kobe earthquake and the nature of fluid-rock interactions in the fracture zone.

  5. Indications of a pan-hemispheric bi-partition of the Younger Dryas Stadial from Lake Suigetsu, Japan

    NASA Astrophysics Data System (ADS)

    Schlolaut, Gordon; Brauer, Achim; Nakagawa, Takeshi; Lamb, Henry; Marshall, Michael; Kato-Saito, Megumi; Staff, Richard; Bronk Ramsey, Christopher; Bryant, Charlotte

    2016-04-01

    The Younger Dryas Stadial marks the final succession of climatic fluctuations of the last Glacial. Whilst well studied in records from Europe and Greenland, few high resolution records are available from East Asia. Here we present a high resolution, multi-proxy study of the Lake Suigetsu (Japan) sediments using the 'SG06' composite profile. Utilising microfacies, μXRF, pollen and diatom analysis we characterise changes occurring in the timeframe corresponding to the Younger Dryas Stadial. Firstly, our results show that the climatic equivalent of the Younger Dryas at Lake Suigetsu shows no major lead or lag in comparison to records from the North Atlantic region, which was postulated by an earlier project on the Suigetsu sediments ('SG93'). Reason for this disagreement between the SG06 and SG93 core is that the SG93 core/chronology was compromised by gaps between individual cores and varve count uncertainties. Furthermore, some of the analysed proxies from the SG06 core show a sub-division of the Younger Dryas Stadial. The timing of this sub-division is similar to the bi-partition of the Younger Dryas Stadial observed in a number of European records (e.g. Lane et al., 2013). This bi-partition was related to a northward shift of the westerly wind jet in the North Atlantic region. Our findings imply that the underlying climatic mechanism operated on a hemispheric rather than just on a regional scale. References: Lane et al. 2013, Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas, Geology 41, 1251-1254

  6. Retention of atmospheric Cu, Ni, Cd and Zn in an ombrotrophic peat profile near the Outokumpu Cu-Ni mine, SE-Finland

    NASA Astrophysics Data System (ADS)

    Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.

    2003-05-01

    Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.

  7. SU-G-IeP3-07: High-Resolution, High-Sensitivity Imaging and Quantification of Intratumoral Distributions of Gold Nanoparticles Using a Benchtop L-Shell XRF Imaging System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, N; Diagaradjane, P; Krishnan, S

    2016-06-15

    Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector,more » capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo imaging tasks. Supported by NIH/NCI grant R01CA155446 This investigation was supported by NIH/NCI grant R01CA155446.« less

  8. Basic forensic identification of artificial leather for hit-and-run cases.

    PubMed

    Sano, Tetsuya; Suzuki, Shinichi

    2009-11-20

    Single fibers retrieved from a victim's garments and adhered to the suspect's automobile have frequently been used to prove the relationship between victim and suspect's automobile. Identification method for single fiber discrimination has already been conducted. But, a case was encountered requiring discrimination of artificial leather fragments retrieved from the victim's bag and fused fibers from the bumper of the suspect's automobile. In this report, basic studies were conducted on identification of artificial leathers and single fibers from leather materials. Fiber morphology was observed using scanning electron microscopy (SEM), color of these leather sheets was evaluated by microspectrophotometry (MSP), the leather components were measured by infrared micro spectrometry (micro-FT-IR) and the inorganic contents were ascertained by micro-X-ray fluorescence spectrometry (micro-XRF). These two methods contribute to other analytical methods too, in the case of utilized single fiber analytical methods. The combination of these techniques showed high potential of discrimination ability in forensic examinations of these artificial leather samples. In regard with smooth surface artificial leather sheet samples, a total of 182 sheets were obtained, including 177 colored sheets directly from 10 of 24 manufacturers in Japan, and five of them were purchased at retail circulation products. Nine samples of suede-like artificial leather were obtained, 6 of them were supplied from 2 manufacturers and 3 sheets were purchased as retailing product. Single fibers from the smooth surface artificial leather sheets showed characteristic for surface markings, and XRF could effectively discriminate between these sheets. The combination of results of micro-FT-IR, color evaluation by MSP and the contained inorganic elements by XRF enabled to discriminate about 92% of 15,576 pairs comparison. Five smooth surface samples form retailing products were discriminated by their chemical composition into four categories, and in addition color information to this result, they were clearly distinguished. Suede-like artificial leather sheets showed characteristic extra-fine fibers on their surface by the observation of SEM imaging, providing high discriminating ability, in regard with suede-like artificial leather sheets were divided into three categories by micro-FT-IR, and the combination of these results and color evaluation information, it was possible to discriminate all the nine suede-like artificial leather sheets examined.

  9. Nanoscale investigation of platinum nanoparticles on strontium titanium oxide grown via physical vapor deposition and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Christensen, Steven Thomas

    This dissertation examines growth of platinum nanoparticles from vapor deposition on SrTiO3 using a characterization approach that combines imaging techniques and X-ray methods. The primary suite of characterization probes includes atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and X-ray absorption spectroscopy (XAS). The vapor deposition techniques include physical vapor deposition (PVD) by evaporation and atomic layer deposition (ALD). For the PVD platinum study, AFM/XRF showed ˜10 nm nanoparticles separated by an average of 100 nm. The combination of AFM, GISAXS, and XRF indicated that the nanoparticles observed with AFM were actually comprised of closely spaced, smaller nanoparticles. These conclusions were supported by high-resolution SEM. The unusual behavior of platinum nanoparticles to aggregate without coalescence or sintering was observed previously by other researchers using transmissision electron microscopy (TEM). Platinum nanoparticle growth was also investigated on SrTiO3 (001) single crystals using ALD to nucleate nanoparticles that subsequently grew and coalesced into granular films as the ALD progresses. The expected growth rate for the early stages of ALD showed a two-fold increase which was attributed to the platinum deposition occurring faster on the bare substrate. Once the nanoparticles had coalesced into a film, steady state ALD growth proceeded. The formation of nanoparticles was attributed to the atomic diffusion of platinum atoms on the surface in addition to direct growth from the ALD precursor gases. The platinum ALD nanoparticles were also studied on SrTiO3 nanocube powders. The SrTiO3 nanocubes average 60 nm on a side and the cube faces have a {001} orientation. The ALD proceeded in a similar fashion as on the single crystal substrates where the deposition rate was twice as fast as the steady state growth rate. The Pt nanoparticle size increased linearly starting at ˜0.7 nm for 1 ALD cycle to ˜3 nm for 5 ALD cycles. The platinum chemical state was also investigated using X-ray absorption spectroscopy. Platinum nanoparticles ˜1 nm or smaller tended to be oxidized. For larger nanoparticles, the platinum state systematically approached that of bulk platinum metal as the size (number of ALD cycles) increased. The platinum loading was exceptionally low, ˜10 -3 mg cm-2.

  10. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  11. Use of small volume cups in XRF analysis of treated wood retention

    Treesearch

    Rene Stelzer; Adam Taylor; Patricia Lebow

    2017-01-01

    Efforts are underway in the United States to improve the conformance of commercially-treated wood with the applicable retention standards. As part of an effort to devise a practical method for on-site assessment of within-charge retention variation, we investigated whether small-volume x-ray fluorescence (XRF) sample cups could be used with treated wood. A range of cup...

  12. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD Mobile® XRF units were shown to be suitable for rapid screening of samples likely to be encountered in field based studies.

  13. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies.

  14. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies. PMID:23927295

  15. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  16. An initial examination of carbonate variability in the western equatorial Pacific: XRF results from the lower to middle Miocene of IODP Site U1490

    NASA Astrophysics Data System (ADS)

    Valerio, D. A.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Miocene (19-9 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Miocene Climatic Optimum, the Middle Miocene Climate Transition, and the late Miocene carbonate crash. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Miocene sediment at Site U1490 primarily consists of clay-bearing to clay-rich foraminifer-rich nannofossil ooze, although biogenic silica (primarily radiolaria) is a significant component in the lowermost part of the record. The sedimentation rate in the early to middle Miocene was very low (<1 cm/kyr), increasing to 1.6 cm/kyr in the late Miocene. Initial shipboard results show an average calcium carbonate content of 87 wt% throughout the site, with the most significant variations in the lower to middle Miocene, where contents range from 20 to 85 wt%. We collected X-ray fluorescence (XRF) data at 1 cm resolution along the composite stratigraphic section over the 19-9 Ma interval to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison between records obtained from these cores located in the western equatorial Pacific to those obtained in the eastern and central Pacific, which will better elucidate the nature of the carbon system during the Miocene.

  17. Multi-scale imaging and elastic simulation of carbonates

    NASA Astrophysics Data System (ADS)

    Faisal, Titly Farhana; Awedalkarim, Ahmed; Jouini, Mohamed Soufiane; Jouiad, Mustapha; Chevalier, Sylvie; Sassi, Mohamed

    2016-05-01

    Digital Rock Physics (DRP) is an emerging technology that can be used to generate high quality, fast and cost effective special core analysis (SCAL) properties compared to conventional experimental techniques and modeling techniques. The primary workflow of DRP conssits of three elements: 1) image the rock sample using high resolution 3D scanning techniques (e.g. micro CT, FIB/SEM), 2) process and digitize the images by segmenting the pore and matrix phases 3) simulate the desired physical properties of the rocks such as elastic moduli and velocities of wave propagation. A Finite Element Method based algorithm, that discretizes the basic Hooke's Law equation of linear elasticity and solves it numerically using a fast conjugate gradient solver, developed by Garboczi and Day [1] is used for mechanical and elastic property simulations. This elastic algorithm works directly on the digital images by treating each pixel as an element. The images are assumed to have periodic constant-strain boundary condition. The bulk and shear moduli of the different phases are required inputs. For standard 1.5" diameter cores however the Micro-CT scanning reoslution (around 40 μm) does not reveal smaller micro- and nano- pores beyond the resolution. This results in an unresolved "microporous" phase, the moduli of which is uncertain. Knackstedt et al. [2] assigned effective elastic moduli to the microporous phase based on self-consistent theory (which gives good estimation of velocities for well cemented granular media). Jouini et al. [3] segmented the core plug CT scan image into three phases and assumed that micro porous phase is represented by a sub-extracted micro plug (which too was scanned using Micro-CT). Currently the elastic numerical simulations based on CT-images alone largely overpredict the bulk, shear and Young's modulus when compared to laboratory acoustic tests of the same rocks. For greater accuracy of numerical simulation prediction, better estimates of moduli inputs for this current unresolved phase is important. In this work we take a multi-scale imaging approach by first extracting a smaller 0.5" core and scanning at approx 13 µm, then further extracting a 5mm diameter core scanned at 5 μm. From this last scale, region of interests (containing unresolved areas) are identified for scanning at higher resolutions using Focalised Ion Beam (FIB/SEM) scanning technique reaching 50 nm resolution. Numerical simulation is run on such a small unresolved section to obtain a better estimate of the effective moduli which is then used as input for simulations performed using CT-images. Results are compared with expeirmental acoustic test moduli obtained also at two scales: 1.5" and 0.5" diameter cores.

  18. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  19. Confirmation of the E(sup src)(sub Peak)-E(sub iso) (Amati) relation from the x-ray flash XRF 050416A observed by the Swift burst alert telescope

    NASA Technical Reports Server (NTRS)

    Sakamoti, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.

    2006-01-01

    We report Swift Burst Alert Telescope (BAT) observations of the X-ray flash (XRF) XRF 050416A. The fluence ratio between the 15-25 and 25-50 keV energy bands of this event is 1.5, thus making it the softest gamma-ray burst (GRB) observed by BAT so far. The spectrum is well fitted by a Band function with E(sup obs)(sub peak) of 15.0(sup +2.3)(sub -2.7) keV. Assuming the redshift of the host galaxy (z = 0.6535), the isotropic equivalent radiated energy E(sub iso) and the peak energy at the GRB rest frame (E(sup src)(sub peak)) of XRF 050416A are not only consistent with the correlation found by Amati et al. and extended to XRFs by Sakamoto et al. but also fill in the gap of this relation around the 30-80 keV range of E(sup src)(sub peak). This result tightens the validity of the E(sup src)(sub Peak)-E(sup src)(sub peak) relation from XRFs to GRBs. We also find that the jet break time estimated using the empirical relation between E(sup src)(sub peak) and the collimation corrected energy E(sub gamma), is inconsistent with the afterglow observation by the Swift X-Ray Telescope. This could be due to the extra external shock emission overlaid around the jet break time or to the nonexistence of a jet break feature for XRFs, which might be a further challenge for GRB jet emission models and XRF/GRB unification scenarios.

  20. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  1. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Urgiles, E.; Wilcox, J. Z.; Toda, R.; Crisp, J.; George, T.

    2005-01-01

    Introduction: This paper describes the progress in data acquisition and establishing the observational capability of the AEXS instrument. The AEXS is a miniature instrument[1-4] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam which enables nondestructive evaluation of sample surfaces in planetary ambient atmospheres. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum of the AEXS source from the outside ambient atmosphere. Thus eliminating the need for a vacuum pumped sample chamber as is common in all laboratory SEM s. The transmitted electrons impinge on the sample exciting XRF spectra from the irradiated spot on in-situ or collected samples with sub-mm to cm-scale spatial resolution at Mars atmospheric pressure. The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an XRF detection and analyzer system, and a high voltage power supply. The XRF data are analyzed to determine the elemental abundance for the irradiated spots. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of microfabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. The development of the instrument is described in detail in the poster paper[4] at this conference. This paper focuses on describing the progress of the AEXS instrument to acquire XRF data and using commercially available software to analyze the data streams and determine the accuracy, precision and resolution of the analysis compared to the certified elemental abundance.

  2. Pigment analysis by Raman microscopy and portable X-ray fluorescence (pXRF) of thirteenth to fourteenth century illuminations and cuttings from Bologna

    PubMed Central

    Clark, Robin J. H.; Jones, Richard; Gibbs, Robert

    2016-01-01

    Non-destructive pigment analysis by Raman microscopy (RM) and portable X-ray fluorescence (pXRF) has been carried out on some Bolognese illuminations and cuttings chosen to represent the beginnings, evolution and height of Bolognese illuminated manuscript production. Dating to the thirteenth and fourteenth centuries and held in a private collection, the study provides evidence for the pigments generally used in this period. The results, which are compared with those obtained for other north Italian artwork, show the developments in usage of artistic materials and technique. Also addressed in this study is an examination of the respective roles of RM and pXRF analysis in this area of technical art history. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799427

  3. Radioactive decay of the late-time light curves of GRB-SNe

    NASA Astrophysics Data System (ADS)

    Misra, Kuntal; Fruchte, Andrew Steven

    2018-04-01

    We present the late-time Hubble Space Telescope observations of two GRB associated supernovae, GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data upto ˜ 320 days after the burst, we constrain the late-time decay nature of these supernovae. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB supernovae, GRB 980425/SN 1998bw and the supernova associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co?56Fe radioactive decay rate (0.0098 mag day-1) indicating that there is some leakage of gamma-rays.

  4. Tracking recent climate and anthropogenic change in Central America in sediments form the lower fan of the Rio Yaqui, Gulf of California, Mexico

    NASA Astrophysics Data System (ADS)

    Aiello, I. W.; Ravelo, A. C.; Moraes, R.; Swarzenski, P. W.

    2015-12-01

    We report the results of preliminary sedimentologic analyses of a ~3.3m long piston core (P13) collected in the lower fan of the Rio Yaqui (Guaymas Basin, Gulf of California; depth, 1859m) by UNAM's (Universidad Nacional Autónoma de México) research ship El Puma in 2014. The core was collected to test the potential for high-resolution reconstructions of basin-scale paleoclimate in the Pacific and the Mesoamerican region. Shipboard and post-cruise analyses include magnetic susceptibility (MS), smear slide counts and laser diffraction particle size analysis. The core is being analyzed for X-Ray Fluorescence (XRF) and color reflectance, and a 210Pb age model is being constructed. Preliminary results show that Rio Yaqui lower fan sediment differs significantly from that in the Guaymas Basin, which is dominantly diatom ooze. The lower ~2m of core P13 show prominent alternations (~10-20cm) between very-fine-grained, clay intervals characterized by higher MS and mixed diatom and clay intervals, with coarser grain size and lower MS values. In contrast, the upper ~1m has distinctive high MS sand turbidites alternating with diatom-rich layers. Previous core studies from nearby ODP Leg 64 site show sedimentation rates of ~1.2 m/ka; as these sites are further away from the Yaqui delta the sedimentation rates for core P13 should be higher possibly recording only the last few hundred years of sedimentation. Clay/diatom cycles in the lower part of the core could record decadal- or ENSO-scale wet/aridity cycles in the Sonoran Mainland. Conversely, the coarser siliciclastic intervals and the diatom layers in the upper part of the core could reflect the last few decades of land usage in the watershed of the Rio Yaqui, the most important river in the state of Sonora, Mexico. These include large modifications to the river's hydrography (e.g. construction of dams and aqueducts), rapidly expanding mass agricultural practices in the region, and increased eutrophication in the Gulf.

  5. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  6. Development and characterization of sub-monolayer coatings as novel calibration samples for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Hönicke, Philipp; Krämer, Markus; Lühl, Lars; Andrianov, Konstantin; Beckhoff, Burkhard; Dietsch, Rainer; Holz, Thomas; Kanngießer, Birgit; Weißbach, Danny; Wilhein, Thomas

    2018-07-01

    With the advent of both modern X-ray fluorescence (XRF) methods and improved analytical reliability requirements the demand for suitable reference samples has increased. Especially in nanotechnology with the very low areal mass depositions, quantification becomes considerably more difficult. However, the availability of suited reference samples is drastically lower than the demand. Physical vapor deposition techniques have been enhanced significantly in the last decade driven by the need for extremely precise film parameters in multilayer production. We have applied those techniques for the development of layer-like reference samples with mass depositions in the ng-range and well below for Ca, Cu, Pb, Mo, Pd, Pb, La, Fe and Ni. Numerous other elements would also be possible. Several types of reference samples were fabricated: multi-elemental layer and extremely low (sub-monolayer) samples for various applications in XRF and total-reflection XRF analysis. Those samples were characterized and compared at three different synchrotron radiation beamlines at the BESSY II electron storage ring employing the reference-free XRF approach based on physically calibrated instrumentation. In addition, the homogeneity of the multi-elemental coatings was checked at the P04 beamline at DESY. The measurements demonstrate the high precision achieved in the manufacturing process as well as the versatility of application fields for the presented reference samples.

  7. X-ray Fluorescence Spectroscopy of Pre-Federal American Currency

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis

    2017-09-01

    X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).

  8. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study

    PubMed Central

    Jung, Seongmoon; Sung, Wonmo; Ye, Sung-Joon

    2017-01-01

    This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine. PMID:28860750

  9. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  10. Applications of XRF, NAA and low-kV radiographic techniques in the study of body composition and diseased tissue

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Ng, K. H.; Green, S.; Mountford, P. J.; Shukri, A.; Evans, J.

    1996-05-01

    Members of this group have responded to a number of challenging health issues by attempting to devise sensitive XRF, NAA and low-kV radiographic measurement systems foboth in vivo and in vitro applications. These studies are generally either of toxicological importance, examine potential for diagnosing the presence of disease, or offer effective means for monitoring potentially harmful side-effects of therapy. Particular examples include the in vivo XRF investigation of human skeletal uptake of Pb in working and living environments, in vivo XRF monitoring of elevated levels of Fe in skin (indicating the presence of an undesirable side-effect of the treatment of thalassaemia), in vivo NAA monitoring of elevated levels of Al in bone (indicating an undesirable side-effect of the treatment of chronic renal failure) and in vitro characterization, by means of low-kV imaging, of a range of calcification parameters in healthy and diseased breast tissue. The latter investigation has been conducted in association with an in vitro NAA study of concentrations of trace elements in the same types of tissue. Figures of merit for the various measurement systems have been obtained in terms of minimum detectable levels and concentrations (MDL's and MDC's) and where applicable, image related parameters.

  11. X-ray microfluorescence as a tool to analyze elemental changes in femur head induced by chemotherapy drugs for the treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Pickler, A.; Mota, C. L.; Mantuano, A.; Salata, C.; Nogueira, L. P.; Almeida, A. P.; Alessio, R.; Sena, G.; Braz, D.; de Almeida, C. E. V.; Barroso, R. C.

    2015-11-01

    Recently some developments in a large number of investigative techniques have been made with the objective to obtain a micrometer spatial resolution imaging of elemental concentrations. The X-ray microfluorescence analysis (μXRF) is one of those techniques which is based on the localized excitation of a small area on the surface of sample, providing information of all elements contained in the material under study. Breast cancer is the most common malignancy in Brazilian women. The main treatment strategies for the breast cancer are surgery and chemotherapy. As bone loss is one of the possible chemotherapy side effects, in this work was used μXRF technique on femoral head samples of female Wistar rats to evaluate Ca, Fe and Zn concentrations in order to investigate possible elemental changes in bone caused by the chemotherapy. Fifteen female rats were divided randomly in groups (five rats each). G1 group received doses of doxorubicin/cyclophosphamide drugs and G2 group was treated with docetaxel/cyclophosphamide drugs. μXRF measurements were carried out at the X-ray XRF beamline in the Brazilian Synchrotron Light Laboratory. The results showed significant decrease especially in Ca concentrations when comparing the treated groups with the control group.

  12. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    PubMed

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  13. Image analysis of the AXAF VETA-I x ray mirror

    NASA Technical Reports Server (NTRS)

    Freeman, Mark D.; Hughes, John P; Vanspeybroeck, L.; Weisskopf, M.; Bilbro, J.

    1992-01-01

    Initial core scan data of the VETA-I x-ray mirror proved disappointing, showing considerable unpredicted image structure and poor measured FWHM. 2-D core scans were performed, providing important insight into the nature of the distortion. Image deconvolutions using a ray traced model PSF was performed successfully to reinforce our conclusion regarding the origin of the astigmatism. A mechanical correction was made to the optical structure, and the mirror was tested successfully (FWHM 0.22 arcsec) as a result.

  14. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    PubMed Central

    Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2017-01-01

    The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190

  15. Microscopy and microanalysis 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, G.W.; Corbett, J.M.; Dimlich, R.V.W.

    1996-12-31

    The Proceedings of this Annual Meeting contain paper of members from the three societies. These proceedings emphasizes the common research interests and attempts to eliminate some unwanted overlap. Topics covered are: microscopic analysis of animals with altered gene expression and in-situ gene and antibody localizations, high-resolution elemental mapping of nucleoprofein interactions, plant biology and pathology, quantitative HREM analysis of perfect and defected materials, computational methods for TEM image analysis, high-resolution FESM in materials research, frontiers in polymer microscopy and microanalysis, oxidation and corrosion, micro XRD and XRF, molecular microspectroscopy and spectral imaging, advances in confocal and multidimensional light microscopy, analyticalmore » electron microscopy in biology, correlative microscopy in biological sciences, grain-boundary microengineering, surfaces and interfaces, telepresence microscopy in education and research, MSA educational outreach, quantitative electron probe microanalysis, frontiers of analytical electron microscopy, critical issues in ceramic microstructures, dynamic organization of the cell, pathology, microbiology, high-resolution biological and cryo SEM, and scanning-probe microscopy.« less

  16. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  17. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  18. Evaluation of Aluminium Dross as Adsorbent for Removal of Carcinogenic Congo Red Dye in Wastewater

    NASA Astrophysics Data System (ADS)

    Zakaria, Mohamad Zulfika Hazielim b.; Zauzi, Nur Syuhada Ahmad; Baini, Rubiyah; Sutan, Norsuzailina Mohamed; Rezaur Rahman, Md

    2017-06-01

    In this study, aluminium dross waste generated from aluminium smelting industries was employed as adsorbent in removing of congo red dye in aqueous solution. The raw aluminium dross as adsorbent was characterized using Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET) for surface area and X-Ray Fluorescence (XRF) Spectroscopy. Adsorption experiments were carried out by batch system at different adsorbent mass, pH, and initial dye concentration. The results showed that the per cent removal of dye increased as adsorbent mass increased. It was found that 0.4 gram of adsorbent can remove approximately 100 % of dye at pH 9 for dye concentration 20 and 40 ppm. Therefore, it can be concluded that raw aluminium dross without undergone any treatment can be effectively used for the adsorption of congo red in textile wastewater related industries.

  19. The ceramics of Malpaís of Zacapu, Michoacán, Mexico, during the Early and Middle Postclassic periods (900-1450 AD): Micro-chemical characterization of surface paintings

    NASA Astrophysics Data System (ADS)

    Jadot, E.; Schiavon, N.; Manso, M.

    2016-05-01

    Tarascan ceramic sherds from two Postclassical archaeological sites (900-1450 AD) at the Malpaís of Zacapu, Michoacán, Mexico, were investigated by combining Back-Scattered Scanning Electron Microscopy and Energy Dispersive Spectroscopy (BSEM-EDS), μ-X-Ray Diffractometry (μ-XRD), μ-X-ray Fluorescence Spectroscopy (μ-XRF) and μ-Raman Spectroscopy. These sherds are famous for their forms and decorations although the composition of its raw materials remains so far unknown and focused only on the composition of the ceramic paste. For the purpose of surface decoration characterization, the pigments used in slips and paintings were identified as hematite, magnetite, amorphous carbon, graphite and lignite. Furthermore chemical and molecular structure determination allowed the identification of technological aspects such as the firing temperatures and atmospheres used in ceramics production.

  20. Synchrotron radiation-based x-ray analysis of bronze artifacts from an Iron Age site in the Judean hills.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, E. S.; Brody, A. J.; Young, M. L.

    Seven bronze bangles from Tell en-Nasbeh, northern Judah, were investigated to understand the phase composition and manufacturing process of the artifacts, and possibly suggest a provenance for their origin. Synchrotron x-ray radiation diffraction (XRD) and fluorescence (XRF) were used in the analysis to avoid any destructive sampling and at the same time penetrate through the surface into the core metal. These techniques enabled us to determine that the bangles were not just tin bronze, but leaded tin bronze. Based on excavation reports, it is unlikely that the metal objects were manufactured locally at Tell en-Nasbeh; rather, preliminary XRD and XRFmore » data point towards the neighboring region of Edom as their origin. Despite their political enmity during the Iron Age II, the data suggest that Judahite social demands for bronze may have fostered a strong economic relationship between these two polities.« less

  1. Cross-section imaging and p-type doping assessment of ZnO/ZnO:Sb core-shell nanowires by scanning capacitance microscopy and scanning spreading resistance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lin, E-mail: lin.wang@insa-lyon.fr; Brémond, Georges; Sallet, Vincent

    2016-08-29

    ZnO/ZnO:Sb core-shell structured nanowires (NWs) were grown by the metal organic chemical vapor deposition method where the shell was doped with antimony (Sb) in an attempt to achieve ZnO p-type conduction. To directly investigate the Sb doping effect in ZnO, scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) were performed on the NWs' cross-sections mapping their two dimensional (2D) local electrical properties. Although no direct p-type inversion in ZnO was revealed, a lower net electron concentration was pointed out for the Sb-doped ZnO shell layer with respect to the non-intentionally doped ZnO core, indicating an evident compensating effectmore » as a result of the Sb incorporation, which can be ascribed to the formation of Sb-related acceptors. The results demonstrate SCM/SSRM investigation being a direct and effective approach for characterizing radial semiconductor one-dimensional (1D) structures and, particularly, for the doping study on the ZnO nanomaterial towards its p-type realization.« less

  2. Autoblocker: a system for detecting and blocking of network scanning based on analysis of netflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobyshev, A.; Lamore, D.; Demar, P.

    2004-12-01

    In a large campus network, such at Fermilab, with tens of thousands of nodes, scanning initiated from either outside of or within the campus network raises security concerns. This scanning may have very serious impact on network performance, and even disrupt normal operation of many services. In this paper we introduce a system for detecting and automatic blocking excessive traffic of different kinds of scanning, DoS attacks, virus infected computers. The system, called AutoBlocker, is a distributed computing system based on quasi-real time analysis of network flow data collected from the border router and core switches. AutoBlocker also has anmore » interface to accept alerts from IDS systems (e.g. BRO, SNORT) that are based on other technologies. The system has multiple configurable alert levels for the detection of anomalous behavior and configurable trigger criteria for automated blocking of scans at the core or border routers. It has been in use at Fermilab for about 2 years, and has become a very valuable tool to curtail scan activity within the Fermilab campus network.« less

  3. Study of tin amalgam mirrors by 1 1 9 Sn Mössbauer spectroscopy and other analytical methods

    NASA Astrophysics Data System (ADS)

    Lerf, A.; Wagner, F. E.; Herrera, L. K.; Justo, A.; Mu noz-Páez, A.; Pérez-Rodríguez, J. L.

    2016-12-01

    From the beginning of the 16 th until the end of the 19 th century the most widely used mirrors consisted of a pane of glass backed with a reflecting layer of tin-mercury amalgam. They were made by sliding the glass pane over a tin foil covered with liquid mercury. After removal of the superfluous mercury, tin amalgam formed slowly at ambient temperature and yielded a reflecting layer adhering to the surface of the glass. Such mirrors often deteriorate in the course of time by oxidation of the tin in the amalgam to stannous or stannic oxide. 119Sn Mössbauer spectroscopy, scanning electron microscopy, micro-XRF and X-ray diffraction have been used to study this deterioration process. The studied specimens were a modern mirror made for the reconstruction of the Green Vault in Dresden in the early 2000s, two rather well preserved German mirrors from the 17 th and 19 th centuries and several strongly deteriorated specimens of Baroque mirrors from the south of Spain. The modern mirror consists mainly of a Sn0.9Hg0.1 amalgam with only 2 % of SnO2. The older German mirrors showed more pronounced oxidation, containing 12 and 15 % of SnO2, which did not noticeably impair their reflectivity. In the samples from the Spanish mirrors at best a few percent of metallic phase was left. The majority of the tin had oxidised to SnO2, but between 8 and 20 % of the tin was present as SnO. X-ray diffraction yielded similar results and micro-XRF mapping using synchrotron radiation for excitation gave information on the distribution of Sn and Hg in the reflecting layer of the mirrors.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P.

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detectionmore » limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.« less

  5. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  6. FAM20A Gene Mutation: Amelogenesis or Ectopic Mineralization?

    PubMed

    Lignon, Guilhem; Beres, Fleur; Quentric, Mickael; Rouzière, Stephan; Weil, Raphael; De La Dure-Molla, Muriel; Naveau, Adrien; Kozyraki, Renata; Dessombz, Arnaud; Berdal, Ariane

    2017-01-01

    Background and objective: FAM20A gene mutations result in enamel renal syndrome (ERS) associated with amelogenesis imperfecta (AI), nephrocalcinosis, gingival fibromatosis, and impaired tooth eruption. FAM20A would control the phosphorylation of enamel peptides and thus enamel mineralization. Here, we characterized the structure and chemical composition of unerupted tooth enamel from ERS patients and healthy subjects. Methods: Tooth sections were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), and X-Ray Fluorescence (XRF). Results: SEM revealed that prisms were restricted to the inner-most enamel zones. The bulk of the mineralized matter covering the crown was formed by layers with varying electron-densities organized into lamellae and micronodules. Tissue porosity progressively increased at the periphery, ending with loose and unfused nanonodules also observed in the adjoining soft tissues. Thus, the enamel layer covering the dentin in all ERS patients (except a limited layer of enamel at the dentino-enamel junction) displayed an ultrastructural globular pattern similar to one observed in ectopic mineralization of soft tissue, notably in the gingiva of Fam20a knockout mice. XRD analysis confirmed the existence of alterations in crystallinity and composition (vs. sound enamel). XRF identified lower levels of calcium and phosphorus in ERS enamel. Finally, EDS confirmed the reduced amount of calcium in ERS enamel, which appeared similar to dentin. Conclusion: This study suggests that, after an initial normal start to amelogenesis, the bulk of the tissue covering coronal dentin would be formed by different mechanisms based on nano- to micro-nodule aggregation. This evocated ectopic mineralization process is known to intervene in several soft tissues in FAM20A gene mutant.

  7. Vegetation changes and human impact inferred from an oxbow lake in southwestern Amazonia, Brazil since the 19th century

    NASA Astrophysics Data System (ADS)

    Rodríguez-Zorro, Paula A.; Enters, Dirk; Hermanowski, Barbara; da Costa, Marcondes Lima; Behling, Hermann

    2015-10-01

    Pollen and X-ray fluorescence spectrometry (XRF) analyses from a 272 cm-long sediment core of Lago Amapá, an oxbow lake in western Amazonia, reveal the first palaeoecological investigation of late Holocene sediments in Acre state, Brazil. Radiocarbon dating of older sediments failed due to re-deposition of organic material but a historical map suggests that lacustrine deposition started at 1900 AD. We detected two periods of changes in sediment and vegetation, dominated by pioneer taxa especially Cecropia. The first period around 1900 AD is documenting an initial oxbow lake, with regular fluvial input (high Ti) and low accumulation of organic matter (low inc/coh ratio). During that period Andean pollen taxa originating from Peruvian Andean headwaters were deposited. A fully lacustrine phase started about 1950 AD and is characterized by prolonged periods of stagnant water (low Fe/Mn ratio). The increase of pioneer taxa, sedimentation rates and a reduction of most of the XRF element counts point to a period during which Lago Amapá was a more isolated lake which was flooded only during exceptional severe flood events and is catching mainly anthropogenic disturbances. The extensive human influence during this period was assumed by 1) the high occurrence of pioneer taxa and the absence of charcoal which could indicate changes in vegetation possibly as a result of logging, 2) the Ca and Ti/K ratio which reflect changes to a local sediment source, and 3) comparison of Landsat images from the last 30 years which shows broad changes in vegetation cover and land transformation in the peripheral areas of the oxbow lake.

  8. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  9. Childhood lead poisoning investigations: evaluating a portable instrument for testing soil lead.

    PubMed

    Reames, Ginger; Lance, Larrie L

    2002-04-01

    The Childhood Lead Poisoning Prevention Branch of the California Department of Health Services evaluated a portable X-ray fluorescence (XRF) instrument for use as a soil lead-testing tool during environmental investigations of lead-poisoned children's homes. A Niton XRF was used to test soil at 119 sampling locations in the yards of 11 San Francisco Bay Area houses. Niton XRF readings were highly correlated with laboratory results and met the study criteria for an acceptable screening method. The data suggest that the most health-protective and time-efficient approach to testing for soil lead above regulatory levels is to take either surface readings or readings of a test cup of soil prepared by grinding with a mortar and pestle. The advantage of the test cup method is that the test cup with soil may be submitted to a laboratory for confirmatory analysis.

  10. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  11. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Rutte, Reida N.; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; de Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C.; Davis, Benjamin G.

    2016-10-01

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular `blueprint' this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as `contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  12. Cyclostratigraphic analysis of the Middle to lower Upper Ordovician Postolonnec Formation in the Armorican Massif (France): integrating pXRF, gammay-ray and lithological data

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Loi, Alfredo; Dabard, Marie-Pierre; Vandenbroucke, Thijs; Claeys, Philippe

    2017-04-01

    The Middle to lower Upper Ordovician sections of the Crozon Peninsula area (Postolonnec Formation, Armorican Massif, western France) show multi-order eustatic sea-level changes (Dabard et al., 2015). The sections are characterized by siliciclastic facies, which were deposited in tidal to storm-dominated shelf environments. Dabard et al. (2015) analysed the facies, their stacking patterns, and gamma-ray data and applied backstripping to identify subsidence and several orders of sea-level change. The main stratigraphic constraints are coming from (chitinozoan) biostratigraphy. The 3th to 5th orders changes are hypothesized to correspond to various frequencies related to astronomical forcing. This study investigates the potential added value of portable X-Ray Fluorescence (pXRF) and the application of spectral analyses. High-resolution (cm-scale) non-destructive pXRF and natural gamma-ray measurements were carried out on 14 m of section that was equally logged on a cm resolution. The pXRF measurements on the surface of the outcrops are compared with earlier results of wavelength dispersive XRF spectrometry and ICP-MS. The potassium records of the pXRF and gamma-ray logs are comparable and essentially reflect lithological variations (i.e., between mudstone and coarse sandstones). Other reliably measured elements also reflected lithological aspects such as clay-sandstone alternations (e.g. K, Rb, Ti), placer locations (Zr, Ce, Ti) and potentially clay mineralogy and condensation horizons (Ni, Zn, Co, Mn). Spectral analyses of the various proxies (lithology, natural gamma-ray and pXRF) are compared with each other. Both the new high-resolution data (14 m of section) as well as the published low-resolution data (which span almost 400 m of Darriwilian-Sandbian) were analyzed. The study reveals strong indications for the imprint of obliquity, precession and eccentricity. Obtaining age constraints, in addition to the existing biostratigraphical framework is a challenge in these sections, but would help to resolve temporal uncertainties and confirm our interpretations. The relative strength of the potential obliquity and precession-eccentricity signals also can provide further insights in the global glaciation history of the Middle to Late Ordovician given that a larger obliquity component can be expected if there was a more developed polar ice sheet on the Gondwanan palaeocontinent. Dabard M.P., Loi A., Paris, F., Ghienne J.F., Pistis M., and Vidal M. (2015): Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles. Palaeogeography, Palaeoclimatology, Palaeocology, 436, 96-111, doi:10.106/j.palaeo.2015.06.038

  13. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less

  14. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    NASA Astrophysics Data System (ADS)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  15. Late Glacial and Holocene Climate Change in the subantarctic Auckland Islands

    NASA Astrophysics Data System (ADS)

    Gilmer, G.; Moy, C. M.; Vandergoes, M.; Gadd, P.; Riesselman, C. R.; Jacobsen, G. E.; Wilson, G. S.; Visinand, C.

    2017-12-01

    Situated within the core of the Southern Hemisphere westerly winds, and between the subtropical and subantarctic fronts, the New Zealand subantarctic islands are uniquely positioned to evaluate past ocean and atmospheric change in the middle to high southern latitudes. We collected a series of sediment cores from Auckland Island fjords to produce a high-resolution record of climate change following the Last Glacial Maximum. Physical property and organic geochemical data, Itrax XRF, and visual core descriptions indicate the cores capture several phases of sedimentation. From these studies, we identify four primary sedimentary facies: 1) a deglacial facies exhibiting mm-scale laminae defined by magnetic susceptibility and density contrasts and high counts of elements associated with terrigenous sources; 2) a lacustrine facies defined by very low density, high organic carbon concentrations and low counts of lithophilic elements; 3) a marine transgression facies with moderate density, moderate bioturbation and alternating marine and lacustrine sedimentary components; 4) a marine facies that contains biogenic carbonate. Radiocarbon results indicate deglacial sedimentation was underway in the basin by approximately 19,000 cal yr BP. Lacustrine deposition in ice-free conditions began around 15,600 cal yr BP and continued until marine transgression at approximately 9,500 cal yr BP. During the early Holocene between 11 and 9.5 ka, we observe elevated n-alkane δD values and an overall increase in redox-sensitive elements that signal a combination of warmer atmospheric temperatures and reduced westerly wind strength that drives fjord stratification. Poleward-shifted westerlies south of the Auckland Islands could accommodate these results, but there are few records to corroborate this interpretation. We will discuss these results within the context of developing New Zealand and subantarctic paleoclimate records in order to provide a more comprehensive record of past change.

  16. Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. [Klebsiella pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappin-Scott, H.M.; Cusack, F.; Costerton, J.W.

    1988-06-01

    Klebsiella pneumoniae, which was reduced in size (0.25 by 0.5 ..mu..m) by carbon deprivation, was injected into a series of sandstone cores and subjected to separate treatments. Scanning electron microscopy of 400-mD cores showed these small starved cells in nearly every core section. The cells were a mixture of small rods and cocci with little or no biofilm production. Continuous or dose stimulation with sodium citrate allowed the cells to grow throughout the sandstone and completely plug the length of the core. The resuscitated cells were larger than the starved cells (up to 1.7 ..mu..m) and were encased in glycocalyx.more » Scanning electron microscopic results of resuscitation in situ with half-strength brain heart infusion broth showed that a shallow skin plug of cells formed at the core inlet and that fewer cells were located in the lower sections. Starved cells also penetrated 200-mD cores and were successfully resuscitated in situ with sodium citrate, so that the entire core was plugged. Nutrient resuscitation of injected starved cells to produce full-size cells which grow and block the rock pores may be successfully applied to selective plugging and may effectively increase oil recovery.« less

  17. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  18. Assessment of chemical analyses by means of portable XRF in the Roman mortars of Complutum archaeological site (Spain)

    NASA Astrophysics Data System (ADS)

    Ergenç, Duygu; Freire, David; Fort, Rafael

    2016-04-01

    The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study enable to differentiate the types of lime mortars used in the site (Caementicium and Signinum) and in different buildings that form the Roman city. Acknowledgements: Thanks to the project CLIMORTEC (BIA2014-53911-R), to CEI-Moncloa of UCM-UPM-UCM and to Madrid Community for funding the Geomateriales2 (P2013/MIT2914) program

  19. Monte Carlo Approach for Estimating Density and Atomic Number From Dual-Energy Computed Tomography Images of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos

    2017-12-01

    We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.

  20. Multi-method investigation of cushion peatlands (

    NASA Astrophysics Data System (ADS)

    Forbriger, M.; Schittek, K.; Höfle, B.; Siart, C.; Eitel, B.

    2012-04-01

    This study presents a multi-method and multi-proxy approach for palaeonvironmental investigations in the western andean cordillera of southern Peru (Lucanas province, 14° S) using cushion peatlands as terrestrial geoarchives. The region stretching between the Altiplano and the Peruvian desert in the lowland shares a long term settlement history, in which local cultures adapted to climate change in many different ways. Being one of the most outstanding human remains, the abri below Cerro Llamoca, 4.450 m a.s.l. in the uppermost ranges of the Llamoca peatland catchment area further reveals an occupation history of almost 10.000 years, as revealed by latest archaeological investigations. In remote and highly elevated regions such as the central Andes, cushion peatlands basically represent the only high resolution terrestrial archives suitable for geoarchaeological and palaeoenvironmental studies. Characterized by high accumulation rates, they ideally document environmental changes, particularly at small time intervals. Within the multidisciplinary project 'Andean Transect - Climate Sensitivity of pre-Columbian Man-Environment-Systems' several sediment cores with depths up to 11.5 m b.s. were recovered from the Llamoca peatland. Based on almost 100 AMS 14C-datings they provide a chronology of 8000 years and, thus, offer profound insights into climatic and environmental changes in the study area. While nearly homogeneous peat layers record stable environmental conditions, the heterogeneous granulometric composition of intercalated sediment layers documents several periods of intense geomorphodynamic activity. Due to high resolution geochemical analyses of peat layers (1 cm interval; humification degree, CNS measurements, XRF-scanning), the existence of slight and short-term trends of landscape development during these phases can be identified. Additional pollen, charred particles and plant macrofossil analyses confirm these findings and help reconstructing local vegetation history. High-resolution digital elevation models derived from terrestrial laser scanning (TLS) provide important input data for geomorphologic analyses on current geomorphic processes that can be transferred to former times. Detailed subsurface information obtained by geophysics (electrical resistivity tomography ERT) helped identify the most suitable sampling sites. Information about peat thickness, stratigraphy and depth to bedrock was combined with topographical elevation data, chronometrical outcomes and palaeoenvironmental parameters to generate subsurface models of the study site. The findings allow reconstructing and visualizing the ancient landscape and the stages of peat development, which coincide with pre-Columbian cultural eras.

  1. Sedimentary geochemistry depicts 2700 years of regional climate and land use change in the Rieti Basin, Central Italy

    NASA Astrophysics Data System (ADS)

    Archer, C.; Noble, P. J.; Mensing, S. A.; Tunno, I.; Sagnotti, L.; Florindo, F.; Cifnani, G.; Zimmerman, S. R. H.; Piovesan, G.

    2014-12-01

    A 14.4 m thick sedimentary sequence was recovered in multiple cores from Lago Lungo in the Rieti Basin, an intrapenninic extensional basin ~80 km north of Rome, Italy. This sequence provides a high-resolution record of environmental change related to climatic influence and anthropogenic landscape alteration. Pollen analyses, corroborated with historical records of land-use change, define the major shifts in forest composition and their historical context. An age model of the sequence was built using ties to regional cultigen datums and archaeomagnetic reference curves. Here we focus on sedimentologic and geochemical data (scanning XRF) from the Roman Period through the Little Ice Age (LIA). The base of the sequence (ca. 680 BCE- 1 CE) is marked by a steady increase in fine-grained detrital elements Ti, Rb, and K, and corresponding decrease in Ca, representing a transition from the unaltered system after the Romans constructed a channel that the basin. The Medieval Period (MP; 900-1350 CE) is lithologically distinct, composed of varicolored bands of alternating silt, clay, and calcareous concretions. Low counts of Ca, high detrital elements and frequent abrupt peaks in levels of the redox elements Fe and Mn indicate episodic clastic influx. Pollen data indicate that the greatest degree of deforestation and erosion occurred during the MP, supported by mean sedimentation rates of ca. 1cm/year, over twice the rate of the underlying interval. The Medieval climate was warmer and more stable, population increased, and elevations >1000 m were exploited for agriculture. The influence of the Velino River on the lake appears to increase during the MP through channel migration, increased flooding, or increased overland flow. The next transition (1350 CE) marks the start of the LIA and is coincident with the Black Plague. Historical records document a large earthquake in 1349 that severely struck Central Italy, with possible effects on the lake's depositional and hydrochemical regime. Clastic input abruptly ceases at the start of the LIA, and peaks in Sr, Ca, and S may be attributed to changes in lake inflow. Core analyses results, corroborated with historical documentation, provide new insights into the basin history and the underlying causes of environmental change.

  2. The Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona: an Update

    NASA Astrophysics Data System (ADS)

    Werne, J. P.; Anderson, R. S.; Fawcett, P. J.; Brown, E. T.; Jimenez-Moreno, G.; Toney, J. L.; Dunbar, N. W.; Stockhecke, M.; Garrett, H.; Garcia, D.

    2016-12-01

    Long continuous lake sediment core records of Pleistocene paleoenvironmental and paleoclimatic change are rare in the American Southwest. Such records have the potential to provide long-term perspective on, for instance, the occurrence and duration of past megadroughts, vegetation change during glacial-interglacial transitions, and changes in precipitation sources, among many other aspects of environmental change. One site with the potential to study ancient megadroughts and long-term environmental change is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is presently spring fed, and has alternated between a marsh and a lake over the last 25 years, fluctuating by > 3 meters. This sensitivity is due to its small closed drainage basin (ca. 2.5 km2) with one small intermittant inflowing stream. We have been analyzing two parallel lacustrine sediment cores (70 m and 30 m deep), which were recovered in October of 2014. Our preliminary chronology is based on 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m and 36.3 m depth. The Holocene-Pleistocene boundary occurs at 2.8 m ( 11,000 cal yr B.P.) while the lowest finite AMS age at 4.2 m is 45,500 cal yr B.P. The most likely source of the tephra at 30.8 m is from Sugarloaf, San Francisco Volcanic Field, having a preliminary age of 700k. Based on this age, we estimate that the 70-m deep hole will provide a climate record back to 1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. In addition to our Geo-Tek analyses (MS, bulk density and high-resolution images) pollen data outlines glacial-interglacial changes since the mid-Pleistocene. Carbon isotopes from glacial-age sediments are more negative, suggesting a dominance of C3 plants, while less negative values during interglacials suggest a greater C4 component. ITRAX Scanning XRF and calculation of selected elemental ratios shows calcium is higher during interglacial periods (Holocene, MIS 5), consistent with great evaporation and lower lake levels. The K:Ti ratio may represent a dust input signal into the lake.

  3. Pleistocene Indian Monsoon rainfall variability dominated by obliquity

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, D.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Nuernberg, D.; Frank, M.

    2015-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea while Quaternary proxy records of Indian monsoon precipitation are still lacking. Here we utilize scanning x-ray fluorescence (XRF) data from a sediment core obtained by the IODP vessel JOIDES Resolution in the Andaman Sea (Site 17) to investigate changes in sediment supply from the peak monsoon precipitation regions to the core site. We use Ti/Ca and K/Rb ratios to trace changes in terrigenous flux and weathering regime, respectively, while Zr/Rb ratios suggest grain size variations. The age model of Site 17 is based on correlation of benthic C. wuellerstorfi/C. mundulus δ18O data to the LR04 global benthic δ18O stack at a resolution of ~3 kyr (Lisiecki and Raymo, 2005) for the last 2 Myrs. In its youngest part the age model is supported by five 14C ages on planktic foraminifera and the youngest Toba ash layer (Ali et al., 2015) resulting in a nearly constant sedimentation rate of ~6.5 cm/kyr. Frequency analysis of the 4 mm resolution Ti/Ca, K/Rb, and Zr/Rb time series using the REDFIT program (Schulz and Mudelsee, 2002), reveals the three main Milankovitch orbital cycles above the 90% confidence level. Depth domain spectral analysis reveals the presence of significant cyclicity at wavelengths of 28.5 and 2.8 m corresponding to the ~400 kyr and ~41 kyr cycles, respectively, during the last 2 Myr. These records suggest that Indian monsoon variability has varied in the obliquity and eccentricity bands, the latter in particular after the mid Pleistocene transition (MPT), while strong precession forcing is lacking in this super-high resolution record. Northern summer insolation and Southern Hemisphere latent heat export are out of phase during precessional cycles, but in phase in the obliquity band, which indicates that Indian monsoon precipitation has likely been more sensitive to both NH pull and SH push mechanisms (Clemens and Prell, 2003). References Ali, S., et al., 2015. Geochem., Geophy., Geosys., 16, 505-521. Clemens, S.C. and Prell, W.L., 2003. Marine Geology, 201(1): 35-51. Lisiecki, L. E. and M. E. Raymo ,2005. Paleoceanography, 20, PA1003. Schulz, M., and Mudelsee, M., 2002. Computers & Geosciences, v. 28, p. 421-426.

  4. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  5. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).

    PubMed

    Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H

    2017-08-01

    Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.

  6. pXRF analyses of Louise Herreshoff's paintings in relation to CdS and other pigment degradation issues

    NASA Astrophysics Data System (ADS)

    Uffelman, Erich S.; Hobbs, Patricia A.; Barisas, Derek A. G.; Mass, Jennifer L.

    2013-04-01

    Portable X-ray Fluorescence Spectrometry (pXRF) was used to survey 33 works in Washington and Lee University's collection of Louise Herreshoff's paintings. This work was done both to support a condition assessment of the paintings and their pigments and to determine which paintings might be appropriate for further study in the context of ongoing key synchrotron research into the degradation mechanisms of cadmium sulfide yellow pigment (CdS).

  7. Reasons of different colors in the ignimbrite lithology: micro-XRF and confocal Raman spectrometry method.

    PubMed

    Koralay, Tamer; Kadioglu, Yusuf Kagan

    2008-03-01

    Medium to large volume ignimbrites usually show vertical changes in terms of color, mineral components, texture and geochemistry. Determination of vertical changes in single extensive ignimbrite flow unit is difficult and requires careful studies. Color changes in ignimbrite flow units are very important for earth scientists. This may cause to identify the same ignimbrite series with different definition. Incesu ignimbrite has a wide distribution in the Central Anatolian Volcanic Province (CAVP). It is classified into three levels as lower, middle and upper according to color and welding degree. There is a sharp contact between the lower and middle level. The lower level is dark brown to black in color and the middle level has pinkish red to red color. The present paper focuses on the investigation of color changes between the ignimbrite levels by using micro-XRF and confocal Raman spectrometry. Micro-XRF and Raman spectrometry studies were performed on the polished thin sections of the lower and middle levels with different compositions. These differences were because of the compositional changes of K and slightly Fe elements distribution within the matrix. The dark brown to black color of the lower level was related to the high concentration of the K and Fe relatively to the middle level. Confocal Raman spectrometry investigations exhibited the matrix of the lower level mainly composed of anorthoclase, supporting the results of the micro-XRF.

  8. Non-matrix Matched Glass Disk Calibration Standards Improve XRF Micronutrient Analysis of Wheat Grain across Five Laboratories in India

    PubMed Central

    Guild, Georgia E.; Stangoulis, James C. R.

    2016-01-01

    Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644

  9. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    PubMed Central

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  10. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  11. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    2015-03-11

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  12. Holocene climate dynamics in the Eastern Italian Alps: a multi-proxy study from ice and peat bogs

    NASA Astrophysics Data System (ADS)

    Poto, Luisa; Gabrieli, Jacopo; Segnana, Michela; Festi, Daniela; Oeggl, Klaus; Barbante, Carlo

    2014-05-01

    The Eastern Italian Alps are located near one of the areas in the world with some of the longest records of extreme environmental use by human activity. In this area, paleo-climate studies are hampered by the lack of high-resolution multi-proxy records with adequate chronological control. With this project, we propose to reconstruct Holocene climatic and environmental variations in the Eastern Italian Alps using terrestrial and glaciological archives. We aim to study the characteristics of different climate stages in this sector of the Alps using an ice core drilled on the top of the Ortles glacier (46°30' N, 10°32 E, 3850 m a.s.l.) and ombrotrophic peat bog records from the Dolomites (Danta di Cadore, 46°34' N, 12°33 E, 1400 m a.s.l. and Coltrondo 46°39'28.37''N 12°26'59.17''E, 1800 m a.s.l., Belluno province). The study of global climatic change require a holistic and multi-proxy approach to better understand several complex and often non-linear relationships. In the Italian Alps our study on peat cores represents the first attempt where a multi-proxy approach is applied, and here we report our first results. A 7.0 m peat sequence was extracted in Danta di Cadore. The depth-age scale, based upon independent 14C and 210Pb dates and modeled with the Clam method (Blaauw, 2010), demonstrates that the archive covers more than 13,200 years (cal BP). We determined physical proprieties, Ca and Ti trends, pore water pH, conductivity, and Ca/Mg ratios to identify changes in trophic conditions. The results confirm that the uppermost 400 cm are composed of ombrotrophic peat representing the longest Eastern Alpine ombrotrophic record yet obtained, covering the last 7,000 years. The oldest radiocarbon age (13,200 years cal BP) provides evidence that, during the Bölling-Alleröd interstadial, the upper part of the Piave Glacier was ice-free up to 1400 m a.s.l.. At that time pollen assemblages show that a conifer forest characterized the local vegetation. This forest was then affected by the climatic cooling of the Younger Dryas, which caused an opening of the vegetation. The climatic amelioration occurring at the onset of the Holocene favored the local expansion of warmth-demanding species. X-ray Fluorescence Core Scanner (XRF-CS) analysis was applied for the first time on Eastern Alpine peat sequences. XRF-CS signals were calibrated with ICP-MS, showing very high correlation and demonstrating that the XRF-CS technique provides reliable quantitative data. Results provide information about geochemical processes occurring in the bog. The impact of mining activity was also evaluated. Concentration levels and enrichment factors (EFs) of several trace elements such as Pb, Ag and Cd correspond to the historical data about mining activities in the Cadore region. Lead isotopes ratios were measured to identify natural and anthropogenic sources of Pb emissions. Results show an increase of Pb deriving from fuel combustion over the last decades that gradually overlie the impacts of mining activity. The decreasing 206Pb/207Pb trend reached its minimum value of 1.153 in the 1990s and then increased again. In these years, Italy started to follow EU rules to limit global pollutants in the atmosphere, and finally banned leaded fuels in 2002. Both 206Pb/207Pb ratio and Pb fluxes show a particular event between 1975 and 1980: this behavior is characteristic of the ILE (Isotopic Lead Experiment), a large-scale isotopic tracer experiment which was carried out in the Piedmont region (N-W Italy). This multi-proxy approach that integrates, using new chronological insights, chemical physical and biological features of the core, improves our understanding of Eastern Alpine Holocene climate, helping to delineate biotic and abiotic responses to climate dynamics during the present interglacial. Blaauw, M. 2010. Methods and code for 'classical' age modeling of radiocarbon sequences. Quarternary Geochronology, 5: 512-518.

  13. Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic.

    PubMed

    Dervišević, Irma; Minić, Duško; Kamberović, Željko; Ćosović, Vladan; Ristić, Mirjana

    2013-06-01

    In this paper, we have analyzed parts of printed circuit board (PCB) and liquid crystal display (LCD) screens of mobile phones and computers, quantitative and qualitative chemical compositions of individual components, and complete PCBs were determined. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) methods were used to determine the temperatures of phase transformations, whereas qualitative and quantitative compositions of the samples were determined by X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and scanning electron microscopy (SEM)-energy dispersive X-ray spectrometry (EDS) analyses. The microstructure of samples was studied by optical microscopy. Based on results of the analysis, a procedure for recycling PCBs is proposed. The emphasis was on the effects that can be achieved in the recycling process by extraction of some parts before the melting process. In addition, newly developed materials can be an adequate substitute for some of the dangerous and harmful materials, such as lead and arsenic are proposed, which is in accordance with the European Union (EU) Restriction of the use of certain hazardous substances (RoHS) directive as well as some alternative materials for use in the electronics industry instead of gold and gold alloys.

  14. Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks

    PubMed Central

    Buddhachat, Kittisak; Thitaram, Chatchote; Brown, Janine L.; Klinhom, Sarisa; Bansiddhi, Pakkanut; Penchart, Kitichaya; Ouitavon, Kanita; Sriaksorn, Khanittha; Pa-in, Chalermpol; Kanchanasaka, Budsabong; Somgird, Chaleamchat; Nganvongpanit, Korakot

    2016-01-01

    We describe the use of handheld X-ray fluorescence, for elephant tusk species identification. Asian (n = 72) and African (n = 85) elephant tusks were scanned and we utilized the species differences in elemental composition to develop a functional model differentiating between species with high precision. Spatially, the majority of measured elements (n = 26) exhibited a homogeneous distribution in cross-section, but a more heterologous pattern in the longitudinal direction. Twenty-one of twenty four elements differed between Asian and African samples. Data were subjected to hierarchical cluster analysis followed by a stepwise discriminant analysis, which identified elements for the functional equation. The best equation consisted of ratios of Si, S, Cl, Ti, Mn, Ag, Sb and W, with Zr as the denominator. Next, Bayesian binary regression model analysis was conducted to predict the probability that a tusk would be of African origin. A cut-off value was established to improve discrimination. This Bayesian hybrid classification model was then validated by scanning an additional 30 Asian and 41 African tusks, which showed high accuracy (94%) and precision (95%) rates. We conclude that handheld XRF is an accurate, non-invasive method to discriminate origin of elephant tusks provides rapid results applicable to use in the field. PMID:27097717

  15. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

    2015-01-01

    Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Use of handheld X-ray fluorescence as a non-invasive method to distinguish between Asian and African elephant tusks

    NASA Astrophysics Data System (ADS)

    Buddhachat, Kittisak; Thitaram, Chatchote; Brown, Janine L.; Klinhom, Sarisa; Bansiddhi, Pakkanut; Penchart, Kitichaya; Ouitavon, Kanita; Sriaksorn, Khanittha; Pa-in, Chalermpol; Kanchanasaka, Budsabong; Somgird, Chaleamchat; Nganvongpanit, Korakot

    2016-04-01

    We describe the use of handheld X-ray fluorescence, for elephant tusk species identification. Asian (n = 72) and African (n = 85) elephant tusks were scanned and we utilized the species differences in elemental composition to develop a functional model differentiating between species with high precision. Spatially, the majority of measured elements (n = 26) exhibited a homogeneous distribution in cross-section, but a more heterologous pattern in the longitudinal direction. Twenty-one of twenty four elements differed between Asian and African samples. Data were subjected to hierarchical cluster analysis followed by a stepwise discriminant analysis, which identified elements for the functional equation. The best equation consisted of ratios of Si, S, Cl, Ti, Mn, Ag, Sb and W, with Zr as the denominator. Next, Bayesian binary regression model analysis was conducted to predict the probability that a tusk would be of African origin. A cut-off value was established to improve discrimination. This Bayesian hybrid classification model was then validated by scanning an additional 30 Asian and 41 African tusks, which showed high accuracy (94%) and precision (95%) rates. We conclude that handheld XRF is an accurate, non-invasive method to discriminate origin of elephant tusks provides rapid results applicable to use in the field.

  17. Sedimentary records of Typhoon Haiyan in the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.

    2016-12-01

    South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.

  18. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    PubMed

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Simulating real-world field-based petrologic research in a field course: Incorporation of portable X-ray fluorescence spectrometry in the Iceland Volcanology Field Camp

    NASA Astrophysics Data System (ADS)

    Jordan, B.

    2016-12-01

    Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.

  20. Adhesion of resin composite core materials to dentin.

    PubMed

    O'Keefe, K L; Powers, J M

    2001-01-01

    This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.

  1. Delineation of the North Anatolian Fault Within the Sapanca Lake and Correlation of Seismo-Turbidites With Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Gulen, L.; Demirbağ, E.; Cagatay, M. N.; Yıldırım, E.; Yalamaz, B.

    2015-12-01

    Seismic reflection studies have been carried out in the Sapanca Lake to delineate the geometry of the North Anatolian Fault. A total of 28 N-S and 2 E-W trending seismic profiles were obtained. The interpretation of seismic reflection profiles have revealed that the North Anatolian Fault Zone exhibits a pull-apart fault geometry within the Sapanca Lake and the active fault segments have been mapped. A bathymetry map of the Sapanca Lake is also generated and the maximum depth is determined to be 54 m. A systematic study of the sedimentological, physical and geochemical properties of three up to 75.7 cm long water-sediment interface cores located along depth transects ranging from 43 to 5.1.5 m water depth. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Organic (TOC) and Total Inorganic carbon (TIC) analysis and Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The Sapanca Lake earthquake records are characterized by seismo-turbidites consisting of grey or dark grey coarse to fine sand and silty mud with a sharp basal and transitional upper boundaries. The units commonly show normal size grading with their basal parts showing high density and magnetic susceptibility and enrichment in one or more of elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the seismo-turbidites are correlated with the 1999 İzmit and Düzce (Mw=7.4 and 7.2), 1967 Mudurnu (Mw= 6.8), and 1957 Abant (Mw= 7.1) Earthquakes. Additionally a prominent Cs137 peak was found in the Sapanca Lake sediment cores at a depth of 12 cm. indicating that a radioactive fallout occurred in the region as a result of the 1986 Chernobyl Nuclear Power Plant accident in Ukraine.

  2. Determining the 40K radioactivity in rocks using x-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Pilakouta, M.; Kallithrakas-Kontos, N.; Nikolaou, G.

    2017-09-01

    In this paper we propose an experimental method for the determination of potassium-40 (40K) radioactivity in commercial granite samples using x-ray fluorescence (XRF). The method correlates the total potassium concentration (yield) in samples deduced by XRF analysis with the radioactivity of the sample due to the 40K radionuclide. This method can be used in an undergraduate student laboratory. A brief theoretical background and description of the method, as well as some results and their interpretation, are presented.

  3. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  4. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    PubMed

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  5. Black manganese-rich crusts on a Gothic cathedral

    NASA Astrophysics Data System (ADS)

    Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.

    2017-12-01

    Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black crusts sampled at greater heights (>8 m) exhibited fungal and cyanobacterial encrustation. Carbon-rich spots were found by STXM-NEXAFS underneath one of the Mn-rich crusts. However, these carbon occurrences originate from soot and polycyclic aromatic hydrocarbons (PAHs) deposited on top of the crust, rather than from organisms responsible for the crust's formation, as shown by STXM-NEXAFS and Raman spectroscopic measurements. Our results suggest that the crusts develop abiogenically, with vehicle emissions as dominant element sources.

  6. Parametrization of environment by geochemistry of the varved clastic and bio- chemogenic lake sediments

    NASA Astrophysics Data System (ADS)

    Kalugin, Ivan; Darin, Andrey; Babich, Valery; Markovich, Tatiana; Meydan, Feray

    2017-04-01

    As it well known, recent quantitative estimations of high-resolution environmental variability are based on geochemical records in lake sediments. Naturally, annually laminated sediments (varves) are the best objects for paleoclimatic study, because they allow to investigate seasonal variability for understanding long-term environmental pattern. Also, varved sediments seem to be applied as the model for identification of element-indicators for non-laminated sediments. The XRF scanner on Synchrotron Radiation provides big geochemical dataset for next mathematic treatment, including time series construction. XRF scanning realizes rapid and non-destructive determinations more than 30 trace elements in a range of concentration from 1 up to 10000 ppm in annual layers. That makes sedimentary cores comparable with tree-rings. Geochemical and physicochemical investigation of lake sediments provides basic information to identify geochemical signals with paleoclimate. In general, sediment consists of mineral component, organics and carbonates. The proportions between these components are affected by environmental parameters, because measured element content or their combinations show correlation with meteodata on instrumental time interval. That allows applying geochemical variability to reconstruct the environmental parameters in the form of time series. The proportions between main components are controlled by temperature, atmospheric precipitation, water salinity and other external forcings. So, layered structure of lake bottom sediments and detectable elements content variability both represent a continuous record of environmental history. Element composition and it's climatic response. Bottom sediments represent conditions of physical weathering, temperate bioproductivity and aridity, which concern to mountain lakes within extra tropical zone. The numerical values of the parameters can be computed by software of physical-chemical modeling for gas+water+rock multisystems. Mineral matter responses to runoff. Mineral clastic part is correlated with x-ray density. It includes "clastic" rock-forming - Si, Al , Ti, Fe, Mg, Ca, K and trace elements such as Sr, Rb, Y, Zr, REE etc. Organic component of sediment more reflects temperature by means of productivity in the catchment and waterbody. Organophillic elements are Br, I, U and others soluble elements correlated with organic Carbon or LOI<500oC. Bio-chemogenic component is more characteristic for saline lakes, where Ca-, Mg- and Sr- carbonates precipitated in dependence of temperature, aridity and water salinity. Separate geochemical indicators are directly used for paleo- environmental evaluation. For example, elements with changing valency may be a proxy of outer conditions. Fe is strictly connected with sulfur in sulphide under anoxic conditions. And also Fe forms siderite in carbonate ion saturated, but calcium poor, water in the sedimentation system. Mn-enriched layers, crusts and nodules mark usually a long - term pauses of sedimentation in oxic systems. Mo/Mn ratio is good correlated with anoxic atmosphere. And so on. The work is supported by grants RFBR 16-05-00641, 16-05-00657, 15-55-46001.

  7. Quaternary sedimentary processes on the northwestern African continental margin - An integrated study using side-scan sonar, high-resolution profiling, and core data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E.

    1991-08-01

    Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in themore » area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.« less

  8. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  9. PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.

    PubMed

    Van der Linden, Veerle; Meesdom, Eva; Devos, Annemie; Van Dooren, Rita; Nieuwdorp, Hans; Janssen, Elsje; Balace, Sophie; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen

    2011-10-01

    The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.

  10. Tandem transmission/reflection mode XRD instrument including XRF for in situ measurement of Martian rocks and soils

    NASA Astrophysics Data System (ADS)

    Delhez, Robert; Van der Gaast, S. J.; Wielders, Arno; de Boer, J. L.; Helmholdt, R. B.; van Mechelen, J.; Reiss, C.; Woning, L.; Schenk, H.

    2003-02-01

    The mineralogy of the surface material of Mars is the key to disclose its present and past life and climates. Clay mineral species, carbonates, and ice (water and CO2) are and/or contain their witnesses. X-ray powder diffraction (XRPD) is the most powerful analytical method to identify and quantitatively characterize minerals in complex mixtures. This paper discusses the development of a working model of an instrument consisting of a reflection mode diffractometer and a transmission mode CCD-XRPD instrument, combined with an XRF module. The CCD-XRD/XRF instrument is analogous to the instrument for Mars missions developed by Sarrazin et al. (1998). This part of the tandem instrument enables "quick and dirty" analysis of powdered (!) matter to monitor semi-quantitatively the presence of clay minerals as a group, carbonates, and ices and yields semi-quantitative chemical information from X-ray fluorescence (XRF). The reflection mode instrument (i) enables in-situ measurements of rocks and soils and quantitative information on the compounds identified, (ii) has a high resolution and reveals large spacings for accurate identification, in particular of clay mineral species, and (iii) the shape of the line profiles observed reveals the kind and approximate amounts of lattice imperfections present. It will be shown that the information obtained with the reflection mode diffractometer is crucial for finding signs of life and changes in the climate on Mars. Obviously this instrument can also be used for other extra-terrestrial research.

  11. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  12. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens.

    PubMed

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R; Mudalige, Thilak K; Linder, Sean W

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r 2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r 2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  13. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    NASA Astrophysics Data System (ADS)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  14. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  15. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead.

  16. Quantitative Characterisation of Fracturing Around the Damage Zone Surrounding New Zealand's Alpine Fault Using X-ray CT Scans of DFDP-1 Core

    NASA Astrophysics Data System (ADS)

    Williams, J. N.; Toy, V.; Massiot, C.; Mcnamara, D. D.; Wang, T.

    2015-12-01

    X-ray computer tomography (CT) scans of core recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through the Alpine Fault provide an excellent opportunity to analyse brittle deformation around the fault. In particular, assessment can be made of the heavily fractured protolith constituting the damage zone. Damage zone structures are divided into two types that result from two distinct processes: (1) "off fault damage" formed by stress changes induced by the passage of a seismic rupture and (2) "off fault deformation" that represent structures, which accommodate strain around the fault that was not localised on the principal slip zone (PSZ). The distribution of these damage zones structures within CT scans of the recovered core was measured along a scanline parallel to the core axis and assessed using a weighted moving average technique to account for orientation bias. The results of this analysis reveal that within the part of the fault rocks sampled by DFDP-1 there is no increase in density of these structures towards the PSZ. This is in agreement with independent analysis using Borehole Televiewer Data of the DFDP-1B borehole. Instead, we consider the density of these structures to be controlled to the first order by lithology, which modulates the mechanical properties of the fault rocks such as its frictional strength and cohesion. Comparisons of fracture density to p-wave velocities obtained from wireline logs indicate they are independent of each other, therefore, for the cores sampled in this study fractures impart no influence on the elastic properties of the rock. This is consistent with the observation from core that the majority of fractures are cemented. We consider how this might influence future rupture dynamics.

  17. Stars By Which to Navigate? Scanning National and International Education Standards in 2009. An Interim Report on Common Core, NAEP, TIMSS and PISA

    ERIC Educational Resources Information Center

    Carmichael, Sheila Byrd; Wilson, W. Stephen; Finn, Chester E., Jr.; Winkler, Amber M.; Palmieri, Stafford

    2009-01-01

    Subject-matter experts reviewed the content, rigor, and clarity of the first public drafts of the "Common Core" standards released in September 2009 by the Common Core State Standards Initiative (CCSSI) of the National Governors Association and Council of Chief State School Officers. Using the same criteria, the same experts also…

  18. Long-Term Changes In The Behaviour Of Jakobshavns Isbrae, West Greenland During The Late Quaternary-Holocene

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, C.; Jennings, A.; Moros, M.; Andrews, J. T.; Kilfeather, A.; Dowdeswell, J. A.; Richter, T.

    2008-12-01

    This poster shows the initial results of a joint scientific project to reconstruct the Late Quaternary-Holocene behavior of Jakobshavns Isbrae in central west Greenland, one of the largest ice streams draining the modern Greenland Ice Sheet. The underlying rationale for this research is to determine if recent observed changes to the mass balance of the Greenland Ice Sheet are part of the natural variability in ice-sheet dynamics, or if they relate to anthropogenically-induced climate warming. Key to resolving this question is an understanding of long-term changes in ice sheet behavior during the Late Quaternary and the Holocene. This research will allow assessment of the links between deglaciation and internal and external environmental controls, such as the influence of inflowing Atlantic Water, and will facilitate modelling of the likely future behavior of the GIS. Currently, four marine sediment cores arrayed along a transect from the Disko Bugt Fan to Disko Bay are providing information on changes in sediment flux and sedimentation style, such as abrupt intervals of iceberg-rafting vs. "normal" hemipelagic sedimentation, as well as the paleoceanographic setting and ice sheet-ocean interactions. The cores are being analysed using a variety of proxies including IRD, mineralogy, oxygen isotopes, foraminiferal assemblages, lithofacies analysis and AMS radiocarbon dating. Data are presented from two piston cores from the continental slope at the trough-mouth fan collected during the HE0006 'shakedown' cruise to Baffin Bay and from two gravity cores recovered in 2007 during MS Merian cruise MSM 05/03 to West Greenland. Slope cores contain sequences of laminated facies interpreted as fine-grained turbidites and intervals of massive, bioturbated, hemipelagic mud. The two Merian cores, contributed to this project by the Baltic Sea Research Institute, were collected from the southern entrance to Disko Bugt and the Vaigat channel north of Disko. Radiocarbon dates from the Disko Bugt core show that it contains a full Holocene record of glacial activity and paleoceanography. The poster will present the initial analyses, including radiocarbon dating, XRF compositional data, magnetic susceptibility, lithofacies and IRD analyses determined from x-radiography, foraminiferal analyses and sediment mineralogy. Additional cores and seismic data for this project will be obtained from a cruise on the Canadian research vessel, CSS Hudson in September 2008, and on the British ship, the RRS James Clark Ross in 2009.

  19. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    NASA Astrophysics Data System (ADS)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.; Unterberg, E. A.; Cianciosa, M. R.; Delgado-Aparicio, L. F.; Hirshman, S. P.; Lao, L. L.

    2018-03-01

    Large, spontaneous m/n  =  1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional to (dp/dρ)/B_t2 around q  =  1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. Finally, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.

  20. Use of reconstructed 3D equilibria to determine onset conditions of helical cores in tokamaks for extrapolation to ITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingen, A.; Wilcox, R. S.; Seal, S. K.

    In this paper, large, spontaneous m/n = 1/1 helical cores are shown to be expected in tokamaks such as ITER with extended regions of low- or reversed- magnetic shear profiles and q near 1 in the core. The threshold for this spontaneous symmetry breaking is determined using VMEC scans, beginning with reconstructed 3D equilibria from DIII-D and Alcator C-Mod based on observed internal 3D deformations. The helical core is a saturated internal kink mode (Wesson 1986 Plasma Phys. Control. Fusion 28 243); its onset threshold is shown to be proportional tomore » $$({\\rm d}p/{\\rm d}\\rho)/B_t^2$$ around q = 1. Below the threshold, applied 3D fields can drive a helical core to finite size, as in DIII-D. The helical core size thereby depends on the magnitude of the applied perturbation. Above it, a small, random 3D kick causes a bifurcation from axisymmetry and excites a spontaneous helical core, which is independent of the kick size. Systematic scans of the q-profile show that the onset threshold is very sensitive to the q-shear in the core. Helical cores occur frequently in Alcator C-Mod during ramp-up when slow current penetration results in a reversed shear q-profile, which is favorable for helical core formation. In conclusion, a comparison of the helical core onset threshold for discharges from DIII-D, Alcator C-Mod and ITER confirms that while DIII-D is marginally stable, Alcator C-Mod and especially ITER are highly susceptible to helical core formation without being driven by an externally applied 3D magnetic field.« less

Top