Sample records for xrf elementos traza

  1. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l'introduction accidentelle de contaminants au cours de l'échantillonnage, du stockage et de l'analyse. Lorsque ces techniques sont appliquées, les concentrations résultantes en éléments en traces sont nettement plus faibles que les résultats obtenus par les techniques d'échantillonnage classique. Dans une comparaison de données concernant des puits contaminés et des puits de contrôle d'un site de Californie (États-Unis), les concentrations en éléments en traces de cette étude ont été de 2 à 1000 fois plus faibles que celles déterminées par les techniques conventionnelles utilisées pour l'échantillonnage des mêmes puits cinq mois auparavant et un mois après ces prélèvements. En particulier, les concentrations en cadmium et en chrome obtenues par les techniques classiques de prélèvements dépassent les teneurs maximales admises en Californie, alors que les concentrations obtenues pour ces deux éléments dans cette étude sont nettement au-dessous de ces teneurs maximales. Par conséquent, le recours à des techniques à faible débit et sans traces de métal peut faire apparaître que la publication de contamination d'eaux souterraines par des éléments en traces était erronée. Resumen El uso combinado del purgado y muestreo a bajo caudal con las técnicas limpias de metales traza proporcionan medidas de la concentración de elementos traza en las aguas subterráneas que son más representativas que las obtenidas con técnicas tradicionales. El purgado y muestreo a bajo caudal proporciona muestras de agua prácticamente inalteradas, representativas de las condiciones en el terreno. Las técnicas limpias de metales traza limitan la no deseada introducción de contaminantes durante el muestreo, almacenamiento y análisis. Las concentraciones de elementos traza resultantes suelen ser bastante menores que las obtenidas por técnicas tradicionales. En una comparación entre los datos procedentes de pozos en California, las concentraciones obtenidas con el nuevo método fueron entre 2-1000 menores que las obtenidas mediante técnicas tradicionales en campañas anteriores (5 meses) y posteriores (1 mes) llevadas a cabo en los mismos pozos. Específicamente, las concentraciones de cadmio y cromo obtenidas mediante técnicas tradicionales superaban los Límites Máximos de Concentración en California (LMC), mientras que los valores obtenidos en este estudio estaban claramente por debajo de estos límites para ambos elementos. Esto demuestra la utilidad del método combinado.

  2. [In Process Citation].

    PubMed

    Wang, Bingsong; Li, Yijun; Wu, Xiaolu; Liu, Qingqing; Tang, Xue; Wang, Zuo

    2016-03-25

    Objetivos: oligoelementos como zinc (Zn), hierro (Fe) y cobre (Cu) tienen una influencia significativa en el mantenimiento de la función inmune y del metabolismo normales; modulan la función immune e influyen en la susceptibilidad del organismo ante infecciones. Pero la relación entre trazas de estos elementos y la bronconeumonía resultó incierta. Métodos: en este estudio fueron incluidos 28 niños con bronconeumonía y 46 niños sanos agrupados por edad. Se determinaron los niveles de Zn, Cu, Fe, calcio (Ca) y/o magnesio (Mg) en el suero de los niños con bronconeumonía y sin ella mediante espectrofotometría de absorción atómica. Resultados: los resultados muestran que varios niveles de microelementos como Zn, Ca, Mg y Fe en el grupo con bronconeumonía son menores que en el grupo control. En el grupo de niños con bronconeumonía el nivel de Ca en el suero está asociado positivamente con el zinc (Zn) (p < 0,05) y el hierro (Fe) (p < 0,05), mientras que hay una correlación positiva entre el cobre (Cu) y el calcio (Ca) (p < 0,05), magnesio (mg) (p < 0,05). Conclusión: el nivel de oligoelemento en el suero puede estar asociado con el riesgo de bronconeumonía entre los niños.

  3. Vigilando la Calidad del Agua de los Grandes Rios de la Nacion: El Programa NASQAN del Rio Grande (Rio Bravo del Norte)

    USGS Publications Warehouse

    Lurry, Dee L.; Reutter, David C.; Wells, Frank C.; Rivera, M.C.; Munoz, A.

    1998-01-01

    La Oficina del Estudio Geologico de los Estados Unidos (U.S. Geological Survey, 0 USGS) ha monitoreado la calidad del agua de la cuenca del Rio Grande (Rio Bravo del Norte) desde 1995 como parte de la rediseiiada Red Nacional para Contabilizar la Calidad del Agua de los Rios (National Stream Quality Accounting Network, o NASOAN) (Hooper and others, 1997). EI programa NASOAN fue diseiiado para caracterizar las concentraciones y el transporte de sedimento y constituyentes quimicos seleccionados, encontrados en los grandes rios de los Estados Unidos - incluyendo el Misisipi, el Colorado y el Columbia, ademas del Rio Grande. En estas cuatro cuencas, el USGS opera actualmente (1998) una red de 40 puntos de muestreo pertenecientes a NASOAN, con un enfasis en cuantificar el flujo en masa (la cantidad de material que pasa por la estacion, expresado en toneladas por dial para cada constituyente. Aplicacando un enfoque consistente, basado en la cuantificacion de flujos en la cuenca del Rio Grande, el programa NASOAN esta generando la informacion necesaria para identificar fuentes regionales de diversos contaminantes, incluyendo sustancias qui micas agricolas y trazas elementos en la cuenca. EI efecto de las grandes reservas en el Rio Grande se puede observar segun los flujos de constituyentes discurren a 10 largo del rio. EI analisis de los flujos de constituyentes a escala de la cuenca proveera los medios para evaluar la influencia de la actividad humana sobre las condiciones de calidad del agua del Rio Grande.

  4. Considerations on the Analytical Control of Sulfur Traces in Uranium Metal; CONSIDERACIONES SOBRE EL CONTROL ANALITICO DE TRAZAS DE AZUFRE (SULFURO) EN URANIO METAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Sanchez, L.G.

    1956-01-01

    Volumetric and colorimetric determinations of sulfur in uranium were carried out by acid treatment and evaluation of SH/sup 2/. According to the experimental results a discussion of both methods was made. (auth)

  5. Application of principal component analysis for improvement of X-ray fluorescence images obtained by polycapillary-based micro-XRF technique

    NASA Astrophysics Data System (ADS)

    Aida, S.; Matsuno, T.; Hasegawa, T.; Tsuji, K.

    2017-07-01

    Micro X-ray fluorescence (micro-XRF) analysis is repeated as a means of producing elemental maps. In some cases, however, the XRF images of trace elements that are obtained are not clear due to high background intensity. To solve this problem, we applied principal component analysis (PCA) to XRF spectra. We focused on improving the quality of XRF images by applying PCA. XRF images of the dried residue of standard solution on the glass substrate were taken. The XRF intensities for the dried residue were analyzed before and after PCA. Standard deviations of XRF intensities in the PCA-filtered images were improved, leading to clear contrast of the images. This improvement of the XRF images was effective in cases where the XRF intensity was weak.

  6. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  7. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    PubMed

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  8. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  9. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT NITON XLT700 SERIES XRF ANALYZER

    EPA Science Inventory

    The Niton XLt 700 Series (XLt) XRF Services x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at ...

  10. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT OXFORD X-MTE 3000TX XRF ANALYZER

    EPA Science Inventory

    The Elvatech, Ltd. ElvaX (ElvaX) x-ray fluorescence (XRF) analyzer distributed in the United States by Xcalibur XRF Services (Xcalibur), was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field por...

  11. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT RIGAKU ZSX MINI 11 XRF ANALYZER

    EPA Science Inventory

    The Rigaku ZSX Mini II (ZSX Mini II) XRF Services x-ray fluorescence (XRF) analyzer was demon-strated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2...

  12. Usefulness of a Dual Macro- and Micro-Energy-Dispersive X-Ray Fluorescence Spectrometer to Develop Quantitative Methodologies for Historic Mortar and Related Materials Characterization.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Romera-Fernández, Miriam; Queralt, Ignasi; Margui, Eva; Madariaga, Juan Manuel

    2018-05-01

    Wavelength dispersive X-ray fluorescence (WD-XRF) spectrometry has been widely used for elemental quantification of mortars and cements. In this kind of instrument, samples are usually prepared as pellets or fused beads and the whole volume of sample is measured at once. In this work, the usefulness of a dual energy dispersive X-ray fluorescence spectrometer (ED-XRF), working at two lateral resolutions (1 mm and 25 μm) for macro and microanalysis respectively, to develop quantitative methods for the elemental characterization of mortars and concretes is demonstrated. A crucial step before developing any quantitative method with this kind of spectrometers is to verify the homogeneity of the standards at these two lateral resolutions. This new ED-XRF quantitative method also demonstrated the importance of matrix effects in the accuracy of the results being necessary to use Certified Reference Materials as standards. The results obtained with the ED-XRF quantitative method were compared with the ones obtained with two WD-XRF quantitative methods employing two different sample preparation strategies (pellets and fused beads). The selected ED-XRF and both WD-XRF quantitative methods were applied to the analysis of real mortars. The accuracy of the ED-XRF results turn out to be similar to the one achieved by WD-XRF, except for the lightest elements (Na and Mg). The results described in this work proved that μ-ED-XRF spectrometers can be used not only for acquiring high resolution elemental map distributions, but also to perform accurate quantitative studies avoiding the use of more sophisticated WD-XRF systems or the acid extraction/alkaline fusion required as destructive pretreatment in Inductively coupled plasma mass spectrometry based procedures.

  13. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    NASA Astrophysics Data System (ADS)

    Papadopoulou, D. N.; Zachariadis, G. A.; Anthemidis, A. N.; Tsirliganis, N. C.; Stratis, J. A.

    2004-12-01

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).

  14. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    PubMed

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  15. Recent developments in spectroscopic imaging techniques for historical paintings - A review

    NASA Astrophysics Data System (ADS)

    Alfeld, M.; de Viguerie, L.

    2017-10-01

    This paper provides an overview over the application of scanning macro-XRF with mobile instruments for the investigation of historical paintings. The method is compared to synchrotron based macro-XRF imaging and Neutron Activation Auto-Radiography. Full-Field XRF imaging instruments, a potential future alternative to scanning macro-XRF, and confocal XRF, providing complementary depth profiles and developing into a 3D imaging technique itself, are described with the focus on investigations of historical paintings. Recent developments of X-ray radiography are presented and the investigation of cultural heritage objects other than paintings by MA-XRF is summarized. In parallel to XRF, hyperspectral imaging in the visible and range has developed into a technique with comparable capabilities, providing insight in chemical compounds, where XRF imaging identifies the distribution of elements. Due to the complementary nature of these techniques the latter is summarized. Further, progress and state of the art in data evaluation for spectroscopic imaging is discussed. In general it could be observed that technical capabilities in MA-XRF and hyperspectral imaging have reached a plateau and that with the availability of commercial instruments the focus of recent studies has shifted from the development of methods to applications of the instruments. Further, that while simple instruments are easily available with medium budgets only few groups have high-end instrumentation available, bought or in-house built.

  16. Digital Equivalent Data System for XRF Labeling of Objects

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    A digital equivalent data system (DEDS) is a system for identifying objects by means of the x-ray fluorescence (XRF) spectra of labeling elements that are encased in or deposited on the objects. As such, a DEDS is a revolutionary new major subsystem of an XRF system. A DEDS embodies the means for converting the spectral data output of an XRF scanner to an ASCII alphanumeric or barcode label that can be used to identify (or verify the assumed or apparent identity of) an XRF-scanned object. A typical XRF spectrum of interest contains peaks at photon energies associated with specific elements on the Periodic Table (see figure). The height of each spectral peak above the local background spectral intensity is proportional to the relative abundance of the corresponding element. Alphanumeric values are assigned to the relative abundances of the elements. Hence, if an object contained labeling elements in suitably chosen proportions, an alphanumeric representation of the object could be extracted from its XRF spectrum. The mixture of labeling elements and for reading the XRF spectrum would be compatible with one of the labeling conventions now used for bar codes and binary matrix patterns (essentially, two-dimensional bar codes that resemble checkerboards). A further benefit of such compatibility is that it would enable the conversion of the XRF spectral output to a bar or matrix-coded label, if needed. In short, a process previously used only for material composition analysis has been reapplied to the world of identification. This new level of verification is now being used for "authentication."

  17. Evaluation of the uncertainties associated with in vivo X-ray fluorescence bone lead calibrations

    NASA Astrophysics Data System (ADS)

    Lodwick, Jeffrey C.

    An anthropometric leg phantom developed at the University of Cincinnati (UC) was used to evaluate the effects that changes in leg position and variation between subjects has on in vivo x-ray fluorescence (XRF) measurements of stable lead in bone. The changes in leg position that were evaluated include changes in source-phantom distance ranging between 0.0 mm and 30.0 mm and phantom rotation over 40 degrees. Source-phantom distance was determined to have a significant effect on XRF measurement results particularly at source-phantom distances greater than 10.0 mm. Rotation of the leg phantom through 40 degrees was determined to have no significant effect on XRF measurement results. Between subject factors that were evaluated include bone calcium content and overlying tissue thickness. Bone calcium content was determined to have a significant effect on XRF measurements when measuring lead in micrograms per gram bone material. However, if measurement results of micrograms of lead per gram calcium (or per gram bone mineral) is used the normalization method makes the change in calcium content not significant. Overlying tissue thickness was determined to have no significant effect on XRF measurement results with tissue thickness ranging between 5.7 and 11.62 mm. The UC leg phantom was modified to include a fibula bone phantom so that the effect that the fibula has on XRF measurement results could be evaluated. The fibula was determined to have no significant effect on XRF measurement results and in the future need not be incorporated into in vivo XRF calibration phantoms. A knee phantom was also developed for purposes of calibrations of in vivo XRF measurement of lead in the patella. XRF measurement results using this phantom were compared to results of XRF measurements made using the plaster-of-Paris (POP) phantoms. A significant difference was observed between the normalized count rates of the two phantom types when either micrograms of lead per gram of bone material or micrograms of lead per gram calcium (bone mineral) is used as the lead content. This difference is consistent with what is observed in real in vivo XRF measurements and indicates the need for the correction factors that are used.

  18. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  19. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  20. Evaluating Handheld X-Ray Fluorescence (XRF) Technology in Planetary Exploration: Demonstrating Instrument Stability and Understanding Analytical Constraints and Limits for Basaltic Rocks

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Hodges, K. V.; Evans, C. A.

    2012-01-01

    While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.

  1. Comparing the detection of iron-based pottery pigment on a carbon-coated sherd by SEM-EDS and by Micro-XRF-SEM.

    PubMed

    Pendleton, Michael W; Washburn, Dorothy K; Ellis, E Ann; Pendleton, Bonnie B

    2014-03-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis.

  2. Comparing the Detection of Iron-Based Pottery Pigment on a Carbon-Coated Sherd by SEM-EDS and by Micro-XRF-SEM

    PubMed Central

    Pendleton, Michael W.; Washburn, Dorothy K.; Ellis, E. Ann; Pendleton, Bonnie B.

    2014-01-01

    The same sherd was analyzed using a scanning electron microscope with energy dispersive spectroscopy (SEM-EDS) and a micro X-ray fluorescence tube attached to a scanning electron microscope (Micro-XRF-SEM) to compare the effectiveness of elemental detection of iron-based pigment. To enhance SEM-EDS mapping, the sherd was carbon coated. The carbon coating was not required to produce Micro-XRF-SEM maps but was applied to maintain an unbiased comparison between the systems. The Micro-XRF-SEM analysis was capable of lower limits of detection than that of the SEM-EDS system, and therefore the Micro-XRF-SEM system could produce elemental maps of elements not easily detected by SEM-EDS mapping systems. Because SEM-EDS and Micro-XRF-SEM have been used for imaging and chemical analysis of biological samples, this comparison of the detection systems should be useful to biologists, especially those involved in bone or tooth (hard tissue) analysis. PMID:24600333

  3. In Vivo Quantification of Lead in Bone with a Portable X-ray Fluorescence (XRF) System – Methodology and Feasibility

    PubMed Central

    Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG

    2013-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629

  4. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT RONTEC PICOTAX XRF ANALYZER

    EPA Science Inventory

    The Rontec PicoTAX x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Rec...

  5. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Rigaku ZSX Mini II (ZSX Mini II) XRF Services x-ray fluorescence (XRF) analyzer was demon-strated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ZSX Mini II analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ZSX Mini II analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element con

  6. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Niton XLt 700 Series (XLt) XRF Services x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the XLt analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the XLt analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy

  7. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Elvatech, Ltd. ElvaX (ElvaX) x-ray fluorescence (XRF) analyzer distributed in the United States by Xcalibur XRF Services (Xcalibur), was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ElvaX analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ElvaX analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as s

  8. Assessment of Occupational Exposure to Manganese and Other Metals in Welding Fumes by Portable X-ray Fluorescence Spectrometer

    PubMed Central

    Laohaudomchok, Wisanti; Cavallari, Jennifer M.; Fang, Shona C.; Lin, Xihong; Herrick, Robert F.; Christiani, David C.; Weisskopf, Marc G.

    2011-01-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM2.5 deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman ρ = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies. PMID:20526948

  9. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    PubMed

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that the portable XRF could be used as an effective and reliable tool for exposure assessment in many studies.

  10. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT OXFORD ED2000 XRF ANALYZER

    EPA Science Inventory

    The Oxford ED2000 x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recr...

  11. NHEXAS PHASE I ARIZONA STUDY--METALS-XRF IN DUST ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Dust data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 384 dust samples over 384 households. Samples were taken by collecting dust from the indoor floor areas in the main room and in the bedroom of the primary ...

  12. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF TECHNOLOGIES FOR MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT XCALIBUR ELVAX XRF ANALYZER

    EPA Science Inventory

    The Innov-X XT400 Series (XT400) x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kenned...

  13. In-Situ XRF Measurements in Lunar Surface Exploration Using Apollo Samples as a Standard

    NASA Technical Reports Server (NTRS)

    Young, Kelsey E.; Evans, C.; Allen, C.; Mosie, A.; Hodges, K. V.

    2011-01-01

    Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer.

  14. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS/XRF IN DUST ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Dust data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 91 dust samples over 91 households. Samples were taken by collecting dust from the indoor floor areas in the main room and in the bedroom of the primary re...

  15. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    PubMed

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  16. PyXRF: Python-based X-ray fluorescence analysis package

    NASA Astrophysics Data System (ADS)

    Li, Li; Yan, Hanfei; Xu, Wei; Yu, Dantong; Heroux, Annie; Lee, Wah-Keat; Campbell, Stuart I.; Chu, Yong S.

    2017-09-01

    We developed a python-based fluorescence analysis package (PyXRF) at the National Synchrotron Light Source II (NSLS-II) for the X-ray fluorescence-microscopy beamlines, including Hard X-ray Nanoprobe (HXN), and Submicron Resolution X-ray Spectroscopy (SRX). This package contains a high-level fitting engine, a comprehensive commandline/ GUI design, rigorous physics calculations, and a visualization interface. PyXRF offers a method of automatically finding elements, so that users do not need to spend extra time selecting elements manually. Moreover, PyXRF provides a convenient and interactive way of adjusting fitting parameters with physical constraints. This will help us perform quantitative analysis, and find an appropriate initial guess for fitting. Furthermore, we also create an advanced mode for expert users to construct their own fitting strategies with a full control of each fitting parameter. PyXRF runs single-pixel fitting at a fast speed, which opens up the possibilities of viewing the results of fitting in real time during experiments. A convenient I/O interface was designed to obtain data directly from NSLS-II's experimental database. PyXRF is under open-source development and designed to be an integral part of NSLS-II's scientific computation library.

  17. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.

    PubMed

    Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G

    2011-02-07

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.

  18. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Rontec PicoTAX x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the PicoTAX analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the PicoTAX analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was assessed by c

  19. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Oxford ED2000 x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the ED2000 analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the ED2000 analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was assessed by com

  20. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone

    PubMed Central

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-01-01

    Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835

  1. INNOVATIVE TECHNOLOGY VERIFICATION REPORT XRF ...

    EPA Pesticide Factsheets

    The Innov-X XT400 Series (XT400) x-ray fluorescence (XRF) analyzer was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The field portion of the demonstration was conducted in January 2005 at the Kennedy Athletic, Recreational and Social Park (KARS) at Kennedy Space Center on Merritt Island, Florida. The demonstration was designed to collect reliable performance and cost data for the XT400 analyzer and seven other commercially available XRF instruments for measuring trace elements in soil and sediment. The performance and cost data were evaluated to document the relative performance of each XRF instrument. This innovative technology verification report describes the objectives and the results of that evaluation and serves to verify the performance and cost of the XT400 analyzer. Separate reports have been prepared for the other XRF instruments that were evaluated as part of the demonstration. The objectives of the evaluation included determining each XRF instrument’s accuracy, precision, sample throughput, and tendency for matrix effects. To fulfill these objectives, the field demonstration incorporated the analysis of 326 prepared samples of soil and sediment that contained 13 target elements. The prepared samples included blends of environmental samples from nine different sample collection sites as well as spiked samples with certified element concentrations. Accuracy was as

  2. Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.

    PubMed

    Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling

    2017-03-01

    K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.

  3. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  4. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Quezergue, Kimbra; Pope, Michael C.

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks.

  5. A novel approach to measure elemental concentrations in cation exchange resins using XRF-scanning technique, and its potential in water pollution studies

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.

    2016-04-01

    X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.

  6. Portable X-ray fluorescence for the detection of POP-BFRs in waste plastics.

    PubMed

    Sharkey, Martin; Abdallah, Mohamed Abou-Elwafa; Drage, Daniel S; Harrad, Stuart; Berresheim, Harald

    2018-05-17

    The purpose of this study was to establish the efficacy of portable X-ray fluorescence (XRF) instrumentation as a screening tool for a variety of end of life plastics which may contain excess amounts of brominated flame retardants (BFRs), in compliance with European Union (EU) and United Nations Environment Programme (UNEP) legislative limits (low POP concentration limits - LPCLs). 555 samples of waste plastics were collected from eight waste and recycling sites in Ireland, including waste electrical and electronic equipment (WEEE), textiles, polyurethane foams (PUFs), and expanded polystyrene foams. Samples were screened for bromine content, in situ using a Niton™ XL3T GOLDD XRF analyser, the results of which were statistically compared to mass spectrometry (MS)-based measurements of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCDD) and tetrabromobisphenol-A (TBBP-A) concentrations in the same samples. Regression between XRF and MS for WEEE samples shows that, despite an overall favourable trend, large deviations occur for a cluster of samples indicative of other bromine-based compounds in some samples; even compensating for false-positives due to background interference from electronic components, XRF tends to over-estimate MS-determined BFR concentrations in the 100 to 10,000 mg kg -1 range. Substantial deviations were additionally found between results for PUFs, textiles and polystyrene samples, with the XRF over-estimating BFR concentrations by a factor of up to 1.9; this is likely due to matrix effects influencing XRF measurements. However, expanded (EPS) and extruded polystyrene (XPS) yielded much more reliable estimations of BFR-content due to a dominance of HBCDD in these materials. XRF proved much more reliable as a "pass/fail" screening tool for LPCL compliance (including a prospective LPCL on Deca-BDE based on REACH). Using a conservative threshold of BFR content exceeding legislative limits (710 mg kg -1 bromine attributed to Penta-BDE), XRF mistakenly identifies only 6 % of samples (34/555) as exceeding legislative limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Data precision of X-ray fluorescence (XRF) scanning of discrete samples with the ITRAX XRF core-scanner exemplified on loess-paleosol samples

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Ohlendorf, Christian

    2017-04-01

    XRF-scanning is the state-of-the-art technique for geochemical analyses in marine and lacustrine sedimentology for more than a decade. However, little attention has been paid to data precision and technical limitations so far. Using homogenized, dried and powdered samples (certified geochemical reference standards and samples from a lithologically-contrasting loess-paleosol sequence) minimizes many adverse effects that influence the XRF-signal when analyzing wet sediment cores. This allows the investigation of data precision under ideal conditions and documents a new application of the XRF core-scanner technology at the same time. Reliable interpretations of XRF results require data precision evaluation of single elements as a function of X-ray tube, measurement time, sample compaction and quality of peak fitting. Ten-fold measurement of each sample constitutes data precision. Data precision of XRF measurements theoretically obeys Poisson statistics. Fe and Ca exhibit largest deviations from Poisson statistics. The same elements show the least mean relative standard deviations in the range from 0.5% to 1%. This represents the technical limit of data precision achievable by the installed detector. Measurement times ≥ 30 s reveal mean relative standard deviations below 4% for most elements. The quality of peak fitting is only relevant for elements with overlapping fluorescence lines such as Ba, Ti and Mn or for elements with low concentrations such as Y, for example. Differences in sample compaction are marginal and do not change mean relative standard deviation considerably. Data precision is in the range reported for geochemical reference standards measured by conventional techniques. Therefore, XRF scanning of discrete samples provide a cost- and time-efficient alternative to conventional multi-element analyses. As best trade-off between economical operation and data quality, we recommend a measurement time of 30 s resulting in a total scan time of 30 minutes for 30 samples.

  8. Proposal for a prototype of portable μXRF spectrometer

    NASA Astrophysics Data System (ADS)

    Polese, C.; Dabagov, S. B.; Esposito, A.; Liedl, A.; Hampai, D.; Bartùli, C.; Ferretti, M.

    2015-07-01

    μXRF is a powerful instrument for non-destructive characterization of materials of cultural interest. At the XLab Frascati Laboratory this technique is already well performed thanks to the polyCO set equipment allowing simultaneous μXRF 2D mapping. However, due to the strict demand for in situ analysis in this particular field, a new portable μXRF spectrometer equipped with a full polycapillary lens conjugated with a transmission anode X-ray tube is proposed. Many cultural objects are characterized by elements (Ag, Sn, etc.) with high energy fluorescence K-lines. Thus, the capability of a full lens to deliver a high energy fraction of X-ray spectrum, in order to excite the fluorescence K-lines of such elements, is tested.

  9. The holy grail of soil metal contamination site assessment: reducing risk and increasing confidence of decision making using infield portable X-ray Fluorescence (pXRF) technology

    NASA Astrophysics Data System (ADS)

    Rouillon, M.; Taylor, M. P.; Dong, C.

    2016-12-01

    This research assesses the advantages of integrating field portable X-ray Fluorescence (pXRF) technology for reducing the risk and increase confidence of decision making for metal-contaminated site assessments. Metal-contaminated sites are often highly heterogeneous and require a high sampling density to accurately characterize the distribution and concentration of contaminants. The current regulatory assessment approaches rely on a small number of samples processed using standard wet-chemistry methods. In New South Wales (NSW), Australia, the current notification trigger for characterizing metal-contaminated sites require the upper 95% confidence interval of the site mean to equal or exceed the relevant guidelines. The method's low `minimum' sampling requirements can misclassify sites due to the heterogeneous nature of soil contamination, leading to inaccurate decision making. To address this issue, we propose integrating infield pXRF analysis with the established sampling method to overcome sampling limitations. This approach increases the minimum sampling resolution and reduces the 95% CI of the site mean. Infield pXRF analysis at contamination hotspots enhances sample resolution efficiently and without the need to return to the site. In this study, the current and proposed pXRF site assessment methods are compared at five heterogeneous metal-contaminated sites by analysing the spatial distribution of contaminants, 95% confidence intervals of site means, and the sampling and analysis uncertainty associated with each method. Finally, an analysis of costs associated with both the current and proposed methods is presented to demonstrate the advantages of incorporating pXRF into metal-contaminated site assessments. The data shows that pXRF integrated site assessments allows for faster, cost-efficient, characterisation of metal-contaminated sites with greater confidence for decision making.

  10. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping.

    PubMed

    Tice, Michael M; Quezergue, Kimbra; Pope, Michael C

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.

  11. Reducing risk and increasing confidence of decision making at a lower cost: In-situ pXRF assessment of metal-contaminated sites.

    PubMed

    Rouillon, Marek; Taylor, Mark P; Dong, Chenyin

    2017-10-01

    This study evaluates the in-situ use of field portable X-ray Fluorescence (pXRF) for metal-contaminated site assessments, and assesses the advantages of increased sampling to reduce risk, and increase confidence of decision making at a lower cost. Five metal-contaminated sites were assessed using both in-situ pXRF and ex-situ inductively coupled plasma mass spectrometry (ICP-MS) analyses at various sampling resolutions. Twenty second in-situ pXRF measurements of Mn, Zn and Pb were corrected using a subset of parallel ICP-MS measurements taken at each site. Field and analytical duplicates revealed sampling as the major contributor (>95% variation) to measurement uncertainties. This study shows that increased sampling led to several benefits including more representative site characterisation, higher soil-metal mapping resolution, reduced uncertainty around the site mean, and reduced sampling uncertainty. Real time pXRF data enabled efficient, on-site decision making for further judgemental sampling, without the need to return to the site. Additionally, in-situ pXRF was more cost effective than the current approach of ex-situ sampling and ICP-MS analysis, even with higher sampling at each site. Lastly, a probabilistic site assessment approach was applied to demonstrate the advantages of integrating estimated measurement uncertainties into site reporting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. XRF Experiment for Elementary Surface Analysis

    NASA Astrophysics Data System (ADS)

    Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.

    2014-04-01

    The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.

  13. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.

    PubMed

    Sterling, D A; Lewis, R D; Luke, D A; Shadel, B N

    2000-06-01

    Dust wipe samples collected in the field were tested by nondestructive X-ray fluorescence (XRF) followed by laboratory analysis with flame atomic absorption spectrophotometry (FAAS). Data were analyzed for precision and accuracy of measurement. Replicate samples with the XRF show high precision with an intraclass correlation coefficient (ICC) of 0.97 (P<0.0001) and an overall coefficient of variation of 11.6%. Paired comparison indicates no statistical difference (P=0.272) between XRF and FAAS analysis. Paired samples are highly correlated with an R(2) ranging between 0.89 for samples that contain paint chips and 0.93 for samples that do not contain paint chips. The ICC for absolute agreement between XRF and laboratory results was 0.95 (P<0.0001). The relative error over the concentration range of 25 to 14,200 microgram Pb is -12% (95% CI, -18 to -5). The XRF appears to be an excellent method for rapid on-site evaluation of dust wipes for clearance and risk assessment purposes, although there are indications of some confounding when paint chips are present. Copyright 2000 Academic Press.

  14. Detección automática de NEOs en imágenes CCD utilizando la transformada de Hough

    NASA Astrophysics Data System (ADS)

    Ruétalo, M.; Tancredi, G.

    El interés y la dedicación por los objetos que se acercan a la órbita de la Tierra (NEOs) ha aumentado considerablemente en los últimos años, tanto que se han iniciado varias campañas de búsqueda sistemática para aumentar la población identificada de éstos. El uso de placas fotográficas e identificación visual está siendo sustituído, progresivamente, por el uso de cámaras CCD y paquetes de detección automática de los objetos en las imágenes digitales. Una parte muy importante para la implementación exitosa de un programa automatizado de detección de este tipo es el desarrollo de algoritmos capaces de identificar objetos de baja relación señal-ruido y con requerimientos computacionales no elevados. En el presente trabajo proponemos la utilización de la transformada de Hough (utilizada en algunas áreas de visión artificial) para detectar automáticamente trazas, aproximadamente rectilíneas y de baja relación señal-ruido, en imágenes CCD. Desarrollamos una primera implementación de un algoritmo basado en ésta y lo probamos con una serie de imágenes reales conteniendo trazas con picos de señales de entre ~1 σ y ~3 σ por encima del nivel del ruido de fondo. El algoritmo detecta, sin inconvenientes, la mayoría de los casos y en tiempos razonablemente adecuados.

  15. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  16. Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Systems for identifying objects by means of x-ray fluorescence (XRF) of encased labeling elements have been developed. The XRF spectra of objects so labeled would be analogous to the external bar code labels now used to track objects in everyday commerce. In conjunction with computer-based tracking systems, databases, and labeling conventions, the XRF labels could be used in essentially the same manner as that of bar codes to track inventories and to record and process commercial transactions. In addition, as summarized briefly below, embedded XRF labels could be used to verify the authenticity of products, thereby helping to deter counterfeiting and fraud. A system, as described above, is called an encased core product identification and authentication system (ECPIAS). The ECPIAS concept is a modified version of that of a related recently initiated commercial development of handheld XRF spectral scanners that would identify alloys or detect labeling elements deposited on the surfaces of objects. In contrast, an ECPIAS would utilize labeling elements encased within the objects of interest. The basic ECPIAS concept is best illustrated by means of an example of one of several potential applications: labeling of cultured pearls by labeling the seed particles implanted in oysters to grow the pearls. Each pearl farmer would be assigned a unique mixture of labeling elements that could be distinguished from the corresponding mixtures of other farmers. The mixture would be either incorporated into or applied to the surfaces of the seed prior to implantation in the oyster. If necessary, the labeled seed would be further coated to make it nontoxic to the oyster. After implantation, the growth of layers of mother of pearl on the seed would encase the XRF labels, making these labels integral, permanent parts of the pearls that could not be removed without destroying the pearls themselves. The XRF labels would be read by use of XRF scanners, the spectral data outputs of which would be converted to alphanumeric data in a digital equivalent data system (DEDS), which is the subject of the previous article. These alphanumeric data would be used to track the pearls through all stages of commerce, from the farmer to the retail customer.

  17. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence.

    PubMed

    O'Neil, Glen D; Newton, Mark E; Macpherson, Julie V

    2015-01-01

    The development and application of a new methodology, in situ electrochemical X-ray fluorescence (EC-XRF), is described that enables direct identification and quantification of heavy metals in solution. A freestanding film of boron-doped diamond serves as both an X-ray window and the electrode material. The electrode is biased at a suitable driving potential to electroplate metals from solution onto the electrode surface. Simultaneously, X-rays that pass through the back side of the electrode interrogate the time-dependent electrodeposition process by virtue of the XRF signals, which are unique to each metal. In this way it is possible to unambiguously identify which metals are in solution and relate the XRF signal intensity to a concentration of metal species in solution. To increase detection sensitivity and reduce detection times, solution is flown over the electrode surface by use of a wall-jet configuration. Initial studies focused on the in situ detection of Pb(2+), where concentration detection limits of 99 nM were established in this proof-of-concept study (although significantly lower values are anticipated with system refinement). This is more than 3 orders of magnitude lower than that achievable by XRF alone in a flowing solution (0.68 mM). In situ EC-XRF measurements were also carried out on a multimetal solution containing Hg(2+), Pb(2+), Cu(2+), Ni(2+), Zn(2+), and Fe(3+) (all at 10 μM concentration). Identification of five of these metals was possible in one simple measurement. In contrast, while anodic stripping voltammetry (ASV) also revealed five peaks, peak identification was not straightforward, requiring further experiments and prior knowledge of the metals in solution. Time-dependent EC-XRF nucleation data for the five metals, recorded simultaneously, demonstrated similar deposition rates. Studies are now underway to lower detection limits and provide a quantitative understanding of EC-XRF responses in real, multimetal solutions. Finally, the production of custom-designed portable in situ EC-XRF instrumentation will make heavy metal analysis at the source a very realistic possibility.

  18. Influence of depositional environment in fossil teeth: a micro-XRF and XAFS study

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2014-04-01

    The formation of metal-rich phases during the fossilization of vertebrate fossil teeth, recovered from various deposition environments in northern Greece, is studied by means of synchrotron radiation X-ray fluorescence (SR-XRF) as well as Fe and Mn K edge X-ray absorption fine structure (XAFS) spectroscopy. XRF line-scans from the samples' cross-sections revealed different contamination paths for Mn and Fe. The two-dimensional XRF maps illustrate the spatial distribution of P, Ca, Mn and Fe as well as the precipitation of Fe-rich phases in cementum, dentin and dentinal tubules. Goethite, lepidocrocite and ferrihydrite were detected in the samples' cross-section by means of Fe K edge EXAFS spectroscopy. Moreover the Fe and Mn K edge EXAFS revealed the presence of vivianite and birnessite (MnO2) on the external surface of two samples.

  19. X-ray fluorescence analysis of wear metals in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Maddox, W. E.; Kelliher, W. C.

    1986-01-01

    Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.

  20. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  1. Identification of green pigments from fragments of Roman mural paintings of three Roman sites from north of Germania Superior

    NASA Astrophysics Data System (ADS)

    Debastiani, Rafaela; Simon, Rolf; Goettlicher, Joerg; Heissler, Stefan; Steininger, Ralph; Batchelor, David; Fiederle, Michael; Baumbach, Tilo

    2016-10-01

    Roman mural green pigment painting fragments from three Roman sites in the north of the Roman province Germania Superior: Koblenz Stadtwald Remstecken (KOSR), Weißenthurm " Am guten Mann" (WEIS) and Mendig Lungenkärchen (MELU), dating from second and third centuries AD were analyzed. The experiments were performed nondestructively using synchrotron-based scanning macro-X-ray fluorescence (SR-MA-XRF), synchrotron-based scanning micro-X-ray fluorescence (SR-μ-XRF), synchrotron-based X-ray diffraction (SR-XRD) and Raman spectroscopy. Correlation between SR-MA-XRF, SR-μ-XRF elemental map distributions and optical images of scanned areas was mainly found for the elements Ca, Fe and K. With XRF, Fe and K were identified correlated with green pigment, but in samples from two sites, Mendig Lungenkärchen and Weißenthurm " Am guten Mann", also Cu was detected in minor concentration. The results of SR-XRD and Raman spectroscopy were limited to one sample from Weißenthurm " Am guten Mann". In this sample, green earth and calcium carbonate were identified by SR-XRD and, additionally, malachite by Raman spectroscopy.

  2. An Application of X-Ray Fluorescence as Process Analytical Technology (PAT) to Monitor Particle Coating Processes.

    PubMed

    Nakano, Yoshio; Katakuse, Yoshimitsu; Azechi, Yasutaka

    2018-06-01

    An attempt to apply X-Ray Fluorescence (XRF) analysis to evaluate small particle coating process as a Process Analytical Technologies (PAT) was made. The XRF analysis was used to monitor coating level in small particle coating process with at-line manner. The small particle coating process usually consists of multiple coating processes. This study was conducted by a simple coating particles prepared by first coating of a model compound (DL-methionine) and second coating by talc on spherical microcrystalline cellulose cores. The particles with two layered coating are enough to demonstrate the small particle coating process. From the result by the small particle coating process, it was found that the XRF signal played different roles, resulting that XRF signals by first coating (layering) and second coating (mask coating) could demonstrate the extent with different mechanisms for the coating process. Furthermore, the particle coating of the different particle size has also been investigated to evaluate size effect of these coating processes. From these results, it was concluded that the XRF could be used as a PAT in monitoring particle coating processes and become powerful tool in pharmaceutical manufacturing.

  3. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, A.C.; Zheng, W.; Haacke, E.M.

    To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximalmore » to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  4. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    NASA Astrophysics Data System (ADS)

    Habib, Charbel A.; Zheng, Weili; Mark Haacke, E.; Webb, Sam; Nichol, Helen

    2010-07-01

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, there were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.

  5. First demonstration of iodine mapping in nonliving phantoms using an X-ray fluorescence computed tomography system with a cadmium telluride detector and a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuichi; Ehara, Shigeru; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects, and XRF is emitted by absorbing X-ray photons with energies beyond the K-edge energy of the target atom. Narrow-energy-width bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter. These rays are absorbed by iodine media in objects, and iodine XRF is produced from the iodine atoms. Next, iodine Kα photons are discriminated by a multichannel analyzer and the number of photons is counted by a counter card. CT is performed by repeated linear scans and rotations of an object. The X-ray generator has a 100 μm focus tube with a 0.5-mm-thick beryllium window, and the tube voltage and the current for XRF were 80 kV and 0.50 mA, respectively. The demonstration of XRF-CT for mapping iodine atoms was carried out by selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  6. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF.

    PubMed

    Aldrian, Alexia; Ledersteger, Alfred; Pomberger, Roland

    2015-02-01

    This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television sets (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC-MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Publications - GMC 354 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 354 Publication Details Title: XRF Analyses of Husky Oil NPR Operations Inc U.S. Geological Statewide Bibliographic Reference Advanced Instrumentation Laboratory, 2008, XRF Analyses of Husky Oil NPR

  8. Barium and calcium analyses in sediment cores using µ-XRF core scanners

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Çaǧatay, Namık; Genç, S. Can; Eriş, K. Kadir; Sarı, Erol; Uçarkus, Gülsen

    2017-04-01

    Barium and Ca are used as proxies for organic productivity in paleooceanographic studies. With its heavy atomic weight (137.33 u), barium is easily detectable in small concentrations (several ppm levels) in marine sediments using XRF methods, including the analysis by µ-XRF core scanners. Calcium has an intermediate atomic weight (40.078 u) but is a major element in the earth's crust and in sediments and sedimentary rocks, and hence it is easily detectable by µ-XRF techniques. Normally, µ-XRF elemental analysis of cores are carried out using split half cores or 1-2 cm thich u-channels with an original moisture. Sediment cores show variation in different water content (and porosity) along their length. This in turn results in variation in the XRF counts of the elements and causes error in the elemental concentrations. We tried µ-XRF elemental analysis of split half cores, subsampled as 1 cm thick u-channels with original moisture and 0.3 mm-thin film slices of the core with original wet sample and after air drying with humidity protector mylar film. We found considerable increase in counts of most elements, and in particular for Ba and Ca, when we used 0.3 mm thin film, dried slice. In the case of Ba, the counts increased about three times that of the analysis made with wet and 1 cm thick u-channels. The higher Ba and Ca counts are mainly due to the possible precipitation of Ba as barite and Ca as gypsum from oxidation of Fe-sulphides and the evaporation of pore waters. The secondary barite and gypsum precipitation would be especially serious in unoxic sediment units, such as sapropels, with considerable Fe-sulphides and bio-barite.It is therefore suggested that reseachers should be cautious of such secondary precipitation on core surfaces when analyzing cores that have long been exposed to the atmospheric conditions.

  9. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  10. Investigation of gunshot residue patterns using milli-XRF-techniques: first experiences in casework

    NASA Astrophysics Data System (ADS)

    Schumacher, Rüdiger; Barth, Martin; Neimke, Dieter; Niewöhner, Ludwig

    2010-06-01

    The investigation of gunshot residue (GSR) patterns for shooting range estimation is usually based on visualizing the lead, copper, or nitrocellulose distributions on targets like fabric or adhesive tape by chemographic color tests. The method usually provides good results but has its drawbacks when it comes to the examination of ammunition containing lead-free primers or bloody clothing. A milli-X-ray fluorescence (m-XRF) spectrometer with a large motorized stage can help to circumvent these problems allowing the acquisition of XRF mappings of relatively large areas (up to 20 x 20 cm) in millimeter resolution within reasonable time (2-10 hours) for almost all elements. First experiences in GSR casework at the Forensic Science Institute of the Bundeskriminalamt (BKA) have shown, that m-XRF is a useful supplementation for conventional methods in shooting ranges estimation, which helps if there are problems in transferring a GSR pattern to secondary targets (e.g. bloody or stained garments) or if there is no suitable color test available for the element of interest. The resulting elemental distributions are a good estimate for the shooting range and can be evaluated by calculating radial distributions or integrated count rates of irregular shaped regions like pieces of human skin which are too small to be investigated with a conventional WD-XRF spectrometer. Beside a mapping mode the milli-XRF offers also point and line scan modes which can also be utilized in gunshot crime investigations as a quick survey tool to identify bullet holes based on the elements present in the wipe ring.

  11. Determination of minor and trace elements concentration in kidney stones using elemental analysis techniques

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. The X-ray fluorescence (XRF) and neutron activation analysis (NAA) experiments were performed and different kidney stones were analyzed. The interactions of X-ray photons and neutrons with matter are complementary in nature, resulting in distinctly different materials detection. This is the first approach to utilize combined X-ray fluorescence and neutron activation analysis for a comprehensive analysis of the kideny stones. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. The use of open source program Python Multi-Channel Analyzer was utilized to unfold the XRF spectrum. A new type of experimental set-up was developed and utilized for XRF and NAA analysis of the kidney stone. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF and NAA technique. The elements which were identified from XRF technique are Br, Cu, Ga, Ge, Mo, Nb, Ni, Rb, Se, Sr, Y, Zr. And, by using Neutron Activation Analysis (NAA) are Au, Br, Ca, Er, Hg, I, K, Na, Pm, Sb, Sc, Sm, Tb, Yb, Zn. This thesis presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF and NAA instrumental activation analysis techniques.

  12. Online X-ray Fluorescence (XRF) Analysis of Heavy Metals in Pulverized Coal on a Conveyor Belt.

    PubMed

    Yan, Zhang; XinLei, Zhang; WenBao, Jia; Qing, Shan; YongSheng, Ling; DaQian, Hei; Da, Chen

    2016-02-01

    Heavy metals in haze episode will continue to threaten the quality of public health around the world. In order to decrease the emission of heavy metals produced from coal burning, an online X-ray fluorescence (XRF) analyzer system, consisting of an XRF analyzer with data acquisition software and a laser rangefinder, was developed to carry out the measurement of heavy metals in pulverized coal. The XRF analyzer was mounted on a sled, which can effectively smooth the surface of pulverized coal and reduce the impact of surface roughness during online measurement. The laser rangefinder was mounted over the sled for measuring the distance between a pulverized coal sample and the analyzer. Several heavy metals and other elements in pulverized coal were online measured by the XRF analyzer directly above a conveyor belt. The limits of detection for Hg, Pb, Cr, Ti, Fe, and Ca by the analyzer were 44 ± 2, 34 ± 2, 17 ± 3, 41 ± 4, 19 ± 3, and 65 ± 2 mg·kg(-1), respectively. The relative standard deviation (%RSD) for the elements mentioned was less than 7.74%. By comparison with the results by inductively-coupled plasma mass spectrometry (ICP-MS), relative deviation (%D) of the online XRF analyzer was less than 10% for Cr, Ti, and Ca, in the range of 0.8-24.26% for Fe, and greater than 20% for Hg and Pb. © The Author(s) 2016.

  13. A 3,000-year quantitative drought record derived from XRF element data from a south Texas playa

    NASA Astrophysics Data System (ADS)

    Livsey, D. N.; Simms, A.; Hangsterfer, A.; Nisbet, R.; DeWitt, R.

    2013-12-01

    Recent droughts throughout the central United States highlight the need for a better understanding of the past frequency and severity of drought occurrence. Current records of past drought for the south Texas coast are derived from tree-ring data that span approximately the last 900 years before present (BP). In this study we utilize a supervised learning routine to create a transfer function between X-Ray Fluorescence (XRF) derived elemental data from Laguna Salada, Texas core LS10-02 to a locally derived tree-ring drought record. From this transfer function the 900 BP tree-ring drought record was extended to 3,000 BP. The supervised learning routine was trained on the first 100 years of XRF element data and tree-ring drought data to create the transfer function and training data set output. The model was then projected from the XRF elemental data for the next 800 years to create a deployed data set output and to test the transfer function parameters. The coefficients of determination between the model output and observed values are 0.77 and 0.70 for the 100-year training data set and 900-year deployed data set respectively. Given the relatively high coefficients of determination for both the training data set and deployed data set we interpret the model parameters are fairly robust and that a high-resolution drought record can be derived from the XRF element data. These results indicate that XRF element data can be used as a quantitative tool to reconstruct past drought records.

  14. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Astrophysics Data System (ADS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-09-01

    Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET.

  15. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  16. Elemental analysis using ED-XRF and 14C dating of Cuman wall paintings samples

    NASA Astrophysics Data System (ADS)

    Brocchieri, J.; Sabbarese, C.; Marzaioli, F.; Passariello, I.; Terrasi, F.; De Maio, C.; Ferrara, L.

    2018-04-01

    The aim of the present research was to analyse pigments and mortars of fresco fragments located at Cuma (Naples, Italy). The ED-XRF technique and 14C dating were used to establish the nature of the pigments and the age of mortars, respectively. ED-XRF results allowed to determine the elemental composition of the pigments that identified the colours and, hence, the historical period of completion. The 14C dating, applied to mortars using a particular preparation, provided results that are in accordance with the archaeological information within the 2σ interval range.

  17. Iron meteorite fragment studied by atomic and nuclear analytical methods

    NASA Astrophysics Data System (ADS)

    Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel

    2016-10-01

    Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.

  18. Characterization of fossil remains using XRF, XPS and XAFS spectroscopies

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Brzhezinskaya, M.; Papadopoulou, L.; Vlachos, E.; Tsoukala, E.; Paloura, E. C.

    2016-05-01

    Synchrotron radiation micro-X-Ray Fluorescence (μ-XRF), X-ray photoelectron (XPS) and X-ray Absorption Fine Structure (XAFS) spectroscopies are applied for the study of paleontological findings. More specifically the costal plate of a gigantic terrestrial turtle Titanochelon bacharidisi and a fossilized coprolite of the cave spotted hyena Crocuta crocuta spelaea are studied. Ca L 2,3-edge NEXAFS and Ca 2p XPS are applied for the identification and quantification of apatite and Ca containing minerals. XRF mapping and XAFS are employed for the study of the spatial distribution and speciation of the minerals related to the deposition environment.

  19. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  20. Visualizing Iron Deposition in Multiple Sclerosis Cadaver Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Charbel A.; Zheng Weili; Mark Haacke, E.

    Aim: To visualize and validate iron deposition in two cases of multiple sclerosis using rapid scanning X-Ray Fluorescence (RS-XRF) and Susceptibility Weighted Imaging (SWI). Material and Methods: Two (2) coronal cadaver brain slices from patients clinically diagnosed with multiple sclerosis underwent magnetic resonance imaging (MRI), specifically SWI to image iron content. To confirm the presence of iron deposits and the absence of zinc-rich myelin in lesions, iron and zinc were mapped using RS-XRF. Results: MS lesions were visualized using FLAIR and correlated with the absence of zinc by XRF. XRF and SWI showed that in the first MS case, theremore » were large iron deposits proximal to the draining vein of the caudate nucleus as well as iron deposits associated with blood vessels throughout the globus pallidus. Less iron was seen in association with lesions than in the basal ganglia. The presence of larger amounts of iron correlated reasonably well between RS-XRF and SWI. In the second case, the basal ganglia appeared normal and acute perivascular iron deposition was absent. Conclusion: Perivascular iron deposition is seen in some but not all MS cases, giving credence to the use of SWI to assess iron involvement in MS pathology in vivo.« less

  1. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  2. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  3. In vivo X-ray fluorescence of lead in bone: review and current issues.

    PubMed Central

    Todd, A C; Chettle, D R

    1994-01-01

    Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846

  4. Monitoring of WEEE plastics in regards to brominated flame retardants using handheld XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldrian, Alexia, E-mail: alexia.aldrian@unileoben.ac.at; Ledersteger, Alfred, E-mail: a.ledersteger@saubermacher.at; Pomberger, Roland, E-mail: roland.pomberger@unileoben.ac.at

    Highlights: • Specification of an empirical factor for conversion from bromine to PBB and PBDE. • The handheld XRF device was validated for this particular application. • A very large number of over 4600 pieces of monitor housings was analysed. • The recyclable fraction mounts up to 85% for TV but only 53% of PC waste plastics. • A high percentage of pieces with bromine contents of over 50,000 ppm was obtained. - Abstract: This contribution is focused on the on-site determination of the bromine content in waste electrical and electronic equipment (WEEE), in particular waste plastics from television setsmore » (TV) and personal computer monitors (PC) using a handheld X-ray fluorescence (XRF) device. The described approach allows the examination of samples in regards to the compliance with legal specifications for polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) directly after disassembling and facilitates the sorting out of plastics with high contents of brominated flame retardants (BFRs). In all, over 3000 pieces of black (TV) and 1600 pieces of grey (PC) plastic waste were analysed with handheld XRF technique for this study. Especially noticeable was the high percentage of pieces with a bromine content of over 50,000 ppm for TV (7%) and PC (39%) waste plastics. The applied method was validated by comparing the data of handheld XRF with results obtained by GC–MS. The results showed the expected and sufficiently accurate correlation between these two methods. It is shown that handheld XRF technique is an effective tool for fast monitoring of large volumes of WEEE plastics in regards to BFRs for on-site measurements.« less

  5. Textural and Mineralogical Analysis of Volcanic Rocks by µ-XRF Mapping.

    PubMed

    Germinario, Luigi; Cossio, Roberto; Maritan, Lara; Borghi, Alessandro; Mazzoli, Claudio

    2016-06-01

    In this study, µ-XRF was applied as a novel surface technique for quick acquisition of elemental X-ray maps of rocks, image analysis of which provides quantitative information on texture and rock-forming minerals. Bench-top µ-XRF is cost-effective, fast, and non-destructive, can be applied to both large (up to a few tens of cm) and fragile samples, and yields major and trace element analysis with good sensitivity. Here, X-ray mapping was performed with a resolution of 103.5 µm and spot size of 30 µm over sample areas of about 5×4 cm of Euganean trachyte, a volcanic porphyritic rock from the Euganean Hills (NE Italy) traditionally used in cultural heritage. The relative abundance of phenocrysts and groundmass, as well as the size and shape of the various mineral phases, were obtained from image analysis of the elemental maps. The quantified petrographic features allowed identification of various extraction sites, revealing an objective method for archaeometric provenance studies exploiting µ-XRF imaging.

  6. Application of micro-X-ray fluorescence to chemical mapping of polar ice

    NASA Astrophysics Data System (ADS)

    Fourcade, M. C. Morel; Barnola, J. M.; Susini, J.; Baker, R.; Durand, G.; de Angelis, M.; Duval, P.

    Synchrotron-based micro-X-ray fluorescence (μXRF) equipment has been used to analyze impurities in polar ice. A customized sample holder has been developed and the μXRF equipment has been adapted with a thermal control system to keep samples unaltered during analyses. Artificial ice samples prepared from ultra-pure water were analyzed to investigate possible contamination and/or experimental artefacts. Analyses of polar ice from Antarctica (Dome C and Vostok) confirm this μXRF technique is non-destructive and sensitive. Experiments can be reproduced to confirm or refine results by focusing on interesting spots such as crystal grain boundaries or specific inclusions. Integration times and resolution can be adjusted to optimize sensitivity. Investigation of unstable particles is possible due to the short analysis time. In addition to identification of elements in impurities, μXRF is able to determine their speciations. The accuracy and reliability of the results confirm the potential of this technique for research in glaciology.

  7. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    PubMed

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.

  8. EUTERPE, a small electron storage ring for XRF

    NASA Astrophysics Data System (ADS)

    Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.

    1990-04-01

    A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.

  9. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE PAGES

    Sarrazin, P.; Blake, D.; Gailhanou, M.; ...

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  10. Polycapillary based μXRF station for 3D colour tomography

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Cherepennikov, Yu. M.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Azzutti, C.; Gladkikh, Yu. P.; Marcelli, A.; Dabagov, S. B.

    2018-04-01

    The "Rainbow X-Ray" (RXR) experimental station at XLab Frascati of the Frascati's National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energies. The confocal geometry combined with a 3-axes fine motion system makes possible 3D μXRF elemental tomographic acquisitions (colour tomography). At present this station in operation at high XRF energies is used for cultural heritage and geological applications. We present and discuss here the analytical performances of this experimental station pointing out the advantages in different application areas.

  11. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D.; Gailhanou, M.; Marchis, F.; Chalumeau, C.; Webb, S.; Walter, P.; Schyns, E.; Thompson, K.; Bristow, T.

    2018-04-01

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shown that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.

  12. MapX: 2D XRF for Planetary Exploration - Image Formation and Optic Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrazin, P.; Blake, D.; Gailhanou, M.

    Map-X is a planetary instrument concept for 2D X-Ray Fluorescence (XRF) spectroscopy. The instrument is placed directly on the surface of an object and held in a fixed position during the measurement. The formation of XRF images on the CCD detector relies on a multichannel optic configured for 1:1 imaging and can be analyzed through the point spread function (PSF) of the optic. The PSF can be directly measured using a micron-sized monochromatic X-ray source in place of the sample. Such PSF measurements were carried out at the Stanford Synchrotron and are compared with ray tracing simulations. It is shownmore » that artifacts are introduced by the periodicity of the PSF at the channel scale and the proximity of the CCD pixel size and the optic channel size. A strategy of sub-channel random moves was used to cancel out these artifacts and provide a clean experimental PSF directly usable for XRF image deconvolution.« less

  13. Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development

    NASA Technical Reports Server (NTRS)

    Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy

    2005-01-01

    This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.

  14. µ-XANES AND µ-XRF INVESTIGATIONS OF METAL BINDING MECHANISMS IN BIOSOLIDS

    EPA Science Inventory

    Micro-X-ray fluorescence (µ-XRF) microprobe analysis and micro-X-ray absorption near edge spectroscopy (µ-XANES) were employed to identify Fe and Mn phases and their association with selected toxic elements in two biosolids (limed composted and Nu-Earth) containing low ...

  15. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  16. Increased Throughput and Sensitivity of Synchrotron-Based Characterization for Photovoltaic Materials

    DOE PAGES

    Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...

    2017-04-03

    Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less

  17. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes

    NASA Astrophysics Data System (ADS)

    Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.

    2011-04-01

    X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.

  18. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  19. DELAMINATION AND XRF ANALYSIS OF NIST LEAD IN PAINT FILM STANDARDS

    EPA Science Inventory

    The objectives of this protocol were to remove the laminate coating from lead paint film standards acquired from NIST by means of surface heating. The average XRF value did not change after removal of the polymer coating suggesting that this protocol is satisfactory for renderin...

  20. Drug development and manufacturing

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  1. Using Instruments as Applied Science, Multipurpose Tools During Human Exploration: An XRD/XRF Demonstration Strategy for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Gendreau, K.; Arzoumanian, Z.; Young, K. E.; McAdam, A.

    2018-02-01

    Science instruments to be used during human exploration should be designed to serve as multipurpose tools that are of use throughout a mission. Here we discuss a multipurpose tool approach to using contact XRD/XRF onboard the Deep Space Gateway.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.

    Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craswell, P.W.; Price, J.; Boyle, P.D.

    EDTA (calcium disodium edetate) lead mobilization and x-ray fluorescence (XRF) finger bone lead tests were done in 42 patients with chronic renal failure and without persisting lead intoxication. Nineteen of 23 patients with gout and 8 of 19 without gout had positive EDTA lead mobilization tests. Those patients with gout excreted significantly more excess lead chelate than those without gout. In the gout group 17 patients denied any childhood or industrial exposure to lead. They had a greater number of positive tests and excreted significantly more excess lead chelate than 14 patients with neither gout nor lead exposure. These resultsmore » confirm that gout in the presence of chronic renal failure is a useful marker of chronic lead poisoning. Of 27 patients with positive lead mobilization tests, only 13 had elevated XRF finger bone lead concentrations (sensitivity 48%). Three of 15 patients with negative lead mobilization tests had elevated XRF finger bone lead concentrations (specificity 80%). Although the XRF finger bone lead test is a convenient noninvasive addition to the diagnostic evaluation of patients with chronic renal failure and gout, its application is limited due to the lack of sensitivity of the method.« less

  4. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  5. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method

    NASA Astrophysics Data System (ADS)

    Billè, Fulvio; Kourousias, George; Luchinat, Enrico; Kiskinova, Maya; Gianoncelli, Alessandra

    2016-08-01

    XRF spectroscopy is among the most widely used non-destructive techniques for elemental analysis. Despite the known angular dependence of X-ray fluorescence (XRF), topological artefacts remain an unresolved issue when using X-ray micro- or nano-probes. In this work we investigate the origin of the artefacts in XRF imaging of topologically complex samples, which are unresolved problems in studies of organic matter due to the limited travel distances of low energy XRF emission from the light elements. In particular we mapped Human Embryonic Kidney (HEK293T) cells. The exemplary results with biological samples, obtained with a soft X-ray scanning microscope installed at a synchrotron facility were used for testing a mathematical model based on detector response simulations, and for proposing an artefact correction method based on directional derivatives. Despite the peculiar and specific application, the methodology can be easily extended to hard X-rays and to set-ups with multi-array detector systems when the dimensions of surface reliefs are in the order of the probing beam size.

  6. An interlaboratory comparison study on the measurement of elements in PM10

    NASA Astrophysics Data System (ADS)

    Yatkin, Sinan; Belis, Claudio A.; Gerboles, Michel; Calzolai, Giulia; Lucarelli, Franco; Cavalli, Fabrizia; Trzepla, Krystyna

    2016-01-01

    An inter-laboratory comparison study was conducted to measure elemental loadings on PM10 samples, collected in Ispra, a regional background/rural site in Italy, using three different XRF (X-ray Fluorescence) methods, namely Epsilon 5 by linear calibration, Quant'X by the standardless analysis, and PIXE (Particle Induced X-ray Emission) with linear calibration. A subset of samples was also analyzed by ICP-MS (Inductively Coupled Plasma-Mass Spectrometry). Several metrics including method detection limits (MDLs), precision, bias from a NIST standard reference material (SRM 2783) quoted values, relative absolute difference, orthogonal regression and the ratio of the absolute difference between the methods to claimed uncertainty were used to compare the laboratories. The MDLs were found to be comparable for many elements. Precision estimates were less than 10% for the majority of the elements. Absolute biases from SRM 2783 remained less than 20% for the majority of certified elements. The regression results of PM10 samples showed that the three XRF laboratories measured very similar mass loadings for S, K, Ti, Mn, Fe, Cu, Br, Sr and Pb with slopes within 20% of unity. The ICP-MS results confirmed the agreement and discrepancies between XRF laboratories for Al, K, Ca, Ti, V, Cu, Sr and Pb. The ICP-MS results are inconsistent with the XRF laboratories for Fe and Zn. The absolute differences between the XRF laboratories generally remained within their claimed uncertainties, showing a pattern generally consistent with the orthogonal regression results.

  7. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  8. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.

    PubMed

    Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G

    2018-02-15

    Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of field portable measurements of ultrafine TiO2: X-ray fluorescence, laser-induced breakdown spectroscopy, and Fourier-transform infrared spectroscopy.

    PubMed

    LeBouf, Ryan F; Miller, Arthur L; Stipe, Christopher; Brown, Jonathan; Murphy, Nate; Stefaniak, Aleksandr B

    2013-06-01

    Laboratory measurements of ultrafine titanium dioxide (TiO2) particulate matter loaded on filters were made using three field portable methods (X-ray fluorescence (XRF), laser-induced breakdown spectroscopy (LIBS), and Fourier-transform infrared (FTIR) spectroscopy) to assess their potential for determining end-of-shift exposure. Ultrafine TiO2 particles were aerosolized and collected onto 37 mm polycarbonate track-etched (PCTE) filters in the range of 3 to 578 μg titanium (Ti). Limit of detection (LOD), limit of quantification (LOQ), and calibration fit were determined for each measurement method. The LOD's were 11.8, 0.032, and 108 μg Ti per filter, for XRF, LIBS, and FTIR, respectively and the LOQ's were 39.2, 0.11, and 361 μg Ti per filter, respectively. The XRF calibration curve was linear over the widest dynamic range, up to the maximum loading tested (578 μg Ti per filter). LIBS was more sensitive but, due to the sample preparation method, the highest loaded filter measurable was 252 μg Ti per filter. XRF and LIBS had good predictability measured by regressing the predicted mass to the gravimetric mass on the filter. XRF and LIBS produced overestimations of 4% and 2%, respectively, with coefficients of determination (R(2)) of 0.995 and 0.998. FTIR measurements were less dependable due to interference from the PCTE filter media and overestimated mass by 2% with an R(2) of 0.831.

  10. Application of GEM-based detectors in full-field XRF imaging

    NASA Astrophysics Data System (ADS)

    Dąbrowski, W.; Fiutowski, T.; Frączek, P.; Koperny, S.; Lankosz, M.; Mendys, A.; Mindur, B.; Świentek, K.; Wiącek, P.; Wróbel, P. M.

    2016-12-01

    X-ray fluorescence spectroscopy (XRF) is a commonly used technique for non-destructive elemental analysis of cultural heritage objects. It can be applied to investigations of provenance of historical objects as well as to studies of art techniques. While the XRF analysis can be easily performed locally using standard available equipment there is a growing interest in imaging of spatial distribution of specific elements. Spatial imaging of elemental distrbutions is usually realised by scanning an object with a narrow focused X-ray excitation beam and measuring characteristic fluorescence radiation using a high energy resolution detector, usually a silicon drift detector. Such a technique, called macro-XRF imaging, is suitable for investigation of flat surfaces but it is time consuming because the spatial resolution is basically determined by the spot size of the beam. Another approach is the full-field XRF, which is based on simultaneous irradiation and imaging of large area of an object. The image of the investigated area is projected by a pinhole camera on a position-sensitive and energy dispersive detector. The infinite depth of field of the pinhole camera allows one, in principle, investigation of non-flat surfaces. One of possible detectors to be employed in full-field XRF imaging is a GEM based detector with 2-dimensional readout. In the paper we report on development of an imaging system equipped with a standard 3-stage GEM detector of 10 × 10 cm2 equipped with readout electronics based on dedicated full-custom ASICs and DAQ system. With a demonstrator system we have obtained 2-D spatial resolution of the order of 100 μm and energy resolution at a level of 20% FWHM for 5.9 keV . Limitations of such a detector due to copper fluorescence radiation excited in the copper-clad drift electrode and GEM foils is discussed and performance of the detector using chromium-clad electrodes is reported.

  11. Rapid, non-destructive coral paleothermometry by synchrotron XR

    NASA Astrophysics Data System (ADS)

    Tangri, N.; Mehta, A.; Marks, R.; Dunbar, R. B.

    2016-12-01

    We present advances in the use of synchrotron x-ray fluorescence (XRF) to recover climate signals from coral exoskeleton. Corals record sea surface temperature (SST), salinity, and other environmental conditions in the density and composition of their exoskeletons; in particular, SST is reflected in both the Sr/Ca ratio and the annual density banding. Synchrotron XRF has previously been used to examine the fine-scaled variability of Sr concentrations in the exoskeleton structure, but has not yet yielded any long-term SST reconstructions. Modern XRF techniques allow the detection of sub-ppm trace element concentrations and appear ideally suited to long climate reconstructions, as they are non-destructive, high-resolution (250 um) and potentially quite rapid ( 40 years of sample in 24 hours of instrument time). The low Sr content of the coral and its low change in concentration require a high brightness synchrotron source to generate a high signal-to-background ratio. However, difficulties arise from the local heterogeneity of Sr that is unrelated to environmental conditions. These variations of biological origin in Sr concentrations often mask the smaller-amplitude, annual and interannual SST signals. The challenge is to normalize the local variability in order to extract the climate signal. Other techniques have normalized against Ca, but in XRF the Ca signal is sensitive to only the surface 50 um of material, whereas the Sr signal comes from 1mm, so the values are not comparable. Instead, we normalize against density as calculated from beam transmission. We also explore the use of Rb normalization to filter out collection artifacts. Both Sr and Rb show strong annual signals and interesting departures from the density signal. Finally, we pair the XRF results with δ18O measurements to recover a convincing record of SST variation. Although challenges remain, we believe that synchrotron XRF techniques hold considerable promise to rapidly and accurately recover climate signals from corals.

  12. Mathematical simulations of photon interactions using Monte Carlo analysis to evaluate the uncertainty associated with in vivo K X-ray fluorescence measurements of stable lead in bone

    NASA Astrophysics Data System (ADS)

    Lodwick, Camille J.

    This research utilized Monte Carlo N-Particle version 4C (MCNP4C) to simulate K X-ray fluorescent (K XRF) measurements of stable lead in bone. Simulations were performed to investigate the effects that overlying tissue thickness, bone-calcium content, and shape of the calibration standard have on detector response in XRF measurements at the human tibia. Additional simulations of a knee phantom considered uncertainty associated with rotation about the patella during XRF measurements. Simulations tallied the distribution of energy deposited in a high-purity germanium detector originating from collimated 88 keV 109Cd photons in backscatter geometry. Benchmark measurements were performed on simple and anthropometric XRF calibration phantoms of the human leg and knee developed at the University of Cincinnati with materials proven to exhibit radiological characteristics equivalent to human tissue and bone. Initial benchmark comparisons revealed that MCNP4C limits coherent scatter of photons to six inverse angstroms of momentum transfer and a Modified MCNP4C was developed to circumvent the limitation. Subsequent benchmark measurements demonstrated that Modified MCNP4C adequately models photon interactions associated with in vivo K XRF of lead in bone. Further simulations of a simple leg geometry possessing tissue thicknesses from 0 to 10 mm revealed increasing overlying tissue thickness from 5 to 10 mm reduced predicted lead concentrations an average 1.15% per 1 mm increase in tissue thickness (p < 0.0001). An anthropometric leg phantom was mathematically defined in MCNP to more accurately reflect the human form. A simulated one percent increase in calcium content (by mass) of the anthropometric leg phantom's cortical bone demonstrated to significantly reduce the K XRF normalized ratio by 4.5% (p < 0.0001). Comparison of the simple and anthropometric calibration phantoms also suggested that cylindrical calibration standards can underestimate lead content of a human leg up to 4%. The patellar bone structure in which the fluorescent photons originate was found to vary dramatically with measurement angle. The relative contribution of lead signal from the patella declined from 65% to 27% when rotated 30°. However, rotation of the source-detector about the patella from 0 to 45° demonstrated no significant effect on the net K XRF response at the knee.

  13. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  14. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... either energy or wavelength dispersive X-ray flourescent (XRF) spectrometry instrumental analyzers. In both types of XRF spectrometers, the instrument irradiates the sample with high energy (primary) x-rays and the elements in the sample absorb the x-rays and then re-emit secondary (fluorescent) x-rays of...

  15. 40 CFR Appendix A to Subpart Uuu... - Determination of Metal Concentration on Catalyst Particles (Instrumental Analyzer Procedure)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... either energy or wavelength dispersive X-ray flourescent (XRF) spectrometry instrumental analyzers. In both types of XRF spectrometers, the instrument irradiates the sample with high energy (primary) x-rays and the elements in the sample absorb the x-rays and then re-emit secondary (fluorescent) x-rays of...

  16. Impact of an external radiation field on handheld XRF measurements for nuclear forensics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steeb, Jennifer L.; Mertz, Carol J.; Finck, Martha R.

    X-ray fluorescence (XRF) is an attractive technique for nuclear forensics applications. We evaluated a handheld, portable XRF device by applying an external radiation field (10 mR/h to 17 R/h) using two types of radiography sources: a 60Co radiography camera to observe effects from high-energy gamma emissions and an 192Ir radiography camera to observe effects from several low-energy gamma (0.604, 0.468, and 0.317 MeV) and decay daughter x-ray emissions. External radiation tests proved that radiation, in general, has a significant effect on the dead time or background at dose rates over 1 R/hr for both the 192Ir and 60Co sources.

  17. XRF-measured bone lead (Pb) as a biomarker for Pb exposure and toxicity among children diagnosed with Pb poisoning.

    PubMed

    Specht, Aaron J; Lin, Yanfen; Weisskopf, Marc; Yan, Chonghuai; Hu, Howard; Xu, Jian; Nie, Linda H

    2016-01-01

    Childhood lead (Pb) poisoning remains a global issue, especially in industrial areas. In this study, 115 children with average age 5.7 years were recruited as either patient diagnosed with Pb poisoning or controls at Xinhua Hospital in China. The subjects' bone Pb was measured with a K-shell X-ray fluorescence (KXRF) and a portable X-ray fluorescence (XRF) system. A significant correlation between KXRF bone Pb and blood Pb and portable XRF and KXRF measurements were observed. The half-life of blood-lead was calculated to be 9.96 ± 3.92 d. Our results indicate that bone is a useful biomarker for Pb in children.

  18. Application of Compton-suppressed self-induced XRF to spent nuclear fuel measurement

    NASA Astrophysics Data System (ADS)

    Park, Se-Hwan; Jo, Kwang Ho; Lee, Seung Kyu; Seo, Hee; Lee, Chaehun; Won, Byung-Hee; Ahn, Seong-Kyu; Ku, Jeong-Hoe

    2017-11-01

    Self-induced X-ray fluorescence (XRF) is a technique by which plutonium (Pu) content in spent nuclear fuel can be directly quantified. In the present work, this method successfully measured the plutonium/uranium (Pu/U) peak ratio of a pressurized water reactor (PWR)'s spent nuclear fuel at the Korea atomic energy research institute (KAERI)'s post irradiation examination facility (PIEF). In order to reduce the Compton background in the low-energy X-ray region, the Compton suppression system additionally was implemented. By use of this system, the spectrum's background level was reduced by a factor of approximately 2. This work shows that Compton-suppressed selfinduced XRF can be effectively applied to Pu accounting in spent nuclear fuel.

  19. Micro-XRF complemented by x-radiography and digital microscopy imaging for the study of hidden paintings

    NASA Astrophysics Data System (ADS)

    Gasanova, Svetlana; Hermon, Sorin

    2017-07-01

    The present study describes a novel approach to the study of hidden by integrating the non-invasive micro-X-Ray Fluorescence spectroscopy, X-radiography and digital microscopy. The case study analysed is a portrait of a male figure discovered under the painting of Ecce Homo, attributed to Titian's studio with an estimated date in the 1550s. The X-radiography images exposed the details of the underpainting, which appeared to be a nearly finished portrait of a standing man, overpainted by the current composition of Ecce Homo at a 180° angle. The microscopy observations of the upper painting's cracks and flaked areas enabled the study of the exposed underlayers in terms of their colour appearance and pigment particles. The subsequent pigment analysis was performed by micro-XRF. Since the described XRF analysis was performed not in scanner mode, the correct selection of the measurement spots for the micro analysis and separation between pigments of the lower and the upper painting was of paramount importance. The described approach for spot selection was based on the results of the preceding X-radiography and digital microscopy tests. The presence of lead white, vermilion, copper green and iron earth in the underlying portrait was confirmed by the multiple point XRF analysis of Pb, Hg, Cu, Fe and Mn lines. The described investigation method proved to be useful in the identification of the pigments of the underlying painting and consequently assisted in the tentative reconstruction of its colour palette. Moreover, the undertaken approach allowed discovering the potential of micro-XRF technique in the study of hidden compositions.

  20. Legacy lead arsenate soil contamination at childcare centers in the Yakima Valley, Central Washington, USA.

    PubMed

    Durkee, Jenna; Bartrem, Casey; Möller, Gregory

    2017-02-01

    From the early 1900s to the 1950s, Yakima Valley orchards were commonly treated with lead arsenate (LA) insecticides. Lead (Pb) and arsenic (As) soil contamination has been identified on former orchard lands throughout Central Washington and pose a threat to human health and the environment. The levels of Pb and As in soil and interior dust at participating childcare centers in the Upper Yakima Valley (Yakima County), Washington were sampled to explore exposure potential for young children. Childcare center soils were collected from two soil depths, homogenized, and analyzed in bulk by a field-portable X-ray fluorescence spectrometer (XRF). Interior dust wipes samples were collected from at least two locations in each facility. All soil samples >250 mg/kg Pb and/or >20 As mg/kg were sieved to 250 μm, tested by XRF a second time, and analyzed via acid digestion and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Bulk and sieved XRF results, as well as ICP-MS to XRF results were strongly correlated. Maximum Pb and As XRF results indicated that 4 (21%) and 8 (42%) of the 19 childcare centers surveyed exceeded the regulatory standard for Pb and As, respectively. Historic land use was significantly associated with elevated Pb and As levels. Interior dust loadings were below United States Environmental Protection Agency (EPA) guidelines. Childcare centers are areas of intensive use for children and when coupled with potential residential exposure in their homes, the total daily exposure is a potential hazard to children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. New conducted electrical weapons: Electrical safety relative to relevant standards.

    PubMed

    Panescu, Dorin; Nerheim, Max; Kroll, Mark W; Brave, Michael A

    2017-07-01

    We have previously published about TASER ® conducted electrical weapons (CEW) compliance with international standards. CEWs deliver electrical pulses that can inhibit a person's neuromuscular control or temporarily incapacitate. An eXperimental Rotating-Field (XRF) waveform CEW and the X2 CEW are new 2-shot electrical weapon models designed to target a precise amount of delivered charge per pulse. They both can deploy 1 or 2 dart pairs, delivered by 2 separate cartridges. Additionally, the XRF controls delivery of incapacitating pulses over 4 field vectors, in a rotating sequence. As in our previous study, we were motivated by the need to understand the cardiac safety profile of these new CEWs. The goal of this paper is to analyze the nominal electrical outputs of TASER XRF and X2 CEWs in reference to provisions of all relevant international standards that specify safety requirements for electrical medical devices and electrical fences. Although these standards do not specifically mention CEWs, they are the closest electrical safety standards and hence give very relevant guidance. The outputs of several TASER XRF and X2 CEWs were measured under normal operating conditions. The measurements were compared against manufacturer specifications. CEWs electrical output parameters were reviewed against relevant safety requirements of UL 69, IEC 60335-2-76 Ed 2.1, IEC 60479-1, IEC 60479-2, AS/NZS 60479.1, AS/NZS 60479.2, IEC 60601-1 and BS EN 60601-1. Our study confirmed that the nominal electrical outputs of TASER XRF and X2 CEWs lie within safety bounds specified by relevant standards.

  2. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study

    PubMed Central

    McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.

    2014-01-01

    With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136

  3. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.

    PubMed

    Ytreberg, Erik; Lagerström, Maria; Holmqvist, Albin; Eklund, Britta; Elwing, Hans; Dahlström, Magnus; Dahl, Peter; Dahlström, Mia

    2017-06-01

    The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies. To bridge this gap, we have developed a novel method using a handheld X-Ray Fluorescence spectrometer (XRF) to determine the cumulative release of Cu and Zn from antifouling paints. The results showed a strong linear relationship between XRF K α net intensities and metal concentrations, as determined by ICP-MS. The release of Cu and Zn were determined for coated panels exposed in harbors located in the Baltic Sea and in Kattegat. The field study showed salinity to have a strong impact on the release of Cu, i.e. the release increased with salinity. Contrary, the effect of salinity on Zn was not as evident. As exemplified in this work, the XRF method also makes it possible to identify the governing parameters to the release of Cu and Zn, e.g. salinity and type of paint formulation. Thus, the XRF method can be used to measure environmentally relevant releases of metallic compounds to design more efficient and optimized antifouling coatings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence.

    PubMed

    Kaščáková, Slávka; Kewish, Cameron M; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart-Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos-Vallée, Jean-Charles; Guettier, Catherine; Le Naour, François

    2016-07-01

    Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

  5. Elemental Scanning Devices Authenticate Works of Art

    NASA Technical Reports Server (NTRS)

    2013-01-01

    To better detect aluminum compounds, Marshall Space Flight Center partnered with KeyMaster Inc. (later acquired by Madison, Wisconsin-based Bruker AXS Inc.) to develop a vacuum pump system that could be attached to X-ray fluorescence (XRF) scanners. The resulting technology greatly expanded XRF scanner capabilities, and hundreds of museums now use them to authenticate artifacts and works of art.

  6. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  7. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    NASA Astrophysics Data System (ADS)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  8. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    NASA Astrophysics Data System (ADS)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  9. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  10. Charge Collection in Hybrid Perovskite Solar Cells: Relation to the Nanoscale Elemental Distribution

    DOE PAGES

    Stuckelberger, Michael; Nietzold, Tara; Hall, Genevieve N.; ...

    2016-12-19

    Unveiling the correlation between elemental composition, Fermi-level splitting, and charge collection in perovskite solar cells (PSCs) when exposed to different environments is crucial to understanding the origin of defects. This will enable defect engineering to achieve high-performance and long-lasting PSCs. Here, in this paper, we measured, for the first time, the spatial distribution and charge-collection efficiency at the nanoscale by synchrotron-based X-ray fluorescence (XRF) and X-ray beam-induced current (XBIC) with subgrain resolution, and we observe a correlation between Pb/I ratio and charge-collection efficiency. In contrast with other thin-film solar cells, PSCs are highly sensitive to ambient conditions (atmosphere and illumination).more » As the XRF and XBIC measurements were conducted in vacuum under an X-ray source illumination, the impact of measurement conditions on the cells needs to be taken into account. Furthermore, necessary conditions for quantification of XRF/XBIC measurements, such as film homogeneity, are not fulfilled in the case of PSCs. Finally, we will discuss fundamentals of XRF/XBIC measurements of PSCs that will enable reliable, quantitative, high-resolution measurements of elemental distribution and charge collection.« less

  11. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  12. Stoichiometry determination of (Pb,La)(Zr,Ti)O3-type nano-crystalline ferroelectric ceramics by wavelength-dispersive X-ray fluorescence spectrometry.

    PubMed

    Sitko, Rafał; Zawisza, Beata; Kita, Andrzej; Płońska, Małgorzata

    2006-07-01

    Analysis of small samples of lanthanum-doped lead zirconate titanate (PLZT) by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) is presented. The powdered material in ca. 30 mg was suspended in water and collected on the membrane filter. The pure oxide standards (PbO, La2O3, ZrO2 and TiO2) were used for calibration. The matrix effects were corrected using a theoretical influence coefficients algorithm for intermediate-thickness specimens. The results from XRF method were compared with the results from the inductively coupled plasma optical emission spectrometry (ICP-OES). Agreement between XRF and ICP-OES analysis was satisfactory and indicates the usefulness of XRF method for stoichiometry determination of PLZT.

  13. Reducing bone lead content by chelation treatment in chronic lead poisoning: an in vivo X-ray fluorescence and bone biopsy study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batuman, V.; Wedeen, R.P.; Bogden, J.D.

    1989-02-01

    A stained-glass artist with longstanding exposure to lead presented with neuropsychiatric symptoms. He was evaluated before and after chelation treatment by the CaNa2 EDTA lead mobilization test, iliac crest bone lead measurement, and in vivo tibial X-ray fluorescence (XRF). The three methods showed a progressive fall in body lead stores during chelation therapy in association with improvement in symptoms and a fall in blood lead and zinc protoporphyrin levels. In vivo tibial XRF is a safe, rapid, and noninvasive technique for detecting excessive body lead burdens. XRF measurement of bone lead content is a practical method for monitoring the efficacymore » of therapy as well as for establishing the diagnosis.« less

  14. Innovative instrumentation for mineralogical and elemental analyses of solid extraterrestrial surfaces: The Backscatter Moessbauer Spectrometer/X Ray Fluorescence analyzer (BaMS/XRF)

    NASA Technical Reports Server (NTRS)

    Shelfer, T. D.; Morris, Richard V.; Nguyen, T.; Agresti, D. G.; Wills, E. L.

    1994-01-01

    We have developed a four-detector research-grade backscatter Moessbauer spectrometer (BaMS) instrument with low resolution x-ray fluorescence analysis (XRF) capability. A flight-qualified instrument based on this design would be suitable for use on missions to the surfaces of solid solar-system objects (Moon, Mars, asteroids, etc.). Target specifications for the flight instrument are as follows: mass less than 500 g; volumes less than 300 cu cm; and power less than 2 W. The BaMS/XRF instrument would provide data on the oxidation state of iron and its distribution among iron-bearing mineralogies and elemental composition information. This data is a primary concern for the characterization of extraterrestrial surface materials.

  15. In-situ and elementally resolved determination of the thickness uniformity of multi-ply films by confocal micro XRF.

    PubMed

    Peng, Song; Liu, Zhiguo; Sun, Tianxi; Wang, Guangfu; Ma, Yongzhong; Ding, Xunliang

    2014-08-01

    Confocal micro X-ray fluorescence (CM-XRF) with quasi-monochromatic excitation based on polycapillary X-ray optics was used to measure the thickness of multi-ply films. The relative errors of measuring an Fe film with a thickness of 16.3 μm and a Cu film with a thickness of 24.5 μm were 7.3% and 0.4%, respectively. The non-destructive and in-situ measurement of the thickness and uniformity of multi-ply films of Cu, Fe and Ni on a silicon surface was performed. CM-XRF was convenient in in-situ and elementally resolved analysis of the thickness of multi-ply films without a cumbersome theoretical correction model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development of a combined portable x-ray fluorescence and Raman spectrometer for in situ analysis.

    PubMed

    Guerra, M; Longelin, S; Pessanha, S; Manso, M; Carvalho, M L

    2014-06-01

    In this work, we have built a portable X-ray fluorescence (XRF) spectrometer in a planar configuration coupled to a Raman head and a digital optical microscope, for in situ analysis. Several geometries for the XRF apparatus and digital microscope are possible in order to overcome spatial constraints and provide better measurement conditions. With this combined spectrometer, we are now able to perform XRF and Raman measurements in the same point without the need for sample collection, which can be crucial when dealing with cultural heritage objects, as well as forensic analysis. We show the capabilities of the spectrometer by measuring several standard reference materials, as well as other samples usually encountered in cultural heritage, geological, as well as biomedical studies.

  17. SU-G-IeP3-07: High-Resolution, High-Sensitivity Imaging and Quantification of Intratumoral Distributions of Gold Nanoparticles Using a Benchtop L-Shell XRF Imaging System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, N; Diagaradjane, P; Krishnan, S

    2016-06-15

    Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector,more » capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo imaging tasks. Supported by NIH/NCI grant R01CA155446 This investigation was supported by NIH/NCI grant R01CA155446.« less

  18. Use of small volume cups in XRF analysis of treated wood retention

    Treesearch

    Rene Stelzer; Adam Taylor; Patricia Lebow

    2017-01-01

    Efforts are underway in the United States to improve the conformance of commercially-treated wood with the applicable retention standards. As part of an effort to devise a practical method for on-site assessment of within-charge retention variation, we investigated whether small-volume x-ray fluorescence (XRF) sample cups could be used with treated wood. A range of cup...

  19. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    NASA Astrophysics Data System (ADS)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD Mobile® XRF units were shown to be suitable for rapid screening of samples likely to be encountered in field based studies.

  20. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies.

  1. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo samples and superficial tumors during preclinical animal studies. PMID:23927295

  2. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  3. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  4. Confirmation of the E(sup src)(sub Peak)-E(sub iso) (Amati) relation from the x-ray flash XRF 050416A observed by the Swift burst alert telescope

    NASA Technical Reports Server (NTRS)

    Sakamoti, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.

    2006-01-01

    We report Swift Burst Alert Telescope (BAT) observations of the X-ray flash (XRF) XRF 050416A. The fluence ratio between the 15-25 and 25-50 keV energy bands of this event is 1.5, thus making it the softest gamma-ray burst (GRB) observed by BAT so far. The spectrum is well fitted by a Band function with E(sup obs)(sub peak) of 15.0(sup +2.3)(sub -2.7) keV. Assuming the redshift of the host galaxy (z = 0.6535), the isotropic equivalent radiated energy E(sub iso) and the peak energy at the GRB rest frame (E(sup src)(sub peak)) of XRF 050416A are not only consistent with the correlation found by Amati et al. and extended to XRFs by Sakamoto et al. but also fill in the gap of this relation around the 30-80 keV range of E(sup src)(sub peak). This result tightens the validity of the E(sup src)(sub Peak)-E(sup src)(sub peak) relation from XRFs to GRBs. We also find that the jet break time estimated using the empirical relation between E(sup src)(sub peak) and the collimation corrected energy E(sub gamma), is inconsistent with the afterglow observation by the Swift X-Ray Telescope. This could be due to the extra external shock emission overlaid around the jet break time or to the nonexistence of a jet break feature for XRFs, which might be a further challenge for GRB jet emission models and XRF/GRB unification scenarios.

  5. Non-destructive Measurement of Calcium and Potassium in Apple and Pear Using Handheld X-ray Fluorescence

    PubMed Central

    Kalcsits, Lee A.

    2016-01-01

    Calcium and potassium are essential for cell signaling, ion homeostasis and cell wall strength in plants. Unlike nutrients such as nitrogen and potassium, calcium is immobile in plants. Localized calcium deficiencies result in agricultural losses; particularly for fleshy horticultural crops in which elemental imbalances in fruit contribute to the development of physiological disorders such as bitter pit in apple and cork spot in pear. Currently, elemental analysis of plant tissue is destructive, time consuming and costly. This is a limitation for nutrition studies related to calcium in plants. Handheld portable x-ray fluorescence (XRF) can be used to non-destructively measure elemental concentrations. The main objective was to test if handheld XRF can be used for semi-quantitative calcium and potassium analysis of in-tact apple and pear. Semi-quantitative measurements for individual fruit were compared to results obtained from traditional lab analysis. Here, we observed significant correlations between handheld XRF measurements of calcium and potassium and concentrations determined using MP-AES lab analysis. Pearson correlation coefficients ranged from 0.73 and 0.97. Furthermore, measuring apple and pear using handheld XRF identified spatial variability in calcium and potassium concentrations on the surface of individual fruit. This variability may contribute to the development of localized nutritional imbalances. This highlights the importance of understanding spatial and temporal variability in elemental concentrations in plant tissue. Handheld XRF is a relatively high-throughput approach for measuring calcium and potassium in plant tissue. It can be used in conjunction with traditional lab analysis to better understand spatial and temporal patterns in calcium and potassium uptake and distribution within an organ, plant or across the landscape. PMID:27092160

  6. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Urgiles, E.; Wilcox, J. Z.; Toda, R.; Crisp, J.; George, T.

    2005-01-01

    Introduction: This paper describes the progress in data acquisition and establishing the observational capability of the AEXS instrument. The AEXS is a miniature instrument[1-4] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam which enables nondestructive evaluation of sample surfaces in planetary ambient atmospheres. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum of the AEXS source from the outside ambient atmosphere. Thus eliminating the need for a vacuum pumped sample chamber as is common in all laboratory SEM s. The transmitted electrons impinge on the sample exciting XRF spectra from the irradiated spot on in-situ or collected samples with sub-mm to cm-scale spatial resolution at Mars atmospheric pressure. The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an XRF detection and analyzer system, and a high voltage power supply. The XRF data are analyzed to determine the elemental abundance for the irradiated spots. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of microfabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. The development of the instrument is described in detail in the poster paper[4] at this conference. This paper focuses on describing the progress of the AEXS instrument to acquire XRF data and using commercially available software to analyze the data streams and determine the accuracy, precision and resolution of the analysis compared to the certified elemental abundance.

  7. Pigment analysis by Raman microscopy and portable X-ray fluorescence (pXRF) of thirteenth to fourteenth century illuminations and cuttings from Bologna

    PubMed Central

    Clark, Robin J. H.; Jones, Richard; Gibbs, Robert

    2016-01-01

    Non-destructive pigment analysis by Raman microscopy (RM) and portable X-ray fluorescence (pXRF) has been carried out on some Bolognese illuminations and cuttings chosen to represent the beginnings, evolution and height of Bolognese illuminated manuscript production. Dating to the thirteenth and fourteenth centuries and held in a private collection, the study provides evidence for the pigments generally used in this period. The results, which are compared with those obtained for other north Italian artwork, show the developments in usage of artistic materials and technique. Also addressed in this study is an examination of the respective roles of RM and pXRF analysis in this area of technical art history. This article is part of the themed issue ‘Raman spectroscopy in art and archaeology’. PMID:27799427

  8. Radioactive decay of the late-time light curves of GRB-SNe

    NASA Astrophysics Data System (ADS)

    Misra, Kuntal; Fruchte, Andrew Steven

    2018-04-01

    We present the late-time Hubble Space Telescope observations of two GRB associated supernovae, GRB 030329/SN 2003dh and XRF 060218/SN 2006aj. Using the multi-color data upto ˜ 320 days after the burst, we constrain the late-time decay nature of these supernovae. The decay rates of SN 2003dh are steeper than SN 2006aj. A comparison with two other GRB supernovae, GRB 980425/SN 1998bw and the supernova associated with XRF 020903, shows that the decay rates of SN 2003dh are similar to XRF 020903 and those of SN 2006aj are similar to SN 1998bw. The late-time decay rates are steeper than the 56Co?56Fe radioactive decay rate (0.0098 mag day-1) indicating that there is some leakage of gamma-rays.

  9. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    NASA Astrophysics Data System (ADS)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  10. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  11. Development and characterization of sub-monolayer coatings as novel calibration samples for X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Hönicke, Philipp; Krämer, Markus; Lühl, Lars; Andrianov, Konstantin; Beckhoff, Burkhard; Dietsch, Rainer; Holz, Thomas; Kanngießer, Birgit; Weißbach, Danny; Wilhein, Thomas

    2018-07-01

    With the advent of both modern X-ray fluorescence (XRF) methods and improved analytical reliability requirements the demand for suitable reference samples has increased. Especially in nanotechnology with the very low areal mass depositions, quantification becomes considerably more difficult. However, the availability of suited reference samples is drastically lower than the demand. Physical vapor deposition techniques have been enhanced significantly in the last decade driven by the need for extremely precise film parameters in multilayer production. We have applied those techniques for the development of layer-like reference samples with mass depositions in the ng-range and well below for Ca, Cu, Pb, Mo, Pd, Pb, La, Fe and Ni. Numerous other elements would also be possible. Several types of reference samples were fabricated: multi-elemental layer and extremely low (sub-monolayer) samples for various applications in XRF and total-reflection XRF analysis. Those samples were characterized and compared at three different synchrotron radiation beamlines at the BESSY II electron storage ring employing the reference-free XRF approach based on physically calibrated instrumentation. In addition, the homogeneity of the multi-elemental coatings was checked at the P04 beamline at DESY. The measurements demonstrate the high precision achieved in the manufacturing process as well as the versatility of application fields for the presented reference samples.

  12. XAFS imaging of Tsukuba gabbroic rocks: area analysis of chemical composition and local structure.

    PubMed

    Mizusawa, Mari; Sakurai, Kenji

    2004-03-01

    Gabbroic rocks were collected at Mount Tsukuba in Japan, and their XAFS images were studied using a projection-type X-ray fluorescence (XRF) microscope, which is a powerful new tool recently developed for extremely rapid imaging. The instrument employs a grazing-incidence arrangement in order that primary X-rays illuminate the whole sample surface, as well as parallel-beam optics and an extremely close geometry in order to detect XRF by a high-performance X-ray CCD system with 1024 x 1024 pixels. The XRF image indicated that black amphibole and white feldspar, both of which are typical mineral textures of the rock, contain iron. The origin has been suggested to be several small yellowish-brown minerals contained there. The XAFS imaging has been carried out by repeating the exposure of XRF images during the energy scan of the primary X-rays. It has been found that the structure is qualitatively close to that of olivine, and the main differences found in both areas can be explained as a difference in iron and magnesium concentration, i.e. the mixed ratio of forsterite (Mg(2)SiO(4)) and fayalite (Fe(2)SiO(4)). The feasibility of the present XAFS imaging method has been demonstrated for realistic inhomogeneous minerals.

  13. X-ray Fluorescence Spectroscopy of Pre-Federal American Currency

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis

    2017-09-01

    X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).

  14. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study

    PubMed Central

    Jung, Seongmoon; Sung, Wonmo; Ye, Sung-Joon

    2017-01-01

    This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine. PMID:28860750

  15. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  16. Applications of XRF, NAA and low-kV radiographic techniques in the study of body composition and diseased tissue

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Ng, K. H.; Green, S.; Mountford, P. J.; Shukri, A.; Evans, J.

    1996-05-01

    Members of this group have responded to a number of challenging health issues by attempting to devise sensitive XRF, NAA and low-kV radiographic measurement systems foboth in vivo and in vitro applications. These studies are generally either of toxicological importance, examine potential for diagnosing the presence of disease, or offer effective means for monitoring potentially harmful side-effects of therapy. Particular examples include the in vivo XRF investigation of human skeletal uptake of Pb in working and living environments, in vivo XRF monitoring of elevated levels of Fe in skin (indicating the presence of an undesirable side-effect of the treatment of thalassaemia), in vivo NAA monitoring of elevated levels of Al in bone (indicating an undesirable side-effect of the treatment of chronic renal failure) and in vitro characterization, by means of low-kV imaging, of a range of calcification parameters in healthy and diseased breast tissue. The latter investigation has been conducted in association with an in vitro NAA study of concentrations of trace elements in the same types of tissue. Figures of merit for the various measurement systems have been obtained in terms of minimum detectable levels and concentrations (MDL's and MDC's) and where applicable, image related parameters.

  17. PIXE and XRF Analysis of Roman Denarii

    NASA Astrophysics Data System (ADS)

    Fasano, Cecilia; Raddell, Mark; Manukyan, Khachatur; Stech, Edward; Wiescher, Michael

    2017-09-01

    A set of Roman Denarii from the republican to the imperial period (140BC-240AD) has been studied using X-ray fluorescent (XRF) scanning and proton induced x-ray emission (PIXE) techniques. XRF and PIXE are commonly used in the study of cultural heritage objects because they are nondestructive. The combination of these two methods is also unique because of the ability to penetrate the sample with a broader spectrum of depths and energies than either could achieve on its own. The coins are from a large span of Roman history and their analysis serves to follow the economic and political change of the era using the relative silver and copper contents in each sample. In addition to analyzing the samples, the study sought to compare these two common analysis techniques and to explore the use of a standard to examine any shortcomings in either of the methods. Data sets were compared and then adjusted to a calibration curve which was created from the analysis of a number of standard solutions. The concentrations of the standard solutions were confirmed using inductively coupled plasma spectroscopy. Through this we were able to assemble results which will progress the basis of understanding of PIXE and XRF techniques as well as increase the wealth of knowledge of Ancient Roman currency.

  18. X-ray microfluorescence as a tool to analyze elemental changes in femur head induced by chemotherapy drugs for the treatment of breast cancer

    NASA Astrophysics Data System (ADS)

    Pickler, A.; Mota, C. L.; Mantuano, A.; Salata, C.; Nogueira, L. P.; Almeida, A. P.; Alessio, R.; Sena, G.; Braz, D.; de Almeida, C. E. V.; Barroso, R. C.

    2015-11-01

    Recently some developments in a large number of investigative techniques have been made with the objective to obtain a micrometer spatial resolution imaging of elemental concentrations. The X-ray microfluorescence analysis (μXRF) is one of those techniques which is based on the localized excitation of a small area on the surface of sample, providing information of all elements contained in the material under study. Breast cancer is the most common malignancy in Brazilian women. The main treatment strategies for the breast cancer are surgery and chemotherapy. As bone loss is one of the possible chemotherapy side effects, in this work was used μXRF technique on femoral head samples of female Wistar rats to evaluate Ca, Fe and Zn concentrations in order to investigate possible elemental changes in bone caused by the chemotherapy. Fifteen female rats were divided randomly in groups (five rats each). G1 group received doses of doxorubicin/cyclophosphamide drugs and G2 group was treated with docetaxel/cyclophosphamide drugs. μXRF measurements were carried out at the X-ray XRF beamline in the Brazilian Synchrotron Light Laboratory. The results showed significant decrease especially in Ca concentrations when comparing the treated groups with the control group.

  19. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    PubMed

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better.

  20. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  1. Temporary implementation and testing of a confocal SR- μXRF system for bone analysis at the X-ray Fluorescence beamline at Elettra

    NASA Astrophysics Data System (ADS)

    Perneczky, L.; Rauwolf, M.; Ingerle, D.; Eichert, D.; Brigidi, F.; Jark, W.; Bjeoumikhova, S.; Pepponi, G.; Wobrauschek, P.; Streli, C.; Turyanskaya, A.

    2018-07-01

    The confocal μXRF spectrometer of Atominstitut (ATI) was transported and set up at the X-ray Fluorescence beamline at Elettra - Sincrotrone Trieste. It was successfully adjusted to the incoming beam (9.2 keV). Test measurements on a free-standing Cu wire were performed to determine the size of the focused micro-beam (non-confocal mode, 56 × 35 μm2) and the size of the confocal volume (confocal mode, 41 × 24 × 34 μm2) for the Cu-K α emission. In order to test the setup's capabilities, two areas on different human bone samples were measured in confocal scanning mode. For one of the samples the comparison with a previous μ XRF measurement, obtained with a low power X-ray tube in the lab, is presented.

  2. Whole-rock analyses of core samples from the 1988 drilling of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, Rosalind Tuthill; Taggart, Joseph E.

    2010-01-01

    This report presents and evaluates 64 major-element analyses of previously unanalyzed Kilauea Iki drill core, plus three samples from the 1959 and 1960 eruptions of Kilauea, obtained by X-ray fluorescence (XRF) analysis during the period 1992 to 1995. All earlier major-element analyses of Kilauea Iki core, obtained by classical (gravimetric) analysis, were reported and evaluated in Helz and others (1994). In order to assess how well the newer data compare with this earlier suite of analyses, a subset of 24 samples, which had been analyzed by classical analysis, was reanalyzed using the XRF technique; those results are presented and evaluated in this report also. The XRF analyses have not been published previously. This report also provides an overview of how the chemical variations observed in these new data fit in with the chemical zonation patterns and petrologic processes inferred in earlier studies of Kilauea Iki.

  3. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques.

    PubMed

    Radu, Tanja; Diamond, Dermot

    2009-11-15

    Past mining activities in the area of Silvermines, Ireland, have resulted in heavily polluted soils. The possibility of spreading pollution to the surrounding areas through dust blow-offs poses a potential threat for the local communities. Conventional environmental soil and dust analysis techniques are very slow and laborious and consequently there is a need for fast and accurate analytical methods, which can provide real-time in situ pollution mapping. Laboratory-based aqua regia acid digestion of the soil samples collected in the area followed by the atomic absorption spectrophotometry (AAS) analysis confirmed very high pollution, especially by Pb, As, Cu, and Zn. In parallel, samples were analyzed using portable X-ray fluorescence radioisotope and miniature tube powered (XRF) NITON instruments and their performance was compared. Overall, the portable XRF instrument gave excellent correlation with the laboratory-based reference AAS method.

  4. Childhood lead poisoning investigations: evaluating a portable instrument for testing soil lead.

    PubMed

    Reames, Ginger; Lance, Larrie L

    2002-04-01

    The Childhood Lead Poisoning Prevention Branch of the California Department of Health Services evaluated a portable X-ray fluorescence (XRF) instrument for use as a soil lead-testing tool during environmental investigations of lead-poisoned children's homes. A Niton XRF was used to test soil at 119 sampling locations in the yards of 11 San Francisco Bay Area houses. Niton XRF readings were highly correlated with laboratory results and met the study criteria for an acceptable screening method. The data suggest that the most health-protective and time-efficient approach to testing for soil lead above regulatory levels is to take either surface readings or readings of a test cup of soil prepared by grinding with a mortar and pestle. The advantage of the test cup method is that the test cup with soil may be submitted to a laboratory for confirmatory analysis.

  5. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  6. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Serpell, Christopher J.; Rutte, Reida N.; Geraki, Kalotina; Pach, Elzbieta; Martincic, Markus; Kierkowicz, Magdalena; de Munari, Sonia; Wals, Kim; Raj, Ritu; Ballesteros, Belén; Tobias, Gerard; Anthony, Daniel C.; Davis, Benjamin G.

    2016-10-01

    The desire to study biology in situ has been aided by many imaging techniques. Among these, X-ray fluorescence (XRF) mapping permits observation of elemental distributions in a multichannel manner. However, XRF imaging is underused, in part, because of the difficulty in interpreting maps without an underlying cellular `blueprint' this could be supplied using contrast agents. Carbon nanotubes (CNTs) can be filled with a wide range of inorganic materials, and thus can be used as `contrast agents' if biologically absent elements are encapsulated. Here we show that sealed single-walled CNTs filled with lead, barium and even krypton can be produced, and externally decorated with peptides to provide affinity for sub-cellular targets. The agents are able to highlight specific organelles in multiplexed XRF mapping, and are, in principle, a general and versatile tool for this, and other modes of biological imaging.

  7. Cyclostratigraphic analysis of the Middle to lower Upper Ordovician Postolonnec Formation in the Armorican Massif (France): integrating pXRF, gammay-ray and lithological data

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Loi, Alfredo; Dabard, Marie-Pierre; Vandenbroucke, Thijs; Claeys, Philippe

    2017-04-01

    The Middle to lower Upper Ordovician sections of the Crozon Peninsula area (Postolonnec Formation, Armorican Massif, western France) show multi-order eustatic sea-level changes (Dabard et al., 2015). The sections are characterized by siliciclastic facies, which were deposited in tidal to storm-dominated shelf environments. Dabard et al. (2015) analysed the facies, their stacking patterns, and gamma-ray data and applied backstripping to identify subsidence and several orders of sea-level change. The main stratigraphic constraints are coming from (chitinozoan) biostratigraphy. The 3th to 5th orders changes are hypothesized to correspond to various frequencies related to astronomical forcing. This study investigates the potential added value of portable X-Ray Fluorescence (pXRF) and the application of spectral analyses. High-resolution (cm-scale) non-destructive pXRF and natural gamma-ray measurements were carried out on 14 m of section that was equally logged on a cm resolution. The pXRF measurements on the surface of the outcrops are compared with earlier results of wavelength dispersive XRF spectrometry and ICP-MS. The potassium records of the pXRF and gamma-ray logs are comparable and essentially reflect lithological variations (i.e., between mudstone and coarse sandstones). Other reliably measured elements also reflected lithological aspects such as clay-sandstone alternations (e.g. K, Rb, Ti), placer locations (Zr, Ce, Ti) and potentially clay mineralogy and condensation horizons (Ni, Zn, Co, Mn). Spectral analyses of the various proxies (lithology, natural gamma-ray and pXRF) are compared with each other. Both the new high-resolution data (14 m of section) as well as the published low-resolution data (which span almost 400 m of Darriwilian-Sandbian) were analyzed. The study reveals strong indications for the imprint of obliquity, precession and eccentricity. Obtaining age constraints, in addition to the existing biostratigraphical framework is a challenge in these sections, but would help to resolve temporal uncertainties and confirm our interpretations. The relative strength of the potential obliquity and precession-eccentricity signals also can provide further insights in the global glaciation history of the Middle to Late Ordovician given that a larger obliquity component can be expected if there was a more developed polar ice sheet on the Gondwanan palaeocontinent. Dabard M.P., Loi A., Paris, F., Ghienne J.F., Pistis M., and Vidal M. (2015): Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles. Palaeogeography, Palaeoclimatology, Palaeocology, 436, 96-111, doi:10.106/j.palaeo.2015.06.038

  8. Combining X-Ray Fluorescence and Magnetic Techniques to Quantify Elemental Concentrations in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Goldfarb, L. A.; Kingsley, C.; Urbalejo, A. A.; Hangsterfer, A.; Gee, J. S.; Carilli, J.; Feinberg, J. M.; Mitra, R.; Bhattacharya, A.; Field, D.

    2017-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here is a progress and combination of two works presented at American Geophysical Union 2016 Fall Meeting; In this research, we explore the efficacy of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate detrital metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. Four coral cores together cover a period of 1862-2006. Trace, major and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core spanning to characterize materials present in coral skeletons. We compare the results from XRF to elemental concentrations reported from solution-based ICP-MS. Furthermore, we also compare our XRF data to magnetic measurements we have made in these same coral cores. Overall, it appears that the non-destructive XRF technique is a viable supplement to the ICP-MS in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.

  9. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully dissolved in the typical solution-based ICP-MS methodology. We also compared our XRF results with coral biology, environmental and climate information (regional and global). Our research clearly has strong implications far beyond that of these specific corals in Belize and will help researchers all over the world understand what is happening to coral reefs.

  10. X-ray Fluorescence Core Scanning of Oman Drilling Project Holes BT1B and GT3A Cores on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Johnson, K. T. M.; Kelemen, P. B.; Michibayashi, K.; Greenberger, R. N.; Koepke, J.; Beinlich, A.; Morishita, T.; Jesus, A. P. M.; Lefay, R.

    2017-12-01

    The JEOL JSX-3600CA1 energy dispersive X-ray fluorescence core logger (XRF-CL) on the D/V Chikyu provides quantitative element concentrations of scanned cores. Scans of selected intervals are made on an x-y grid with point spacing of 5 mm. Element concentrations for Si, Al, Ti, Ca, Mg, Mn, Fe, Na, K, Cr, Ni, S and Zn are collected for each point on the grid. Accuracy of element concentrations provided by the instrument software is improved by applying empirical correction algorithms. Element concentrations were collected for 9,289 points from twenty-seven core intervals in Hole BT1B (basal thrust) and for 6,389 points from forty core intervals in Hole GT3A (sheeted dike-gabbro transition) of the Oman Drilling Project on the D/V Chikyu XRF-CL during Leg 2 of the Oman Drilling Project in August-September, 2017. The geochemical data are used for evaluating downhole compositional details associated with lithological changes, unit contacts and mineralogical variations and are particularly informative when plotted as concentration contour maps or downhole concentration diagrams. On Leg 2 additional core scans were made with X-ray Computed Tomography (X-ray CT) and infrared images from the visible-shortwave infrared imaging spectroscopy (IR) systems on board. XRF-CL, X-ray CT and IR imaging plots used together provide detailed information on rock compositions, textures and mineralogy that assist naked eye visual observations. Examples of some uses of XRF-CL geochemical maps and downhole data are shown. XRF-CL and IR scans of listvenite clearly show zones of magnesite, dolomite and the Cr-rich mica, fuchsite that are subdued in visual observation, and these scans can be used to calculate variations in proportions of these minerals in Hole BT1B cores. In Hole GT3A XRF-CL data can be used to distinguish compositional changes in different generations of sheeted dikes and gabbros and when combined with visual observations of intrusive relationships the detailed geochemical information can be used to infer temporal changes in parental magma compositions. Secondary sulfide mineralization and epidote-rich hydrothermal alteration zones in sheeted dikes and gabbros are clearly highlighted on element maps of S, Fe, Ca, Al, and Zn.

  11. Prostate-cancer diagnosis by non-invasive prostatic Zinc mapping using X-Ray Fluorescence (XRF)

    NASA Astrophysics Data System (ADS)

    Cortesi, Marco

    At present, the major screening tools (PSA, DRE, TRUS) for prostate cancer lack sensitivity and specificity, and none can distinguish between low-grade indolent cancer and high-grade lethal one. The situation calls for the promotion of alternative approaches, with better detection sensitivity and specificity, to provide more efficient selection of patients to biopsy and with possible guidance of the biopsy needles. The prime objective of the present work was the development of a novel non-invasive method and tool for promoting detection, localization, diagnosis and follow-up of PCa. The method is based on in-vivo imaging of Zn distribution in the peripheral zone of the prostate, by a trans-rectal X-ray fluorescence (XRF) probe. Local Zn levels, measured in 1--4 mm3 fresh tissue biopsy segments from an extensive clinical study involving several hundred patients, showed an unambiguous correlation with the histological classification of the tissue (Non-Cancer or PCa), and a systematic positive correlation of its depletion level with the cancer-aggressiveness grade (Gleason classification). A detailed analysis of computer-simulated Zn-concentration images (with input parameters from clinical data) disclosed the potential of the method to provide sensitive and specific detection and localization of the lesion, its grade and extension. Furthermore, it also yielded invaluable data on some requirements, such as the image resolution and counting-statistics, requested from a trans-rectal XRF probe for in-vivo recording of prostatic-Zn maps in patients. By means of systematic table-top experiments on prostate-phantoms comprising tumor-like inclusions, followed by dedicated Monte Carlo simulations, the XRF-probe and its components have been designed and optimized. Multi-parameter analysis of the experimental data confirmed the simulation estimations of the XRF detection system in terms of: delivered dose, counting statistics, scanning resolution, target-volume size and the accuracy of locating at various depths of small-volume tumor-like inclusions in tissue-phantoms. The clinical study, the Monte Carlo simulations and the analysis of Zn-map images provided essential information and promising vision on the potential performance of the Zn-based PCa detection concept. Simulations focusing on medical-probe design and its performance at permissible radiation doses yielded positive results - confirmed by a series of systematic laboratory experiments with a table-top XRF system.

  12. Assessment of chemical analyses by means of portable XRF in the Roman mortars of Complutum archaeological site (Spain)

    NASA Astrophysics Data System (ADS)

    Ergenç, Duygu; Freire, David; Fort, Rafael

    2016-04-01

    The chemical characterization of lime mortars used in Roman period has a great significance and plays a key role in the acquisition of knowledge with respect to construction technology, raw materials and, accordingly, in its conservation works. When it comes to cultural heritage studies, sampling is always complicated since the minimum damage is the primary concern. The use of non-destructive techniques and direct measurements with portable devices reduce the amount of samples and time consumed in analyses, consequently it could be stated that such techniques are extremely useful in conservation and restoration works. In this study, the portable XRF device was used to determine the composition of chemical elements which compose the Roman lime mortars in the archaeological site of Complutum, Alcalá de Henares (Madrid, Spain) which is listed as a World Heritage Site by UNESCO since 1998. Portable XRF devices have some detection limits below the ones of the laboratory equipment that are immovable and require sampling. In order to correlate the results, sampling and grinding were initially done to prepare the powders for the laboratory XRF analysis with the following elements: Si, Al, Fe, Ca, Mg, K, Ti, Nb, Zr, Sr, Rb, Pb, Zn and Cr. The analyses of the powdered samples were conducted with the laboratory equipment PHILIPS Magix Pro (PW-2440) from the Centre of Scientific Instrumentation CIC in the University of Granada, and the results were compared to the results gathered with X Ray Florescence (EDTRX) THERMO NITON model XL3T from the Petrophysics Laboratory Geosciences Institute IGEO (CSIC-UCM). Analyses were performed on the surfaces of the samples -without any previous preparation-, and on the powdered samples to compare the variations between both traditional XRF analyses and the portable XRF. A good correlation was found among the results obtained by the laboratory equipment, the portable device as well as the surface measurements. The results of this study enable to differentiate the types of lime mortars used in the site (Caementicium and Signinum) and in different buildings that form the Roman city. Acknowledgements: Thanks to the project CLIMORTEC (BIA2014-53911-R), to CEI-Moncloa of UCM-UPM-UCM and to Madrid Community for funding the Geomateriales2 (P2013/MIT2914) program

  13. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).

    PubMed

    Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H

    2017-08-01

    Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.

  14. pXRF analyses of Louise Herreshoff's paintings in relation to CdS and other pigment degradation issues

    NASA Astrophysics Data System (ADS)

    Uffelman, Erich S.; Hobbs, Patricia A.; Barisas, Derek A. G.; Mass, Jennifer L.

    2013-04-01

    Portable X-ray Fluorescence Spectrometry (pXRF) was used to survey 33 works in Washington and Lee University's collection of Louise Herreshoff's paintings. This work was done both to support a condition assessment of the paintings and their pigments and to determine which paintings might be appropriate for further study in the context of ongoing key synchrotron research into the degradation mechanisms of cadmium sulfide yellow pigment (CdS).

  15. Reasons of different colors in the ignimbrite lithology: micro-XRF and confocal Raman spectrometry method.

    PubMed

    Koralay, Tamer; Kadioglu, Yusuf Kagan

    2008-03-01

    Medium to large volume ignimbrites usually show vertical changes in terms of color, mineral components, texture and geochemistry. Determination of vertical changes in single extensive ignimbrite flow unit is difficult and requires careful studies. Color changes in ignimbrite flow units are very important for earth scientists. This may cause to identify the same ignimbrite series with different definition. Incesu ignimbrite has a wide distribution in the Central Anatolian Volcanic Province (CAVP). It is classified into three levels as lower, middle and upper according to color and welding degree. There is a sharp contact between the lower and middle level. The lower level is dark brown to black in color and the middle level has pinkish red to red color. The present paper focuses on the investigation of color changes between the ignimbrite levels by using micro-XRF and confocal Raman spectrometry. Micro-XRF and Raman spectrometry studies were performed on the polished thin sections of the lower and middle levels with different compositions. These differences were because of the compositional changes of K and slightly Fe elements distribution within the matrix. The dark brown to black color of the lower level was related to the high concentration of the K and Fe relatively to the middle level. Confocal Raman spectrometry investigations exhibited the matrix of the lower level mainly composed of anorthoclase, supporting the results of the micro-XRF.

  16. Non-matrix Matched Glass Disk Calibration Standards Improve XRF Micronutrient Analysis of Wheat Grain across Five Laboratories in India

    PubMed Central

    Guild, Georgia E.; Stangoulis, James C. R.

    2016-01-01

    Within the HarvestPlus program there are many collaborators currently using X-Ray Fluorescence (XRF) spectroscopy to measure Fe and Zn in their target crops. In India, five HarvestPlus wheat collaborators have laboratories that conduct this analysis and their throughput has increased significantly. The benefits of using XRF are its ease of use, minimal sample preparation and high throughput analysis. The lack of commercially available calibration standards has led to a need for alternative calibration arrangements for many of the instruments. Consequently, the majority of instruments have either been installed with an electronic transfer of an original grain calibration set developed by a preferred lab, or a locally supplied calibration. Unfortunately, neither of these methods has been entirely successful. The electronic transfer is unable to account for small variations between the instruments, whereas the use of a locally provided calibration set is heavily reliant on the accuracy of the reference analysis method, which is particularly difficult to achieve when analyzing low levels of micronutrient. Consequently, we have developed a calibration method that uses non-matrix matched glass disks. Here we present the validation of this method and show this calibration approach can improve the reproducibility and accuracy of whole grain wheat analysis on 5 different XRF instruments across the HarvestPlus breeding program. PMID:27375644

  17. Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)

    PubMed Central

    Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913

  18. Analysis of Historical Coins by X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khatchatur; Aprahamian, Ani; Jordan, Louis

    2016-09-01

    Using different setups of the EDAX Orbis Micro X-ray Fluorescence (XRF) Analyzer, we have learned more about the limitations and optimizations of the XRF method and collected data about early British and Spanish colonial silver coins. XRF spectrometry was used to study Mexican, Bolivian, and Massachusetts silver coins from the University of Notre Dame's Rare Books and Special Collections Department. Runs were performed in both air and vacuum conditions, and the x-ray beam diameter was compared between 1 and 0.03 mm. Using these methods we were able to contribute to the understanding of the historical coinage as well as learn about the best ways to use the method. During analysis we found significant differences in the spectra for silver L shell excitation and silver K shell excitation when switching from 0.03 to 1mm x-ray beam widths. Our data trends also fit with the historical theory that the coinage from the Massachusetts' mint were created by melting down Spanish silver coins (like the ones made from Mexico and Bolivia) and adding a small percent more of copper. We have the intent to build on what we have learned by also studying some Roman Denarii in the future, and by trying to create a custom designed version of the XRF which can be moved more easily and provide quick scans for a larger number of artifacts.

  19. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae.

  20. A novel approach to water polution monitoring by combining ion exchange resin and XRF-scanning technique

    NASA Astrophysics Data System (ADS)

    Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.

    2017-12-01

    Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of environmental monitoring and environmental forensics.

  1. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  2. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    PubMed

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length ofmore » {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.« less

  4. Simulating real-world field-based petrologic research in a field course: Incorporation of portable X-ray fluorescence spectrometry in the Iceland Volcanology Field Camp

    NASA Astrophysics Data System (ADS)

    Jordan, B.

    2016-12-01

    Field-based petrologic research projects often involve multiple field seasons, with geochemical analysis of samples collected in one season informing aspects of subsequent field seasons. To simulate this approach in the Iceland Volcanology Field Camp (South Dakota School of Mines & Technology) a portable X-ray fluorescence spectrometer (pXRF) was employed to provide "laboratory analyses" in support of a course mapping project. The project was conducted in the Árnes central volcano in the Neogene plateau lava succession in the West Fjords of northwestern Iceland. The field area has a wide compositional spectrum from basalt to rhyolite, with abundant intermediates. The pXRF is particularly helpful in the study of these kinds of rocks in Iceland because lithologies can be quite similar across a wide range of compositions (often lacking diagnostic macroscopic phenocryst assemblages, and having similar groundmass characteristics). A Bruker Tracer III-SD pXRF was utilized, operating at 40 KeV and 11.2 μA with no filter. Analyses were conducted at basecamp in the evenings on relatively flat fresh surfaces, with three 30 s analyses of different spots for each sample. A basic empirical calibration was generated with six aphyric samples previously analyzed by laboratory XRF. Light elements Na, Mg, and Al were not determined directly, but were estimated based on linear or polynomial correlations with other elements or elemental ratios (K, Ca, and Sr/Y respectively) determined from a previously obtained laboratory XRF data set for this central volcano. The resulting chemical analyses (normalized to sum to 100%) provided full major and minor element compositions to be used for classification, and several trace elements (V, Sr, Y, Zr) that could potentially distinguish different lavas of similar major element composition. The approach is coarse, and has pitfalls particularly regarding porphyritic rocks, but serves the objectives of the field camp project.

  5. Determinação de elementos próprios dos asteróides troianos: comparação entre as teorias semi-analítica e sintética

    NASA Astrophysics Data System (ADS)

    Roig, F.; Beaugé, C.

    2003-08-01

    Além do cálculo semi-analítico de elementos próprios dos asteróides Troianos (Beaugé & Roig 2001, Icarus 153, 391), recentemente foi apresentado um novo conjunto destes elementos próprios determinado através de uma teoria sintética (Knenezevic & Milani 2003, comunicação pessoal). As bases de dados contendo estas determinações estão disponiveis na pagina web do Asteroid Dynamical Site (http://hamilton.dm.unipi.it/cgi-bin/astdys/astibo). Nesta comunicação apresentamos os primeiros resultados de um estudo comparativo entre ambos conjuntos de elementos próprios, analisando suas vantagens e desvantagens, assim como os limites de precisão de cada conjunto. Mostramos que os elementos próprios sintéticos são mais precisos que os smi-analíticos para grandes amplitudes de libração do ângulo s = l-lJup, embora acontece o contrario para os corpos cuja amplitude de libração é muito pequena. Finalmente discutimos a influencia destes erros na determinação de familias de asteroides e da estrutura resonante em torno dos pontos Lagrangeanos L4 e L5.

  6. Determining the 40K radioactivity in rocks using x-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Pilakouta, M.; Kallithrakas-Kontos, N.; Nikolaou, G.

    2017-09-01

    In this paper we propose an experimental method for the determination of potassium-40 (40K) radioactivity in commercial granite samples using x-ray fluorescence (XRF). The method correlates the total potassium concentration (yield) in samples deduced by XRF analysis with the radioactivity of the sample due to the 40K radionuclide. This method can be used in an undergraduate student laboratory. A brief theoretical background and description of the method, as well as some results and their interpretation, are presented.

  7. Communicating the New Chemistry in 18th-Century Portugal: Seabra's "Elementos de Chimica"

    ERIC Educational Resources Information Center

    Carneiro, Ana; Diogo, Maria Paula; Simoes, Ana

    2006-01-01

    In this paper, we analyse the aims, contents and impact of Seabra's two-volume textbook--"Elementos de Chimica" ("Elements of Chemistry")--published in 1788 and 1790. Seabra's "Elements of Chemistry" does not conform to the characteristics usually ascribed to textbooks by traditional historiography, and in particular…

  8. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays.

    PubMed

    Bergmann, Uwe; Manning, Phillip L; Wogelius, Roy A

    2012-01-01

    The application of the recently developed synchrotron rapid scanning X-ray fluorescence (SRS-XRF) technique to the mapping of large objects is the focus of this review. We discuss the advantages of SRS-XRF over traditional systems and the use of other synchrotron radiation (SR) techniques to provide corroborating spectroscopic and diffraction analyses during the same analytical session. After reviewing routine techniques used to analyze precious specimens, we present several case studies that show how SR-based methods have been successfully applied in archeology and paleontology. For example, SRS-XRF imaging of a seventh-century Qur'ān palimpsest and an overpainted original opera score from Luigi Cherubini is described. We also review the recent discovery of soft-tissue residue in fossils of Archaeopteryx and an ancient reptile, as well as work that has successfully resolved the remnants of pigment in Confuciusornis sanctus, a 120-million-year-old fossil of the oldest documented bird with a fully derived avian beak.

  9. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  10. Characterization of Archaeological Sediments Using Fourier Transform Infrared (FT-IR) and Portable X-ray Fluorescence (pXRF): An Application to Formative Period Pyro-Industrial Sites in Pacific Coastal Southern Chiapas, Mexico.

    PubMed

    Neff, Hector; Bigney, Scott J; Sakai, Sachiko; Burger, Paul R; Garfin, Timothy; George, Richard G; Culleton, Brendan J; Kennett, Douglas J

    2016-01-01

    Archaeological sediments from mounds within the mangrove zone of far-southern Pacific coastal Chiapas, Mexico, are characterized in order to test the hypothesis that specialized pyro-technological activities of the region's prehistoric inhabitants (salt and ceramic production) created the accumulations visible today. Fourier transform infrared spectroscopy (FT-IR) is used to characterize sediment mineralogy, while portable X-ray fluorescence (pXRF) is used to determine elemental concentrations. Elemental characterization of natural sediments by both instrumental neutron activation analysis (INAA) and pXRF also contribute to understanding of processes that created the archaeological deposits. Radiocarbon dates combined with typological analysis of ceramics indicate that pyro-industrial activity in the mangrove zone peaked during the Late Formative and Terminal Formative periods, when population and monumental activity on the coastal plain and piedmont were also at their peaks. © The Author(s) 2015.

  11. Structural analysis of bioceramic materials for denture application

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  12. Prediction of Ba, Co and Ni for tropical soils using diffuse reflectance spectroscopy and X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Arantes Camargo, Livia; Marques Júnior, José; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angélica

    2017-04-01

    Environmental impact assessments may be assisted by spatial characterization of potentially toxic elements (PTEs). Diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF) are rapid, non-destructive, low-cost, prediction tools for a simultaneous characterization of different soil attributes. Although low concentrations of PTEs might preclude the observation of spectral features, their contents can be predicted using spectroscopy by exploring the existing relationship between the PTEs and soil attributes with spectral features. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Co, and Ni) and their spatial variability by means of diffuse reflectance spectroscopy (DRS) and X-ray fluorescence spectroscopy (XRF). For that, soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, and mineralogical properties, and then analyzed in DRS (visible + near infrared - VIS+NIR and medium infrared - MIR) and XRF equipment. PTE prediction models were calibrated using partial least squares regression (PLSR). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy using geostatistics. PTE prediction models were satisfactorily calibrated using MIR DRS for Ba, and Co (residual prediction deviation - RPD > 3.0), Vis DRS for Ni (RPD > 2.0) and FRX for all the studied PTEs (RPD > 1.8). DRS- and XRF-predicted values allowed the characterization and the understanding of spatial variability of the studied PTEs.

  13. PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.

    PubMed

    Van der Linden, Veerle; Meesdom, Eva; Devos, Annemie; Van Dooren, Rita; Nieuwdorp, Hans; Janssen, Elsje; Balace, Sophie; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen

    2011-10-01

    The enamel of 20 Email Champlevé objects dating between the 12th and 19th centuries was investigated by means of microscopic and portable X-ray fluorescence analysis (μ-XRF and PXRF). Seven of these objects were microsampled and the fragments were analyzed with electron probe microanalysis (EPMA) and vacuum μ-XRF to obtain quantitative data about the composition of the glass used to produce these enameled objects. As a result of the evolution of the raw materials employed to produce the base glass, three different compositional groups could be discriminated. The first group consisted of soda-lime-silica glass with a sodium source of mineral origin (with low K content) that was opacified by addition of calcium antimonate crystals. This type of glass was only used in objects made in the 12th century. Email Champlevé objects from the beginning of the 13th century onward were enameled with soda-lime-silica glass with a sodium source of vegetal origin. This type of glass, which has a higher potassium content, was opacified with SnO2 crystals. The glass used for 19th century Email Champlevé artifacts was produced with synthetic and purified components resulting in a different chemical composition compared to the other groups. Although the four analytical techniques employed in this study have their own specific characteristics, they were all found to be suitable for classifying the objects into the different chronological categories.

  14. Tandem transmission/reflection mode XRD instrument including XRF for in situ measurement of Martian rocks and soils

    NASA Astrophysics Data System (ADS)

    Delhez, Robert; Van der Gaast, S. J.; Wielders, Arno; de Boer, J. L.; Helmholdt, R. B.; van Mechelen, J.; Reiss, C.; Woning, L.; Schenk, H.

    2003-02-01

    The mineralogy of the surface material of Mars is the key to disclose its present and past life and climates. Clay mineral species, carbonates, and ice (water and CO2) are and/or contain their witnesses. X-ray powder diffraction (XRPD) is the most powerful analytical method to identify and quantitatively characterize minerals in complex mixtures. This paper discusses the development of a working model of an instrument consisting of a reflection mode diffractometer and a transmission mode CCD-XRPD instrument, combined with an XRF module. The CCD-XRD/XRF instrument is analogous to the instrument for Mars missions developed by Sarrazin et al. (1998). This part of the tandem instrument enables "quick and dirty" analysis of powdered (!) matter to monitor semi-quantitatively the presence of clay minerals as a group, carbonates, and ices and yields semi-quantitative chemical information from X-ray fluorescence (XRF). The reflection mode instrument (i) enables in-situ measurements of rocks and soils and quantitative information on the compounds identified, (ii) has a high resolution and reveals large spacings for accurate identification, in particular of clay mineral species, and (iii) the shape of the line profiles observed reveals the kind and approximate amounts of lattice imperfections present. It will be shown that the information obtained with the reflection mode diffractometer is crucial for finding signs of life and changes in the climate on Mars. Obviously this instrument can also be used for other extra-terrestrial research.

  15. Preliminary Study to Test the Feasibility of Sex Identification of Human (Homo sapiens) Bones Based on Differences in Elemental Profiles Determined by Handheld X-ray Fluorescence.

    PubMed

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Brown, Janine L; Klinhom, Sarisa; Pitakarnnop, Tanita; Mahakkanukrauh, Pasuk

    2016-09-01

    Sex assignment of human remains is a crucial step in forensic anthropological studies. The aim of this study was to examine elemental differences between male and female bones using X-ray fluorescence (XRF) and determine if elemental profiling could be used for sex discrimination. Cranium, humerus, and os coxae of 60 skeletons (30 male, 30 female) from the Chiang Mai University Skeletal Collection were scanned by XRF and differences in elemental profiles between male and female bones determined using discriminant analysis. In the cranium, three elements (S, Ca, Pb) were significantly higher in males and five elements (Si, Mn, Fe, Zn, Ag) plus light elements (atomic number lower than 12) were higher in females. In humerus and os coxae, nine elements were significantly higher in male and one element was higher in female samples. The accuracy rate for sex estimation was 60, 63, and 61 % for cranium, humerus, and os coxae, respectively, and 67 % when data for all three bones were combined. We conclude that there are sex differences in bone elemental profiles; however, the accuracy of XRF analyses for discriminating between male and female samples was low compared to standard morphometric and molecular methods. XRF could be used on small samples that cannot be sexed by traditional morphological methods, but more work is needed to increase the power of this technique for gender assignment.

  16. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  17. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  18. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  19. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens.

    PubMed

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R; Mudalige, Thilak K; Linder, Sean W

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r 2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r 2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  20. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    NASA Astrophysics Data System (ADS)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  1. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  2. Laboratory evaluation of a field-portable sealed source X-ray fluorescence spectrometer for determination of metals in air filter samples.

    PubMed

    Lawryk, Nicholas J; Feng, H Amy; Chen, Bean T

    2009-07-01

    Recent advances in field-portable X-ray fluorescence (FP XRF) spectrometer technology have made it a potentially valuable screening tool for the industrial hygienist to estimate worker exposures to airborne metals. Although recent studies have shown that FP XRF technology may be better suited for qualitative or semiquantitative analysis of airborne lead in the workplace, these studies have not extensively addressed its ability to measure other elements. This study involved a laboratory-based evaluation of a representative model FP XRF spectrometer to measure elements commonly encountered in workplace settings that may be collected on air sample filter media, including chromium, copper, iron, manganese, nickel, lead, and zinc. The evaluation included assessments of (1) response intensity with respect to location on the probe window, (2) limits of detection for five different filter media, (3) limits of detection as a function of analysis time, and (4) bias, precision, and accuracy estimates. Teflon, polyvinyl chloride, polypropylene, and mixed cellulose ester filter media all had similarly low limits of detection for the set of elements examined. Limits of detection, bias, and precision generally improved with increasing analysis time. Bias, precision, and accuracy estimates generally improved with increasing element concentration. Accuracy estimates met the National Institute for Occupational Safety and Health criterion for nearly all the element and concentration combinations. Based on these results, FP XRF spectrometry shows potential to be useful in the assessment of worker inhalation exposures to other metals in addition to lead.

  3. Analisis espacial de las areas protegidas terrestres de Puerto Rico

    Treesearch

    M. Quinones; W.A. Gould; J. Castro-Prieto; S. Martinuzzi

    2013-01-01

    En este mapa de investigacion describimos las areas protegidas terrestres de Puerto Rico basado en elementos naturales y antropogenicos del paisaje. Utilizamos datos geoespaciales para calcular la extension y representatividad de elementos del paisaje dentro de las areas protegidas de Puerto Rico, i.e., cobertura del terreno (Gould et al. 2007), asentamientos urbanos...

  4. Comportamiento del Helio en estrellas químicamente peculiares

    NASA Astrophysics Data System (ADS)

    Malaroda, S. M.; López García, Z.; Leone, F.; Catalano, F.

    Las estrellas químicamente peculiares (CP) se caracterizan por tener deficiencias y sobreabundancias de algunos elementos químicos de hasta 106 veces la abundancia solar. Además presentan variaciones en las líneas espectrales. Se piensa que ello se debe a que los campos magnéticos presentes en este tipo de estrellas son principalmente dipolares, con un eje de simetría diferente del eje de rotación. La distribución de los elementos sobreabundantes y deficientes no es homogénea sobre la superficie estelar y las variaciones observadas serían una consecuencia directa de la rotación estelar. Entre los elementos con abundancia anómala se encuentra el Helio, cuyas líneas tienen intensidades que no son consistentes con una abundancia normal, que no puede ser determinada del modo usual, o sea, considerando una atmósfera con composición solar. Con el fin de determinar la abundancia de este elemento, se inició un estudio de estrellas anómalas de Helio, Hew y He strong. Además se determinarán las abundancias de otros elementos anómalos como ser el Si, Cr, Mg, Mn y Fe. Las mismas se determinan del modo tradicional, o sea: a) medida de los anchos equivalentes de las líneas de los distintos elementos analizados; b) adopción de la temperatura efectiva, gravedad y abundancia del Helio; c) cálculo del modelo de atmósfera d) comparación con las observaciones y reinicio de un proceso iterativo hasta lograr un acuerdo entre todos los parámetros analizados. Las observaciones se llevaron a cabo en el Complejo Astronómico El Leoncito. Se observaron setenta y ocho estrellas anómalas de Helio. En este momento se está procediendo a calcular las abundancias correspondientes a los distintos elementos químicos. Para ello se hace uso de los modelos de Kurucz, ATLAS9. Los cálculos NLTE de las líneas de Helio se llevan a cabo con el programa MULTI y se compararán con los realizados con el programa WIDTH9 de Kurucz (LTE), con el objeto de resaltar la importancia de los efectos NLTE.

  5. Naturally occurring levels of elements in fishes as determined by PIXE and XRF methods

    NASA Astrophysics Data System (ADS)

    Tallandini, L.; Giacobini, F.; Turchetto, M.; Galassini, S.; Liu, Q. X.; Shao, H. R.; Moschini, G.; Moro, R.; Gialanella, G.; Ghermandi, G.; Cecchi, R.; Injuk, J.; Valković, V.

    1989-04-01

    Naturally occurring levels of S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Sb, Sr and Pb were measured in the gills, liver and muscles of fishes ( Zosterisessor ophiocephalus Pall) in the northwestern region of the Adriatic Sea. The overall performance of PIXE and XRF methods was tested by the analysis of standard reference materials. The mean concentration values for elements were calculated from the distribution of experimentally determined concentration values. The obtained data are discussed in the framework of metal metabolism and toxicology.

  6. Construction and Commissioning of BL37XU at SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Yasuko; Goto, Shunji; Takimoto, Naoki

    2004-05-12

    Trace element analysis beamline (BL37XU) at SPring-8 was designed for application to various X-ray fluorescence analyses such as XRF imaging, XAFS, TXRF and XRF holography. The beamline has of two branches, one being a SPring-8 standard undulator-beamline optics branch (Branch A) and the other a high-energy branch (Branch B). In the experimental hutches, several kinds of experimental device are equipped. The end-stations have been opened to public use since November 2002, and various experiments have been carried out.

  7. X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Maddox, W. Gene

    1988-01-01

    A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.

  8. Bibliography of NRL Works on X-Ray Fluorescence Authored by L. S. Birks, D. B. Brown, J. W. Criss, H. Friedman, and J. V. Gilfrich

    DTIC Science & Technology

    2001-10-15

    by Friedman outside the field of XRF is available within the holdings of the NRL Ruth H. Hooker Research Library and Technical Information Center...Herbert Friedman. The extensive collection of publications by Friedman outside the field of XRF is available within the holdings of the NRL Ruth H. Hooker...and which includes other information and filenames of electronic scans of many of the entries) has been supplied to the NRL Ruth H. Hooker Research

  9. XRF inductive bead fusion and PLC based control system

    NASA Astrophysics Data System (ADS)

    Zhu, Jin-hong; Wang, Ying-jie; Shi, Hong-xin; Chen, Qing-ling; Chen, Yu-xi

    2009-03-01

    In order to ensure high-quality X-ray fluorescence spectrometry (XRF) analysis, an inductive bead fusion machine was developed. The prototype consists of super-audio IGBT induction heating power supply, rotation and swing mechanisms, and programmable logic controller (PLC). The system can realize sequence control, mechanical movement control, output current and temperature control. Experimental results show that the power supply can operate at an ideal quasi-resonant state, in which the expected power output and the required temperature can be achieved for rapid heating and the uniform formation of glass beads respectively.

  10. Electron density of Rhizophora spp. wood using Compton scattering technique at 15.77, 17.48 and 22.16 keV XRF energies

    NASA Astrophysics Data System (ADS)

    Shakhreet, B. Z.; Bauk, S.; Shukri, A.

    2015-02-01

    Compton (incoherently) scattered photons which are directly proportional to the electron density of the scatterer, have been employed in characterizing Rhizophora spp. as breast tissue equivalent. X-ray fluorescent scattered incoherently from Rhizophora spp. sample was measured using Si-PIN detector and three XRF energy values 15.77, 17.48 and 22.16 keV. This study is aimed at providing electron density information in support of the introduction of new tissue substitute materials for mammography phantoms.

  11. XRF and XANES Data for Kaplan U Paper

    EPA Pesticide Factsheets

    The dataset contains two XRF images of iron and uranium distribution on plant roots and a database of XANES data used to produce XANES spectra figure for Figure 7 in the published paper.This dataset is associated with the following publication:Kaplan, D., R. Kukkadapu, J. Seaman, B. Arey, A. Dohnalkova, S. Buettner, D. Li, T. Varga, K. Scheckel, and P. Jaffe. Iron Mineralogy and Uranium-Binding Environment in the Rhizosphere of a Wetland Soil. D. Barcelo SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 569: 53-64, (2016).

  12. Fine-resolved XRF geochemistry of bottom fills from Asian lakes

    NASA Astrophysics Data System (ADS)

    Phedorin (Fedorin), Mikhail

    2010-05-01

    Over the last fifteen years (1994-2009) several teams from Siberian Branch of Russian Academy of Science have carried out numerous studies of cores of bottom sediments from Asian lakes, to perform regional reconstructions of past climate changes. Within these researches, the method of x-ray fluorescence (XRF) has widely been used to predict downcore distributions of elements; high-resolution XRF scanning of cores has been employed since 1999. Experiments have been performed at XRF facilities of Siberian Synchrotron Center. In this presentation I report (1) ‘know-how's of quantitative processing of experimental fine-scanning XRF data for lacustrine cores, and (2) geochemical signatures of sediments from Asian lakes obtained after XRF fine-scanning of cores. (1) Quantitative prediction of concentrations of elements from fine-scanning XRF data is problematic because of varying water content along scanning profile, as well as due to varying matrix chemistry and sample optical thickness. All these cause varying inter-element influence that changes fluorescence flux through its absorption and/or secondary excitation. To overcome these difficulties we have used an adapted algorithm of fundamental parameters. The mathematical model based on this algorithm accounts for two events of photon/matter interaction. Element concentrations are estimated using reference samples and the internal standard procedure, both with correction of interference effects. The pore water content is inferred from its correlation with the coherent/incoherent scatter intensity ratio. Sediment density is found from water content by a reliable sedimentological law. Normalization to Compton scattering accounts for the irradiated mass of wet sediment controlled by porosity and sampling-related core disturbance. The mathematical model also includes these scattering variations related to lithology, water content, and density of samples. The new method was applied to XRF scans of cores to predict concentrations of ca. 20 elements. Tests against ICP-MS, neutron activation spectrometry and conventional XRF (with traditional pretreatment of samples) show good agreement. Neglect of the disturbing effects may cause errors up to 30-200% for different elements. (2) Cores studied represent three types of fills: terrigenous silicate sediments, sapropel muds and carbonate-reach deposits. The sediments were collected by bottom drilling from the following Asian lakes: Baikal (53°42'N, 108°21'E), Khubsugul (51°28'N, 100°25'E), Khakas Lakes (Shira: 54°30'N, 90°12'E and Bele: 54°41'N, 90°15'E), East Siberian lakes (Ochki: 51°30'N, 104°53'E; Kotokel: 52°49'N, 108°09'E; Tolondo: 58°18'N, 119°47'E; Kiran: 50°22'N, 106°27'E), West Siberian lakes (Beloye: 55°23'N, 82°41'E; Kirek: 56°12'N, 84°23'E; Teletskoye: 51°39'N, 87°40'E). In current report I also provide data obtained after studying stratified peat archives from East and West Siberia. The following elements have been determined for most of the cores: K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Y, Zr, Nb, Mo, I, Ba, La, Ce, Pb, Th, U; in some experiments Cr, Ga, Ge, As, Se, Cd, Te, Sn, Pr, Nd were also determined. The vertical resolution of measurements was 0.1 to 1.0 mm. In this presentation I give examples of bigenic traces (Br, I and some other); of downcore variations of terrigenous clastic supply (marked by Ti, Zr, Th, as well K, Rb, Nb, La, Ce, etc.); of authigenic enrichment of layers with Fe, Mn; with Cu, Zn; of carbonate and sulphate layers (marked by Ca, Sr and some other); of sulphate/sulphide reducing (marked by Mo); of mobile elements enrichment (Sr, U, etc.); of using ratios of elements as very sensitive markers of changing sources of material supplied into deposits (Ti/Ca, Sr/Rb, Fe/Ti and other). The author is grateful to his colleagues from institutes of Siberian Branch of Russian Academy of Science (Institute of Nuclear Physics, Limnological Institute, Institute of Earths Crust, Institute of Geochemistry, Institute of Geology and Mineralogy, Institute of Biophysics) and from Novosibirsk State University and Irkutsk Polytechnic University for extensive collaboration.

  13. Quantitative assessment of historical coastal landfill contamination using in-situ field portable XRF (FPXRF)

    NASA Astrophysics Data System (ADS)

    O'Shea, Francis; Spencer, Kate; Brasington, James

    2014-05-01

    Historically, waste was deposited on low value, easily accessible coastal land (e.g. marsh land). Within England and Wales alone, there are over 5000 historical landfills situated within coastal areas at risk of flooding at a 1 in 100 year return period (Environment Agency, 2012). Historical sites were constructed prior to relevant legislation, and have no basal or side wall engineering, and the waste constituents are mostly unknown. In theory, contaminant concentrations should be reduced through natural attenuation as the leachate plume migrates through surrounding fine-grained inter-tidal sediments before reaching receptor waters. However, erosion resulting from rising sea level and increased storm intensity may re-distribute these sediments and release associated contaminants into the estuarine and coastal environment. The diffuse discharge from these sites has not been quantified and this presents a problem for those landfill managers who are required to complete EIAs. An earlier detailed field campaign at Newlands landfill site, on the Thames Estuary, UK identified a sub-surface (~2m depth) contaminant plume extending c. 20 m from the landfill boundary into surrounding fine-grained saltmarsh sediments. These saltmarsh sediments are risk of being eroded releasing their contaminant load to the Thames Estuary. The aims of this work were to; 1) assess whether this plume is representative of other historical landfills with similar characteristics and 2) to develop a rapid screening methodology using field portable XRF that could be used to identify potential risk of other coastal landfill sites. GIS was used to select landfill sites of similar age, hydrological regime and sedimentary setting in the UK, for comparison. Collection of sediment samples and analysis by ICP OES is expensive and time-consuming, therefore cores were extracted and analysed with a Niton Goldd XRF in-situ. Contaminant data were available immediately and the sampling strategy could be adapted in the field to determine the presence, location and extent of the sub-surface contaminant plume. Although XRF analysis has gained acceptance in the study of in-situ metal contamination (Kalnicky and Singhvi 2001; Martin Peinado et al. 2010) field moisture content and sample heterogeneity can suppress X-ray signals. Therefore, sediment samples were also collected and returned to the laboratory and analysed by ICP OES for comparison. Both wet and dry certified reference materials were also analysed in the laboratory using XRF and ICP OES to observe the impact of moisture content and to produce a correction factor allowing quantitative data to be collected in the field. In-situ raw XRF data identified the location of contamination plumes in the field in agreement with ICP data, although the data were systematically suppressed compared to ICP data, under-estimating the levels of contamination. Applying a correction factor for moisture content provided accurate measurements of concentration. The use of field portable XRF with the application of a moisture content correction factor enables the rapid screening of sediment fronting coastal landfill sites, goes some way towards providing a national baseline dataset and can contribute to the development of risk assessments.

  14. Development of Standard Samples for on-board Calibration of a New Planetary X-Ray Fluorescence Spectrometer

    NASA Astrophysics Data System (ADS)

    Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan

    2014-05-01

    At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision measurements of the chemical composition of the final samples (EPMA, various energy-dispersive XRF) will serve as calibration standard for XRF-S. Development is funded by the German Aerospace Agency under grant 50 JR 1303.

  15. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid periods

    NASA Astrophysics Data System (ADS)

    Grant, Katharine M.; Rohling, Eelco J.; Westerhold, Thomas; Zabel, Matthias; Heslop, David; Konijnendijk, Tiuri; Lourens, Lucas

    2017-09-01

    Mediterranean sediments are valuable archives of both African monsoon variability and higher-latitude climate processes, and can also be used to provide an environmental context for early human migrations and settlements. However, the long history of Mediterranean palaeoclimate studies largely pre-dates the advent of widespread x-ray fluorescence (XRF) core-scanning, so there are few continuous and high-resolution geochemical records from this key region that extend beyond the last glacial cycle. Here we present XRF core-scanning results for ODP Site 967 (Eastern Mediterranean) that have been fully-calibrated into element concentrations spanning the last 3 million years (My). Comparison with independent geochemical data from conventional XRF highlights disparities for certain element/element ratios, thus suggesting the need for caution when taking ratios of scanning XRF data. Principal component analysis of the calibrated XRF dataset reveals two dominant components: detrital inputs (PC1) and a 'sapropel' (≈monsoon run-off) signal (PC2), which we use to establish a new orbitally-tuned chronology. We observe inverse covariation between PC2 and a previously published aeolian dust record from ODP Site 967 (Larrasoaña et al., 2003), and combine these records to produce a composite index of humidity and aridity for the wider North African region over the past 3 My. We propose that by combining run-off and dust signals in a single metric, our index captures the effects of both strengthening/northward migration (increased run-off) and weakening/southward retreat (increased dust) of the North African monsoon. Comparison of the index with published records of Northwest and East African palaeohumidity suggests that it tracks the timing of ;Green Sahara Periods; throughout the Plio-Pleistocene, and that at least 30 of these intervals coincided with increased humidity across East Africa. We tentatively suggest that these specific episodes may be termed ;pan-African Humid Periods;, as a means to highlight large-scale climate trends and to provide an environmental framework for palaeo-anthropological research.

  16. Portable, real-time alloy identification of metallic wear debris from machinery lubrication systems: laser-induced breakdown spectroscopy versus x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Suresh, Pooja

    2014-05-01

    Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.

  17. Online sorting of recovered wood waste by automated XRF-technology: part II. Sorting efficiencies.

    PubMed

    Hasan, A Rasem; Solo-Gabriele, Helena; Townsend, Timothy

    2011-04-01

    Sorting of waste wood is an important process practiced at recycling facilities in order to detect and divert contaminants from recycled wood products. Contaminants of concern include arsenic, chromium and copper found in chemically preserved wood. The objective of this research was to evaluate the sorting efficiencies of both treated and untreated parts of the wood waste stream, and metal (As, Cr and Cu) mass recoveries by the use of automated X-ray fluorescence (XRF) systems. A full-scale system was used for experimentation. This unit consisted of an XRF-detection chamber mounted on the top of a conveyor and a pneumatic slide-way diverter which sorted wood into presumed treated and presumed untreated piles. A randomized block design was used to evaluate the operational conveyance parameters of the system, including wood feed rate and conveyor belt speed. Results indicated that online sorting efficiencies of waste wood by XRF technology were high based on number and weight of pieces (70-87% and 75-92% for treated wood and 66-97% and 68-96% for untreated wood, respectively). These sorting efficiencies achieved mass recovery for metals of 81-99% for As, 75-95% for Cu and 82-99% of Cr. The incorrect sorting of wood was attributed almost equally to deficiencies in the detection and conveyance/diversion systems. Even with its deficiencies, the system was capable of producing a recyclable portion that met residential soil quality levels established for Florida, for an infeed that contained 5% of treated wood. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Rapid limit tests for metal impurities in pharmaceutical materials by X-ray fluorescence spectroscopy using wavelet transform filtering.

    PubMed

    Arzhantsev, Sergey; Li, Xiang; Kauffman, John F

    2011-02-01

    We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.

  19. X-ray fluorescence determination of Sn, Sb, Pb in lead-based bearing alloys using a solution technique

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Wang, Lili; Gao, Wei; Weng, Xiaodong; Liu, Jianhui; Zou, Deshuang; Dai, Yichun; Huang, Shuke

    2018-03-01

    For the quantitative analysis of the principal elements in lead-antimony-tin alloys, directly X-ray fluorescence (XRF) method using solid metal disks introduces considerable errors due to the microstructure inhomogeneity. To solve this problem, an aqueous solution XRF method is proposed for determining major amounts of Sb, Sn, Pb in lead-based bearing alloys. The alloy samples were dissolved by a mixture of nitric acid and tartaric acid to eliminated the effects of microstructure of these alloys on the XRF analysis. Rh Compton scattering was used as internal standard for Sb and Sn, and Bi was added as internal standard for Pb, to correct for matrix effects, instrumental and operational variations. High-purity lead, antimony and tin were used to prepare synthetic standards. Using these standards, calibration curves were constructed for the three elements after optimizing the spectrometer parameters. The method has been successfully applied to the analysis of lead-based bearing alloys and is more rapid than classical titration methods normally used. The determination results are consistent with certified values or those obtained by titrations.

  20. In situ observation of dynamic electrodeposition processes by soft x-ray fluorescence microspectroscopy and keyhole coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Bozzini, Benedetto; Kourousias, George; Gianoncelli, Alessandra

    2017-03-01

    This paper describes two novel in situ microspectroscopic approaches to the dynamic study of electrodeposition processes: x-ray fluorescence (XRF) mapping with submicrometric space resolution and keyhole coherent diffractive imaging (kCDI) with nanometric lateral resolution. As a case study, we consider the pulse-plating of nanocomposites with polypyrrole matrix and Mn x Co y O z dispersoids, a prospective cathode material for zinc-air batteries. This study is centred on the detailed measurement of the elemental distributions developing in two representative subsequent growth steps, based on the combination of in situ identical-location XRF microspectroscopy—accompanied by soft-x ray absorption microscopy—and kCDI. XRF discloses space and time distributions of the two electrodeposited metals and kCDI on the one hand allows nanometric resolution and on the other hand provides complementary absorption as well as phase contrast modes. The joint information derived from these two microspectroscopies allows measurement of otherwise inaccessible observables that are a prerequisite for electrodeposition modelling and control accounting for dynamic localization processes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051more » Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.« less

  2. The metamorphosis of supernova SN 2008D/XRF 080109: a link between supernovae and GRBs/hypernovae.

    PubMed

    Mazzali, Paolo A; Valenti, Stefano; Della Valle, Massimo; Chincarini, Guido; Sauer, Daniel N; Benetti, Stefano; Pian, Elena; Piran, Tsvi; D'Elia, Valerio; Elias-Rosa, Nancy; Margutti, Raffaella; Pasotti, Francesco; Antonelli, L Angelo; Bufano, Filomena; Campana, Sergio; Cappellaro, Enrico; Covino, Stefano; D'Avanzo, Paolo; Fiore, Fabrizio; Fugazza, Dino; Gilmozzi, Roberto; Hunter, Deborah; Maguire, Kate; Maiorano, Elisabetta; Marziani, Paola; Masetti, Nicola; Mirabel, Felix; Navasardyan, Hripsime; Nomoto, Ken'ichi; Palazzi, Eliana; Pastorello, Andrea; Panagia, Nino; Pellizza, L J; Sari, Re'em; Smartt, Stephen; Tagliaferri, Gianpiero; Tanaka, Masaomi; Taubenberger, Stefan; Tominaga, Nozomu; Trundle, Carrie; Turatto, Massimo

    2008-08-29

    The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

  3. An experimental study of the distribution of retained xenon in transient-tested UO 2 fuel

    NASA Astrophysics Data System (ADS)

    Mogensen, M.; Bagger, C.; Walker, C. T.

    1993-01-01

    XRF and EPMA results for the distribution of retained xenon in twenty fuel pins are surveyed. The aim is to show the progress that has been achieved by combining these methods. One of the main concerns of the paper is the reliability of the XRF and EPMA measurements and the identification, of the principal sources of uncertainty. Another, is the wealth of new mechanistic information that has been acquired by systematically combining XRF and EPMA with quantitative image analysis (QIA) of the local size distribution of the gas bubbles in the fuel. It is shown that by correlating the three data sets it is possible to establish the distribution of retained gas on the grain boundaries and to estimate the pressure of the gas contained in grain boundary bubbles. It is concluded that often gas release during a reactor power transient cannot be predicted on the basis of simple gas diffusion considerations and that it is not possible to derive a gas diffusion coefficent of general relevance from puncturing data.

  4. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  5. Destructive versus non-destructive methods for geochemical analyses of ceramic artifacts: comparison of portable XRF and ICP-MS data on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain

    NASA Astrophysics Data System (ADS)

    Stremtan, Ciprian; Ashkanani, Hasan; Tykot, Robert H.

    2013-04-01

    The study of bi-phase (i.e. matrix and clasts) geochemical composition of ceramic artifacts is a very powerful tool in fingerprinting the raw materials used by ancient manufacturers (clay sources, tempering materials, coloring agents, etc.), as well as in understanding the physical parameters of the manufacturing techniques. Reliable datasets often require the deployment of destructive techniques that will irremediably damage the artifact. Recent advances in portable X-ray fluorescence instrumentation (pXRF) allow for quick measurements of a range of chemical elements that not too long ago were available only through complicated and often destructive means of analytical chemistry (instrumental neutron activation analysis - INAA, inductively coupled plasma mass spectrometry - ICP-MS, direct coupled plasma-optical emission spectroscopy - DCP-OES etc.). In this contribution we present a comparison of datasets acquired by means of pXRF, DCP-OES, and ICP-MS on Bronze Age ceramics from Failaka Island (Kuwait) and Bahrain. The samples chosen for this study are fine grained, with very well sorted mineral components, and lack any visible organic material fragments. The sample preparation for ICP-MS and DCP-OES analyses was carried out on powdered samples, by using LiBO2 flux fusion and Ge (for the DCP-OES) and In (for ICP-MS) were used as internal standards. The measurements were calibrated against certified reference materials ranging from shales to rhyolites (SGR-1, SDo-1, JA-2, and JR-1) and performed at Univerity of South Florida's Center for Geochemical Analyses. The analytical errors for major elements was smaller than 5 %, while for selected trace elements the error was usually smaller than 3 %. The same set of elements was measured on the same samples at University of South Florida's Anthropology Department using a pXRF device equipped with obsidian filter. Each sample was measured three times and the values were averaged. Two certified reference materials (NIST-612 glass and MACS-3 pressed powder) were also measured to check for accuracy and precision. Our preliminary data shows that most of the major and trace elemental data acquired by both methods are consistent. Some transition metals (e.g. Y, Fe, and Mn) yielded overall lower values when measured with pXRF device (ranging from 27 to 60 % difference), while Ni and Ba showed systematically higher values (20 to 53 %). If samples are chosen properly for pXRF measurements (i.e. thoroughly cleaned, fine grained, well sorted) and the device is properly calibrated, the results are comparable with DCP-OES and ICP-MS data, thus being suitable to use for geochemical fingerprinting

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun, E-mail: scho@mdanderson.org

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of leadmore » (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.« less

  7. X-ray fluorescence for quantification of lead and strontium in vivo

    NASA Astrophysics Data System (ADS)

    Specht, Aaron James

    Lead (Pb) is a toxicant well known for its effects on almost every organ system in the body. Pb use in industry has declined since removal of Pb from gasoline, but many developing countries still have significant use of Pb. Exposure to Pb has been linked with diseases causing neurodegeneration and thus have lasting effects long after the initial exposure. Another metal, strontium (Sr), has been linked with bone disease in particular situations and shown to have uses in treating osteoporosis as a supplement. However, there are no studies of the effects of Sr using a meaningful biomarker. The most commonly used biomarkers for Pb and Sr exposures are blood Pb and Sr; however, blood tests are unable to identify long-term exposure levels due to the short half-life of these metals in blood. Bone stores of Pb and Sr have a half-life of years to decades and serve as a biomarker of long-term exposure. X-ray fluorescence has been used to measure bone Pb and Sr. However, current systems have limitations with radioisotope sources, bulky equipment, and long measurement times. A portable XRF device capable of measurement of bone Pb and Sr, overcomes the limitation of the current systems and has been developed in this work. The detection limit of the portable XRF for bone Pb and Sr was found to be 11 ppm and 5 ppm respectively at 5 mm of skin thickness. The portable XRF will have limitations of measurement based on an individual's skin thickness. The device was calibrated using standard phantoms and validated with in-lab samples, which demonstrated good agreement between KXRF and portable XRF measurements with strong correlations between goat bone, cadaver bone, and phantom measurements. In a population study of Pb poisoned children the portable XRF was further validated and a significant correlation between KXRF measured bone Pb and portable XRF measured bone Pb was identified; however, the device had limitations based on anatomical differences unaccounted for in children from our calibration. Adaptations of our calibration to account for the differences in children's bone can be used to further improve on the results we obtained. Pb biokinetics was studied in these children, and the blood Pb half-life in the children was calculated to be about 10 days, which is much short than the 30 day half-life identified for adults. Bone Sr was measured in these children and a significant correlation with age was identified, indicating the Sr accumulates in bone. A novel high-energy x-ray tube based KXRF measurement system was tested for its feasibility of in vivo measurement of metals in bone using Monte Carlo (MC) simulation. The novel system shows a combination of the advantages of the portable XRF with a smaller scale device, x-ray tube source, and room temperature detector, as well as the advantages of the KXRF of minimal soft tissue signal degradation with more applicability to a wider range of populations. This device, with an optimized x-ray tube and uranium target of 0.056 mm, was found to have a detection limit for bone Pb measurement of about 3.6 ppm and could be adapted for measurements of multiple metals.

  8. High resolution HH-XRF scanning and XRD modelling as a tool in sedimentological analysis - A case study from the Enreca-3 core, Bach Long Vi Island, Vietnam

    NASA Astrophysics Data System (ADS)

    Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael

    2017-04-01

    To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.

  9. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  10. Analysis of Cultural Heritage by Accelerator Techniques and Analytical Imaging

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Toque, Jay Arre; Murayama, Yusuke

    2011-12-01

    In this paper we present the result of experimental investigation using two very important accelerator techniques: (1) synchrotron radiation XRF and XAFS; and (2) accelerator mass spectrometry and multispectral analytical imaging for the investigation of cultural heritage. We also want to introduce a complementary approach to the investigation of artworks which is noninvasive and nondestructive that can be applied in situ. Four major projects will be discussed to illustrate the potential applications of these accelerator and analytical imaging techniques: (1) investigation of Mongolian Textile (Genghis Khan and Kublai Khan Period) using XRF, AMS and electron microscopy; (2) XRF studies of pigments collected from Korean Buddhist paintings; (3) creating a database of elemental composition and spectral reflectance of more than 1000 Japanese pigments which have been used for traditional Japanese paintings; and (4) visible light-near infrared spectroscopy and multispectral imaging of degraded malachite and azurite. The XRF measurements of the Japanese and Korean pigments could be used to complement the results of pigment identification by analytical imaging through spectral reflectance reconstruction. On the other hand, analysis of the Mongolian textiles revealed that they were produced between 12th and 13th century. Elemental analysis of the samples showed that they contained traces of gold, copper, iron and titanium. Based on the age and trace elements in the samples, it was concluded that the textiles were produced during the height of power of the Mongol empire, which makes them a valuable cultural heritage. Finally, the analysis of the degraded and discolored malachite and azurite demonstrates how multispectral analytical imaging could be used to complement the results of high energy-based techniques.

  11. Development of a versatile XRF scanner for the elemental imaging of paintworks

    NASA Astrophysics Data System (ADS)

    Ravaud, E.; Pichon, L.; Laval, E.; Gonzalez, V.; Eveno, M.; Calligaro, T.

    2016-01-01

    Scanning XRF is a powerful elemental imaging technique introduced at the synchrotron that has recently been transposed to laboratory. The growing interest in this technique stems from its ability to collect images reflecting pigment distribution within large areas on artworks by means of their elemental signature. In that sense, scanning XRF appears highly complementary to standard imaging techniques (Visible, UV, IR photography and X-ray radiography). The versatile XRF scanner presented here has been designed and built at the C2RMF in response to specific constraints: transportability, cost-effectiveness and ability to scan large areas within a single working day. The instrument is based on a standard X-ray generator with sub-millimetre collimated beam and a SDD-based spectrometer to collected X-ray spectra. The instrument head is scanned in front of the painting by means of motorised movements to cover an area up to 300 × 300 mm2 with a resolution of 0.5 mm (600 × 600 pixels). The 15-kg head is mounted on a stable photo stand for rapid positioning on paintworks and maintains a free side-access for safety; it can also be attached to a lighter tripod for field measurements. Alignment is achieved with a laser pointer and a micro-camera. With a scanning speed of 5 mm/s and 0.1 s/point, elemental maps are collected in 10 h, i.e. a working day. The X-ray spectra of all pixels are rapidly processed using an open source program to derive elemental maps. To illustrate the capabilities of this instrument, this contribution presents the results obtained on the Belle Ferronnière painted by Leonardo da Vinci (1452-1519) and conserved in the Musée du Louvre, prior to its restoration at the C2RMF.

  12. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  13. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  14. Geologic and geochemical results from boreholes drilled in Yellowstone National Park, Wyoming, 2007 and 2008

    USGS Publications Warehouse

    Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher

    2016-06-01

    After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.

  15. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics

    NASA Astrophysics Data System (ADS)

    Lauwers, D.; Candeias, A.; Coccato, A.; Mirao, J.; Moens, L.; Vandenabeele, P.

    2016-03-01

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones.

  16. Long term fine aerosol analysis by XRF and PIXE techniques in the city of Rijeka, Croatia

    NASA Astrophysics Data System (ADS)

    Ivošević, Tatjana; Orlić, Ivica; Radović, Iva Bogdanović

    2015-11-01

    The results of a long term, multi elemental XRF and PIXE analysis of fine aerosol pollution in the city of Rijeka, Croatia, are reported for the first time. The samples were collected during a seven months period (6th Aug 2013-28th Feb 2014) on thin stretched Teflon filters and analyzed by energy dispersive X-ray fluorescence (EDXRF) at the Laboratory for Elemental Micro-Analysis (LEMA), University of Rijeka and by Particle Induced X-ray Emission (PIXE) using 1.6 MeV protons at the Laboratory for Ion Beam Interactions (LIBI), Ruđer Bošković Institute, Zagreb. The newly developed micro-XRF system at LEMA provided results for 19 elements in the range from Si to Pb. The PIXE at the LIBI provided information for the same elements as well for the light elements such as Na, Mg and Al. Black carbon was determined with the Laser Integrated Plate Method (LIPM). The results were statistically evaluated by means of the positive matrix factorization (PMF). The seven major pollution sources were identified together with their relative contributions, these are: secondary sulfates, road traffic, smoke, road dust, sea spray, ship emissions and soil dust.

  17. Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Lee, S.; Westferro, F.

    The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less

  18. Analytical possibilities of different X-ray fluorescence systems for determination of trace elements in aqueous samples pre-concentrated with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Zawisza, B.; Skorek, R.; Theato, T.; Queralt, I.; Hidalgo, M.; Sitko, R.

    2013-10-01

    This study was aimed to achieve improved instrumental sensitivity and detection limits for multielement determination of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Pb and Cd in liquid samples by using different X-ray fluorescence (XRF) configurations (a benchtop energy-dispersive X-ray fluorescence spectrometer, a benchtop polarised energy-dispersive X-ray fluorescence spectrometer and a wavelength-dispersive X-ray fluorescence spectrometer). The preconcentration of metals from liquid solutions consisted on a solid-phase extraction using carbon nanotubes (CNTs) as solid sorbents. After the extraction step, the aqueous sample was filtered and CNTs with the absorbed elements were collected onto a filter paper which was directly analyzed by XRF. The calculated detection limits in all cases were in the low ng mL- 1 range. Nevertheless, results obtained indicate the benefits, in terms of sensitivity, of using polarized X-ray sources using different secondary targets in comparison to conventional XRF systems, above all if Cd determination is required. The developed methodologies, using the aforementioned equipments, have been applied for multielement determination in water samples from an industrial area of Poland.

  19. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  20. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    NASA Astrophysics Data System (ADS)

    Reiche, I.; Radtke, M.; Berger, A.; Görner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-05-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606 1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm2. Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is together with external micro-proton-induced X-ray emission the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection.

  1. Mineralogical In-situ Investigation of Acid-Sulfate Samples from the Rio Tinto River, Spain, with a Portable XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Ming, D. W.; Morris, R. V.; Fernandez-Remolar, D.; Amils, R.; Arvidson, R. E.; Blake, D.; Bish, D. L.

    2007-01-01

    A field campaign was organized in September 2006 by Centro de Astobiologica (Spain) and Washington University (St Louis, USA) for the geological study of the Rio Tinto river bed sediments using a suite of in-situ instruments comprising an ASD reflectance spectrometer, an emission spectrometer, panoramic and close-up color imaging cameras, a life detection system and NASA's CheMin 4 XRD/XRF prototype. The primary objectives of the field campaign were to study the geology of the site and test the potential of the instrument suite in an astrobiological investigation context for future Mars surface robotic missions. The results of the overall campaign will be presented elsewhere. This paper focuses on the results of the XRD/XRF instrument deployment. The specific objectives of the CheMin 4 prototype in Rio Tinto were to 1) characterize the mineralogy of efflorescent salts in their native environments; 2) analyze the mineralogy of salts and oxides from the modern environment to terraces formed earlier as part of the Rio Tinto evaporative system; and 3) map the transition from hematite-dominated terraces to the mixed goethite/salt-bearing terraces where biosignatures are best preserved.

  2. [Study on trace elements of lake sediments by ICP-AES and XRF core scanning].

    PubMed

    Cheng, Ai-Ying; Yu, Jun-Qing; Gao, Chun-Liang; Zhang, Li-Sha; He, Xian-Hu

    2013-07-01

    It is the first time to study sediment of Toson lake in Qaidam Basin. Trace elements including Cd, Cr, Cu, Zn and Pb in lake sediment were measured by ICP-AES method, studied and optimized from different resolution methods respectively, and finally determined a optimum pretreatment system for sediment of Toson lake, namely, HCl-HNO3-HF-HClO4-H2O2 system in the proportions of 5 : 5 : 5 : 1 : 1 was determined. At the same time, the data measured by XRF core scanning were compared, the use of moisture content correction method was analyzed, and the influence of the moisture content on the scanning method was discussed. The results showed that, compared to the background value, the contents of Cd and Zn were a little higher, the content of Cr, Cu and Pb was within the background value limits. XRF core scanning was controlled by sediment elements as well as water content in sediment to some extent. The results by the two methods showed a significant positive correlation, with the correlation coefficient up to 0.673-0.925, and they have a great comparability.

  3. Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    NASA Technical Reports Server (NTRS)

    Ling, A. C.; Macpherson, L. H.; Rey, M.

    1981-01-01

    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes.

  4. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. & Thonn.--a hepatoprotective herb.

    PubMed

    Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K

    2011-03-01

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Extremely Soft X-Ray Flash as the Indicator of Off-axis Orphan GRB Afterglow

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamazaki, Ryo; Sakamoto, Takanori

    2015-06-01

    We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRB) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum {E}{obs}{src}, (2) redshift measurements, and (3) multicolor observations of an earlier (or brightening) phase. XRF 020903 was the only sample selected on the basis of these criteria. A complete optical multicolor afterglow light curve of XRF 020903 obtained from archived data and photometric results in the literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, {θ }{jet}) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle (\\gt ∼ 2{θ }{jet}) could be discovered using an 8 m class telescope with wide-field imagers such as the Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.

  6. Elemental classification of the tusks of dugong (Dugong dugong) by HH-XRF analysis and comparison with other species

    NASA Astrophysics Data System (ADS)

    Nganvongpanit, Korakot; Buddhachat, Kittisak; Piboon, Promporn; Euppayo, Thippaporn; Kaewmong, Patcharaporn; Cherdsukjai, Phaothep; Kittiwatanawong, Kongkiat; Thitaram, Chatchote

    2017-04-01

    The elemental composition was investigated and applied for identifying the sex and habitat of dugongs, in addition to distinguishing dugong tusks and teeth from other animal wildlife materials such as Asian elephant (Elephas maximus) tusks and tiger (Panthera tigris tigris) canine teeth. A total of 43 dugong tusks, 60 dugong teeth, 40 dolphin teeth, 1 whale tooth, 40 Asian elephant tusks and 20 tiger canine teeth were included in the study. Elemental analyses were conducted using a handheld X-ray fluorescence analyzer (HH-XRF). There was no significant difference in the elemental composition of male and female dugong tusks, whereas the overall accuracy for identifying habitat (the Andaman Sea and the Gulf of Thailand) was high (88.1%). Dolphin teeth were able to be correctly predicted 100% of the time. Furthermore, we demonstrated a discrepancy in elemental composition among dugong tusks, Asian elephant tusks and tiger canine teeth, and provided a high correct prediction rate among these species of 98.2%. Here, we demonstrate the feasible use of HH-XRF for preliminary species classification and habitat determination prior to using more advanced techniques such as molecular biology.

  7. An interlaboratory comparison of bone lead measurements via K-shell X-ray fluorescence spectrometry: validation against inductively coupled plasma mass spectrometry

    PubMed Central

    Bellis, David J.; Todd, Andrew C.

    2012-01-01

    109Cd-based K-shell X-ray fluorescence spectrometry (hereafter, for brevity, XRF) is used, often in epidemiological studies, to perform non-invasive, in vivo measurements of lead in bone. We conducted the first interlaboratory study of XRF via the circulation of nine goat tibiæ in which the mean lead value ranged from 4.0 µg g−1 to 55.3 µg g−1 bone mineral. The test tibiæ were subsequently analyzed via nitric acid digestion followed by lead determination by inductively coupled plasma mass spectrometry (ICP-MS) – along with certified reference materials for bone lead – thus providing measurement traceability to SI units. Analysis of dried bone for lead via nitric acid digestion and ICP-MS yields mass fraction data in units of µg g−1 dry weight. The mean bone lead value based on ICP-MS analysis ranged from 1.8 µg g−1 to 35.8 µg g−1 dry weight. For comparison purposes, XRF-measured Pb values (µg g−1 bone mineral) were converted into the ICP-MS-measured units (µg g−1dry weight bone) by multiplying the former by the average ash fraction from the nine tibiæ. Eight of the XRF systems did not yield a significant bias for any of the nine tibiæ; one system was biased for one of the tibiæ; two systems were biased for two tibiæ; one system was biased for four tibiæ; two systems (813-1 and 804-2) were biased for five tibiæ and one system (801-1) was biased for six of the nine tibiæ. Average bias for the systems (under those particular operating conditions) that were biased for the majority of samples ranged from −2.6 µg g−1 (−15.7%) to 5.1 µg g−1 (30.7%) dry weight bone. All participants now have the ICP-MS data, allowing any corrective actions deemed necessary to be implemented. The ICP-MS data, however, indicated that the lead mass fraction varied considerably with the sampling location within the tibiæ, to the extent of exceeding XRF variability for the higher lead values. Material heterogeneity is an unavoidable reality of measuring lead in bone. PMID:22468015

  8. A con-focal setup for micro-XRF experiments using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Wilke, Max; Rickers, Karen; Vincze, Laszlo; Schmidt, Christian; Borchert, Manuela; Pascarelli, Sakura

    2010-05-01

    In this contribution we introduce an experimental setup to perform con-focal micro X-ray fluorescence measurements in situ in samples at high temperatures and pressures in diamond anvil cells (DAC) (e.g. Schmidt et al. 2007). The con-focal arrangement is used to suppress the background in X-ray fluorescence (XRF) spectra that stems from elastic and inelastic scattering of the diamond anvils. The setup is based on a focusing optic in the incident beam that reaches a spot of 5-10 μm and a focusing poly-capillary in front of an energy-dispersive solid-state detector. The detector poly-capillary is designed to work at a very long working distance of 50 mm in order to collect the radiation from the center of the DAC at 90° to the incident beam. The probing volume is defined by the two foci and has a size of ca. 300 μm at 8 keV and 150 μm at 19 keV as measured by scans through thin metal foils. Comparison of XRF spectra acquired with a usual detector collimator and spectra recorded with the detector capillary shows a strong suppression of XRF signal generated outside the probed volume, i.e. XRF from the gasket material and signal from elastic and Compton scattering by the diamond anvils. The ratio of the Zr K-alpha fluorescence peak to the peak of the Compton scattering changes from 0.5 (collimator) to 1.26 (detector capillary) for a ca. 1000 ppm Zr standard solution and an incident beam energy of 20 keV. For a standard solution containing ca. 1000 ppm Hf, the ratio of the L-alpha to the Compton signal increases to 6 using the detector capillary and an incident beam energy of 9.7 keV. Thus, the con-focal setup substantially improves the fluorescence to background ratio. This will result in higher sensitivities for dilute elements in the sample chamber of the DAC. Furthermore, the possibilities of interference of the sample's signal with signal from the sample environment are greatly reduced. In a broader sense, the setup can also be applied to other confined samples that require long working distances. Schmidt et al. (2007) Lithos 95, 87-102

  9. XRF Core Scanning of Igneous Rocks: a Case Study of IODP Expeditions 367/368 Lava Flows, South China Sea

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; LeVay, B.; Stock, J. M.; Sun, Z.; Klaus, A.; Jian, Z.; Larsen, H. C.; Alvarez Zarikian, C. A.

    2017-12-01

    For three decades, X-ray fluorescence core scanning (XRF-CS) has been widely applied to split sediment cores to obtain continuous data sets of element intensities, serving as chemical proxies for paleoceanography and paleoclimate studies. In contrast, there is no record published on igneous rock cores. This study utilizes a remarkably consistent recovery of lava flows from the South China Sea (SCS), intersected during International Ocean Discovery Program (IODP) Expeditions 367/368, to gain preliminary insights into the chemical inventory of a volcanic suite. At IODP Site U1500, a drilled interval of 150 m, starting at 1379.1 meters below seafloor, yielded 115 m of intercalated fine-grained massive, sheet, and pillow lava flows of basaltic modal composition, consisting of aphyric to highly plagioclase-phyric rocks. The pillow lavas feature numerous well-preserved chilled and glassy margins. The whole succession of lavas is overall slightly to moderately altered and notably fresh in parts. The present XRF data, obtained from a third-generation energy dispersive Avaatech® core scanner at a step size of 2 cm, suggest the existence of two chemically distinct lava suites. The bottom six lava flows (in total 40 m thick) show low intensities of both Cr and Ti (e.g., Ti: 7000-8500 counts), while the upper 11 flows reflect higher concentrations of Cr and Ti (e.g., Ti: 8200-9500 counts). A massive flow, which marks the chemical transition, represents the top of the low-Cr and -Ti lava suite. The compositional change from low-Cr-Ti to high-Cr-Ti lavas reflects a clear temporal magmatic evolution of this submarine SCS volcanism, which is characterized by generally constant Fe/Mn ratios. Thus, this trend may be explained by a change to less fractionated and/or less contaminated lavas over time. On a smaller scale, the XRF-CS also enabled mapping of the compositional variations of crosscutting veins with depth as well as the transition from glassy margins to the micro- to cryptocrystalline interiors of lava flows. The present preliminary study demonstrates the great potential of XRF-CS of volcanic rocks for not only informational purposes for any subsequent sampling of certain depth intervals but also for offering a non-destructive approach to investigating the downhole chemical variation at high resolution.

  10. Afterglow Observations Shed New Light on the Nature of X-ray Flashes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granot, J

    X-ray flashes (XRFs) and X-ray rich gamma-ray bursts (XRGRBs) share many observational characteristics with long duration ({approx}> 2 s) GRBs, but the reason for which the spectral energy distribution of their prompt emission peaks at lower photon energies, E{sub p}, is still a subject of debate. Although many different models have been invoked in order to explain the lower values of E{sub p}, their implications for the afterglow emission were not considered in most cases, mainly because observations of XRF afterglows have become available only recently. Here we examine the predictions of the various XRF models for the afterglow emission,more » and test them against the observations of XRF 030723 and XRGRB 041006, the events with the best monitored afterglow light curves in their respective class. We show that most existing XRF models are hard to reconcile with the observed afterglow light curves, which are very flat at early times. Such light curves are, however, naturally produced by a roughly uniform jet with relatively sharp edges that is viewed off-axis (i.e. from outside of the jet aperture). This type of model self consistently accommodates both the observed prompt emission and the afterglow light curves of XRGRB 041006 and XRF 030723, implying viewing angles {theta}{sub obs} from the jet axis of ({theta}{sub obs}-{theta}{sub 0}) {approx} 0.15 {theta}{sub 0} and ({theta}{sub obs}-{theta}{sub 0}) {approx} {theta}{sub 0}, respectively, where {theta}{sub 0} {approx} 3{sup o} is the half-opening angle of the jet. This suggests that GRBs, XRGRBs and XRFs are intrinsically similar relativistic jets viewed from different angles. It is then natural to identify GRBs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}< 1, XRGRBs with 1 {approx}< ({theta}{sub obs} - {theta}{sub 0}) {approx}< a few, and XRFs with {gamma}({theta}{sub obs} - {theta}{sub 0}) {approx}> a few, where {gamma} is the Lorentz factor of the outflow near the edge of the jet from which most of the observed prompt emission arises. Future observations with Swift could help test this unification scheme in which GRBs, XRGRBs and XRFs share the same basic physics and differ only by their orientation relative to our line of sight.« less

  11. Virtual bronchoscopic navigation without X-ray fluoroscopy to diagnose peripheral pulmonary lesions: a randomized trial.

    PubMed

    Asano, Fumihiro; Ishida, Takashi; Shinagawa, Naofumi; Sukoh, Noriaki; Anzai, Masaki; Kanazawa, Kenya; Tsuzuku, Akifumi; Morita, Satoshi

    2017-12-11

    Transbronchial biopsy for peripheral pulmonary lesions is generally performed under X-ray fluoroscopy. Virtual bronchoscopic navigation (VBN) is a method in which virtual images of the bronchial route to the lesion are produced based on CT images obtained before VBN, and the bronchoscope is guided using these virtual images, improving the diagnostic yield of peripheral pulmonary lesions. VBN has the possibility of eliminating the need for X-ray fluoroscopy in the bronchoscopic diagnosis of peripheral lesions. To determine whether VBN can be a substitute for X-ray fluoroscopy, a randomized multicenter trial (non-inferiority trial) was performed in VBN and X-ray fluoroscopy (XRF) -assisted groups. The non-inferiority margin in the VBN-assisted group compared with the XRF-assisted group was set at 15%. The subjects consisted of 140 patients with peripheral pulmonary lesions with a mean diameter > 3 cm. In the VBN-assisted group, the bronchoscope was guided to the lesion using a VBN system without X-ray fluoroscopy. In the XRF-assisted group, the same bronchoscope was guided to the lesion under X-ray fluoroscopy. Subsequently, in both groups, the lesion was visualized using endobronchial ultrasonography with a guide sheath (EBUS/GS), and biopsy was performed. In this serial procedure, X-ray fluoroscopy was not used in the VBNA group. The subjects of analysis consisted of 129 patients. The diagnostic yield was 76.9% (50/65) in the VBN-assisted group and 85.9% (55/64) in the XRF-assisted group. The difference in the diagnostic yield between the two groups was -9.0% (95% confidence interval: -22.3% ~ 4.3%). The non-inferiority of the VBN-assisted group could not be confirmed. The rate of visualizing lesions by EBUS was 95.4% (62/65) in the VBN-assisted group and 96.9% (62/64) in the XRF-assisted group, being high in both groups. On EBUS/GS, a bronchoscope and biopsy instruments may be guided to the lesions using VBN without X-ray fluoroscopy, but X-ray fluoroscopy is necessary to improve the accuracy of sample collection from lesions. During transbronchial biopsy for peripheral pulmonary lesions, VBN cannot be a substitute for X-ray fluoroscopy. UMIN-CTR (UMIN000001710); registered 16 February 2009.

  12. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81–100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. Conclusions: A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes. PMID:25281958

  13. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    PubMed

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 keV, increased the FSDR up to a factor of 20, compared to 1 mm Pb, and further facilitated separation of gold XRF peaks from the scatter background. A detailed MC model of an experimental benchtop XFCT system has been developed and validated. In exemplary calculations to illustrate the usefulness of this model, it was shown that potential use of quasimonochromatic spectra or judicious choice of filter material/thickness to tailor the spectrum of a polychromatic x-ray source can significantly improve the performance of benchtop XFCT, while considering trade-offs between FSDR and FNST. As demonstrated, the current MC model is a reliable and powerful computational tool that can greatly expedite the further development of a benchtop XFCT system for routine preclinical molecular imaging with GNPs and other metal probes.

  14. X-ray fluorescence in investigations of cultural relics and archaeological finds.

    PubMed

    Musílek, Ladislav; Cechák, Tomáš; Trojek, Tomáš

    2012-07-01

    Some characteristic features of X-ray fluorescence (XRF) analysis make it an ideal method for investigations of cultural relics and archaeological finds. It has therefore become a standard method used in archaeometry. Paintings, frescos, manuscripts, pottery, metalwork, glass, and many other objects are analysed with the aim of recognising their materials, production technologies and origin, and for identifying counterfeits. This paper reviews various techniques used in XRF analyses of works of art, summarises the advantages and limitations of the method, and presents some typical examples of its use. The general review is supplemented by some techniques used and some results achieved at CTU-FNSPE in Prague. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  16. SRXRF analysis with spatial resolution of dental calculus

    NASA Astrophysics Data System (ADS)

    Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam

    2000-09-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.

  17. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    NASA Technical Reports Server (NTRS)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  18. Evaluation of elemental status of ancient human bone samples from Northeastern Hungary dated to the 10th century AD by XRF

    NASA Astrophysics Data System (ADS)

    János, I.; Szathmáry, L.; Nádas, E.; Béni, A.; Dinya, Z.; Máthé, E.

    2011-11-01

    The present study is a multielemental analysis of bone samples belonging to skeletal individuals originating from two contemporaneous (10th century AD) cemeteries (Tiszavasvári Nagy-Gyepáros and Nagycserkesz-Nádasibokor sites) in Northeastern Hungary, using the XRF analytical technique. Emitted X-rays were detected in order to determine the elemental composition of bones and to appreciate the possible influence of the burial environment on the elemental content of the human skeletal remains. Lumbar vertebral bodies were used for analysis. Applying the ED(P)XRF technique concentration of the following elements were determined: P, Ca, K, Na, Mg, Al, Cl, Mn, Fe, Zn, Br and Sr. The results indicated post mortem mineral exchange between the burial environment (soil) and bones (e.g. the enhanced levels of Fe and Mn) and referred to diagenetic alteration processes during burials. However, other elements such as Zn, Sr and Br seemed to be accumulated during the past life. On the basis of statistical analysis, clear separation could not be observed between the two excavation sites in their bone elemental concentrations which denoted similar diagenetic influences, environmental conditions. The enhanced levels of Sr might be connected with the past dietary habits, especially consumption of plant food.

  19. Micro-XRF analysis of silver coins from medieval Poland

    NASA Astrophysics Data System (ADS)

    del Hoyo-Meléndez, Julio M.; Świt, Paweł; Matosz, Marta; Woźniak, Mateusz; Klisińska-Kopacz, Anna; Bratasz, Łukasz

    2015-04-01

    X-ray fluorescence (XRF) analysis has become a standard method in archaeological science due to its non-invasive and non-destructive nature. This technique has extensively been used for the study of numismatic collections since the data derived from it can be correlated with manufacturing processes, provenance of raw materials, and geographical distribution of ancient mints. A group of 71 silver coins of the first Piasts: Boleslaus the Brave (996-1025) and Mieszko II Lambert (1025-1034) belonging to the collections of the National Museum in Krakow have been characterized using micro-XRF spectrometry. This is the most numerous collection of their coins representing nearly 30% of all known coins from these rulers. The research has focused on evaluating the use of this technique as a screening tool for elemental surface characterization of the alloys. Surveyed coins are mainly constituted by Ag, Cu and Pb along with trace levels of Fe, Ni, Zn, Au, Hg, Bi, and Br. Quantitative analyses have revealed Ag contents in the 81.6-97.5% range for all the evaluated coins. This study had the goal of providing information about the elemental composition of these objects, which will serve to enhance the existing knowledge about geographical and chronological diversification of Polish numismatic collections.

  20. Volcanic Chemostratigraphy on the Outcrop Using Field-Portable X-Ray Fluorescence: An Example from the Basaltic Flows of Hewitt's Cove, MA.

    NASA Astrophysics Data System (ADS)

    Wall, A. M.; Brabander, D. J.

    2005-05-01

    The area of Hewitt's Cove, Hingham, Massachusetts structurally represents the southern extent of the Boston Basin, and as such, provides the opportunity to identify and recognize basin-wide events. While the stratigraphy of the Boston Basin has been developed since the advent of U-Pb geochronology and formal stratigraphic facies descriptions (Socci and Smith, 2001), the stratigraphy of the Hewitt's Cove area has not been thoroughly addressed since the work of William O. Crosby in 1894 (Billings, 1976, Bailey and Bland, 2001). Hewitt's Cove consists of an andesitic basaltic flow, approximately 150 m thick, overlain by siltstone and conglomeratic sequences. Field-Portable X-Ray Fluorescence (FP-XRF) was used on fresh and weathered surfaces on the outcrop and in hand samples, and these analyses were compared with conventional laboratory XRF analyses. The in situ field-based analyses produced a reproducible chemostratigraphy that is consistent with subsequent laboratory-based analyses. These data suggest that the series of andesitic basalt flows at Hewitt's Cove are the result of compositionally different magmatic pulses. Additional analyses must be completed to determine the extent of these pulses and the extent of variation in this area before further conclusions can be made. This study particularly demonstrates the utility of using FP-XRF in igneous geologic applications.

  1. Efficacy of a lead based paint XRF analyzer and a commercially available colorimetric lead test kit as qualitative field tools for determining presence of lead in religious powders.

    PubMed

    Shah, Manthan P; Shendell, Derek G; Meng, Qingyu; Ohman-Strickland, Pamela; Halperin, William

    2018-04-23

    The performances of a portable X-Ray Fluorescence (XRF) lead paint analyzer (RMD LPA-1, Protec Instrument Corp., Waltham, MA) and a commercially available colorimetric lead test kit (First Alert Lead Test Kit, eAccess Solutions, Inc., Palatine, IL) were evaluated for use by local or state health departments as potential cost-effective rapid analysis or "spot test" field techniques for tentative identification of lead content in sindoor powders. For both field-sampling methods, sensitivity, specificity and predictive values varied widely for samples containing <300,000 μg/g lead. For samples containing ≥300,000 μg/g lead, the aforementioned metrics were 100% (however, the CIs had a wide range). In addition, both field sampling methods showed clear, consistent positive readings only for samples containing ≥300,000 μg/g lead. Even samples with lead content as high as 5,110 μg/g were not positively identified by either field analysis technique. The results of this study suggest the XRF analyzer and colorimetric lead test kit cannot be used as a rapid field test for sindoor by health department inspectors.

  2. Evaluation of portable Raman spectroscopy and handheld X-ray fluorescence analysis (hXRF) for the direct analysis of glyptics.

    PubMed

    Lauwers, D; Candeias, A; Coccato, A; Mirao, J; Moens, L; Vandenabeele, P

    2016-03-15

    In archaeometry, the advantages of a combined use of Raman spectroscopy and X-ray fluorescence spectroscopy are extensively discussed for applications such as the analysis of paintings, manuscripts, pottery, etc. Here, we demonstrate for the first time the advantage of using both techniques for analysing glyptics. These engraved gemstones or glass materials were originally used as stamps, to identify the owner, for instance on letters, but also on wine vessels. For this research, a set of 64 glyptics (42 Roman glass specimens and 22 modern ones), belonging to the collection of the museum 'Quinta das Cruzes' in Funchal (Madeira, Portugal), was analysed with portable Raman spectroscopy and handheld X-ray fluorescence (hXRF). These techniques were also used to confirm the gemological identification of these precious objects and can give extra information about the glass composition. Raman spectroscopy identifies the molecular composition as well as on the crystalline phases present. On the other hand, hXRF results show that the antique Roman glass samples are characterised with low Pb and Sn levels and that the modern specimens can be discriminated in two groups: lead-based and non-lead-based ones. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition

    NASA Technical Reports Server (NTRS)

    Rolin, T. D.; Leszczuk, Y.

    2008-01-01

    For electrical, electronic, and electromechanical (EEE) parts to be approved for space use, they must be able to meet safety standards approved by NASA. A fast, reliable, and precise method is needed to make sure these standards are met. Many EEE parts are coated in gold (Au) and nickel (Ni), and the thickness coating is crucial to a part s performance. A nondestructive method that is efficient in measuring coating thickness is x-ray fluorescence (XRF) spectroscopy. The XRF spectrometer is a machine designed to measure layer thickness and composition of single or multilayered samples. By understanding the limitations in the collection of the data by this method, accurate composition and thickness measurements can be obtained for samples with Au and Ni coatings. To understand the limitations of data found, measurements were taken with the XRF spectrometer and compared to true values of standard reference materials (SRM) that were National Institute of Standards and Technology (NIST) traceable. For every sample, six different parameters were varied to understand measurement error: coating/substrate combination, number of layers, counting interval, collimator size, coating thickness, and test area location. Each measurement was taken in accordance with standards set by the American Society for Testing and Materials (ASTM) International Standard B 568.

  4. DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...

    EPA Pesticide Factsheets

    A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 2005, at the Kennedy Athletic, Recreational and Social Park at Kennedy Space Center on Merritt Island, Florida. The purpose of the demonstration was to verify the performance of various instruments that employ X-ray fluorescence (XRF) measurement technologies for the determination of 13 toxic elements in a variety of soil and sediment samples. Instruments from the technology developers listed below were demonstrated. o Innov-X Systems, Inc.o NITON LLC (2 instruments ) o Oxford Instruments Portable Division (formerly Metorex, Inc.) .Oxford Instruments Analytical .Rigaku, Inc.o RONTEC USA Inc.o Xcalibur XRF Services Inc. (Division of Elvatech Ltd. ) This demonstration plan describes the procedures that will be used to verify the performance and cost of the XRF instruments provided by these technology developers. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to perform this verification. A separate innovative technology verification report (ITVR) will be prepared for each instrument. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented perfor

  5. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  6. Use of x-ray fluorescence for in-situ detection of metals

    NASA Astrophysics Data System (ADS)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  7. Detection of PLGA-based nanoparticles at a single-cell level by synchrotron radiation FTIR spectromicroscopy and correlation with X-ray fluorescence microscopy

    PubMed Central

    Pascolo, Lorella; Bortot, Barbara; Benseny-Cases, Nuria; Gianoncelli, Alessandra; Tosi, Giovanni; Ruozi, Barbara; Rizzardi, Clara; De Martino, Eleonora; Vandelli, Maria Angela; Severini, Giovanni Maria

    2014-01-01

    Poly-lactide-co-glycolide (PLGA) is one of the few polymers approved by the US Food and Drug Administration as a carrier for drug administration in humans; therefore, it is one of the most used materials in the formulation of polymeric nanoparticles (NPs) for therapeutic purposes. Because the cellular uptake of polymeric NPs is a hot topic in the nanomedicine field, the development of techniques able to ensure incontrovertible evidence of the presence of NPs in the cells plays a key role in gaining understanding of their therapeutic potential. On the strength of this premise, this article aims to evaluate the application of synchrotron radiation-based Fourier transform infrared spectroscopy (SR-FTIR) spectromicroscopy and SR X-ray fluorescence (SR-XRF) microscopy in the study of the in vitro interaction of PLGA NPs with cells. To reach this goal, we used PLGA NPs, sized around 200 nm and loaded with superparamagnetic iron oxide NPs (PLGA-IO-NPs; Fe3O4; size, 10–15 nm). After exposing human mesothelial (MeT5A) cells to PLGA-IO-NPs (0.1 mg/mL), the cells were analyzed after fixation both by SR-FTIR spectromicroscopy and SR-XRF microscopy setups. SR-FTIR-SM enabled the detection of PLGA NPs at single-cell level, allowing polymer detection inside the biological matrix by the characteristic band in the 1,700–2,000 cm−1 region. The precise PLGA IR-signature (1,750 cm−1 centered pick) also was clearly evident within an area of high amide density. SR-XRF microscopy performed on the same cells investigated under SR-FTIR microscopy allowed us to put in evidence the Fe presence in the cells and to emphasize the intracellular localization of the PLGA-IO-NPs. These findings suggest that SR-FTIR and SR-XRF techniques could be two valuable tools to follow the PLGA NPs’ fate in in vitro studies on cell cultures. PMID:24944512

  8. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    PubMed

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (p<0.05). Of the bacteria that colocalized with metal(loid)s, Actinobacteria, known for their metal tolerance, had a higher correlation with both As and Fe than Alphaproteobacteria or Gammaproteobacteria. This method demonstrates how coupling these micro-techniques can expand our understanding of micro-scale interactions between roots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Miniaturised Space Payloads for Outdoor Environmental Applications

    NASA Astrophysics Data System (ADS)

    de Souza, P. A.

    2012-12-01

    The need for portable, robust and acurate sensors has increased in recent years resulting from industrial and environmental needs. This paper describes a number of applications of engineering copies of those Moessbauer spectrometers (MIMOS II) used by Mars Exploration Rovers, and the use of portable XRF spectrometers in the analysis of heavy metals in sediments. MIMOS II has been applied in the characterisation of Fe-bearing phases in airborne particles in industrialised urban centres, The results have allowed an identification of sources or air pollution in near-real-time. The results help to combine production parameters with pollution impact in the urban area. MIMOS II became a powerful tool because its constructive requirements to flight has produced a robust, power efficient, miniaturised, and light. On the limitation side, the technique takes sometime to produce a good result and the instrument requires a radioactive source to operate. MIMOS II Team has reported a new generation of this instrument incorporating a XRF spectrometer using the radioactive source to generate fluorescence emissions from sample. The author, and its research group, adapted a portable XRF spectrometer to an autonomous underwater vehicle (AUV) and conducted heavy metals survey in sediments across the Derwent Estuary in Tasmania, Australia. The AUV lands on suitable locations underwater, makes the chemical analysis and decide based on the result to move to a closer location, should high concentration of chemicals of interest be found, or to another distant location otherwise. Beyond environmental applications, these instruments were applied in archaeology and in industrial process control.oessbauer spectra recorded on airborne particles (Total Suspended Particles) collected at Ilha do Boi, VItoria, ES, Brazil. SIRO's Autonomous Underwater Vehicle carring a miniaturised XRF spectrometer for underwater chemistry. Students involved in this Project: Mr Jeremy Breen and Mr Andrew Davie. Collaborators: Dr. Greg Timms (CSIRO) and Dr. Robert Ollington (UTAS). This AUV us 1.2m long.

  10. Non-destructive geochemical analysis and element mapping using bench-top μ-XRF: applications and uses for geoscience problems

    NASA Astrophysics Data System (ADS)

    Flude, Stephanie; Haschke, Michael; Tagle, Roald; Storey, Michael

    2013-04-01

    X-Ray Fluorescence (XRF) has long been used to provide valuable geochemical analysis of bulk rock samples in geological studies. However, it is a destructive technique, requiring samples to be homogenised by grinding to a fine powder and formed into a compacted pellet, or fused glass disk and the resulting sample has to be completely flat for reliable analysis. Until recently, non-destructive, high spatial resolution µ- XRF analysis was possible only at specialised Synchrotron radiation facilities, where high excitation beam energies are possible and specialised X-ray focussing optical systems are available. Recently, a number of bench-top µ-XRF systems have become available, allowing easy, rapid and non-destructive geochemical analysis of various materials. We present a number of examples of how the new bench-top M4 Tornado µ-XRF system, developed by Bruker Nano, can be used to provide valuable geochemical information on geological samples. Both quantitative and qualitative (in the form of X-Ray area-maps) data can be quickly and easily acquired for a wide range of elements (as light as Na, using a vacuum), with minimal sample preparation, using an X-Ray spot size as low as 25 µm. Large specimens up to 30 cm and 5 kg in weight can be analysed due to the large sample chamber, allowing non-destructive characterisation of rare or valuable materials. This technique is particularly useful in characterising heterogeneous samples, such as drill cores, sedimentary and pyroclastic rocks containing a variety of clasts, lavas sourced from mixed and mingled magmas, mineralised samples and fossils. An obvious application is the ability to produce element maps or line-scans of minerals, allowing zoning of major and trace elements to be identified and thus informing on crystallisation histories. An application of particular interest to 40Ar/39Ar geochronologists is the ability to screen and assess the purity of mineral separates, or to characterise polished slabs for subsequent in-situ 40Ar/39Ar laser probe analysis; in the past such samples may have been characterised using SEM, but recent work [1] suggests that charging of a sample during electron-beam excitation can cause redistribution of K, thus disturb the 40Ar/39Ar system. Finally, we assess data accuracy and precision by presenting quantitative analyses of a number of standards. [1] Flude et al., The effect of SEM imaging on the Ar/Ar system in feldspars, V51C-2215 Poster, AGU Fall Meeting 2010

  11. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Bartley, David L; Slaven, James E; Andrew, Michael E

    2007-11-01

    This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported elsewhere. The results, based on data from the three workplaces where lead was the major element present in the samples, are summarized here. A limit of detection and a limit of quantitation are provided. Analysis of some samples using a second analyzer with a different X-ray source technology indicated reasonable agreement for some metals (but this was not evaluated for lead). Provided it is only necessary to analyze the filters, most personal samplers will provide acceptable results when used with portable XRF analysis for lead around applicable limit values.

  12. NARSTO SOS SC UPSTATE PM25 COMPOSITION

    Atmospheric Science Data Center

    2018-04-09

    ... Chromatograph Thermooptical Transmission XRF - X-Ray Fluorescence Location:  South Carolina Spatial ... E arthdata Search Parameters:  Nitrate Particles Organic Particles Sulfate Particles Crustal Particles ...

  13. Enamel paint techniques in archaeology and their identification using XRF and micro-XRF

    NASA Astrophysics Data System (ADS)

    Hložek, M.; Trojek, T.; Komoróczy, B.; Prokeš, R.

    2017-08-01

    This investigation focuses in detail on the analysis of discoveries in South Moravia - important sites from the Roman period in Pasohlávky and Mušov. Using X-ray fluorescence analysis and micro-analysis we help identify the techniques of enamel paint and give a thorough chemical analysis in details which would not be possible to determine by means of macroscopic examination. We thus address the influence of elemental composition on the final colour of the enamel paint and describe the less known technique of combining enamel with millefiori. The material analyses of the metal artefacts decorated with enamel paint significantly contribute to our knowledge of the technology being used during the Roman period.

  14. Cerium Ion Mobility and Diffusivity Rates in Perfluorosulfonic Acid Membranes Measured via Hydrogen Pump Operation

    DOE PAGES

    Baker, Andrew M.; Babu, Siddharth Komini; Mukundan, Rangachary; ...

    2017-09-21

    Ion mobility and diffusivity coefficients were determined for cerium ions in Nafion XL perfluorosulfonic acid ionomer membranes at 100% and 50% relative humidity in a conductivity cell using a hydrogen pump. We quantified Ce ion migration profiles as a function of charge transfer through the cell using X-ray fluorescence (XRF). To decouple simultaneous effects of Ce ion mobility and back-diffusion which occur due to potential and concentration gradients, respectively, a one-dimensional model was developed and fit to these intermittent XRF profiles. The resulting mobility and diffusivity coefficients demonstrate the dramatic effects of potential and concentration gradients on Ce ion migrationmore » during PEM fuel cell operation.« less

  15. Performance of a Borehole XRF Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella

    2007-01-01

    We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  16. Cerium Ion Mobility and Diffusivity Rates in Perfluorosulfonic Acid Membranes Measured via Hydrogen Pump Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Andrew M.; Babu, Siddharth Komini; Mukundan, Rangachary

    Ion mobility and diffusivity coefficients were determined for cerium ions in Nafion XL perfluorosulfonic acid ionomer membranes at 100% and 50% relative humidity in a conductivity cell using a hydrogen pump. We quantified Ce ion migration profiles as a function of charge transfer through the cell using X-ray fluorescence (XRF). To decouple simultaneous effects of Ce ion mobility and back-diffusion which occur due to potential and concentration gradients, respectively, a one-dimensional model was developed and fit to these intermittent XRF profiles. The resulting mobility and diffusivity coefficients demonstrate the dramatic effects of potential and concentration gradients on Ce ion migrationmore » during PEM fuel cell operation.« less

  17. Distribution of lead in the brain tissues from DNTC patients using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ide-Ektessabi, Ari; Ota, Yukihide; Ishihara, Ryoko; Mizuno, Yutaka; Takeuchi, Tohru

    2005-12-01

    Diffuse neurofibrillary tangles with calcification (DNTC) is a form of dementia with certain characteristics. Its pathology is characterized by cerebrum atrophy, calcification on globus pallidus and dentate nucleus and diffuse neurofibrillary tangles without senile plaques. In the present study brain tissues were prepared from patients with patients DNTC, calcified and non-calcified Alzheimer's disease (AD) patients. The brain tissues were examined non-destructively by X-ray fluorescence (XRF) spectroscopy using synchrotron radiation (SR) microbeams for trace metallic elements Ca, Fe, Cu, Zn and Pb. The XRF analysis showed that there were Pb concentrations in the calcified areas in the brain tissues with both DNTC and AD but there was none in those with non-calcified AD.

  18. Inspection method for the identification of TBT-containing antifouling paints.

    PubMed

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  19. Elemental analysis of granite by instrumental neutron activation analysis (INAA) and X-ray fluorescence analysis (XRF).

    PubMed

    El-Taher, A

    2012-01-01

    The instrumental neutron activation analysis technique (INAA) was used for qualitative and quantitative analysis of granite samples collected from four locations in the Aswan area in South Egypt. The samples were prepared together with their standards and simultaneously irradiated in a neutron flux of 7×10(11)n/cm(2)s in the TRIGA Mainz research reactor. Gamma-ray spectra from an hyper-pure germanium detector were analyzed. The present study provides the basic data of elemental concentrations of granite rocks. The following elements have been determined Na, Mg, K, Fe, Mn, Sc, Cr, Ti, Co, Zn, Ga, Rb, Zr, Nb, Sn, Ba, Cs, La, Ce, Nd, Sm, Eu, Yb, Lu, Hf, Ta, Th and U. The X-ray fluorescence (XRF) was used for comparison and to detect elements, which can be detected only by XRF such as F, S, Cl, Co, Cu, Mo, Ni, Pb, Se and V. The data presented here are our contribution to understanding the elemental composition of the granite rocks. Because there are no existing databases for the elemental analysis of granite, our results are a start to establishing a database for the Egyptian granite. It is hoped that the data presented here will be useful to those dealing with geochemistry, granite chemistry and related fields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Zn deposition at the bone cartilage interface in equine articular cartilage

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Moger, C. J.; Winlove, C. P.

    2007-09-01

    In articular cartilage metalloproteinases, a family of enzymes whose function relies on the presence of divalent cations such as Zn and Ca plays a central role in the normal processes of growth and remodelling and in the degenerative and inflammatory processes of arthritis. Another important enzyme, alkaline phosphatase, involved in cartilage mineralisation also relies on metallic cofactors. The local concentration of divalent cations is therefore of considerable interest in cartilage pathophysiology and several authors have used synchrotron X-ray fluorescence (XRF) to map metal ion distributions in bone and cartilage. We report use of a bench-top XRF analytical microscope, providing spatial resolution of 10 μm and applicable to histological sections, facilitating correlation of the distribution with structural features. The study seeks to establish the elemental distribution in normal tissue as a precursor to investigation of changes in disease. For six samples prepared from equine metacarpophalangeal joint, we observed increased concentration of Zn and Sr ions around the tidemark between normal and mineralised cartilage. This is believed to be an active site of remodelling but its composition has hitherto lacked detailed characterization. We also report preliminary results on two of the samples using Proton-Induced X-ray Emission (PIXE). This confirms our previous observations using synchrotron-based XRF of enhanced deposition of Sr and Zn at the surface of the subchondral bone and in articular cartilage.

  1. Addition of a Second Metal (Co) to Molybdenum Carbide: Effect of the Doping Route.

    PubMed

    Araujo, C P B; Frota, A V V M; Souza, C P de; Souto, M V M; Barbosa, C M

    2018-03-01

    Molybdenum carbide is an interesting and versatile material, which has important applications in the metal matrix industry as a reinforcement material, as well as in the catalytic field. Though many papers suggest different methodologies for adding cobalt to the carbide structure aiming either to increase catalytic activity or enhancing mechanical proprieties such as ductility, etc. no straightforward evaluation is available. In the present paper two doping methodologies were studied: via solid state mixture of powders and via wet impregnation. Ammonium molybdate [(NH4)2MoO4] and cobalt nitrate [Co(NO3)2·6H2O] were used as starting materials and the doping process was carried out before carburization reaction. Those materials were characterized by FT-IR, SEM, XRF and XRD. The carbo-reduction products' were evaluated on XRD and XRF basis. Doped precursors' evaluation showed that the wet impregnated doped materials presented smaller particle sizes, were more homogeneous and retained more cobalt than the solid state doped ones. However, final products' assessment indicated that the solid state methodology was able to retain a greater dopant percentage according to XRF evaluation, and XRD data indicated a more intrinsic addition of the dopant to the carbide structure. In addition, no significant changes on particle size could be attributed to any of the methodologies, both producing Mo2C of approximately 30 nm.

  2. Metals in boat paint fragments from slipways, repair facilities and abandoned vessels: an evaluation using field portable XRF.

    PubMed

    Turner, Andrew; Comber, Sean; Rees, Aldous B; Gkiokas, Dimitrios; Solman, Kevin

    2015-01-01

    Paint flaking off abandoned vessels or generated during boat repair is hazardous to human health and wildlife. In this study, a means of screening paint fragments using a field portable-X-ray fluorescence (FP-XRF) spectrometer is described. The technique is capable of delivering rapid, surficial measurements of Ba, Cu, Pb and Zn down to concentrations less than 150 μg g(-1), and Sn and Cr to concentrations of a few hundred μg g(-1). Application of the technique to fragments collected from slipways, yards, hardstandings, abandoned boats and ships undergoing maintenance throughout the EU reveal highly variable concentrations of metals among samples from the same environment or from the same region of a given boat; in many cases, variability is also evident in different areas or on different surfaces of the same fragment. Of particular concern are elevated concentrations of substances that have been restricted or banned (e.g. Sn, an indicator of organotin, and up to concentrations of 40,000 μg g(-1), and Pb up to concentrations of 200,000 μg g(-1)). Although FP-XRF can rapidly screen samples whose composition and origin are unknown and can assist in instantaneous decision making, a full risk assessment will rely on additional analyses of the precise species (including organo-forms) of the metals present. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. High-Sensitivity High-Speed X-ray Fluorescence Scanning Cadmium Telluride Detector for Deep-Portion Cancer Diagnosis Utilizing Tungsten-Kα-Excited Gadolinium Mapping

    NASA Astrophysics Data System (ADS)

    Yanbe, Yutaka; Sato, Eiichi; Chiba, Hiraku; Maeda, Tomoko; Matsushita, Ryo; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays with energies beyond tantalum (Ta) K-edge energy 67.4 keV are absorbed effectively using a 100-µm-thick Ta filter, and the filtered X-rays including tungsten (W) Kα rays are absorbed by gadolinium (Gd) atoms in objects. The Gd XRF is then produced from Gd atoms in the objects and is counted by a cadmium telluride (CdTe) detector. Gd Kα photons with a maximum count rate of 1 kilo counts per second are dispersed using a multichannel analyzer, and the number of photons is counted by a counter card. The distance between the CdTe detector and the object is minimized to 40 mm to increase the count rate. The object is scanned using an x-y stage with a velocity of 5.0 mm/s, and Gd mapping are shown on a computer monitor. The scan steps of the x- and y-axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We obtained Gd XRF images at high contrast, and Gd Kα photons were easily detected from cancerous regions in a nude mouse placed behind a 20-mm-thick poly(methyl methacrylate) plate.

  4. Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia Magmatic System (south-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Sinigoi, Silvano; Quick, James E.; Demarchi, Gabriella; Klötzli, Urs S.

    2016-05-01

    The Permian Sesia Magmatic System of the southwestern Alps displays the plumbing system beneath a Permian caldera, including a deep crustal gabbroic complex, upper crustal granite plutons and a bimodal volcanic field dominated by rhyolitic tuff filling the caldera. Isotopic compositions of the deep crustal gabbro overlap those of coeval andesitic basalts, whereas granites define a distinct, more radiogenic cluster (Sri ≈ 0.708 and 0.710, respectively). AFC computations starting from the best mafic candidate for a starting melt show that Nd and Sr isotopic compositions and trace elements of andesitic basalts may be modeled by reactive bulk assimilation of ≈ 30% of partially depleted crust and ≈ 15%-30% gabbro fractionation. Trace elements of the deep crustal gabbro cumulates require a further ≈ 60% fractionation of the andesitic basalt and loss of ≈ 40% of silica-rich residual melt. The composition of the granite plutons is consistent with a mixture of relatively constant proportions of residual melt delivered from the gabbro and anatectic melt. Chemical and field evidence leads to a conceptual model which links the production of the two granitic components to the evolution of the Mafic Complex. During the growth of the Mafic Complex, progressive incorporation of packages of crustal rocks resulted in a roughly steady state rate of assimilation. Anatectic granite originates in the hot zone of melting crust located above the advancing mafic intrusion. Upward segregation of anatectic melts facilitates the assimilation of the partially depleted restite by stoping. At each cycle of mafic intrusion and incorporation, residual and anatectic melts are produced in roughly constant proportions, because the amount of anatectic melt produced at the roof is a function of volume and latent heat of crystallization of the underplated mafic melt which in turn produces proportional amounts of hybrid gabbro cumulates and residual melt. Such a process can explain the restricted range in isotopic compositions of most rhyolitic and granitic rocks of the Permo-Carboniferous province of Europe and elsewhere. Sheet labelled "XRF standard analyses" reports replicate analyses normalized to 100 obtained by XRF on international standards analyzed along with our samples. Sheet labelled "XRF replicate sample analyses" reports replicate XRF analyses on two samples of our data set. ICP-MS analyses from Acme Analytical Laboratories Ltd. are shown for comparison. Sheet labelled "ICP-MS analyses" reports replicate analyses of trace elements on standard SO18, its official value and replicate analyses of two our samples provided by Acme Analytical Laboratories Ltd. Sheet labelled "kinzigite". Major and trace elements of amphibolite-facies paragneiss samples of the Kinzigite Formation from the roof of the Mafic Complex. In bold data by ICP-MS, other data by XRF. For Ba, Rb and Sr XRF data were included in the average estimate to increase the statistics. The last column reports the average data of amphibolite-facies rocks from the Kinzigite Formation from Schnetger (1994). Sheet labelled "PBB paragneiss". Data for granulite-facies paragneiss samples in the septa of the paragneiss bearing belt (PBB). XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). The last column reports the average data of granulite-facies rocks from Val Strona (stronalite) from Schnetger (1994). Sheet labelled "PBB charnockite". Data for charnockitic rocks included in paragneiss septa. XRF data for Ba and Sr were included in the average estimate to increase the statistics (Rb excluded because close to detection limit for XRF in many samples). Sheet labelled "computed crustal assimilant". Reports the average compositions of paragneiss in amphibolite and granulite facies from this work and from Schnetger (1994). The bulk composition of the septa is computed as 70% paragneiss and 30% charnockite, as roughly estimated in the field. The partially depleted assimilant is computed as a 50/50 mixture of amphibolite- and granulite facies rocks. Sheet labelled "anatectic products" includes leucosomes at the roof of the Mafic Complex, anatectic granites from this work and from the Atesina Volcanic district (Rottura et al., 1998). In bold data by ICP-MS, other data by XRF. Sheet labelled "Valle Mosso granite" reports the whole rock compositions of granitic rocks of the pluton, distinguishing samples from upper and lower granite. XRF data for Ba, Rb and Sr were included in the average estimate to increase the statistics. The last column reports the bulk composition of the pluton, estimated as 70% lower and 30% upper granite. Sheet labelled "Rhyolite" reports whole rock and average compositions of rhyolite. Sheet labelled "UMC gabbro" reports whole rock compositions of gabbros from the upper Mafic Complex. Samples are grouped as pertaining to the "Upper Zone" and "Main Gabbro" according the subdivision of Rivalenti et al. (1975). Gt gabbro = garnet-bearing gabbro. In bold data by ICP-MS, other data by XRF. For Ba and Sr XRF data were included in the average estimate to increase the statistics. Sheet labelled "computed average UMC" reports the whole composition of upper Mafic complex, estimated as 30% Upper Zone and 70% Main Gabbro. Sheet labelled "mafic rocks in middle crust" reports the whole rock compositions from the mafic pod PST262, intruded at the boundary between Ivrea Zone and Serie dei Laghi at 287 ± 5 Ma (Klötzli et al., 2014) and mafic dikes and an enclave intruded in the lower Valle Mosso granite. Sheet labelled "mafic volcanic rocks" reports the whole rock compositions of basaltic andesite and andesite from the Sesia Magmatic System. The average composition is computed excluding altered samples and XRF data for trace elements. Sr and Nd isotope data from this work and previous publications. Sheet labelled "compositions for modelling" reports a summary of the average compositions of the components used for the computations. Sheet labelled "Kd used for AFC and FC modelling" reports the Kd values and percent of mineral phases used in the AFC and FC computations (from Claeson and Meurer, 2004; Rollinson, 1993; Green et al., 2000; Namur et al., 2011). Sheet labelled "trace elements modelling" reports the results of AFC, bulk mixing and FC computations on trace elements. The enclosed figure illustrates the bulk mixing lines between Campore and average crust or anatectic granite respectively. Mixing required getting the composition of andesitic basalt with average crust and anatectic granite varies from 33 to 63% respectively (see text for consequences). The AFC path from Campore to andesitic basalts overlaps the bulk mixing lines. The shape of the mixing line between residual and anatectic melt results in the poor sensibility of Nd to the addition of anatectic melt to the residual one (εNd remains within the field of mafic rocks up to 80% addition of anatectic melt). Sheet labelled "major elements modelling" reports the results of mass balance computations on major-elements based on bulk mixing and XL-FRAC (Stormer and Nicholls, 1978). Sheet labelled "EC-RAXFC modelling" reports input data and results obtained by EC-RAXFC code (Bohrson and Spera, 2007) to simulate the energy constrained AFC from Campore to andesitic basalt. Liquidus temperature and specific heat of magma and assimilant (tlm, tla, cpm, cpa) as well as heat of crystallization and fusion (hm, ha) were obtained by Rhyolite-Melts code (Gualda et al., 2012) at P = 6 kbar (intermediate pressure between the roof and the deepest rocks of the Mafic Complex; Demarchi et al., 1998), assuming QFM + 2, and H2O content = 0.5 for Campore and = 1.0 for assimilant (intermediate between kinzigite and stronalite from Schnetger, 1994). Initial temperature of assimilant (tlo) was assumed equal to the solidus temperature (ts), which results around 850° from the experimental melting of natural metapelite (Vielzeuf and Holloway, 1988). Non-linear melting functions were chosen within the range of values suggested by Bohrson and Spera (2007). Recharge magma (R) was set = 0 because the homogeneity of the Upper Mafic Complex is best explained if each new mafic pulse is injected at the new neutral buoyancy level, above a dense and partially depleted restite, and may be treated as a single pulse. X was set = 1 assuming that all anatectic melt enters the mafic magma. Different simulations were run using alternatively bulk partition coefficients of Sr and Nd for the assimilant (Da) reported for "standard" upper crust by Bohrson and Spera (2001; 1.5 and 0.25, respectively), Da estimated from our data set (2.15 and 2.6, respectively) and intermediate values. For the mafic magma, the bulk D values (Dm) of 0.77 for Sr and 0.34 for Nd result from the Kd and percent of mineral phases used in the AFC computation. Lat-long grid for samples reported in OS tables.

  5. 100-OL-1 Operable Unit Field Portable X-Ray Fluorescence (XRF) Analyzer Pilot Study Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunn, Amoret L.; Fritz, Brad G.; Wellman, Dawn M.

    A pilot study is being conducted to support the approval of the Remedial Investigation/Feasibility Study (RI/FS) Work Plan to evaluate the 100-OL-1 Operable Unit (OU) pre-Hanford orchard lands. Based on comments received by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology, the pilot study will evaluate the use of field portable X-ray fluorescence (XRF) spectrometry measurements for evaluating lead and arsenic concentrations on the soil surface as an indicator of past use of lead arsenate pesticide residue in the OU. The work will be performed in the field during the summer of 2014, and assist inmore » the planning for the characterization activities in the RI/FS.« less

  6. X-ray microfluorescence analysis of pigments in decorative paintings from the sarcophagus cartonnage of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Calza, C.; Anjos, M. J.; de Souza, S. M. F. Mendonça; Brancaglion, A.; Lopes, R. T.

    2007-10-01

    This work characterized the elemental composition of the pigments used in decorative paintings from the sarcophagus cartonnage fragments of an Egyptian mummy, using μXRF with Synchrotron Radiation. This female mummy (n.158) is considered one of the most important pieces of the National Museum (Rio de Janeiro, Brazil) because of its unconventional embalming with legs and arms swathed separately. The measurements were performed at the XRF beamline D09B of the Brazilian Synchrotron Light Laboratory (LNLS), using white beam and a Si(Li) detector with resolution of 165 eV at 5.9 keV. The elements found in the samples were: Si, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Sr, Hg and Pb.

  7. A study of gemstones of the I. D. Passa collection, hosted at the Byzantine and Christian Museum of Greece.

    NASA Astrophysics Data System (ADS)

    Griva, Eirini; Perraki, Maria; Katsaros, Thomas; Ganetsos, Theodoros

    2017-04-01

    Eight sculptures, of the large gemstone art collection of Ioannis D. Passas hosted at the Byzantine and Christian Museum of Greece, were studied by means of portable Raman spectroscopy and X-Ray Fluorescence to identify the type and, if possible, the origin of the gemstones they are made of. The application of portable Raman spectroscopy and X-Ray fluorescence have been proven to be rapid and successful analytical methods to study gemstones, with main advantage their non- destructive character. The eight sculptures of the I.D. Passa collection examined herein, based on their Raman features and XRF data, were confirmed to be nephrite, fluorite, lapis lazuli, rhodonite and turquoise. The Raman spectrum of specimen BXM 23989a is characterized by peaks at approximately 244, 378 and 685 cm-1 assigned to nephrite. In the XRF spectrum, the most intense emission lines were those of Ca and Fe at 3.69 and 6.36 keV, respectively. The Raman spectra of specimens BXM 24357-8a and BXM 24354 are characterized by peaks at 731, 1122, 1364, 1778 and 1880 cm-1attributed to fluorite. As for the XRF spectra, F and Ca have strong peaks at 0.60 keV and 3.69 keV, respectively. The Raman spectra of specimens BXM 24201a,b and BXM 24198 are characterized by strong peaks at 553 and 1319.1 cm-1 assigned to Lapis Lazuli, whereas the respective XRF spectra are characterized by strong peaks at 1.74 keV (Si) and 3.69 keV (Ca). A representative Raman spectrum of specimen BXM 24289 has given a strong peak at 633 cm-1, attributed to rhodonite. The respective XRF spectrum is characterized by strong peaks at 5.87 keV and 1.74 keV, pointing to the presence of Mn and Si, respectively. A typical Raman spectrum of specimens BXM 24142a and BXM 24139a exhibit strong peaks at 231, 417 and 1042 cm-1, characteristic of turquoise. In the XRF spectra, the most intense emission lines are those of Cu and Zn at 8.04 and 8.63 keV respectively. Regarding the origin of the above-mentioned gemstones, one could assume the following mines, based on their proximity (Griva, 2015).Nephrite from specimen BXM 23989 a might have been originated from a mine in Central China. Lapis Lazuli from specimen BXM 24201 a,b and BXM 24198 might have been originated either from mines in Afghanistan, in the Badakshan Province, or from Myanmar (Mandalay Division).Turquoise from specimen BXM 24142a and BXM 24139a might have been originated either from the Shaxi-Changpushang mine in East China (Anhui Province), or from the Tianhu mine in North China (Xinjiang Autonomous Region). Griva E., 2015. "Study of semi-precious stones and corals from the I. D. Passa collection, hosted at the Byzantine and Christian museum", Diploma Thesis, National and Technical University of Athens, School of Mining and Metallurgical Engineering, p. 218. Zeng Q., Zhang G., Tan J., Leung C. and Zuo J., 2011. 'Identification of pigments from the Shrine of Kaiping Diaolou by micro-Raman spectroscopy', Journal of RAMAN SPECTROSCOPY, 42, 1311-1316.

  8. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.

    2014-01-01

    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 kV accelerating voltage, 800 mA beam current, 30 µm beam diameter, and a beam spacing of 30-120 micrometer. The micro-CT scan of 14305,483 (Figure 2) was able to identify several large lithic clasts (approx. 1 cm) within the interior of the slab. These clasts will be exposed by band-sawing or chipping of the slab, and their composition more fully characterized by subsequent micro-XRF analysis. In addition to lithic clasts, the micro-CT scans identified numerous mineral clasts, including many FeNi metal grains, as well as the prominent fractures within the slab. The micro-XRF analyses (Figure 1b,c) of the slab surfaces revealed the bulk chemical compositions (qualitative) of the different clast types observed. In particular, by looking at the ratios of major elements (e.g. Ca:Mg:Fe), differences among the many observed clast types are readily observed. Moreover, several clasts not apparent to the naked eye were revealed in the K:Al:Si ratio map. The scans are also able to identify small grains of Zr- and P-rich minerals (not shown), which could in turn yield important age dates for the samples.

  9. Holocene climatic variations in the Western Cordillera of Colombia: A multiproxy high-resolution record unravels the dual influence of ENSO and ITCZ

    NASA Astrophysics Data System (ADS)

    Muñoz, Paula; Gorin, Georges; Parra, Norberto; Velásquez, Cesar; Lemus, Diego; Monsalve-M., Carlos; Jojoa, Marcela

    2017-01-01

    The Páramo de Frontino (3460 m elevation) in Colombia is located approximately halfway between the Pacific and Atlantic oceans. It contains a 17 kyr long, stratigraphically continuous sedimentary sequence dated by 30 AMS 14C ages. Our study covers the last 11,500 cal yr and focuses on the biotic (pollen) and abiotic (microfluorescence-X or μXRF) components of this high mountain ecosystem. The pollen record provides a proxy for temperature and humidity with a resolution of 20-35 yr, and μXRF of Ti and Fe is a proxy for rainfall with a sub-annual (ca. 6-month) resolution. Temperature and humidity display rapid and significant changes over the Holocene. The rapid transition from a cold (mean annual temperature (MAT) 3.5 °C lower than today) and wet Younger Dryas to a warm and dry early Holocene is dated at 11,410 cal yr BP. During the Holocene, MAT varied from ca. 2.5 °C below to 3.5° above present-day temperature. Warm periods (11,410-10,700, 9700-6900, 4000-2400 cal yr BP) were separated by colder intervals. The last 2.4 kyr of the record is affected by human impact. The Holocene remained dry until 7500 cal yr BP. Then, precipitations increased to reach a maximum between 5000 and 4500 cal yr BP. A rapid decrease occurred until 3500 cal yr BP and the late Holocene was dry. Spectral analysis of μXRF data show rainfall cyclicity at millennial scale throughout the Holocene, and at centennial down to ENSO scale in more specific time intervals. The highest rainfall intervals correlate with the highest activity of ENSO. Variability in solar output is possibly the main cause for this millennial to decadal cyclicity. We interpret ENSO and ITCZ as the main climate change-driving mechanisms in Frontino. Comparison with high-resolution XRF data from the Caribbean Cariaco Basin (a proxy for rainfall in the coastal Venezuelian cordilleras) demonstrates that climate in Frontino was Pacific-driven (ENSO-dominated) during the YD and early Holocene, whereas it was Atlantic-driven in Cariaco (ITCZ-dominated). From ca. 8000 cal yr BP, climate in both areas was under the dual influence of ENSO and ITCZ, thereby showing existing teleconnections between the tropical Pacific and Atlantic oceans. The Frontino record is to date the highest-resolution Holocene study in NW Colombia. An implication of these results is that new records should be analyzed with multiproxy tools, in particular those providing high resolution time series, such as μXRF.

  10. Changes in the Indian summer monsoon intensity in Sri Lanka during the last 30 ky - A multiproxy record from a marine sediment core.

    NASA Astrophysics Data System (ADS)

    Ranasinghage, P. N.; Nanayakkara, N. U.; Kodithuwakku, S.; Siriwardana, S.; Luo, C.; Fenghua, Z.

    2016-12-01

    Indian monsoon plays a vital role in determining climate events happening in the Asian region. There is no sufficient work in Sri Lanka to fully understand how the summer monsoonal variability affected Sri Lanka during the quaternary. Sri Lanka is situated at an ideal location with a unique geography to isolate Indian summer monsoon record from iris counterpart, Indian winter monsoon. Therefore, this study was carried out to investigate its variability and understand the forcing factors. For this purpose a 1.82 m long gravity core, extracted from western continental shelf off Colombo, Sri Lanka by Shiyan 1 research vessel, was used. Particle size, chemical composition and colour reflectance were measured using laser particle size analyzer at 2 cm resolution, X-Ray Fluorescence spectrometer (XRF) at 2 cm resolution, and color spectrophotometer at 1 cm resolution respectively. Radio carbon dating of foraminifera tests by gas bench technique yielded the sediment age. Finally, principal component analysis (PCA) of XRF and color reflectance (DSR) data was performed to identify groups of correlating elements and mineralogical composition of sediments. Particle size results indicate that Increasing temperature and strengthening monsoonal rainfall after around 18000 yrs BP, at the end of last glacial period, enhanced chemical weathering over physical weathering. Proxies for terrestrial influx (XRF PC1, DSR PC1) and upwelling and nutrient supply driven marine productivity (XRF PC3 and DSR PC2) indicate that strengthening of summer monsoon started around 15000 yrs BP and maximized around 8000-10000 yrs BP after a short period of weakening during Younger Dryas (around 11000 yrs BP). The 8.2 cold event was recorded as a period of low terrestrial influx indicating weakening of rainfall. After that terrestrial input was low till around 2000 yrs BP indicating decrease in rainfall. However, marine productivity remained increasing throughout the Holocene indicating an increase in monsoonal driven upwelling. Authors recorded similar increase in monsoonal wind strength during the late Holocene, with no increase in rainfall in another sediment core extracted from the western continental shelf of Sri Lanka.

  11. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of Rietveld methods for XRD data analysis can provide a powerful tool for quantitative mineralogy and for obtaining crystallographic data on complex minerals.

  12. Using Elemental Abundances and Petrophysical Properties to Trace Sediment Transport in the Hudson River

    NASA Astrophysics Data System (ADS)

    Chang, C.; Kenna, T. C.; Nitsche, F. O.

    2016-12-01

    The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.

  13. Fine-scale traverses in cumulate rocks, Stillwater Complex: A lunar analogue study

    NASA Technical Reports Server (NTRS)

    Elthon, Donald

    1988-01-01

    The objective was to document finite-scale compositional variations in cumulate rocks from the Stillwater Complex in Montana and to interpret these data in the context of planetary magma fractionation processes such as those operative during the formation of the Earth's Moon. This research problem involved collecting samples in the Stillwater Complex and analyzing them by electron microprobe, X-ray fluorescence (XRF), and instrumental neutron activation analysis (INAA). The electron microprobe is used to determine the compositions of cumulus and intercumulus phases in the rocks, the XRF is used to determine the bulk-rock major element and trace element (Y, Sr, Rb, Zr, Ni, and Cr) abundances, and the INAA lab. is used to determine the trace element (Sc, Co, Cr, Ni, Ta, Hf, U, Th, and the REE) abundances of mineral separates and bulk rocks.

  14. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  15. Gold Provenance Studies for Romanian Archaeological Objects Using Micro-SR-XRF

    NASA Astrophysics Data System (ADS)

    Vasilescu, Angela; Constantinescu, Bogdan; Bugoi, Roxana; Radtke, Martin; Reinholz, Uwe; Simon, Rolf

    2010-04-01

    Studies by Synchrotron Radiation—X-Ray Fluorescence (SR-XRF) for the search of the presence of trace elements like Sb, Sn, Te and Pb in archaeological metallic objects found on the territory of Romania—old coins and Bronze Age jewelry, aimed to determine the provenance of the gold used in their manufacture. The results are compared with the detailed elemental composition of alluvial or primary gold samples, obtained by the same technique. This work attempted to establish the origin of the gold used for the mint of two different types of koson coins. We found that the kosons with monogram are made of refined gold, while the one used for the kosons without monogram is mainly alluvial. The gold used in the manufacture of the Calarasi Vulchitrun-type disk and the Tauteu hair ring is also of alluvial origin.

  16. Soft tissue measurement of arsenic and selenium in an animal model using portable X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Fleming, David E. B.; Groves, John W.; Gherase, Mihai R.; George, Graham N.; Pickering, Ingrid J.; Ponomarenko, Olena; Langan, George; Spallholz, Julian E.; Alauddin, Mohammad; Ahsan, Habibul; Ahmed, Selim; La Porte, Paul F.

    2015-11-01

    The ingestion of trace amounts of arsenic (As) through drinking water is a relatively common pathway of exposure with potentially serious long-term health effects. Studies involving animal models have indicated that selenium (Se) may bind with As inside the body and facilitate excretion. A portable X-ray fluorescence (XRF) technique was previously developed to allow in vivo measurement of As and Se in human tissue. In the current paper, this portable XRF approach was tested for the first time using animal tissue. Seven female Lakeview Golden/LVG Syrian hamsters were dosed under either control, As-only, Se-only, or As and Se conditions. Minimum XRF detection limits in soft tissue of 1.00±0.05 ppm for As and 0.83±0.02 ppm for Se were determined from phantom calibration trials. For dosed hamsters, consistently higher concentrations of As and Se were found in the liver and gall bladder, with elevated levels also observed in the intestines. Concentrations ranged up to 26.4±1.4 ppm for As and 11.8±0.8 ppm for Se. The stomach and heart exhibited more moderate concentrations, while the brain, lung, and muscle demonstrated lower levels. For a given organ, As concentrations generally exceeded Se concentrations. A ratio of approximately 2.5:1 was observed for concentrations of As:Se when considering the same or similar tissue sites in dosed hamsters. Implications for potential in vivo human applications of the technique are briefly considered.

  17. Process monitoring and control with CHEMIN, a miniaturized CCD-based instrument for simultaneous XRD/XRF analysis

    NASA Astrophysics Data System (ADS)

    Vaniman, David T.; Bish, D.; Guthrie, G.; Chipera, S.; Blake, David E.; Collins, S. Andy; Elliott, S. T.; Sarrazin, P.

    1999-10-01

    There is a large variety of mining and manufacturing operations where process monitoring and control can benefit from on-site analysis of both chemical and mineralogic constituents. CHEMIN is a CCD-based instrument capable of both X-ray fluorescence (XRF; chemical) and X-ray diffraction (XRD; mineralogic) analysis. Monitoring and control with an instrument like CHEMIN can be applied to feedstocks, intermediate materials, and final products to optimize production. Examples include control of cement feedstock, of ore for smelting, and of minerals that pose inhalation hazards in the workplace. The combined XRD/XRF capability of CHEMIN can be used wherever a desired commodity is associated with unwanted constituents that may be similar in chemistry or structure but not both (e.g., Ca in both gypsum and feldspar, where only the gypsum is desired to make wallboard). In the mining industry, CHEMIN can determine mineral abundances on the spot and enable more economical mining by providing the means to assay when is being mined, quickly and frequently, at minimal cost. In manufacturing, CHEMIN could be used to spot-check the chemical composition and crystalline makeup of a product at any stage of production. Analysis by CHEMIN can be used as feedback in manufacturing processes where rates of heating, process temperature, mixture of feedstocks, and other variables must be adjusted in real time to correct structure and/or chemistry of the product (e.g., prevention of periclase and alkali sulfate coproduction in cement manufacture).

  18. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass.

    PubMed

    El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris

    2014-08-01

    A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Pots, plates and provenance: sourcing Indian coarse wares from Mleiha using X-ray fluorescence (XRF) spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Reddy, A.; Attaelmanan, A. G.; Mouton, M.

    2012-07-01

    The identification of more than 25% of the pottery sherds from the late PIR.D period (ca. 2nd - mid. 3rd c. AD) assemblage from the recently excavated building H at Mleiha as Indian is based on form and fabric, but using only visual assessment. Petrographic analysis of the fabrics can provide more precise indicators of the geographical origin of the wares. In this study, a total of 21 sherds from various key sites in Western India were compared with 7 different 'Indian' coarse-ware vessels sampled at Mleiha using X-ray fluorescence (XRF) spectrometry. The analyses were conducted on powdered samples collected from the core of each sherd. Each sample was irradiated for 1000 seconds using a 1.2 mm diameter X-ray beam. The resulting spectra were used for quantification of the X-ray intensity and elemental concentration. Levels of correlation in the elemental ratios of the sherds were statistically tested using an F-test as well as a Chi-test. Initial review of the XRF results indicates that the Maharashtra and Gujarat regions of India are probable source areas for at least two of the types of wares. Collection of additional samples from these areas and other regions of India, and further statistical analysis through methods such as Principal Component Analysis will help to isolate groups of wares from India and correlate them with types of vessels imported into the Oman peninsula in antiquity.

  20. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  1. A comparison of portable XRF and ICP-OES analysis for lead on air filter samples from a lead ore concentrator mill and a lead-acid battery recycler.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Andrew, Michael E

    2006-03-01

    Personal and area samples for airborne lead were taken at a lead mine concentrator mill, and at a lead-acid battery recycler. Lead is mined as its sulfidic ore, galena, which is often associated with zinc and silver. The ore typically is concentrated, and partially separated, on site by crushing and differential froth flotation of the ore minerals before being sent to a primary smelter. Besides lead, zinc and iron are also present in the airborne dusts, together with insignificant levels of copper and silver, and, in one area, manganese. The disposal of used lead-acid batteries presents environmental issues, and is also a waste of recoverable materials. Recycling operations allow for the recovery of lead, which can then be sold back to battery manufacturers to form a closed loop. At the recycling facility lead is the chief airborne metal, together with minor antimony and tin, but several other metals are generally present in much smaller quantities, including copper, chromium, manganese and cadmium. Samplers used in these studies included the closed-face 37 mm filter cassette (the current US standard method for lead sampling), the 37 mm GSP or "cone" sampler, the 25 mm Institute of Occupational Medicine (IOM) inhalable sampler, the 25 mm Button sampler, and the open-face 25 mm cassette. Mixed cellulose-ester filters were used in all samplers. The filters were analyzed after sampling for their content of the various metals, particularly lead, that could be analyzed by the specific portable X-ray fluorescence (XRF) analyzer under study, and then were extracted with acid and analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The 25 mm filters were analyzed using a single XRF reading, while three readings on different parts of the filter were taken from the 37 mm filters. For lead at the mine concentrate mill, all five samplers gave good correlations (r2 > 0.96) between the two analytical methods over the entire range of found lead mass, which encompassed the permissible exposure limit of 150 mg m(-3) enforced in the USA by the Mine Safety and Health Administration (MSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations without additional correction, indicating an absence of matrix effects from the presence of iron and zinc in the samples. An approximately 10% negative bias was found for the slope of the Button sampler regression, in line with other studies, but it did not significantly affect the accuracy as all XRF results from this sampler were within 20% of the corresponding ICP values. As in previous studies, the best results were obtained with the GSP sampler using the average of three readings, with all XRF results within 20% of the corresponding ICP values and a slope close to 1 (0.99). Greater than 95% of XRF results were within 20% of the corresponding ICP values for the closed-face 37 mm cassette using the OSHA algorithm, and the IOM sampler using a sample area of 3.46 cm2. As in previous studies, considerable material was found on the interior walls of all samplers that possess an internal surface for deposition, at approximately the same proportion for all samplers. At the lead-acid battery recycler all five samplers in their optimal configurations gave good correlations (r2 > 0.92) between the two analytical methods over the entire range of found lead mass, which included the permissible exposure limit enforced in the USA by the Occupational Safety and Health Administration (OSHA). Linear regression on the results from most samplers gave almost 1 ratio 1 correlations (except for the Button sampler), indicating an absence of matrix effects from the presence of the smaller quantities of the other metals in the samples. A negative bias was found for the slope of the button sampler regression, in line with other studies. Even though very high concentrations of lead were encountered (up to almost 6 mg m(-3)) no saturation of the detector was observed. Most samplers performed well, with >90% of XRF results within +/- 25% of the corresponding ICP results for the optimum configurations. The OSHA algorithm for the CFC worked best without including the back-up pad with the filter.

  2. 2D-3D μXRF elemental mapping of archeological samples

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.

    2017-07-01

    Recently opened for users at LNF XLab-Frascati a μ XRF station, named "Rainbow X-ray" - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.

  3. Study of chloride ion transport of composite by using cement and starch as a binder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armynah, Bidayatul; Halide, Halmar; Zahrawani,

    This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul; Liong, Syarifuddin

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is aboutmore » 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.« less

  5. Beyond Magnetism: a Short History of Obsidian Provenance Studies and Magnetic Personalities (Invited)

    NASA Astrophysics Data System (ADS)

    Shackley, S.

    2010-12-01

    For many decades now, geologists and archaeologists have been analyzing archaeological obsidian using a spate of techniques. No single technology, however, can solve all of the chemical, petrological, or archaeological problems that arise from this disordered substance. The future is indistinct for obsidian studies with the rising use and misuse of portable XRF (PXRF) and ICP-MS, the apparent decline of the use of neutron activation (NAA), continual misuse of megascopic source assignment, and the maturation of laboratory x-ray fluorescence spectrometry (XRF). Magnetic property analysis of obsidian is yet another tool for the understanding of source provenance and may very well become a tool that fills a gap in our analytical repertoire. This discussion is designed to provide historical context for this resurrected technique and serve as a reminder that we don’t always know what we know in geoarchaeological science.

  6. Chemical Analyses of Pre-Holocene Rocks from Medicine Lake Volcano and Vicinity, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2008-01-01

    Chemical analyses are presented in an accompanying table (Table 1) for more than 600 pre-Holocene rocks collected at and near Medicine Lake Volcano, northern California. The data include major-element X-ray fluorescence (XRF) analyses for all of the rocks plus XRF trace element data for most samples, and instrumental neutron activation analysis (INAA) trace element data for many samples. In addition, a limited number of analyses of Na2O and K2O by flame photometry (FP) are included as well assome wet chemical analyses of FeO, H2O+/-, and CO2. Latitude and longitude location information is provided for all samples. This data set is intended to accompany the geologic map of Medicine Lake Volcano (Donnelly-Nolan, in press); map unit designations are given for each sample collected from the map area.

  7. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    NASA Astrophysics Data System (ADS)

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  8. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    NASA Astrophysics Data System (ADS)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  9. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    PubMed

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.

  10. Gold Provenance Studies for Romanian Archaeological Objects Using Micro-SR-XRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilescu, Angela; Constantinescu, Bogdan; Bugoi, Roxana

    2010-04-06

    Studies by Synchrotron Radiation--X-Ray Fluorescence (SR-XRF) for the search of the presence of trace elements like Sb, Sn, Te and Pb in archaeological metallic objects found on the territory of Romania--old coins and Bronze Age jewelry, aimed to determine the provenance of the gold used in their manufacture. The results are compared with the detailed elemental composition of alluvial or primary gold samples, obtained by the same technique. This work attempted to establish the origin of the gold used for the mint of two different types of koson coins. We found that the kosons with monogram are made of refinedmore » gold, while the one used for the kosons without monogram is mainly alluvial. The gold used in the manufacture of the Calarasi Vulchitrun-type disk and the Tauteu hair ring is also of alluvial origin.« less

  11. Nondestructive Analysis of Apollo Samples by Micro-CT and Micro-XRF Analysis: A PET Style Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan A.

    2014-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of a PET is to characterize and classify the returned samples, making this information available to the general research community who can then conduct more in-depth studies on the samples. A PET strives to minimize the impact their work has on the sample suite, which often limits the PET work to largely visual measurements and observations like optical microscopy. More modern techniques can also be utilized by future PET to nondestructively characterize astromaterials in a more rigorous way. Here we present our recent analyses of Apollo samples 14321 and 14305 by micro-CT and micro-XRF (respectively), assess the potential for discovery of "new" Apollo samples for scientific study, and evaluate the usefulness of these techniques in future PET efforts.

  12. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe

    2011-07-06

    We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols wouldmore » allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.« less

  13. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  14. Studies on bronze pre-monetary signs found in Dobroudja using XRF and micro-PIXE

    NASA Astrophysics Data System (ADS)

    Constantinescu, B.; Cristea-Stan, D.; Talmatchi, G.; Ceccato, D.

    2016-03-01

    We performed compositional analyses on 180 Scythian-type arrowheads and pre-monetary signs using XRF method and on 60 small fragments of such items (approx. 100 microns diameter), sampling being performed on previously corrosion-cleaned areas on their surface, using micro-PIXE. The items are found in Dobroudja, Istros-Histria region. The most relevant for numismatists result is that for each finding place the same type of alloy was used both for fighting arrowheads and for pre-monetary signs. Our analyses revealed three types of alloys: Cu-Sn-Pb ("normal" bronze), Cu-Sn-Mn-Pb and Cu-Sn-Sb-Pb. The presence of antimony suggests the use of fahlore-type poly-metals deposits, most probably from Caucasus Mountains. The problem of ancient bronze containing manganese is more complicated; an explanation could be the use of manganese oxides as flux necessary to smelt oxidized ores.

  15. Radioactive sample effects on EDXRF spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, Christopher G

    2008-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward method to determine sample elemental composition. A spectrum can be collected in a few minutes or less, and elemental content can be determined easily if there is adequate energy resolution. Radioactive alpha emitters, however, emit X-rays during the alpha decay process that complicate spectral interpretation. This is particularly noticeable when using a portable instrument where the detector is located in close proximity to the instrument analysis window held against the sample. A portable EDXRF instrument was used to collect spectra from specimens containing plutonium-239 (a moderate alpha emitter) and americium-241 (amore » heavy alpha emitter). These specimens were then analyzed with a wavelength dispersive XRF (WDXRF) instrument to demonstrate the differences to which sample radiation-induced X-ray emission affects the detectors on these two types of XRF instruments.« less

  16. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.

    PubMed

    Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E

    2011-01-01

    Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.

  17. The relationship between orbital, earth-based, and sample data for lunar landing sites

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  18. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruthi, Y. A., E-mail: ymjournal2014@gmail.com; Das, N. Lakshmana, E-mail: nldas9@gmail.com; Ramprasad, S., E-mail: ramprasadsurakala@gmail.com

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders.more » This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.« less

  19. Infiltration of trace metal ions in the oral mucosa of a rat analyzed using SRXRF, XAFS, and ICP-MS.

    PubMed

    Imamura, Toshihiro; Kanno, Zuisei; Imai, Haruki; Sugiyama, Tomoko; Wada, Takahiro; Yoshida, Midori; Sakama, Minoru; Ono, Takashi; Honda, Eiichi; Uo, Motohiro

    2015-01-01

    Although the accumulation and distribution of metals from metallic orthodontic appliances in the oral mucosa have been studied extensively, they remain unclear because their concentration is quite low. In this study, metal specimens (Ni, Ni-Ti, and Co-Cr) were sutured in the unilateral oral mucosa of rats, and the distribution of the eluted elements in the mucosal tissue was estimated using inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SR-XRF). While the infiltrations of Ni, Co, and Cr into the oral mucosal connective tissue were observed with SR-XRF, significant increases were only found in Ni from the pure Ni group and Cr from the Co-Cr group. Furthermore, Ni and Co were estimated as hydrated ions while Cr was estimated in oxide form through X-ray absorption fine structure (XAFS) analysis.

  20. Evaluation of the veracity of one work by the artist Di Cavalcanti through non-destructive techniques: XRF, imaging and brush stroke analysis

    NASA Astrophysics Data System (ADS)

    Kajiya, E. A. M.; Campos, P. H. O. V.; Rizzutto, M. A.; Appoloni, C. R.; Lopes, F.

    2014-02-01

    This paper presents systematic studies and analysis that contributed to the identification of the forgery of a work by the artist Emiliano Augusto Cavalcanti de Albuquerque e Melo, known as Di Cavalcanti. The use of several areas of expertise such as brush stroke analysis ("pinacologia"), applied physics, and art history resulted in an accurate diagnosis for ascertaining the authenticity of the work entitled "Violeiro" (1950). For this work we used non-destructive methods such as techniques of infrared, ultraviolet, visible and tangential light imaging combined with chemical analysis of the pigments by portable X-Ray Fluorescence (XRF) and graphic gesture analysis. Each applied method of analysis produced specific information that made possible the identification of materials and techniques employed and we concluded that this work is not consistent with patterns characteristic of the artist Di Cavalcanti.

  1. Role of XRF in the restoration of a prominent architectural monument at the site of Mleiha

    NASA Astrophysics Data System (ADS)

    Yousif, Eisa; Attaelmanan, Atta

    2012-07-01

    The fort at Mleiha is one of the most well known archaeological sites of its period (3rd c. BC to 3rd c. AD) in the United Arab Emirates and has provided much valuable information. The period of its construction and use coincided with the Parthian period, during which there were extensive commercial contacts between the UAE and Mediterranean cities, Egypt, Mesopotamia, Southwest Iran, Pakistan, East Africa, and the southern Arabian Peninsula. It was restored using local materials, and traditional construction methods. The objective of this study was to utilize XRF techniques for the identification of the elemental composition of building material used to construct an archaeological fort, and to compare it to composition of the restoration material. Results of the study show strong correlation between the original fort building material and those used for restoration.

  2. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels.

    PubMed

    Zhao, Lijuan; Sun, Youping; Hernandez-Viezcas, Jose A; Hong, Jie; Majumdar, Sanghamitra; Niu, Genhua; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-03-03

    Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn.

  3. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence.

    PubMed

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application.

  4. Efficient feature-based 2D/3D registration of transesophageal echocardiography to x-ray fluoroscopy for cardiac interventions

    NASA Astrophysics Data System (ADS)

    Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.

    2014-03-01

    We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.

  5. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  6. Obsidian provenance determination by using the beam stability controlled BSC-XRF and the PIXE-alpha portable spectrometers of the LANDIS laboratory of the LNS-INFN and IBAM-CNR in Catania (Italy)

    NASA Astrophysics Data System (ADS)

    Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.

    2012-04-01

    About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral

  7. Elemental Analysis of Bone, Teeth, Horn and Antler in Different Animal Species Using Non-Invasive Handheld X-Ray Fluorescence

    PubMed Central

    Buddhachat, Kittisak; Klinhom, Sarisa; Siengdee, Puntita; Brown, Janine L.; Nomsiri, Raksiri; Kaewmong, Patcharaporn; Thitaram, Chatchote; Mahakkanukrauh, Pasuk; Nganvongpanit, Korakot

    2016-01-01

    Mineralized tissues accumulate elements that play crucial roles in animal health. Although elemental content of bone, blood and teeth of human and some animal species have been characterized, data for many others are lacking, as well as species comparisons. Here we describe the distribution of elements in horn (Bovidae), antler (Cervidae), teeth and bone (humerus) across a number of species determined by handheld X-ray fluorescence (XRF) to better understand differences and potential biological relevance. A difference in elemental profiles between horns and antlers was observed, possibly due to the outer layer of horns being comprised of keratin, whereas antlers are true bone. Species differences in tissue elemental content may be intrinsic, but also related to feeding habits that contribute to mineral accumulation, particularly for toxic heavy metals. One significant finding was a higher level of iron (Fe) in the humerus bone of elephants compared to other species. This may be an adaptation of the hematopoietic system by distributing Fe throughout the bone rather than the marrow, as elephant humerus lacks a marrow cavity. We also conducted discriminant analysis and found XRF was capable of distinguishing samples from different species, with humerus bone being the best source for species discrimination. For example, we found a 79.2% correct prediction and success rate of 80% for classification between human and non-human humerus bone. These findings show that handheld XRF can serve as an effective tool for the biological study of elemental composition in mineralized tissue samples and may have a forensic application. PMID:27196603

  8. Nondestructive Analysis of Astromaterials by Micro-CT and Micro-XRF Analysis for PET Examination

    NASA Technical Reports Server (NTRS)

    Zeigler, R. A.; Righter, K.; Allen, C. C.

    2013-01-01

    An integral part of any sample return mission is the initial description and classification of returned samples by the preliminary examination team (PET). The goal of the PET is to characterize and classify returned samples and make this information available to the larger research community who then conduct more in-depth studies on the samples. The PET tries to minimize the impact their work has on the sample suite, which has in the past limited the PET work to largely visual, nonquantitative measurements (e.g., optical microscopy). More modern techniques can also be utilized by a PET to nondestructively characterize astromaterials in much more rigorous way. Here we discuss our recent investigations into the applications of micro-CT and micro-XRF analyses with Apollo samples and ANSMET meteorites and assess the usefulness of these techniques in future PET. Results: The application of micro computerized tomography (micro-CT) to astromaterials is not a new concept. The technique involves scanning samples with high-energy x-rays and constructing 3-dimensional images of the density of materials within the sample. The technique can routinely measure large samples (up to approx. 2700 cu cm) with a small individual voxel size (approx. 30 cu m), and has the sensitivity to distinguish the major rock forming minerals and identify clast populations within brecciated samples. We have recently run a test sample of a terrestrial breccia with a carbonate matrix and multiple igneous clast lithologies. The test results are promising and we will soon analyze a approx. 600 g piece of Apollo sample 14321 to map out the clast population within the sample. Benchtop micro x-ray fluorescence (micro-XRF) instruments can rapidly scan large areas (approx. 100 sq cm) with a small pixel size (approx. 25 microns) and measure the (semi) quantitative composition of largely unprepared surfaces for all elements between Be and U, often with sensitivity on the order of a approx. 100 ppm. Our recent testing of meteorite and Apollo samples on micro-XRF instruments has shown that they can easily detect small zircons and phosphates (approx. 10 m), distinguish different clast lithologies within breccias, and identify different lithologies within small rock fragments (2-4 mm soil Apollo soil fragments).

  9. Near-real-time trace element measurements in a rural, traffic-influenced environment with some fireworks

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Slowik, Jay G.; Cruz Minguillón, María; Hueglin, Christoph; Koch, Chris; Prévôt, André S. H.; Baltensperger, Urs

    2016-04-01

    Aerosol-bound trace elements can affect the environment in significant ways especially when they are toxic. Characterizing the trace element spatial and temporal variability is a prerequisite for human exposure studies. The requirement for high time resolution and consequently the low sample masses asked for analysis methods not easily accessible, such as synchrotron radiation-induced X-ray fluorescence spectrometry (SR-XRF). In recent years, instrumentation that samples and analyzes airborne particulate matter with time resolutions of less than an hour in near real time has entered the market. We present the results of a three-week campaign in a rural environment close to a freeway. The measurement period included the fireworks of the Swiss National Day. The XRF instrument was set up at the monitoring station Härkingen of the Swiss Monitoring Network for Air Pollution (NABEL). It was configured to sample and analyze ambient PM10 aerosols in 1-hour intervals. Sample analysis with XRF was performed by the instrument immediately after collection, i.e. during the next sampling interval. 24 elements were analyzed and quantified (Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sn, Sb, Ba, Pt, Hg, Pb, Bi). The element concentrations obtained by the XRF instrument were compared to those determined by ICP-AES and ICP-MS in PM10 samples collected by NABEL high volume samplers. The results demonstrate the capability of the instrument to measure over a wide range of concentrations, from a few ng m-3 to μg m-3, under ambient conditions. The time resolution allows for the characterization of diurnal variations of element concentrations, which provides information on the contribution of emission sources, such as road traffic, soil, or fireworks. Some elements (V, Co, As, Pt) were below their detection limit during most of the time, but As could be quantified during the fireworks. Transition metals Cr, Mn, Fe, Cu, Zn could be attributed to freeway traffic. K, S, Ba, and Bi were strongly linked to the fireworks. The field test provided good evidence for the applicability and ease of use of the instrument. It provided also an idea on the sensitivity of the method in realistic, ambient conditions, although the 3-week period was too short for a thorough assessment, e.g. for different weather conditions.

  10. X-ray fluorescence results from IODP Expedition 355 sediments in Laxmi Basin, eastern Arabian Sea: Insights into late Miocene and Pleistocene carbonate production and burial and possible variations in monsoon intensit

    NASA Astrophysics Data System (ADS)

    Bowen, M. G.; Kulhanek, D. K.; Lyle, M. W.; Hahn, A.

    2017-12-01

    Variations in CaCO3 accumulation on the seafloor depend on a number of factors, including productivity of carbonate-producing organisms in the overlying water column, input of siliciclastic material from nearby continents, and changes in ocean chemistry. These factors are affected by variations in tectonics and climate. Here we use X-ray fluorescence (XRF) core scanning data to develop high-resolution chemical profiles calibrated with discrete samples to examine changes in carbonate production and burial in the eastern Arabian Sea. International Ocean Discovery Program (IODP) Expedition 355 cored two sites in the Indus Fan in Laxmi Basin. We scanned the Pleistocene composite sections from both sites at 2 cm resolution ( 150-300 year sampling resolution) using the Avaatech XRF core scanner at the IODP Gulf Coast Repository. In addition, we scanned a hemipelagic interval dated to the late Miocene ( 8 to 6 Ma) that spans the late Miocene climate transition to drier conditions globally, as documented by an expansion in C4 plants. The 2 cm scanning resolution represents 500 years between samples for the upper Miocene section. We used carbonate measurements on discrete samples to calibrate the XRF data, supplemented by analysis using a quantitative benchtop XRF at the University of Bremen. We find large variability in carbonate content in the Pleistocene and upper Miocene, varying from 15-80 wt%, with higher carbonate content correlating with lighter colored sediment. The aluminosilicate composition varies in part because of carbonate dilution but also because of changes in the source of clays and turbidites through the section. We also explore the use of chemical ratios to better understand the variations through the section. Changes in Ca/Fe (biogenic/terrestrial component) and Rb/Zr (fine/coarse grained) match well with visual observation of sediment composition in the cores. We can combine these with the oxygen isotope-derived age model for the Pleistocene section to examine orbital-scale variations in carbonate production and terrigenous input at the sites. We also explore proxies for precipitation (Ti/Ca) and weathering (Fe/K and Al/K) to elucidate changes in monsoon strength during the Pleistocene, although these results are preliminary.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shattan, Michael; Stowe, Ashley; McIntosh, Kathryn

    Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation

  12. pXRF quantitative analysis of the Otowi Member of the Bandelier Tuff: Generating large, robust data sets to decipher trace element zonation in large silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Van Hoose, A. E.; Wolff, J.; Conrey, R.

    2013-12-01

    Advances in portable X-Ray fluorescence (pXRF) analytical technology have made it possible for high-quality, quantitative data to be collected in a fraction of the time required by standard, non-portable analytical techniques. Not only do these advances reduce analysis time, but data may also be collected in the field in conjunction with sampling. Rhyolitic pumice, being primarily glass, is an excellent material to be analyzed with this technology. High-quality, quantitative data for elements that are tracers of magmatic differentiation (e.g. Rb, Sr, Y, Nb) can be collected for whole, individual pumices and subsamples of larger pumices in 4 minutes. We have developed a calibration for powdered rhyolite pumice from the Otowi Member of the Bandelier Tuff analyzed with the Bruker Tracer IV pXRF using Bruker software and influence coefficients for pumice, which measures the following 19 oxides and elements: SiO2, TiO2, Al2O3, FeO*, MnO, CaO, K2O, P2O5, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, Ce, Pb, and Th. With this calibration for the pXRF and thousands of individual powdered pumice samples, we have generated an unparalleled data set for any single eruptive unit with known trace element zonation. The Bandelier Tuff of the Valles-Toledo Caldera Complex, Jemez Mountains, New Mexico, is divided into three main eruptive events. For this study, we have chosen the 1.61 Ma, 450 km3 Otowi Member as it is primarily unwelded and pumice samples are easily accessible. The eruption began with a plinian phase from a single source located near center of the current caldera and deposited the Guaje Pumice Bed. The initial Unit A of the Guaje is geochemically monotonous, but Units B through E, co-deposited with ignimbrite show very strong chemical zonation in trace elements, progressing upwards through the deposits from highly differentiated compositions (Rb ~350 ppm, Nb ~200 ppm) to less differentiated (Rb ~100 ppm, Nb ~50 ppm). Co-erupted ignimbrites emplaced during column collapse show similar trace element zonation. The eruption culminated in caldera collapse after transitioning from a single central vent to ring fracture vents. Ignimbrites deposited at this time have lithic breccias and chaotic geochemical profiles. The geochemical discrepancy between early and late deposits warrants detailed, high-resolution sampling and analysis in order to fully understand the dynamics behind zonation processes. Samples were collected from locations that circumvent the caldera and prepared and analyzed in the field and the laboratory with the pXRF. Approximately 2,000 pumice samples will complete this unprecedented data set, allowing detailed reconstruction of trace element zonation around all sides of the Valles Caldera. These data are then used to constrain models of magma chamber processes that produce trace element zonation and how it is preserved in the deposits after a catastrophic, caldera-forming eruption.

  13. UNCERTAINTY IN SCALING NUTRIENT EXPORT COEFFICIENTS

    EPA Science Inventory

    The Innov-X XT400 portable XRF analyzer features a miniature, rugged x-ray tube excitation source for analyzing a wide variety of elements and sample materials, including alloys, environmental solids, and other analytical samples. The x-ray tube source and Light Element Analysis...

  14. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    NASA Astrophysics Data System (ADS)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  15. Methodology using a portable X-ray fluorescence device for on-site and rapid evaluation of heavy-atom contamination in wounds: a model study for application to plutonium contamination.

    PubMed

    Yoshii, Hiroshi; Yanagihara, Kouta; Imaseki, Hitoshi; Hamano, Tsuyoshi; Yamanishi, Hirokuni; Inagaki, Masayo; Sakai, Yasuhiro; Sugiura, Nobuyuki; Kurihara, Osamu; Sakai, Kazuo

    2014-01-01

    Workers decommissioning the Fukushima-Daiichi nuclear power plant damaged from the Great East Japan Earthquake and resulting tsunami are at risk of injury with possible contamination from radioactive heavy atoms including actinides, such as plutonium. We propose a new methodology for on-site and rapid evaluation of heavy-atom contamination in wounds using a portable X-ray fluorescence (XRF) device. In the present study, stable lead was used as the model contaminant substitute for radioactive heavy atoms. First, the wound model was developed by placing a liquid blood phantom on an epoxy resin wound phantom contaminated with lead. Next, the correlation between the concentration of contaminant and the XRF peak intensity was formulated considering the thickness of blood exiting the wound. Methods to determine the minimum detection limit (MDL) of contaminants at any maximal equivalent dose to the wound by XRF measurement were also established. For example, in this system, at a maximal equivalent dose of 16.5 mSv to the wound and blood thickness of 0.5 mm, the MDL value for lead was 1.2 ppm (3.1 nmol). The radioactivity of 239Pu corresponding to 3.1 nmol is 1.7 kBq, which is lower than the radioactivity of 239Pu contaminating puncture wounds in previous severe accidents. In conclusion, the established methodology could be beneficial for future development of a method to evaluate plutonium contamination in wounds. Highlights: Methodology for evaluation of heavy-atom contamination in a wound was established. A portable X-ray fluorescence device enables on-site, rapid and direct evaluation. This method is expected to be used for evaluation of plutonium contamination in wounds.

  16. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    NASA Astrophysics Data System (ADS)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  17. Energy-dispersive X-ray fluorescence systems as analytical tool for assessment of contaminated soils.

    PubMed

    Vanhoof, Chris; Corthouts, Valère; Tirez, Kristof

    2004-04-01

    To determine the heavy metal content in soil samples at contaminated locations, a static and time consuming procedure is used in most cases. Soil samples are collected and analyzed in the laboratory at high quality and high analytical costs. The demand by government and consultants for a more dynamic approach and by customers requiring performances in which analyses are performed in the field with immediate feedback of the analytical results, is growing. Especially during the follow-up of remediation projects or during the determination of the sampling strategy, field analyses are advisable. For this purpose four types of ED-XRF systems, ranging from portable up to high performance laboratory systems, have been evaluated. The evaluation criteria are based on the performance characteristics for all the ED-XRF systems such as limit of detection, accuracy and the measurement uncertainty on one hand, and also the influence of the sample pretreatment on the obtained results on the other hand. The study proved that the field portable system and the bench top system, placed in a mobile van, can be applied as field techniques, resulting in semi-quantitative analytical results. A limited homogenization of the analyzed sample significantly increases the representativeness of the soil sample. The ED-XRF systems can be differentiated by their limits of detection which are a factor of 10 to 20 higher for the portable system. The accuracy of the results and the measurement uncertainty also improved using the bench top system. Therefore, the selection criteria for applicability of both field systems are based on the required detection level and also the required accuracy of the results.

  18. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    PubMed

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. XRF-analysis of fine and ultrafine particles emitted from laser printing devices.

    PubMed

    Barthel, Mathias; Pedan, Vasilisa; Hahn, Oliver; Rothhardt, Monika; Bresch, Harald; Jann, Oliver; Seeger, Stefan

    2011-09-15

    In this work, the elemental composition of fine and ultrafine particles emitted by ten different laser printing devices (LPD) is examined. The particle number concentration time series was measured as well as the particle size distributions. In parallel, emitted particles were size-selectively sampled with a cascade impactor and subsequently analyzed by the means of XRF. In order to identify potential sources for the aerosol's elemental composition, materials involved in the printing process such as toner, paper, and structural components of the printer were also analyzed. While the majority of particle emissions from laser printers are known to consist of recondensated semi volatile organic compounds, elemental analysis identifies Si, S, Cl, Ca, Ti, Cr, and Fe as well as traces of Ni and Zn in different size fractions of the aerosols. These elements can mainly be assigned to contributions from toner and paper. The detection of elements that are likely to be present in inorganic compounds is in good agreement with the measurement of nonvolatile particles. Quantitative measurements of solid particles at 400 °C resulted in residues of 1.6 × 10(9) and 1.5 × 10(10) particles per print job, representing fractions of 0.2% and 1.9% of the total number of emitted particles at room temperature. In combination with the XRF results it is concluded that solid inorganic particles contribute to LPD emissions in measurable quantities. Furthermore, for the first time Br was detected in significant concentrations in the aerosol emitted from two LPD. The analysis of several possible sources identified the plastic housings of the fuser units as main sources due to substantial Br concentrations related to brominated flame retardants.

  20. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less

  1. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  3. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  4. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  5. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  6. Synthesis and characterization of NiO nanopowder by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ningsih, Sherly Kasuma Warda

    2015-09-30

    Preparation of nickel oxide (NiO) nanopowder by sol-gel process has been studied. NiO nanopowders were obtained by sol-gel method by using nickel nitrate hexahydrate and sodium hydroxide and aquadest were used as precursor, agent precipitator and solvent, respectively. The powders were formed by drying at 110°C and followed by heating in the furnace at 400°C for 1.5 hours. The product was obtained black powder. The product was characterized by Energy Dispesive X-ray Fluorescence (ED-XRF), X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The ED-XRF pattern shows the composition of NiO produced was 97.1%. The XRD pattern showed NiO forms weremore » produced generally in monoclinic stucture. The crystalline size of NiO was obtained in the range 40-85 nm. SEM micrograph clearly showed that powder had a spherical with uniform distribution size is 0.1-1.0 µm approximately.« less

  7. Differential protein folding and chemical changes in lung tissues exposed to asbestos or particulates

    PubMed Central

    Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E.; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara

    2015-01-01

    Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects. PMID:26159651

  8. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L.

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations ofmore » {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.« less

  10. Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis.

    PubMed

    Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko

    2015-11-17

    The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.

  11. X-Ray Fluorescence Imaging of Ancient Artifacts

    NASA Astrophysics Data System (ADS)

    Thorne, Robert; Geil, Ethan; Hudson, Kathryn; Crowther, Charles

    2011-03-01

    Many archaeological artifacts feature inscribed and/or painted text or figures which, through erosion and aging, have become difficult or impossible to read with conventional methods. Often, however, the pigments in paints contain metallic elements, and traces may remain even after visible markings are gone. A promising non-destructive technique for revealing these remnants is X-ray fluorescence (XRF) imaging, in which a tightly focused beam of monochromatic synchrotron radiation is raster scanned across a sample. At each pixel, an energy-dispersive detector records a fluorescence spectrum, which is then analyzed to determine element concentrations. In this way, a map of various elements is made across a region of interest. We have succesfully XRF imaged ancient Greek, Roman, and Mayan artifacts, and in many cases, the element maps have revealed significant new information, including previously invisible painted lines and traces of iron from tools used to carve stone tablets. X-ray imaging can be used to determine an object's provenance, including the region where it was produced and whether it is authentic or a copy.

  12. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM

    NASA Astrophysics Data System (ADS)

    Freitas, Renato P.; Coelho, Filipe A.; Felix, Valter S.; Pereira, Marcelo O.; de Souza, Marcos André Torres; Anjos, Marcelino J.

    2018-03-01

    This study used Raman, FT-IR and XRF spectroscopy and SEM to analyze ceramic fragments dating from the 19th century, excavated from an old farm in the municipality of Pirenópolis, Goiás, Brazil. The results show that the samples were produced in an open oven at a firing temperature below 500 °C, using raw materials including kaolinite, hematite, magnetite, quartz, microcline, albite, anhydrite, calcite, illite, orthoclase and MnO2. Although the analyses showed similarities in the manufacturing process and the presence of many minerals was common in all samples, multivariate statistical methods (PCA) allowed a more detailed assessment of similarities and differences in the mineral composition of the samples. The results of the PCA showed that the samples excavated in one of the slave quarters (senzalas) group with those excavated at the farmhouse, where the landowner lived, which indicates a paternalistic attitude towards captives, including the sharing of ceramic materials of everyday use.

  13. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  14. Leather material found on a 6th B.C. Chinese bronze sword: A technical study

    NASA Astrophysics Data System (ADS)

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO 3) and Fe (existing as Fe 2O 3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China.

  15. Recovery of Degraded-Beyond-Recognition 19th Century Daguerreotypes with Rapid High Dynamic Range Elemental X-ray Fluorescence Imaging of Mercury L Emission.

    PubMed

    Kozachuk, Madalena S; Sham, Tsun-Kong; Martin, Ronald R; Nelson, Andrew J; Coulthard, Ian; McElhone, John P

    2018-06-22

    A daguerreotype image, the first commercialized photographic process, is composed of silver-mercury, and often silver-mercury-gold amalgam particles on the surface of a silver-coated copper plate. Specular and diffuse reflectance of light from these image particles produces the range of gray tones that typify these 19 th century images. By mapping the mercury distribution with rapid-scanning, synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging, full portraits, which to the naked eye are obscured entirely by extensive corrosion, can be retrieved in a non-invasive, non-contact, and non-destructive manner. This work furthers the chemical understanding regarding the production of these images and suggests that mercury is retained in the image particles despite surface degradation. Most importantly, μ-XRF imaging provides curators with an image recovery method for degraded daguerreotypes, even if the artifact's condition is beyond traditional conservation treatments.

  16. µ-XRF Studies on the Colour Brilliance in Ancient Wool Carpets

    PubMed Central

    Meyer, Markus; Borca, Camelia N.; Huthwelker, Thomas; Bieber, Manfred; Meßlinger, Karl; Fink, Rainer H.

    2017-01-01

    Many handmade ancient and recent oriental wool carpets show outstanding brilliance and persistence of colour that is not achieved by common industrial dyeing procedures. Anthropologists have suggested the influence of wool fermentation prior to dyeing as key technique to achieve the high dyeing quality. By means of μ-XRF elemental mapping of mordant metals we corroborate this view and show a deep and homogenous penetration of colourants into fermented wool fibres. Furthermore we are able to apply this technique and prove that the fermentation process for ancient specimens cannot be investigated by standard methods due to the lack of intact cuticle layers. This finding suggests a broad range of further investigations that will contribute to a deeper understanding of the development of traditional dyeing techniques. Spectroscopic studies add information on the oxidation states of the metal ions within the respective mordant-dye-complexes and suggest a partial charge transfer as basis for a significant colour change when Fe mordants are used. PMID:29109824

  17. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well asmore » the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.« less

  18. A compact small-beam XRF instrument for in-situ analysis of objects of historical and/or artistic value

    NASA Astrophysics Data System (ADS)

    Vittiglio, G.; Janssens, K.; Vekemans, B.; Adams, F.; Oost, A.

    1999-11-01

    The analytical characteristics, possibilities and limitations of a compact and easily transportable small-beam XRF instrument are described. The instrument consists of a compact, mini-focus Mo X-ray tube that is collimated to produce a sub-mm beam and a peltier-cooled PIN diode detector. Relative MDLs in highly scattering matrices are situated in the 10-100-ppm range; for metallic matrices featuring strong matrix lines, the MDLs of the instrument are approximately a factor 2 higher. Since only a small irradiation area is required, a simple micro-polishing technique that may be performed in situ in combination with the measurements is shown to be effective for the determination of the bulk composition of corroded bronze objects. As an example, a series of Egyptian bronze objects date from XXII nd Egyptian Dynasty (ca. 1090 BC) to the Roman era (30 BC to 640 AD) was analyzed in order to contribute to the very limited database on Cu-alloy compositions from this period.

  19. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  20. Lead theft--a study of the "uniqueness" of lead from church roofs.

    PubMed

    Bond, John W; Hainsworth, Sarah V; Lau, Tien L

    2013-07-01

    In the United Kingdom, theft of lead is common, particularly from churches and other public buildings with lead roofs. To assess the potential to distinguish lead from different sources, 41 samples of lead from 24 church roofs in Northamptonshire, U.K, have been analyzed for relative abundance of trace elements and isotopes of lead using X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry, respectively. XRF revealed the overall presence of 12 trace elements with the four most abundant, calcium, phosphorus, silicon, and sulfur, showing a large weight percentage standard error of the mean of all samples suggesting variation in the weight percentage of these elements between different church roofs. Multiple samples from the same roofs, but different lead sheets, showed much lower weight percentage standard errors of the mean suggesting similar trace element concentrations. Lead isotope ratios were similar for all samples. Factors likely to affect the occurrence of these trace elements are discussed. © 2013 American Academy of Forensic Sciences.

  1. Complementary standoff chemical imaging to map and identify artist materials in an early Italian Renaissance panel painting.

    PubMed

    Dooley, Kathryn A; Conover, Damon M; Glinsman, Lisha Deming; Delaney, John K

    2014-12-08

    Two imaging modalities based on molecular and elemental spectroscopy were used to characterize a painting by Cosimo Tura. Visible-to-near-infrared (400-1680 nm) reflectance imaging spectroscopy (RIS) and X-ray fluorescence (XRF) imaging spectroscopy were employed to identify pigments and determine their spatial distribution with higher confidence than from either technique alone. For example, Mary's red robe was modeled through the distribution of an insect-derived red lake (RIS map) and lead white (XRF lead map), rather than a layer of red lake on vermilion. The RIS image cube was also used to isolate the preparatory design by mapping the reflectance spectra associated with it. In conjunction with results from an earlier RIS study (1650-2500 nm) to map and identify the binding media, a more thorough understanding was gained of the materials and techniques used in the painting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.

  3. Conventional X-ray fluorescence camera with a cadmium-telluride detector and its application to cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-04-01

    X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.

  4. Compositional variation in the Hadley Apennine region

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.

    1982-01-01

    Orbital geochemical data in the Hadley Apennine region are related to typical rock compositions and used in determining the distribution of soils derived from the rock types found in this region. Orbital XRF Mg/Si and Al/Si intensities are the orbital data that are used primarily. These data are corrected for spurious interorbit variation using a modification of a previously developed method. The corrected values are than converted to % MgO and % Al2O3, respectively, from theoretical considerations, and as such are compared with similar concentrations for typical lunar rocks and soils of the Apollo 15 landing site. The relationship of the XRF values to Fe, Ti, and Th concentrations, derived from gamma-ray observations, is also considered. It is established that the orbital geochemistry data for this region are consistent with the presence of a mixture of ANT suite and Fra Mauro basalt components frequently dominated by a KREEP basalt component toward the west and by a mafic pyroclastic component toward the east.

  5. Forensic practice in the field of protection of cultural heritage

    NASA Astrophysics Data System (ADS)

    Kotrlý, Marek; Turková, Ivana

    2012-06-01

    Microscopic methods play a key role in issues covering analyses of objects of art that are used on the one hand as screening ones, on the other hand they can lead to obtaining data relevant for completion of expertise. Analyses of artworks, gemmological objects and other highly valuable commodities usually do not rank among routine ones, but every analysis is specific, be it e.g. material investigation of artworks, historical textile materials and other antiques (coins, etc.), identification of fragments (from transporters, storage places, etc.), period statues, sculptures compared to originals, analyses of gems and jewellery, etc. A number of analytical techniques may be employed: optical microscopy in transmitted and reflected light, polarization and fluorescence in visible, UV and IR radiation; image analysis, quantitative microspectrophotometry; SEM/EDS/WDS; FTIR and Raman spectroscopy; XRF and microXRF, including mobile one; XRD and microXRD; x-ray backlight or LA-ICP-MS, SIMS, PIXE; further methods of organic analysis are also utilised - GS-MS, MALDI-TOF, etc.

  6. X-ray fluorescence analysis of yellow pigments in altarpieces by Valencian artists of the XV and XVI centuries

    NASA Astrophysics Data System (ADS)

    Ferrero, J. L.; Roldán, C.; Ardid, M.; Navarro, E.

    1999-02-01

    XRF analysis has allowed a quick and precise detection and identification of the inorganic elements that compose the yellow pigments in altarpieces of the XV and XVI centuries painted by the Valencian artists Miguel Alcañiz, Vicente Macip, Juan de Juanes, Hernando Yáñez de la Almedina and Hernando Llanos. The analyses have been carried out with an XRF portable system that consists of a tube of X-rays and detectors of Si(Li) and cadmium zinc telluride. This system has enabled a non-aggressive and non-destructive analysis of many pieces at the Museo de Bellas Artes of Valencia (Spain). Among the yellow pigments we have identified a pigment composed by lead and tin oxides named lead-tin yellow (Pb 2SnO 4), frequently used in European paintings from the XIV century until the first half of the XVIII century. This fact demonstrates the influence of elements and pictorial techniques from Europe to the region of Valencia.

  7. Speciation And Localization Of Arsenic In White And Brown Rice Grains

    EPA Science Inventory

    Synchrotron-based X-ray fluorescence (S-XRF) was utilized to locate arsenic (As) in polished (white) and unpolished (brown) rice grains from the United States, China, and Bangladesh. In white rice As was generally dispersed throughout the grain, the bulk of which constitutes the...

  8. 100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.

    Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S.more » Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on the results of the pilot study, the recommendations for the revision of the work plan are as follows: • characterize the surface soil using field portable XRF measurements with confirmatory inductively coupled plasma mass spectroscopy sampling for the remedial investigation • establish decision units of similar defined areas • establish a process for field investigation of soil concentrations exceeding the screening criteria at the border of the 100-OL-1 OU • define data quality objectives for the work plan using the results of the pilot study and refining the sampling approach for the remedial investigation.« less

  9. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a pinhole camera (transmission geometry, flat two-dimensional detector perpendicular to the direct beam), the instrument (which we call CHEMIN, for Chemistry and Mineralogy) uses an X-ray sensitive CCD detector which will allow concurrent positional and energy-dispersive analysis of collected photons. Thus XRF (energy) and XRD (geometry) analysis of transmitted X-rays will be performed at the same time. Tests performed with single minerals and simple mixtures give promising results. Refinements of the prototype promise interpretable results on complex samples.

  10. Microscopical Examination of Ancient Silver Coins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistofidis, N.; Vourlias, G.; Pavlidou, El.

    2007-04-23

    The microstructure of three silver coins of the IIId century B.C. from the Illyrian king Monounios, the ancient Greek city of Dyrrachion and of Korkyra was studied with XRF and microscopy. From this investigation it turned out that these coins have different chemical composition and microstructure that imply different minting method.

  11. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  12. DEMONSTRATION AND QUALITY ASSURANCE PROJECT PLAN: XRF TECHNOLOGIES OF MEASURING TRACE ELEMENTS IN SOIL AND SEDIMENT

    EPA Science Inventory

    A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 200...

  13. Abundâncias em estrelas de Bário

    NASA Astrophysics Data System (ADS)

    Allen, D. M.

    2003-08-01

    Estrelas de Bário apresentam linhas intensas de elementos produzidos pelo processos (ex: Ba, Y, Sr, Zr) e bandas intensas de CN, C2 e CH. A hipótese mais aceita sobre a origem deste grupo peculiar é a de que essas estrelas façam parte de sistemas binários, tendo recebido material enriquecido em elementos pesados da companheira mais evoluída. Apresentamos neste trabalho uma análise detalhada de uma amostra de estrelas desta classe, incluindo determinação de parâmetros atmosféricos e cálculo de abundâncias. As temperaturas efetivas foram determinadas a partir de dados fotométricos obtidos com o Fotrap instalado no telescópio Zeiss do LNA (Laboratório Nacional de Astrofísica) (B-V, V-I, R-I, V-R), e coletados na literatura nos catálogos Hipparcos (B-V), 2MASS (Two Micron All Sky Survey) (V-K) e The General Catalogue Photometric Data (sistema Geneva). Obtivemos uma faixa de temperaturas de 4400 £ Tef £ 6500. As metalicidades foram determinadas a partir de linhas de Fe I e Fe II, estando os resultados no intervalo -1 £ [Fe/H] £ +0.1. O log g foi determinado pelo equilíbrio de ionização e pela relação com a magnitude bolométrica, a temperatura e a massa, sendo os resultados na faixa 1.5 £ log g £ 4.5. As distâncias utilizadas foram determinadas com o auxílio das paralaxes Hipparcos, e as massas determinadas por modelos de isócronas. Os espectros utilizados foram obtidos com o espectrógrafo FEROS no Telescópio de 1,5m do ESO (European Southern Observatory). As abundâncias foram calculadas por meio de síntese espectral de linhas individuais incluindo elementos alfa, pico do Fe, s e r. Encontramos um excesso de elementos pesados em relação ao Fe, como esperado para estrelas de Bário.

  14. Elastoplasticidad anisotropa de metales en grandes deformaciones

    NASA Astrophysics Data System (ADS)

    Caminero Torija, Miguel Angel

    El objetivo de este trabajo es el desarrollo de modelos y algoritmos numericos que simulen el comportamiento del material bajo estas condiciones en el contexto de programas de elementos finitos, dando como resultado predicciones mas precisas de los procesos de conformado y deformacion plastica en general. Para lograr este objetivo se han desarrollado diversas tareas destinadas a mejorar las predicciones en tres aspectos fundamentales. El primer aspecto consiste en la mejora de la descripcion del endurecimiento cinematico anisotropo en pequenas deformaciones, lo cual se ha realizado a traves de modelos y algoritmos implicitos de superficies multiples. Ha sido estudiada la consistencia de este tipo de modelos tanto si estan basados en una regla implicita similar a la de Mroz o en la regla de Prager. Ademas se han simulado los ensayos de Lamba y Sidebottom, obteniendo, en contra de la creencia general, muy buenas predicciones con la regla de Prager. Dichos modelos podrian ser extendidos de forma relativamente facil para considerar grandes deformaciones a traves de procedimientos en deformaciones logaritmicas, similares a los desarrollados en esta tesis y detallados a continuacion. El segundo aspecto consiste en la descripcion de la anisotropia elastoplastica inicial. Esto se ha conseguido mediante el desarrollo de modelos y algoritmos para plasticidad anisotropa en grandes deformaciones, bien ignorando la posible anisotropia elastica, bien considerandola simultaneamente con la anisotropia plastica. Para ello ha sido necesario desarrollar primero un nuevo algoritmo de elastoplasticidad anisotropa en pequenas deformaciones consistentemente linealizado y sin despreciar ningun termino, de tal forma que se conserve la convergencia cuadratica de los metodos de Newton. Este algoritmo en pequenas deformaciones ha servido para realizar la correccion plastica de dos algoritmos en grandes deformaciones. El primero de estos algoritmos es una variacion del clasico algoritmo de Eterovic y Bathe para incluir la posibilidad de plasticidad anisotropa con endurecimiento mixto. Este primer algoritmo esta restringido a casos de isotropia elastica. La isotropia elastica es una hipotesis bastante habitual en plasticidad anisotropa y tiene la ventaja de que permite el uso de formulaciones mixtas u/p. El segundo algoritmo, mas complejo y general, incluye la posibilidad de elasticidad anisotropa, plasticidad anisotropa y endurecimiento mixto. Este algoritmo supone una contribucion importante ya que esta basado en hipotesis comunmente aceptadas y utilizadas en elastoplasticidad isotropa: descomposicion multiplicativa del gradiente de deformaciones en parte elastica y parte plastica, descripcion hiperelastica sencilla en funcion de deformaciones logaritmicas e integracion exponencial que conserva el volumen. Ademas, la estructura final del algoritmo es modular y relativamente sencilla, consistiendo en un pre- y un postprocesador geometrico y una correccion plastica realizada en pequenas deformaciones. El algoritmo esta consistentemente linealizado para conservar la convergencia cuadratica asintotica de los metodos de Newton y la forma final que toma dicha linealizacion es similar al caso de isotropia elastoplastica implementado; consiste en el modulo tangente algoritmico de pequenas deformaciones sobre el que se aplica una transformacion para convertirlo en el de grandes deformaciones. Todos estos modelos han sido implementados en un codigo propio de elementos finitos denominado DULCINEA, el cual tiene formulaciones lagrangianas totales y actualizadas para grandes deformaciones. Una de las tareas necesarias para poder realizar las simulaciones, ha sido el estudio e implementacion de diferentes elementos que no sufran el bloqueo volumetrico severo que se observa en formulaciones estandar basadas en desplazamientos. Este bloqueo se debe a la condicion de quasi-incompresibilidad que imponen los modelos de plasticidad desviadores y consiste en una respuesta exageradamente rigida de la solucion obtenida por el metodo de los elementos finitos estandar. Entre los elementos implementados cabe destacar el basado en la formulacion mixta u/p, que contiene una interpolacion adicional de grados de libertad de presion. Estos grados de libertad adicionales habitualmente son internos al elemento en mecanica de solidos. En este trabajo se ha desarrollado e implementado en DULCINEA una familia de elementos tridimensionales mixtos en grandes deformaciones que incluye el caso particular BMIX 27/27/4, basado en la formulacion u/p, constituido por 27 nudos, con 27 puntos de integracion estandar y 4 grados de libertad de presiones, y que pasa la condicion Inf-Sup o de Babuska-Brezzi. Sin embargo, se ha observado que la formulacion u/p presenta ciertas limitaciones bajo las hipotesis conjuntas de anisotropia elastica y anisotropia plastica. (Abstract shortened by UMI.)

  15. Evaluation of Airborne Particulate Matter and Metals Data in Personal, Indoor and Outdoor Environments using ED-XRF and ICP-MS and Co-located Duplicate Samples

    EPA Science Inventory

    Factors and sources affecting measurement uncertainty in airborne particulate matter (PM) gravimetric measurements and elemental analyses were investigated as part of the Windsor Ontario Exposure Assessment Study (WOEAS). The assessment was made using co-located duplicate sample...

  16. INDOOR-OUTDOOR-PERSONAL RELATIONSHIPS OF SELECTED FINE PARTICLE TRACE ELEMENTS IN SEATTLE, WA

    EPA Science Inventory

    The overall goal of this work is to better understand not only the sources of outdoor PM but also the sources that contribute to personal PM exposures. This paper summarizes the results of x-ray fluorenscence (XRF) analysis on 24-hr PM2.5 samples collected both inside and outs...

  17. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control data and, if used, the serial number of any x-ray fluorescence (XRF) device. (ix) Specific..., a lead hazard screen shall be conducted as follows: (i) Background information regarding the... this section. Additionally, any background information collected pursuant to paragraph (c)(2)(i) of...

  18. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control data and, if used, the serial number of any x-ray fluorescence (XRF) device. (ix) Specific..., a lead hazard screen shall be conducted as follows: (i) Background information regarding the... this section. Additionally, any background information collected pursuant to paragraph (c)(2)(i) of...

  19. 40 CFR 745.227 - Work practice standards for conducting lead-based paint activities: target housing and child...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control data and, if used, the serial number of any x-ray fluorescence (XRF) device. (ix) Specific..., a lead hazard screen shall be conducted as follows: (i) Background information regarding the... this section. Additionally, any background information collected pursuant to paragraph (c)(2)(i) of...

  20. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  1. Blood Cockle Shells Waste as Renewable Source for the Production of Biogenic CaCO3 and Its Characterisation

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Zulfia, A.

    2017-11-01

    The prowess to reuse and recycle of blood cockle shells for raw material in bio-ceramics applications is an attractive component of integrated waste management program. In this paper an attempt is made to introduce a simple process to manufacture biogenic CaCO3 powder from blood cockle shells waste. The biogenic CaCO3 powder was produced from rinsing of blood cockle shells waste using deionised water and oxalic acid for cleaning the dirt and stain on the shells, then drying and grinding followed by heat treatment at 500 and 800 °C for 5 h. The powder obtained was characterised by XRF, DTA/TG, SEM, FTIR, and XRD analysis. The amount of 97.1 % CaO was obtained from XRF result. The thermal decomposition of CaCO3 become CaO due to mass loss was observed in the TG curve. The SEM result shows the needle-like aragonite morphology of blood cockle shells powder transformed to cubic-like calcite after heat treated at 500 °C. These results were consistent with FTIR and XRD results.

  2. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  3. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland

    NASA Astrophysics Data System (ADS)

    Wulf, Sabine; Ott, Florian; Słowiński, Michał; Noryśkiewicz, Agnieszka M.; Dräger, Nadine; Martin-Puertas, Celia; Czymzik, Markus; Neugebauer, Ina; Dulski, Peter; Bourne, Anna J.; Błaszkiewicz, Mirosław; Brauer, Achim

    2013-09-01

    Tephrochronological studies of partly varved sediments of Trzechowskie palaeolake in central Northern Poland led to the finding of the Late Allerød Laacher See Tephra (LST) from the Eifel Volcanic Field for the first time in a very distal site ca 840 km ENE from its volcanic source. The detection of glass shards of the LST involved a comprehensive combination of techniques, i.e. biostratigraphical constrains, high-resolution μ-XRF core scanning and areal μ-XRF mapping of impregnated sediment slabs as well as detailed visual inspection of sediments. The major element chemistry of volcanic glass confirmed the Laacher See Tephra composition in Trzechowskie palaeolake sediments suggesting a deposition from the Middle Laacher See Tephra (MLST-C) or Upper Laacher See Tephra (ULST) dispersal fans. The finding of the LST in this palaeolake enables direct synchronisation with other high-resolution archives in north-central Europe (i.e., Lake Meerfelder Maar, Rehwiese palaeolake) to investigate regional variations of environmental responses at the onset of the Younger Dryas along a West-East transect through north-central Europe.

  4. Investigation of environmental pollution effects on stone monuments in the case of Santa Maria La Blanca, Seville (Spain)

    NASA Astrophysics Data System (ADS)

    Ortiz, P.; Vázquez, M. A.; Ortiz, R.; Martin, J. M.; Ctvrtnickova, T.; Mateo, M. P.; Nicolas, G.

    2010-09-01

    The aim of the study was to characterize specimens submitted to the effects of weathering in an urban atmosphere. Samples investigated were stones covered by crusts and deposits of thickness ranging from micrometers to millimetres due to traffic pollutants and mineral dust. The pieces were collected in the Church of Santa Maria La Blanca in Seville (South Spain). In the Historical Centre of this city, the traffic is the main source of sulphur oxides. Several analytical techniques have been employed to determine composition of specimens: OM, XRD, XRF, SEM-EDX and LIBS. The main weathering form was gypsum (CaSO4ṡ2H2O), and it has its source in sulphur oxides from traffic. Over this alteration layer, the deposits of atmospheric particles have been found. According to LIBS results, these particles can be composed of Al, Si, Ba, K, Na, Ti, V, Mg and Ca, while XRF technique also detect S, Fe, Mn and P. These atmospheric particles can have an anthropogenic or terrigenous origin, including the weathering of the building materials and its restoration products.

  5. Transmembrane topology, subcellular distribution and turnover of the gamma-aminobutyric acid/benzodizaepine receptor in chick brain cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czajkowski, C.M.

    1987-01-01

    Experiments were performed utilizing trypsinization of the GABA/BZD-R in intact cells to determine (1) the subcellular distribution of membrane-associated GABA/BZD-Rs and (2) aspects of the transmembrane topology of the BZD-R. Additionally, R07-0213, a positively charged benzodiazepine, was used to distinguish between cell surface and intracellular BZD-Rs. Following trypsin treatment of intact cells a cleaved receptor fragment of M{sub r} = 24,000 (xRF24) is generated. It remains anchored in the plasma membrane and not only retains the ability to bind ({sup 3}H)flunitrazepan reversibly and irreversibly but also retains the ability to be modulated by GABA. xRF24 is not observed following trypsinizationmore » of saponin-treated cells or cell homogenates, indicating that it has a cytoplasmic domain as well as a cell surface domain, as expected for a transmembrane fragment of the BZD-R. By utilizing ({sup 3}H)flunitrazepam as an irreversible photoaffinity label, BZD-R turnover was also investigated.« less

  6. Aging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.

    PubMed

    Pushkar, Yulia; Robison, Gregory; Sullivan, Brendan; Fu, Sherleen X; Kohne, Meghan; Jiang, Wendy; Rohr, Sven; Lai, Barry; Marcus, Matthew A; Zakharova, Taisiya; Zheng, Wei

    2013-10-01

    Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K-edge X-ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu-S cluster similar to one present in Cu-metallothionein. Analysis of age-related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age-related effects). We demonstrate that the Cu distribution and age-related concentration changes in the brain are highly cell specific. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  7. A Hidden Portrait by Edgar Degas

    NASA Astrophysics Data System (ADS)

    Thurrowgood, David; Paterson, David; de Jonge, Martin D.; Kirkham, Robin; Thurrowgood, Saul; Howard, Daryl L.

    2016-08-01

    The preservation and understanding of cultural heritage depends increasingly on in-depth chemical studies. Rapid technological advances are forging connections between scientists and arts communities, enabling revolutionary new techniques for non-invasive technical study of culturally significant, highly prized artworks. We have applied a non-invasive, rapid, high definition X-ray fluorescence (XRF) elemental mapping technique to a French Impressionist painting using a synchrotron radiation source, and show how this technology can advance scholarly art interpretation and preservation. We have obtained detailed technical understanding of a painting which could not be resolved by conventional techniques. Here we show 31.6 megapixel scanning XRF derived elemental maps and report a novel image processing methodology utilising these maps to produce a false colour representation of a “hidden” portrait by Edgar Degas. This work provides a cohesive methodology for both imaging and understanding the chemical composition of artworks, and enables scholarly understandings of cultural heritage, many of which have eluded conventional technologies. We anticipate that the outcome from this work will encourage the reassessment of some of the world’s great art treasures.

  8. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market.

    PubMed

    Samsonek, J; Puype, F

    2013-01-01

    In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.

  9. Analysis of Colonial Currency

    NASA Astrophysics Data System (ADS)

    Kurkowski, Michael; Cangany, Catherine; Jordan, Louis; Manukyan, Khachatur; Schultz, Zachary; Wiescher, Michael

    2017-09-01

    This project entailed studying the cellulose in paper, the ink, colorants, and other materials used to produce American colonial currency. The technique primarily used in this project was X-Ray Fluorescence Spectroscopy (XRF). XRF mapping was used to provide both elemental analysis of large-scale objects as well as microscopic examination of individual pigment particles in ink, in addition to the inorganic additives used to prepare paper. The combination of elemental mapping with Fourier Transform Infrared (FTIR) and Raman Spectroscopies permits an efficient analysis of the currency. These spectroscopic methods help identify the molecular composition of the pigments. This combination of atomic and molecular analytical techniques provided an in-depth characterization of the paper currency on the macro, micro, and molecular levels. We have identified several of pigments that were used in the preparation of inks and colorants. Also, different inorganic crystals, such as alumina-silicates, have been detected in different papers. The FTIR spectroscopy allowed us to determine the type of cellulose fiber used in the production of paper currency. Our future research will be directed toward revealing important historical relationships between currencies printed throughout the colonies. ISLA Da Vinci Grant.

  10. The Space Shuttle Columbia Accident Investigation and Reconstruction: Two Years Later

    NASA Technical Reports Server (NTRS)

    McDanels, Steven J.

    2005-01-01

    The Space Shuttle Columbia was lost during re-entry over two years ago. Since the release of the official materials-related findings in August of 2003, additional testing and analysis of select pieces of debris has continued. Microanalytical techniques, including EMPA, ESCA, and x-ray elemental dot mapping, were employed during the initial investigation; the results related the microstructural characteristics of deposit layers to the breach location in the leading edge of the left wing. Such characteristics included deposition order, composition, and distribution. Subsequent to the original efforts, new analytical data and information, not available at the time of the primary investigation, has been generated. This data was obtained via a low-vacuum SEM, fitted not only with a light-element EDS detector, but an XRF tube as well. Essentially, for elements up to sodium, classic EDS was utilized; above sodium, XRF was used. Predominantly, the elements of interest were aluminum, titanium, chromium, iron, nickel, and copper. The findings of both old and new data are compared, and their application to the overall accident investigation detailed.

  11. XRF, μ-XRD and μ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations.

    PubMed

    Franquelo, M L; Duran, A; Castaing, J; Arquillo, D; Perez-Rodriguez, J L

    2012-01-30

    This paper presents the novel application of recently developed analytical techniques to the study of paint layers on sculptures that have been restored/repainted several times across centuries. Analyses were performed using portable XRF, μ-XRD and μ-Raman instruments. Other techniques, such as optical microscopy, SEM-EDX and μ-FTIR, were also used. Pigments and other materials including vermilion, minium, red lac, ivory black, lead white, barium white, zinc white (zincite), titanium white (rutile and anatase), lithopone, gold and brass were detected. Pigments from both ancient and modern times were found due to the different restorations/repaintings carried out. μ-Raman was very useful to characterise some pigments that were difficult to determine by μ-XRD. In some cases, pigments identification was only possible by combining results from the different analytical techniques used in this work. This work is the first article devoted to the study of sculpture cross-section samples using laboratory-made μ-XRD systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. An efficient and fast analytical procedure for the bromine determination in waste electrical and electronic equipment plastics.

    PubMed

    Taurino, R; Cannio, M; Mafredini, T; Pozzi, P

    2014-01-01

    In this study, X-ray fluorescence (XRF) spectroscopy was used, in combination with micro-Raman spectroscopy, for a fast determination of bromine concentration and then of brominated flame retardants (BFRs) compounds in waste electrical and electronic equipments. Different samples from different recycling industries were characterized to evaluate the sorting performances of treatment companies. This investigation must be considered of prime research interest since the impact of BFRs on the environment and their potential risk on human health is an actual concern. Indeed, the new European Restriction of Hazardous Substances Directive (RoHS 2011/65/EU) demands that plastics with BFRs concentration above 0.1%, being potential health hazards, are identified and eliminated from the recycling process. Our results show the capability and the potential of Raman spectroscopy, together with XRF analysis, as effective tools for the rapid detection of BFRs in plastic materials. In particular, the use of these two techniques in combination can be considered as a promising method suitable for quality control applications in the recycling industry.

  13. Estimation of Supraglacial Dust and Debris Geochemical Composition via Satellite Reflectance and Emissivity

    NASA Technical Reports Server (NTRS)

    Casey, Kimberly Ann; Kaab, Andreas

    2012-01-01

    We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra geochemical composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for geochemical composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived geochemical results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial geochemical reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.

  14. NASA Tech Briefs, May 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Fastener Starter; Multifunctional Deployment Hinges Rigidified by Ultraviolet; Temperature-Controlled Clamping and Releasing Mechanism; Long-Range Emergency Preemption of Traffic Lights; High-Efficiency Microwave Power Amplifier; Improvements of ModalMax High-Fidelity Piezoelectric Audio Device; Alumina or Semiconductor Ribbon Waveguides at 30 to 1,000 GHz; HEMT Frequency Doubler with Output at 300 GHz; Single-Chip FPGA Azimuth Pre-Filter for SAR; Autonomous Navigation by a Mobile Robot; Software Would Largely Automate Design of Kalman Filter; Predicting Flows of Rarefied Gases; Centralized Planning for Multiple Exploratory Robots; Electronic Router; Piezo-Operated Shutter Mechanism Moves 1.5 cm; Two SMA-Actuated Miniature Mechanisms; Vortobots; Ultrasonic/Sonic Jackhammer; Removing Pathogens Using Nano-Ceramic-Fiber Filters; Satellite-Derived Management Zones; Digital Equivalent Data System for XRF Labeling of Objects; Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside; Vacuum Attachment for XRF Scanner; Simultaneous Conoscopic Holography and Raman Spectroscopy; Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP; Vibrating Optical Fibers to Make Laser Speckle Disappear; Adaptive Filtering Using Recurrent Neural Networks; and Applying Standard Interfaces to a Process-Control Language.

  15. Leather material found on a 6th B.C. Chinese bronze sword: a technical study.

    PubMed

    Luo, Wugan; Si, Yi; Wang, Hongmin; Qin, Ying; Huang, Fengchun; Wang, Changsui

    2011-09-01

    During July to November, 2006, an important archaeological excavation was conducted in Yun country, Hubei province, southern China. Chinese archaeologists found some remnant of leather materials, covered with red pigments, on a 6th century B.C. Chinese bronze sword. To understand the technology/ies that may have been utilized for manufacturing the leathers, a combined of Raman spectroscopy, FT-IR and XRF was thus applied to the remnant of leather materials. Raman analyses showed that red pigment on the leather was cinnabar (HgS). FT-IR and XRF analyses indicated that the content of some elements, such as Ca (existing as CaCO3) and Fe (existing as Fe2O3), were much higher than those in the surrounding grave soil. The results inferred an application of lime depilation and retting, and the Fe-Al compound salt as tanning agent. And it was furthermore implicated that the Fe-Al salt tanning technique had been developed in the middle and late Spring and Autumn Period of China. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Using XRF Geochemical Data to Differentiate Storm Event Deposits in a Backbarrier Lake in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.; McCloskey, T.

    2016-12-01

    Hurricanes Gustav and Ike consecutively impacted coastal Louisiana in 2008 and generated significant storm surges. Three sediment cores taken from Bay Champagne, a coastal backbarrier lake near Port Fourchon, Louisiana, clearly show a deposition layer of clastic sediment up to 17 cm thick attributable to these two storms. X-ray fluorescence (XRF) analysis indicates that the two storm events can be distinguished from one another based on contrasting geochemical profiles. The bottom layer, presumably deposited by Hurricane Gustav, has high concentrations of S, Cl, Ca, and Sr, suggesting a strong marine influence. The top layer, presumably attributed to Hurricane Ike, has high concentrations of Ti, Mn, Fe and Zn, indicative of material of terrestrial origin. The elemental concentration profiles suggest that the storm deposits in each core were deposited through two distinct hydrological processes: a storm surge -driven marine intrusion during Hurricane Gustav, followed by intensive freshwater flooding during Hurricane Ike. Using these deposits as modern analogs, this technique could be applied to characterize older storm layers in the sedimentary record and potentially provide information about their respective depositional mechanisms.

  17. Characterization and Activation of Indonesian Natural Zeolite from Southwest Aceh District-Aceh Province

    NASA Astrophysics Data System (ADS)

    Yulianis, Y.; Muhammad, S.; Pontas, K.; Mariana, M.; Mahidin, M.

    2018-05-01

    This study aims to identify the effect of activation processes of Indonesian zeolite from Southwest Aceh District, Aceh Province on the physical characteristics and chemical contents changes. The work was conducted by downsizing of natural zeolite into nano particle size, treating it physically (heated up to 105˚C) and chemically (soaked with 0.5 M HCl for 1 hour), and finally calcining it at the temperature of 350° C for 2 hours. The natural and activated nano zeolites were then characterized by using SEM, BET, XRD, XRF and FTIR in order to examine their characters and chemical contents. The characterization results showed that the activated nano zeolite has better appearances than the natural one. The XRD analysis showed that the main minerals of zeolite are quartz and calcite clinochlore. Further, the XRF analysis showed that there are elements of magnesium, calcium and potassium which can be as a cation exchange with other metal elements. Based on the identified properties, this zeolite showed a good performance to be used as an adsorbent in waste water treatment process, especially after activated.

  18. A review of the development of portable laser induced breakdown spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Rakovský, J.; Čermák, P.; Musset, O.; Veis, P.

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopesmore » in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.« less

  20. Complementary use of PIXE-alpha and XRF portable systems for the non-destructive and in situ characterization of gemstones in museums

    NASA Astrophysics Data System (ADS)

    Pappalardo, L.; Karydas, A. G.; Kotzamani, N.; Pappalardo, G.; Romano, F. P.; Zarkadas, Ch.

    2005-09-01

    Gemstones on gold Hellenistic (late 4th century BC, 1st AD) jewelry, exhibited at the Benaki Museum of Athens, were analyzed in situ by means of two non-destructive and portable analytical techniques. The composition of major and minor elements was determined using a new portable PIXE-alpha spectrometer. The analytical features of this spectrometer allow the determination of matrix elements from Na to Zn through the K-lines and the determination of higher atomic number elements via the L- or M-lines. The red stones analyzed were revealed as red garnets, displaying a compositional range from Mg-rich garnet to Fe-rich garnet. The complementary use of a portable XRF spectrometer provided additional information on some trace elements (Cr and Y), which are considered to be important for the chemical separation between different garnet groups. A comparison of our results with recent literature data offers useful indications about the possible geographical provenance of the stones. The analytical techniques, their complementarity and the results obtained are presented and discussed.

  1. Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin.

    PubMed

    Schreiver, Ines; Hesse, Bernhard; Seim, Christian; Castillo-Michel, Hiram; Villanova, Julie; Laux, Peter; Dreiack, Nadine; Penning, Randolf; Tucoulou, Remi; Cotte, Marine; Luch, Andreas

    2017-09-12

    The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (μ) and nano (ν) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron μ-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I α-helix to β-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing.

  2. Microanalysis (micro-XRF, micro-XANES, and micro-XRD) of a tertiary sediment using microfocused synchrotron radiation.

    PubMed

    Denecke, Melissa A; Somogyi, Andrea; Janssens, Koen; Simon, Rolf; Dardenne, Kathy; Noseck, Ulrich

    2007-06-01

    Micro-focused synchrotron radiation techniques to investigate actinide elements in geological samples are becoming an increasingly used tool in nuclear waste disposal research. In this article, results using mu-focus techniques are presented from a bore core section of a U-rich tertiary sediment collected from Ruprechtov, Czech Republic, a natural analog to nuclear waste repository scenarios in deep geological formations. Different methods are applied to obtain various, complementary information. Elemental and element chemical state distributions are obtained from micro-XRF measurements, oxidation states of As determined from micro-XANES, and the crystalline structure of selected regions are studied by means of micro-XRD. We find that preparation of the thin section created an As oxidation state artifact; it apparently changed the As valence in some regions of the sample. Results support our previously proposed hypothesis of the mechanism for U-enrichment in the sediment. AsFeS coating on framboid Fe nodules in the sediment reduced mobile groundwater-dissolved U(VI) to less-soluble U(IV), thereby immobilizing the uranium in the sediment.

  3. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis. PMID:26085368

  4. A Hidden Portrait by Edgar Degas

    PubMed Central

    Thurrowgood, David; Paterson, David; de Jonge, Martin D.; Kirkham, Robin; Thurrowgood, Saul; Howard, Daryl L.

    2016-01-01

    The preservation and understanding of cultural heritage depends increasingly on in-depth chemical studies. Rapid technological advances are forging connections between scientists and arts communities, enabling revolutionary new techniques for non-invasive technical study of culturally significant, highly prized artworks. We have applied a non-invasive, rapid, high definition X-ray fluorescence (XRF) elemental mapping technique to a French Impressionist painting using a synchrotron radiation source, and show how this technology can advance scholarly art interpretation and preservation. We have obtained detailed technical understanding of a painting which could not be resolved by conventional techniques. Here we show 31.6 megapixel scanning XRF derived elemental maps and report a novel image processing methodology utilising these maps to produce a false colour representation of a “hidden” portrait by Edgar Degas. This work provides a cohesive methodology for both imaging and understanding the chemical composition of artworks, and enables scholarly understandings of cultural heritage, many of which have eluded conventional technologies. We anticipate that the outcome from this work will encourage the reassessment of some of the world’s great art treasures. PMID:27490856

  5. Polychlorinated biphenyls in the exterior caulk of San Francisco Bay Area buildings, California, USA.

    PubMed

    Klosterhaus, Susan; McKee, Lester J; Yee, Donald; Kass, Jamie M; Wong, Adam

    2014-05-01

    Extensive evidence of the adverse impacts of polychlorinated biphenyls (PCBs) to wildlife, domestic animals, and humans has now been documented for over 40 years. Despite the ban on production and new use of PCBs in the United States in 1979, a number of fish consumption advisories remain in effect, and there remains considerable uncertainty regarding ongoing environmental sources and management alternatives. Using a blind sampling approach, 25 caulk samples were collected from the exterior of ten buildings in the San Francisco Bay Area and analyzed for PCBs using congener-specific gas chromatography-mass spectrometry (GC-MS) and chlorine using portable X-ray fluorescence (XRF). PCBs were detected in 88% of the caulk samples collected from the study area buildings, with 40% exceeding 50 ppm. Detectable PCB concentrations ranged from 1 to 220,000 ppm. These data are consistent with previous studies in other cities that have identified relatively high concentrations of PCBs in concrete and masonry buildings built between 1950 and 1980. Portable XRF was not a good predictor of the PCB content in caulk and the results indicate that portable XRF analysis may only be useful for identifying caulk that contains low concentrations of Cl (≤ 10,000 ppm) and by extension low or no PCBs. A geographic information system-based approach was used to estimate that 10,500 kg of PCBs remain in interior and exterior caulk in buildings located in the study area, which equates to an average of 4.7 kg PCBs per building. The presence of high concentrations in the exterior caulk of currently standing buildings suggests that building caulk may be an ongoing source of PCBs to the San Francisco Bay Area environment. Further studies to expand the currently small international dataset on PCBs in caulking materials in buildings of countries that produced or imported PCBs appear justified in the context of both human health and possible ongoing environmental release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods1[OA

    PubMed Central

    Bañuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.

    2011-01-01

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping (μXRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). μXRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a “free” nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. μXRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers. PMID:21059825

  7. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products

    NASA Astrophysics Data System (ADS)

    García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel

    2018-05-01

    In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of the TXRF results.

  8. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  9. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower ( Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    DOE PAGES

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; ...

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower ( Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower ( H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualizemore » Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less

  10. Environmental Magnetism and Geochemical Properties of Urban Soils from Baton Rouge, Louisiana: Implications for Anthropogenic Pollution Monitoring

    NASA Astrophysics Data System (ADS)

    Richter, C.; Taylor, D.; Schramm, W.; Day, L.; Vedrines, H.

    2016-12-01

    Magnetic properties (susceptibility and SIRM) of urban soils have been shown to be very effective tracers of anthropogenic pollution. They provide a highly sensitive and easily obtainable measurement of the compositional changes of the mineral and chemical composition in soils. The main objective of this study is to detect the presence of magnetic anthropogenic particles related to environmental pollution by measuring the magnetic signature of soil samples and relating it to heavy metal concentrations obtained by XRF analysis. For this large-scale study carried out over the past eight years, we sampled an area of 260 km2 in and around Baton Rouge, Louisiana, with a total of 257 sites, 5140 individual susceptibility measurements obtained with a hand-held field probe, and 514 discrete samples for laboratory analysis of SIRM, susceptibility, and XRF analysis. In this area rural, industrial, metropolitan, and suburban settings exist in close proximity and allow for the direct comparison of results without significant changes in pedological, climatic, or the bedrock, which influence the magnetic properties. Contour maps and histograms indicate a strong correlation between the magnetic susceptibility, SIRM, and the environmental setting, with the mode of the susceptibility shifting from 0.006x10-3 SI in rural areas to 0.273x10-3 SI in the industrialized parts of the city. The industrialized western area of Baton Rouge especially shows significantly enhanced magnetic properties. For selected sites we determined the concentrations of Mo, Zr, Sr, Ba, U, Rb, Th, Pb, Au, Se, As, Hg, Zn, W, Cu, Cr, Ni, Co, Fe, and Mn with an XRF scanner. A linear correlation between magnetic susceptibility and U, Ba, Cr, Pb, Th, and Zn is statistically significant and suggests that anthropogenic input of heavy metals has a significant influence on magnetic properties. Detailed rock magnetic, geochemical, and statistical analysis will be presented and used, together with soil maps and land-usage maps, to characterize the anthropogenic impact on soils and the shallow subsurface.

  11. Quantitative analysis of concrete using portable x-ray fluorescence: Method development and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washington, Aaron L.; Narrows, William; Christian, Jonathan H.

    During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination.more » This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.« less

  12. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of cultural heritage.

  13. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  14. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tipsmore » contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.« less

  15. Micron to Mine: Synchrotron Science for Mineral Exploration, Production, and Remediation

    NASA Astrophysics Data System (ADS)

    Banerjee, N.; Van Loon, L.; Flynn, T.

    2017-12-01

    Synchrotron science for mineral exploration, production, and remediation studies is a powerful tool that provides industry with relevant micron to macro geochemical information. Synchrotron micro X-ray fluorescence (SR-µXRF) offers a direct, high-resolution, rapid, and cost-effective chemical analysis while preserving the context of the sample by mapping ore minerals with ppm detection limits. Speciation of trace and deleterious elements can then be probed using X-ray absorption near-edge structure (XANES) spectroscopy. Large-scale (tens of cm) µXRF mapping and XANES analysis of samples collected at various mine locations have been undertaken to address questions regarding mineralization history to develop novel trace element exploration vectors. This information provides integral insights into trace element associations with ore minerals, local redox conditions responsible for mineralization, and mineralizing mechanisms. Gold is commonly intimately associated with sulfide mineralization (e.g., pyrite, arsenopyrite, etc.) and is present both as inclusions and filling fractures in sulfide grains. Gold may also occur as nanoparticles and/or in the sulfide mineral crystal lattice, known as "invisible gold". Understanding the nature and distribution of invisible gold in ore is integral to processing efficiency. The high flux and energy of a synchrotron light source allows for the detection of invisible gold by µXRF, and can probe its nature (metallic Au0 vs. lattice bound Au1+) using XANES spectroscopy. The long-term containment and management of arsenic is necessary to protect the health of both humans and the environment. Understanding the relationship of arsenic mineralization to gold deposits can lead to more sophisticated planning for mineral processing and the eventual storage of gangue materials. µXANES spectroscopy is an excellent tool for determining arsenic speciation within the context of the sample. Mineral phases such as arsenopyrite, scorodite, and arsenic trioxide can be accurately identified as well as relative amounts determined. With this information the oxidation-reduction of arsenic-bearing compounds can be monitored to optimize management practices for the long-term capture of arsenic contaminants.

  16. Preliminary study on multi-element profile mapping of crustal and mantle zircons by using Synchrotron Radiation X-ray Fluorescence (SR-XRF)

    NASA Astrophysics Data System (ADS)

    Hasözbek, Altug; Shyam, Badri; Siebel, Wolfgang; Schmitt, Axel; Akay, Erhan; Skinner, Lawrie

    2013-04-01

    Zircon (ZrSiO4) is a mineral of singular importance in the geosciences. Zircon microanalysis has greatly contributed to our understanding of key events in earth's history as certain radioactive heavy elements and their daughter products are well-preserved within the exceptionally stable inorganic matrix of the mineral. A prevailing notion in this field is that zircon, as a mineral, is predominantly a crustal mineral; this has been contested in the last few years with more reports of mantle-derived zircons (Siebel et al., 2009). Zircons enriched from different parts of the upper mantle to lower crust from Turkey (Hasozbek et al. 2010) and Germany (Siebel et al., 2009) will be presented in this study using SR-XRF mapping carried out at beamline 2-IDE at the Advanced Photon Source synchrotron facility (Argonne National Laboratory, USA). The high-resolution (5-10 µm) elemental maps were obtained with collimated and linearly polarized synchrotron radiation (10 to 17 keV) and possess the advantage of being a completely non-destructive technique. Elemental maps of various trace and rare-earth elements along the cross-section of the zircons reveal a zonation-related distribution, which may be used to reveal factors affecting the growth history and dynamics of the crystal formation. Further, abrupt changes in elemental distribution or concentration were found to correspond to faults or inclusions within the zircon crystal. If such observations are found to be applicable for a wide range of samples, elemental mapping with this technique may serve as an important qualitative diagnostic to locating µ-meter inclusions that may be challenging to identify using other techniques (ICP-MS LA, SHRIMP,…) Through these preliminary elemental profile mapping studies of crustal and mantle zircons using SR-XRF methods, we aim to highlight a relatively quick and promising analytical method that may be used to study various geological problems.

  17. An initial examination of carbonate production in the western equatorial Pacific: XRF results from the Pliocene-Pleistocene of IODP Site U1490

    NASA Astrophysics Data System (ADS)

    Chapman, J.; Kulhanek, D. K.; Rosenthal, Y.; Holbourn, A. E.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 363 sought to determine the nature of and driving forces behind climate variability in the Western Pacific Warm Pool (WPWP) region throughout the Neogene on millennial, orbital, and geologic timescales. Our research focuses on the Pliocene to recent (4-0 Ma) sediment record from IODP Site U1490 to examine changes in carbonate production and burial in the WPWP as a record of variations in the regional/global carbon cycle. This interval is of particular interest because it spans the Middle Pliocene Warm Period, the initiation of Northern Hemisphere Glaciation, and the Mid-Pleistocene Transition. Site U1490 is located on the northern edge of Eauripik Rise at 05°58.95'N, 142°39.27'E in the northern part of the WPWP. At 2341 m water depth, today the site is bathed in Upper Circumpolar Deepwater. Pliocene to recent sediment primarily consists of foraminifer-rich nannofossil ooze, with the sedimentation rate varying between 1.5 and 3 cm/kyr. Initial shipboard measurement of calcium carbonate content shows little variation at low resolution (1 sample every few meters), varying between 90 and 95 wt%. We collected X-ray fluorescence (XRF) data at 2 cm resolution along the composite stratigraphic section to obtain a qualitative measure of the bulk chemistry of the sediment. We will use the weight percent calcium carbonate of discrete samples to calibrate the XRF data to generate a high-resolution carbonate record. We observe cyclical variations in the Ca/Ba, which may reflect variations in productivity and/or dissolution through this interval, although additional work is needed to fully interpret these data. Ultimately our research will allow for comparison between records obtained from these cores located in the western equatorial Pacific to those obtained in the eastern and central Pacific, which will better elucidate the nature of the carbon system during the Plio-Pleistocene.

  18. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  19. Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts

    NASA Astrophysics Data System (ADS)

    Apeagyei, Eric; Bank, Michael S.; Spengler, John D.

    2011-04-01

    Human exposures to particulate matter emitted from on-road motor vehicles include complex mixtures of metals from tires, brakes, parts wear and resuspended road dust. The aim of this study was to assess road dust for metals associated with motor vehicle traffic, particularly those metals coming from brake and tire wears. We hypothesized that the road dust would show significant difference in both composition and concentration by traffic type, road class and by location. X-ray fluorescence (XRF) analyses of 115 parked car tires showed Zn and Ca were likely associated with tire wear dust. XRF results of three used brake pads indicated high concentrations of Fe, Ti, Cu, Ba, Mo and Zr. To assess heavy metal exposures associated with tires and brake wear adjacent to roads of varying traffic and functional classes, 85 samples of road dust were collected from road surfaces adjacent to the curb and analyzed by XRF. Median concentrations for Fe, Ca and K were greater than Ti (1619 ppm), with concentration ratios of Fe: Ca: K: Ti [16:5:3:1]. Cumulative frequency distribution graphs showed distribution of Fe, Ba, Cu, and Mo were similar regardless of road traffic rating. However, Zn, Ti, and Zr varied significantly ( p < 0.05) with traffic ratings of roadways (heavy > moderate > low traffic). Fe, Ba, Cu, and Mo also had similar distributions regardless of road class while composition of Zn, Ti, and Zr varied significantly across road class ( p < 0.05) (Major roads > Minor roads > highway). In comparing urban road dust to rural road dust, we observed Fe, Ca, K, and Ti were significantly greater in urban road dust ( p < 0.05). In urban road dust the Fe: Ca: K: Ti relationship with median Ti of 2216 ppm was 12: 6: 3.5: 1. These results indicate that roadway dust may be important sources of metals for runoff water and localized resuspended particulate matter.

  20. A Spectacular Radio Flare from XRF 050416a at 40 Days and Implications for the Nature of X-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Soderberg, A. M.; Nakar, E.; Cenko, S. B.; Cameron, P. B.; Frail, D. A.; Kulkarni, S. R.; Fox, D. B.; Berger, E.; Gal-Yam, A.; Moon, D-S.; hide

    2007-01-01

    We present detailed optical, near-infrared, and radio observations of the X-ray flash 050416a obtained with Palomar and Siding Springs Observatories as well as HST and the VLA, placing this event among the best-studied X-ray flashes to date. In addition, we present an optical spectrum from Keck LRIS from which we measure the redshift of the burst, Z=0.6528. At this redshift the isotropic-equivalent prompt energy release was about 10(exp 51) erg, and using a standard afterglow synchrotron model we find that the blastwave kinetic energy is a factor of 10 larger, E-K,iso approximately equals 10 (exp 52) erg. The lack of an observed jet break to t - 20 days indicates that the opening angle is larger than 7 deg and the total beaming-corrected relativistic energy is larger than 10 exp (50) erg. We further show that the burst produced a strong radio flare at t is similar to 40 days accompanied by an observed flattening in the X-ray band which we attribute to an abrupt circumburst density jump or an episode of energy injection (either from a refreshed shock or off-axis ejecta). Late-time observations with HST show evidence for an associated supernova with peak optical luminosity roughly comparable to that of SN 1998bw. Next, we show that the host galaxy of XRF 050416a is actively forming stars at a rate of at least 2 M-solar per year with a luminosity of L-B is similar to 0.5L* and metallicity of Z is similar to 0.2-0.8 Z-solar. Finally, we discuss the nature of XRF 050416a in the context of short-hard gamma-ray bursts and under the framework of off-axis and dirty fireball models for X-ray flashes.

  1. Micro-XRF for In Situ Geological Exploration of Other Planets

    NASA Technical Reports Server (NTRS)

    Wade, Lawrence A.; Hodyss, Robert P.; Allwood, Abigail C.; Gao, Ning; Kozaczek, Kris

    2013-01-01

    In situ analysis of rock chemistry is a fundamental tool for exploration of planets. To meet this need, a high-spatial-resolution micro x-ray fluorescence (Micro-XRF) instrument was developed that is capable of determining the elemental composition of rocks (elements Na U) with 100 microns spatial resolution, thus providing insight to the composition of features as small as sand grains and individual laminae. The resulting excitation beam is of sufficient intensity that high signal-to-noise punctual spectra are acquired in seconds to a few minutes using an Amptek Silicon Drift Detector (SDD). The instrument features a tightly focused x-ray tube and HVPS developed by Moxtek that provides up to 200 micro-A at 10 to 50 keV, with a custom polycapillary optic developed by XOS Inc. and integrated into a breadboard Micro-XRF (see figure). The total mass of the complete breadboard instrument is 2.76 kg, including mounting hardware, mounting plate, camera, laser, etc. A flight version of this instrument would require less than 5W nominal power and 1.5 kg mass. The instrument includes an Amptek SDD that draws 2.5 W and has a resolution of 135 to 155 eV FWHM at 5.9 keV. It weighs 180 g, including the preamplifier, digital pulse processor, multichannel analyzer, detector and preamp power supplies, and packaging. Rock samples are positioned relative to the instrument by a three-axis arm whose position is controlled by closed-loop translators (mimicking the robotic arm of a rover). The distance from the source to the detector is calculated from the position of a focused laser beam on the sample as imaged by the camera. The instrument enables quick scans of major elements in only 1 second, and rapid acquisition (30 s) of data with excellent signal-to-noise and energy resolution for trace element analysis

  2. A new generation of x-ray spectrometry UHV instruments at the SR facilities BESSY II, ELETTRA and SOLEIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.

    A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors suchmore » as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.« less

  3. Cretaceous honeycomb oysters (Pycnodonte vesicularis) as palaeoseasonality records: A multi-proxy study

    NASA Astrophysics Data System (ADS)

    de Winter, Niels J.; Vellekoop, Johan; Vorsselmans, Robin; Golreihan, Asefeh; Petersen, Sierra V.; Meyer, Kyle W.; Speijer, Robert P.; Claeys, Philippe

    2017-04-01

    Pycnodonte or "honeycomb-oysters" (Bivalvia: Gryphaeidea) is an extinct genus of calcite-producing bivalves which is found in abundance in Cretaceous to Pleistocene fossil beds worldwide. As such, Pycnodonte shells could be ideal tracers of palaeoclimate through time, with the capability to reconstruct sea water conditions and palaeotemperatures in a range of palaeoenvironmental settings. Only few studies have attempted to reconstruct palaeoclimate based on Pycnodonte shells and with variable degrees of success (e.g. Videt, 2003; Huyge et al., 2015). Our study investigates the shell growth, structure and chemical characteristics of Maastrichtian Pycnodonte vesicularis from Bajada de Jaguel in Argentina and aims to rigorously test the application of multiple palaeoenvironmental proxies on the shells of several Maastrichtian Pycnodonte oysters for palaeoclimate reconstruction. The preservation state of four calcite shells was assessed by fluorescence microscopy, cathodoluminescence and micro X-Ray Fluorescence (XRF) mapping. Their shell structure was investigated using a combination of XRF mapping, high-resolution color scanning and microCT scanning. Long integration time point-by-point XRF line scanning yielded high-resolution trace element profiles through the hinge of all shells. Microdrilled samples from the same locations on the shell were analyzed for trace element composition by ICP-MS and for stable carbon and oxygen isotopes by IRMS. Preservation of the calcite microstructure was found to be of sufficient quality to allow discussion of original shell porosity, annual growth increments and pristine chemical signatures of the bivalves. The combination of fluorescence and cathodoluminescence microscopy with XRF mapping and microCT scanning sheds light on the characteristic internal "honeycomb" structure of these extinct bivalves and allows comparison with that of the related extant Neopycnodonte bivalves (Wisshak et al., 2009). Furthermore, high resolution trace element and stable isotope records allow discussion of the degree to which Pycnodonte shells record their palaeoenvironment and can be used to reconstruct past sea water conditions. Preliminary results indicate that stable isotope and trace element ratios in Pynodonte shells record different seasonally changing sea water conditions in the Maastrichtian and reconstructed temperatures are consistent with results from clumped isotope analysis on the same shells and TEX86 analysis on the surrounding rocks. This multi-proxy study sheds light on the shell structure of Pycnodonte oysters, their chemical signature and growth pattern and investigates the expression of palaeoenvironmental proxies in the pristine shell calcite of these bivalves. This investigation shows the potential of using fossil Pycnodonte bivalves as a new archive for palaeoclimate reconstruction on a seasonal scale over a wide range of palaeolatitudes from the Cretaceous until the Pleistocene. References Huyghe et al. (2015) J. Geol Soc 172.5: 576-587. Videt (2003) Diss. Université Rennes 1. Wisshak, et al. (2009) Deep-Sea Res Pt I 56.3: 374-407.

  4. CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.

    EPA Science Inventory

    EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...

  5. SOURCE APPORTIONMENT OF PM2.5 IN SEATTLE, WA URBAN IMPROVE SITE: COMPARISON OF THREE RECEPTOR MODELS AND SOURCE PROFILES

    EPA Science Inventory

    IMPROVE protocol data were collected at the urban Beacon Hill monitoring site in Seattle, WA from 1996-99. The 289 sets of PM2.5 filters were analyzed for: metals using PIXIE and XRF, anions using ion chromatography, elemental hydrogen (H) by proton scattering, and elemental an...

  6. Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter

    EPA Science Inventory

    Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...

  7. Adequacy of surface analytical tools for studying the tribology of ceramics

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1986-01-01

    Surface analytical tools are very beneficial in tribological studies of ceramics. Traditional methods of optical microscopy, XRD, XRF, and SEM should be combined with newer surface sensitive techniques especially AES and XPS. ISS and SIMS can also be useful in providing additional compositon details. Tunneling microscopy and electron energy loss spectroscopy are less known techniques that may also prove useful.

  8. Forensic analysis of black coral (Order Antipatharia).

    PubMed

    Espinoza, Edgard O; Scanlan, Michael D; McClure, Pamela J; Baker, Barry W

    2012-03-10

    Fourier-transform infrared spectroscopy (FTIR), discriminate analysis, X-ray fluorescence spectrometry (XRF), and stereoscopic microscopy were used to separate black coral forensic evidence items from similarly appearing items manufactured from plastics, bovid keratin, and mangrove wood. In addition, novel observations were made of bromine and iodine relationships in black coral that have not been previously reported. Published by Elsevier Ireland Ltd.

  9. Educational X-Ray Experiments and XRF Measurements with a Portable Setup Adapted for the Characterization of Cultural Heritage Objects

    ERIC Educational Resources Information Center

    Sianoudis, I.; Drakaki, E.; Hein, A.

    2010-01-01

    It is common to modify valuable, sophisticated equipment, originally acquired for other purposes, to adapt it for the needs of educational experiments, with great didactic effectiveness. The present project concerns a setup developed from components of a portable system for energy dispersive x-ray fluorescence spectroscopy (EDXRF). Two educational…

  10. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (TECHNICAL REPORT)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  11. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (APPENDICES)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  12. Drill core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-04-01

    Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  13. Drill cutting and core major, trace and rare earth element anlayses from wells RN-17B and RN-30, Reykjanes, Iceland

    DOE Data Explorer

    Andrew Fowler

    2015-05-01

    Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.

  14. Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn.

    PubMed

    Augustynowicz, Joanna; Wróbel, Paweł; Płachno, Bartosz J; Tylko, Grzegorz; Gajewski, Zbigniew; Węgrzynek, Dariusz

    2014-06-01

    The aim of the study was the analysis of Cr distribution in shoots of the macrophyte Callitriche cophocarpa by means of two X-ray-based techniques: micro X-ray fluorescence (μXRF) and electron probe X-ray microanalysis (EPXMA). Plants were treated with 100 μM (5.2 mg l(-1)) chromium solutions for 7 days. Cr was introduced independently at two speciations as Cr(III) and Cr(VI), known for their diverse physicochemical properties and different influence on living organisms. A comparative analysis of Cr(III)-treated plants by EPXMA and μXRF demonstrated high deposition of Cr in epidermal glands/hairs localized on leaves and stems of the plant shoots. Cr in Cr(III)-treated plants was recorded solely in glands/hairs, and the element was not present in any other structures. On the other hand, Cr in Cr(VI)-treated group of plants was rather found in vascular bundles. Moreover, the concentration of Cr in Cr(VI)-treated plants was significantly lower than in plants incubated in Cr(III) solution. The results obtained in this work suggest differences in chromium uptake, transport and accumulation dependent on the oxidative state of the element.

  15. Portable X-ray diffractometer equipped with XRF for archaeometry

    NASA Astrophysics Data System (ADS)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-09-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.

  16. Chemical induced demineralization study in cortical bone

    NASA Astrophysics Data System (ADS)

    Sales, E.; da Silva, C. E. R.; Letichevsky, S.; dos Santos, R.; Leitao, R.; dos Santos, C. T.; de Oliveira, L. F.; de Avillez, R.; Monteiro, M.; Costa-Felix, R.; Paciornik, S.; dos Anjos, M.

    2018-05-01

    In this work we present a study of demineralization in bovine cortical bone. We selected 9 fresh cortical bone samples from 2 diaphyseal femurs for analysis. Samples were demineralized for 24 h, 48 h, 72 h and 96 h using two concentrations of EDTA with different pH: EDTA 0.1 M (pH 10, alkaline) and EDTA 0.5 M (pH 7.4, neutral). We have employed μ-X-ray fluorescence (μ-XRF) and X-ray diffraction (XRD) to assess the degree of demineralization. EDTA solutions were analyzed for Calcium (Ca) and Phosphorous (P) extractions by Atomic Absorption Spectrophotometry (AAS) and Ion Chromatography (IC), respectively. Results from AAS and IC showed that EDTA 0.5 M (pH 7.4) removed two times more Ca and 3 times more P than EDTA 0.1 M (pH 10) in the first 24 hours. μ-XRF results presented that EDTA has a high capacity to bind Calcium and Phosphorus. On the other hand, despite the differences in concentration and pH, EDTA did not bind Zn and Sr. Results from XRD showed that EDTA with high concentration had a greater impact to the samples' crystallinity causing a severe damage.

  17. The use of skin Fe levels as a surrogate marker for organ Fe levels, to monitor treatment in cases of iron overload

    NASA Astrophysics Data System (ADS)

    Farquharson, Michael J.; Bagshaw, Andrew P.; Porter, John B.; Abeysinghe, R. D.

    2000-05-01

    A system based on the detection of K-shell x-ray fluorescence (XRF) has been used to investigate whether a correlation exists between the concentration of iron in the skin and the concentration of iron in the liver, as the degree of iron loading increases. The motivation behind this work is to develop a non-invasive method of determining the extent of the body's iron stores via measurements on the skin, in order to monitor the efficacy of chelation therapy administered to patients with β-thalassaemia. Sprague-Dawley rats were iron loaded via injections of iron dextran and subsequently treated with the iron chelator CP94. The non-haem iron concentrations of the liver, heart and spleen were determined using bathophenanthroline sulphonate as the chromogen reagent. Samples of abdominal skin were taken and the iron concentrations determined using XRF. A strong correlation between the skin iron concentration and the liver iron concentration has been demonstrated (R2 = 0.86). Similar correlations exist for the heart and the spleen. These results show that this method holds great potential as a tool in the diagnosis and treatment of hereditary haemochromatosis and β-thalassaemia.

  18. A Deep Search with HST for Late Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep; Kouveliotou, Chryssa; Levan, Andrew; Fruchter, Andrew; Rol, Evert; Rhoads, James; Gorosabel, Javier; Ramirez-Ruiz, Enrico; Hjorth, Jens; Wijers, Ralph

    2004-01-01

    X-ray Flashes (XRFs), are, like Gamma-Ray Bursts (GRBs) thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible hom a reduced range of distances when compared with GRBs. Here we present the results of two epoch Hubble Space Telescope imaging of two XRFs. These images taken approximately 45 and 200 days post bust reveal no evidence for an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while faint supernovae such as SN 2002ap would be visible to z approximately 1. At these distances the bursts would not fit the observed correlations between E(sub p) and E(sub iso) and would have required extremely luminous X-ray afterglows. We conclude that should these XRFs reside at low redshift, it is necessary either that their line of sight is heavily extinguished, or that XRFs, unlike GRBs do not have temporally coincident supernovae.

  19. X-ray fluorescence analysis of Mexican varieties of dried chili peppers II: Commercial and home-grown specimens

    NASA Astrophysics Data System (ADS)

    Romero-Dávila, E.; Miranda, J.; Pineda, J. C.

    2015-07-01

    Elemental analyses of samples of Mexican varieties of dried chili peppers were carried out using X-ray Fluorescence (XRF). Several specimens of Capsicum annuum L., Capsicum chinense, and Capsicum pubescens were analyzed and the results compared to previous studies of elemental contents in other varieties of Capsicum annuum (ancho, morita, chilpotle, guajillo, pasilla, and árbol). The first set of samples was bought packaged in markets. In the present work, the study focuses on home-grown samples of the árbol and chilpotle varieties, commercial habanero (Capsicum chinense), as well as commercial and home-grown specimens of manzano (Capsicum pubescencs). Samples were freeze dried and pelletized. XRF analyses were carried out using a spectrometer based on an Rh X-ray tube, using a Si-PIN detector. The system detection calibration was performed through the analysis of the NIST certified reference materials 1547 (peach leaves) and 1574 (tomato leaves), while accuracy was checked with the reference material 1571 (orchard leaves). Elemental contents of all elements in the new set of samples were similar to those of the first group. Nevertheless, it was found that commercial samples contain high amounts of Br, while home-grown varieties do not.

  20. Synchrotron Radiation μ-X Ray Fluorescence on Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Burattini, E.; Cinque, G.; Bellisola, G.; Fracasso, G.; Monti, F.; Colombatti, M.

    2003-01-01

    Synchrotron Radiation micro X-Ray Fluorescence (SR μ-XRF) was applied for the first time to map the trace element content on Multicellular Tumor Spheroids (MTS), i.e. human cell clusters used as an in vitro model for testing micrometastases responses to antitumoral drugs. In particular, immunotoxin molecules composed of a carrier protein (Transferrin) bound to a powerful cytotoxin (Ricin A), were here considered as representatives of a class of therapheutic macromolecules used in cancer theraphy. Spheroids included in polyacrylamide gel and placed inside quartz capillaries were studied at the ESRF ID22 beamline using a 15 keV monochromatic photon microbeam. Elemental maps (of Fe, Cu, Zn and Pb) on four groups of spheroids grown under different conditions were studied: untreated, treated only with the carrier molecule or with the toxin alone, and with the complete immunotoxin molecule (carrier+toxin). The results indicate that the distribution of Zn and, to some extent, Cu in the spheroid cells is homogeneous and independent of the treatment type. Total Reflection X-Ray Fluorescence (TR-XRF) was also applied to quantify the average trace element content in the spheroids. Future developments of the technique are finally outlined on the basis of these preliminary results.

  1. XRF map identification problems based on a PDE electrodeposition model

    NASA Astrophysics Data System (ADS)

    Sgura, Ivonne; Bozzini, Benedetto

    2017-04-01

    In this paper we focus on the following map identification problem (MIP): given a morphochemical reaction-diffusion (RD) PDE system modeling an electrodepostion process, we look for a time t *, belonging to the transient dynamics and a set of parameters \\mathbf{p} , such that the PDE solution, for the morphology h≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) and for the chemistry θ ≤ft(x,y,{{t}\\ast};\\mathbf{p}\\right) approximates a given experimental map M *. Towards this aim, we introduce a numerical algorithm using singular value decomposition (SVD) and Frobenius norm to give a measure of error distance between experimental maps for h and θ and simulated solutions of the RD-PDE system on a fixed time integration interval. The technique proposed allows quantitative use of microspectroscopy images, such as XRF maps. Specifically, in this work we have modelled the morphology and manganese distributions of nanostructured components of innovative batteries and we have followed their changes resulting from ageing under operating conditions. The availability of quantitative information on space-time evolution of active materials in terms of model parameters will allow dramatic improvements in knowledge-based optimization of battery fabrication and operation.

  2. XRF analysis to identify historical photographic processes: The case of some Interguglielmi Jr.'s images from the Palermo Municipal Archive

    NASA Astrophysics Data System (ADS)

    Modica, A.; Alberghina, M. F.; Brai, M.; Bruno, M.; Di Bella, M.; Fontana, D.; Tranchina, L.

    2017-06-01

    In the early period, even though professional photographers worked with similar techniques and products, their artistic and commercial aims determined different choices and led them to follow different, often personal, recipes. For this reason, identification of the techniques through date and name of the photographer or through some visual features like colour, tonality and surface of the image layer, often needs further investigation to be proved. Chemical characterization, carried out in a non or micro destructive way, can be crucial to provide useful information about the original composition, degradation process, realization technique, in obtaining an indirect dating of the photograph and/or to choose the most correct conservation treatment. In our case, x-ray fluorescence (XRF) analysis was used to confirm the chemical composition of eleven historical photographs dated between the end of the 19th century and the beginning of the 20th, shot in Palermo (Sicily) by a renowned photographer of the time, and pasted on their original cardboards. The elemental identification, obtained with a non destructive approach, provided important information to distinguish among different photographic techniques in terms of distribution and characterization of chemical elements markers in the photographic surface.

  3. Visualizing the 17th century underpainting in Portrait of an Old Man by Rembrandt van Rijn using synchrotron-based scanning macro-XRF

    NASA Astrophysics Data System (ADS)

    Alfeld, Matthias; Siddons, D. Peter; Janssens, Koen; Dik, Joris; Woll, Arthur; Kirkham, Robin; van de Wetering, Ernst

    2013-04-01

    In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting—other than in localized cross-sections—have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity.

  4. Precipitation Rate Investigation on synthesis of precipitated calcium carbonate

    NASA Astrophysics Data System (ADS)

    Sulistiyono, E.; Handayani, M.; Firdiyono, F.; Fajariani, E. N.

    2018-03-01

    Study on the formation of precipitated calcium carbonate from natural limestone Sukabumi with the influenced of various parameters such as precipitation rate, concentration of CaCl2 and amplitudes were investigated. We also investigated the result with the precipitated calcium carbonate from Merck (p.a) for comparison. The higher concentration of CaCl2 would give effect to the lower of the precipitation rate. It was observed that precipitation rate of calcium carbonate from limestone Sukabumi at concentration of 0.08 molar was 3.66 cm/minutes and showing the optimum condition, while the precipitation rate of calcium carbonate Merck at the concentration 0.08 molar was 3.53 cm/minutes. The characterization of precipitated calcium carbonate was done using X-ray fluorescence (XRF) and scanning electron microscope (SEM). The characterization using XRF showed that CaO content of precipitated calcium carbonate from natural limestone Sukabumi had high purity of 99.16%. The particle distribution using scanning electron microscope (SEM) showed that precipitated calcium carbonate from natural limestone Sukabumi revealed 1.79 µm – 11.46 µm, meanwhile the particle distribution of precipitated calcium carbonate Merck showed larger particles with the size of 3.22 µm – 10.68 µm.

  5. Tin accumulation in spermatozoa of the rats exposed to tributyltin chloride by synchrotron radiation X-ray fluorescence (SR-XRF) analysis with microprobe

    NASA Astrophysics Data System (ADS)

    Homma-Takeda, S.; Nishimura, Y.; Terada, Y.; Ueno, S.; Watanabe, Y.; Yukawa, M.

    2005-04-01

    Organotin compounds are widely used in industry and its environmental contamination by these compounds has recently become a concern. It is known that they act as endocrine disruptors but details of the dynamics of Sn in reproductive organs are still unknown. In the present study, we attempted to determine Sn distribution in the testis of rats exposed to tributyltin chloride (TBTC) by inductively coupled argon plasma-mass spectrometry (ICP-MS) for microdissectioned seminiferous tubules and cell-selective metal determination of synchrotron radiation X-ray florescence (SR-XRF) analysis. TBTC was orally administered to rats at a dose of 45 μmol/kg per day for 3 days. One day later, Sn was detected in the microdissectioned seminiferous tubules at a level approximately equivalent to that in the testis. Significant stage-specificity of Sn accumulation was not observed in the experimental model. Sn was also detected in spermatozoa at the stage VIII seminiferous tubule, which are the final step of spermatogenesis in the testis. These data indicate that Sn accumulates in germ cells as well as in spermatozoa in a short period of TBTC exposure.

  6. Combined Survey Format (CSF) Archaeogeophysical (Metal Detecting, Radiometrics and Resistivity) and Archaeochemical (XRF) Investigations of the 19th Century La Hacienda Y Presidio of Babocomari Military Site in Arizona

    NASA Astrophysics Data System (ADS)

    Lundin, R. J.; Aydin, N.; Brackett, C.

    2007-05-01

    Recent archaeological investigations of Historic Era Mexican and Anglo-American and Prehistoric and Protohistoric Hohokam and Sobaipuri culture sites on the Babacomari Land Grant near Sierra Vista Arizona by Carothers Environmental, LLC (CE), Wondjina Research Institute (WRI) and DMG Four Corners Research (FCR) led to the discovery of two major 19th Century military sites that were known from the literature but had not been scientifically investigated. It was decided by WRI and BABACOMARI RANCH that this project was ideal for an experimental cooperative training program for archaeologists and geologists from the anthropology and geology departments of UA, ASU, NAU, PC, and members of AAS, AAHS, AAC, THS and USFS personnel in the use of the new CSF archaeogeophysical, archaeochemical and airbourne remote sensing technologies and field techniques that have just been recently introduced in the US. WRI, CE and Statistical Research Inc. (SRI) conducted CSF VLF Metal Detecting, Radiometrics and Resistivity studies and portable X-Ray Fluorescence (XRF) archaeochemical studies. The results will be presented along with suggestions as to use of these technologies in CSF studies.

  7. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. X-ray fluorescence camera for imaging of iodine media in vivo.

    PubMed

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  9. Magnetic Susceptibility and Heavy Metals in Guano from South Sulawesi Caves

    NASA Astrophysics Data System (ADS)

    Rifai, H.; Putra, R.; Fadila, M. R.; Erni, E.; Wurster, C. M.

    2018-04-01

    Measurement of some magnetic properties have been performed on vertical profile from South Sulawesi caves (Mampu and Bubau) by using low cost, rapid, sensitive and non destructive magnetic method. The aim is to attempt to use magnetic characters as a fingerprint for anthropogenic pollution in the caves. Guano samples were collected every 5 cm at a certain section of Mampu and Bubau cave, South Sulawesi, starting from surface through 300 cm in depth of mampu Cave and 30 cm of Bubau Cave. The magnetic parameters such as magnetic susceptibility and percentage frequency dependence susceptibility were measured using the Bartington MS2-MS2B instruments and supported by X-Ray Fluoroscence (XRF) to know their element composition. The results show that the samples had variations in magnetic susceptibility from 3.5 to 242.6 x 10‑8 m3/kg for Mampu Cave and from 8.6 to 106.5 x 10‑8 m3/kg for Bubau Cave and also magnetic domain. Then, the XRF results show that the caves contain several heavy metals. Magnetic and heavy metal analyses showing that the magnetic minerals in caves are lithogenic (Fe-bearing minerals) in origin and anthropogenic (Zn content) in the caves.

  10. Feasibility of an integrated X-ray instrument for Mars exobiology and geology. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fonda, M. L.; Schwartz, D. E.; Koppel, L. N.; Franco, E. D.; Kerner, J. A.

    1994-01-01

    By employing an integrated X-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details relevant to the possibility of the origin and evolution of life on Mars will be acquired. An integrated combined X Ray Fluorescence/X Ray Detection (XRF/XRD) instrument has been breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for Mars Environmental Survey (MESUR) and future Mars missions. Among others, primary objectives for the exploration of Mars include: the intense study of local areas on Mars to 'establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epochs; and to establish the global chemical and physical characteristics of the Martian surface'. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment.

  11. X-ray fluorescence spectroscopy and Monte Carlo characterization of a unique nuragic artifact (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Brunetti, Antonio; Depalmas, Anna; di Gennaro, Francesco; Serges, Alessandra; Schiavon, Nicola

    2016-07-01

    The chemical composition of a unique bronze artifact known as the "Cesta" ("Basket") belonging to the ancient Nuragic civilization of the Island of Sardinia, Italy has been analyzed by combining X-ray Fluorescence Spectroscopy (XRF) with Monte Carlo simulations using the XRMC code. The "Cesta" had been discovered probably in the XVIII century with the first graphic representation reported around 1761. In a later draft (dated 1764), the basket has been depicted as being carried upside-down on the shoulder of a large bronze warrior Barthélemy (1761), Pinza (1901), Winckelmann (1776) . The two pictorial representations differed only by the presence of handles in the most recent one. XRF measurements revealed that the handles of the object are composed by brass while the other parts are composed by bronze suggesting the handles as being a later addition to the original object. The artifact is covered at its surface by a fairly thick corrosion patina. In order to determine the bronze bulk composition without the need for removing the outer patina, the artifact has been modeled as a two layer object in Monte Carlo simulations.

  12. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I., Baliva, A., Stevoli, A., Ambrosi, R., Critani, F., Delhez, R., Scandelli, L., Holland, A., Nelms, N. & the Mars-XRD Team, Proceedings of the 38th Lunar and Planetary Science Conference, 12 - 16 March 2007, League City, Texas, USA. [2] L. Marinangeli, I. B. Hutchinson, A. Stevoli, G. Adami, R. Ambrosi, R. Amils, V. Assis Fernandes, A. Baliva, A. T. Basilevsky, G. Benedix, P. Bland, A. J. Böttger, J. Bridges, G. Caprarelli, G. Cressey, F. Critani, N. d'Alessandro, R. Delhez, C. Domeneghetti, D. Fernandez-Remolar, R. Filippone, A. M. Fioretti, J. M. Garcia Ruiz, M. Gilmore, G. M. Hansford, G. Iezzi, R. Ingley, M. Ivanov, G. Marseguerra, L. Moroz, C. Pelliciari, P. Petrinca, E. Piluso, L. Pompilio, J. Sykes, F. Westall and the MARS-XRD Team, EPSC-DPS Joint Meeting 2011, 3 - 7 October 2011, La Cité Internationale des Congrès Nantes Métropole, Nantes, France.

  13. IRD evidence for Heinrich Events H1 and H2 on the NJ Margin

    NASA Astrophysics Data System (ADS)

    Christensen, B. A.; Calabrese, J.; O'Neill, C.; Goff, J. A.

    2011-12-01

    Recent seismic reflection studies suggest icebergs grounded on the late Pleistocene New Jersey margin (Goff and Austin, 2009) during Heinrich events H1 (~17 cal Ka), H2 (~23 cal Ka), H3 (~30 cal Ka) and H4 (~37 cal Ka). We tested this hypothesis by analyzing sediments on the upper NJ continental slope, near the area where icebergs were found. Ocean Drilling Program Site 1073A is located at 39°13.5214'N, 72°16.5461'W in 639 m water depth. The greater water depth increases the likelihood of preservation and improves the stratigraphic control. We obtained elemental measurements for Site 1073A Cores 1-6 using the X-ray Fluorescence (XRF) Core Scanner at the MARUM IODP core repository, University of Bremen. Cores were scanned at 10kV and 30kV to obtain a full suite of elements for analysis, with XRF data collected between 1 and 10 cm intervals. The values are reported in areas for the elements and were then converted to elemental ratios (Ca/Sr, Si/Sr, K/Al, and Si/Ti) for analysis. The origin of a Heinrich layer within an IRD belt can be identified by geochemical measures along with magnetic susceptibility and the presence of detrital materials that reflect its provenance (Hemming, 2004). Following analyses for Atlantic Ocean IRD by Hodell et al. (2008), higher Si/Sr values indicate abundant detrital silicates and low biogenic carbonate. Abundant detrital carbonate is identified by higher Ca/Sr values. K/Al may be used as a proxy for weathered matter being deposited and is a good indicator of terrigenous material (Yarincik, 2000). Si/Ti ratios may be used as a proxy for organic and siliceous productivity (Agnihotri, 2008). The elemental analysis was ground-truthed with grain size analysis at 10 cm intervals. Grain size analysis reveals large particles in a finer matrix at 123 cm and 284 cm. We interpret these as IRD. A linear sedimentation age model places the IRD around the time of Heinrich events H1 and H2. Age control is provided for the late Pleistocene principally by radiocarbon methods (McHugh and Olsson, 2002); however, the age model is not unequivocal so we present results for a few interpretations (linear sedimentation rates, and modeled). Nonetheless, the IRD is consistent with the timing of H1 and H2. While the IRD are obvious from the grain size analysis, we were not able to identify IRD from XRF elemental analyses. This may because the sediments are derived locally rather than transported from the higher latitudes, rendering IRD identification a function of grain size (anomalously large particles in a marine setting) rather than geochemistry. Alternatively, the particles were not close enough to the surface to impact the XRF response. This study provides further evidence for the presence of icebergs on the late Pleistocene NJ margin.

  14. Art, Meet Chemistry; Chemistry, Meet Art: Case Studies, Current Literature, and Instrumental Methods Combined to Create a Hands-On Experience for Nonmajors and Instrumental Analysis Students

    ERIC Educational Resources Information Center

    Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.

    2010-01-01

    Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…

  15. AFRL Projects to Replace Cadmium

    DTIC Science & Technology

    2005-03-01

    Protocol does not – Identify/ select a material or process – Impose processing restrictions on candidates – Implement a material or process into production...within proper limits • Use XRF to measure composition and thickness – Strippability • Remove coating within 60 minutes • Replate coating and pass...product information available? Magnetron Sputtering to Replace Cd • Task 2: Coating Deposition and Screening – Selection of qualified vendors and

  16. Lead Exposures and Biological Responses in Military Weapons Systems. Effects of Long-Term Exposure Among U.S. Army Artillerymen

    DTIC Science & Technology

    1993-09-01

    64 Dosimetry Data Taken during XRF Measurements at ANL Procedure Thermoluminescent dosimeters ( TLDs ) were placed in various locations during a 1- or...measured in vivo by x-ray fluorescence spectrophotometry. The lead responses evaluated were increases in free erythrocyte porphyrin concentration...8 2.4.1 Instrument Design ..................................... 8 2.4.2 Dosimetry Evaluation .................................. 9

  17. Equatorial Pacific Productivity Events and Intervals in the Middle and late Miocene through XRF-Scanned Bulk Sediment Composition Data

    NASA Astrophysics Data System (ADS)

    Lyle, M. W.; Stepanova, A.; Wilson, J. K.; Marcantonio, F.

    2014-12-01

    The equatorial Pacific is the largest open ocean productivity center, responsible for nearly half of global marine new production and about 40% of CaCO3 burial. Understanding how the equatorial Pacific upwelling system has evolved over the Neogene is critical to understand the evolution of the global carbon cycle. We know from reconnaissance studies that productivity in equatorial Pacific surface waters as well as dissolution driven by deep waters have strongly affected the sediment record. We have used calibrated XRF scanning to capture anomalies in equatorial Pacific upwelling and productivity at Milankovitch-resolving resolution since the early Miocene. The 8 elements calibrated in the XRF scans can be used to distinguish intervals of high carbonate dissolution from those of high productivity. Carbonate dissolution intervals are recorded by a drop of CaCO3 relative to Aeolian clays, with little change in the ratio between estimated opal and clay (estimated by TiO2). In contrast, high production intervals have high opal/TiO2 and low CaCO3. Low CaCO3 contents are caused partly by dilution, since high production skews tropical particulate rain to be more opal-rich relative to carbonate, and additional C-org rain can help to increase CaCO3 dissolution within near-surface sediments. We observe long-lived high production anomalies modulated by orbitally-driven climate variability. Prominent intervals are found at the end of the Miocene climate optimum (~ 14 Ma), interspersed with dissolution intervals in the Carbonate Crash interval (~9-11 Ma), and in the Biogenic Bloom interval (8-4.5 Ma). Using relationships among biogenic fluxes in modern equatorial sediment trap studies, especially the positive correlations between biogenic Ba , C-org, and CaCO3 fluxes, we find that the highest production intervals have much higher opal/C-org in the particulate rain, implying an inefficient carbon pump to the deep ocean. If confirmed, productivity was not as strong a feedback to atmospheric CO2 in the Miocene as it is in the Holocene.

  18. In vivo evaluation of Fe in human skin employing X-Ray Fluorescence Methodology (XRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estevam, M.; Appoloni, C. R.

    2007-02-12

    Recent technological improvements allow the method of in vivo XRF to provide useful sensibility for diagnostics or monitoring in biomedical applications. In cases of hereditary sanguine disorders as the {beta}-thalassaemia or a genetic disorder like Haemochromatosis, there is a high concentration of elements as Fe, Zn and Cu in the skin and internal organs, due to the treatment of those abnormalities or due to the own dysfunction caused by the disease. The levels of Fe related to the patient bearers of the {beta}-thalassaemia are determined, at the moment, measuring a protein in the sanguine current, called ferritin. The monitoring ofmore » the protein is ineffective in several situations, such as when the patient suffers any disturbance of health. Nowadays, the main forms of measuring the levels of those metals through hepatic storage are the biopsy of the liver, that is invasive and potentially dangerous, presenting a rate of mortality of 0.1%, and by means of magnetic susceptibilities that employs a quantum superconductor, which is highly expensive and there are only three main world centers with this equipment This work investigates the use of a Si PIN-diode detector and a 238Pu source (13 and 17keV; 13%; 95.2mCi; 86y) for the measurement of Fe skin levels compatible with those associated to the disease {beta}-thalassaemia. XRF spectra were analyzed using a set of AXIL-WinQXAS programs elaborated and disseminated by the IAEA. The determination coefficient of the calibration model (sensitivity curve) was 0.97. Measurements on skin phantoms containing concentrations of Fe in the range from 10 to 150 parts per million (ppm), indicate that we are able to detect Fe at levels of the order of 15ppm, using monitoring periods of 50 seconds and skin entrance dose less than 10 mSv, The literature reports skin Fe levels from 15.0 to 60.0 ppm in normal persons and from 70 to 150 ppm in thalassaemics patients. So, the employed methodology allows the measurement of the skin Fe concentration.« less

  19. In vivo evaluation of Fe in human skin employing X-Ray Fluorescence Methodology (XRF)

    NASA Astrophysics Data System (ADS)

    Estevam, M.; Appoloni, C. R.

    2007-02-01

    Recent technological improvements allow the method of in vivo XRF to provide useful sensibility for diagnostics or monitoring in biomedical applications. In cases of hereditary sanguine disorders as the β-thalassaemia or a genetic disorder like Haemochromatosis, there is a high concentration of elements as Fe, Zn and Cu in the skin and internal organs, due to the treatment of those abnormalities or due to the own dysfunction caused by the disease. The levels of Fe related to the patient bearers of the β-thalassaemia are determined, at the moment, measuring a protein in the sanguine current, called ferritin. The monitoring of the protein is ineffective in several situations, such as when the patient suffers any disturbance of health. Nowadays, the main forms of measuring the levels of those metals through hepatic storage are the biopsy of the liver, that is invasive and potentially dangerous, presenting a rate of mortality of 0.1%, and by means of magnetic susceptibilities that employs a quantum superconductor, which is highly expensive and there are only three main world centers with this equipment This work investigates the use of a Si PIN-diode detector and a 238Pu source (13 and 17keV; 13%; 95.2mCi; 86y) for the measurement of Fe skin levels compatible with those associated to the disease β-thalassaemia. XRF spectra were analyzed using a set of AXIL-WinQXAS programs elaborated and disseminated by the IAEA. The determination coefficient of the calibration model (sensitivity curve) was 0.97. Measurements on skin phantoms containing concentrations of Fe in the range from 10 to 150 parts per million (ppm), indicate that we are able to detect Fe at levels of the order of 15ppm, using monitoring periods of 50 seconds and skin entrance dose less than 10 mSv, The literature reports skin Fe levels from 15.0 to 60.0 ppm in normal persons and from 70 to 150 ppm in thalassaemics patients. So, the employed methodology allows the measurement of the skin Fe concentration.

  20. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.

  1. The use of XRF core scanner technique to identify anthropogenic chronological markers for dating recent sediments and for mapping and estimating the quantity of contaminated sediments in different fjord settings in western Norway

    NASA Astrophysics Data System (ADS)

    Haflidason, H.; Thorsen, L.; Soldal, O. L.

    2016-12-01

    Following the initiation of the industrial revolution in Norway at the early 1900´s many of the heavy industrial factories established at that time were located in inner fjord systems of western Norway. The advantage was an easy access to cheap electricity, but the main disadvantage has been that the pollution from this industrial activity has been transported into fjord systems where the circulation of the water masses has been fairly limited leading to a high concentration of heavy metals in the fjord basin sediments. The recently developed non-destructive X-ray Fluorescence (XRF) core scanning technique offers new possibilities to obtain near-continuous records of bulk element composition in marine records. This new analytical geochemical method can measure the bulk element content directly from the surface sediment archives within a period of seconds and with a resolution up to 200 microns. By applying this method on rapidly deposited sediments one can reconstruct a continuous record of carbonate content on a sub-decadal to annual scale. This kind of high-resolution records can also be compared directly with historical and instrumental records from the same area. This offers new possibilities to identify in an effective way the geochemical anomalies in the sediment column and estimate the variability of the industrially produced elements as e.g. Cu, Zn and Pb and their distribution and thickness/quantity in fjord basin sediments. Examples will be presented demonstrating the close linkage between the industrial production history and the entrance of these elements in the fjord sediments. Identification of these elements offers an excellent opportunity to date the recent marine sediments using these elements as an event spike and also to reconstruct the history of pollution in these fjord basin sediments. As the precision of the XRF element detection is high the time of full recovery to natural conditions of the basin sediments, after close down of these factories, can be calculated.

  2. X-Ray analysis of riverbank sediment of the Tisza (Hungary): identification of particles from a mine pollution event

    NASA Astrophysics Data System (ADS)

    Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.

    2002-03-01

    A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of particles originating from mine tailings on a defined river section.

  3. Evaluating CO2 mineralization capacity of sedimentary rock Using BCR sequential extraction procedures

    NASA Astrophysics Data System (ADS)

    Yang, Gang-Ting; Yu, Chi-Wen; Yang, Hsiao-Ming; Chiao, Chung-Hui; Yang, Ming-Wei

    2015-04-01

    To relief the high concentration of carbon dioxide in the atmosphere, carbon capture and storage (CCS) is gradually becoming an important concept to reduce greenhouse gas emissions. In IPCC Special Report on CCS, the storage mechanisms for geological formations are categorized into structural/stratigraphic, hydrodynamic and geochemical trappings. Geochemical trapping is considered as a storage mechanism, which can further increase storage capacity, effectiveness and security in terms of permanent CO2 sequestration. The injected CO2 can have geochemical interactions with pore fluid and reservoir rocks and transform into minerals. It is important to evaluate the capacity of reservoir rock for sequestrating CO2. In this study, sedimentary rock samples were collected from a 2-km-deep well in Midwestern Taiwan; and, the BCR sequential extraction experiments developed by European Union Measurement and Testing Programme were conducted. BCR was designed for extracting three major phases from soil, including exchangeable phase and carbonates (the first stage), reducible phase (the second stage) and oxidizable phase (the third stage). The chemistry of extracted solutions and rock residues were measured with ICP-MS and XRF, respectively. According to the results of XRF, considerable amounts of calcium and iron can be extracted by BCR procedures but other cations are negligible. In general, shale has a higher capacity of CO2 sequestration than sandstone. The first stage of extraction can release about 6 (sandstone) to 18.5 (shale) g of calcium from 1 kg rock, which are equivalent to 6.6 and 20.4 g CO2/kg rock, respectively. In the second stage extraction, 0.71 (sandstone) to 1.38 (shale) g/kg rock of iron can be released and can mineralized 0.56 to 1.08 g CO2/kg rock. However, there are no considerable cations extracted in the third stage of BCR as shown by the XRF analysis. In addition, the results of ICP-MS show that Mg can be released in the order of 10-3 g from 1 kg rock while cations of Zn, Co, Ni, Cd, Pb, Cu and Ba are in the order of 10-4 g.

  4. Heavy Metals in Soil and Salad in the Proximity of Historical Ferroalloy Emission

    PubMed Central

    Ferri, Roberta; Donna, Filippo; Smith, Donald R.; Guazzetti, Stefano; Zacco, Annalisa; Rizzo, Luigi; Bontempi, Elza; Zimmerman, Neil J.; Lucchini, Roberto G.

    2016-01-01

    Emissions of manganese (Mn), lead (Pb), iron (Fe), zinc (Zn), copper (Cu) from ferro-alloy operations has taken place in Valcamonica, a pre-Alp valley in the province of Brescia, Italy, for about a century until 2001. Metal concentrations were measured in the soil of local home gardens and in the cultivated vegetables. Soil analysis was carried out using a portable X-Ray Fluorescence (XRF) spectrometer in both surface soil and at 10 cm depth. A subset of soil samples (n = 23) additionally was analysed using the modified BCR sequential extraction method and ICP-OES for intercalibration with XRF (XRF Mn = 1.33 * total OES Mn – 71.8; R = 0.830, p < 0.0001). Samples of salads (Lactuca sativa and Chichorium spp.) were analyzed with a Total Reflection X-Ray Fluorescence (TXRF) technique. Vegetable and soil metal measurements were performed in 59 home gardens of Valcamonica, and compared with 23 gardens from the Garda Lake reference area. Results indicate significantly higher levels of soil Mn (median 986 ppm vs 416 ppm), Pb (median 46.1 ppm vs 30.2 ppm), Fe (median 19,800 ppm vs 13,100 ppm) in the Valcamonica compared to the reference area. Surface soil levels of all metals were significantly higher in surface soil compared to deeper soil, consistent with atmospheric deposition. Significantly higher levels of metals were shown also in lettuce from Valcamonica for Mn (median 53.6 ppm vs 30.2) and Fe (median 153 vs 118). Metals in Chichorium spp. did not differ between the two areas. Surface soil metal levels declined with increasing distance from the closest ferroalloy plant, consistent with plant emissions as the source of elevated soil metal levels. A correlation between Mn concentrations in soil and lettuce was also observed. These data show that historic ferroalloy plant activity, which ended nearly a decade before this study, has contributed to the persistence of increased Mn levels in locally grown vegetables. Further research is needed to assess whether this increase can lead to adverse effects in humans and plants especially for Mn, an essential element that can be toxic in humans when exceeding the homeostatic ranges. PMID:27818841

  5. A ~600 kyr duration Early Pleistocene record from the West Turkana (Kenya) HSPDP drill site: elemental XRF variability to reconstruct climate change in Turkana Boy's backyard

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Beck, C. C.; Brown, E. T.; Cohen, A.; Deino, A. L.; Feibel, C. S.; Sier, M.

    2015-12-01

    Outcrops in the Kenyan and Ethiopian rift valleys document repeated occurrences of freshwater lakes and wooded landscapes over the past 4 million years at locations that are currently seasonally-dry savanna. Studies of the rich fossil records, in combination with outcropping lacustrine sequences, led to major breakthroughs in our knowledge of driving factors in human evolution. However, study of continuous drill core from ancient lake basins provides a basis for to unravel East African climate dynamics in an unseen fashion. The Hominin Sites and Paleolakes Drilling Project (HSPDP), and the related Olorgesailie Drilling Project, recovered ~2 km of drill core since 2012. A major project goal is characterization of East African paleoclimate in order to evaluate its impact on hominin evolution. XRF core scanning data provide a means of evaluating records of past environmental conditions continuously and at high resolution. However, the HSPDP records contain complex lithologies reflecting repeated episodes of inundation and desiccation of the lake basins. Nevertheless, careful data evaluation based on detailed lithostratigraphy, which includes smear-slide microscopic analyses and X-radiographic images, allows disentanglement of complex signals and robust identification of continuous sequences for any cyclostratigraphic and statistical analysis. At the HSPDP Turkana Basin site a 175.6 m-long core the covers the Early Pleistocene time window during which hominids first expanded out of Africa and marine records document reorganization of tropical climate and the development of the strong Walker circulation. This drill site carries particular interest as it is located in only 2.5 km from the location of one of the most complete hominin skeletons ever recovered (Turkana Boy). Here we present a methodological approach to address the highly variable lithostratigraphy of the East African records to establish comprehensive and environmentally meaningful paleoclimate timeseries. In addition, the XRF record of the changing hydroclimate of the West Turkana Basin from 1.3 to 1.9 kyrs will be explored in relation to regional reconstructions and marine stratigraphies.

  6. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  7. Preliminary Study on the Dissolutions of Ce, Nd, Y and La from Mineral Cassiterite by Acid and Alkaline Leaching

    NASA Astrophysics Data System (ADS)

    Firdiyono, F.; Andriyah, L.; Aini, F. N.; Arini, T.; Lalasari, L. H.

    2018-03-01

    Rare Earth Metal is a rare element that its availability in nature is very small. In Indonesia, the potential of rare earth metals is generally found as the associated mineral in major commodities, especially gold and alluvial tin. These associated minerals can be processed using a particular technology so that the result is a by-product that can increase the added value of the mineral. This purpose of this research was to investigate the dissolution of Cerium (Ce), Neodymium (Nd), Yttrium (Y) and Lanthanum (La) from mineral cassiterite by leaching process using dilute hydrochloric acid (HCl), sulfate acid (H2SO4) and sodium hydroxide (NaOH). Firstly, cassiterite was grinded to -100 mesh of particle size and characterized by X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) techniques. Secondly, 10 gram of cassiterite was leached in 100 ml solution of 3.26 N HCl, H2SO4 and NaOH at variation leaching time of 2, 4, 6, 24 and 48 hours in atmospheric conditions. The products were then filtered to separate filtrate and residue of cassiterite. Finally, to investigate the dissolution of Ce, La, Nd and Y, filtrate from dissolved cassiterite was analyzed by Induced Coupled Plasma-Optical Emission Spectrometry (ICP-OES), while to know the chemical composition of cassiterite leached by dilute HCl, H2SO4 and NaOH, residue products of cassiterite was characterized by XRF analysis. The result of ICP-OES analysis showed the dissolution of Ce element higher than Nd, Y and La elements for leaching cassiterite using HCl, H2SO4 and NaOH. The increase of leaching time was accompanied by the rise in the amount of dissolved elements from cassiterite. The result of XRF analysis showed the chemistry composition of Ce, Nd, Y and La elements on residue decreased insignificantly from chemistry composition of cassiterite (raw mineral) in all conditions. However, the dissolution of Ce, La, Nd and Y was insignificant in all conditions.

  8. Atmospheric Electron-induced X-Ray Spectrometer (AEXS) Instrument Development

    NASA Technical Reports Server (NTRS)

    Wilcox, J. Z.; Urgiles, E.; Toda, R.; George, T.; Crisp, J.

    2005-01-01

    Instrument Development: The membrane properties were investigated in detail due to its critical role. A series of experiments determined that our designed membranes have high electron transmission, yet are capable of isolating high vacuum, are able to withstand differential pressure in excess of one atmosphere, survive vibrational shocks of a magnitude to be expected during a planetary mission. Our initial work has been with a 10 keV source and a 200 nm thick Silicon Nitride (SiN) encapsulation membrane micro-fabricated within a Si support frame (1.5 mm x 1.5 mm window openings. Fig 2 compares the spectra taken with the 10 keV source with spectra taken within SEM. Introduction: This paper describes the progress in the development of the AEXS instrument in our laboratory at JPL. The AEXS is a novel miniature instrument[1-3] based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. The impinging electrons excite XRF spectra from the irradiated spots on samples in external atmosphere with high-to-medium (sub-mm to cm-scale) spatial resolution at Mars atmospheric pressure. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition, or in the case of electron-induced luminescence to identify unusual formations on surface that cathodo-luminescence (CL). The AEXS system (Fig 1) consists of a high-energy (>10keV) electron gun encapsulated by the isolation membrane, an EDX detection and analyzer system to determine the elemental abundance, an optional CL detection system, and a high voltage power supply. The approach to demonstrating a proof of concept of the AEXS has been through 1) demonstrating the viability of micro-fabricated membranes, 2) assembling AEXS setups with increasingly integrated functional components, and 3) simulating the AEXS observational capabilities. This paper will focus on description of the development of the instrument.

  9. Abundancias químicas de las estrellas CP del grupo HgMn μ Leporis y 53 Tauri. II. Boro, Berilio, Carbono, Magnesio, Aluminio y Silicio

    NASA Astrophysics Data System (ADS)

    López García, Z.; Malaroda, S. M.; Faraggiana, R.

    Se determinan las abundancias químicas de los elementos más livianos presentes en dos estrellas CP del grupo HgMn, μ Lep y 53 Tau, utilizando espectros IUE de alta resolución y técnicas de cálculo de espectros sintéticos. Para el cálculo de las líneas se utiliza la lista mas completa de datos atómicos disponible y el programa SYNTHE. Para el cálculo de la abundancia de un elemento se comparan, para cada imagen, los perfiles observados del mayor número de líneas presentes con los perfiles calculados obtenidos por variación de las abundancias iniciales, reteniendo la abundancia para la cual el acuerdo entre las líneas observadas y calculadas es considerado visualmente el mejor. Los resultados obtenidos son comparados con los estimados por la teoría de la difusión.

  10. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempson, Ivan M.; Henry, Dermot A.; U. South Australia)

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  11. Analysis of Venetian-type glass fragments from the ancient city of Lezha (Albania)

    NASA Astrophysics Data System (ADS)

    Šmit, Ž.; Stamati, F.; Civici, N.; Vevecka-Priftaj, A.; Kos, M.; Jezeršek, D.

    2009-08-01

    A series of glasses excavated in the Albanian city of Lezha (ancient Lissos) were analyzed by the combined PIXE-PIGE method in air and by source-excited XRF. The analysis revealed two types of glass that can be identified as façon de Venise glass and its subsequent younger phase, produced by chemically purer components and using As 2O 3 as decolorant.

  12. Bioavailability of Lead in Small Arms Range Soils

    DTIC Science & Technology

    2009-08-01

    titanium TOC total organic carbon USEPA U.S. Environmental Protection Agency XRF X-ray fluorescence Zn zinc Zr zirconium 1 1.0 EXECUTIVE...particles of inert matrix such as rock or slag of variable size, shape, and association; these chemical and physical properties may influence the absorption...zirconium, Pb=lead, Cu=copper, Mn=manganese, Si=silicon, Zn= zinc , As=arsenic, Cd=cadmium, CEC= cation exchange capacity, TOC = total organic carbon, Sb

  13. Multispectral processing of combined visible and x-ray fluorescence imagery in the Archimedes palimpsest

    NASA Astrophysics Data System (ADS)

    Walvoord, Derek; Bright, Allison; Easton, Roger L., Jr.

    2008-02-01

    The Archimedes palimpsest is one of the most significant early texts in the history of science that has survived to the present day. It includes the oldest known copies of text from seven treatises by Archimedes, along with pages from other important historical writings. In the 13th century, the original texts were erased and overwritten by a Christian prayer book, which was used in religious services probably into the 19th century. Since 2001, much of the text from treatises of Archimedes has been transcribed from images taken in reflected visible light and visible fluorescence generated by exposure of the parchment to ultraviolet light. However, these techniques do not work well on all pages of the manuscript, including the badly stained colophon, four pages of the manuscript obscured by icons painted during the first half of the 20th century, and some pages of non-Archimedes texts. Much of the text on the colophon and overpainted pages has been recovered from X-ray fluorescence (XRF) imagery. In this work, the XRF images of one of the other pages were combined with the bands of optical images to create hyperspectral image cubes and processed using standard statistical classification techniques developed for environmental remote sensing to test if this improved the recovery of the original text.

  14. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  15. Development of a micro-XRF system for biological samples based on proton-induced quasimonochromatic X-rays

    NASA Astrophysics Data System (ADS)

    Ploykrachang, K.; Hasegawa, J.; Kondo, K.; Fukuda, H.; Oguri, Y.

    2014-07-01

    We have developed a micro-XRF system based on a proton-induced quasimonochromatic X-ray (QMXR) microbeam for in vivo measurement of biological samples. A 2.5-MeV proton beam impinged normally on a Cu foil target that was slightly thicker than the proton range. The emitted QMXR behind the Cu target was focused with a polycapillary X-ray half lens. For application to analysis of wet or aquatic samples, we prepared a QMXR beam with an incident angle of 45° with respect to the horizontal plane by using a dipole magnet in order to bend the primary proton beam downward by 45°. The focal spot size of the QMXR microbeam on a horizontal sample surface was evaluated to be 250 × 350 μm by a wire scanning method. A microscope camera with a long working distance was installed perpendicular to the sample surface to identify the analyzed position on the sample. The fluorescent radiation from the sample was collected by a Si-PIN photodiode X-ray detector. Using the setup above, we were able to successfully measure the accumulation and distribution of Co in the leaves of a free-floating aquatic plant on a dilute Co solution surface.

  16. Air pollution assessment of Salé's city (Morocco)

    NASA Astrophysics Data System (ADS)

    Bounakhla, M.; Fatah, A.; Embarch, K.; Ibn Majah, M.; Azami, R.; Sabir, A.; Nejjar, A.; Cherkaoui, R.; Gaudry, A.

    2003-05-01

    Four sites were selected in Sale's city in Morocco in order to contribute in air pollution level assessment and determination of its effects on public health. The sites were selected so that they are close to the most important industrialized areas, they have a very high demographic density and they cover a heavy traffic. Two approaches of air sampling and subsequent analysis methods of elements in atmospheric aerosols have been performed. The first is a classical approach, which consists in sampling total airborne materials with a High Volume Sampler and analysing the samples using Atomic Absorption Spectroscopy (AAS). The second is having its interest for studies relating effects of particles on human health. It consists in employing a Dichotomous Sampler to collect inhalable particles and the X-ray Fluorescence (XRF) for elemental analysis. With such system, it was possible to collect separately respirable and inhalable aerosols. The ED-XRF analysis method used is appropriate for monitoring airborne polluants in living and working areas with advantage of simple preparation, nondestructive nature, rapidity and suitable limits of detection. Using this method, it was possible to identify and quantify S, Ca, CI, Fe, Cu, and Pb. With Atomic Absorption Spectroscopy Analysis Method, we quantified Cd. This study have been completed by measuring NOx SO2 and solid suspended particles or airborne particulate matter (APM).

  17. Trentepohlia algae biofilms as bioindicator of atmospheric metal pollution.

    PubMed

    García-Florentino, Cristina; Maguregui, Maite; Morillas, Héctor; Marcaida, Iker; Salcedo, Isabel; Madariaga, Juan Manuel

    2018-06-01

    In this work, a reddish biocolonization composed mainly by Trentepohlia algae affecting a synthetic building material from a modern building from the 90s located in the Bizkaia Science and Technology Park (Zamudio, North of Spain) was characterized and its ability to accumulate metals coming from the surrounding atmosphere was evaluated. To asses if these biofilms can act as bioindicators of the surrounding metal pollution, a fast non-invasive in situ methodology based on the use of hand-held energy dispersive X-ray fluorescence (HH-ED-XRF) was used. In order to corroborate the in situ obtained conclusions, some fragments from the affected material were taken to analyze the metal distribution by means of micro-energy dispersive X-ray fluorescence spectroscopy (μ-ED-XRF) and to confirm the presence of metal particles deposited on it using Scanning Electron Microscopy coupled to an Energy Dispersive Spectrometer (SEM-EDS). In order to confirm if Trentepohlia algae biofilms growing on the surface of building materials could be a fast way to in situ provide information about the surrounding metal pollution, a second Trentepohlia algae biofilm growing on a different kind of material (sandstone) was analyzed from an older historical building, La Galea Fortress (Getxo, North of Spain). Copyright © 2018. Published by Elsevier B.V.

  18. Progress on the Development of the Next Generation X-ray Beam Position Monitors at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.H.; Yang, B.X.; Decker, G.

    Accurate and stable x-ray beam position monitors (XBPMs) are ke y elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generat ion XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Com missioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulatormore » beams are separated by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scat tering from the diamond blades placed edge-on to the x- ray beam. A prototype of the Compton scattering XBPM system was i nstalled at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contac t resistance of a joint between two solid bodies is also discussed« less

  19. Progress on the development of the next generation x-ray beam position monitors at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. H., E-mail: shlee@aps.anl.gov; Yang, B. X., E-mail: bxyang@aps.anl.gov; Decker, G., E-mail: decker@aps.anl.gov

    Accurate and stable x-ray beam position monitors (XBPMs) are key elements in obtaining the desired user beam stability in the Advanced Photon Source (APS). The next generation XBPMs for high heat load front ends (HHL FEs) have been designed to meet these requirements by utilizing Cu K-edge x-ray fluorescence (XRF) from a pair of copper absorbers and have been installed at the front ends (FEs) of the APS. Commissioning data showed a significant performance improvement over the existing photoemission-based XBPMs. While a similar design concept can be applied for the canted undulator front ends, where two undulator beams are separatedmore » by 1.0-mrad, the lower beam power (< 10 kW) per undulator allows us to explore lower-cost solutions based on Compton scattering from the diamond blades placed edge-on to the x-ray beam. A prototype of the Compton scattering XBPM system was installed at 24-ID-A in May 2015. In this report, the design and test results for XRF-based XBPM and Compton scattering based XBPM are presented. Ongoing research related to the development of the next generation XBPMs on thermal contact resistance of a joint between two solid bodies is also discussed.« less

  20. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE PAGES

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...

    2018-03-14

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  1. In vivo investigation of a new 109Cd γ-ray induced K-XRF bone lead measurement system

    NASA Astrophysics Data System (ADS)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2006-01-01

    A new 109Cd γ-ray induced K-XRF bone lead measurement system using an array of four detectors has been developed. Previous results from Monte Carlo (MC) simulations and experiments with phantoms predicted that it would be about three times more sensitive than the conventional system, albeit using a more active source. A dosimetry study has been performed for this system and it demonstrated that the dose delivered to the measured individuals is acceptable even for 5-year-old children. Approval to apply this system to human studies has been received from the Research Ethics Board. In this study, 20 adult volunteers, 10 male, 10 female, were recruited to have their tibia measured with both the conventional system and the new system. The result confirmed the improvement predicted by the MC simulations and the in vitro measurements. Two other interesting points were discovered from the data. One is that the data from the new system showed a significant positive correlation between age and tibia lead concentration, while the data from the conventional system do not. The other is that 85% of the tibia lead concentrations were under the minimum detection limit when measured by the conventional system, and the proportion reduced to 50% when measured by the new system.

  2. Maia Mapper: high definition XRF imaging in the lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  3. A Deep Search with the Hubble Space Telescope for Late-Time Supernova Signatures in the Hosts of XRF 011030 and XRF 020427

    NASA Technical Reports Server (NTRS)

    Levan, Andrew; Patel, Sandeep; Kouveliotou, Chryssa; Fruchter, Andrew; Rhoads, James; Rol, Evert; Ramirez-Ruiz, Enrico; Gorosabel, Javier; Hiorth, Jens; Wijers, Ralph

    2005-01-01

    X-ray flashes (XRFs) are, like gamma-ray bursts (GRBs), thought to signal the collapse of massive stars in distant galaxies. Many models posit that the isotropic equivalent energies of XRFs are lower than those for GRBs, such that they are visible fiom a reduced range of distances when compared with GRBs. Here we present the results of two-epoch Hubble Space Telescope imaging of two XRFs. These images, taken approximately 45 and 200 days postburst, reveal no evidence of an associated supernova in either case. Supernovae such as SN 1998bw would have been visible out to z approximately 1.5 in each case, while fainter supernovae such as SN 2002ap would have been visible to z approximately 1. If the XRFs lie at such large distances, their energies would not fit the observed correlation between the GRB peak energy and isotropic energy release (E(sub p) proportional to E(sub iso)(sup 1/2), in which soft bursts are less energetic. We conclude that, should these XRFs reside at low redshifts (z less than 0.6), either their line of sight is heavily extinguished, they are associated with extremely faint supernovae, or, unlike GRBs, these XRFs do not have temporally coincident supernovae.

  4. Localization and Speciation of Arsenic in Soil and Desert Plant Parkinsonia florida using μXRF and μXANES

    PubMed Central

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M.; Marcus, Matthew A.; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

    2011-01-01

    Parkinsonia florida is a plant species native to the semi-desert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg-1. Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys3. The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil. PMID:21842861

  5. Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using μXRF and μXANES.

    PubMed

    Castillo-Michel, Hiram; Hernandez-Viezcas, Jose; Dokken, Kenneth M; Marcus, Matthew A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2011-09-15

    Parkinsonia florida is a plant species native to the semidesert regions of North America. The cultivation characteristics of this shrub/tree suggest that it could be used for phytoremediation purposes in semiarid regions. This work describes, through the use of synchrotron μXRF and μXANES techniques and ICP-OES, the arsenic (As) accumulation and distribution in P. florida plants grown in two soils spiked with As at 20 mg kg(-1). Plants grown in a sandy soil accumulated at least twice more As in the roots compared to plants grown in a loamy soil. The lower As accumulation in plants grown in the loamy soil corresponded to a lower concentration of As in the water-soluble fraction (WSF) of this soil. LC-ICP-MS speciation analysis showed only As(V) in the WSF from all treatments. In contrast, linear combination XANES speciation analysis from the root tissues showed As mainly present in the reduced As(III) form. Moreover, a fraction of the reduced As was found coordinating to S in a form consistent with As-Cys(3). The percentage of As coordinated to sulfur was smaller for plants grown in the loamy soil when compared to the sandy soil.

  6. Tectonochemistry of the Brooks Range Ophiolite, Alaska

    NASA Astrophysics Data System (ADS)

    Biasi, J.; Asimow, P. D.; Harris, R. A.

    2017-12-01

    The Brooks Range Ophiolite (BRO), recently estimated to be 1800km2 in area, is the largest ophiolite in the Western Hemisphere. However, due to its remote location, it remains one of the least studied. Mineral exploration and reconnaissance-level mapping of the ophiolite were done in the 1970s and 1980s. Some chemical analyses were also performed, but since that time the BRO has received little attention. Over the subsequent 25+ years, the study of ophiolites has advanced greatly. These early studies found that the BRO lies in the structurally highest position in the Brooks Range, and its obduction probably coincided with the collision between the Koyukuk Arc and the Arctic-Alaska continental margin. It is therefore important to determine the tectonic setting in which the BRO formed if one wants to understand the tectonic history of the Northern Cordillera during the Jurassic/Cretaceous. Here we present new tectonochemistry data from the BRO. This includes whole-rock data (via XRF), trace element data (via XRF and ICP-MS), and mineral chemistries (via Electron Microprobe). Using immobile element fingerprinting, we constrain the tectonic setting in which the BRO formed and how this information ties in with other events in the Northern Cordillera's history. The fingerprinting results are supplemented by Cr-in-spinel data and Al-in-olivine thermometry.

  7. Occurrence of brominated diphenyl ethers, dibenzo-p-dioxins and dibenzofurans in foam materials in scrapped car seats from 1985 to 2012.

    PubMed

    Redin, L; Niinipuu, M; Jansson, S

    2017-03-01

    The purpose of this study was to evaluate the occurrence of polybrominated diphenyl ethers (PBDEs), dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) in polyurethane foam (PUF) from car seats of end-of-life vehicles (ELVs) and compare the concentrations of PBDEs with the stipulated regulations in the POP Directive. The method comprised screening by X-ray fluorescence (XRF) and GG-MS analysis. Of 59 tested samples from ELVs, 17 samples showed lines above limit of detection (LOD) levels when screening by XRF. Those samples were selected as replicates and for further analysis by GC-MS. The majority of the studied samples showed low or non-detectable concentrations of PBDEs and PBDD/Fs, but two samples showed concentrations of Σ Te-HpBDEs close to the regulated level for Te-HpBDEs in waste (1000mgkg -1 ); one was slightly higher (1390mgkg -1 ) and the other slightly lower (570mgkg -1 ). It was concluded that brominated pollutants such as Te-HpBDEs occur in low levels in automotive applications in scrapped cars produced in years when brominated flame retardants were used. However, two of the 59 samples tested showed levels close to those stipulated by regulations concerning POPs in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Climate variability during the deglaciation and Holocene in a high-altitude alpine lake deduced from the sedimentary record from Laguna Seca, Sierra Nevada, southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Jiménez-Moreno, Gonzalo; José Ramos-Román, María; García-Alix, Antonio; Jiménez-Espejo, Francisco; Anderson, R. Scott

    2017-04-01

    High-resolution X-ray fluorescence (XRF), magnetic susceptibility (MS), color and lithological analyses have been carried out on a 3.6 m-long sediment core from Laguna Seca, a high-elevation dry lake from Sierra Nevada mountain range, southern Spain. This is the longest sedimentary record retrieved from an alpine lake in southern Iberian Peninsula. Besides, alpine lakes are very sensitive environments to climate changes and previous studies showed that Laguna Seca could provide an excellent record to identify millennial-scale climate variations during deglaciation and the whole Holocene. XRF analyses, in particular high calcium and low K/Ca ratios, show aridity phases, very well represented during Last Glacial Maximum (LGM) and the Younger Dryas (YD). Arid events are also shown at ca. 8.1 ka BP, ca. 4.4 ka BP and the latest Holocene. On the other hand, negative values in calcium and positive values in K/Ca appear in the Bølling-Allerød (BA) and during the early Holocene until ca. 6 ka BP, indicating more humidity and higher run-off. A progressive aridification trend is also observed in the Holocene, changing from more humid conditions during the early Holocene to more aridity during the late Holocene.

  9. Quantitative analysis of biomedical samples using synchrotron radiation microbeams

    NASA Astrophysics Data System (ADS)

    Ektessabi, Ali; Shikine, Shunsuke; Yoshida, Sohei

    2001-07-01

    X-ray fluorescence (XRF) using a synchrotron radiation (SR) microbeam was applied to investigate distributions and concentrations of elements in single neurons of patients with neurodegenerative diseases. In this paper we introduce a computer code that has been developed to quantify the trace elements and matrix elements at the single cell level. This computer code has been used in studies of several important neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and parkinsonism-dementia complex (PDC), as well as in basic biological experiments to determine the elemental changes in cells due to incorporation of foreign metal elements. The substantial nigra (SN) tissue obtained from the autopsy specimens of patients with Guamanian parkinsonism-dementia complex (PDC) and control cases were examined. Quantitative XRF analysis showed that neuromelanin granules of Parkinsonian SN contained higher levels of Fe than those of the control. The concentrations were in the ranges of 2300-3100 ppm and 2000-2400 ppm respectively. On the contrary, Zn and Ni in neuromelanin granules of SN tissue from the PDC case were lower than those of the control. Especially Zn was less than 40 ppm in SN tissue from the PDC case while it was 560-810 ppm in the control. These changes are considered to be closely related to the neuro-degeneration and cell death.

  10. Electrode Edge Cobalt Cation Migration in an Operating Fuel Cell: An In Situ Micro-X-ray Fluorescence Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.

    PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less

  11. Tellurium Distribution and Speciation in Contaminated Soils from Abandoned Mine Tailings: Comparison with Selenium.

    PubMed

    Qin, Hai-Bo; Takeichi, Yasuo; Nitani, Hiroaki; Terada, Yasuko; Takahashi, Yoshio

    2017-06-06

    The distribution and chemical species of tellurium (Te) in contaminated soil were determined by a combination of microfocused X-ray fluorescence (μ-XRF), X-ray diffraction (μ-XRD), and X-ray absorption fine structure (μ-XAFS) techniques. Results showed that Te was present as a mixture of Te(VI) and Te(IV) species, while selenium (Se) was predominantly present in the form of Se(IV) in the soil contaminated by abandoned mine tailings. In the contaminated soil, Fe(III) hydroxides were the host phases for Se(IV), Te(IV), and Te(VI), but Te(IV) could be also retained by illite. The difference in speciation and solubility of Se and Te in soil can result from different structures of surface complexes for Se and Te onto Fe(III) hydroxides. Furthermore, our results suggest that the retention of Te(IV) in soil could be relatively weaker than that of Te(VI) due to structural incorporation of Te(VI) into Fe(III) hydroxides. These findings are of geochemical and environmental significance for better understanding the solubility, mobility, and bioavailability of Te in the surface environment. To the best of our knowledge, this is the first study reporting the speciation and host phases of Te in field soil by the μ-XRF-XRD-XAFS techniques.

  12. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Suwanich, Parkorn

    Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.

  13. Maia Mapper: high definition XRF imaging in the lab

    DOE PAGES

    Ryan, Chris G.; Kirkham, R.; Moorhead, G. F.; ...

    2018-03-13

    Here, Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm 2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keVmore » into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.« less

  14. Maia Mapper: high definition XRF imaging in the lab

    NASA Astrophysics Data System (ADS)

    Ryan, C. G.; Kirkham, R.; Moorhead, G. F.; Parry, D.; Jensen, M.; Faulks, A.; Hogan, S.; Dunn, P. A.; Dodanwela, R.; Fisher, L. A.; Pearce, M.; Siddons, D. P.; Kuczewski, A.; Lundström, U.; Trolliet, A.; Gao, N.

    2018-03-01

    Maia Mapper is a laboratory μXRF mapping system for efficient elemental imaging of drill core sections serving minerals research and industrial applications. It targets intermediate spatial scales, with imaging of up to ~80 M pixels over a 500×150 mm2 sample area. It brings together (i) the Maia detector and imaging system, with its large solid-angle, event-mode operation, millisecond pixel transit times in fly-scan mode and real-time spectral deconvolution and imaging, (ii) the high brightness MetalJet D2 liquid metal micro-focus X-ray source from Excillum, and (iii) an efficient XOS polycapillary lens with a flux gain ~15,900 at 21 keV into a ~32 μm focus, and (iv) a sample scanning stage engineered for standard drill-core sections. Count-rates up to ~3 M/s are observed on drill core samples with low dead-time up to ~1.5%. Automated scans are executed in sequence with display of deconvoluted element component images accumulated in real-time in the Maia detector. Application images on drill core and polished rock slabs illustrate Maia Mapper capabilities as part of the analytical workflow of the Advanced Resource Characterisation Facility, which spans spatial dimensions from ore deposit to atomic scales.

  15. Direct Observation of Halide Migration and its Effect on the Photoluminescence of Methylammonium Lead Bromide Perovskite Single Crystals.

    PubMed

    Luo, Yanqi; Khoram, Parisa; Brittman, Sarah; Zhu, Zhuoying; Lai, Barry; Ong, Shyue Ping; Garnett, Erik C; Fenning, David P

    2017-11-01

    Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH 3 NH 3 PbBr 3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The first X-ray diffraction measurements on Mars.

    PubMed

    Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert

    2014-11-01

    The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.

  17. XPS-XRF hybrid metrology enabling FDSOI process

    NASA Astrophysics Data System (ADS)

    Hossain, Mainul; Subramanian, Ganesh; Triyoso, Dina; Wahl, Jeremy; Mcardle, Timothy; Vaid, Alok; Bello, A. F.; Lee, Wei Ti; Klare, Mark; Kwan, Michael; Pois, Heath; Wang, Ying; Larson, Tom

    2016-03-01

    Planar fully-depleted silicon-on-insulator (FDSOI) technology potentially offers comparable transistor performance as FinFETs. pFET FDOSI devices are based on a silicon germanium (cSiGe) layer on top of a buried oxide (BOX). Ndoped interfacial layer (IL), high-k (HfO2) layer and the metal gate stacks are then successively built on top of the SiGe layer. In-line metrology is critical in precisely monitoring the thickness and composition of the gate stack and associated underlying layers in order to achieve desired process control. However, any single in-line metrology technique is insufficient to obtain the thickness of IL, high-k, cSiGe layers in addition to Ge% and N-dose in one single measurement. A hybrid approach is therefore needed that combines the capabilities of more than one measurement technique to extract multiple parameters in a given film stack. This paper will discuss the approaches, challenges, and results associated with the first-in-industry implementation of XPS-XRF hybrid metrology for simultaneous detection of high-k thickness, IL thickness, N-dose, cSiGe thickness and %Ge, all in one signal measurement on a FDSOI substrate in a manufacturing fab. Strong correlation to electrical data for one or more of these measured parameters will also be presented, establishing the reliability of this technique.

  18. Determination of the Cd-bearing phases in municipal solid waste and biomass single fly ash particles using SR-microXRF spectroscopy.

    PubMed

    Camerani, Maria Caterina; Somogyi, Andrea; Vekemans, Bart; Ansell, Stuart; Simionovici, Alexandre S; Steenari, Britt-Marie; Panas, Itai

    2007-09-01

    By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.

  19. Evaluation of elemental profiling methods, including laser-induced breakdown spectroscopy (LIBS), for the differentiation of Cannabis plant material grown in different nutrient solutions.

    PubMed

    El-Deftar, Moteaa M; Robertson, James; Foster, Simon; Lennard, Chris

    2015-06-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging atomic emission based solid sampling technique that has many potential forensic applications. In this study, the analytical performance of LIBS, as well as that of inductively coupled plasma mass spectrometry (ICP-MS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray microfluorescence (μXRF), was evaluated for the ability to conduct elemental analyses on Cannabis plant material, with a specific investigation of the possible links between hydroponic nutrients and elemental profiles from associated plant material. No such study has been previously published in the literature. Good correlation among the four techniques was observed when the concentrations or peak areas of the elements of interest were monitored. For Cannabis samples collected at the same growth time, the elemental profiles could be related to the use of particular commercial nutrients. In addition, the study demonstrated that ICP-MS, LA-ICP-MS and LIBS are suitable techniques for the comparison of Cannabis samples from different sources, with high discriminating powers being achieved. On the other hand, μXRF method was not suitable for the discrimination of Cannabis samples originating from different growth nutrients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, Osman; Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Gonderman, Sean

    We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for amore » time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.« less

Top