Sample records for xuv laser fields

  1. Measuring the absolute carrier-envelope phase of many-cycle laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzallas, P.; Skantzakis, E.; Charalambidis, D.

    2010-12-15

    The carrier-envelope phase (CEP) of high-peak-power, many-cycle laser fields becomes a crucial parameter when such fields are used, in conjunction with polarization gating techniques, in isolated attosecond (asec) pulse generation. However, its measurement has not been achieved so far. We demonstrate a physical process sensitive to the CEP value of such fields and describe a method for its online shot-to-shot monitoring. This work paves the way for the exploitation of energetic isolated asec pulses in studies of nonlinear extreme ultraviolet (XUV) processes and XUV-pump-XUV-probe experiments with asec resolutions.

  2. Rabi oscillations in extreme ultraviolet ionization of atomic argon

    NASA Astrophysics Data System (ADS)

    Flögel, Martin; Durá, Judith; Schütte, Bernd; Ivanov, Misha; Rouzée, Arnaud; Vrakking, Marc J. J.

    2017-02-01

    We demonstrate Rabi oscillations in nonlinear ionization of argon by an intense femtosecond extreme ultraviolet (XUV) laser field produced by high-harmonic generation. We monitor the formation of A r2 + as a function of the time delay between the XUV pulse and an additional near-infrared (NIR) femtosecond laser pulse, and show that the population of an A r+* intermediate resonance exhibits strong modulations both due to an NIR laser-induced Stark shift and XUV-induced Rabi cycling between the ground state of A r+ and the A r+* excited state. Our experiment represents a direct experimental observation of a Rabi-cycling process in the XUV regime.

  3. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  4. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  5. Excited-state vibronic wave-packet dynamics in H2 probed by XUV transient four-wave mixing

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Leone, Stephen R.; Neumark, Daniel M.

    2018-02-01

    The complex behavior of a molecular wave packet initiated by an extreme ultraviolet (XUV) pulse is investigated with noncollinear wave mixing spectroscopy. A broadband XUV pulse spanning 12-16 eV launches a wave packet in H2 comprising a coherent superposition of multiple electronic and vibrational levels. The molecular wave packet evolves freely until a delayed few-cycle optical laser pulse arrives to induce nonlinear signals in the XUV via four-wave mixing (FWM). The angularly resolved FWM signals encode rich energy exchange processes between the optical laser field and the XUV-excited molecule. The noncollinear geometry enables spatial separation of ladder and V- or Λ-type transitions induced by the optical field. Ladder transitions, in which the energy exchange with the optical field is around 3 eV, appear off axis from the incident XUV beam. Each vibrationally revolved FWM line probes a different part of the wave packet in energy, serving as a promising tool for energetic tomography of molecular wave packets. V- or Λ-type transitions, in which the energy exchange is well under 1 eV, result in on-axis nonlinear signals. The first-order versus third-order interference of the on-axis signal serves as a mapping tool of the energy flow pathways. Intra- and interelectronic potential energy curve transitions are decisively identified. The current study opens possibilities for accessing complete dynamic information in XUV-excited complex systems.

  6. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    PubMed Central

    Ganeev, R. A.

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications. PMID:23864818

  7. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    PubMed Central

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175

  8. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  9. Femtosecond-pulse-driven electron-excited extreme-ultraviolet lasers in Be-like ions.

    PubMed

    Hooker, S M; Harris, S E

    1995-10-01

    A suggestion for the generation of extreme-ultraviolet (XUV) laser radiation based on tunneling ionization and subsequent electron excitation of Deltan not equal 0 transitions is described. The favorable scaling of the required intensity of the pump laser with the output XUV wavelength is compared with that exhibited by XUV lasers ased on Deltan = 0 transitions. Calculations for Be-like Ne predict signif icant gain at 14.1 nm.

  10. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    PubMed

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  11. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H2+ subject to tailored (ω , 2 ω ) counter-rotating laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2018-04-01

    Recently, studies of high-order harmonics (HHG) from atoms driven by bichromatic counter-rotating circularly polarized laser fields as a source of coherent circularly polarized extreme ultraviolet (XUV) and soft-x-ray beams in a tabletop-scale setup have received considerable attention. Here, we demonstrate the ability to control the electron recollisions giving three returns per one cycle of the fundamental frequency ω by using tailored bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields with a molecular target. The full control of the electronic pathway is first analyzed by a classical trajectory analysis and then extended to a detailed quantum study of H2+ molecules in bichromatic (ω , 2 ω ) counter-rotating circularly polarized laser fields. The radiation spectrum contains doublets of left- and right-circularly polarized harmonics in the XUV ranges. We study in detail the below-, near-, and above-threshold harmonic regions and describe how excited-state resonances alter the ellipticity and phase of the generated harmonic peaks.

  12. XUV ionization of aligned molecules

    NASA Astrophysics Data System (ADS)

    Kelkensberg, F.; Rouzée, A.; Siu, W.; Gademann, G.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.; Vrakking, M. J. J.

    2011-11-01

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO2 molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  13. Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder

    2011-10-01

    In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.

  14. XUV ionization of aligned molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelkensberg, F.; Siu, W.; Gademann, G.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  15. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains.

    PubMed

    Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B

    2015-04-10

    We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.

  16. Probing ultrafast changes of spin and charge density profiles with resonant XUV magnetic reflectivity at the free-electron laser FERMI.

    PubMed

    Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U

    2017-09-01

    We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.

  17. Direct measurement of the pulse duration and frequency chirp of seeded XUV free electron laser pulses

    NASA Astrophysics Data System (ADS)

    Azima, Armin; Bödewadt, Jörn; Becker, Oliver; Düsterer, Stefan; Ekanayake, Nagitha; Ivanov, Rosen; Kazemi, Mehdi M.; Lamberto Lazzarino, Leslie; Lechner, Christoph; Maltezopoulos, Theophilos; Manschwetus, Bastian; Miltchev, Velizar; Müller, Jost; Plath, Tim; Przystawik, Andreas; Wieland, Marek; Assmann, Ralph; Hartl, Ingmar; Laarmann, Tim; Rossbach, Jörg; Wurth, Wilfried; Drescher, Markus

    2018-01-01

    We report on a direct time-domain measurement of the temporal properties of a seeded free-electron laser pulse in the extreme ultraviolet spectral range. Utilizing the oscillating electromagnetic field of terahertz radiation, a single-shot THz streak-camera was applied for measuring the duration as well as spectral phase of the generated intense XUV pulses. The experiment was conducted at FLASH, the free electron laser user facility at DESY in Hamburg, Germany. In contrast to indirect methods, this approach directly resolves and visualizes the frequency chirp of a seeded free-electron laser (FEL) pulse. The reported diagnostic capability is a prerequisite to tailor amplitude, phase and frequency distributions of FEL beams on demand. In particular, it opens up a new window of opportunities for advanced coherent spectroscopic studies making use of the high degree of temporal coherence expected from a seeded FEL pulse.

  18. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  19. Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: Toward multidimensional spectroscopy involving XUV excitations

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.

    2016-11-01

    Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons.

  20. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bierbach, Jana; Yeung, Mark; Eckner, Erich

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  2. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    PubMed

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  3. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, Gajendra.; Qiao, Yong.

    1988-07-01

    XUV Bragg Holographic Optical Elements (HOEs), based on a single-step volume holographic recording, have been proposed by Physical Optic Corporation (POC), as an entirely new approach to x-ray optics. Their theory, as well as the first experimental proof-of-concept, have been demonstrated in Phase 1 of the DOE program. During the first year (exactly, 8-month duration) of the on-going Phase 2, the high-efficiency XUV Lippmann holographic mirrors have been fabricated and their optical, physical, and material properties have been investigated over the entire XUV region (1--100nm). The XUV Bragg HOEs, based on dichromated gelatin (DCG) and on DCG/polymer grafts, have beenmore » recorded in the visible region (using an Innova Argo laser) and reconstructed using twelve XUV wavelengths. In addition, these phase high-resolution holographic materials have been shown to be suitable to direct x-ray laser holographic recording (using Princeton's x-ray laser). The volume x-ray holographic recording will be realized within the second year of the program effort.« less

  4. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  5. Long-term operation of surface high-harmonic generation from relativistic oscillating mirrors using a spooling tape

    DOE PAGES

    Bierbach, Jana; Yeung, Mark; Eckner, Erich; ...

    2015-05-01

    Surface high-harmonic generation in the relativistic regime is demonstrated as a source of extreme ultra-violet (XUV) pulses with extended operation time. Relativistic high-harmonic generation is driven by a frequency-doubled high-power Ti:Sapphire laser focused to a peak intensity of 3·1019 W/cm2 onto spooling tapes. We demonstrate continuous operation over up to one hour runtime at a repetition rate of 1 Hz. Harmonic spectra ranging from 20 eV to 70 eV (62 nm to 18 nm) were consecutively recorded by an XUV spectrometer. An average XUV pulse energy in the µJ range is measured. With the presented setup, relativistic surface high-harmonic generationmore » becomes a powerful source of coherent XUV pulses that might enable applications in, e.g. attosecond laser physics and the seeding of free-electron lasers, when the laser issues causing 80-% pulse energy fluctuations are overcome.« less

  6. Observation of extremely strong shock waves in solids launched by petawatt laser heating

    DOE PAGES

    Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; ...

    2017-08-25

    Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. In conclusion, we discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV usingmore » a multi-layer spherical mirror.« less

  7. Transient Absorption of Attosecond Pulses by He Atoms in Presence of Near-Infrared Laser Fields: A TDDFT Analysis of Sub-Cycle Temporal Structures

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2013-05-01

    We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  8. Study of beam aberrations in a germanium XXIII XUV laser amplifier

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Key, M. H.; Cairns, G.; Dwivedi, L.; Krishnan, J.; Lewis, C. L. S.; MacPhee, A. G.; Neely, D.; Ramsden, S. A.; Tallents, G.

    1996-02-01

    A beam of amplified spontaneous emission at {23.2}/{23.6}nm from a GeXXIII XUV laser has been injected into a separate amplifier plasma and the astigmatic aberrations introduced by plasma density gradients in the amplifier have been estimated from analysis of images of the amplified beam.

  9. Progress in Attosecond Metrology

    NASA Astrophysics Data System (ADS)

    Kienberger, R.; Krausz, F.

    Fundamental processes in atoms, molecules, as well as condensed matter are triggered or mediated by the motion of electrons inside or between atoms. Electronic dynamics on atomic length scales tends to unfold within tens to thousands of attoseconds (1 as = 10-18 s). Recent breakthroughs in laser science are now opening the door to watching and controlling these hitherto inaccessible microscopic dynamics. The key to accessing the attosecond time domain is the control of the electric field of (visible) light, which varies its strength and direction within less than a femtosecond (1 fs = 1000 as). Atoms exposed to a few oscillation cycles of intense laser light are able to emit a single XUV burst lasting less than 1 fs. Full control of the evolution of the electromagnetic field in laser pulses comprising a few wave cycles have recently allowed the reproducible generation and measurement of isolated 250-as XUV pulses, constituting the shortest reproducible events and fastest measurement to date. These tools have enabled us to visualize the oscillating electric field of visible light with an attosecond "oscilloscope" and observing the motion of electrons in and around atoms in real time. Recent experiments hold promise for the development of an attosecond hard X-ray source, which may pave the way toward 4D electron imaging with subatomic resolution in space and time.

  10. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  11. Development of injector/amplifier XUV lasers and initial studies of ultrashort pulse UV multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Key, Michael H.; Blyth, W. J.; Cairns, Gerald F.; Damerell, A. R.; Dangor, A. E.; Danson, Colin N.; Evans, J. M.; Hirst, Graeme J.; Holden, M.; Hooker, Chris J.; Houliston, J. R.; Krishnan, J.; Lewis, Ciaran L. S.; Lister, J. M. D.; MacPhee, Andrew G.; Najmudin, Z.; Neely, David; Norreys, Peter A.; Offenberger, Allen A.; Osvay, Karoly; Pert, Geoffrey J.; Preston, S. G.; Ramsden, Stuart A.; Ross, Ian N.; Sibbett, Wilson; Tallents, Gregory J.; Smith, C.; Wark, Justin S.; Zhang, Jie

    1994-02-01

    An injector-amplifier architecture for XUV lasers has been developed and demonstrated using the Ge XXIII collisional laser. Results are described for injection into single and double plasma amplifiers. Prismatic lens-like and higher order aberrations in the amplifier are considered. Limitations on ultimate brightness are discussed and also scaling to operation at shorter wavelengths. A preliminary study has been made of UV multiphoton ionization using 300 fs pulses at high intensity.

  12. Design considerations for optically pumped, UV and XUV lasers in the Be isoelectronic sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, M.; Trebes, J.

    1984-09-01

    Intense line radiation from plasmas of MnVI, PIX, AlV, AlVIII, AlIX, and AlXI may be used to selectively pump population inversions in plasmas of Be-like CIII, NIV, FVI, NeVII, NaVIII, and MgIX. Quasi-cw lasing is possible on 4p-3d and 4f-3d transitions at wavelengths from 2177 A to 230 A. At the XUV wavelengths, 1 J, 10 ns laser output pulses at 10/sup 8/ W power levels are shown possible with existing discharge technology. Since all six laser ions are in the Be isoelectronic sequence, detailed studies of the optical pumping process at UV wavelengths in CIII would provide scaling parametersmore » for the less accessible XUV wavelengths.« less

  13. Short-wavelength ablation of polymers in the high-fluence regime

    NASA Astrophysics Data System (ADS)

    Liberatore, Chiara; Mann, Klaus; Müller, Matthias; Pina, Ladislav; Juha, Libor; Vyšín, Ludek; Rocca, Jorge J.; Endo, Akira; Mocek, Tomas

    2014-05-01

    Short-wavelength ablation of poly(1,4-phenylene ether-ether-sulfone) (PPEES) and poly(methyl methacrylate) (PMMA) was investigated using extreme ultraviolet (XUV) and soft x-ray (SXR) radiation from plasma-based sources. The initial experiment was performed with a 10 Hz desktop capillary-discharge XUV laser lasing at 46.9 nm. The XUV laser beam was focused onto the sample by a spherical mirror coated with a Si/Sc multilayer. The same materials were irradiated with 13.5 nm radiation emitted by plasmas produced by focusing an optical laser beam onto a xenon gas-puff target. A Schwarzschild focusing optics coated with a Mo/Si multilayer was installed at the source to achieve energy densities exceeding 0.1 J cm-2 in the tight focus. The existing experimental system at the Laser Laboratorium Göttingen was upgraded by implementing a 1.2 J driving laser. An increase of the SXR fluence was secured by improving the alignment technique.

  14. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  15. Quasi-supercontinuum source in the extreme ultraviolet using multiple frequency combs from high-harmonic generation

    DOE PAGES

    Wünsche, Martin; Fuchs, Silvio; Aull, Stefan; ...

    2017-03-16

    A quasi-supercontinuum source in the extreme ultraviolet (XUV) is demonstrated using a table-top femtosecond laser and a tunable optical parametric amplifier (OPA) as a driver for high-harmonic generation (HHG). The harmonic radiation, which is usually a comb of odd multiples of the fundamental frequency, is generated by near-infrared (NIR) laser pulses from the OPA. A quasi-continuous XUV spectrum in the range of 30 to 100 eV is realized by averaging over multiple harmonic comb spectra with slightly different fundamental frequencies and thus different spectral spacing between the individual harmonics. The driving laser wavelength is swept automatically during an averaging timemore » period. With a total photon flux of 4×10 9 photons/s in the range of 30 eV to 100 eV and 1×10 7 photons/s in the range of 100 eV to 200 eV, the resulting quasi-supercontinuum XUV source is suited for applications such as XUV coherence tomography (XCT) or near-edge absorption fine structure spectroscopy (NEXAFS).« less

  16. High-order harmonic generation enhanced by XUV light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buth, Christian; Kohler, Markus C.; Ullrich, Joachim

    2012-03-19

    The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d {yields} 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10{sup 14} Wcm{sup 2}more » and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10{sup 13}-10{sup 16} Wcm{sup 2}. Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals.« less

  17. Vacuum-ultraviolet lasers and spectroscopy

    NASA Astrophysics Data System (ADS)

    Hollenstein, U.

    2012-01-01

    Single-photon ionisation of most atoms and molecules requires short-wavelength radiation, typically in the vacuum-ultraviolet (VUV, λ < 200 nm) or extreme ultraviolet (XUV, λ < 105 nm) region of the electromagnetic spectrum. The first VUV and XUV radiation sources used to study molecular photoabsorption and photoionisation spectra were light sources emitting a broad continuous spectrum, such as high pressure lamps or synchrotrons. Monochromatic VUV and XUV radiation was obtained using diffraction gratings in evacuated monochromators, which resulted in a resolving power ν/Δv of at best 106 (i. e. 0.1 cm-1 at 100 000 cm-1), but more typically in the range 104-105 . The invention of the laser and the development of nonlinear optical frequency-upconversion techniques enabled the development of table-top narrow-bandwidth, coherent VUV and XUV laser sources with which VUV photoabsorption, photoionisation and photoelectron spectra of molecules can be recorded at much higher resolution, the best sources having bandwidths better than 50 MHz. Such laser sources are ideally suited to study the structure and dynamics of electronically excited states of atoms and molecules and molecular photoionisation using photoabsorption, photoionisation and photoelectron spectroscopy. This chapter presents the general principles that are exploited to generate tunable narrow-band laser radiation below 200 nm and describes spectroscopic methods such as photoabsorption spectroscopy, photoionisation spectroscopy and threshold photoelectron spectroscopy that relay on the broad tunability and narrow-bandwidth of VUV radiation sources.

  18. Perturbing laser field dependent high harmonic phase modulations

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Kong, Fanqi; Brown, Graham; Hammond, TJ; Ko, Dong-Hyuk; Zhang, Chunmei; Corkum, P. B.

    2018-06-01

    A perturbing laser pulse modulates and controls the phase of the high harmonic radiation driven by an intense fundamental pulse. Thus, a structured wave front can impress a specific spatial phase onto the generated high harmonic wave front. This modulation procedure leads to all-optical spatial light modulators for VUV or XUV radiation created by high harmonic generation. Here, through theoretical analysis and experiment, we study the correlation between the high harmonic phase modulations and the perturbing laser field amplitude and phase, providing guidelines for practical high harmonic spatial light modulators. In addition, we show that the petahertz optical oscilloscope for measuring electric fields of a perturbing beam is most robust using low order harmonics, far from the cut-off.

  19. Characteristics of soft x-ray and extreme ultraviolet (XUV) emission from laser-produced highly charged rhodium ions

    NASA Astrophysics Data System (ADS)

    Barte, Ellie Floyd; Hara, Hiroyuki; Tamura, Toshiki; Gisuji, Takuya; Chen, When-Bo; Lokasani, Ragava; Hatano, Tadashi; Ejima, Takeo; Jiang, Weihua; Suzuki, Chihiro; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sasaki, Akira; Higashiguchi, Takeshi; Limpouch, Jiří

    2018-05-01

    We have characterized the soft x-ray and extreme ultraviolet (XUV) emission of rhodium (Rh) plasmas produced using dual pulse irradiation by 150-ps or 6-ns pre-pulses, followed by a 150-ps main pulse. We have studied the emission enhancement dependence on the inter-pulse time separation and found it to be very significant for time separations less than 10 ns between the two laser pulses when using 6-ns pre-pulses. The behavior using a 150-ps pre-pulse was consistent with such plasmas displaying only weak self-absorption effects in the expanding plasma. The results demonstrate the advantage of using dual pulse irradiation to produce the brighter plasmas required for XUV applications.

  20. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  1. Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Arbó, D. G.

    2017-08-01

    We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the strong-field approximation and the numerical solution of the time-dependent Schrödinger equation, giving rise to nonzero emission, in contraposition to other theories.

  2. Towards a Table-Top Laser Driven XUV/X-Ray Source

    DTIC Science & Technology

    2015-08-27

    irradiated with intense ultra-short laser pulses. Bright monochromatic x- rays and broadband XUV emissions...as   evidenced  in  nature  by  the  sun,  stars,  and   gamma   ray  bursters.  In  laboratory  conditions,   bright...N.   Nerush,   I.   Yu.   Kostyukov,   B.   F.   Shen,   and   K.   U.   Akli;   "Energy partition,   gamma   ray

  3. Atomic Processes for XUV Lasers: Alkali Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Dimiduk, David Paul

    The development of extreme ultraviolet (XUV) lasers is dependent upon knowledge of processes in highly excited atoms. Described here are spectroscopy experiments which have identified and characterized certain autoionizing energy levels in core-excited alkali atoms and ions. Such levels, termed quasi-metastable, have desirable characteristics as upper levels for efficient, powerful XUV lasers. Quasi -metastable levels are among the most intense emission lines in the XUV spectra of core-excited alkalis. Laser experiments utilizing these levels have proved to be useful in characterizing other core-excited levels. Three experiments to study quasi-metastable levels are reported. The first experiment is vacuum ultraviolet (VUV) absorption spectroscopy on the Cs 109 nm transitions using high-resolution laser techniques. This experiment confirms the identification of transitions to a quasi-metastable level, estimates transition oscillator strengths, and estimates the hyperfine splitting of the quasi-metastable level. The second experiment, XUV emission spectroscopy of Ca II and Sr II in a microwave-heated plasma, identifies transitions from quasi-metastable levels in these ions, and provides confirming evidence of their radiative, rather than autoionizing, character. In the third experiment, core-excited Ca II ions are produced by inner-shell photoionization of Ca with soft x-rays from a laser-produced plasma. This preliminary experiment demonstrated a method of creating large numbers of these highly-excited ions for future spectroscopic experiments. Experimental and theoretical evidence suggests the CA II 3{ rm p}^5 3d4s ^4 {rm F}^circ_{3/2 } quasi-metastable level may be directly pumped via a dipole ionization process from the Ca I ground state. The direct process is permitted by J conservation, and occurs due to configuration mixing in the final state and possibly the initial state as well. The experiments identifying and characterizing quasi-metastable levels are compared to calculations using the Hartree-Fock code RCN/RCG. Calculated parameters include energy levels, wavefunctions, and transition rates. Based on an extension of this code, earlier unexplained experiments showing strong two-electron radiative transitions from quasi-metastable levels are now understood.

  4. An XUV/VUV free-electron laser oscillator

    NASA Astrophysics Data System (ADS)

    Goldstein, J. C.; Newnam, B. E.; Cooper, R. K.; Comly, J. C., Jr.

    Problems regarding the extension of free-electron laser technology from the visible and near infrared region, where such devices are currently operating, to the ultraviolet have recently been extensively discussed. It was found that significant technical problems must be overcome before free-electron lasers (FELs) can be operated in the VUV (100-200 nm) and the XUV (50-100). However, the present lack of other intense and tunable sources of coherent radiation at these wavelengths together with the intrinsic properties of FELs make the development of such devices potentially very rewarding. The properties of FELs include continuous tunability in wavelength and output in the form of a train of picosecond pulses. An investigation is conducted regarding the feasibility of an operation of a FEL in the XUV/VUV regions, taking into account a theoretical model. It is found that modest improvements in electron beam and optical mirror technologies will make the design of a FEL for operation in the 50-200-nm range of optical wavelength possible.

  5. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmire, Todd

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor ofmore » 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and tested a cluster generator based on the Laser Ablation of Microparticles (LAM) method.« less

  6. Ultrafast laser control of autoionizing resonances observed in attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Liao, Chen-Ting; Harkema, Nathan; Sandhu, Arvinder

    2017-04-01

    Attosecond and femtosecond extreme ultraviolet (XUV) pulses can be used to probe electron dynamics in high-lying excited states that autoionize on a femtosecond timescale, thus providing information on the process of Auger decay and its interference with the continua. Here we utilize XUV pulses in connection with infrared (IR) pulses to perform attosecond transient absorption spectroscopy of the impulsive response of argon autoionizing Rydberg states in the vicinity of the 3s-1 4 p resonance. We show that by tuning the time delay and field polarization of IR pulse, it is possible to control the dipolar coupling between neighboring states and hence the spectral line shape of the resonance, such as the transition between Breit-Wigner to Beutler-Fano profiles. NSF Grant No. PHY-1505556.

  7. High order harmonic generation in rare gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, Kimberly Susan

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10 13-10 14 W/cm 2) is focused into a dense (~10 17 particles/cm 3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as wellmore » as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.« less

  8. Theoretical exploration of control factors for the high-order harmonic generation (HHG) spectrum in two-color field.

    PubMed

    Huang, Xinting; Yang, Dapeng; Yao, Li

    2014-09-15

    In this work, the laser-parameter effects on the high-order harmonic generation (HHG) spectrum and attosecond trains by mixing two-color laser field, a visible light field of 800 nm and a mid-infrared (mid-IR) laser pulses of 2400 nm, are theoretically demonstrated for the first time. Different schemes are applied to discuss the function of intensity, carrier-envelope phase (CEP) and pulse duration on the generation of an isolated attosecond pulse. As a consequence, an isolated 16as pulse is obtained by Fourier transforming an ultrabroad XUV continuum of 208 eV with the fundamental field of duration of 6 fs, 9×10(14)W/cm2 of intensity, the duration of 12 fs, the CEPs of the two driving pulses of -π and the relative strength ratio √R=0.2. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure.

    PubMed

    Khorsand, A R; Sobierajski, R; Louis, E; Bruijn, S; van Hattum, E D; van de Kruijs, R W E; Jurek, M; Klinger, D; Pelka, J B; Juha, L; Burian, T; Chalupsky, J; Cihelka, J; Hajkova, V; Vysin, L; Jastrow, U; Stojanovic, N; Toleikis, S; Wabnitz, H; Tiedtke, K; Sokolowski-Tinten, K; Shymanovich, U; Krzywinski, J; Hau-Riege, S; London, R; Gleeson, A; Gullikson, E M; Bijkerk, F

    2010-01-18

    We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.

  10. Connecting Lab-Based Attosecond Science with FEL research

    ScienceCinema

    Vrakking, Marc

    2017-12-09

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to “illuminating the molecule from within”. I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

  11. Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources.

    PubMed

    Sobierajski, R; Bruijn, S; Khorsand, A R; Louis, E; van de Kruijs, R W E; Burian, T; Chalupsky, J; Cihelka, J; Gleeson, A; Grzonka, J; Gullikson, E M; Hajkova, V; Hau-Riege, S; Juha, L; Jurek, M; Klinger, D; Krzywinski, J; London, R; Pelka, J B; Płociński, T; Rasiński, M; Tiedtke, K; Toleikis, S; Vysin, L; Wabnitz, H; Bijkerk, F

    2011-01-03

    We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

  12. Intense XUV (Extreme Ultraviolet) Radiation Sources.

    DTIC Science & Technology

    1985-07-31

    Light Sources for High ................ .29 . Resolution XUV and VUV Spectroscopy; Appendix F:’High Resolution Spectra of Laser Pl -asma Light...34."" ."."".". "," .. .". .’ Laser (1.06juMm) iol 3 Target Intensit vrV Pls htN Ta disk 3 - I O WlCnr 4. K 2.2 ns 80100209 > 1~ C 1010 109 0 40 80 120 160 200 240...acknowledges support from SERC (UK). 1. Carroll, P.K., Kennedy, E.T. and O’Sullivan, G., 1980, App. Opt. 19, 1454. 2. Nagel, D.J., Brown, C.M., Peckerar

  13. Recombination and collisional X-UV lasers at ORSAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klisnick, A.; Carillon, A.; Dhez, P.

    1995-01-10

    In this paper we describe the progress achieved recently in our laboratory in the field of X-ray lasers. Both collisional excitation and recombination pumped systems are under investigation. We show that the 5g-4f transition in lithium-like ions could bring out a significant increase of the gain-length accessible with recombination X-ray lasers. We present preliminary results on an absorption spectroscopy experiment designed to probe the ionization state of recombination X-ray laser plasmas. Finally we report on the observation of a strong amplified signal at 212 A, the wavelength of a 3p-3s (J=0--1) in neon-like zinc. [copyright] 1995 [ital American] [ital Institute]more » [ital of] [ital Physics]« less

  14. XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets

    NASA Astrophysics Data System (ADS)

    Barte, Ellie Floyd; Lokasani, Ragava; Proska, Jan; Stolcova, Lucie; Maguire, Oisin; Kos, Domagoj; Sheridan, Paul; O'Reilly, Fergal; Sokell, Emma; McCormack, Tom; O'Sullivan, Gerry; Dunne, Padraig; Limpouch, Jiri

    2017-05-01

    Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.

  15. Extreme-ultraviolet-initiated high-order harmonic generation in Ar+

    NASA Astrophysics Data System (ADS)

    Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.

    2018-02-01

    We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.

  16. Studies on lasers and laser devices

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Siegman, A. E.; Young, J. F.

    1983-01-01

    The goal of this grant was to study lasers, laser devices, and uses of lasers for investigating physical phenomena are studied. The active projects included the development of a tunable, narrowband XUV light source and its application to the spectroscopy of core excited atomic states, and the development of a technique for picosecond time resolution spectroscopy of fast photophysical processes.

  17. Phase-matching of attosecond XUV supercontinuum

    NASA Astrophysics Data System (ADS)

    Gilbertson, Steve; Mashiko, Hiroki; Li, Chengquan; Khan, Sabih; Shakya, Mahendra; Moon, Eric; Chang, Zenghu

    2008-05-01

    Adding a weak second harmonic field to an ellipticity dependent polarization gating field allowed for the production of XUV supercontinua from longer (˜10 fs) input pulses in argon. The spectra support 200 as single isolated pulses. This technique, dubbed double optical gating (DOG), demonstrated a large enhancement of the harmonic yield as compared with polarization gating. These results can be attributed to the reduced depletion of the ground state of the target from the leading edge of the pulse and the increased intensity inside the polarization gate width. Through optimization of the harmonic generation process under the phase matching conditions, we were able to further increase the harmonic flux. The parameters included the target gas pressure, laser focus position, input pulse duration, and polarization gate width. By varying the CE phase of the pulse, we were able to verify that the results were indeed from DOG due to its unique 2 pi dependence on the harmonic spectrum. We were able to extend our results to neon. Its higher ionization potential allowed an extension of the harmonic cutoff for the production of even shorter pulses.

  18. Undulator radiation from laser-plasma-accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Shaw, B.; van Tilborg, J.; Gonsalves, A.; Nakamura, K.; Sokollik, T.; Shiraishi, S.; Mittal, R.; Esarey, E.; Schroeder, C.; Toth, C.; Leemans, W. P.

    2012-12-01

    Recent experiments coupled electron beams from the LOASIS TREX laser plasma accelerator (LPA) [1, 2, 3] to the Tapered Hybrid Undulator (THUNDER). Using the 1.5m, 66 period undulator, followed by an XUV spectrometer, spontaneous radiation was observed at photon energies extending to 100 eV. Previous experiments have reported visible [4] and soft-x-ray [5] radiation. The purpose of our experiments is to do highly precise, single shot diagnostics of the energy spread and emittance for each electron beam. We present recent results including measurements of electron beam transport through the undulator with and without the use of permanent magnetic quadrapoles, and measurements of XUV spectra up to 100 eV from LPA produced e-beams.

  19. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.

    to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less

  20. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    NASA Astrophysics Data System (ADS)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  1. Dynamics of High Temperature Plasmas.

    DTIC Science & Technology

    1985-10-01

    25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX

  2. In situ focus characterization by ablation technique to enable optics alignment at an XUV FEL source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimova, N.; Dziarzhytski, S.; Weigelt, H.

    2013-06-15

    In situ focus characterization is demonstrated by working at an extreme ultraviolet (XUV) free-electron laser source using ablation technique. Design of the instrument reported here allows reaching a few micrometres resolution along with keeping the ultrahigh vacuum conditions and ensures high-contrast visibility of ablative imprints on optically transparent samples, e.g., PMMA. This enables on-line monitoring of the beam profile changes and thus makes possible in situ alignment of the XUV focusing optics. A good agreement between focal characterizations retrieved from in situ inspection of ablative imprints contours and from well-established accurate ex situ analysis with Nomarski microscope has been observedmore » for a typical micro-focus experiment.« less

  3. XUV frequency-comb metrology on the ground state of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.

    2011-12-15

    The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p {sup 1} P{sub 1} states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited-state population, resulting in amore » cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium atom as a precision phase ruler, yields an estimated timing jitter between the two upconverted-comb laser pulses of 50 attoseconds, which is equivalent to a phase jitter of 0.38 (6) cycles in the xuv at 51 nm. This sets a quantitative figure of merit for the operation of the xuv comb and indicates that extension to even shorter wavelengths should be feasible. The helium metrology investigation results in transition frequencies of 5 740 806 993 (10) and 5 814 248 672 (6) MHz for excitation of the 1s4p and 1s5p {sup 1} P{sub 1} states, respectively. This constitutes an important frequency measurement in the xuv, attaining high accuracy in this windowless part of the electromagnetic spectrum. From the measured transition frequencies an eight-fold-improved {sup 4}He ionization energy of 5 945 204 212 (6) MHz is derived. Also, a new value for the {sup 4}He ground-state Lamb shift is found of 41 247 (6) MHz. This experimental value is in agreement with recent theoretical calculations up to order m{alpha}{sup 6} and m{sup 2}/M{alpha}{sup 5}, but with a six-times-higher precision, therewith providing a stringent test of quantum electrodynamics in bound two-electron systems.« less

  4. Rare-gas-cluster explosions under irradiation by intense short XUV pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K.; Murphy, B.; Kandadai, N.

    High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization ofmore » ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.« less

  5. Classical trajectories in polar-asymmetric laser fields: Synchronous THz and XUV emission

    NASA Astrophysics Data System (ADS)

    Gragossian, Aram; Seletskiy, Denis V.; Sheik-Bahae, Mansoor

    2016-10-01

    The interaction of intense near- and mid-infrared laser pulses with rare gases has produced bursts of radiation with spectral content extending into the extreme ultraviolet and soft x-ray region of electromagnetic spectrum. On the other end of the spectrum, laser-driven gas plasmas has been shown to produce coherent sub-harmonic optical waveforms, covering from terahertz (THz) to mid- and near-infrared frequency spectral band. Both processes can be enhanced via a combination of a driving field and its second harmonic. Despite this striking similarity, only limited experimental and theoretical attempts have been made to address these two regimes simultaneously. Here we present systematic experiments and a unifying picture of these processes, based on our extension of the semi-classical three-step model. Further understanding of the generation and coherent control of time-synchronized transients with photon energies from meV to 1 keV can lead to numerous technological advances and to an intriguing possibilities of ultra-broadband investigations into complex condensed matter systems.

  6. VUV and XUV reflectance of optically coated mirrors for selection of high harmonics

    DOE PAGES

    Larsen, K. A.; Cryan, J. P.; Shivaram, N.; ...

    2016-08-08

    We report the reflectance, ~1° from normal incidence, of six different mirrors as a function of photon energy, using monochromatic vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) radiation with energies between 7.5 eV and 24.5 eV. The mirrors examined included both single and multilayer optical coatings, as well as an uncoated substrate. Furthermore, we discuss the performance of each mirror, paying particular attention to the potential application of suppression and selection of high-order harmonics of a Ti:sapphire laser.

  7. FLASH2: Operation, beamlines, and photon diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plönjes, Elke, E-mail: elke.ploenjes@desy.de; Faatz, Bart; Kuhlmann, Marion

    2016-07-27

    FLASH2, a major extension of the soft X-ray free-electron laser FLASH at DESY, turns FLASH into a multi-user FEL facility. A new undulator line is located in a separate accelerator tunnel and driven additionally by the FLASH linear accelerator. First lasing of FLASH2 was achieved in August 2014 with simultaneous user operation at FLASH1. The new FLASH2 experimental hall offers space for up to six experimental end stations, some of which will be installed permanently. The wide wavelength range spans from 4-60 nm and 0.8 nm in the 5{sup th} harmonic and in the future deep into the water windowmore » in the fundamental. While this is of high interest to users, it is challenging from the beamline instrumentation point of view. Online diagnostics - which are mostly pulse resolved - for beam intensity, position, wavelength, wave front, and pulse length have been to a large extent developed at FLASH(1) and have now been optimized for FLASH2. Pump-probe facilities for XUV-XUV, XUV optical and XUV-THz experiments will complete the FLASH2 user facility.« less

  8. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nmmore » from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.« less

  9. Isochoric heating of low Z solid targets with sub 10 fs laser pulses

    NASA Astrophysics Data System (ADS)

    Osterholz, Jens

    2004-11-01

    The investigation of high density plasmas plays an important role for astrophysics, inertial confinement fusion and x-ray lasers. Therefore the generation of dense plasmas with ultra-intense laser pulses is a field of enormous topical interest. An upper limit of the maximum plasma density that can be achieved with this method, however, occurs due to the formation of a preplasma and the expansion of the plasma during the interaction [1,2]. Here we describe a novel approach that is based on a laser system that generates sub 10 fs pulses with a low prepulse energy. Isochoric heating is demonstrated with small Z solid targets. Time integrated XUV spectroscopy is used to investigate K-shell emission from the plasma. In the spectra, only the Ly α and He α lines are observed, whereas transitions from orbitals with principal quantum numbers n > 2 are not present. This series limit is explained by pressure ionisation in the dense plasma. The XUV spectra were simulated by two different models [3]. The first calculates the effect of pressure ionisation and the second calculates the line intensity ratios. Preliminary calculations suggest that the plasma density of the emitting region is close to solid density with an electron temperature of about 100eV. We conclude that our laser system is well suited for isochoric heating of solid targets and an efficient transfer of the laser energy to the dense region of the target is possible. In cooperation with: T. Fischer, F. Brandl, G. Pretzler and O. Willi, Heinrich-Heine-University Duesseldorf, Germany, S. J. Rose, University of Oxford, United Kingdom [1] D. Riley et al., PRL 69, 3739 (1992). [2] A. Saemann et al., PRL 82, 4843 (1999). [3] S. J. Rose, J Phys B: Atom Molec Opt Phys, 25, 1667 (1992), 31, 2129 (1998).

  10. Experimental observations of transport of picosecond laser generated electrons in a nail-like target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasley, J.; Wei, M.; Shipton, E.

    2007-12-15

    The transport of relativistic electrons, generated by the interaction of a high intensity (2x10{sup 20} W/cm{sup 2}) laser, has been studied in a nail-like target comprised of a 20 {mu}m diameter solid copper wire, coated with {approx}2 {mu}m of titanium, with an 80 {mu}m diameter hemispherical termination. A {approx}500 fs, {approx}200 J pulse of 1.053 {mu}m laser light produced by the Titan Laser at Lawrence Livermore National Laboratory was focused to a {approx}20 {mu}m diameter spot centered on the flat face of the hemisphere. K{sub {alpha}} fluorescence from the Cu and Ti regions was imaged together with extreme ultraviolet (XUV)more » emission at 68 and 256 eV. Results showed a quasiexponential decline in K{sub {alpha}} emission along the wire over a distance of a few hundred microns from the laser focus, consistent with bulk Ohmic inhibition of the relativistic electron transport. Weaker K{sub {alpha}} and XUV emission on a longer scale length showed limb brightening suggesting a transition to enhanced transport at the surface of the wire.« less

  11. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  12. CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grazioli, C.; Gauthier, D.; Ivanov, R.

    2014-02-15

    We present the main features of CITIUS, a new light source for ultrafast science, generating tunable, intense, femtosecond pulses in the spectral range from infrared to extreme ultraviolet (XUV). The XUV pulses (about 10{sup 5}-10{sup 8} photons/pulse in the range 14-80 eV) are produced by laser-induced high-order harmonic generation in gas. This radiation is monochromatized by a time-preserving monochromator, also allowing one to work with high-resolution bandwidth selection. The tunable IR-UV pulses (10{sup 12}-10{sup 15} photons/pulse in the range 0.4-5.6 eV) are generated by an optical parametric amplifier, which is driven by a fraction of the same laser pulse thatmore » generates high order harmonics. The IR-UV and XUV pulses follow different optical paths and are eventually recombined on the sample for pump-probe experiments. We also present the results of two pump-probe experiments: with the first one, we fully characterized the temporal duration of harmonic pulses in the time-preserving configuration; with the second one, we demonstrated the possibility of using CITIUS for selective investigation of the ultra-fast dynamics of different elements in a magnetic compound.« less

  13. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.

  14. Advanced Gouy phase high harmonics interferometer

    NASA Astrophysics Data System (ADS)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  15. Ionization heating in rare-gas clusters under intense XUV laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbeiter, Mathias; Fennel, Thomas

    The interaction of intense extreme ultraviolet (XUV) laser pulses ({lambda}=32 nm, I=10{sup 11}-10{sup 14} W/cm{sup 2}) with small rare-gas clusters (Ar{sub 147}) is studied by quasiclassical molecular dynamics simulations. Our analysis supports a very general picture of the charging and heating dynamics in finite samples under short-wavelength radiation that is of relevance for several applications of free-electron lasers. First, up to a certain photon flux, ionization proceeds as a series of direct photoemission events producing a jellium-like cluster potential and a characteristic plateau in the photoelectron spectrum as observed in Bostedt et al. [Phys. Rev. Lett. 100, 133401 (2008)]. Second,more » beyond the onset of photoelectron trapping, nanoplasma formation leads to evaporative electron emission with a characteristic thermal tail in the electron spectrum. A detailed analysis of this transition is presented. Third, in contrast to the behavior in the infrared or low vacuum ultraviolet range, the nanoplasma energy capture proceeds via ionization heating, i.e., inner photoionization of localized electrons, whereas collisional heating of conduction electrons is negligible up to high laser intensities. A direct consequence of the latter is a surprising evolution of the mean energy of emitted electrons as function of laser intensity.« less

  16. The influence of prepulse level on the 3p-3s XUV laser output from Ne-like ions of Zn, Cu and Ni

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Lewis, C. L. S.; Warwick, P. J.; Weaver, I.; Jaeglé, P.; Carillon, A.; Jamelot, G.; Klisnick, A.; Rus, B.; Zeitoun, Ph.; Nantel, M.; Goedkindt, P.; Sebban, S.; Tallents, G. J.; Demir, A.; Holden, M.; Krishnan, J.

    1997-02-01

    We have studied the effect of prepulses in enhancing the efficiency of generating ASE beams in soft X-ray laser plasma amplifiers based on pumping Ne-like ions. Slab targets were irradiated with a weak prepulse followed by a main plasma heating pulse of nanosecond duration. Time-integrated: time and spectrally resolved and time and angularly resolved lasing emissions on the 3p-3s ( J = 0-1) XUV lasing lines of Ne-like Ni, Cu and Zn at wavelengths 232 Å, 221 Å and 212 Å respectively have been monitored. Measurements were made for pre-pulse/main-pulse intensity ratios from 10 -5-10 -1 and for pump delay times of 2 ns and 4.5 ns. Zinc is shown to exhibit a peak in output intensity at ˜ 2 × 10 -3 pre-pulse fraction for a 4.5 ns pump delay, with a main pulse pump intensity of ˜ 1.3 × 10 13W cm -2 on a 20 mm target. The Zn lasing emission had a duration of ˜ 240 ps and this was insensitive to prepulse fraction. The J = 0-1 XUV laser output for nickel and copper increased monotonically with prepulse fraction, with copper targets showing least sensitivity to either prepulse level or prepulse to main pulse delay. Under the conditions of the study, the pre-pulse level was observed to have no significant influence on the output intensity of the 3p-3s ( J = 2-1) lines of any of the elements investigated.

  17. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  18. Two-dimensional Maxwell-Bloch simulation of quasi-π-pulse amplification in a seeded XUV laser

    NASA Astrophysics Data System (ADS)

    Larroche, O.; Klisnick, A.

    2013-09-01

    The amplification of high-order-harmonics (HOH) seed pulses in a swept-gain XUV laser is investigated through numerical simulations of the full set of Bloch and two-dimensional paraxial propagation equations with our code colax. The needed atomic data are taken from a hydrodynamics and collisional-radiative simulation in the case of a Ni-like Ag plasma created from the interaction of an infrared laser with a solid target and pumped in the transient regime. We show that the interplay of strong population inversion and diffraction or refraction due to the short transverse dimensions and steep density gradient of the active plasma can lead to the amplification of an intense, ultrashort, quasi-“π” pulse triggered by the incoming seed. By properly tuning the system geometry and HOH pulse parameters, we show that an ≃10 fs, 8×1012 W/cm2 amplified pulse can be achieved in a 3-mm-long Ni-like Ag plasma, with a factor of ≳10 intensity contrast with respect to the longer-lasting wake radiation and amplified spontaneous emission.

  19. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  20. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    NASA Astrophysics Data System (ADS)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  1. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: Experiment and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conta, A. von; Huppert, M.; Wörner, H. J.

    2016-07-15

    We present a new design of a time-preserving extreme-ultraviolet (XUV) monochromator using a semi-infinite gas cell as a source. The performance of this beamline in the photon-energy range of 20 eV–42 eV has been characterized. We have measured the order-dependent XUV pulse durations as well as the flux and the spectral contrast. XUV pulse durations of ≤40 fs using 32 fs, 800 nm driving pulses were measured on the target. The spectral contrast was better than 100 over the entire energy range. A simple model based on the strong-field approximation is presented to estimate different contributions to the measured XUVmore » pulse duration. On-axis phase-matching calculations are used to rationalize the variation of the photon flux with pressure and intensity.« less

  2. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  3. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate.

    PubMed

    Cabasse, Amélie; Machinet, Guillaume; Dubrouil, Antoine; Cormier, Eric; Constant, Eric

    2012-11-15

    High-repetition-rate sources are very attractive for high-order harmonic generation (HHG). However, due to their pulse characteristics (low energy, long duration), those systems require a tight focusing geometry to achieve the necessary intensity to generate harmonics. In this Letter, we investigate theoretically and experimentally the optimization of HHG in this geometry, to maximize the extreme UV (XUV) photon flux and improve the conversion efficiency. We analyze the influence of atomic gas media (Ar, Kr, or Xe), gas pressure, and interaction geometries (a gas jet and a finite and a semi-infinite gas cell). Numerical simulations allow us to define optimal conditions for HHG in this tight focusing regime and to observe the signature of on-axis phase matching. These conditions are implemented experimentally using a high-repetition-rate Yb-doped fiber laser system. We achieve optimization of emission with a recorded XUV photon flux of 4.5×10(12) photons/s generated in Xe at 100 kHz repetition rate.

  4. Simultaneous generation of sub-5-femtosecond 400  nm and 800  nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy.

    PubMed

    Chang, Hung-Tzu; Zürch, Michael; Kraus, Peter M; Borja, Lauren J; Neumark, Daniel M; Leone, Stephen R

    2016-11-15

    Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 μJ for the 400 nm pulses and 750 μJ for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments.

  5. Analysis of unresolved transition arrays in XUV spectral region from highly charged lead ions produced by subnanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2017-02-01

    Soft x-ray and extreme ultraviolet (XUV) spectra from lead (Pb, Z=82) laser-produced plasmas (LPPs) were measured in the 1.0-7.0 nm wavelength region employing a 150-ps, 1064-nm Nd:YAG laser with focused power densities in the range from 3.1×1013 W/cm2 to 1.4×1014 W/cm2. The flexible atomic code (FAC) and the Cowan's suite of atomic structure codes were applied to compute and explain the radiation properties of the lead spectra observed. The most prominent structure in the spectra is a broad double peak, which is produced by Δn=0, n=4-4 and Δn=1, n=4-5 transition arrays emitted from highly charged lead ions. The emission characteristics of Δn=1, n=4-5 transitions were investigated by the use of the unresolved transition arrays (UTAs) model. Numerous new spectral features generated by Δn=1, n=4-5 transitions in ions from Pb21+ to Pb45+ are discerned with the aid of the results from present computations as well as consideration of previous theoretical predictions and experimental data.

  6. Subcycle dynamics of high-order-harmonic generation of He atoms excited by attosecond pulses and driven by near-infrared laser fields: A self-interaction-free time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2014-05-01

    In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.

  7. XUV-induced reactions in benzene on sub-10 fs timescale: nonadiabatic relaxation and proton migration.

    PubMed

    Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F

    2017-08-02

    Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.

  8. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization

    PubMed Central

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W. L.; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon–iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules. PMID:29430482

  9. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    PubMed

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  10. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  11. Measure of the albedo of a warm plasma in the XUV range

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Thais, Frederic; Geoffroy, Ghita; Raffestin, Didier

    2009-11-01

    It has been shown in a recent experience at PALS [1] that the radiative precursor celerity in front of a strong radiative shock is sensitive to the lateral radiative losses, thus to the albedo of the wall of a ``radiative shock tube.'' In the experiment presented here, we measure the albedo of various materials (Al, Cu, Au) heated by a Xenon gaz at temperature around 30 eV. The Xenon gas was heated by the ALISE laser in CESTA in Bordeaux (France). The emission of Xenon with and without the reflecting samples is measured with a spatially resolving XUV spectrograph in the 30-250 eV range. [4pt] [1] M. Busquet et al, HEDP 3, 8 (2007)

  12. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  13. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source

    PubMed Central

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-01-01

    Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049

  14. Cancer cell classification with coherent diffraction imaging using an extreme ultraviolet radiation source.

    PubMed

    Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian

    2014-10-01

    In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.

  15. TIMED solar EUV experiment: preflight calibration results for the XUV photometer system

    NASA Astrophysics Data System (ADS)

    Woods, Thomas N.; Rodgers, Erica M.; Bailey, Scott M.; Eparvier, Francis G.; Ucker, Gregory J.

    1999-10-01

    The Solar EUV Experiment (SEE) on the NASA Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) mission will measure the solar vacuum ultraviolet (VUV) spectral irradiance from 0.1 to 200 nm. To cover this wide spectral range two different types of instruments are used: a grating spectrograph for spectra between 25 and 200 nm with a spectral resolution of 0.4 nm and a set of silicon soft x-ray (XUV) photodiodes with thin film filters as broadband photometers between 0.1 and 35 nm with individual bandpasses of about 5 nm. The grating spectrograph is called the EUV Grating Spectrograph (EGS), and it consists of a normal- incidence, concave diffraction grating used in a Rowland spectrograph configuration with a 64 X 1024 array CODACON detector. The primary calibrations for the EGS are done using the National Institute for Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF-III) in Gaithersburg, Maryland. In addition, detector sensitivity and image quality, the grating scattered light, the grating higher order contributions, and the sun sensor field of view are characterized in the LASP calibration laboratory. The XUV photodiodes are called the XUV Photometer System (XPS), and the XPS includes 12 photodiodes with thin film filters deposited directly on the silicon photodiodes' top surface. The sensitivities of the XUV photodiodes are calibrated at both the NIST SURF-III and the Physikalisch-Technische Bundesanstalt (PTB) electron storage ring called BESSY. The other XPS calibrations, namely the electronics linearity and field of view maps, are performed in the LASP calibration laboratory. The XPS and solar sensor pre-flight calibration results are primarily discussed as the EGS calibrations at SURF-III have not yet been performed.

  16. Harmonic generation beyond the Strong-Field Approximation: the physics behind the short-wave-infrared scaling laws.

    PubMed

    Pérez-Hernández, J A; Roso, L; Plaja, L

    2009-06-08

    The physics of laser-mater interactions beyond the perturbative limit configures the field of extreme non-linear optics. Although most experiments have been done in the near infrared ( lambda

  17. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, S.N.

    1992-12-31

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  18. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterhoff, J.; Nakamura, K.; Bakeman, M.

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  19. XUV coherent diffraction imaging in reflection geometry with low numerical aperture.

    PubMed

    Zürch, Michael; Kern, Christian; Spielmann, Christian

    2013-09-09

    We present an experimental realization of coherent diffraction imaging in reflection geometry illuminating the sample with a laser driven high harmonic generation (HHG) based XUV source. After recording the diffraction pattern in reflection geometry, the data must be corrected before the image can be reconstructed with a hybrid-input-output (HIO) algorithm. In this paper we present a detailed investigation of sources of spoiling the reconstructed image due to the nonlinear momentum transfer, errors in estimating the angle of incidence on the sample, and distortions by placing the image off center in the computation grid. Finally we provide guidelines for the necessary parameters to realize a satisfactory reconstruction within a spatial resolution in the range of one micron for an imaging scheme with a numerical aperture NA < 0.03.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, G.; Shevchuk, I.; Walter, P.

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O{sub 2} 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. Anmore » also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.« less

  1. Ultrafast High Harmonic, Soft X-Ray Probing of Molecular Dynamics

    DTIC Science & Technology

    2009-12-16

    12. D. G. Lappas and A. L’Huillier, "Generation of attosecond XUV pulses in strong laser-atom interactions," Phys. Rev. A 58, 4140 (1998). 13...presentation at the 37 th AIAA/ASME/ SAE /ASEE Joint Propulsion Conference and Exhibition, Salt Lake City, UT, p. 3937 (2001). 36. A. Bultel, B. G

  2. Extending Tabletop XUV Spectroscopy to the Liquid Phase to Examine Transition Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Benke, Kristin; Ryland, Elizabeth S.; Vura-Weis, Josh

    2017-06-01

    M-edge spectroscopy of first row transition metals (3p to 3d excitation) is the low energy analogue of more well-known K- and L-edge spectroscopy, but can be implemented without the use of a synchrotron. Instead, M-edge spectroscopy can be performed as a tabletop method, relying on high harmonic generation (HHG) to produce ultrashort (˜ 20 fs) pulses of extreme ultraviolet (XUV) light in the range of 10-100s of eV. We have shown tabletop M-edge spectroscopy to be a valuable tool in determining the electronic structure of metal-centered coordination complexes and have demonstrated its capacity to yield element-specific information about a compound's oxidation state, spin state, and ligand field. The power of this technique to distinguish these features makes it a promising addition to the arsenal of methods used to study metal-centered catalysts. A catalytic reaction can be initiated photochemically and the XUV probe can be used to track oxidative and structural changes to identify the key intermediates. Until recently tabletop XUV spectroscopy has been performed on thin film samples, but in order to examine homogeneous catalysis, the technique must be adapted to look at samples in the liquid phase. The challenges of adapting tabletop XUV spectroscopy to the liquid phase lie in the lower attenuation length of XUV light compared to soft and hard x-rays and the lower flux compared to synchrotron methods. As a result, the sample must be limited to a sub-micron thickness as well as isolated from the vacuum environment required for x-ray spectroscopy. I am developing a liquid flow cell that relies on confining the sample between two x-ray transmissive SiN membranes, as has been demonstrated for use at synchrotrons, but adapted to the unique difficulties encountered in tabletop XUV spectroscopy.

  3. Compact 200 kHz HHG source driven by a few-cycle OPCPA

    NASA Astrophysics Data System (ADS)

    Harth, Anne; Guo, Chen; Cheng, Yu-Chen; Losquin, Arthur; Miranda, Miguel; Mikaelsson, Sara; Heyl, Christoph M.; Prochnow, Oliver; Ahrens, Jan; Morgner, Uwe; L'Huillier, Anne; Arnold, Cord L.

    2018-01-01

    We present efficient high-order harmonic generation (HHG) based on a high-repetition rate, few-cycle, near infrared (NIR), carrier-envelope phase stable, optical parametric chirped pulse amplifier (OPCPA), emitting 6 fs pulses with 9 μJ pulse energy. In krypton, we reach conversion efficiencies from the NIR to the extreme ultraviolet (XUV) radiation pulse energy on the order of ˜10-6 with less than 3 μJ driving pulse energy. This is achieved by optimizing the OPCPA for a spatially and temporally clean pulse and by a specially designed high-pressure gas target. In the future, the high efficiency of the HHG source will be beneficial for high-repetition rate two-colour (NIR-XUV) pump-probe experiments, where the available pulse energy from the laser has to be distributed economically between pump and probe pulses.

  4. Magnetic flux pile-up and ion heating in a current sheet formed by colliding magnetized plasma flows

    NASA Astrophysics Data System (ADS)

    Suttle, L.; Hare, J.; Lebedev, S.; Ciardi, A.; Loureiro, N.; Niasse, N.; Burdiak, G.; Clayson, T.; Lane, T.; Robinson, T.; Smith, R.; Stuart, N.; Suzuki-Vidal, F.

    2017-10-01

    We present data from experiments carried out at the Magpie pulsed power facility, which show the detailed structure of the interaction of counter-streaming magnetized plasma flows. In our quasi-2D setup, continuous supersonic flows are produced with strong embedded magnetic fields of opposing directions. Their interaction leads to the formation of a dense and long-lasting current sheet, where we observe the pile-up of the magnetic flux at the sheet boundary, as well as the annihilation of field inside, accompanied by an increase in plasma temperature. Spatially resolved measurements with Faraday rotation polarimetry, B-dot probes, XUV imaging, Thomson scattering and laser interferometry diagnostics show the detailed distribution of the magnetic field and other plasma parameters throughout the system. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) Grant No. EP/G001324/1, and by the U.S. Department of Energy (DOE) Awards No. DE-F03-02NA00057 and No. DE-SC-0001063.

  5. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, E.; Allaria, E.; Buck, J.

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  6. Intense XUV Radiation Sources.

    DTIC Science & Technology

    1987-09-30

    meetings form Appendices F and H. Earlier work demonstrated the usefulness of laser generated pl -a- as intense light sources in the extreme ultraviolet...in ttile 30- 12 (tlasecr \\kas operated at 101 Hz. Far comiiparisoni ab1outI halt ini reg-ioti. tilie nuttiter oh Shots \\ serc needed to ohii iiIar I...lie pl asmhas were prod uiced h foCUSi11 titlie ou tpu t e xpu SLiFres wu thI a B R\\ sparlk sOITt re hut, at Ilie Puls front a \\d : )A6i laser (1.1004

  7. Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators

    DOE PAGES

    Ferrari, E.; Allaria, E.; Buck, J.; ...

    2015-08-28

    Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We research the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

  8. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separatedmore » by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.« less

  9. Controlling electronic couplings with tunable long wavelength pulses: Study of Autler-Townes splitting and XUV emission spectra

    NASA Astrophysics Data System (ADS)

    Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder

    2017-04-01

    Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.

  10. Attosecond sublevel beating and nonlinear dressing on the 3d-to-5p and 3p-to-5s core-transitions at 91.3 eV and 210.4 eV in krypton.

    PubMed

    Seres, Enikoe; Seres, Jozsef; Namba, Shinichi; Afa, John; Serrat, Carles

    2017-12-11

    Applying extreme ultraviolet (XUV) transient absorption spectroscopy, the dynamics of the two laser dressed transitions 3d 5/2 -to-5p 3/2 and 3p 3/2 -to-5s 1/2 at photon energies of 91.3 eV and 210.4 eV were examined with attosecond temporal resolution. The dressing process was modeled with density matrix equations which are found to describe very accurately both the experimentally observed transmission dynamics and the linear and nonlinear dressing oscillations at 0.75 PHz and 1.5 PHz frequencies. Furthermore, using Fourier transform XUV spectroscopy, quantum beats from the 3d 5/2 -3d 3/2 and 3p 3/2 -3p 1/2 sublevels at 0.3 PHz and 2.0 PHz were experimentally identified and resolved.

  11. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  12. Development of reflective optical systems for XUV projection lithography

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Newnam, B. E.

    We describe two full-field reflective reduction systems (1 and 6.25 sq cm image area) and one scanning system (25 mm x scan length image size) that meet the performance requirements for 0.1-micron resolution projection lithography using extreme-ultraviolet (XUV) wavelengths from 10 to 15 nm. These systems consist of two centered, symmetric, annular aspheric mirrors with 35 to 40 percent central obscuration, providing a reduction ratio of 3.3 x. Outstanding features include the remarkably low distortion (less than or = 10 nm) over the entire image field and the comparatively liberal tolerances on the mirror radii and alignment. While optimized annular illumination can improve the performance, the required performance can be met with full illumination, thereby allowing a simpler system design.

  13. Spatiotemporal control of laser intensity

    NASA Astrophysics Data System (ADS)

    Froula, Dustin H.; Turnbull, David; Davies, Andrew S.; Kessler, Terrance J.; Haberberger, Dan; Palastro, John P.; Bahk, Seung-Whan; Begishev, Ildar A.; Boni, Robert; Bucht, Sara; Katz, Joseph; Shaw, Jessica L.

    2018-05-01

    The controlled coupling of a laser to plasma has the potential to address grand scientific challenges1-6, but many applications have limited flexibility and poor control over the laser focal volume. Here, we present an advanced focusing scheme called a `flying focus', where a chromatic focusing system combined with chirped laser pulses enables a small-diameter laser focus to propagate nearly 100 times its Rayleigh length. Furthermore, the speed at which the focus moves (and hence the peak intensity) is decoupled from the group velocity of the laser. It can co- or counter-propagate along the laser axis at any velocity. Experiments validating the concept measured subluminal (-0.09c) to superluminal (39c) focal-spot velocities, generating a nearly constant peak intensity over 4.5 mm. Among possible applications, the flying focus could be applied to a photon accelerator7 to mitigate dephasing, facilitating the production of tunable XUV sources.

  14. Commission of a new 2-color laser-synchrotron COLTRIMS experiment

    NASA Astrophysics Data System (ADS)

    Gatton, A.; Larsen, K.; Champenois, E.; Shivaram, N.; Bakhti, S.; Iskander, W.; Sievert, T.; Reedy, D.; Weller, M.; Williams, J. B.; Landers, A.; Weber, Th.

    2017-04-01

    We present the technical scheme of a new 2-color laser + synchrotron Cold Target Recoil Ion Momentum Spectrometer (COLTRIMS) experiment in which we overlap a pulsed IR laser (1 MHz , 1030 nm , 12 ps , 5 *1011 W / cm2) with XUV light from beamline 10.0.1 (3 MHz , 18 . 56 eV , 80 ps , 50 meV resolution) at the Advanced Light Source (ALS) at Lawrence Berkeley National Lab. We discuss the experimental methods for overlapping in 3D the co-linear ALS beam (80 um × 100 um) with the laser beam focus (50 um × 50 um) inside the gas jet target with a horizontal length and depth of 1 mm , as well as the timing scheme for achieving sub nanosecond stable synchrolock of the two pulse trains such that they are overlapped in time at the gas jet target every third ALS pulse. We present a definitive 2 color signal observed in Helium excited by 23 . 74 eV photons from the ALS to the 1s4p 1P state, and then ionized by the laser. We intend to use this scheme to study dissociation dynamics of excited molecules in the presence of a strong laser field. This research used the Advanced Light Source and was supported by DOE-BES under Contract No. DE-AC02-05CH11231 and DE-FG02-86ER13491, the ALS Doctoral Fellowship in Residence, and the DFG and DAAD.

  15. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation.

    PubMed

    Jager, Marieke F; Ott, Christian; Kaplan, Christopher J; Kraus, Peter M; Neumark, Daniel M; Leone, Stephen R

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO 2 ) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  16. Attosecond transient absorption instrumentation for thin film materials: Phase transitions, heat dissipation, signal stabilization, timing correction, and rapid sample rotation

    NASA Astrophysics Data System (ADS)

    Jager, Marieke F.; Ott, Christian; Kaplan, Christopher J.; Kraus, Peter M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-01-01

    We present an extreme ultraviolet (XUV) transient absorption apparatus tailored to attosecond and femtosecond measurements on bulk solid-state thin-film samples, specifically when the sample dynamics are sensitive to heating effects. The setup combines methodology for stabilizing sub-femtosecond time-resolution measurements over 48 h and techniques for mitigating heat buildup in temperature-dependent samples. Single-point beam stabilization in pump and probe arms and periodic time-zero reference measurements are described for accurate timing and stabilization. A hollow-shaft motor configuration for rapid sample rotation, raster scanning capability, and additional diagnostics are described for heat mitigation. Heat transfer simulations performed using a finite element analysis allow comparison of sample rotation and traditional raster scanning techniques for 100 Hz pulsed laser measurements on vanadium dioxide, a material that undergoes an insulator-to-metal transition at a modest temperature of 340 K. Experimental results are presented confirming that the vanadium dioxide (VO2) sample cannot cool below its phase transition temperature between laser pulses without rapid rotation, in agreement with the simulations. The findings indicate the stringent conditions required to perform rigorous broadband XUV time-resolved absorption measurements on bulk solid-state samples, particularly those with temperature sensitivity, and elucidate a clear methodology to perform them.

  17. Charge Transfer Dissociation of Complex Oligosaccharides: Comparison with Collision-Induced Dissociation and Extreme Ultraviolet Dissociative Photoionization

    NASA Astrophysics Data System (ADS)

    Ropartz, David; Li, Pengfei; Fanuel, Mathieu; Giuliani, Alexandre; Rogniaux, Hélène; Jackson, Glen P.

    2016-10-01

    The structural characterization of oligosaccharides still challenges the field of analytical chemistry. Tandem mass spectrometry offers many advantages toward this aim, although the generic fragmentation method (low-energy collision-induced dissociation) shows clear limitations and is often insufficient to retrieve some essential structural information on these molecules. In this work, we present the first application of helium charge transfer dissociation (He-CTD) to characterize the structure of complex oligosaccharides. We compare this method with low-energy collision-induced dissociation and extreme-ultraviolet dissociative photoionization (XUV-DPI), which was shown previously to ensure the successful characterization of complex glycans. Similarly to what could be obtained by XUV-DPI, He-CTD provides a complete description of the investigated structures by producing many informative cross-ring fragments and no ambiguous fragmentation. Unlike XUV-DPI, which is performed at a synchrotron source, He-CTD has the undeniable advantage of being implementable in a conventional benchtop ion trap in a conventional laboratory setting.

  18. The Building History of XUV disks of M83& NGC2403 with TRGB Archaeology

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2015-06-01

    We propose deep HSC g & i-band imaging of two extended ultraviolet (XUV) disks of M83 and NGC2403. These galaxies have the prototype XUV disks with the largest size ( 1 deg and 30 arcmin). The Subaru HSC permits unprecedentedly deep imaging over these gigantic XUV disks, including sufficient surrounding areas which are used for sky subtraction and statistical estimation of background contamination. This project probes the building history of the XUV disks using archeological stellar populations, especially the tip of red giant branch (TRGB) stars (age 2-14 Gyr). Their presence and distribution over the XUV disks will reveal any star formation (SF) occurring over the past 2 Gyr, 4-6 Gyr, and beyond - i.e., the epochs preceding the recent (UV-traced) state of SF. Their color depends strongly on metallicity, thus providing an additional measure of star-gas recycling during the evolution of the XUV disks. In addition, we will detect young & massive main sequence stars (<100 Myr) and He-burning stars (100-500 Myr). Comparing various generations of stars, in terms of number densities and spatial distributions, will reveal the much-unexplored SF history in the XUV disks.

  19. Generation of isolated attosecond pulses with enhancement cavities—a theoretical study

    NASA Astrophysics Data System (ADS)

    Högner, M.; Tosa, V.; Pupeza, I.

    2017-03-01

    The generation of extreme-ultraviolet (XUV) isolated attosecond pulses (IAPs) has enabled experimental access to the fastest phenomena in nature observed so far, namely the dynamics of electrons in atoms, molecules and solids. However, nowadays the highest repetition rates at which IAPs can be generated lies in the {kHz} range. This represents a rather severe restriction for numerous experiments involving the detection of charged particles, where the desired number of generated particles per shot is limited by space charge effects to ideally one. Here, we present a theoretical study on the possibility of efficiently producing IAPs at multi-{MHz} repetition rates via cavity-enhanced high-harmonic generation (HHG). To this end, we assume parameters of state-of-the-art Yb-based femtosecond laser technology to evaluate several time-gating methods which could generate IAPs in enhancement cavities. We identify polarization gating and a new method, employing non-collinear optical gating in a tailored transverse cavity mode, as suitable candidates and analyze these via extensive numerical modeling. The latter, which we dub transverse mode gating (TMG) promises the highest efficiency and robustness. Assuming 0.7 μ {{J}}, 5-cycle pulses from the seeding laser and a state-of-the-art enhancement cavity, we show that TMG bares the potential to generate IAPs with photon energies around 100 {eV} and a photon flux of at least {10}8 {photons} {{{s}}}-1 at repetition rates of 10 {MHz} and higher. This result reveals a roadmap towards a dramatic decrease in measurement time (and, equivalently, an increase in the signal-to-noise ratio) in photoelectron spectroscopy and microscopy. In particular, it paves the way to combining attosecond streaking with photoelectron emission microscopy, affording, for the first time, the spatially and temporally resolved observation of plasmonic fields in nanostructures. Furthermore, it promises the generation of frequency combs with an unprecedented bandwidth for XUV precision spectroscopy.

  20. PHERMEX, REX, AND THOMSON-GENERATED XUV CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THOMAS P. HUGHES; RANDY M. CLARK - MISSION RESEARCH CORP. RANDOLPH L. CARLSON; DAVID C. MOIR - LANL

    1993-05-01

    We report on calculations carried out during 1990 in support of on-going and planned beam experiments at M-4. A higher-current injector for PHERMEX is under consideration and we have modeled a REX-like diode geometry which can deliver 1--1.5 kA. A three+coil focusing configuration has been designed to maintain low beam emittance in the diode region. We show that the existing two transport magnets are marginally capable of transporting a 1 kA beam to the a-cavity. This work is described in Sec. 2. In Sec. 3, we look at the possibility of accelerating a 4 kA, 4 MV beam, which couldmore » be provided by the REX machine, through the PHERMEX a cavity. Simulation results indicate that this is feasible. Because of the high cost and limited pulse length of a REX injector, however, a 1-1.5 kA upgrade is a more attractive option at this time. Computations in support of ongoing REX experiments are described in Sec. 4. We have modeled the generation of transverse beam oscillations through the excitation of an electromagnetic dipole mode in the diode cavity. Results show that oscillating magnetic fields on the order of 1--2 gauss are sufficient to cause the oscillation amplitudes observed. A simulation was carried to look at the effect of placing iron rings inside the windings of the REX anode magnet. We conclude that this causes no significant degradation of beam emittance. We have also looked at the focusing produced when the REX beam is injected into a laser-ionized plasma channel. This is a possible alternative to a magnetic lens to obtain a small spot-size. Finally, in Sec. 5, we give results of preliminary calculations of XUV and X-ray photon production through laser backscattering off a relativistic electron beam. There are plans to carry out such an experiment on REX in the near future.« less

  1. Theoretical derivation of laser-dressed atomic states by using a fractal space

    NASA Astrophysics Data System (ADS)

    Duchateau, Guillaume

    2018-05-01

    The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.

  2. XUV pulse effect on signal modulations of harmonic spectra from H2+ and T2+

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang; Kapteyn, Henry J.; Feng, April Y.

    2018-05-01

    The effects of signal modulations on the molecular high-order harmonic generations in H2^{+ } and T2+ have been theoretically investigated. It is found that with the introduction of the XUV pulse, due to the absorption of the extra XUV photons in the recombination process, multiplateaus on the harmonic spectra, separated by the XUV photon energy can be found. Moreover, this multiplateau structure is insensitive to the wavelength of the XUV pulse. In shorter pulse duration, the intensities of the multiplateaus from H2+ are higher than those from T2+; while in longer pulse duration, the opposite results can be found. Finally, by changing the delay time of the XUV pulse, the signal modulations (including the amplitude and the frequency modulations) of the multiplateaus can be controlled.

  3. Frequency Combs in the XUV by Intra-Laser High Harmonic Generation for Ultra-Precise Measurements of the Fine Structure Constant

    DTIC Science & Technology

    2015-06-03

    example, all atomic clocks for the European satellite -based global positioning system GALLILEO were manufactured in Neuchatel. With the integration...realization of numerous other exciting devices in various areas like advancement of sensors and nano- technological devices. Summary of Project...losses of the resonator . Achieving passive femtosecond pulse formation at these record-high power levels will require eliminating any destabilizing

  4. Ultrafast quantum control of ionization dynamics in krypton.

    PubMed

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  5. Saturation of a Ce:Y 3Al 5O 12 scintillator response to ultra-short pulses of extreme ultraviolet soft X-ray and X-ray laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzywinski, J.; Andrejczuk, A.; Bionta, R. M.

    Investigations of radioluminescence saturation in monocrystalline cerium doped yttrium aluminum garnet (Ce:YAG) exposed to intense extreme ultraviolet (XUV), soft X-ray and X-ray radiation delivered from three free-electron lasers are described in this article. The measurements were performed with wavelengths of 98, 25.6, 13.5 and 0.15 nm. We have found that saturation of the photon yield occurs at an excitation level of 2.0 x 10 20 eV/cm 3 resulting in an emission of 1.5 x 10 18 visible photons per cubic centimeter. This number is much smaller than the concentration of Ce3+ in the scintillator that was equal to 2 xmore » 10 20 cm –3. Because the internal radiance efficiency η does not depend strongly on the irradiating photon energy, i.e., η ≈0.035 ± 0.015 in the range 10 to 100 000 eV, the results presented here could be used to predict saturation effects in scintillator slabs placed in imaging systems of bright XUV, X-ray and particle beams. In conclusion, the saturation of the Ce 3+ emission is explained by mutual quenching of excitons created at high densities, preceding the stage of energy transfer to the Ce 3+ ions.« less

  6. Saturation of a Ce:Y 3Al 5O 12 scintillator response to ultra-short pulses of extreme ultraviolet soft X-ray and X-ray laser radiation

    DOE PAGES

    Krzywinski, J.; Andrejczuk, A.; Bionta, R. M.; ...

    2017-02-01

    Investigations of radioluminescence saturation in monocrystalline cerium doped yttrium aluminum garnet (Ce:YAG) exposed to intense extreme ultraviolet (XUV), soft X-ray and X-ray radiation delivered from three free-electron lasers are described in this article. The measurements were performed with wavelengths of 98, 25.6, 13.5 and 0.15 nm. We have found that saturation of the photon yield occurs at an excitation level of 2.0 x 10 20 eV/cm 3 resulting in an emission of 1.5 x 10 18 visible photons per cubic centimeter. This number is much smaller than the concentration of Ce3+ in the scintillator that was equal to 2 xmore » 10 20 cm –3. Because the internal radiance efficiency η does not depend strongly on the irradiating photon energy, i.e., η ≈0.035 ± 0.015 in the range 10 to 100 000 eV, the results presented here could be used to predict saturation effects in scintillator slabs placed in imaging systems of bright XUV, X-ray and particle beams. In conclusion, the saturation of the Ce 3+ emission is explained by mutual quenching of excitons created at high densities, preceding the stage of energy transfer to the Ce 3+ ions.« less

  7. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    DOE PAGES

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; ...

    2017-04-10

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6H 3F 2I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the originmore » of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.« less

  8. Toward Imaging of Small Objects with XUV Radiation

    NASA Astrophysics Data System (ADS)

    Sayrac, Muhammed; Kolomenski, Alexandre A.; Boran, Yakup; Schuessler, Hans

    The coherent diffraction imaging (CDI) technique has the potential to capture high resolution images of nano- or micron-sized structures when using XUV radiation obtained by high harmonic radiation (HHG) process. When a small object is exposed to XUV radiation, a diffraction pattern of the object is created. The advances in the coherent HHG enable obtaining photon flux sufficient for XUV imaging. The diffractive imaging technique from coherent table top XUV beams have made possible nanometer-scale resolution imaging by replacing the imaging optics with a computer reconstruction algorithm. In this study, we present our initial work on diffractive imaging using a tabletop XUV source. The initial investigation of imaging of a micron-sized mesh with an optimized HHG source is demonstrated. This work was supported in part by the Robert A. Welch Foundation Grant No. A1546 and the Qatar Foundation under the grant NPRP 8-735-1-154. M. Sayrac acknowledges support from the Ministry of National Education of the Republic of Turkey.

  9. Time-resolved photoelectron spectroscopy of IR-driven electron dynamics in a charge transfer model system.

    PubMed

    Falge, Mirjam; Fröbel, Friedrich Georg; Engel, Volker; Gräfe, Stefanie

    2017-08-02

    If the adiabatic approximation is valid, electrons smoothly adapt to molecular geometry changes. In contrast, as a characteristic of diabatic dynamics, the electron density does not follow the nuclear motion. Recently, we have shown that the asymmetry in time-resolved photoelectron spectra serves as a tool to distinguish between these dynamics [Falge et al., J. Phys. Chem. Lett., 2012, 3, 2617]. Here, we investigate the influence of an additional, moderately intense infrared (IR) laser field, as often applied in attosecond time-resolved experiments, on such asymmetries. This is done using a simple model for coupled electronic-nuclear motion. We calculate time-resolved photoelectron spectra and their asymmetries and demonstrate that the spectra directly map the bound electron-nuclear dynamics. From the asymmetries, we can trace the IR field-induced population transfer and both the field-driven and intrinsic (non-)adiabatic dynamics. This holds true when considering superposition states accompanied by electronic coherences. The latter are observable in the asymmetries for sufficiently short XUV pulses to coherently probe the coupled states. It is thus documented that the asymmetry is a measure for phases in bound electron wave packets and non-adiabatic dynamics.

  10. Experimental and Theoretical Investigations of Doubly-excited Sextet States in

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Berry, H. Gordon; Livingston, A. Eugene; Garnir, Henri-Pierre; Bastin, Thierry; Désesquelles, J.

    2002-05-01

    The energies and wave functions of the highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are calculated with the Multi-Configuration Hartree-Fock (MCHF) plus the hydrogen-like QED effects and higher-order corrections method. The highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are well above several ionization levels and metastable, and possible candidates for XUV- and soft x-ray laser and energy storage. Three doubly-excited sextet configurations (1s2s2p3 6So, 1s2s2p23s 6P and 1s2p33s 6So) are studied. The wavelengths of electric dipole transitions from the inner-shell excited terms 1s2s2p23s 6P-1s2p33s 6So are investigated by the beam-foil spectroscopy in the XUV spectral region. The predicted transition wavelengths agree with the experiment to 0.08Å. The higher-order corrections and fine structures are found to be critically important in these comparisons.

  11. Proton Beam Driven Isochoric Heating to Warm Dense Matter Conditions on Texas Petawatt

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; McCary, E.; Jiao, X.; Bowers, B.; Bernstein, A.; Ditmire, T.; Montgomery, M.; Winget, D.; Hegelich, B. M.

    2017-10-01

    Isochoric heating of solids and gases to warm dense matter conditions is relevant to the study of equation of state as well as laboratory astrophysics, specifically heating of hydrogen gas ( 1017-1019 cm3) to 0.5-3eV for the study of white dwarf atmospheres. In a series of experiments on Texas Petawatt, we have built a platform using the petawatt laser focused softly to a large focal spot (60-70um) to generate large numbers of intermediate energy protons via TNSA, ideal for isochoric heating. We have previously used the proton beam to isochorically heat 10um aluminum foils to 20eV. This poster presents results of experiments in which low Z materials such as methane gas, carbon foams, and hydrogen are heated using this platform. We are measuring the surface brightness temperature and heating with a streaked optical pyrometer, and XUV emissions using an XUV spectrometer. Supported by NNSA cooperative agreement DE-NA0002008, the DARPA PULSE program (12-63-PULSE-FP014), and the Air Force Office of Scientific Research (FA9550-14-1-0045).

  12. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  13. Carrier-Specific Femtosecond XUV Transient Absorption of PbI 2 Reveals Ultrafast Nonradiative Recombination

    DOE PAGES

    Lin, Ming-Fu; Verkamp, Max A.; Leveillee, Joshua; ...

    2017-11-30

    Femtosecond carrier recombination in PbI 2 is measured using tabletop high-harmonic extreme ultraviolet (XUV) transient absorption spectroscopy and ultrafast electron diffraction. XUV absorption from 45 eV to 62 eV measures transitions from the iodine 4d core level to the conduction band density of states. Photoexcitation at 400 nm creates separate and distinct transient absorption signals for holes and electrons, separated in energy by the 2.4 eV band gap of the semiconductor. The shape of the conduction band and therefore the XUV absorption spectrum is temperature dependent, and nonradiative recombination converts the initial electronic excitation to thermal excitation within picoseconds. Ultrafastmore » electron diffraction (UED) is used to measure the lattice temperature and confirm the recombination mechanism. Lastly, the XUV and UED results support a 2nd-order recombination model with a rate constant of 2.5x10 -9 cm 3/s.« less

  14. Tracking the ultrafast XUV optical properties of x-ray free-electron-laser heated matter with high-order harmonics

    NASA Astrophysics Data System (ADS)

    Williams, Gareth O.; Künzel, S.; Daboussi, S.; Iwan, B.; Gonzalez, A. I.; Boutu, W.; Hilbert, V.; Zastrau, U.; Lee, H. J.; Nagler, B.; Granados, E.; Galtier, E.; Heimann, P.; Barbrel, B.; Dovillaire, G.; Lee, R. W.; Dunn, J.; Recoules, V.; Blancard, C.; Renaudin, P.; de la Varga, A. G.; Velarde, P.; Audebert, P.; Merdji, H.; Zeitoun, Ph.; Fajardo, M.

    2018-02-01

    We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. We compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data, suggestive of a temperature-dependent electronic structure in warm dense matter.

  15. Laser-induced breakup of helium 3S 1s2s with intermediate doubly excited states

    NASA Astrophysics Data System (ADS)

    Simonsen, A. S.; Bachau, H.; Førre, M.

    2014-02-01

    Solving the time-dependent Schrödinger equation in full dimensionality for two electrons, it is found that in the XUV regime the two-photon double ionization dynamics of He(1s2s) is predominantly dictated by the process of resonance enhanced multiphoton ionization via doubly excited states (DESs). We have studied a pump-probe scenario where the full laser-driven breakup of the 3S 1s2s metastable state is dominated by intermediate quasiresonant excitation to doubly excited (autoionizing) states in the 3Po series. Clear evidence of multipath interference effects is revealed in the resulting angular distributions of the ejected electrons in cases where more than one intermediate DES is populated in the process.

  16. Compensation of high order harmonic long quantum-path attosecond chirp

    NASA Astrophysics Data System (ADS)

    Guichard, R.; Caillat, J.; Lévêque, C.; Risoud, F.; Maquet, A.; Taïeb, R.; Zaïr, A.

    2017-12-01

    We propose a method to compensate for the extreme ultra violet (XUV) attosecond chirp associated with the long quantum-path in the high harmonic generation process. Our method employs an isolated attosecond pulse (IAP) issued from the short trajectory contribution in a primary target to assist the infrared driving field to produce high harmonics from the long trajectory in a secondary target. In our simulations based on the resolution of the time-dependent Schrödinger equation, the resulting high harmornics present a clear phase compensation of the long quantum-path contribution, near to Fourier transform limited attosecond XUV pulse. Employing time-frequency analysis of the high harmonic dipole, we found that the compensation is not a simple far-field photonic interference between the IAP and the long-path harmonic emission, but a coherent phase transfer from the weak IAP to the long quantum-path electronic wavepacket. Our approach opens the route to utilizing the long quantum-path for the production and applications of attosecond pulses.

  17. Isolation of Coherent Synchrotron Emission During Relativistic Laser Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Dromey, B.; Rykovanov, S. G.; Lewis, C. L. S.; Zepf, M.

    Coherent Synchrotron Emission (CSE) from relativistic laser plasmas (Pukhov et al., Plas Phys Control Fusion 52:124039, 2010; Dromey et al., Nat Phys 8:804-808, 2012; Dromey et al., New J Phys 15:015025, 2013) has recently been identified as a unique platform for the generation of coherent extreme ultraviolet (XUV) and X-Ray radiation with clear potential for bright attosecond pulse production. Exploiting this potential requires careful selection of interaction geometry, spectral wavelength range and target characteristics to allow the generation of high fidelity single attosecond pulses. In the laboratory the first step on this road is to study the individual mechanisms driving the emission of coherent extreme ultraviolet and X-Ray radiation during laser solid interactions in isolation. Here we show how interactions can be tailored to permit the unambiguous observation of coherent synchrotron emission (CSE) and the implications of this geometry for the resulting harmonic spectrum over the duration of the interaction.

  18. Spectroscopic studies of Cr VI species in a laser produced plasma

    NASA Astrophysics Data System (ADS)

    Klemke, Nicolai; Nadarajan, Smijesh; Laban, Dane; Wood, James; Chetty, Dashavir; Kielpinski, David; Litvinyuk, Igor; Sang, Robert

    2015-09-01

    We present measurements characterizing a laser generated, highly ionized microplasma suitable to extend the cut-off energy of High Harmonic Generation (HHG) to energies up to 5 keV. The HHG process occurs when a strong ultrafast laser hits a gaseous target producing coherent radiation with a much higher photon energy than the driving laser. Commonly, noble gases are used and typical photon energies of several 100 eV are obtained. We plan to use Cr5+ species as the target for HHG as generated by a double pulse method: the first pulse creates the plasma, the second pulse is used to obtain the temperature required for Cr5+. Here, we present results on the optimization of plasma parameters such as the plasma temperature, the number density and the dynamics of Cr5+ by means of spectroscopic techniques in the optical and the XUV regime. This research is supported by Lockheed Martin and the Australian Research Council.

  19. Low-loss VIS/IR-XUV beam splitter for high-power applications.

    PubMed

    Pupeza, Ioachim; Fill, Ernst E; Krausz, Ferenc

    2011-06-20

    We present a low-loss VIS/IR-XUV beam splitter, suitable for high-power operation. The spatial separation of the VIS/IR and XUV components of a beam is achieved by the wedged top layer of a dielectric multilayer structure, onto which the beam is impinging under Brewster's angle (for VIS/IR). With a fused silica wedge with an angle of 0.5° we achieve a separation angle of 2.2° and an IR reflectivity of 0.9995. Typical XUV reflectivities amount to 0.1-0.2. The novel element is mechanically robust, exhibiting two major advantages over free-standing Brewster plates: (i) a significant improvement of heat conduction and (ii) easier handling, in particular for high-optical-quality fabrication. The beam splitter could be used as an output coupler for intracavity-generated XUV radiation, promising a boost of the power regime of current MHz-HHG experiments. It is also suited for single-pass experiments and as a beam combiner for pump-probe experiments.

  20. Flat-field VLS spectrometers for laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Evgeny N.; Belokopytov, Aleksei A.; Kolesnikov, Aleksei O.; Muslimov, Eduard R.; Shatokhin, Aleksei N.; Vishnyakov, Eugene A.

    2017-05-01

    Our intention is to develop high-resolution stigmatic spectral imaging in the XUV (2 - 40 nm). We have designed, aligned and tested a broadband stigmatic spectrometer for a range of 12-30 nm, which makes combined use of a normalincidence multilayer mirror (MM) (in particular, a broadband aperiodic MM) and a grazing-incidence plane varied linespace (VLS) reflection grating. The concave MM produces a slightly astigmatic image of the radiation source (for instance, the entrance slit), and the VLS grating produces a set of its dispersed stigmatic spectral images. The multilayer structure determines the spectral width of the operating range, which may amount to more than an octave in wavelength (e.g. 12.5-30 nm for an aperiodic Mo/Si MM), while the VLS grating controls the spectral focal curve. The stigmatism condition is satisfied simultaneously for two wavelengths, 14 and 27 nm. In this case, the condition of non-rigorous stigmatism is fulfilled for the entire wavelength range. A LiF laser plasma spectrum was recorded in one 0.5 J laser shot. A spatial resolution of 26 μm and a spectral resolution of 900 were demonstrated in the 12.5 - 25 nm range. We also report the design of a set of flat-field spectrometers of Harada type with VLS gratings. VLS gratings were made by ebeam and interference lithography. A technique (analytical + numerical) was developed for calculating optical schemes for writing plane and concave VLS gratings with predefined line density variation.

  1. Electron correlation in real time.

    PubMed

    Sansone, Giuseppe; Pfeifer, Thomas; Simeonidis, Konstantinos; Kuleff, Alexander I

    2012-02-01

    Electron correlation, caused by the interaction among electrons in a multielectron system, manifests itself in all states of matter. A complete theoretical description of interacting electrons is challenging; different approximations have been developed to describe the fundamental aspects of the correlation that drives the evolution of simple (few-electron systems in atoms/molecules) as well as complex (multielectron wave functions in atoms, molecules, and solids) systems. Electron correlation plays a key role in the relaxation mechanisms that characterize excited states of neutral or ionized atoms and molecules populated by absorption of extreme ultraviolet (XUV) or X-ray radiation. The dynamics of these states can lead to different processes such as Fano resonance and Auger decay in atoms or interatomic Coulombic decay or charge migration in molecules and clusters. Many of these relaxation mechanisms are ubiquitous in nature and characterize the interaction of complex systems, such as biomolecules, adsorbates on surfaces, and hydrogen-bonded clusters, with XUV light. These mechanisms evolve typically on the femtosecond (1 fs=10(-15) s) or sub-femtosecond timescale. The experimental availability of few-femtosecond and attosecond (1 as=10(-18) s) XUV pulses achieved in the last 10 years offers, for the first time, the opportunity to excite and probe in time these dynamics giving the possibility to trace and control multielectron processes. The generation of ultrashort XUV radiation has triggered the development and application of spectroscopy techniques that can achieve time resolution well into the attosecond domain, thereby offering information on the correlated electronic motion and on the correlation between electron and nuclear motion. A deeper understanding of how electron correlation works could have a large impact in several research fields, such as biochemistry and biology, and trigger important developments in the design and optimization of electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  3. Tracking the ultrafast XUV optical properties of x-ray free-electron-laser heated matter with high-order harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Gareth O.; Künzel, S.; Daboussi, S.

    We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less

  4. Beam transport and monitoring for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.

    2012-12-01

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

  5. Tracking the ultrafast XUV optical properties of x-ray free-electron-laser heated matter with high-order harmonics

    DOE PAGES

    Williams, Gareth O.; Künzel, S.; Daboussi, S.; ...

    2018-02-14

    We present measurements of photon absorption by free electrons as a solid is transformed to plasma. A femtosecond x-ray free-electron laser is used to heat a solid, which separates the electron and ion heating time scales. The changes in absorption are measured with an independent probe pulse created through high-order-harmonic generation. We find an increase in electron temperature to have a relatively small impact on absorption, contrary to several predictions, whereas ion heating increases absorption. Here, we compare the data to current theoretical and numerical approaches and find that a smoother electronic structure yields a better fit to the data,more » suggestive of a temperature-dependent electronic structure in warm dense matter.« less

  6. Evaluation of Pinholes in Unbacked Metal Film Filters to be Used in Rocket- and Satellite-Borne XUV Spectroheliographs.

    PubMed

    Hunter, W R; Purcell, J D; Steele, G N

    1973-08-01

    Extreme ultraviolet (XUV) spectroheliographs require thin metal film filters that transmit the XUV radiation and eliminate scattered visible and near-uv radiation that would fog the photographic film on which the XUV images are recorded. Pinholes in the filters cause local fogging of the film during exposures in flight. It will be shown that the best way for preflight evaluation of pinhole effects is by using the filter in the flight instrument and photographing the sun from the earth's surface. An alternative method that appears to be as good, and is more convenient. is to test the filters in a simulated flight instrument. The results of evaluations using both the flight instrument and a simulated flight instrument will be shown.

  7. Beam transport and monitoring for laser plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sokollik, T.; Tilborg, J. van

    The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less

  8. Quantum coherence in photo-ionisation with tailored XUV pulses

    NASA Astrophysics Data System (ADS)

    Carlström, Stefanos; Mauritsson, Johan; Schafer, Kenneth J.; L'Huillier, Anne; Gisselbrecht, Mathieu

    2018-01-01

    Ionisation with ultrashort pulses in the extreme ultraviolet (XUV) regime can be used to prepare an ion in a superposition of spin-orbit substates. In this work, we study the coherence properties of such a superposition, created by ionising xenon atoms using two phase-locked XUV pulses at different frequencies. In general, if the duration of the driving pulse exceeds the quantum beat period, dephasing will occur. If however, the frequency difference of the two pulses matches the spin-orbit splitting, the coherence can be efficiently increased and dephasing does not occur.

  9. A new XUV optical end-station to characterize compact and flexible photonic devices using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Marcelli, A.; Mazuritskiy, M. I.; Dabagov, S. B.; Hampai, D.; Lerer, A. M.; Izotova, E. A.; D'Elia, A.; Turchini, S.; Zema, N.; Zuccaro, F.; de Simone, M.; Javad Rezvani, S.; Coreno, M.

    2018-03-01

    In this contribution we present the new experimental end-station to characterize XUV diffractive optics, such as Micro Channel Plates (MCPs) and other polycapillary optics, presently under commission at the Elettra synchrotron radiation laboratory (Trieste, Italy). To show the opportunities offered by these new optical devices for 3rd and 4th generation radiation sources, in this work we present also some patterns collected at different energies of the primary XUV radiation transmitted by MCP optical devices working in the normal incidence geometry.

  10. Non-contact XUV metrology of Ru/B4C multilayer optics by means of Hartmann wavefront analysis.

    PubMed

    Ruiz-Lopez, Mabel; Dacasa, Hugo; Mahieu, Benoit; Lozano, Magali; Li, Lu; Zeitoun, Philippe; Bleiner, Davide

    2018-02-20

    Short-wavelength imaging, spectroscopy, and lithography scale down the characteristic length-scale to nanometers. This poses tight constraints on the optics finishing tolerances, which is often difficult to characterize. Indeed, even a tiny surface defect degrades the reflectivity and spatial projection of such optics. In this study, we demonstrate experimentally that a Hartmann wavefront sensor for extreme ultraviolet (XUV) wavelengths is an effective non-contact analytical method for inspecting the surface of multilayer optics. The experiment was carried out in a tabletop laboratory using a high-order harmonic generation as an XUV source. The wavefront sensor was used to measure the wavefront errors after the reflection of the XUV beam on a spherical Ru/B 4 C multilayer mirror, scanning a large surface of approximately 40 mm in diameter. The results showed that the technique detects the aberrations in the nanometer range.

  11. DR-induced escape of O and C from early Mars

    NASA Astrophysics Data System (ADS)

    Zhao, Jinjin; Tian, Feng; Ni, Yufang; Huang, Xiaomeng

    2017-03-01

    Energetic particles produced in Dissociative recombination (DR) reactions could escape planets with low gravity, such as Mars, if they could overcome collisions with the surrounding background gases. In this work, a 3-D Monte Carlo model is developed to study these photochemical escape processes on early Mars. Although the DR reaction rates of O2+, CO2+, and CO+ increase monotonically with solar soft X-ray and extreme ultraviolet (XUV) flux, the peak of the calculated DR-induced escape rates of O is near 3 × XUV, and the DR-induced escape rates of C increase with XUV until 10 × XUV. The non-monotonic behavior can be explained by the increased column densities of background species in high XUV conditions, which can deflect energetic particles through collisions more efficiently. At 20 × XUV, CO+ DR is the main source of escaping O and C, and the escape of secondary particles could contribute to 30∼40% and 10% of the total escape of O and C respectively. The time-integrated DR-induced escape of O and C is equivalent to 1 m of H2O and 20 mbar of CO2 escaping early Mars since 4.5 billion years ago. The accumulated CO2 loss is much lower than what's needed to explain the carbon isotopic ratios on Mars and much lower than the total CO2 needed to warm up early Mars. If more vigorous escape mechanisms were absent on early Mars, substantial inventories of volatiles have not been detected yet.

  12. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juha, L.; Hajkova, V.; Vorlicek, V.

    2009-05-01

    High-surface-quality amorphous carbon (a-C) optical coatings with a thickness of 45 nm, deposited by magnetron sputtering on a silicon substrate, were irradiated by the focused beam of capillary-discharge Ne-like Ar extreme ultraviolet laser (CDL=capillary-discharge laser; XUV=extreme ultraviolet, i.e., wavelengths below 100 nm). The laser wavelength and pulse duration were 46.9 nm and 1.7 ns, respectively. The laser beam was focused onto the sample surface by a spherical Sc/Si multilayer mirror with a total reflectivity of about 30%. The laser pulse energy was varied from 0.4 to 40 muJ on the sample surface. The irradiation was carried out at five fluencemore » levels between 0.1 and 10 J/cm{sup 2}, accumulating five different series of shots, i.e., 1, 5, 10, 20, and 40. The damage to the a-C thin layer was investigated by atomic force microscopy (AFM) and Nomarski differential interference contrast (DIC) optical microscopy. The dependence of the single-shot-damaged area on pulse energy makes it possible to determine a beam spot diameter in the focus. Its value was found to be equal to 23.3+-3.0 mum using AFM data, assuming the beam to have a Gaussian profile. Such a plot can also be used for a determination of single-shot damage threshold in a-C. A single-shot threshold value of 1.1 J/cm{sup 2} was found. Investigating the consequences of the multiple-shot exposure, it has been found that an accumulation of 10, 20, and 40 shots at a fluence of 0.5 J/cm{sup 2}, i.e., below the single-shot damage threshold, causes irreversible changes of thin a-C layers, which can be registered by both the AFM and the DIC microscopy. In the center of the damaged area, AFM shows a-C removal to a maximum depth of 0.3, 1.2, and 1.5 nm for 10-, 20- and 40-shot exposure, respectively. Raman microprobe analysis does not indicate any change in the structure of the remaining a-C material. The erosive behavior reported here contrasts with the material expansion observed earlier [L. Juha et al., Proc. SPIE 5917, 91 (2005)] on an a-C sample irradiated by a large number of femtosecond pulses of XUV high-order harmonics.« less

  13. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  14. Time resolved 3D momentum imaging of ultrafast dynamics by coherent VUV-XUV radiation

    DOE PAGES

    Sturm, F. P.; Wright, T. W.; Ray, D.; ...

    2016-06-14

    Have we present a new experimental setup for measuring ultrafast nuclear and electron dynamics of molecules after photo-excitation and ionization. We combine a high flux femtosecond vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) source with an internally cold molecular beam and a 3D momentum imaging particle spectrometer to measure electrons and ions in coincidence. We describe a variety of tools developed to perform pump-probe studies in the VUV-XUV spectrum and to modify and characterize the photon beam. First benchmark experiments are presented to demonstrate the capabilities of the system.

  15. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing the intensity dependent variation of the angular distribution patterns for the sequential ionization process.

  16. Single-shot spectro-temporal characterization of XUV pulses from a seeded free-electron laser

    PubMed Central

    De Ninno, Giovanni; Gauthier, David; Mahieu, Benoît; Ribič, Primož Rebernik; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Penco, Giuseppe; Sigalotti, Paolo; Stupar, Matija

    2015-01-01

    Intense ultrashort X-ray pulses produced by modern free-electron lasers (FELs) allow one to probe biological systems, inorganic materials and molecular reaction dynamics with nanoscale spatial and femtoscale temporal resolution. These experiments require the knowledge, and possibly the control, of the spectro-temporal content of individual pulses. FELs relying on seeding have the potential to produce spatially and temporally fully coherent pulses. Here we propose and implement an interferometric method, which allows us to carry out the first complete single-shot spectro-temporal characterization of the pulses, generated by an FEL in the extreme ultraviolet spectral range. Moreover, we provide the first direct evidence of the temporal coherence of a seeded FEL working in the extreme ultraviolet spectral range and show the way to control the light generation process to produce Fourier-limited pulses. Experiments are carried out at the FERMI FEL in Trieste. PMID:26290320

  17. Subtracting infrared renormalons from Wilson coefficients: Uniqueness and power dependences on ΛQCD

    NASA Astrophysics Data System (ADS)

    Mishima, Go; Sumino, Yukinari; Takaura, Hiromasa

    2017-06-01

    In the context of operator product expansion (OPE) and using the large-β0 approximation, we propose a method to define Wilson coefficients free from uncertainties due to IR renormalons. We first introduce a general observable X (Q2) with an explicit IR cutoff, and then we extract a genuine UV contribution XUV as a cutoff-independent part. XUV includes power corrections ˜(ΛQCD2/Q2)n which are independent of renormalons. Using the integration-by-regions method, we observe that XUV coincides with the leading Wilson coefficient in OPE and also clarify that the power corrections originate from UV region. We examine scheme dependence of XUV and single out a specific scheme favorable in terms of analytical properties. Our method would be optimal with respect to systematicity, analyticity and stability. We test our formulation with the examples of the Adler function, QCD force between Q Q ¯, and R -ratio in e+e- collision.

  18. Evaporation of planetary atmospheres due to XUV illumination by quasars

    NASA Astrophysics Data System (ADS)

    Forbes, John C.; Loeb, Abraham

    2018-06-01

    Planetary atmospheres are subject to mass loss through a variety of mechanisms including irradiation by XUV photons from their host star. Here we explore the consequences of XUV irradiation by supermassive black holes as they grow by the accretion of gas in galactic nuclei. Based on the mass distribution of stars in galactic bulges and disks and the luminosity history of individual black holes, we estimate the probability distribution function of XUV fluences as a function of galaxy halo mass, redshift, and stellar component. We find that about 50% of all planets in the universe may lose a mass of hydrogen of ˜2.5 × 1019 g (the total mass of the Martian atmosphere), 10% may lose ˜5.1 × 1021 g (the total mass of Earth's atmosphere), and 0.2% may lose ˜1.4 × 1024 g (the total mass of Earth's oceans). The fractions are appreciably higher in the spheroidal components of galaxies, and depend strongly on galaxy mass, but only weakly on redshift.

  19. Sub-10-fs control of dissociation pathways in the hydrogen molecular ion with a few-pulse attosecond pulse train

    NASA Astrophysics Data System (ADS)

    Nabekawa, Yasuo; Furukawa, Yusuke; Okino, Tomoya; Amani Eilanlou, A.; Takahashi, Eiji J.; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2016-09-01

    The control of the electronic states of a hydrogen molecular ion by photoexcitation is considerably difficult because it requires multiple sub-10 fs light pulses in the extreme ultraviolet (XUV) wavelength region with a sufficiently high intensity. Here, we demonstrate the control of the dissociation pathway originating from the 2pσu electronic state against that originating from the 2pπu electronic state in a hydrogen molecular ion by using a pair of attosecond pulse trains in the XUV wavelength region with a train-envelope duration of ~4 fs. The switching time from the peak to the valley in the oscillation caused by the vibrational wavepacket motion in the 1sσg ground electronic state is only 8 fs. This result can be classified as the fastest control, to the best of our knowledge, of a molecular reaction in the simplest molecule on the basis of the XUV-pump and XUV-probe scheme.

  20. Development of XUV projection lithography at 60 to 80 nm

    NASA Astrophysics Data System (ADS)

    Newnam, B. E.; Viswanathan, V. K.

    The rationale, design, component properties, properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60-80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.

  1. Development of XUV projection lithography at 60-80 nm (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Newnam, Brian E.; Viswanathan, Vriddhachalam K.

    1992-07-01

    The rationale, design, component properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60 - 80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.

  2. X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring

    NASA Astrophysics Data System (ADS)

    Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias

    2017-10-01

    Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.

  3. Real-time and sub-wavelength ultrafast coherent diffraction imaging in the extreme ultraviolet.

    PubMed

    Zürch, M; Rothhardt, J; Hädrich, S; Demmler, S; Krebs, M; Limpert, J; Tünnermann, A; Guggenmos, A; Kleineberg, U; Spielmann, C

    2014-12-08

    Coherent Diffraction Imaging is a technique to study matter with nanometer-scale spatial resolution based on coherent illumination of the sample with hard X-ray, soft X-ray or extreme ultraviolet light delivered from synchrotrons or more recently X-ray Free-Electron Lasers. This robust technique simultaneously allows quantitative amplitude and phase contrast imaging. Laser-driven high harmonic generation XUV-sources allow table-top realizations. However, the low conversion efficiency of lab-based sources imposes either a large scale laser system or long exposure times, preventing many applications. Here we present a lensless imaging experiment combining a high numerical aperture (NA = 0.8) setup with a high average power fibre laser driven high harmonic source. The high flux and narrow-band harmonic line at 33.2 nm enables either sub-wavelength spatial resolution close to the Abbe limit (Δr = 0.8λ) for long exposure time, or sub-70 nm imaging in less than one second. The unprecedented high spatial resolution, compactness of the setup together with the real-time capability paves the way for a plethora of applications in fundamental and life sciences.

  4. Molecular frame photoemission by a comb of elliptical high-order harmonics: a sensitive probe of both photodynamics and harmonic complete polarization state.

    PubMed

    Veyrinas, K; Gruson, V; Weber, S J; Barreau, L; Ruchon, T; Hergott, J-F; Houver, J-C; Lucchese, R R; Salières, P; Dowek, D

    2016-12-16

    Due to the intimate anisotropic interaction between an XUV light field and a molecule resulting in photoionization (PI), molecular frame photoelectron angular distributions (MFPADs) are most sensitive probes of both electronic/nuclear dynamics and the polarization state of the ionizing light field. Consequently, they encode the complex dipole matrix elements describing the dynamics of the PI transition, as well as the three normalized Stokes parameters s 1 , s 2 , s 3 characterizing the complete polarization state of the light, operating as molecular polarimetry. The remarkable development of advanced light sources delivering attosecond XUV pulses opens the perspective to visualize the primary steps of photochemical dynamics in time-resolved studies, at the natural attosecond to few femtosecond time-scales of electron dynamics and fast nuclear motion. It is thus timely to investigate the feasibility of measurement of MFPADs when PI is induced e.g., by an attosecond pulse train (APT) corresponding to a comb of discrete high-order harmonics. In the work presented here, we report MFPAD studies based on coincident electron-ion 3D momentum imaging in the context of ultrafast molecular dynamics investigated at the PLFA facility (CEA-SLIC), with two perspectives: (i) using APTs generated in atoms/molecules as a source for MFPAD-resolved PI studies, and (ii) taking advantage of molecular polarimetry to perform a complete polarization analysis of the harmonic emission of molecules, a major challenge of high harmonic spectroscopy. Recent results illustrating both aspects are reported for APTs generated in unaligned SF 6 molecules by an elliptically polarized infrared driving field. The observed fingerprints of the elliptically polarized harmonics include the first direct determination of the complete s 1 , s 2 , s 3 Stokes vector, equivalent to (ψ, ε, P), the orientation and the signed ellipticity of the polarization ellipse, and the degree of polarization P. They are compared to so far incomplete results of XUV optical polarimetry. We finally discuss the comparison between the outcomes of photoionization and high harmonic spectroscopy for the description of molecular photodynamics.

  5. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Amongmore » the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.« less

  6. Excitation of XUV radiation in solar flares

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1992-01-01

    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  7. Demonstration of Flying Mirror with Improved Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirozhkov, Alexander S.; Kando, Masaki; Fukuda, Yuji

    2009-07-25

    A strongly nonlinear wake wave driven by an intense laser pulse can act as a partially reflecting relativistic mirror (the flying mirror)[S. V. Bulanov, et al., Bulletin of the Lebedev Physics Institute, No. 6, 9 (1991); S. V. Bulanov, et al., Phys. Rev. Lett. 91, 085001 (2003)]. Upon reflection from such mirror, a counter-propagating optical-frequency laser pulse is directly converted into high-frequency radiation, with a frequency multiplication factor approx4gamma{sup 2}(the double Doppler effect). We present the results of recent experiment in which the photon number in the reflected radiation was at least several thousand times larger than in our proof-of-principlemore » experiment [M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007); A. S. Pirozhkov, et al., Phys. Plasmas 14, 123106 (2007)]. The flying mirror holds promise of generating intense coherent ultrashort XUV and x-ray pulses that inherit their temporal shape and polarization from the original optical-frequency (laser) pulses. Furthermore, the reflected radiation bears important information about the reflecting wake wave itself, which can be used for its diagnostics.« less

  8. Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. I. Modeling of Hydrodynamic Escape of Upper Atmospheric Material

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-01

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H_3^ + cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ~9000 K with a hydrodynamic escape speed of ~9 km s-1, resulting in mass loss rates of ~(4-7) · 1010 g s-1. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  9. Ultrafast Extreme Ultraviolet Spectroscopy of Methylammonium Lead Iodide Perovskite for Carrier Specific Photophysics

    NASA Astrophysics Data System (ADS)

    Verkamp, Max A.; Lin, Ming-Fu; Ryland, Elizabeth S.; Benke, Kristin; Vura-Weis, Josh

    2017-06-01

    Methyl ammonium lead iodide (perovskite) is a leading candidate for next-generation solar cell devices. However, the fundamental photophysics responsible for its strong photovoltaic qualities are not fully understood. Ultrafast extreme ultraviolet (XUV) spectroscopy was used to investigate relaxation dynamics in perovskite with carrier specific signals arising from transitions from the common inner-shell level (I 4d) to the valence and conduction bands. Ultrashort (30 fs) pulses of XUV radiation in a broad spectrum (40-70 eV) were obtained using high-harmonic generation in a tabletop instrument. Transient absorption measurements with visible pump and XUV probe directly observed the dynamics of charge carriers after above-band and band-edge excitation.

  10. Scaling of Yb-Fiber Frequency Combs

    NASA Astrophysics Data System (ADS)

    Ruehl, Axel; Marcinkevicius, Andrius; Fermann, Martin E.; Hartl, Ingmar

    2010-06-01

    Immediately after their introduction in 1999, femtosecond laser frequency combs revolutionized the field of precision optical frequency metrology and are key elements in many experiments. Frequency combs based on femtosecond Er-fiber lasers based were demonstrated in 2005, allowing additionally rugged, compact set-ups and reliable unattended long-term operation. The introduction of Yb-fiber technology led to an dramatic improvement in fiber-comb performance in various aspects. Low-noise Yb-fiber femtosecond oscillators enabled a reduction of relative comb tooth linewidth to the sub-Hz level as well as scaling of the fundamental comb spacings up to 1 GHz. This is beneficial for any frequency-domain comb application due to the higher power per comb-mode. Many spectroscopic applications require, however, frequency combs way beyond the wavelength range accessible with broad band laser materials, so nonlinear conversion and hence higher peak intensity is required. We demonstrated power scaling of Yb-fiber frequency combs up to 80 W average power in a strictly linear chirped-pulse amplification schemes compatible with low-noise phase control. These high-power Yb-fiber-frequency combs facilitated not only the extension to the mid-IR spectral region. When coupled to a passive enhancement cavity, the average power can be further scaled to the kW-level opening new capabilities for XUV frequency combs via high-harmonic generation. All these advances of fiber-based frequency combs will trigger many novel applications both in fundamental and applied sciences. Schibli et al., Nature Photonics 2 355 (2008). Hartl et al., MF9 in Advanced Solid-State Photonics. 2009, Optical Society of America. Ruehl et al., AWC7 in Advanced Solid-State Photonics. 2010, Optical Society of America. Adler et al., Optics Letters 34 1330 (2009). Yost et al., Nature Physics 5 815 (2009).

  11. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity

    NASA Astrophysics Data System (ADS)

    Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-05-01

    Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.

  12. Analysis of staged Z-pinch implosion trajectories from experiments on Zebra

    NASA Astrophysics Data System (ADS)

    Ross, Mike P.; Conti, F.; Darling, T. W.; Ruskov, E.; Valenzuela, J.; Wessel, F. J.; Beg, F.; Narkis, J.; Rahman, H. U.

    2017-10-01

    The Staged Z-pinch plasma confinement concept relies on compressing an annular liner of high-Z plasma onto a target plasma column of deuterium fuel. The interface between the liner and target is stable against the Magneto-Rayleigh-Taylor Instability, which leads to effective fuel compression and makes the concept interesting as a potential fusion reactor. The liner initiates as a neutral gas puff, while the target plasma is a partially ionized (Zeff < 10 percent column ejected from a coaxial plasma gun. The Zebra pulsed power generator (1 MA peak current, 100 ns rise time) provides the discharge that ionizes the liner and drives the Z-pinch implosion. Diverse diagnostics observe the 100-300 km/s implosions including silicon diodes, photo-conducting detectors (PCDs), laser shadowgraphy, an XUV framing camera, and a visible streak camera. The imaging diagnostics track instabilities smaller than 0.1 mm, and Z-pinch diameters below 2.5 mm are seen at peak compression. This poster correlates the data from these diagnostics to elucidate implosion behavior dependencies on liner gas, liner pressure, target pressure, and applied, axial-magnetic field. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  13. Spectroscopic diagnostics of tungsten-doped CH plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.; Lehecka, T.

    1998-11-01

    Spectra of CH with different concentrations of W dopant and laser intensities ( 2.5-10 x10^12 W/cm^2 ) were obtained at NRL with the Nike Laser. They were recorded in the 100-500 eV range with an XUV grating spectrometer. The hydrodynamic simulations are performed with the 1D code FAST1D(J. H. Gardner et al., Phys. Plasmas, 5, May (1998).) where non LTE effects are introduced by Busquet's model( M. Busquet, Phys. Fluids B, 5, 4191 (1993); M. Klapisch, A. Bar-Shalom, J. Oreg and D. Colombant, Phys. Plasmas, 5, May (1998).). They are then post-processed with TRANSPEC( O. Peyrusse, J. Quant. Spectrosc. Radiat. Transfer, 51, 281 (1994)), a time dependent collisional radiative code with radiation coupling. The necessary atomic data are obtained from the HULLAC code( M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transfer, 58, 687 (1997).). The post processing and diagnostics were performed on carbon lines and the results are compared with the experimental data.

  14. Gain measurements and spatial coherence in neon-like x-ray lasers

    NASA Astrophysics Data System (ADS)

    Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.

    1995-05-01

    Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.

  15. Extreme Ultraviolet Solar Images Televised In-Flight with a Rocket-Borne SEC Vidicon System.

    PubMed

    Tousey, R; Limansky, I

    1972-05-01

    A TV image of the entire sun while an importance 2N solar flare was in progress was recorded in the extreme ultraviolet (XUV) radiation band 171-630 A and transmitted to ground from an Aerobee-150 rocket on 4 November 1969 using S-band telemetry. The camera tube was a Westinghouse Electric Corporation SEC vidicon, with its fiber optic faceplate coated with an XUV to visible conversion layer of p-quaterphenyl. The XUV passband was produced by three 1000-A thick aluminum filters in series together with the platinized reflecting surface of the off-axis paraboloid that imaged the sun. A number of images were recorded with integration times between 1/30 see and 2 sec. Reconstruction of pictures was enhanced by combining several to reduce the noise.

  16. Photoelectric array detectors for use at XUV wavelengths. [for Spacelab solar-physics facilities

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1981-01-01

    The characteristics of photoelectric detector systems for use at visible-light, ultraviolet, and X-ray wavelengths are briefly reviewed in the context of the needs of the Spacelab solar-physics facilities. Photoelectric array detectors for use at XUV wavelengths between 90 and 1500 A are described, and their use in the ESA Grazing-Incidence Solar Telescope (GRIST) facility is discussed.

  17. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  18. Chirp of the single attosecond pulse generated by a polarization gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less

  19. Correlations Between Variations in Solar EUV and Soft X-Ray Irradiance and Photoelectron Energy Spectra Observed on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-01-01

    Solar extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F(10.7) index currently used.

  20. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us

    Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at amore » mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.« less

  1. Correlations between variations in solar EUV and soft X-ray irradiance and photoelectron energy spectra observed on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Peterson, W. K.; Brain, D. A.; Mitchell, D. L.; Bailey, S. M.; Chamberlin, P. C.

    2013-11-01

    extreme ultraviolet (EUV; 10-120 nm) and soft X-ray (XUV; 0-10 nm) radiation are major heat sources for the Mars thermosphere as well as the primary source of ionization that creates the ionosphere. In investigations of Mars thermospheric chemistry and dynamics, solar irradiance models are used to account for variations in this radiation. Because of limited proxies, irradiance models do a poor job of tracking the significant variations in irradiance intensity in the EUV and XUV ranges over solar rotation time scales when the Mars-Sun-Earth angle is large. Recent results from Earth observations show that variations in photoelectron energy spectra are useful monitors of EUV and XUV irradiance variability. Here we investigate photoelectron energy spectra observed by the Mars Global Surveyor (MGS) Electron Reflectometer (ER) and the FAST satellite during the interval in 2005 when Earth, Mars, and the Sun were aligned. The Earth photoelectron data in selected bands correlate well with calculations based on 1 nm resolution observations above 27 nm supplemented by broadband observations and a solar model in the 0-27 nm range. At Mars, we find that instrumental and orbital limitations to the identifications of photoelectron energy spectra in MGS/ER data preclude their use as a monitor of solar EUV and XUV variability. However, observations with higher temporal and energy resolution obtained at lower altitudes on Mars might allow the separation of the solar wind and ionospheric components of electron energy spectra so that they could be used as reliable monitors of variations in solar EUV and XUV irradiance than the time shifted, Earth-based, F10.7 index currently used.

  2. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.

  3. How can attosecond pulse train interferometry interrogate electron dynamics?

    NASA Astrophysics Data System (ADS)

    Arnold, C. L.; Isinger, M.; Busto, D.; Guénot, D.; Nandi, S.; Zhong, S.; Dahlström, J. M.; Gisselbrecht, M.; l'Huillier, A.

    2018-04-01

    Light pulses of sub-100 as (1 as=10-18 s) duration, with photon energies in the extreme-ultraviolet (XUV) spectral domain, represent the shortest event in time ever made and controlled by human beings. Their first experimental observation in 2001 has opened the door to investigating the fundamental dynamics of the quantum world on the natural time scale for electrons in atoms, molecules and solids and marks the beginning of the scientific field now called attosecond science.

  4. Do changes in coronal emission structure imply magnetic reconnection

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Petrasso, R. D.; Svestka, Z.; Wentzel, D. G.

    1977-01-01

    Several physical processes that can affect the emission from structures in the corona are investigated on the basis of images of coronal X-ray and XUV emission structures. Changes in emission accompanied by little or no change in large-scale magnetic structure are examined, and three theoretically distinct processes by which magnetic structure can change are discussed: reconfiguration of potential (current-free) fields, reconfiguration of frozen-in fields, and reconfiguration by magnetic-field-line reconnection. The possibility is considered of determining by observation whether a change in emission results from a magnetic change and, if so, what kind of magnetic change has occurred. It is concluded that changes in coronal emission structure do not necessarily imply magnetic reconnection.

  5. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2012-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study, observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. The multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (10^{2+3} M_sun) - the regime about which there is much ongoing debate."

  6. Charge state distribution and emission characteristics in a table top reflex discharge - Effect of ion confinement and electrons accelerated across the sheath

    DOE PAGES

    Kumar, Deepak; Englesbe, Alexander; Parman, Matthew; ...

    2015-11-05

    Tabletop reflex discharges in a Penning geometry have many applications including ion sources and eXtreme Ultra-Violet (XUV) sources. The presence of primary electrons accelerated across the cathode sheaths is responsible for the distribution of ion charge states and of the unusually high XUV brightness of these plasmas. Absolutely calibrated space resolved XUV spectra from a table top reflex discharge operating with Al cathodes and Ne gas are presented. The spectra are analyzed with a new and complete model for ion charge distribution in similar reflex discharges. The plasma in the discharge was found to have a density of ~10 18mmore » –3 with a significant fraction >0.01 of fast primary electrons. As a result, the implications of the new model on the ion states achievable in a tabletop reflex plasma discharge are also discussed.« less

  7. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Lammer, Helmut; Lichtenegger, Herbert I M; Kulikov, Yuri N; Griessmeier, Jean-Mathias; Terada, N; Erkaev, Nikolai V; Biernat, Helfried K; Khodachenko, Maxim L; Ribas, Ignasi; Penz, Thomas; Selsis, Franck

    2007-02-01

    Atmospheric erosion of CO2-rich Earth-size exoplanets due to coronal mass ejection (CME)-induced ion pick up within close-in habitable zones of active M-type dwarf stars is investigated. Since M stars are active at the X-ray and extreme ultraviolet radiation (XUV) wave-lengths over long periods of time, we have applied a thermal balance model at various XUV flux input values for simulating the thermospheric heating by photodissociation and ionization processes due to exothermic chemical reactions and cooling by the CO2 infrared radiation in the 15 microm band. Our study shows that intense XUV radiation of active M stars results in atmospheric expansion and extended exospheres. Using thermospheric neutral and ion densities calculated for various XUV fluxes, we applied a numerical test particle model for simulation of atmospheric ion pick up loss from an extended exosphere arising from its interaction with expected minimum and maximum CME plasma flows. Our results indicate that the Earth-like exoplanets that have no, or weak, magnetic moments may lose tens to hundreds of bars of atmospheric pressure, or even their whole atmospheres due to the CME-induced O ion pick up at orbital distances

  8. Extreme ultraviolet reflector

    DOEpatents

    Newnam, Brian E.

    1990-01-01

    A multi-faceted mirror forms a retroreflector for a resonator loop in a free electron laser (FEL) operating in the XUV (.lambda.=10-100 nm). The number of facets is determined by the angle-of-incidence needed to obtain total external reflectance (TER) from the facet surface and the angle through which the FEL beam is to be turned. Angles-of-incidence greater than the angle for TER may be used to increase the area of the beam incident on the surface and reduce energy absorption density. Suitable surface films having TER in the 10-100 nm range may be formed from a variety of materials, including Al, single-crystal Si, Ag, and Rh. One of the facets is formed as an off-axis conic section to collimate the output beam with minimum astigmatism.

  9. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2013-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by an order of magnitude, by observing additional 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13A. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα; NA656-R) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^(2+3) M_sun) - the regime about which there is much ongoing debate."

  10. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2013-01-01

    "The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. extended UV disk, or XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (˜1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot S-Cam study of M83’s XUV disk led to support for the universal IMF at least in M83 (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing 6 XUV disks in NA656(Hα), B, I, and R-band with S-Cam in S13B. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Hα) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). The proposed observations will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass - clusters (10^{2+3} M_sun) - the regime of ongoing debate. Previously allocated 1+2 nights were cancelled (telescope failures)."

  11. Probing the Initial Mass Function in Extended Ultraviolet (XUV) Disks

    NASA Astrophysics Data System (ADS)

    Koda, Jin

    2014-01-01

    The GALEX UV satellite discovered tantalizing evidence of star formation (SF) far beyond the optical edge of galactic disks (i.e. XUV disk). This discovery provides a new opportunity for studying SF in the exceedingly low-density environment (~1/10 of typical SF density), spurring intense debate on the universality of the initial mass function (IMF) in such exceptional environments. Our pilot study led to support for the universal IMF at least in M83’s XUV disk (Koda et al. 2012). We propose an expansion of the pilot study by about an order of magnitude, by observing total ~ 10 XUV disks (6 disks in S14A) in NA656(Halpha), B, I, and R-band with S-Cam. In conjunction with GALEX UV bands, these images will reveal the presence of O stars (Halpha) and O&B stars (UV) in stellar clusters -thus, constraining the high-mass end of the IMF. These multi-broadband images will enable us to determine the masses of the clusters with much improved accuracy (previously, relied only on R). This project will not only increase the statistical significance of our previous result, but also enable us to analyze the stochastic effect of IMF sampling in very low-mass clusters (102-3 Msun) - the regime of ongoing debate. This proposal will complete this on-going project with S-Cam.

  12. Simulation of angular-resolved RABBITT measurements in noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Bray, Alexander W.; Naseem, Faiza; Kheifets, Anatoli S.

    2018-06-01

    We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE), which includes intershell correlation. This comparison is used to test various effective potentials employed in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell restricts the validity of the single active electron approximation to several tens of eV above the valence-shell threshold.

  13. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  14. Strong-field and attosecond physics in solids

    DOE PAGES

    Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...

    2014-10-08

    We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less

  15. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission.

    PubMed

    Jönsson, H Olof; Caleman, Carl; Andreasson, Jakob; Tîmneanu, Nicuşor

    2017-11-01

    Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

  16. Practical tolerancing and performance implications for XUV projection lithography reduction systems (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vriddhachalam K.

    1992-07-01

    Practical considerations that will strongly affect the imaging capabilities of reflecting systems for extreme-ultraviolet (XUV) projection lithography include manufacturing tolerances and thermal distortion of the mirror surfaces due to absorption of a fraction of the incident radiation beam. We have analyzed the potential magnitudes of these effects for two types of reflective projection optical designs. We find that concentric, symmetric two-mirror systems are less sensitive to manufacturing errors and thermal distortion than off-axis, four-mirror systems.

  17. Line identification and lifetime measurements in the XUV and soft X-ray regions

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1979-01-01

    A summary of the data acquired concerning line identification and lifetime measurements in the xuv and soft X-ray regions for a variety of both resonance transitions and forbidden transitions in ions of astrophysical interest is provided. Particular attention is called to a few papers which appeared in the Astrophysical Journal. These are of special relevance to specific astrophysical data needs. The many experiments completed in areas related to but somewhat outside the confines of the project title are mentioned.

  18. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    PubMed Central

    Géneaux, R.; Camper, A.; Auguste, T.; Gobert, O.; Caillat, J.; Taïeb, R.; Ruchon, T.

    2016-01-01

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterize helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. These breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices. PMID:27573787

  19. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet

    DOE PAGES

    Géneaux, R.; Camper, A.; Auguste, T.; ...

    2016-08-30

    Infrared and visible light beams carrying orbital angular momentum (OAM) are currently thoroughly studied for their extremely broad applicative prospects, among which are quantum information, micromachining and diagnostic tools. Here we extend these prospects, presenting a comprehensive study for the synthesis and full characterization of optical vortices carrying OAM in the extreme ultraviolet (XUV) domain. We confirm the upconversion rules of a femtosecond infrared helically phased beam into its high-order harmonics, showing that each harmonic order carries the total number of OAM units absorbed in the process up to very high orders (57). This allows us to synthesize and characterizemore » helically shaped XUV trains of attosecond pulses. To demonstrate a typical use of these new XUV light beams, we show our ability to generate and control, through photoionization, attosecond electron beams carrying OAM. Furthermore, these breakthroughs pave the route for the study of a series of fundamental phenomena and the development of new ultrafast diagnosis tools using either photonic or electronic vortices.« less

  20. EDITORIAL: Theory of Quantum Gases and Quantum Coherence: The Cortona BEC Workshop, 29 October-2 November 2005

    NASA Astrophysics Data System (ADS)

    Capuzzi, Pablo; Chitra, R.; Menotti, Chiara; Minguzz, Anna; Vignolo, Patrizia

    2006-05-01

    Nonlinear, or multiphoton, interaction of intense laser radiation with matter has been a key research subject for about four decades. Every three years, the International Conference on Multiphoton Processes (ICOMP) covers the latest advances in the field. Intense-field physics has seen phenomenal progress over the last decade. What looked like dreams in the mid-nineties have become routine today. Major theoretical, experimental and technological advances in fundamental science and applications of multiphoton processes cover such diverse areas as precision measurements, femtosecond and now attosecond metrology, quantum control of atomic and molecular dynamics, laser machining of solid state materials, laser acceleration of electrons and protons, and medical applications. This special issue of Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) contains a collection of articles originating from the Tenth International Conference on Multiphoton Processes (ICOMP 2005) held on 9-14 October 2005 in Orford, Quebec, Canada (general chair Lou DiMauro, Ohio State University, program co-chairs Paul Corkum and Misha Ivanov, National Research Council of Canada). The conference focused on atoms and molecules in strong fields, femtosecond and attosecond processes, propagation of intense pulses, and of course multiphoton processes which lie at the foundation of all these subjects. Articles presented in this issue cover several key areas of intense-field physics. These include strong field ionization of atoms, molecules and inside transparent dielectric materials, methods of generation and characterization of attosecond XUV pulses and pulse trains, and new approaches to using intense laser fields and/or attosecond pulses for studying entangled systems and imaging electronic and nuclear dynamics with sub-Ångstrom spatial and sub-femtosecond temporal resolution. We have tried to group the papers according to these general areas. We would like to use this opportunity to thank all the participants of ICOMP-X, and in particular the contributors to this issue, for the high quality of science presented at the conference and in this journal. The success of the conference would not have been possible without the program committee which included D Charalambidis, L Cocke, R Freeman, Y Fujimura, S Goreslavsky, A L'Huillier, F Krausz, R Levis, S H Lin, A Maquet, J Marangos, K Midorikawa, G Mourou, P Salieres, W Sandner, K Schafer, A Scrinzi, A M Sergeev, H Stapelfeldt, A Starace, J Ullrich, M Vrakking, and K Yamanouchi. A particularly lively atmosphere in the discussions was ensured by many students who were able to participate in the conference, in part due to generous support of the Canadian Institute for Photonic Innovations (CIPI) to the Canadian, and of the US Department of Energy Office of Basic Energy Sciences to the American students. Additional support to the conference was provided by the Natural Sciences and Engineering Research Council (NSERC), the National Research Council of Canada (NRC), Pfeiffer Vacuum, Femtolasers Produktions GmbH, Roentdek Handels GmbH, Coherent Laser Products, and Amplitude Technologies. Last but not least, the guest editors of this special issue would like to acknowledge the tremendous amount of work done by the staff of J. Phys. B in handling all aspects of the publication process. In particular, we would like to thank Isabelle Auffret-Babak, Alice Malhador and Joanna Dingley from the editorial team, Katie Gerrard in production and the Editor-in-Chief, Professor J-M Rost.

  1. Laser-plasma interactions from thin tapes for high-energy electron accelerators and seeding compact FELs

    NASA Astrophysics Data System (ADS)

    Shaw, Brian Henry

    This thesis comprises a detailed investigation of the physics of using a plasma mirror (PM) from a tape by reflecting ultrashort pulses from a laser-triggered surface plasma. The tapes used in the characterization of the PM are VHS and computer data storage tape. The tapes are 6.6 m (computer storage tape) and 15 m (VHS) thick. Each tape is 0.5 inches wide, and 10s of meters of tape are spooled using a tape drive; providing thousands of shots on a single reel of tape. The amount of reflected energy of the PM was studied for different input intensities. The fluence was varied by translating the focus of the laser upstream and downstream of the tape, which changed the spot size on the tape surface and hence changed the fluence. This study measured reflectances from both sides of the two tapes, and for input light of both s and p-polarizations. Lastly, an analytic model was developed to understand the reflectance as a function of fluence for each tape material and polarization. Another application that benefits from the advancements of LPA technology is an LPAbased FEL. By sending a high quality electron bunch through an undulator (a periodic structure of positive and negative magnetic poles), the electrons oscillate transversely to the propagation axis and produce radiation. The 1.5 m THUNDER undulator at the BELLA Center has been commissioned using electron beams of 400MeV beams with broad energy spread (35%). To produce a coherent LPA-based FEL, the beam quality would need to improve to sub-percent level energy spread. A seed source could be used to help induce bunching of the electron beam within the undulator. This thesis described the experimental investigation of the physics of using solid-based surface high-harmonic generation (SHHG) from a thin tape as a possible seed source for an FEL. A thin tape placed within centimeters of the undulator's entrance could act as a harmonic generating source, while simultaneously transmitting an electron beam. This removes the need for transport optics for the XUV photons and the need for additional optics to overlap the seed beam with the electron beam at the undulator entrance. By operating at sub-relativistic laser strengths, harmonics up to the 17th order of 800 nm light are produced using an SHHG technique known as coherent wake emission (CWE). CWE pulse properties such as divergence, energy, conversion efficiency, and spectrum are measured for a wide range of tape materials and drive laser conditions. A clear correlation between surface roughness and harmonic beam divergence is found. The measured pulse properties for the 15th harmonic from VHS tape (conversion efficiency 6.5x10-7 and an rms divergence of 12 mrad), the 100 mJ-level, 40-50 fs-class drive laser, produces peak powers of several MW's of XUV pulses. The results of a 1D model indicate that these CWE pulses with MW level powers are sufficient for seed-induced FEL gain. (Abstract shortened by ProQuest.).

  2. Ultrafast Processes in Atoms and Molecules: Integrated treatment of electronic and nuclear motion in ultrashort XUV pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCurdy, C. William

    This project made use of Multiconfiguration Time-Dependent Hartree-Fock method developed earlier in the McCurdy group in a series of novel applications of the method to ultrafast spectroscopic processes. MCTDHF treats the dynamics of a molecule or atom under the influence of an external field in manner that has all electrons active. That property distinguishes this method from the more popular (and much less computationally demanding) approaches for treating the electron dynamics of atoms and molecules in fields, such as the time-dependent “Configuration Interaction Singles” approximation or approaches that limit the treatment to either one or two-electron models.

  3. Attosecond control of dissociative ionization of O{sub 2} molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.; Kelkensberg, F.; Gademann, G.

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  4. Diffraction grating transmission efficiencies for XUV and soft X rays. [for HEAO-B extrasolar astronomy

    NASA Technical Reports Server (NTRS)

    Schnopper, H. W.; Van Speybroeck, L. P.; Delvaille, J. P.; Epstein, A.; Kaellne, E.; Bachrach, R. Z.; Dijkstra, J.; Lantward, L.

    1977-01-01

    The manufacture and properties of a grating intended for extrasolar X-ray studies are described. The manufacturing process uses a split laser beam exposing an interference pattern on the photoresist-coated glass plated with a nickel parting layer. The grating, supporting structure, and mounting frame are electrodeposited on the nickel parting layer, and the final product is lifted from the glass substrate by selective etching of the nickel. A model was derived which relates the number of counts received in a given order m as a function of photon wavenumber. A 4-deg beam line was used to measure the efficiencies of gold transmission gratings for diffraction of X-rays in the range of 45 to 275 eV. The experimental results are in good agreement with model calculations.

  5. Characterizing inner-shell with spectral phase interferometry for direct electric-field reconstruction

    PubMed Central

    Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki

    2014-01-01

    In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971

  6. The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Hoover, Richard B.; Barbee, Troy W., Jr.; Tandberg-Hanssen, Einar; Timothy, J. Gethyn; Lindblom, Joakim F.

    1990-01-01

    The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory.

  7. Testing the molecular-hydrogen Kennicutt-Schmidt law in the low-density environments of extended ultraviolet disc galaxies

    NASA Astrophysics Data System (ADS)

    Watson, Linda C.; Martini, Paul; Lisenfeld, Ute; Böker, Torsten; Schinnerer, Eva

    2016-01-01

    Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) discs, which often contain star-forming regions with lower Hα-to-far-UV (FUV) flux ratios compared to inner disc star-forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analysed published CO measurements and upper limits for 15 star-forming regions in the XUV or outer disc of three nearby spiral galaxies and a new CO upper limit from the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope in one star-forming region at r = 3.4r25 in the XUV disc of NGC 4625. We found that the star-forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Hα or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular-hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Hα-to-FUV flux ratios in XUV discs.

  8. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    PubMed

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  9. The XUV environments of exoplanets from Jupiter-size to super-Earth

    NASA Astrophysics Data System (ADS)

    King, George W.; Wheatley, Peter J.; Salz, Michael; Bourrier, Vincent; Czesla, Stefan; Ehrenreich, David; Kirk, James; Lecavelier des Etangs, Alain; Louden, Tom; Schmitt, Jürgen; Schneider, P. Christian

    2018-07-01

    Planets that reside close-in to their host star are subject to intense high-energy irradiation. Extreme-ultraviolet (EUV) and X-ray radiation (together, XUV) is thought to drive mass-loss from planets with volatile envelopes. We present XMM-Newton observations of six nearby stars hosting transiting planets in tight orbits (with orbital period, Porb < 10 d), wherein we characterize the XUV emission from the stars and subsequent irradiation levels at the planets. In order to reconstruct the unobservable EUV emission, we derive a new set of relations from Solar TIMED/SEE data that are applicable to the standard bands of the current generation of X-ray instruments. From our sample, WASP-80b and HD 149026b experience the highest irradiation level, but HAT-P-11b is probably the best candidate for Ly α evaporation investigations because of the system's proximity to the Solar system. The four smallest planets have likely lost a greater percentage of their mass over their lives than their larger counterparts. We also detect the transit of WASP-80b in the near-ultraviolet with the optical monitor on XMM-Newton.

  10. The XUV environments of exoplanets from Jupiter-size to super-Earth

    NASA Astrophysics Data System (ADS)

    King, George W.; Wheatley, Peter J.; Salz, Michael; Bourrier, Vincent; Czesla, Stefan; Ehrenreich, David; Kirk, James; Lecavelier des Etangs, Alain; Louden, Tom; Schmitt, Jürgen; Schneider, P. Christian

    2018-05-01

    Planets that reside close-in to their host star are subject to intense high-energy irradiation. Extreme-ultraviolet (EUV) and X-ray radiation (together, XUV) is thought to drive mass loss from planets with volatile envelopes. We present XMM-Newton observations of six nearby stars hosting transiting planets in tight orbits (with orbital period, Porb < 10 d), wherein we characterise the XUV emission from the stars and subsequent irradiation levels at the planets. In order to reconstruct the unobservable EUV emission, we derive a new set of relations from Solar TIMED/SEE data that are applicable to the standard bands of the current generation of X-ray instruments. From our sample, WASP-80b and HD 149026b experience the highest irradiation level, but HAT-P-11b is probably the best candidate for Ly α evaporation investigations because of the system's proximity to the Solar System. The four smallest planets have likely lost a greater percentage of their mass over their lives than their larger counterparts. We also detect the transit of WASP-80b in the near ultraviolet with the Optical Monitor on XMM-Newton

  11. Channel electron multipliers - Detection efficiencies with opaque MgF2 photocathodes at XUV wavelengths

    NASA Technical Reports Server (NTRS)

    Lapson, L. B.; Timothy, J. G.

    1976-01-01

    Detection efficiencies of channel electron multipliers (CEM) with opaque MgF2 photocathodes obtained in the extreme ultraviolet (XUV), 44 A to 990 A, are reported. A stable highly efficient response is reported for that interval, with no adverse effects on CEM performance. Efficiencies twice those of uncoated CEMs are obtained for 50 A to 350 A. The Mullard B419BL and Galileo 4510WL single-stage cone-cathode CEMs were used in the experiments. A rare-gas double ionization chamber was employed as absolute standard detector for 406 A to 990 A, and a flow Geiger counter filled with 96% argon and 4% isobutane for 44 A to 256 A. Absolute detection efficiencies are 10% higher from 67 A to 990 A when photocathodes are illuminated at an angle of incidence 45 deg. The photocathodes suffered no loss of response in storage (in vacuum or air) after an initial aging period. Effects of scattered UV radiation are greatly reduced when MgF2-coated CEMs are used in the XUV.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trickl, T.; Kung, A. H.; Lee, Y. T.

    Measurements of several transitions in krypton carried out with a high-resolution extreme ultraviolet (xuv) laser source in 1987 were recently reanalyzed. This analysis, based on simulating the Doppler-broadened line shape of the iodine reference lines with new, greatly improved iodine reference data, yielded an order-of-magnitude improvement in the agreement between several {sup 86}Kr transition frequencies between 94.5 nm and 116.5 nm to {+-}5x10{sup -9}. The overall relative uncertainty is estimated to be {+-}6x10{sup -9}, which matches the best accuracies achieved in nanosecond short-wavelength experiments. The influence of frequency chirping in the pulsed dye amplifier chain was estimated to be rathermore » low and to vary approximately between -7.1 MHz and +5.0 MHz for the three laser dyes used in this experiment. It is concluded that with an even more careful laser design the chirp-induced frequency shifts could be reduced to less than 1 MHz. Based on the analysis of the presumable chirp effects a correction for the {sup 86}Kr atlas by Kaufman and Humphries -0.055 53 cm{sup -1} is determined, which agrees with the result of a very recent two-photon experiment with frequency combs within just 0.000 46 cm{sup -1} (14 MHz), i.e., well within the combined errors of the three data sources involved in the intercomparison.« less

  13. Detailed opacity calculations for stellar models

    NASA Astrophysics Data System (ADS)

    Pain, Jean-Christophe; Gilleron, Franck

    2016-10-01

    We present a state of the art of precise spectral opacity calculations illustrated by stellar applications. The essential role of laboratory experiments to check the quality of the computed data is underlined. We review some X-ray and XUV laser and Z-pinch photo-absorption measurements as well as X-ray emission spectroscopy experiments of hot dense plasmas produced by ultra-high-intensity laser interaction. The measured spectra are systematically compared with the fine-structure opacity code SCO-RCG. Focus is put on iron, due to its crucial role in the understanding of asteroseismic observations of Beta Cephei-type and Slowly Pulsating B stars, as well as in the Sun. For instance, in Beta Cephei-type stars (which should not be confused with Cepheid variables), the iron-group opacity peak excites acoustic modes through the kappa-mechanism. A particular attention is paid to the higher-than-predicted iron opacity measured on Sandia's Z facility at solar interior conditions (boundary of the convective zone). We discuss some theoretical aspects such as orbital relaxation, electron collisional broadening, ionic Stark effect, oscillator-strength sum rules, photo-ionization, or the ``filling-the-gap'' effect of highly excited states.

  14. Diagnostics for Magnetically Driven Implosions on the 1-MA MAIZE Facility

    NASA Astrophysics Data System (ADS)

    Campbell, Paul; Yager-Elorriaga, David; Miller, Stephanie; Woolstrum, Jeff; Jones, Michael; Jordan, Nicholas; Lau, Y. Y.; Gilgenbach, Ronald; McBride, Ryan

    2017-10-01

    The Michigan Accelerator for Inductive Z-pinch Experiments (MAIZE) is a 3-m-diameter Linear Transformer Driver (LTD) at the University of Michigan which supplies a fast electrical pulse (0-1 MA in 100 ns, for matched loads) to various experimental configurations. In order to better investigate these loads, new diagnostics are being developed. First, an EUV/XUV micro-channel plate pinhole camera and a UV laser imaging system are being implemented to better observe the instability structures that form during implosions. Second, an x-pinch radiography diagnostic is being developed to probe deeper into the plasma loads. Third, Rogowski coils are being developed for enhanced load current measurements. Finally, a bolometry system and photo-conducting diamond (PCD) detectors will be implemented to measure x-ray power and energy. These new systems, combined with the existing twelve-frame laser shadowgraphy, and b-dot current monitors, will be powerful tools for the investigation of imploding z-pinch experiments. This research was supported by the DOE through award DE-SC0012328, Sandia National Laboratories contract DE-NA0003525, the National Science Foundation, and a Nuclear Regulatory Commission new-faculty development Grant. D.Y.E. was supported by an NSF fello.

  15. Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters

    NASA Technical Reports Server (NTRS)

    Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.

    1993-01-01

    The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.

  16. Soft X-ray and XUV imaging with a charge-coupled device /CCD/-based detector

    NASA Technical Reports Server (NTRS)

    Loter, N. G.; Burstein, P.; Krieger, A.; Ross, D.; Harrison, D.; Michels, D. J.

    1981-01-01

    A soft X-ray/XUV imaging camera which uses a thinned, back-illuminated, all-buried channel RCA CCD for radiation sensing has been built and tested. The camera is a slow-scan device which makes possible frame integration if necessary. The detection characteristics of the device have been tested over the 15-1500 eV range. The response was linear with exposure up to 0.2-0.4 erg/sq cm; saturation occurred at greater exposures. Attention is given to attempts to resolve single photons with energies of 1.5 keV.

  17. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, S. J., E-mail: sebastien.weber@cea.fr; Manschwetus, B.; Billon, M.

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using bothmore » experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.« less

  18. A Comprehensive COS Study of the Magnetic Dynamos, Rotations, UV Irradiances and Habitability of dM Stars with a Broad Span of Ages

    NASA Astrophysics Data System (ADS)

    Guinan, Edward

    2012-10-01

    We propose HST/COS FUV spectrophotometry of a carefully selected sample of 9 dM1-5 stars with recently reliably determined ages ranging from 1-12 Gyr. This program complements our Chandra Cycle 13 program of the same targets to determine their coronal X-ray properties. Ages {of all but one star} have recently been firmly determined from memberships in wide binaries with white dwarf {WD} companions having reliable cooling time+main-sequence evolution ages {Zhao et al. 2012, Garces et al 2011}. Until these studies, reliable age determinations for dM stars >2 Gyr were nearly impossible. However, we can now carry out a comprehensive UV study of dM star atmospheres across nearly the full age-range of the current Universe. The primary goals are 1} to study the evolution of their dynamo-generated X-ray and UV {XUV} emissions with age/rotation and to better define the heating and energetics of their atmospheres {via Age-Rotation-Activity-XUV Irradiance relations} and 2} to study the effects of the XUV radiation on planets hosted by red dwarfs. The COS UV spectral region contains numerous important diagnostic emission lines for characterizing the energy transfer and atmospheric structure, while line ratios yield valuable information about the electron density. Further, these data {when combined with our coronal X-ray measures} are also important for gauging dM star XUV emissions - critical for assessing the photochemical & photoionization evolution of planetary atmospheres and ionospheres that in turn strongly affect the possible development of life on hosted extrasolar planets. We are requesting a total of 19 HST orbits to achieve the science goals of the program.

  19. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eramo, R.; Bellini, M.; European Laboratory for Non-linear Spectroscopy

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  20. Strong-field approximation in a rotating frame: High-order harmonic emission from p states in bicircular fields

    NASA Astrophysics Data System (ADS)

    Pisanty, Emilio; Jiménez-Galán, Álvaro

    2017-12-01

    High-order harmonic generation with bicircular fields—the combination of counter-rotating circularly polarized pulses at different frequencies—results in a series of short-wavelength XUV harmonics with alternating circular polarizations, and experiments show that there is an asymmetry in the emission between the two helicities: a slight one in helium and a larger one in neon and argon, where the emission is carried out by p -shell electrons. Here we analyze this asymmetry by switching to a rotating frame in which the field is linearly polarized; this induces an effective magnetic field which lowers the ionization potential of the p + orbital that corotates with the lower-frequency driver, enhancing its harmonic emission and the overall helicity of the generated harmonics, while also introducing nontrivial effects from the transformation to a noninertial frame in complex time. In addition, this analysis directly relates the small asymmetry produced by s -shell emission to the imaginary part of the recollision velocity in the standard strong-field-approximation formalism.

  1. How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Airapetian, Vladimir S.; Glocer, Alex; Khazanov, George V.

    Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escapemore » in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet.« less

  2. How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir S.; Glocer, Alex; Khazanov, George V.; Loyd, R. O. P.; France, Kevin; Sojka, Jan; Danchi, William C.; Liemohn, Michael W.

    2017-02-01

    Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet.

  3. High harmonic emission from a superposition of multiple unrelated frequency fields.

    PubMed

    Siegel, T; Torres, R; Hoffmann, D J; Brugnera, L; Procino, I; Zaïr, A; Underwood, Jonathan G; Springate, E; Turcu, I C E; Chipperfield, L E; Marangos, J P

    2010-03-29

    We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.

  4. Possibility of Recombination Gain Increase in CV Ions at 4.0 nm Via Coherence

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morozov, A.; Gordon, D.; Sprangle, P.; Svidzinsky, A.; Xia, H.; Scully, M.; Suckewer, S.

    This paper is about the recent experimental results on amplification of the CV line in the "water window" at 4.03 nm from resonance transition to the ground level of He-like ions in recombination scheme. The indication of the amplification of the CV line has been observed when an elongated narrow plasma channel was created, where high intensity 100 fs beams, optimal for creating CV ions in high density plasma, was propagated up to 0.5-0.6 mm. Without channeling the effective plasma length was much shorter and there was no indication of amplification.The large interest in gain generation in He-like ions in the transition to ground state is due to the possibility of applying a recently developed theory of Lasing Without Inversion (LWI) in XUV and X-ray regions to largely increase the gain for such transitions. The presented results of the indication of CV line amplifications are being discussed from the point of view of using LWI as a superradiance gain increase, hence to construct a very compact soft X-ray laser in the "water window".The last part of the paper is related to the application of the ultra-intensive fs plasma laser, which is currently in the process of development by using stimulated Raman backscattering (SRBS) to create a plasma amplifier and compressor, as the pump for compact laser operating in the "water window" and also at shorter wavelengths.

  5. Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy

    NASA Astrophysics Data System (ADS)

    Willems, F.; Smeenk, C. T. L.; Zhavoronkov, N.; Kornilov, O.; Radu, I.; Schmidbauer, M.; Hanke, M.; von Korff Schmising, C.; Vrakking, M. J. J.; Eisebitt, S.

    2015-12-01

    Magnetic circular dichroism in the extreme ultraviolet (XUV) spectral range is a powerful technique for element-specific probing of magnetization in multicomponent magnetic alloys and multilayers. We combine a high-harmonic generation source with a λ /4 phase shifter to obtain circularly polarized XUV femtosecond pulses for ultrafast magnetization studies. We report on simultaneously measured resonant magnetic circular dichroism (MCD) of Co and Ni at their respective M2 ,3 edges and of Pt at its O edge, originating from interface magnetism. We present a time-resolved MCD absorption measurement of a thin magnetic Pt/Co/Pt film, showing simultaneous demagnetization of Co and Pt on a femtosecond time scale.

  6. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  7. High-repetition-rate setup for pump-probe time-resolved XUV-IR experiments employing ion and electron momentum imaging

    NASA Astrophysics Data System (ADS)

    Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem

    2017-04-01

    J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.

  8. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX [VUV/XUV measurements of low recycling plasmas with liquid lithium surfaces on LTX

    DOE PAGES

    Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; ...

    2014-11-12

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in themore » form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. In conclusion, these new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.« less

  9. Design survey of X-ray/XUV projection lithography systems

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Viswanathan, V. K.

    1991-02-01

    Several configurations of two- to four-multilayer mirror systems that have been proposed for use in soft-X-ray projection lithography are examined. The performance capabilities of spherical and aspherical two-mirror projection systems are compared, and a two-spherical-mirror four-reflection system that can resolve 0.1-micron features over a 10 x 10 mm field is described. It is emphasized that three-mirror systems show promise of high resolution in telescope applications, but have not been fully analyzed for projection lithography applications. It has been shown that a four-mirror aspheric system can be designed to meet the resolution requirements, but a trade-off must be made between reducing distortion below 10 microns over the field of view and increasing the modulation transfer function greater than 50 percent at spatial frequency of 5000 cycles/mm.

  10. Analytical model for atomic resonant attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Cariker, C.; Kjellson, T.; Lindroth, E.; Argenti, L.

    2017-04-01

    Recent advancements in ultrafast laser technology have made it possible to probe electron dynamics in highly excited atomic states that autoionize on a femtosecond timescale, thus giving insight into the dynamics of Auger decay and its interference with the continuum. These experiments provide a stringent test for time-resolved analytical models of autoionization. Here we present a finite-pulse, multi-photon perturbative model which is used in conjunction with ab-initio structure calculations to predict the attosecond transient absorption spectrum (ATAS) of an atom above the ionization threshold. We apply this model to compute the ATAS of argon in the vicinity of the 3s-1 4 p resonance as a function of the time delay between an extreme ultraviolet (XUV) and an infrared (IR) pulse, as well as of the angle between their polarization. We show that by modulating the parameters of the IR pulse it is possible to control the dipolar coupling between neighboring states and hence the lineshape of the 3s-1 4 p resonance. NSF Grant No. 1607588.

  11. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  12. XUV-Exposed, Non-Hydrostatic Hydrogen-Rich Upper Atmospheres of Terrestrial Planets. Part II: Hydrogen Coronae and Ion Escape

    PubMed Central

    Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V.; Leitzinger, Martin; Khodachenko, Maxim L.; Kulikov, Yuri N.; Güdel, Manuel; Hanslmeier, Arnold

    2013-01-01

    Abstract We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a “super-Earth” with a radius of 2 REarth and a mass of 10 MEarth, located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×1025 s−1 to ∼5.3×1030 s−1, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EOH) to <3 EOH and usually is several times smaller in comparison to the thermal atmospheric escape rates. Key Words: Stellar activity—Low-mass stars—Early atmospheres—Earth-like exoplanets—Energetic neutral atoms—Ion escape—Habitability. Astrobiology 13, 1030–1048. PMID:24283926

  13. XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part II: hydrogen coronae and ion escape.

    PubMed

    Kislyakova, Kristina G; Lammer, Helmut; Holmström, Mats; Panchenko, Mykhaylo; Odert, Petra; Erkaev, Nikolai V; Leitzinger, Martin; Khodachenko, Maxim L; Kulikov, Yuri N; Güdel, Manuel; Hanslmeier, Arnold

    2013-11-01

    We studied the interactions between the stellar wind plasma flow of a typical M star, such as GJ 436, and the hydrogen-rich upper atmosphere of an Earth-like planet and a "super-Earth" with a radius of 2 R(Earth) and a mass of 10 M(Earth), located within the habitable zone at ∼0.24 AU. We investigated the formation of extended atomic hydrogen coronae under the influences of the stellar XUV flux (soft X-rays and EUV), stellar wind density and velocity, shape of a planetary obstacle (e.g., magnetosphere, ionopause), and the loss of planetary pickup ions on the evolution of hydrogen-dominated upper atmospheres. Stellar XUV fluxes that are 1, 10, 50, and 100 times higher compared to that of the present-day Sun were considered, and the formation of high-energy neutral hydrogen clouds around the planets due to the charge-exchange reaction under various stellar conditions was modeled. Charge-exchange between stellar wind protons with planetary hydrogen atoms, and photoionization, lead to the production of initially cold ions of planetary origin. We found that the ion production rates for the studied planets can vary over a wide range, from ∼1.0×10²⁵ s⁻¹ to ∼5.3×10³⁰ s⁻¹, depending on the stellar wind conditions and the assumed XUV exposure of the upper atmosphere. Our findings indicate that most likely the majority of these planetary ions are picked up by the stellar wind and lost from the planet. Finally, we estimated the long-time nonthermal ion pickup escape for the studied planets and compared them with the thermal escape. According to our estimates, nonthermal escape of picked-up ionized hydrogen atoms over a planet's lifetime within the habitable zone of an M dwarf varies between ∼0.4 Earth ocean equivalent amounts of hydrogen (EO(H)) to <3 EO(H) and usually is several times smaller in comparison to the thermal atmospheric escape rates.

  14. NEOCE: a new external occulting coronagraph experiment for ultimate observations of the chromosphere, corona and interface

    NASA Astrophysics Data System (ADS)

    Damé, Luc; Fineschi, Silvano; Kuzin, Sergey; Von Fay-Siebenburgen, Erdélyi Robert

    Several ground facilities and space missions are currently dedicated to the study of the Sun at high resolution and of the solar corona in particular. However, and despite significant progress with the advent of space missions and UV, EUV and XUV direct observations of the hot chromosphere and million-degrees coronal plasma, much is yet to be achieved in the understanding of these high temperatures, fine dynamic dissipative structures and of the coronal heating in general. Recent missions have shown the definite role of a wide range of waves and of the magnetic field deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically fundamental changes occur. The dynamics of the chromosphere and corona is controlled and governed by the emerging magnetic field. Accordingly, the direct measurement of the chromospheric and coronal magnetic fields is of prime importance. The solar corona consists of many localised loop-like structures or threads with the plasmas brightening and fading independently. The plasma evolution in each thread is believed to be related to the formation of filaments, each one being dynamic, in a non-equilibrium state. The mechanism sustaining this dynamics, oscillations or waves (Alfvén or other magneto-plasma waves), requires both very high-cadence, multi-spectral observations, and high resolution and coronal magnetometry. This is foreseen in the future Space Mission NEOCE (New External Occulting Coronagraph Experiment), the ultimate new generation high-resolution coronagraphic heliospheric mission, to be proposed for ESA M4. NEOCE, an evolution of the HiRISE mission, is ideally placed at the L5 Lagrangian point (for a better follow-up of CMEs), and provides FUV imaging and spectro-imaging, EUV and XUV imaging and spectroscopy, and ultimate coronagraphy by a remote external occulter (two satellites in formation flying 375 m apart minimizing scattered light) allowing to characterize temperature, densities and velocities up to the solar upper chromosphere, transition zone and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy and direct coronal magnetic field measurement: a unique set of tools to understand the structuration and onset of coronal heating. We give a detailed account of the proposed mission profile, and its major scientific objectives and model payload (in particular of the SuperASPIICS package of visible, NIR and UV, Lyman-Alpha and OVI, coronagraphs).

  15. The LYRA Instrument Onboard PROBA2: Description and In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Hochedez, J.-F.; Schmutz, W.; Dammasch, I. E.; Shapiro, A. I.; Kretzschmar, M.; Zhukov, A. N.; Gillotay, D.; Stockman, Y.; BenMoussa, A.

    2013-08-01

    The Large Yield Radiometer (LYRA) is an XUV-EUV-MUV (soft X-ray to mid-ultraviolet) solar radiometer onboard the European Space Agency Project for On-Board Autonomy 2 (PROBA2) mission, which was launched in November 2009. LYRA acquires solar-irradiance measurements at a high cadence (nominally 20 Hz) in four broad spectral channels, from soft X-ray to MUV, which have been chosen for their relevance to solar physics, space weather, and aeronomy. We briefly review the design of the instrument, give an overview of the data products distributed through the instrument website, and describe how the data are calibrated. We also briefly present a summary of the main fields of research currently under investigation by the LYRA consortium.

  16. Code comparison for accelerator design and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary inmore » these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs.« less

  17. Multilayer X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  18. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  19. Attosecond pulse carrier-envelope phase effects on ionized electron momentum and energy distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, L.-Y.; Starace, Anthony F.

    2007-10-15

    We analyze carrier-envelope phase (CEP) effects on electron wave-packet momentum and energy spectra produced by one or two few-cycle attosecond xuv pulses. The few-cycle attosecond pulses are assumed to have arbitrary phases. We predict CEP effects on ionized electron wave-packet momentum distributions produced by attosecond pulses having durations comparable to those obtained by Sansone et al. [Science 314, 443 (2006)]. The onset of significant CEP effects is predicted to occur for attosecond pulse field strengths close to those possible with current experimental capabilities. Our results are based on single-active-electron solutions of the three-dimensional, time-dependent Schroedinger equation including atomic potentials appropriatemore » for the H and He atoms.« less

  20. Solar XUV grazing incidence spectrograph on Skylab.

    PubMed

    Garrett, D L; Tousey, R

    1977-04-01

    The objective of Skylab corollary experiment S020 was to obtain through the availability of long exposure times more complete information than was then available on the extreme ultraviolet (XUV) and soft x-ray spectrum of the sun in the 10-200-A range. The instrument was a small grazing incidence spectrograph with photographic recording. Use was made of a novel split-ruled grating that combined 1200- and 2400-1/mm rulings to double the spectral coverage of the instrument and to aid in the measurement of wavelengths and order sorting. As it happened, there were many difficulties resulting from the major problems encountered by the Apollo and Skylab missions. Useful spectra were obtained, but the sensitivity of the instrument was greatly reduced, probably because of contamination resulting from leakage of the fluid used in the spacecraft cooling system.

  1. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  2. Le pôle de métrologie de SOLEIL

    NASA Astrophysics Data System (ADS)

    Idir, M.; Brochet, S.; Delmotte, A.; Lagarde, B.; Mercere, P.; Moreno, T.; Polack, F.; Thomasset, M.

    2006-12-01

    Le Pôle de METROLOGIE de SOLEIL a pour objet de créer sur le synchrotron SOLEIL, une plateforme constituée : - une ligne de lumière utilisant le rayonnement synchrotron (métrologie dite à la longueur d'onde) - d'un laboratoire de métrologie associé (métrologie dite ll classique gg ) Ces deux types de Métrologie sont l'une et l'autre indispensables pour soutenir l'activité de recherche instrumentale en optique X et X-UV. Ce projet de pôle de METROLOGIE ne répondra pas seulement aux besoins des groupes chargés de l'équipement du synchrotron SOLEIL en optiques et détecteurs mais aussi pour préparer, tester et mettre au point les postes expérimentaux, ce qui concerne déjà une large communauté d'utilisateurs. Il sera aussi largement ouvert, dès sa mise en service, à l'ensemble de la communauté scientifique concernée par l'instrumentation X et XUV en Ile de France, en France, voire même en Europe si la demande continue de croître plus vite que l'offre dans ce domaine. Ligne de lumière Métrologie à la longueur d'onde La ligne de lumière sera équipée de plusieurs stations permettant de mesurer, dans la plus grande partie du spectre couvert par le synchrotron, les paramètres photométriques qui caractérisent les éléments optiques, tels que : la réflectivité de surfaces, l'efficacité de diffraction des réseaux, la diffusion des surfaces ou l'efficacité des détecteurs X et X-UV et la calibration absolue. Cette installation pourra servir également à développer des instruments et des diagnostics nécessaires à la caractérisation des faisceaux de rayons X (intensité, taille, degré de cohérence, polarisation etc.) Métrologie Classique La métrologie des surfaces optiques est devenue une nécessité critique pour les laboratoires et les industries qui utilisent les photons X et X-UV (synchrotrons, centres laser, etc. .). En effet, les progrès de calcul et de conception des systèmes optiques pour ces longueurs d'onde (optiques de microfocalisation, monochromateurs, diagnostics d'imagerie) font que les performances de ces instruments sont désormais limitées par les imperfections de fabrication des composants optiques. La métrologie des surfaces optiques est donc une nécessité impérieuse pour tous les acteurs du domaine, qui se doivent d'effectuer les contrôles appropriés. Cette pression s'exerce aussi sur les moyens utilisés pour effectuer ces mesures, car les incertitudes de mesure actuelles, notamment en ce qui concerne la régularité des surfaces, sont loin d'être négligeables vis à vis des tolérances demandées. Il est donc indispensable de faire évoluer les instruments de mesure et d'obtenir des gains significatifs de précision. Un travail particulier est en cours au laboratoire de Métrologie pour développer à côté des instruments commerciaux, des instruments prototypes sur des concepts originaux (mesures de profils de surface et mesures d'angle). Dans cet article, nous donnons des détails des choix techniques utilisés sur la ligne de METROLOGIE et TESTS et des performances attendues et nous décrirons le laboratoire de METROLOGIE en donnant des exemples d'optiques récemment testées.

  3. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    NASA Astrophysics Data System (ADS)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkenthal, Michael

    The present report resumes the research activities of the Plasma Spectroscopy/Diagnostics Group at Johns Hopkins University performed on the NSTX tokamak at PPPL during the period 1999-2009. During this period we have designed and implemented XUV based diagnostics for a large number of tasks: study of impurity content and particle transport, MHD activity, time-resolved electron temperature measeurements, ELM research, etc. Both line emission and continuum were used in the XUV range. New technics and novel methods have been devised within the framework of the present research. Graduate and post-graduate students have been involved at all times in addition to themore » senior research personnel. Several tens of papers have been published and lectures have been given based on the obtained results at conferences and various research institutions (lists of these activities were attached both in each proposal and in the annual reports submitted to our supervisors at OFES).« less

  5. Ultrafast photoelectron spectroscopy of small molecule organic films

    NASA Astrophysics Data System (ADS)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the expected relaxation within the excited states. Stable, shorter pulses allow finer temporal resolution and more efficient high-harmonic generation. This work therefore concludes by discussing a method for further shortening 25 femtosecond pulses via self-phase modulation, using filamentation in air and subsequent fiber channeling.

  6. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  7. ROTATIONAL SYNCHRONIZATION MAY ENHANCE HABITABILITY FOR CIRCUMBINARY PLANETS: KEPLER BINARY CASE STUDIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, Paul A.; Zuluaga, Jorge I.; Cuartas-Restrepo, Pablo A.

    2013-09-10

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in somemore » cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.« less

  8. USING RUNNING DIFFERENCE IMAGES TO TRACK PROPER MOTIONS OF XUV CORONAL INTENSITY ON THE SUN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheeley, N. R. Jr.; Warren, H. P.; Lee, J., E-mail: neil.sheeley@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil

    2014-12-20

    We have developed a procedure for observing and tracking proper motions of faint XUV coronal intensity on the Sun and have applied this procedure to study the collective motions of cellular plumes and the shorter-period waves in sunspots. Our space/time maps of cellular plumes show a series of tracks with the same 5-8 minute repetition times and ∼100 km s{sup –1} sky-plane speeds found previously in active-region fans and in coronal hole plumes. By synchronizing movies and space/time maps, we find that the tracks are produced by elongated ejections from the unipolar flux concentrations at the bases of the cellular plumes and thatmore » the phases of these ejections are uncorrelated from cell to cell. Thus, the large-scale motion is not a continuous flow, but is more like a system of independent conveyor belts all moving in the same direction along the magnetic field. In contrast, the proper motions in sunspots are clearly waves resulting from periodic disturbances in the sunspot umbras. The periods are ∼2.6 minutes, but the sky-plane speeds and wavelengths depend on the heights of the waves above the sunspot. In the chromosphere, the waves decelerate from 35-45 km s{sup –1} in the umbra to 7-8 km s{sup –1} toward the outer edge of the penumbra, but in the corona, the waves accelerate to ∼60-100 km s{sup –1}. Because chromospheric and coronal tracks originate from the same space/time locations, the coronal waves must emerge from the same umbral flashes that produce the chromospheric waves.« less

  9. Neon in ultrashort and intense x-rays from free electron lasers

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan

    2018-03-01

    We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.

  10. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    PubMed Central

    Mazza, T.; Karamatskou, A.; Ilchen, M.; Bakhtiarzadeh, S.; Rafipoor, A. J.; O'Keeffe, P.; Kelly, T. J.; Walsh, N.; Costello, J. T.; Meyer, M.; Santra, R.

    2015-01-01

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources. PMID:25854939

  11. DAGON: a 3D Maxwell-Bloch code

    NASA Astrophysics Data System (ADS)

    Oliva, Eduardo; Cotelo, Manuel; Escudero, Juan Carlos; González-Fernández, Agustín.; Sanchís, Alberto; Vera, Javier; Vicéns, Sergio; Velarde, Pedro

    2017-05-01

    The amplification of UV radiation and high order harmonics (HOH) in plasmas is a subject of raising interest due to its different potential applications in several fields like environment and security (detection at distance), biology, materials science and industry (3D imaging) and atomic and plasma physics (pump-probe experiments). In order to develop these sources, it is necessary to properly understand the amplification process. Being the plasma an inhomogeneous medium which changes with time, it is desirable to have a full time-dependent 3D description of the interaction of UV and XUV radiation with plasmas. For these reasons, at the Instituto de Fusíon Nuclear we have developed DAGON, a 3D Maxwell-Bloch code capable of studying the full spationtemporal structure of the amplification process abovementioned.

  12. Staged Z-pinch Experiments on Cobra and Zebra

    NASA Astrophysics Data System (ADS)

    Wessel, Frank J.; Anderson, A.; Banasek, J. T.; Byvank, T.; Conti, F.; Darling, T. W.; Dutra, E.; Glebov, V.; Greenly, J.; Hammer, D. A.; Potter, W. M.; Rocco, S. V.; Ross, M. P.; Ruskov, E.; Valenzuela, J.; Beg, F.; Covington, A.; Narkis, J.; Rahman, H. U.

    2017-10-01

    A Staged Z-pinch (SZP), configured as a pre-magnetized, high-Z (Ar, or Kr) annular liner imploding onto a low-Z (H, or D) target, was tested on the Cornell University, Cobra Facility and the University of Nevada, Reno, Zebra Facility; each characterized similarly by a nominal 1-MA current and 100-ns risetime while possessing different diagnostic packages. XUV-fast imaging reveals that the SZP implosion dynamics is similar on both machines and that it is more stable with an axial (Bz) magnetic field, a target, or both, than without. On Zebra, where neutron production is possible, reproducible thermonuclear (DD) yields were recorded at levels in excess of 109/shot. Flux compression in the SZP is also expected to produce magnetic field intensities of the order of kilo-Tesla. Thus, the DD reaction produced tritions should also yield secondary DT neutrons. Indeed, secondaries are measured above the noise threshold at levels approaching 106/shot. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.

  13. Galactoseismology: From The Milky Way To XUV Disks

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    The variety of discrepancies between observations and simulations on galactic scales, from the anisotropic distribution of dwarf galaxies to the "too big to fail" problem (where massive satellites in simulations are too dense relative to observations), suggests that we may not yet fully understand galaxy formation. If these satellites exist, they would leave traces of their passage in extended HI disks. Extended HI disks of galaxies reach to several times the optical radius, presenting the largest possible cross-section for interaction with sub-halos at large distances (where theoretical models expect them to be). We will provide definitive constraints on the distribution of dark matter in spiral galaxies by building on our ongoing work in characterizing galactic satellites from analysis of disturbances in extended HI disks with respect to hydrodynamical simulations. Spiral galaxies in the Local Volume (from the Milky Way to the XUV disks discovered by GALEX) exhibit a wealth of unexplained morphology, but these morphological signatures have not yet been used to place constraints on the evolution of HI disks and the dark matter distribution. We are now poised to make significant progress in Galactoseismology, i.e. connect morphological disturbances with the mass distribution. By using the FIRE model for explicit star formation and feedback, we will also develop a better understanding for the star formation history of our Galaxy and XUV Disks. Our Milky Way models will be informed by the HST proper motions, and will match the observed planar disturbances, the warp, and vertical waves recently discovered by the RAVE and LAMOST surveys. We are also carrying high resolution simulations with the Gizmo code that incorporates the FIRE model to develop a comprehensive understanding of the star formation history and star formation rate (that matches Spitzer observations) of the Milky Way. These models will provide a much needed interpretative framework for JWST and WFIRST observations. By mapping to the HI image, the GALEX UV image, the multi-wavelength SED of XUV disks, as well as the masses and deprojected distances of the satellites in a statistically robust way using a Monte Carlo Markov Chain analysis, we will produce evolutionary histories of XUV disks and their satellite populations for the first time. This will enable an apples-to-apples comparison for XUV disks in the Local Volume. There is currently no study that has examined the morphological effects of satellites in cosmological simulations on the gas and stellar disk. This is a critical test of the distribution (the number, the mass, and orbits) of satellites in cosmological simulations. We will also investigate if the vast polar structure (VPOS) of dwarf galaxies around the Milky Way is a serious problem for the Lambda-CDM paradigm. Here we ask two simple questions: 1) Is the VPOS dynamically coherent? If the VPOS is a serious problem for Lambda-CDM, one expects that it should persist over a dynamical time and should not be unique to the present day. 2) Are there certain satellites that drive the appearance of the planar structure at present day? If so, it is critical to examine whether a sub-set excluding these satellites resembles cosmological simulations. Our preliminary results show that this structure is not dynamically coherent, and is driven by two satellites: Leo I and Leo II, both of which have extreme kinematic properties. We will also examine the evolution of the VPOS in non-spherical and time-dependent potentials. We will seek to obtain more accurate proper motions of Leo II in the upcoming HST cycle, as we find that Leo II particularly influences the fit to the planar structure. These results will have far-reaching impact in understanding data from many NASA missions - HST, GALEX, Spitzer, and Herschel to JWST and WFIRST missions. We will also provide a framework for understanding data from the GAIA and GALAH surveys of the Milky Way.

  14. The quiet sun

    NASA Technical Reports Server (NTRS)

    Gibson, E. G.

    1973-01-01

    An up-to-date textbook of solar physics is presented. The solar structure and processes, and the interior are described along with the photosphere, the chromosphere, and the corona. The strongest Fraunhofer lines, visible coronal lines, and coronal UV, XUV, and X-ray lines are listed.

  15. Ly α Absorption at Transits of HD 209458b: A Comparative Study of Various Mechanisms Under Different Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.

    To shed more light on the nature of the observed Ly α absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so-called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model self-consistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protonsmore » and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6%–8% can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10%–15% absorption at the blue wing of the Ly α line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.« less

  16. An investigation of electronic states of some molecules and molecular cations using mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Hofstein, Jason David

    1999-11-01

    Mass analyzed threshold ionization (MATI) experiments have enabled mapping of the n-dependent Rydberg state survival probability for a series of molecules. Utilizing vacuum and extreme ultraviolet (VUV/XUV) photons, one photon Rydberg manifold spectra of argon, hydrogen chloride, nitrogen, benzene, and oxygen were produced, and the prospects of photoinduced Rydberg ionization (PIRI) experiments examined. It was found that the widths of Rydberg manifolds for the molecules studied are quite different. Hydrogen chloride and nitrogen have the narrowest manifold width, followed by benzene, and then oxygen. These varying widths are most strongly correlated with the angular momentum (i.e., quantum defect) of the initially prepared Rydberg orbital. PIRI experiments required the use of a static cell, rather than a molecular jet assembly, for the more efficient production of higher amounts of VUV/XUV radiation, and hence more Rydberg signal needed to observe PIRI. Armed with the ability to produce tunable VUV/XUV radiation, and to determine the feasibility of a PIRI experiment, the MATI and fragment PIRI spectra of trans-1,3-butadiene (BD) were recorded. The MATI spectrum is vibrationally resolved and was analyzed with the help of ab initio calculations and other published results. The fragment PIRI spectrum of the A<==X transition of BD+ is not vibrationally resolved, but information regarding the wavelength dependence of fragmentation pathways has been gathered and interpreted. It was found that at low photodissociation photon energies, production of C3H3+ dominates, but at higher photon energies, C2H4 + is also produced. The production of each fragment showed a definite PIRI wavelength dependence.

  17. Water loss from terrestrial planets orbiting ultracool dwarfs: Implications for the planets of TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Selsis, Franck; Owen, James E.; Ribas, Ignasi; Raymond, Sean N.; Leconte, Jérémy; Gillon, Michael

    2016-10-01

    Ultracool dwarfs (UCDs) encompass the population of extremely low mass stars (later than M6-type) and brown dwarfs.Because UCDs cool monotonically, their habitable zone (HZ) sweeps inward in time.Assuming they possess water, planets found in the HZ of UCDs have experienced a runaway greenhouse phase too hot for liquid water prior to entering the HZ.It has been proposed that such planets are desiccated by this hot early phase and enter the HZ as dry, inhospitable worlds.Here we model the water loss during this pre-HZ hot phase taking into account recent upper limits on the XUV emission of UCDs and using 1D radiation-hydrodynamic simulations.We address the whole range of UCDs but also focus on the planets b, c and d recently found around the 0.08 M⊙ dwarf TRAPPIST-1.Despite assumptions maximizing the FUV-photolysis of water and the XUV-driven escape of hydrogen, we find that planets can retain significant amounts of water in the HZ of UCDs, with a sweet spot in the 0.04-0.06 M⊙ range.We also studied the TRAPPIST-1 system using observed constraints on the XUV-flux.We found that TRAPPIST-1b and c can lose as much as 15 Earth Ocean and planet d -- which may be inside the HZ depending on its actual period -- may have lost less than 1 Earth Ocean.Depending on its initial content, they could have enough water to remain habitable.TRAPPIST-1 planets are key targets for atmospheric characterization and could provide strong constraints on the water erosion around UCDs.

  18. Chapman Solar Zenith Angle variations at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie M.; Ajello, Joseph; Holsclaw, Gregory; West, Robert; Esposito, Larry W.; Bradley, Eric Todd

    2016-10-01

    Solar XUV photons and magnetospheric particles are the two main sources contributing to the airglow in the Titan's upper atmosphere. We are focusing here on the solar XUV photons and how they influence the airglow intensity. The Cassini-UVIS observations analyzed in this study consist each in a partial scan of Titan, while the center of the detector stays approximately at the same location on Titan's disk. We used observations from 2008 to 2012, which allow for a wide range of Solar Zenith Angle (SZA). Spectra from 800 km to 1200 km of altitude have been corrected from the solar spectrum using TIMED/SEE data. We observe that the airglow intensity varies as a function of the SZA and follows a Chapman curve. Three SZA regions are identified: the sunlit region ranging from 0 to 50 degrees. In this region, the intensity of the airglow increases, while the SZA decreases. Between SZA 50 and 100 degrees, the airglow intensity decreases from it maximum to its minimum. In this transition region the upper atmosphere of Titan changes from being totally sunlit to being in the shadow of the moon. For SZA 100 to 180 degrees, we observe a constant airglow intensity close to zero. The behavior of the airglow is also similar to the behavior of the electron density as a function of the SZA as observed by Ågren at al (2009). Both variables exhibit a decrease intensity with increasing SZA. The goal of this study is to understand such correlation. We demonstrate the importance of the solar XUV photons contribution to the Titan airglow and prove that the strongest contribution to the Titan dayglow occurs by solar fluorescence rather than the particle impact that predominates at night.

  19. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  20. New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation

    NASA Astrophysics Data System (ADS)

    Jiang, Nian-Quan; Fan, Hong-Yi

    2008-01-01

    We show that the Agarwal Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.

  1. DR-induced Hot Oxygen and Carbon Coronae of Early Mars

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chassefiere, E.; Tian, F.; Chaufray, J. Y.; Leblanc, F.

    2017-12-01

    The evolution of Martian atmosphere is a key aspect to understand the habitability of Mars in time. The distributions of neutral atoms above the exobase of ancient Mars (corona) is important for understanding the interactions between the corona and the solar wind, which could help improving our understanding of the evolution of Martian atmosphere. In this work, a 3-D Monte Carlo Model is built to simulate Martian corona in different period of Mars history based on thermosphere structure corresponding to 1, 3, 10, and 20 times present solar XUV conditions and dissociative recombination (DR) reaction profiles. DR reactions of O2+, CO2+, and CO+ are considered as the sources of primary O and C. Secondary O and C atoms, which are formed through collisions between primaries and background species. We will discuss the dependence of physical properties of Martian corona as functions of solar XUV flux and DR reactions. We will also discuss the potential importance of CO+ DR as a contributor to Martian corona.

  2. Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy

    PubMed Central

    Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.

    2016-01-01

    Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060

  3. Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs.

    PubMed

    Luger, R; Barnes, R; Lopez, E; Fortney, J; Jackson, B; Meadows, V

    2015-01-01

    We show that photoevaporation of small gaseous exoplanets ("mini-Neptunes") in the habitable zones of M dwarfs can remove several Earth masses of hydrogen and helium from these planets and transform them into potentially habitable worlds. We couple X-ray/extreme ultraviolet (XUV)-driven escape, thermal evolution, tidal evolution, and orbital migration to explore the types of systems that may harbor such "habitable evaporated cores" (HECs). We find that HECs are most likely to form from planets with ∼1 M⊕ solid cores with up to about 50% H/He by mass, though whether or not a given mini-Neptune forms a HEC is highly dependent on the early XUV evolution of the host star. As terrestrial planet formation around M dwarfs by accumulation of local material is likely to form planets that are small and dry, evaporation of small migrating mini-Neptunes could be one of the dominant formation mechanisms for volatile-rich Earths around these stars.

  4. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  5. The Extended Range X-Ray Telescope center director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.

    1985-01-01

    An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.

  6. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazza, T.; Karamatskou, A.; Ilchen, M.

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  7. Sensitivity of nonlinear photoionization to resonance substructure in collective excitation

    DOE PAGES

    Mazza, T.; Karamatskou, A.; Ilchen, M.; ...

    2015-04-09

    Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pavemore » the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.« less

  8. Using ENLIL and SEPMOD to Evaluate Shock Connectivity Influences on Gradual SEP Events Observed with STEREO and ACE

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Mays, M. L.; Li, Y.; Bain, H. M.; Lee, C. O.; Odstrcil, D.; Mewaldt, R. A.; Cohen, C.; Leske, R. A.

    2017-12-01

    An observer's magnetic field connection to a SEP-producing interplanetary shock (or compression) source often appears to provide a good indicator of whether or not a SEP event occurs. As a result, some tools for SEP event modeling make use of this finding. However, a key assumption of these approaches is that the interplanetary magnetic field and heliospheric shock geometries are known throughout the event(s). We consider examples of SEP time profile calculations obtained with combined ENLIL and SEPMOD modeling where the results compare well with observations at multiple inner heliosphere sites, and compare them to cases where such comparisons show a relative lack of agreement. ENLIL does not include the shock inside 21 Rs or CME/ICME ejecta magnetic fields, but for the agreeable cases this does not seem to make a big difference. The number, size, speed and directions of related CMEs/ICMEs, and ENLIL field line geometry appear to play the most critical roles. This includes the inclusion of prior and parallel events that affect both the ICME propagation and magnetic field geometry and strength along the observer field line. It seems clear that if a SEP forecasting system is desired, we must continue to have instrumentation that allows us to specify global CME/ICME initiation geometry (coronagraphs, XUV/EUV imagers) and background solar wind structure (magnetographs).

  9. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for theoretical calculations on the nature of core-excited states in halogenated hydrocarbons, especially in the transition state region along the C—I reaction coordinate.« less

  10. Laser-pulse shape effects on magnetic field generation in underdense plasmas

    NASA Astrophysics Data System (ADS)

    Gopal, Krishna; Raja, Md. Ali; Gupta, Devki Nandan; Avinash, K.; Sharma, Suresh C.

    2018-07-01

    Laser pulse shape effect has been considered to estimate the self-generated magnetic field in laser-plasma interaction. A ponderomotive force based physical mechanism has been proposed to investigate the self-generated magnetic field for different spatial profiles of the laser pulse in inhomogeneous plasmas. The spatially inhomogeneous electric field of a laser pulse imparts a stronger ponderomotive force on plasma electrons. Thus, the stronger ponderomotive force associated with the asymmetric laser pulse generates a stronger magnetic field in comparison to the case of a symmetric laser pulse. Scaling laws for magnetic field strength with the laser and plasma parameters for different shape of the pulse have been suggested. Present study might be helpful to understand the plasma dynamics relevant to the particle trapping and injection in laser-plasma accelerators.

  11. New experimental perspectives for soft x-ray absorption spectroscopies at ultra-low temperatures below 50 mK and in high magnetic fields up to 7 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beeck, T., E-mail: torben.beeck@desy.de; Baev, I.; Gieschen, S.

    2016-04-15

    A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free {sup 3}He-{sup 4}He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples betweenmore » the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.« less

  12. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Singh Ghotra, Harjit; Kant, Niti

    2018-06-01

    We examine the electron dynamics during laser-cluster interaction. In addition to the electrostatic field of an individual cluster and laser field, we consider an external transverse wiggler magnetic field, which plays a pivotal role in enhancing the electron acceleration. Single-particle simulation has been presented with a short pulse linearly polarized as well as circularly polarized laser pulses for electron acceleration in a cluster. The persisting Coulomb field allows the electron to absorb energy from the laser field. The stochastically heated electron finds a weak electric field at the edge of the cluster from where it is ejected. The wiggler magnetic field connects the regions of the stochastically heated, ejected electron from the cluster and high energy gain by the electron from the laser field outside the cluster. This increases the field strength and hence supports the electron to meet the phase of the laser field for enhanced acceleration. A long duration resonance appears with an optimized magnetic wiggler field of about 3.4 kG. Hence, the relativistic energy gain by the electron is enhanced up to a few 100 MeV with an intense short pulse laser with an intensity of about 1019 W cm‑2 in the presence of a wiggler magnetic field.

  13. ANKA, a customer-oriented synchrotron radiation facility for microfabrication and analytical services

    NASA Astrophysics Data System (ADS)

    Pea Anka Project Group; Buth, G.; Doyle, S.; Einfeld, D.; Hagelstein, M.; Hermle, S.; Huttel, E.; Krüssel, A.; Lange, M.; Mathis, Y.-L.; Mexner, W.; Moser, H. O.; Pellegrin, E.; Ristau, U.; Rossmanith, R.; Schaper, J.; Schieler, H.; Simon, R.; Steininger, R.; Voigt, S.; Walther, R.; Perez, F.; Pont, M.; Plesko, M.

    1998-03-01

    ANKA (Angströmquelle Karlsruhe) is a state-of-the-art synchrotron radiation facility under construction at the Forschungszentrum Karlsruhe. Based on a 2.5 GeV electron storage ring it will deliver photons predominantly in the hard X-ray range but it will also feature both XUV and infrared beamlines. In its first operational phase the radiation will be taken out of normal-conducting dipole bending magnets, while five free long straight sections are foreseen to accommodate insertion devices later on. ANKA has a novel mission, namely to provide synchrotron-radiation based services to industrial and other customers, in the fields of microfabrication and materials analysis. A limited liability company, ANKA GmbH, is being founded to operate the facility. Although commercial services to customers will represent more than half of the overall activity, these services will be complemented by providing beam time for research users.

  14. A Penning discharge as a dc source for multiply ionized atoms.

    NASA Astrophysics Data System (ADS)

    Rainer, Kling; Manfred, Kock

    1997-10-01

    We report upon a specially designed Penning discharge which has been further developed from a source published by Finley et al.(Finley, D. S., Bowyer, S., Paresce, F., Malina, R. F.: Appl. Opt. 18) (1979) 649 towards a radiation standard for the XUV.(Heise, C., Hollandt, J., Kling, R., Kock, M., Kuehne, M.: Appl. Opt. 33) (1994) 5111 The discharge stands out for low buffer gas pressure, high electric power input and a strong superimposed magnetic field. That leads to intense sputtering of the cathodes which can be made of nearly any material. The efficient excitation and ionization of the sputtered atoms permit spectroscopy on multiply ionized spezies. W III and Fe III spectra will be given as examples. We also will present kinetic temperatures of the nonthermal plasma showing that the ionic component is decoupled from the cold neutral gas component.

  15. Laser-assisted coplanar symmetric (e, 2e) triple differential cross sections

    NASA Astrophysics Data System (ADS)

    Khalil, D.; Tlidi, M.; Makhoute, A.; Ajana, I.

    2017-04-01

    The modification due to an external linearly polarized monochromatic laser field on the dynamics of the ionization process of an atomic hydrogen by electron-impact is studied theoretically for a coplanar symmetric geometry. The interaction of the laser field with the unbound electrons is treated in a non-perturbative way. The wave functions of the ingoing and outgoing electrons in the laser field are treated as non-relativistic Volkov waves, while the interaction of the bound electron with the laser field is treated by using first-order perturbation theory, assuming that the electric field strength associated with the external laser field is much less than the atomic unit e/{a}2=5× {10}9 {{V}} {{{cm}}}-1. The influence of the laser parameters on the angular distribution is analyzed and several illustrative examples are discussed. Significant changes are noted both in the shape and magnitude of the triple differential cross sections (TDCS) by the application of the laser field. Numerical results show that the TDCS are strongly dependent on the dressing of the projectile by the laser field at low frequency in (e, 2e) spectroscopy region.

  16. Laser-assisted bremsstrahlung and electron-positron pair creation in relativistic laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loetstedt, Erik

    2009-07-25

    An electron submitted to a relativistically strong laser field emits Compton harmonics at frequencies satisfying the nonlinear Compton formula. We investigate the scenario when in addition to the laser field, also a nuclear Coulomb field is present to accelerate the electron. In this case we may speak about laser-assisted bremsstrahlung, with radiation resulting from the combined effect of the Coulomb and laser field. The theoretical method employed is fully relativistic quantum electrodynamics, where in particular the laser-dressed Dirac-Volkov propagator requires proper treatment. Electron-positron pair creation is a physical process related to bremsstrahlung by a crossing symmetry of quantum electrodynamics. Wemore » consider pair creation in the combined fields of a laser, a nucleus and a high-frequency photon. We show that the total number of created pairs is not affected by the laser, provided the energy of the high-energy photon exceeds the pair creation threshold, but that the differential cross section is strongly enhanced in a particular direction, making a small angle with the laser beam. The physical picture is that the electron-positron pair is created by the high-energy photon, and subsequently accelerated by the laser field.« less

  17. How Extreme is TRAPPIST-1? A look into the planetary system’s extreme-UV radiation environment

    NASA Astrophysics Data System (ADS)

    Peacock, Sarah; Barman, Travis; Shkolnik, Evgenya L.

    2018-01-01

    The ultracool dwarf star TRAPPIST-1 hosts three earth-sized planets at orbital distances where water has the potential to exist in liquid form on the planets’ surface. Close-in exoplanets, such as these, become vulnerable to water loss as stellar XUV radiation heats and expands their upper atmospheres. Currently, little is known about the high-energy radiation environment around TRAPPIST-1. Recent efforts to quantify the XUV radiation rely on empirical relationships based on X-ray or Lyman alpha line observations and yield very different results. The scaling relations used between the X-ray and EUV emission result in high-energy irradiation of the planets 10-1000x greater than present day Earth, stripping atmospheres and oceans in 1 Gyr, while EUV estimated from Lyman alpha flux is much lower. Here we present upper-atmosphere PHOENIX models representing the minimum and maximum potential EUV stellar flux from TRAPPIST-1. We use GALEX FUV and NUV photometry for similar aged M stars to determine the UV flux extrema in an effort to better constrain the high-energy radiation environment around TRAPPIST-1.

  18. Attosecond Spectroscopy Probing Electron Correlation Dynamics

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.

    Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.

  19. Femtosecond Time-Resolved Photoelectron Imaging of Excited Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Saladrigas, Catherine; Bacellar, Camila; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2017-04-01

    Helium nanodroplets are excellent matrices for high resolution spectroscopy and the study of ultracold chemistry. They are optically transparent. In their electronic ground state, interact very weakly with any atomic or molecular dopant. Electronically excited droplets, however, can strongly interact with dopants through a variety of relaxation mechanisms. Previously, these host-dopant interactions were studied in the energy domain, revealing Penning ionization processes enabled by energy transfer between the droplet host and atomic dopants. Using femtosecond time resolved XUV photoelectron imaging, we plan to perform complementary experiments in the time domain to gain deeper insight into the timescales of energy transfer processes and how they compete with internal droplet relaxation. First experiments will be performed using noble gas dopants, such as Kr and Ne, which will be compared to previous energy-domain studies. Femtosecond XUV pulses produced by high harmonic generation will be used to excite the droplets, IR and near-UV light will be used to monitor the relaxation dynamics. Using velocity map imaging, both photoelectron kinetic energies and angular distributions will be recorded as a function of time. Preliminary results and proposed experiments will be presented.

  20. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  1. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  2. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  3. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...

  4. Escape of the martian protoatmosphere and initial water inventory.

    PubMed

    Erkaev, N V; Lammer, H; Elkins-Tanton, L T; Stökl, A; Odert, P; Marcq, E; Dorfi, E A; Kislyakova, K G; Kulikov, Yu N; Leitzinger, M; Güdel, M

    2014-08-01

    Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained [Formula: see text] of H 2 O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses [Formula: see text] to [Formula: see text] could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was [Formula: see text] times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of [Formula: see text]. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of [Formula: see text] H 2 O and [Formula: see text] CO 2 could have been lost during [Formula: see text], if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H 2 O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than [Formula: see text]. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles [Formula: see text] ago, when the solar XUV flux decreased to values that have been [Formula: see text] times that of today's Sun.

  5. Phase seeding of a terahertz quantum cascade laser

    PubMed Central

    Oustinov, Dimitri; Jukam, Nathan; Rungsawang, Rakchanok; Madéo, Julien; Barbieri, Stefano; Filloux, Pascal; Sirtori, Carlo; Marcadet, Xavier; Tignon, Jérôme; Dhillon, Sukhdeep

    2010-01-01

    The amplification of spontaneous emission is used to initiate laser action. As the phase of spontaneous emission is random, the phase of the coherent laser emission (the carrier phase) will also be random each time laser action begins. This prevents phase-resolved detection of the laser field. Here, we demonstrate how the carrier phase can be fixed in a semiconductor laser: a quantum cascade laser (QCL). This is performed by injection seeding a QCL with coherent terahertz pulses, which forces laser action to start on a fixed phase. This permits the emitted laser field to be synchronously sampled with a femtosecond laser beam, and measured in the time domain. We observe the phase-resolved buildup of the laser field, which can give insights into the laser dynamics. In addition, as the electric field oscillations are directly measured in the time domain, QCLs can now be used as sources for time-domain spectroscopy. PMID:20842195

  6. Enhanced proton acceleration in an applied longitudinal magnetic field

    DOE PAGES

    Arefiev, A.; Toncian, T.; Fiksel, G.

    2016-10-31

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less

  7. Enhanced proton acceleration in an applied longitudinal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arefiev, A.; Toncian, T.; Fiksel, G.

    Using two-dimensional particle-in-cell simulations, we examine how an externally applied strong magnetic field impacts proton acceleration in laser-irradiated solid-density targets. We find that a kT-level external magnetic field can sufficiently inhibit transverse transport of hot electrons in a flat laser-irradiated target. While the electron heating by the laser remains mostly unaffected, the reduced electron transport during proton acceleration leads to an enhancement of maximum proton energies and the overall number of energetic protons. The resulting proton beam is much better collimated compared to a beam generated without applying a kT-level magnetic field. A factor of three enhancement of the lasermore » energy conversion efficiency into multi-MeV protons is another effect of the magnetic field. The required kT-level magnetic fields are becoming feasible due to a significant progress that has been made in generating magnetic fields with laser-driven coils using ns-long laser pulses. The possibility of improving characteristics of laser-driven proton beams using such fields is a strong motivation for further development of laser-driven magnetic field capabilities.« less

  8. Applicability of post-ionization theory to laser-assisted field evaporation of magnetite

    DOE PAGES

    Schreiber, Daniel K.; Chiaramonti, Ann N.; Gordon, Lyle M.; ...

    2014-12-15

    Analysis of the mean Fe ion charge state from laser-assisted field evaporation of magnetite (Fe3O4) reveals unexpected trends as a function of laser pulse energy that break from conventional post-ionization theory for metals. For Fe ions evaporated from magnetite, the effects of post-ionization are partially offset by the increased prevalence of direct evaporation into higher charge states with increasing laser pulse energy. Therefore the final charge state is related to both the field strength and the laser pulse energy, despite those variables themselves being intertwined when analyzing at a constant detection rate. Comparison of data collected at different base temperaturesmore » also show that the increased prevalence of Fe2+ at higher laser energies is possibly not a direct thermal effect. Conversely, the ratio of 16O+:16O2+ is well-correlated with field strength and unaffected by laser pulse energy on its own, making it a better overall indicator of the field evaporation conditions than the mean Fe charge state. Plotting the normalized field strength versus laser pulse energy also elucidates a non-linear dependence, in agreement with previous observations on semiconductors, that suggests a field-dependent laser absorption efficiency. Together these observations demonstrate that the field evaporation process for laser-pulsed oxides exhibits fundamental differences from metallic specimens that cannot be completely explained by post-ionization theory. Further theoretical studies, combined with detailed analytical observations, are required to understand fully the field evaporation process of non-metallic samples.« less

  9. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    PubMed

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  10. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Wiewior, P. P.; Hakel, P.; Sherrill, M. E.

    2017-08-01

    Dynamics of laser produced plasma in a strong magnetic field was studied using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2-2.5 MG magnetic field was generated on the surface of a rod load 0.8-1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 1015 W cm-2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1-3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magnetic field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s-1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.

  11. Electron acceleration in combined intense laser fields and self-consistent quasistatic fields in plasma

    NASA Astrophysics Data System (ADS)

    Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.

    2005-08-01

    The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.

  12. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  13. Quantum-electrodynamic cascades in intense laser fields

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2015-01-01

    It is shown that in an intense laser field, along with cascades similar to extensive air showers, self-sustaining field-energized cascades can develop. For intensities of 1024~ \\text {W cm}-2 or higher, such cascades can even be initiated by a particle at rest in the focal area of a tightly focused laser pulse. The cascade appearance effect can considerably alter the progression of any process occurring in a high-intensity laser field. At very high intensities, the evolvement of such cascades can lead to the depletion of the laser field. This paper presents a design of an experiment to observe these two cascade types simultaneously already in next-generation laser facilities.

  14. Staged Z-pinch experiments on the Mega-Ampere current driver COBRA

    NASA Astrophysics Data System (ADS)

    Valenzuela, Julio; Banasek, Jacob; Byvank, Thomas; Conti, Fabio; Greenly, John; Hammer, David; Potter, William; Rocco, Sophia; Ross, Michael; Wessel, Frank; Narkis, Jeff; Rahman, Hafiz; Ruskov, Emil; Beg, Farhat

    2017-10-01

    Experiments were conducted on the Cornell's 1 MA, 100 ns current driver COBRA with the goal of better understanding the Staged Z-pinch physics and validating MHD codes. We used a gas injector composed of an annular (1.2 cm radius) high atomic number (e.g., Ar or Kr) gas-puff and an on-axis plasma gun that delivers the ionized hydrogen target. Liner implosion velocity and stability were studied using laser shadowgraphy and interferometry as well as XUV imaging. From the data, the signature of the MRT instability and zippering effect can be seen, but time integrated X-ray imaging show a stable target plasma. A key component of the experiment was the use of optical Thomson scattering (TS) diagnostics to characterize the liner and target plasmas. By fitting the experimental scattered spectra with synthetic data, electron and ion temperature as well as density can be obtained. Preliminary analysis shows significant scattered line broadening from the plasma on-axis ( 0.5 mm diameter) which can be explained by either a low temperature H plasma with Te =Ti =75eV, or by a hot plasma with Ti =3keV, Te =350eV if an Ar-H mixture is present with an Ar fraction higher than 10%. Funded by the Advanced Research Projects Agency - Energy, DE-AR0000569.

  15. EFFECTS OF LASER RADIATION ON MATTER: Spectrum of the barium atom in a laser radiation field

    NASA Astrophysics Data System (ADS)

    Bondar', I. I.; Suran, V. V.

    1990-08-01

    An experimental investigation was made of the influence of a laser radiation field on the spectrum of barium atoms. The investigation was carried out by the method of three-photon ionization spectroscopy using dye laser radiation (ω = 14 800-18 700 cm - 1). The electric field intensity of the laser radiation was 103-106 V/cm. This laser radiation field had a strong influence on a number of bound and autoionizing states. The nature of this influence depended on the ratio of the excitation frequencies of bound and autoionizing states.

  16. Rectified diode response of a multimode quantum cascade laser integrated terahertz transceiver.

    PubMed

    Dyer, Gregory C; Norquist, Christopher D; Cich, Michael J; Grine, Albert D; Fuller, Charles T; Reno, John L; Wanke, Michael C

    2013-02-25

    We characterized the DC transport response of a diode embedded in a THz quantum cascade laser as the laser current was changed. The overall response is described by parallel contributions from the rectification of the laser field due to the non-linearity of the diode I-V and from thermally activated transport. Sudden jumps in the diode response when the laser changes from single mode to multi-mode operation, with no corresponding jumps in output power, suggest that the coupling between the diode and laser field depends on the spatial distribution of internal fields. The results demonstrate conclusively that the internal laser field couples directly to the integrated diode.

  17. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, themore » energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.« less

  18. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE PAGES

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; ...

    2017-05-16

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  19. Generation of disc-like plasma from laser-matter interaction in the presence of a strong external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.

    Dynamics of laser produced plasma in a strong magnetic field was studied here using a 1 MA pulsed power generator coupled to an intense, high-energy laser. A 2–2.5 MG magnetic field was generated on the surface of a rod load 0.8–1.2 mm in diameter. A sub-nanosecond laser pulse with intensity of 3 × 10 15 W cm -2 was focused on the rod load surface. Side-on laser diagnostics showed the generation of two collimated jets 1–3 mm long on the front and rear sides of the load. End-on laser diagnostics reveal that the laser produced plasma in the MG magneticmore » field takes the form of a thin disc as the plasma propagates along the magnetic field lines. The disc-like plasma expands radially across the magnetic field with a velocity of 250 km s -1. An electron temperature of 400 eV was measured in the laser-produced plasma on the rod load.« less

  20. Ramsey-type spectroscopy in the XUV spectral region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirri, A.; European Laboratory for Nonlinear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino; Sali, E.

    2010-02-02

    We report an experimental and theoretical investigation of Ramsey-type spectroscopy with high-order harmonic generation applied to autoionizing states of Krypton. The ionization yield, detected by an ion-mass spectrometer, shows the characteristic quantum interference pattern. The behaviour of the fringe contrast was interpreted on the basis of a simple analytic model, which reproduces the experimental data without any free parameter.

  1. SORCE: Solar Radiation and Climate Experiment

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  2. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes Skylab's Extreme Ultraviolet (XUV) Coronal Spectroheliograph, one of the eight Apollo Telescope Mount facilities. It was designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths . The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  3. Wire array K-shell sources on the SPHINX generator

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).

  4. Attosecond Coherent Control of the Photo-Dissociation of Oxygen Molecules

    NASA Astrophysics Data System (ADS)

    Sturm, Felix; Ray, Dipanwita; Wright, Travis; Shivaram, Niranjan; Bocharova, Irina; Slaughter, Daniel; Ranitovic, Predrag; Belkacem, Ali; Weber, Thorsten

    2016-05-01

    Attosecond Coherent Control has emerged in recent years as a technique to manipulate the absorption and ionization in atoms as well as the dissociation of molecules on an attosecond time scale. Single attosecond pulses and attosecond pulse trains (APTs) can coherently excite multiple electronic states. The electronic and nuclear wave packets can then be coupled with a second pulse forming multiple interfering quantum pathways. We have built a high flux extreme ultraviolet (XUV) light source delivering APTs based on HHG that allows to selectively excite neutral and ion states in molecules. Our beamline provides spectral selectivity and attosecond interferometric control of the pulses. In the study presented here, we use APTs, generated by High Harmonic Generation in a high flux extreme ultraviolet light source, to ionize highly excited states of oxygen molecules. We identify the ionization/dissociation pathways revealing vibrational structure with ultra-high resolution ion 3D-momentum imaging spectroscopy. Furthermore, we introduce a delay between IR pulses and XUV/IR pulses to constructively or destructively interfere the ionization and dissociation pathways, thus, enabling the manipulation of both the O2+and the O+ ion yields with attosecond precision. Supported by DOE under Contract No. DE-AC02-05CH11231.

  5. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  6. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    NASA Astrophysics Data System (ADS)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  7. Laser theory with finite atom-field interacting time

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Chen, Jingbiao

    2008-07-01

    We investigate the influence of atomic transit time τ on the laser linewidth by the quantum Langevin approach. With comparing the bandwidths of cavity mode κ , atomic polarization γab , and atomic transit broadening τ-1 , we study the laser linewidth in different limits. We also discuss the spectrum of fluctuations of output field and the influence of pumping statistics on the output field.The influence of atomic transit time τ on laser field has not been carefully discussed before, to our knowledge. In particular, a laser operating in the region of γab≪τ-1≪κ/2 appears not to have been analyzed in previous laser theories. Our work could be a useful complementarity to laser theory. It is also an important theoretical foundation for the recently proposed active optical atomic clock based on bad-cavity laser mechanism.

  8. Ultrafast Modulation of Semiconductor Lasers Through a Terahertz Field

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Hughes, Steven; Citrin, David

    1998-01-01

    We demonstrate, by means of numerical simulation, a new mechanism to modulate and switch semiconductor lasers at THz and sub-THz frequency rates. A sinusoidal terahertz field applied to a semiconductor laser heats the electron-hole plasma and consequently modifies the optical susceptibility. This allows an almost linear modulation of the output power of tile semiconductor laser and leads to a faithful reproduction of the terahertz-field waveform in the emitted laser intensity.

  9. Laser Materials and Laser Spectroscopy - A Satellite Meeting of IQEC '88

    NASA Astrophysics Data System (ADS)

    Wang, Zhijiang; Zhang, Zhiming

    1989-03-01

    The Table of Contents for the book is as follows: * Laser Materials * Laser Site Spectroscopy of Transition Metal Ions in Glass * Spectroscopy of Chromium Doped Tunable Laser Materials * Spectroscopic Properties of Nd3+ Ions in LaMgAl11O19 Crystal * Spectral Study and 2.938 μm Laser Emission of Er3+ in the Y3Al5O12 Crystal * Raman-infrared Spectra and Radiationless Relaxation of Laser Crystal NdAl3(BO3)4 * A Study on HB and FLN in BaFCl0.5Br0.5:Sm2+ at 77K * Pair-pumped Upconversion Solid State Lasers * CW Upconversion Laser Action in Neodymium and Erbium doped Solids * Ultra-high Sensitive Upconversion Fluorescence of YbF3 Doped with Trace Tm3+ and Er3+ * The Growth and Properties of NYAB and EYAB Multifunctional Crystal * Study on Fluorescence and Laser Light of Er3+ in Glass * Growth and Properties of Single Crystal Fibers for Laser Materials * A Study on the Quality of Sapphire, Ruby and Ti3+ Doped Sapphire Grown by Temperature Gradient Technique (TGT) and Czochralski Technique (CZ) * The Measurement of Output Property of Ti3+ Al2O3 Laser Crystal * An Xα Study of the Laser Crystal MgF2 : V2+ * Q-switched NAB Laser * Miniature YAG Lasers * Study of High Efficiency {LiF}:{F}^-_2 Color Center Crystals * Study on the Formation Conditions and Optical Properties of (F2+)H Color Center in NaCl:OH- Crystals * Novel Spectroscopic Properties of {LiF}:{F}^+_3 - {F}_2 Mixed Color Centers Laser Crystals * Terraced Substrate Visible GaAlAs Semiconductor Lasers with a Large Optical Cavity * The Temperature Dependence of Gain Spectra, Threshold Current and Auger Recombination in InGaAsP-InP Double Heterojunction Laser diode * Time-resolved Photoluminescence and Energy Transfer of Bound Excitons in GaP:N Crystals * Optical Limiting with Semiconductors * A Critical Review of High-efficiency Crystals for Tunable Lasers * Parametric Scattering in β - BaB2O4 Crystal Induced by Picosecond Pulses * Generation of Picosecond Pulses at 193 nm by Frequency Mixing in β - BaB2O4 * Mixing Frequency Generation of 271.0 - 291.5 nm in β - BaB2O4 * Low Temperature Absorption Steps Near Ultraviolet Intrinsic Edge in Beta Barium Metaborate * The Growth and Properties of BaTiO3 Crystals * High-order Phenomena Accompanied with Self-pumped Phase Conjugation in BaTiO * Growth and Laser Damage Estimation of Potassium Dihydrogen Phosphate Crystals for Laser Fusion * Noncritically Phase-matched KTP for Diode-pumped Lasers (400-700 nm) * Potassium Titanyl Phosphate (KTP): Properties and New Applications * A Kind of New Defect in KTP Crystal and its SHG Enhanced Effect * Nucleation and Growth of the Non-linear Optical Crystal Potassium Pentaborate Tetrahydrate * Quasi-periodic Oscillations in Photoinduced Conical Light Scattering from LiNbO3 : Fe Crystals * Laser Excited Photoreflectance of GaxIn1-xAs/InP Multiple Quantum Wells * Growth, Spectroscopic Properties and Applications of Doped LiNbO3 Crystals * Photorefractive and Photovoltaic Effect in Doped LiNbO3 * Recent Advances in Photorefractive Nonlinear Optics * Study on the Doubling-frequency and Anti-photorefractive Property of Heavily Magnesium-doped Lithium-rich Lithium Niobate Crystals * A New Technique for Increasing Two-wave Mixing Gain in Photorefractive Bi12SiO20 Crystals * Experimental Proof: There Existing Another Mechanism of Photorefractive Index in Crystal Ce-SBN * Effect of Crystal Annealing on Holographic Recording in Bismuth Silicon Oxide * Two Wave Coupling in KNbO3 Photorefractive Crystal * Photorefractive Effects in Nd-Doped Ferroelectric (KxNa1-x)0.4-(SryBa1-y)0.8 Nb2O6 Single Crystal * High Pressure Raman Spectra and the Effect of Pressure to the Ferroelastic Phase Transition in LnP5O15 * Time-delay Four-wave Mixing with Incoherent Light in Absorption Bands Treated as a Multi-level System * Pulsed Laser Induced Dislocation Structure in Lithium Fluoride Single Crystals * Laser Spectroscopy * Nonclassical Radiation from Single-atom Oscillators * Laser Spectroscopic Studies of Molecules in Highly Excited Vibrational State * Investigation of the Stark Effect in Xenon Autoionizing Rydberg Series with the Use of Coherent Tunable XUV Radiation * Laser Spectroscopy of Autoionising 5 dnf J = 4.5 Rydberg Series of Ba I * Resonance Photoionization Spectroscopy of Atoms: Autoionization and Highly Excited States of Kr and U * Stark Spectra of Strontium and Calcium Atoms * Observation of Bidirectional Stimulated Radiation at 330 nm, 364 nm and 718 nm with 660 nm Laser Pumping in Sodium Vapour * Study of Molecular Rydberg States and their Discriminations in Na2 * The Measurement of the High Excited Spectra of Samarium by using Stepwise Laser Excitation Method * Product Analysis in the Reaction of the Two-photon Excited Xe(5p56p) States with Freons * Photoionization Spectra of Ca and Sr Atoms above the Classical Field-ionization Threshold * Effect of Medium Background on the Hydrogen Spectrum * Photoemission and Photoelectron Spectra from Autoionizing Atoms in Strong Laser Field * Natural Radiative Lifetime Measurements of High-lying States of Samarium * Two-step Laser Excitation of nf Rydberg States in Neutral Al and Observation of Stark Effect * Measurements of Excited Spectra of the Refractory Metal Elements using Discharge Synchronized with the Laser Pulse * Multiphoton Ionization of Atomic Lead at 1.06μ * Kinetic Processes in the Electron-beam pumped KrF Laser * Laser-induced Fluorescence of Zn2 Excimer * Calculation of Transition Intensity in Heteronuclear Dimer NaK: Comparison with Experiment * Laser-induced Fluorescence of CCl2 Carbene * Study of Multiphoton Ionization Spectrum of Benzene and Two-photon Absorption Cross Section * Dicke Narrowing of N2O Linewidth Perturbed by N2 at 10 μm Band * Polyatomic Molecular Ions Studied by Laser Photodissociation Spectroscopy * Transverse-optically Pumped Ultraviolet S2 Laser * Multiphoton Ionization of Propanal by High Power Laser * UV MPI Mass Spectroscopy and Dynamics of Photodissociation of SO2 * Multiphoton Ionization-fragmentation Patterns of Ethylamine and Dimethylamine Isomers * Cars Measurements of SF6 Pumped by a CO2 Laser Pulse * Angular Dependence of Phase Conjugation of CO2 Laser on SF6 Gas * Resolution of Stretching-vibrational and Translational Raman Bands of Liquid Water by Means of Polarization Four-photon Spectroscopy * Laser-produced Plasma as an Effective Source for X-Ray Spectroscopy * Rotational Structure of the Low Lying Electronic States of Samarium Monoxide * Effects of Poling and Stretching on Second-harmonic Generation in Amorphous Vinylidene Cyanide/Vinyl Acetate Copolymer * Laser-induced Spectroscopy of Cardiovascular Tissues * Laser-excited Malignancy Autofluorescence for Tumour Malignancy Investigation and its Origin * A Study on Several Hematoporphyrin Derivatives by Time-resolved Spectroscopy * Research on Strong Field Processes with a Subpicosecond 400 GW Ultraviolet Source * Growth, Decay and Quenching of Stimulated Raman Scattering in Transparent Liquid Droplets * Layer Condensed Ammonia Studied by Photoacoustic Spectroscopy * High Efficiency Raman Conversion of XeCl Laser Radiation in Lead Vapor * Combined Effect of Stimulated Scattering and Phase Modulation on Generation of Supercontinum * Resonant Multiwave Mixing in Sodium Vapor * High Pressure Brillouin Scattering in Liquid Toluene * Optical Nonlinearities and Bistability in Gold Colloid * Sum-frequency Generation for Surface Vibrational Spectroscopy * Optical Studies of Molecule/Surface Interactions * Optical Second Harmonic Generation with Coupled Surface Plasmons from a Multi-layer Silver/Quartz Grating * Evidence of Silver Cluster and its Role in Surface Enhanced Raman Scattering (SERS) * Study on Cold-evaporated Silver Surfaces with Second-harmonic-generation * Study of Optical Second-harmonic-generation at Metal Surface with Polarization States * Spectroscopic Studies of J-Aggregates of Pseudoisocyanine in Molecular Monolayers in the Range 300 to 20 K * Study of Polymerization of Langmuir-Blodgett Monolayer by Surface Enhanced Raman Scattering * Dynamics of Laser-induced Etching of Si(III) Surface of Chlorine * Fourier Transform Heterodyne Spectroscopy of Liquid Interfaces * Generation of High Power UV Femtosecond Pulses * Femtosecond Photon Echoes * Transition Radiation of Femtosecond Optical Pulses * Observation of DFWN in a Saturable Absorber inside the CPM Ring Dye Laser Cavity * Study on the Induced Spectral Superbroadening of Ultrafast Laser Pulse in a Nonlinear Medium * Laser Cooling and Trapping of Atoms * Femtosecond Absorption Spectroscopy of Primary Processes in Bacterial Photosynthesis Reaction Centers * Observation of the Motion of Slow Atoms in a Standing Wave Field * The Interrelation between the Optical Properties and the MBE Growth Control of Quantum Well Structures * Ionic Excimers * Optical SHG Study on Polymerization of Langmuir-Blodgett Molecular Layers * Weak Localization of Light * Statistical Fragmentation Patterns of Metastable Ion: Comparison with Experiment * Oxygeneration Reaction of Cerium with XeCl Laser * Measurement of Verdet Coefficient and Magneto-optic Spectroscopy in terms of Beats * Study on Rhodamine 6G/Xylene and Red B Laser Dye Mixture System * Ultranarrow Absorption Resonances of Cold Particles and their Application in Spectroscopy and Optical Frequency Standards * The Dynamics of Ion Clouds in Paul Traps: Implications for Frequency Standard Applications * Frequency Stability Measurement of Zeeman Stabilized He-Ne Laser * Multi-wavelength CW He-Ne Laser and its Frequency Stabilization * Efficient Isotope Separation using Semiconductor Lasers * Multi-beam Circularly Polarized Holography * Ring Laser Opticity Meter * Improved Rademacher Functions and Rademacher Transform * Note

  10. Escape of the martian protoatmosphere and initial water inventory

    PubMed Central

    Erkaev, N.V.; Lammer, H.; Elkins-Tanton, L.T.; Stökl, A.; Odert, P.; Marcq, E.; Dorfi, E.A.; Kislyakova, K.G.; Kulikov, Yu.N.; Leitzinger, M.; Güdel, M.

    2014-01-01

    Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~0.1–0.2wt.% of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses ≥3×1019g to ≤6.5×1022g could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was ~100 times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of ~0.1–7.5Myr. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of ~50–250bar H2O and ~10–55bar CO2 could have been lost during ~0.4–12Myr, if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H2O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than ~0.4–12Myr. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles ~4.0±0.2Gyr ago, when the solar XUV flux decreased to values that have been <10 times that of today's Sun. PMID:25843981

  11. Escape of the martian protoatmosphere and initial water inventory

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Lammer, H.; Elkins-Tanton, L. T.; Stökl, A.; Odert, P.; Marcq, E.; Dorfi, E. A.; Kislyakova, K. G.; Kulikov, Yu. N.; Leitzinger, M.; Güdel, M.

    2014-08-01

    Latest research in planet formation indicates that Mars formed within a few million years (Myr) and remained as a planetary embryo that never grew to a more massive planet. It can also be expected from dynamical models that most of Mars' building blocks consisted of material that formed in orbital locations just beyond the ice line which could have contained ~ 0.1 - 0.2 wt . % of H2O. By using these constraints, we estimate the nebula-captured and catastrophically outgassed volatile contents during the solidification of Mars' magma ocean and apply a hydrodynamic upper atmosphere model for the study of the soft X-ray and extreme ultraviolet (XUV) driven thermal escape of the martian protoatmosphere during the early active epoch of the young Sun. The amount of gas that has been captured from the protoplanetary disk into the planetary atmosphere is calculated by solving the hydrostatic structure equations in the protoplanetary nebula. Depending on nebular properties such as the dust grain depletion factor, planetesimal accretion rates and luminosities, hydrogen envelopes with masses ≥ 3 ×1019 g to ≤ 6.5 ×1022 g could have been captured from the nebula around early Mars. Depending on the before mentioned parameters, due to the planets low gravity and a solar XUV flux that was ~ 100 times stronger compared to the present value, our results indicate that early Mars would have lost its nebular captured hydrogen envelope after the nebula gas evaporated, during a fast period of ~ 0.1 - 7.5 Myr. After the solidification of early Mars' magma ocean, catastrophically outgassed volatiles with the amount of ~ 50 - 250 bar H2O and ~ 10 - 55 bar CO2 could have been lost during ~ 0.4 - 12 Myr, if the impact related energy flux of large planetesimals and small embryos to the planet's surface lasted long enough, that the steam atmosphere could have been prevented from condensing. If this was not the case, then our results suggest that the timescales for H2O condensation and ocean formation may have been shorter compared to the atmosphere evaporation timescale, so that one can speculate that sporadically periods, where some amount of liquid water may have been present on the planet's surface. However, depending on the amount of the outgassed volatiles, because of impacts and the high XUV-driven atmospheric escape rates, such sporadically wet surface conditions may have also not lasted much longer than ~ 0.4 - 12 Myr. After the loss of the captured hydrogen envelope and outgassed volatiles during the first 100 Myr period of the young Sun, a warmer and probably wetter period may have evolved by a combination of volcanic outgassing and impact delivered volatiles ~ 4.0 ± 0.2 Gyr ago, when the solar XUV flux decreased to values that have been < 10 times that of today's Sun.

  12. Multipass laser amplification with near-field far-field optical separation

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    This invention discloses two classes of optical configurations for high power laser amplification, one allowing near-field and the other allowing far-field optical separation, for the multiple passage of laser pulses through one or more amplifiers over an open optical path. These configurations may reimage the amplifier or any other part of the cavity on itself so as to suppress laser beam intensity ripples that arise from diffraction and/or non-linear effects. The optical cavities combine the features of multiple passes, spatial filtering and optical reimaging and allow sufficient time for laser gain recovery.

  13. Robust generation of Fourier-synthesized laser fields and their estimation of the optical phase by using quantum control of molecular tunneling ionization

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuyoshi; Saito, Naoaki; Ohmura, Hideki

    2018-03-01

    Intense (5.0 × 1012 W cm-2) nanosecond Fourier-synthesized laser fields consisting of fundamental, second-, third-, and fourth-harmonic light generated by an interferometer-free Fourier-synthesized laser field generator induce orientation-selective ionization based on directionally asymmetric molecular tunneling ionization (TI). The laser field generator ensures adjustment-free operation, high stability, and high reproducibility. Phase-sensitive, orientation-selective molecular TI provides a simple way to estimate the relative phase differences between the fundamental light and each harmonic by data-fitting analysis. This application of Fourier-synthesized laser fields will facilitate not only lightwave engineering but also the control of matter.

  14. Laser-plasma interactions in magnetized environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  15. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  16. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  17. Electron acceleration by a focused laser pulse in a static magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin; Zhao Xianghao

    2007-12-15

    The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.

  18. Effects of laser-magnetic blood irradiation in vivo

    NASA Astrophysics Data System (ADS)

    Zalesskaya, Galina; Ulaschik, Vladimir; Kuchinsky, Andrej; Galay, Olga

    2007-06-01

    Laser-magnetic field action on blood in vivo was studied within a range 440-650 nm. The primary mechanisms of laser-magnetic blood irradiation in vivo were studied at (1) laser and non-laser irradiation with light of various wavelengths, (2) autohemo-magnetic-therapy, (3) multicolored over-vein irradiation of the blood, (4) the laser-magnetic field actions. Hemoglobin is considered as primary photoacceptor of radiation. The dependence of effectiveness of laser action on light wavelength was compared with known action spectra for blood photostimulation. Magnetic field enhancement of the laser- induced reactions was discussed as result of magnetic field influence on ferromagnetic hem inclusions and on a structure of hemoglobin peptide chains. Hemoglobin oxygenation or deoxygenation processes were analyzed as a first stage of the therapeutic effects depending on a preceding hemoglobin oxygenation degree at pathological state. The laser- magnetic irradiation causes tendency to the normalization of these process. It is proposed that the secondary reactions are initiated by reversible structural changes of erythrocytes membrane caused the strong hemoglobin absorption.

  19. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  20. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  1. The Tunable XUV Imager (TXI) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Brinton, John (Technical Monitor); Golub, Leon

    2004-01-01

    The TXI was flown successfully on 21 June 2001 (36.199 US). All systems functioned as planned and image data were acquired and sent to the ground. Unfortunately, due to a parachute failure the payload was destroyed. In this report we summarize results from the flight and provide detailed information on the high resolution X-ray imaging detector which was developed as part of the program.

  2. Studies of Collisional and Nonlinear Radiative Processes for Development of Coherent UV and XUV Sources

    DTIC Science & Technology

    1991-06-04

    Rhodes CO-INVESTIGATORS: Ting Shan Luk Armon McPherson Keith Boyer PROGRAM MANAGER: Dr. Howard Schlossberg Air Force Office of Scientific Research /NP...Scientific Research Boiling Air Force Base Washington, D. C. 20332-6448 e92-19919 Pr ,’ted on O % ,ecyc~ed pe TABLE OF CONTENTS ABSTRACT...1 1. INTRODUCTION .......... ........................... 2 II. GENERAL DISCUSSION OF RESEARCH ....... ................ 2 A

  3. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

  4. No hydrogen exosphere detected around the super-Earth HD 97658 b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Ehrenreich, D.; King, G.; Lecavelier des Etangs, A.; Wheatley, P. J.; Vidal-Madjar, A.; Pepe, F.; Udry, S.

    2017-01-01

    The exoplanet HD 97658 b provides a rare opportunity to probe the atmospheric composition and evolution of moderately irradiated super-Earths. It transits a bright K star at a moderate orbital distance of 0.08 au. Its low density is compatible with a massive steam envelope that could photodissociate at high altitudes and become observable as escaping neutral hydrogen. Our analysis of three transits with HST/STIS at Lyman-α reveals no such signature, suggesting that the thermosphere of HD 97658 b is not hydrodynamically expanding and is subjected to a low escape of neutral hydrogen (<108 g s-1 at 3σ). Using HST/STIS Lyman-α observations and Chandra/ACIS-S and XMM-Newton/EPIC X-ray observations at different epochs, we find that HD 97658 is in fact a weak and soft X-ray source with signs of chromospheric variability in the Lyman-α line core. We determine an average reference for the intrinsic Lyman-α line and X-EUV (XUV) spectrum of the star, and show that HD 97658 b is in mild conditions of irradiation compared to other known evaporating exoplanets with an XUV irradiation about three times lower than the evaporating warm Neptune GJ436 b. This could be the reason why the thermosphere of HD 97658 b is not expanding: the low XUV irradiation prevents an efficient photodissociation of any putative steam envelope. Alternatively, it could be linked to a low hydrogen content or inefficient conversion of the stellar energy input. The HD 97658 system provides clues for understanding the stability of low-mass planet atmospheres in terms of composition, planetary density, and irradiation. Our study of HD 97658 b can be seen as a control experiment of our methodology, confirming that it does not bias detections of atmospheric escape and underlining its strength and reliability. Our results show that stellar activity can be efficiently discriminated from absorption signatures by a transiting exospheric cloud. They also highlight the potential of observing the upper atmosphere of small transiting planets to probe their physical and chemical properties.

  5. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    NASA Technical Reports Server (NTRS)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by an early episode of thermally-driven hydrodynamic escape when host stars have saturated XUV fluxes.

  6. Effect of the carrier-envelope phase of the driving laser field on the high-order harmonic attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng Zhinan; Li Ruxin; Yu Wei

    2003-01-01

    The effect of the carrier-envelope phase of a few-cycle driving laser field on the generation and measurement of high-order harmonic attosecond pulses is investigated theoretically. We find that the position of the generated attosecond soft-x-ray pulse in the cutoff region is locked to the oscillation of the driving laser field, but not to the envelope of the laser pulse. This property ensures the success of the width measurement of an attosecond soft-x-ray pulse based on the cross correlation between the attosecond pulse and its driving laser pulse [M. Hentschel et al., Nature (London) 414, 509 (2001)]. However, there still existsmore » a timing jitter of the order of tens of attoseconds between the attosecond pulse and its driving laser field. We also propose a method to detect the carrier-envelope phase of the driving laser field by measuring the spatial distribution of the photoelectrons induced by the attosecond soft-x-ray pulse and its driving laser pulse.« less

  7. Spectrally resolved far-fields of terahertz quantum cascade lasers.

    PubMed

    Brandstetter, Martin; Schönhuber, Sebastian; Krall, Michael; Kainz, Martin A; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Strasser, Gottfried; Unterrainer, Karl

    2016-10-31

    We demonstrate a convenient and fast method to measure the spectrally resolved far-fields of multimode terahertz quantum cascade lasers by combining a microbolometer focal plane array with an FTIR spectrometer. Far-fields of fundamental TM0 and higher lateral order TM1 modes of multimode Fabry-Pérot type lasers have been distinguished, which very well fit to the results obtained by a 3D finite-element simulation. Furthermore, multimode random laser cavities have been investigated, analyzing the contribution of each single laser mode to the total far-field. The presented method is thus an important tool to gain in-depth knowledge of the emission properties of multimode laser cavities at terahertz frequencies, which become increasingly important for future sensing applications.

  8. Laser simulation applying Fox-Li iteration: investigation of reason for non-convergence

    NASA Astrophysics Data System (ADS)

    Paxton, Alan H.; Yang, Chi

    2017-02-01

    Fox-Li iteration is often used to numerically simulate lasers. If a solution is found, the complex field amplitude is a good indication of the laser mode. The case of a semiconductor laser, for which the medium possesses a self-focusing nonlinearity, was investigated. For a case of interest, the iterations did not yield a converged solution. Another approach was needed to explore the properties of the laser mode. The laser was treated (unphysically) as a regenerative amplifier. As the input to the amplifier, we required a smooth complex field distribution that matched the laser resonator. To obtain such a field, we found what would be the solution for the laser field if the strength of the self focusing nonlinearity were α = 0. This was used as the input to the laser, treated as an amplifier. Because the beam deteriorated as it propagated multiple passes in the resonator and through the gain medium (for α = 2.7), we concluded that a mode with good beam quality could not exist in the laser.

  9. Terahertz radiation generation by beating of two laser beams in a collisional plasma with oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Jazayeri, Seyed Masud; Ghafary, Bijan

    2018-02-01

    A scheme for excitation of terahertz (THz) radiation is presented by photo mixing of two super-Gaussian laser beams in a rippled density collisional magnetized plasma. Lasers having different frequencies and wave numbers but the same electric fields create a ponderomotive force on the electrons of plasma in the beating frequency. Super-Gaussian laser beam has the exclusive features such as steep gradient in laser intensity distribution, wider cross-section in comparison with Gaussian profiles, which make stronger ponderomotive force and higher THz radiation. The magnetic field is considered oblique to laser beams propagation direction; in this case, depending on the phase matching conditions different mode waves can propagate in plasma. It is found that amplitude and efficiency of the emitted THz radiation not only are sensitive to the beating frequency, collision frequency, and magnetic field strength but to the angle between laser beams and static magnetic field. The efficiency of THz radiation can be optimized in a certain angle.

  10. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    NASA Astrophysics Data System (ADS)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  11. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy.

    PubMed

    Chatterley, Adam S; Lackner, Florian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2016-06-07

    Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.

  12. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy

    DOE PAGES

    Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; ...

    2016-05-11

    Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10 13 and 2.2 × 10 14 W cm -2. The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br ++. However,more » the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br +, and Br ++, respectively. Transient molecular ion features assigned to DBE + and DBE ++ are observed, with dynamics linked to the production of Br + products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE + ions on a shallow potential energy surface. The appearance of Br + ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE + ionic species. Dicationic Br ++ products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.« less

  13. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  14. Free-Free Transitions in the Presence of Laser Fields and Debye Potential at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2012-01-01

    We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.

  15. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  16. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  17. Suppression of quantum decoherence via infrared-driven coherent exciton-plasmon coupling: Undamped field and Rabi oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu; Nano and Micro Device Center, University of Alabama in Huntsville, Huntsville, Alabama 35899; Patty, K. D.

    2014-02-24

    We show that when a semiconductor quantum dot is in the vicinity of a metallic nanoparticle and driven by a mid-infrared laser field, its coherent dynamics caused by interaction with a visible laser field can become free of quantum decoherence. We demonstrate that this process, which can offer undamped Rabi and field oscillations, is the result of coherent normalization of the “effective” polarization dephasing time of the quantum dot (T{sub 2}{sup *}). This process indicates formation of infrared-induced coherently forced oscillations, which allows us to control the value of T{sub 2}{sup *} using the infrared laser. The results offer decay-freemore » ultrafast modulation of the effective field experienced by the quantum dot when neither the visible laser field nor the infrared laser changes with time.« less

  18. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  19. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  20. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Jaroslaw H.

    2011-03-15

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less

  1. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  2. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Sinha, Chandana

    2009-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  3. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    NASA Astrophysics Data System (ADS)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  4. Influence of turbulent atmosphere on laser beams from confocal unstable resonators

    NASA Astrophysics Data System (ADS)

    Peng, Yu-feng; Wang, Juan; Bi, Xiao-qun; Zhang, Ming-gao; Cheng, Zu-hai

    2009-07-01

    Based on the laser fields from a positive confocal unstable resonator (ab initio), the propagation characteristics of the beam through turbulent atmosphere are investigated by means of fast Fourier transform algorithm (FFT). To conveniently investigate the propagation characteristics of laser beam through the atmosphere, as far as known, in the previous many works, a mathematical expression was generally artificially predefined to represent the given laser beam, such as Gaussian beam, Hermite-cosh-Gaussian beam, flat topped beam, dark-hollow (annular) beam, etc. In this paper, by basing on the initial built in oscillation of a laser resonator, such as a positive confocal unstable resonator (CUR), we studied the intensity distributions of the output laser field to obtain the propagation characteristics of laser beam through the turbulent atmosphere as functions of different propagation distances. The results show that the turbulence will result in the degradation of the peak value of the laser intensity in the far field, the spread of the far field diagram patterns, and the beam quality characteristics greatly degraded.

  5. Magnetic-field generation by pulsed irradiation of aluminium in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, A N; Chekan, P V

    Magnetic-field generation arising under irradiation of an aluminium barrier in the air by a series of laser pulses is studied experimentally. It is found that the magnetic field increases nonlinearly from 10{sup -5} to 10{sup -3} T with increasing laser power density from 10{sup 7} to 10{sup 9} W cm{sup -2}, the degree of nonlinearity being different for single nanosecond pulses, for a series of such pulses with a repetition rate of 100 – 150 μs and for a combination of a millisecond laser pulse and a series of nanosecond laser pulses. The dependences of the magnetic-field induction on themore » power density of laser radiation in the above-mentioned regimes are established. (interaction of laser radiation with matter)« less

  6. Effect of tapered magnetic field on expanding laser-produced plasma for heavy-ion inertial fusion

    DOE PAGES

    Kanesue, Takeshi; Ikeda, Shunsuke

    2016-12-20

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  7. Intense laser field effects on a Woods-Saxon potential quantum well

    NASA Astrophysics Data System (ADS)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  8. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  9. 21 CFR 886.1360 - Visual field laser instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Visual field laser instrument. 886.1360 Section 886.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument...

  10. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  11. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. Confinement of laser plasma expansion with strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tang, Hui-bo; Hu, Guang-yue; Liang, Yi-han; Tao, Tao; Wang, Yu-lin; Hu, Peng; Zhao, Bin; Zheng, Jian

    2018-05-01

    The evolutions of laser ablation plasma, expanding in strong (∼10 T) transverse external magnetic field, were investigated in experiments and simulations. The experimental results show that the magnetic field pressure causes the plasma decelerate and accumulate at the plasma-field interface, and then form a low-density plasma bubble. The saturation size of the plasma bubble has a scaling law on laser energy and magnetic field intensity. Magnetohydrodynamic simulation results support the observation and find that the scaling law (V max ∝ E p /B 2, where V max is the maximum volume of the plasma bubble, E p is the absorbed laser energy, and B is the magnetic field intensity) is effective in a broad laser energy range from several joules to kilo-joules, since the plasma is always in the state of magnetic field frozen while expanding. About 15% absorbed laser energy converts into magnetic field energy stored in compressed and curved magnetic field lines. The duration that the plasma bubble comes to maximum size has another scaling law t max ∝ E p 1/2/B 2. The plasma expanding dynamics in external magnetic field have a similar character with that in underdense gas, which indicates that the external magnetic field may be a feasible approach to replace the gas filled in hohlraum to suppress the wall plasma expansion and mitigate the stimulated scattering process in indirect drive ignition.

  13. A new concept in laser-assisted chemistry - The electronic-field representation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.

    1977-01-01

    Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.

  14. A free-electron laser in a uniform magnetic field

    NASA Technical Reports Server (NTRS)

    Ride, S. K.; Colson, W. B.

    1979-01-01

    The study shows that a free-electron laser can operate in a uniform, longitudinal magnetic field. The fully relativistic Lorentz force equations are examined and solved order by order in a radiation field strength to obtain analytic expressions for the electron trajectory and energy as functions of initial electron position within a wavelength of light. Analytic expressions for the longitudinal and transverse bunching and for laser gain are found. The bunching of this laser process is compared to the bunching processes involved in (1) a Stanford free-electron laser and (2) a cyclotron maser. The results received can be useful in exploring light amplification in astrophysical magnetic fields, the magnetosphere, and in laboratory devices.

  15. Laser propagation and soliton generation in strongly magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, W.; Li, J. Q.; Kishimoto, Y.

    The propagation characteristics of various laser modes with different polarization, as well as the soliton generation in strongly magnetized plasmas are studied numerically through one-dimensional (1D) particle-in-cell (PIC) simulations and analytically by solving the laser wave equation. PIC simulations show that the laser heating efficiency substantially depends on the magnetic field strength, the propagation modes of the laser pulse and their intensities. Generally, large amplitude laser can efficiently heat the plasma with strong magnetic field. Theoretical analyses on the linear propagation of the laser pulse in both under-dense and over-dense magnetized plasmas are well confirmed by the numerical observations. Mostmore » interestingly, it is found that a standing or moving soliton with frequency lower than the laser frequency is generated in certain magnetic field strength and laser intensity range, which can greatly enhance the laser heating efficiency. The range of magnetic field strength for the right-hand circularly polarized (RCP) soliton formation with high and low frequencies is identified by solving the soliton equations including the contribution of ion's motion and the finite temperature effects under the quasi-neutral approximation. In the limit of immobile ions, the RCP soliton tends to be peaked and stronger as the magnetic field increases, while the enhanced soliton becomes broader as the temperature increases. These findings in 1D model are well validated by 2D simulations.« less

  16. Laser-induced extreme magnetic field in nanorod targets

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  17. Laser-generated magnetic fields in quasi-hohlraum geometries

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Turnbull, David; Ross, Steven; Hazi, Andrew; Ralph, Joseph; Lepape, Sebastian; Froula, Dustin; Haberberger, Dan; Moody, John

    2014-10-01

    Laser-generated magnetic fields of 10--40 T have been produced with 100--4000 J laser drives at Omega EP and Titan. The fields are generated using the technique described by Daido et al. [Phys. Rev. Lett. 56, 846 (1986)], which works by directing a laser through a hole in one plate to strike a second plate. Hot electrons generated in the laser-produced plasma on the second plate collect on the first plate. A strap connects the two plates allowing a current of 10 s of kA to flow and generate a solenoidal magnetic field. The magnetic field is characterized using Faraday rotation, b-dot probes, and proton radiography. Further experiments to study the effect of the magnetic field on hohlraum performance are currently scheduled for Omega. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA-27344.

  18. Laser-driven electron acceleration in a plasma channel with an additional electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Li-Hong; Xue, Ju-Kui, E-mail: xuejk@nwnu.edu.cn; Liu, Jie, E-mail: liu-jie@iapcm.ac.cn

    2016-05-15

    We examine the electron acceleration in a two-dimensional plasma channel under the action of a laser field and an additional static electric field. We propose to design an appropriate additional electric field (its direction and location), in order to launch the electron onto an energetic trajectory. We find that the electron acceleration strongly depends on the coupled effects of the laser polarization, the direction, and location of the additional electric field. The additional electric field affects the electron dynamics by changing the dephasing rate. Particularly, a suitably designed additional electric field leads to a considerable energy gain from the lasermore » pulse after the interaction with the additional electric field. The electron energy gain from the laser with the additional electric field can be much higher than that without the additional electric field. This engineering provides a possible means for producing high energetic electrons.« less

  19. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  20. Research in the Optical Sciences

    DTIC Science & Technology

    1994-02-01

    Gain Asymmetry and the Generation of New Frequencies2 "’ When a stable coherent beam is injected into a VCSEL that is lasing just above threshold, we... optical microscope was developed and tested. High quality single-crystal layers of beryllium were grown on germanium by molecular beam epitaxy (MBE... OPTICAL ELEWENTS FOR X-UV WAVELENGTHS FALCO AND SLAUGHTEM indicate an increase in crystalline quality as T is increased. However, samples deposited at

  1. Skylab

    NASA Image and Video Library

    1971-04-01

    This photograph shows Skylab's Extreme Ultraviolet (XUV) Spectroheliograph during an acceptance test and checkout procedures in April 1971. The unit was an Apollo Telescope Mount (ATM) instrument designed to sequentially photograph the solar chromosphere and corona in selected ultraviolet wavelengths. The instrument also obtained information about composition, temperature, energy conversion and transfer, and plasma processes of the chromosphere and lower corona. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  2. Collisional & Nonlinear Radiative Processes for Development of Coherent UV & XUV Sources.

    DTIC Science & Technology

    1987-04-01

    4- Charles K. Rhodes in the vicinity of an atomic unit, (e/a ). Extant theoretical work, however, 0 predicted ridiculously low rates...of 14 210 W/cm . These experiments clearly demonstrated that standard theoretical techniques were incapable, by a discrepancy as great as several...experiments were clearly in contradiction to all theoretical treatments, of which there is a considerable number (16-21). This unexpected result, of course

  3. XUV Frequency Comb Development for Precision Spectroscopy and Ultrafast Science

    DTIC Science & Technology

    2015-07-28

    first time and provide insight to the underlying 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a...TERMS. Key words or phrases identifying major concepts in the report. 16. SECURITY CLASSIFICATION. Enter security classification in accordance with... security classification regulations, e.g. U, C, S, etc. If this form contains classified information, stamp classification level on the top and bottom

  4. Mass-loss evolution of close-in exoplanets: Evaporation of hot Jupiters and the effect on population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, H.; Nakamoto, T., E-mail: kurokawa@nagoya-u.jp

    2014-03-01

    During their evolution, short-period exoplanets may lose envelope mass through atmospheric escape owing to intense X-ray and extreme ultraviolet (XUV) radiation from their host stars. Roche-lobe overflow induced by orbital evolution or intense atmospheric escape can also contribute to mass loss. To study the effects of mass loss on inner planet populations, we calculate the evolution of hot Jupiters considering mass loss of their envelopes and thermal contraction. Mass loss is assumed to occur through XUV-driven atmospheric escape and the following Roche-lobe overflow. The runaway effect of mass loss results in a dichotomy of populations: hot Jupiters that retain theirmore » envelopes and super Earths whose envelopes are completely lost. Evolution primarily depends on the core masses of planets and only slightly on migration history. In hot Jupiters with small cores (≅ 10 Earth masses), runaway atmospheric escape followed by Roche-lobe overflow may create sub-Jupiter deserts, as observed in both mass and radius distributions of planetary populations. Comparing our results with formation scenarios and observed exoplanets populations, we propose that populations of closely orbiting exoplanets are formed by capturing planets at/inside the inner edges of protoplanetary disks and subsequent evaporation of sub-Jupiters.« less

  5. Interaction of laser radiation with plasma under the MG external magnetic field

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Maximov, A. V.; Betti, R.; Sawada, H.; Sentoku, Y.

    2016-10-01

    Strong magnetic fields play an important role in many physical processes relevant to astrophysical events and fusion research. Laser produced plasma in the MG external magnetic field was studied at the 1 MA pulsed power generator coupled with the laser operated in ns and ps regimes. Rod loads and coils under 1 MA current were used to produce a magnetic field of 2-3 MG. In one type of experiments, a 0.8 ns laser pulse was focused on the load surface with intensity of 3x1015 W/cm2. Laser diagnostics showed that the laser produced plasma expands in the transversal magnetic field and forms a thin plasma disc with a typical diameter of 3-7 mm and thickness of 0.2-0.4 mm. A magnetosonic-type wave was observed in the plasma disc and on the surface of the rod load. The plasma disc expands radially across the magnetic field with a velocity of the order of the magnetosonic velocity. Physical mechanisms involved in the formation of the plasma disc may be relevant to the generation of plasma loops in sun flares. Other experiments, with a 0.4 ps laser pulse were carried for investigation of the isochoric heating of plasma with fast electrons confined by the strong magnetic field. The laser beam was focused by the parabola mirror on a solid target in the magnetic field of the coil. Work was supported by the DOE Grant DE-SC0008824 and DOE/NNSA UNR Grant DE-FC52-06NA27616.

  6. Microfocusing at the PG1 beamline at FLASH

    DOE PAGES

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; ...

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  8. Reply on the comment of the paper "New probing techniques of radiative shocks"

    NASA Astrophysics Data System (ADS)

    Stehlé, Chantal; Kozlová, Michaela; Larour, Jean; Nejdl, Jaroslav; Suzuki-Vidal, Francisco; Cohen, Mathieu; Chaulagain, Uddhab P.; Champion, Norbert; Barroso, Patrice; Acef, Ouali; Delattre, Pierre-Alexandre; Dostál, Jan; Krus, Miroslav; Chièze, Jean-Pierre; Ibgui, Laurent

    2014-05-01

    Imaging the structure of a radiative shock is a challenging task as the high plasma densities produced need a short wavelength to penetrate the plasma, requiring highly sophisticated imaging techniques. In a recent paper (Stehlé et al., Opt. Commun. 285 (2012) 64-69 [1]) the feasibility of a novel imaging technique using an X-ray laser (XRL) at 21 nm with a pulse duration 0.15 ns was proved. The recorded image was attributed to a shock propagating with a velocity of ~60 km/s. This velocity is in agreement with measurements of the plasma self-emission using time and space resolved diode diagnostics, and also in qualitative agreement with 1D numerical simulations. However, due to the inhomogeneous reflectivity of the XUV imaging mirror and to the low number of XRL photons, the quality of the recorded image was insufficient to unambiguously identify the different shock regions. Thus, arguing an ad hoc spatial resolution of ~0.5 mm and a stepwise representation of the shock-piston system, the potential of the technique to observe a radiative precursor was contested (Busquet's comment (in press) [2]). In this reply we aim at clarifying different aspects of the experimental setup, spatial resolution and other questions raised in this comment in order to back up our findings together with their respective analysis and interpretations.

  9. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  10. High power CO2 coherent ladar haven't quit the stage of military affairs

    NASA Astrophysics Data System (ADS)

    Zhang, Heyong

    2015-05-01

    The invention of the laser in 1960 created the possibility of using a source of coherent light as a transmitter for a laser radar (ladar). Coherent ladar shares many of the basic features of more common microwave radars. However, it is the extremely short operating wavelength of lasers that introduces new military applications, especially in the area of missile identification, space target tracking, remote rang finding, camouflage discrimination and toxic agent detection. Therefore, the most popular application field such as laser imaging and ranging were focused on CO2 laser in the last few decades. But during the development of solid state and fiber laser, some people said that the CO2 laser will be disappeared and will be replaced by the solid and fiber laser in the field of military and industry. The coherent CO2 laser radar will have the same destiny in the field of military affairs. However, to my opinion, the high power CO2 laser will be the most important laser source for laser radar and countermeasure in the future.

  11. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-01

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  12. Laser Light-field Fusion for Wide-field Lensfree On-chip Phase Contrast Microscopy of Nanoparticles.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander

    2016-12-13

    Wide-field lensfree on-chip microscopy, which leverages holography principles to capture interferometric light-field encodings without lenses, is an emerging imaging modality with widespread interest given the large field-of-view compared to lens-based techniques. In this study, we introduce the idea of laser light-field fusion for lensfree on-chip phase contrast microscopy for detecting nanoparticles, where interferometric laser light-field encodings acquired using a lensfree, on-chip setup with laser pulsations at different wavelengths are fused to produce marker-free phase contrast images of particles at the nanometer scale. As a proof of concept, we demonstrate, for the first time, a wide-field lensfree on-chip instrument successfully detecting 300 nm particles across a large field-of-view of ~30 mm 2 without any specialized or intricate sample preparation, or the use of synthetic aperture- or shift-based techniques.

  13. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  14. High-energy vacuum birefringence and dichroism in an ultrastrong laser field

    NASA Astrophysics Data System (ADS)

    Meuren, Sebastian; Bragin, Sergey; Keitel, Christoph H.; di Piazza, Antonino

    2017-10-01

    The interaction between real photons in vacuum is a long-standing prediction of quantum electrodynamics, which has never been observed experimentally. Upcoming 10 PW laser systems like the Extreme Light Infrastructure (ELI) will provide laser pulses with unprecedented intensities. If combined with highly energetic gamma photons - obtainable via Compton backscattering from laser-wakefield accelerated electron beams - the QED critical field becomes accessible. In we have derived how a generally polarized probe photon beam is influenced by both vacuum birefringence and dichroism in a strong linearly polarized plane-wave laser field. We put forward an experimental scheme to measure these effects in the nontrivial high-energy regime, where the QED critical field is reached and the Euler-Heisenberg approximation, valid for low-frequency electromagnetic fields, breaks down. Our results suggest the feasibility of verifying/rejecting the QED prediction for vacuum birefringence/dichroism at the 3 σ confidence level on the time scale of a few days at several upcoming laser facilities. Now at Princeton University, Princeton, NJ.

  15. Generations of even-order harmonics from vibrating H2+ and T2+ in the rising and falling parts of the laser field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Kapteyn, Henry J.; Feng, April Y.

    2018-04-01

    The generations of the even-order harmonics from H2+ and one of its isotope T2+ have been theoretically investigated beyond the Born-Oppenheimer approximation. Normally, the high-order harmonic generation (HHG) only contains odd-order harmonics for the orbital symmetry along the direction of laser polarization. Here, we showed that due to asymmetric harmonic emission (asymmetric half-wave profile), the even-order harmonics can be generated in the rising and the falling part of the laser field. In detail, in the lower initial vibrational state, the even-order harmonics main come from the falling part of the laser field; while as the initial vibrational state increases, the identified even-order harmonics in the falling part of the laser field are decreased; while some other even-order harmonics coming from the rising part of the laser field can be produced. The interesting phenomena have been proved through studying the spatial distributions and the time profiles of the HHG.

  16. Concept of a staged FEL enabled by fast synchrotron radiation cooling of laser-plasma accelerated beam by solenoidal magnetic fields in plasma bubble

    NASA Astrophysics Data System (ADS)

    Seryi, Andrei; Lesz, Zsolt; Andreev, Alexander; Konoplev, Ivan

    2017-03-01

    A novel method for generating GigaGauss solenoidal fields in a laser-plasma bubble, using screw-shaped laser pulses, has been recently presented. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper, we present an outline of what a staged plasma-acceleration FEL could look like, and discuss further studies needed to investigate the feasibility of the concept in detail.

  17. Microchip solid-state cylindrical vector lasers with orthogonally polarized dual laser-diode end pumping.

    PubMed

    Otsuka, Kenju; Chu, Shu-Chun

    2013-05-01

    We report a simple method for generating cylindrical vector beams directly from laser-diode (LD)-pumped microchip solid-state lasers by using dual end-pumping beams. Radially as well as azimuthally polarized vector field emissions have been generated from the common c-cut Nd:GdVO4 laser cavity merely by controlling the focus positions of orthogonally polarized LD off-axis pump beams. Hyperbolically polarized vector fields have also been observed, in which the cylindrical symmetry of vector fields is broken. Experimental results have been well reproduced by numerical simulations.

  18. Determining the Carrier-Envelope Phase of Intense Few-Cycle Laser Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenroth, F.; Di Piazza, A.; Keitel, C. H.

    2010-08-06

    The electromagnetic radiation emitted by an ultrarelativistic accelerated electron is extremely sensitive to the precise shape of the field driving the electron. We show that the angular distribution of the photons emitted by an electron via multiphoton Compton scattering off an intense (I>10{sup 20} W/cm{sup 2}), few-cycle laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our calculations take into account exactly the laser field, include relativistic and quantum effects and are in principle applicable to presently available and future foreseen ultrastrong laser facilities.

  19. An electron of helium atom under a high-intensity laser field

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Adepoju, Adenike Grace; Liman, Muhammed S.; Oyewumi, K. J.; Dong, Shi-Hai

    2017-02-01

    We scrutinize the behavior of eigenvalues of an electron in a helium (He) atom as it interacts with electric field directed along the z-axis and is exposed to linearly polarized intense laser field radiation. To achieve this, we freeze one electron of the He atom at its ionic ground state and the motion of the second electron in the ion core is treated via a more general case of screened Coulomb potential model. Using the Kramers-Henneberger (KH) unitary transformation, which is the semiclassical counterpart of the Block-Nordsieck transformation in the quantized field formalism, the squared vector potential that appears in the equation of motion is eliminated and the resultant equation is expressed in the KH frame. Within this frame, the resulting potential and the corresponding wave function are expanded in Fourier series and using Ehlotzky’s approximation, we obtain a laser-dressed potential to simulate intense laser field. By fitting the more general case of screened Coulomb potential model into the laser-dressed potential, and then expanding it in Taylor series up to O≤ft({{r}4},α 09\\right) , we obtain the solution (eigenvalues and wave function) of an electron in a He atom under the influence of external electric field and high-intensity laser field, within the framework of perturbation theory formalism. We found that the variation in frequency of laser radiation has no effect on the eigenvalues of a He electron for a particular electric field intensity directed along z-axis. Also, for a very strong external electric field and an infinitesimal screening parameter, the system is strongly bound. This work has potential application in the areas of atomic and molecular processes in external fields including interactions with strong fields and short pulses.

  20. Ultrafast electron radiography of magnetic fields in high-intensity laser-solid interactions.

    PubMed

    Schumaker, W; Nakanii, N; McGuffey, C; Zulick, C; Chyvkov, V; Dollar, F; Habara, H; Kalintchenko, G; Maksimchuk, A; Tanaka, K A; Thomas, A G R; Yanovsky, V; Krushelnick, K

    2013-01-04

    Using electron bunches generated by laser wakefield acceleration as a probe, the temporal evolution of magnetic fields generated by a 4 × 10(19) W/cm(2) ultrashort (30 fs) laser pulse focused on solid density targets is studied experimentally. Magnetic field strengths of order B(0) ~ 10(4) T are observed expanding at close to the speed of light from the interaction point of a high-contrast laser pulse with a 10-μm-thick aluminum foil to a maximum diameter of ~1 mm. The field dynamics are shown to agree with particle-in-cell simulations.

  1. Magnetization of a quantum spin system induced by a linear polarized laser

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-08-01

    It is shown that a linear polarized laser can cause magnetization of a spin system with magnetic anisotropy, the distinguished axis of which is perpendicular to the polarization of the laser field. In the dynamical regime the magnetization oscillates around the nonzero value determined by the parameters of the system. Oscillations have the frequency of the laser field, modulated by the lower Rabi-like frequencies. In the steady-state regime, for a large time scale greater than the characteristic relaxation time, the Rabi-like oscillations are damped, and the magnetization oscillates with the frequency of the laser field around the value which is determined by the relaxation rate also. Analytic results are presented for the spin-1/2 chain. The most direct manifestation of such a behavior can be observed in spin-1/2 Ising chain materials if the linear polarization of the laser field is chosen to be perpendicular to the Ising axis.

  2. Laser Generated Magnetic Fields

    DTIC Science & Technology

    1976-06-01

    30, II dttlormnt from Rmpori) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on tororoo aldo II nocoommry and Idontlty by block nuaibar) Crater...dependence of laser generated magnetic fields Laser crater cross-sections X-ray detection from laser plasma 20. ABSTRACT (Contlmio on tovormo aid* II...nacaaaary and Idontlty ay block mmtbor) A sequence of laser pulses focussed onto the same spot on a target produces evaporation of target material and the

  3. Intense Plasma Waveguide Terahertz Sources for High-Field THz Probe Science with Ultrafast Lasers for Solid State Physics

    DTIC Science & Technology

    2016-08-25

    AFRL-AFOSR-UK-TR-2016-0029 Intense Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics...Plasma-Waveguide Terahertz Sources for High-Field THz probe science with ultrafast lasers for Solid State Physics, 5a.  CONTRACT NUMBER 5b.  GRANT...an existing high energy laser system, has been applied to the study of intense terahertz radiation generated in gaseous plasmas in purpose

  4. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  5. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    NASA Astrophysics Data System (ADS)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  6. Ultrafast probing of magnetic field growth inside a laser-driven solenoid.

    PubMed

    Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

  7. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  8. Influence of external magnetic field on laser-induced gold nanoparticles fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serkov, A. A.; The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology; Rakov, I. I.

    Laser-assisted fragmentation is an efficient method of the nanoparticles size and morphology control. However, its exact mechanisms are still under consideration. One of the remaining problems is the plasma formation, inevitably occurring upon the high intensity laser irradiation. In this Letter, the role of the laser-induced plasma is studied via introduction of high-intensity external magnetic field (up to 7.5 T). Its presence is found to cause the plasma emission to start earlier regarding to a laser pulse, also increasing the plume luminosity. Under these conditions, the acceleration of nanoparticles fragmentation down to a few nanometers is observed. Laser-induced plasma interaction withmore » magnetic field and consequent energy transfer from plasma to nanoparticles are discussed.« less

  9. Polarization switching of sodium guide star laser for brightness enhancement

    NASA Astrophysics Data System (ADS)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-07-01

    The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.

  10. Fast temporal correlation between hard X-ray and ultraviolet continuum brightenings

    NASA Technical Reports Server (NTRS)

    Machado, Marcos E.; Mauas, Pablo J.

    1986-01-01

    Recent Solar Maximum Mission (SMM) observations have shown fast and simultaneous increases in hard X-rays (HXR, E25 keV) and ultraviolet continuum (UVC, lambda lambda approx. equals 1600 and 1388 A) radiation. A simple and natural explanation is given for this phenomenon to happen, which does not involve extreme conditions for energy transport processes, and confirms earlier results on the effect of XUV photoionization in the solar atmosphere.

  11. Chromaticity calculations and code comparisons for x-ray lithography source XLS and SXLS rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-06-16

    This note presents the chromaticity calculations and code comparison results for the (x-ray lithography source) XLS (Chasman Green, XUV Cosy lattice) and (2 magnet 4T) SXLS lattices, with the standard beam optic codes, including programs SYNCH88.5, MAD6, PATRICIA88.4, PATPET88.2, DIMAD, BETA, and MARYLIE. This analysis is a part of our ongoing accelerator physics code studies. 4 figs., 10 tabs.

  12. Self-compensation of thermal lens in high-power diode pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Jun

    2010-02-01

    We present a comprehensive model to describe the optic-thermal coupling in the diode pumped solid-state lasers (DPSSL). The thermal transition of particles at the upper laser level leads the heat-generation of laser crystals to depend on shape of the laser beam, while the laser field is also influenced by the temperature because of the thermal excitation of doped particles among various Stark levels. These effects, together with the usual thermal-optic effect that induces a fluctuation of the refraction index by an inhomogeneous temperature distribution, cause a complicated coupling between the laser field and the temperature field. We show that the optic-thermal coupling plays an important role in high-power DPSSL with larger size beam. That effect may yield a self-compensation for the thermal lens and improve the beam quality.

  13. [Understanding the advantages and disadvantages of femtosecond laser comprehensive applications in ophthalmology].

    PubMed

    Xie, Li-xin; Gao, Hua

    2013-04-01

    The femtosecond (FS) laser is a novel laser technology, and is approved clinical application by FDA in 2000. FS laser initially mainly used in corneal refractive surgery to replace the mechanical microkeratome. Since the accuracy and controllability of the FS laser is very high, it shows superiority in the field of corneal refractive surgery. And with the development of the relative hard and software, FS laser is began to used in other fields of ophthalmology, such as corneal transplants, cataract surgery, as well as assisted diagnosis et al., although still have some limitations, the preliminary clinical results have been shown a very good prospects in the ophthalmology fields. Therefore, we reviewed the alternative applications, challenges and limitations, research direction in the future of FS laser, so that provide a reference and revelations for the peers.

  14. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  15. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  16. Third-harmonic generation of a laser-driven quantum dot with impurity

    NASA Astrophysics Data System (ADS)

    Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2018-06-01

    The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.

  17. Experimental and theoretical basis of agricultural plant immunostimulation with regard to pathogenic fungi by magnetic field and He-Ne laser irradiation

    NASA Astrophysics Data System (ADS)

    Belski, Alexey I.; Chivanov, Vadym D.

    1996-09-01

    Spring barley, winter wheat and maize seeds were subjected to the action of He-Ne laser irradiation having a low intensity in the visible region of the spectrum (628-640 nm) in conjunction with magnetic fields. The following results were obtained: laser irradiation with magnetic fields induced activation of the natural plant defence/immune systems gave the harvest crop level increased to about 50- 300 percent; a correlation was established between the rate of the fungal pathogens growth and the stimulation of plant immunity after the seeds had been treated with laser irradiation and magnetic field.

  18. [INVITED] Coupling of polarisation of high frequency electric field and electronic heat conduction in laser created plasma

    NASA Astrophysics Data System (ADS)

    Gamaly, Eugene G.; Rode, Andrei V.

    2016-08-01

    Powerful short laser pulse focused on a surface swiftly transforms the solid into the thermally and electrically inhomogeneous conductive plasma with the large temperature and dielectric permeability gradients across the focal spot. The laser-affected spot becomes thermally inhomogeneous with where temperature has maximum in the centre and gradually decreasing to the boundaries of the spot in accord to the spatial intensity distribution of the Gaussian pulse. Here we study the influence of laser polarisation on ionization and absorption of laser radiation in the focal spot. In this paper we would like to discuss new effect in thermally inhomogeneous plasma under the action of imposed high frequency electric field. We demonstrate that high-frequency (HF) electric field is coupled with the temperature gradient generating the additional contribution to the conventional electronic heat flow. The additional heat flow strongly depends on the polarisation of the external field. It appears that effect has maximum when the imposed electric field is collinear to the thermal gradient directed along the radius of a circular focal spot. Therefore, the linear polarised field converts the circular laser affected spot into an oval with the larger oval's axis parallel to the field direction. We compare the developed theory to the available experiments, discuss the results and future directions.

  19. Transient changes in electric fields induced by interaction of ultraintense laser pulses with insulator and metal foils: Sustainable fields spanning several millimeters

    NASA Astrophysics Data System (ADS)

    Inoue, Shunsuke; Tokita, Shigeki; Hashida, Masaki; Sakabe, Shuji

    2015-04-01

    The temporal evolutions of electromagnetic fields generated by the interaction between ultraintense lasers (1.3 ×1018 and 8.2 ×1018W /c m2 ) and solid targets at a distance of several millimeters from the laser-irradiated region have been investigated by electron deflectometry. For three types of foil targets (insulating foil, conductive foil, and insulating foil onto which a metal disk was deposited), transient changes in the fields were observed. We found that the direction, strength, and temporal evolution of the generated fields differ markedly for these three types of targets. The results provide an insight for studying the emission dynamics of laser-accelerated fast electrons.

  20. Characterization and Application of Isolated Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Wei, Hui

    Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in atoms, molecules, clusters and solids, since the time scale of electronic motion is on the order of attoseconds. The generation, characterization and applications of IAPs has become one of the fast frontiers of laser experiments. This dissertation focuses on several aspects of attosecond physics. First, we study the driving wavelength scaling of the yield of high-order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable scaling law especially for the short quantum orbit is of great importance to attoseond pulse generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR) lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by omega oscillation filtering (PROOF) methods for IAP characterization by simulating the experimental data by theoretical calculation. This calibration is critical but has not been carefully carried out before. We also present an improved method, namely the swPROOF which is more universal and robust than the original PROOF method. Third, we investigate the controversial topic of photoionization time delay. We find the limitation of the FROG-CRAB method which has been used to extract the photoionization time delay between the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of the XUV pulse, which may lead to discrepancies between experiment and theory. A new fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally, IAPs are used to probe the dynamic of electron correlation in helium atom by means of attosecond transient absorption spectroscopy. The agreement between the measurement and our analytical model verifies the observation of time-dependent build up of the 2s2p Fano resonance.

  1. Laser Technology in Aerodynamic Measurements.

    DTIC Science & Technology

    holography; Laser beam probing for aerodynamic flow field analysis; The laser in high speed photography; Laser metrology; Application of duel scatter laser doppler velocimeters for wind tunnel measurements.

  2. Unified Time and Frequency Picture of Ultrafast Atomic Excitation in Strong Laser Fields

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Patchkovskii, S.; Ivanov, M.; Eichmann, U.

    2017-01-01

    Excitation and ionization in strong laser fields lies at the heart of such diverse research directions as high-harmonic generation and spectroscopy, laser-induced diffraction imaging, emission of femtosecond electron bunches from nanotips, self-guiding, filamentation and mirrorless lasing during propagation of light in atmospheres. While extensive quantum mechanical and semiclassical calculations on strong-field ionization are well backed by sophisticated experiments, the existing scattered theoretical work aiming at a full quantitative understanding of strong-field excitation lacks experimental confirmation. Here we present experiments on strong-field excitation in both the tunneling and multiphoton regimes and their rigorous interpretation by time dependent Schrödinger equation calculations, which finally consolidates the seemingly opposing strong-field regimes with their complementary pictures. Most strikingly, we observe an unprecedented enhancement of excitation yields, which opens new possibilities in ultrafast strong-field control of Rydberg wave packet excitation and laser intensity characterization.

  3. The controllable electron-heating by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Luan, S. X.; Wang, J. W.; Yu, W.; Gong, J. X.; Cao, L. H.; Zheng, C. Y.; He, X. T.

    2017-06-01

    The two-stage electron acceleration/heating model (Wu et al 2017 Nucl. Fusion 57 016007 and Wu et al 2016 Phys. Plasmas 23 123116) is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the electron-heating efficiency is a controllable value by the external magnetic fields. Detailed studies indicate that for a right-hand circularly polarized laser, the electron heating efficiency depends on both strength and directions of external magnetic fields. The electron-heating is dramatically enhanced when the external magnetic field is of B\\equiv {ω }c/{ω }0> 1. When magnetic field is of negative direction, i.e. B< 0, it trends to suppress the electron heating. The underlining physics—the dependences of electron-heating on both the strength and directions of the external magnetic fields—is uncovered. With -∞ < B< 1, the electron-heating is explained by the synergetic effects by longitudinal charge separation electric field and the reflected ‘envelop-modulated’ CP laser. It is indicated that the ‘modulation depth’ of reflected CP laser is significantly determined by the external magnetic fields, which will in turn influence the efficiency of the electron-heating. While with B> 1, a laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions, which is responsible for the dramatical enhancement of electron-heating.

  4. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  5. Electron Dynamics in Nanostructures in Strong Laser Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  6. Object-oriented wavefront correction in an asymmetric amplifying high-power laser system

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Yuan, Qiang; Wang, Deen; Zhang, Xin; Dai, Wanjun; Hu, Dongxia; Xue, Qiao; Zhang, Xiaolu; Zhao, Junpu; Zeng, Fa; Wang, Shenzhen; Zhou, Wei; Zhu, Qihua; Zheng, Wanguo

    2018-05-01

    An object-oriented wavefront control method is proposed aiming for excellent near-field homogenization and far-field distribution in an asymmetric amplifying high-power laser system. By averaging the residual errors of the propagating beam, smaller pinholes could be employed on the spatial filters to improve the beam quality. With this wavefront correction system, the laser performance of the main amplifier system in the Shen Guang-III laser facility has been improved. The residual wavefront aberration at the position of each pinhole is below 2 µm (peak-to-valley). For each pinhole, 95% of the total laser energy is enclosed within a circle whose diameter is no more than six times the diffraction limit. At the output of the main laser system, the near-field modulation and contrast are 1.29% and 7.5%, respectively, and 95% of the 1ω (1053 nm) beam energy is contained within a 39.8 µrad circle (6.81 times the diffraction limit) under a laser fluence of 5.8 J cm-2. The measured 1ω focal spot size and near-field contrast are better than the design values of the Shen Guang-III laser facility.

  7. Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets

    NASA Astrophysics Data System (ADS)

    Paudel, Y.; Renard-Le Galloudec, N.; Nicolai, Ph.; d'Humieres, E.; Ya. Faenov, A.; Kantsyrev, V. L.; Safronova, A. S.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Sentoku, Y.

    2012-12-01

    Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time that the protons/ions accelerated from the front surface of the target, in a direction opposite to the laser propagation direction, are turned around and pulled back to the rear surface, in the laser propagation direction. This proton/ion beam is able to create a self-radiograph of the target and glass stalk holding the target itself recorded through the radiochromic film stack. This unique result indicates strong long-living (ns time scale) magnetic fields present in the laser-produced plasma, which are extremely important in energy transport during the intense laser irradiation. The magnetic field from laser main pulse expands rapidly in the preformed plasma to rotate the laser produced protons. Radiation hydrodynamic simulations and ray tracing found that the magnetic field created by the amplified spontaneous emission prepulse is not sufficient to explain the particle trajectories, but the additional field created by the main pulse interaction estimated from particle-in-cell simulation is able to change the particle trajectories.

  8. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser Doppler visualisation of the velocity field by excluding the influence of multiparticle scattering

    NASA Astrophysics Data System (ADS)

    Dubnishchev, Yu N.; Chugui, Yu V.; Kompenhans, J.

    2009-10-01

    The method of laser Doppler visualisation and measurement of the velocity field in gas and liquid flows by suppressing the influence of multiparticle scattering is discussed. The cross section of the flow under study is illuminated by a laser beam transformed by an anamorphic optical system into a laser sheet. The effect of multiparticle scattering is eliminated by obtaining differential combinations of frequency-demodulated images of the laser sheet in different regions of the angular spectrum of scattered light.

  9. Laser light and magnetic field stimulation effect on biochemical, enzymes activities and chlorophyll contents in soybean seeds and seedlings during early growth stages.

    PubMed

    Asghar, Tehseen; Jamil, Yasir; Iqbal, Munawar; Zia-Ul-Haq; Abbas, Mazhar

    2016-12-01

    Laser and magnetic field bio-stimulation attracted the keen interest of scientific community in view of their potential to enhance seed germination, seedling growth, physiological, biochemical and yield attributes of plants, cereal crops and vegetables. Present study was conducted to appraise the laser and magnetic field pre-sowing seed treatment effects on soybean sugar, protein, nitrogen, hydrogen peroxide (H 2 O 2 ) ascorbic acid (AsA), proline, phenolic and malondialdehyde (MDA) along with chlorophyll contents (Chl "a" "b" and total chlorophyll contents). Specific activities of enzymes such as protease (PRT), amylase (AMY), catalyst (CAT), superoxide dismutase (SOD) and peroxides (POD) were also assayed. The specific activity of enzymes (during germination and early growth), biochemical and chlorophyll contents were enhanced significantly under the effect of both laser and magnetic pre-sowing treatments. Magnetic field treatment effect was slightly higher than laser treatment except PRT, AMY and ascorbic acid contents. However, both treatments (laser and magnetic field) effects were significantly higher versus control (un-treated seeds). Results revealed that laser and magnetic field pre-sowing seed treatments have potential to enhance soybean biological moieties, chlorophyll contents and metabolically important enzymes (degrade stored food and scavenge reactive oxygen species). Future study should be focused on growth characteristics at later stages and yield attributes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantum dynamics of charge state in silicon field evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp

    2016-08-15

    The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less

  11. Strong-field physics with mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Pogorelsky, I. V.

    2002-04-01

    Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 μm wavelength CO2 laser reaches a 100 times higher ponderomotive potential than the 1 μm wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO2 lasers are in operation. Further more, proposals for the 100 TW, 100 fs CO2 lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO2 lasers, sub-petawatt projects, and prospective applications in strong-field science. .

  12. STRONG FIELD PHYSICS WITH MID INFRARED LASERS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    POGORELSKY,I.V.

    2001-08-27

    Mid-infrared gas laser technology promises to become a unique tool for research in strong-field relativistic physics. The degree to which physics is relativistic is determined by a ponderomotive potential. At a given intensity, a 10 {micro}m wavelength CO{sub 2} laser reaches a 100 times higher ponderomotive potential than the 1 {micro}m wavelength solid state lasers. Thus, we can expect a proportional increase in the throughput of such processes as laser acceleration, x-ray production, etc. These arguments have been confirmed in proof-of-principle Thomson scattering and laser acceleration experiments conducted at BNL and UCLA where the first terawatt-class CO{sub 2} lasers aremore » in operation. Further more, proposals for the 100 TW, 100 fs CO{sub 2} lasers based on frequency-chirped pulse amplification have been conceived. Such lasers can produce physical effects equivalent to a hypothetical multi-petawatt solid state laser. Ultra-fast mid-infrared lasers will open new routes to the next generation electron and ion accelerators, ultra-bright monochromatic femtosecond x-ray and gamma sources, allow to attempt the study of Hawking-Unruh radiation, and explore relativistic aspects of laser-matter interactions. We review the present status and experiments with terawatt-class CO{sub 2} lasers, sub-petawatt projects, and prospective applications in strong-field science.« less

  13. Algal Biomass Analysis by Laser-Based Analytical Techniques—A Review

    PubMed Central

    Pořízka, Pavel; Prochazková, Petra; Prochazka, David; Sládková, Lucia; Novotný, Jan; Petrilak, Michal; Brada, Michal; Samek, Ota; Pilát, Zdeněk; Zemánek, Pavel; Adam, Vojtěch; Kizek, René; Novotný, Karel; Kaiser, Jozef

    2014-01-01

    Algal biomass that is represented mainly by commercially grown algal strains has recently found many potential applications in various fields of interest. Its utilization has been found advantageous in the fields of bioremediation, biofuel production and the food industry. This paper reviews recent developments in the analysis of algal biomass with the main focus on the Laser-Induced Breakdown Spectroscopy, Raman spectroscopy, and partly Laser-Ablation Inductively Coupled Plasma techniques. The advantages of the selected laser-based analytical techniques are revealed and their fields of use are discussed in detail. PMID:25251409

  14. LASER FLUORESCENCE EEM PROBE FOR CONE PENETROMETER POLLUTION ANALYSIS

    EPA Science Inventory

    A fiber optic LIF (Laser induced fluorescence) EEM (Excitation emission matrix) instrument for CPT deployment has been successfully developed and field tested. The system employs a Nd: YAG laser and Raman shifter as a rugged field portable excitation source. This excitation sou...

  15. Laser Resurfacing: Full Field and Fractional.

    PubMed

    Pozner, Jason N; DiBernardo, Barry E

    2016-07-01

    Laser resurfacing is a very popular procedure worldwide. Full field and fractional lasers are used in many aesthetic practices. There have been significant advances in laser resurfacing in the past few years, which make patient treatments more efficacious and with less downtime. Erbium and carbon dioxide and ablative, nonablative, and hybrid fractional lasers are all extremely effective and popular tools that have a place in plastic surgery and dermatology offices. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comment on 'Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Shihua; Wu Fengmin

    2006-12-15

    K. P. Singh [Phys. Rev. E 69, 056410 (2004)] put forward a scheme of vacuum laser acceleration in a static magnetic field. We point out that one of the assumptions used in their model does not stand on a solid physical ground and that it seriously influences electrons to obtain net energy gains from the laser field.

  17. Evanescent fields of laser written waveguides

    NASA Astrophysics Data System (ADS)

    Jukić, Dario; Pohl, Thomas; Götte, Jörg B.

    2015-03-01

    We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.

  18. Megagauss magnetic fields in ultra-intense laser generated dense plasmas

    NASA Astrophysics Data System (ADS)

    Shaikh, Moniruzzaman; Lad, Amit D.; Jana, Kamalesh; Sarkar, Deep; Dey, Indranuj; Kumar, G. Ravindra

    2017-01-01

    Table-top terawatt lasers can create relativistic light intensities and launch megaampere electron pulses in a solid. These pulses induce megagauss (MG) magnetic pulses, which in turn strongly affect the hot electron transport via electromagnetic instabilities. It is therefore crucial to characterize the MG magnetic fields in great detail. Here, we present measurements of the spatio-temporal evolution of MG magnetic fields produced by a high contrast (picosecond intensity contrast 10-9) laser in a dense plasma on a solid target. The MG magnetic field is measured using the magneto-optic Cotton-Mouton effect, with a time delayed second harmonic (400 nm) probe. The magnetic pulse created by the high contrast laser in a glass target peaks much faster and has a more rapid fall than that induced by a low contrast (10-6) laser.

  19. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 10 16 W/cm 2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, themore » experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  20. Electron Raman scattering in a double quantum well tuned by an external nonresonant intense laser field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, A.; Mora-Ramos, M. E.; Morales, A. L.; Duque, C. M.; Restrepo, R. L.; Ungan, F.; Martínez-Orozco, J. C.; Kasapoglu, E.; Duque, C. A.

    2017-02-01

    In this work we shall present a study of inelastic light scattering involving inter-subband electron transitions in coupled GaAs-(Ga,Al)As quantum wells. Calculations include the electron related Raman differential cross section and Raman gain. The effects of an external nonresonant intense laser field are used in order to tune these output properties. The confined electron states will be described by means of a diagonalization procedure within the effective mass and parabolic band approximations. It is shown that the application of the intense laser field can produce values of the intersubband electron Raman gain above 400 cm-1. The system proposed here is an alternative choice for the development of AlxGa1-xAs semiconductor laser diodes that can be tuned via an external nonresonant intense laser field.

  1. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  2. A low-cost, tunable laser lock without laser frequency modulation

    NASA Astrophysics Data System (ADS)

    Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.

    2015-05-01

    Many experiments in optical physics require laser frequency stabilization. This can be achieved by locking to an atomic reference using saturated absorption spectroscopy. Often, the laser frequency is modulated and phase sensitive detection used. This method, while well-proven and robust, relies on expensive components, can introduce an undesirable frequency modulation into the laser, and is not easily frequency tuned. Here, we report a simple locking scheme similar to those implemented previously. We modulate the atomic resonances in a saturated absorption setup with an AC magnetic field created by a single solenoid. The same coil applies a DC field that allows tuning of the lock point. We use an auto-balanced detector to make our scheme more robust against laser power fluctuations and stray magnetic fields. The coil, its driver, and the detector are home-built with simple, cheap components. Our technique is low-cost, simple to setup, tunable, introduces no laser frequency modulation, and only requires one laser. We gratefully acknowledge the financial support of the NSF through Grant # PHY-1206040.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, Takeshi; Ikeda, Shunsuke

    A laser ion source is a promising candidate as an ion source for heavy ion inertial fusion (HIF), where a pulsed ultra-intense and low-charged heavy ion beam is required. It is a key development for a laser ion source to transport laser-produced plasma with a magnetic field to achieve a high current beam. The effect of a tapered magnetic field on laser produced plasma is demonstrated by comparing the results with a straight solenoid magnet. The magnetic field of interest is a wider aperture on a target side and narrower aperture on an extraction side. Furthermore, based on the experimentallymore » obtained results, the performance of a scaled laser ion source for HIF was estimated.« less

  4. Dual mode scanner-tracker

    NASA Astrophysics Data System (ADS)

    Mongeon, R. J.

    1984-11-01

    The beam of a laser radar is moved over the field of view by means of a pair of scanner/trackers arranged in cascade along the laser beam. One of the scanner/trackers operates at high speed, with high resolution and a wide field and is located in the demagnified portion of the laser beam. The two scanner/trackers complement each other to achieve high speed, high resolution scanning as well as tracking of moving targets. A beam steering telescope for an airborne laser radar which incorporates the novel dual mode scanner/tracker is also shown. The other scanner/tracker operates at low speed with low resolution and a wide field and is located in the magnified portion of the laser beam.

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Pattern of the expansion of laser plasmas of various elements in a magnetic field

    NASA Astrophysics Data System (ADS)

    Bryunetkin, B. A.; Begimkulov, U. Sh; Dyakin, V. M.; Koldashov, G. A.; Repin, A. Yu; Stupitskiĭ, E. L.; Faenov, A. Ya

    1993-02-01

    The expansion of laser plasmas of the elements Be, Al, Cu, and Pb in a static transverse magnetic field B<=2.7 T has been studied experimentally. The plasma was produced by a ruby laser at a power density no greater than 1012 W/cm2. For all the elements, a characteristic "two-petal" expansion pattern is observed. At a certain distance from the target, the two petals coalesce into a narrow jet. The radius of curvature of the petals and the position of the coalescence point depend on the field strength and the atomic weight of the element.

  6. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  7. Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K

    NASA Technical Reports Server (NTRS)

    Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.

    2008-01-01

    Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

  8. Plasmon-shaped polarization gating for high-order-harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Feng; He, Lixin; Chen, Jiawei; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2017-12-01

    We present a plasmon-shaped polarization gating for high-order-harmonic generation by using a linearly polarized laser field to illuminate two orthogonal bow-tie nanostructures. The results show that when these two bow-tie nanostructures have nonidentical geometrical sizes, the transverse and longitudinal components of the incident laser field will experience different phase responses, thus leading to a time-dependent ellipticity of laser field. For the polarizing angle of incident laser field in the range from 45∘ to 60∘, the dominant harmonic emission is gated within the few optical cycles where the laser ellipticity is below 0.3. Then sub-50-as isolated attosecond pulses (IAPs) can be generated. Such a plasmon-shaped polarization gating is robust for IAP generation against the variations of the carrier-envelope phases of the laser pulse. Moreover, by changing the geometrical size of one of the bow-tie nanostructures, the electron dynamics can be effectively controlled and the more efficient supercontinuum as well as IAP can be generated.

  9. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  10. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  11. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  12. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  13. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  14. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  15. Investigation of laser polarized xenon magnetic resonance

    NASA Technical Reports Server (NTRS)

    Walsworth, Ronald L.

    1998-01-01

    Ground-based investigations of a new biomedical diagnostic technology: nuclear magnetic resonance of laser polarized noble gas are addressed. The specific research tasks discussed are: (1) Development of a large-scale noble gas polarization system; (2) biomedical investigations using laser polarized noble gas in conventional (high magnetic field) NMR systems; and (3) the development and application of a low magnetic field system for laser polarized noble gas NMR.

  16. Interaction of laser beams with magnetized substance in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.

    2018-03-01

    Laser-driven magneto-inertial fusion assumed plasma and magnetic flux compression by quasisymmetric laser-driven implosion of magnetized target. We develop a 2D radiation magnetohydrodynamic code and a formulation for the one-fluid two-temperature equations for simulating compressible non-equilibrium magnetized target plasma. Laser system with pulse radiation with 10 ns duration is considered for numerical experiments. A numerical study of a scheme of magnetized laser-driven implosion in the external magnetic field is carried out.

  17. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    NASA Astrophysics Data System (ADS)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  18. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    NASA Astrophysics Data System (ADS)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  19. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.

    PubMed

    Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5  T at laser intensities ~10 21  W cm -2 ) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

  20. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE PAGES

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.; ...

    2018-01-18

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  1. Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsutsumi, M.; Sentoku, Y.; Korzhimanov, A.

    High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the targetmore » surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~10 5 T at laser intensities ~10 21 W cm –2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rist, J.; Miteva, T.; Gaire, B.

    In this paper we present a comprehensive and detailed study of Interatomic Coulombic Decay (ICD) occurring after irradiating argon dimers with XUV-synchrotron radiation. A manifold of different decay channels is observed and the corresponding initial and final states are assigned. Additionally, the effect of nuclear dynamics on the ICD electron spectrum is examined for one specific decay channel. The internuclear distance-dependent width Γ(R) of the decay is obtained from the measured kinetic energy release distribution of the ions employing a classical nuclear dynamics model.

  3. Water Loss from Young Planets

    NASA Astrophysics Data System (ADS)

    Tian, Feng; Güdel, Manuel; Johnstone, Colin P.; Lammer, Helmut; Luger, Rodrigo; Odert, Petra

    2018-04-01

    Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.

  4. Frequency Comb Spectroscopy - From IR to XUV

    DTIC Science & Technology

    2015-06-09

    time resolution of 25 s. Publications: [1] A. Cingöz, Yost, D. C. , Allison, T. K. , Ruehl, A. , Fermann, M. E. , Hartl , I. , and Ye, J...J. , Eikema, K. S. E. , Fermann, M. E. , Hartl , I. , and Ye, J. , “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high...D. C. , Allison, T. K. , Ruehl, A. , Fermann, M. E. , Hartl , I. , and Ye, J. , “Direct frequency comb spectroscopy in the extreme ultraviolet”, Nature

  5. XUV Photometer System (XPS): New Dark-Count Corrections Model and Improved Data Products

    NASA Astrophysics Data System (ADS)

    Elliott, J. P.; Vanier, B.; Woods, T. N.

    2017-12-01

    We present newly updated dark-count calibrations for the SORCE XUV Photometer System (XPS) and the resultant improved data products released in March of 2017. The SORCE mission has provided a 14-year solar spectral irradiance record, and the XPS contributes to this record in the 0.1 nm to 40 nm range. The SORCE spacecraft has been operating in what is known as Day-Only Operations (DO-Op) mode since February of 2014. In this mode it is not possible to collect data, including dark-counts, when the spacecraft is in eclipse as we did prior to DO-Op. Instead, we take advantage of the position of the XPS filter-wheel, and collect these data when the wheel position is in a "dark" position. Further, in this mode dark data are not always available for all observations, requiring an extrapolation in order to calibrate data at these times. To extrapolate, we model this with a piece-wise 2D nonlinear least squares surface fit in the time and temperature dimensions. Our model allows us to calibrate XPS data into the DO-Op phase of the mission by extrapolating along this surface. The XPS version 11 data product release benefits from this new calibration. We present comparisons of the previous and current calibration methods in addition to planned future upgrades of our data products.

  6. 2012 MULTIPHOTON PROCESSES GRC, JUNE 3-8, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Barry

    2012-03-08

    The sessions will focus on:  Attosecond science;  Strong-field processes in molecules and solids;  Generation of harmonics and attosecond pulses;  Free-electron laser experiments and theory;  Ultrafast imaging;  Applications of very high intensity lasers;  Propagation of intense laser fields.

  7. Laser Accelerator

    DTIC Science & Technology

    2014-09-01

    hollow metal sphere. Voltages of over 10 MV can be reached if used with an insulating gas. Corona discharge limits all electrostatic accelerators to...laser field. Lasers can have strong electric fields with frequencies high enough to avoid corona formation and break- down. The key is to couple the...leading to a spark discharge in the accelerator and thus a breakdown of the electrostatic field [6], [7]. Figure 1.1: Cockroft-Walton cascade generator

  8. 3D atom microscopy in the presence of Doppler shift

    NASA Astrophysics Data System (ADS)

    Rahmatullah; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2018-03-01

    The interaction of hot atoms with laser fields produces a Doppler shift, which can severely affect the precise spatial measurement of an atom. We suggest an experimentally realizable scheme to address this issue in the three-dimensional position measurement of a single atom in vapors of rubidium atoms. A three-level Λ-type atom-field configuration is considered where a moving atom interacts with three orthogonal standing-wave laser fields and spatial information of the atom in 3D space is obtained via an upper-level population using a weak probe laser field. The atom moves with velocity v along the probe laser field, and due to the Doppler broadening the precision of the spatial information deteriorates significantly. It is found that via a microwave field, precision in the position measurement of a single hot rubidium atom can be attained, overcoming the limitation posed by the Doppler shift.

  9. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    PubMed

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  10. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Characteristics of the scattering of neutral atoms by two counterpropagating pulsed optical fields

    NASA Astrophysics Data System (ADS)

    Grinchuk, V. A.; Grishina, I. A.; Kuzin, E. F.; Nagaeva, M. L.; Ryabenko, G. A.; Yakovlev, V. P.

    1994-04-01

    The scattering of neutral sodium atoms by a strong field of two counterpropagating (incident on and reflected from a mirror) short laser pulses was used in an experimental investigation of a stimulated radiation pressure. The reasons for the anomalous frequency structure in the scattering of atoms were identified. The oscillatory nature of the dependence of the scattering on the detuning from resonance was found to be significant in strong laser radiation fields. The oscillation period depended on the distance between the reflecting mirror and the atomic beam.

  11. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Ji, Hantao; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ∼1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ∼3 × 10{sup 16 }W/cm{sup 2}. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ∼40–50 T magnetic fields at the center of the coil ∼3–4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim tomore » develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  12. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  13. Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: Field profile optimization

    NASA Astrophysics Data System (ADS)

    Safari, Samaneh; Niknam, Ali Reza; Jahangiri, Fazel; Jazi, Bahram

    2018-04-01

    The nonlinear interaction of Hermite-Gaussian and Laguerre-Gaussian (LG) laser beams with a collisional inhomogeneous plasma is studied, and the amplitude of the emitted terahertz (THz) electric field is evaluated. The effects of laser beams and plasma parameters, including the beams width, LG modes, the plasma collision frequency, and the amplitude of density ripple on the evolution of THz electric field amplitude, are examined. It is found that the shape of the generated THz radiation pattern can be tuned by the laser parameters. In addition, the optimum values of the effective parameters for achieving the maximum THz electric field amplitude are proposed. It is shown that a significant enhancement up to 4.5% can be obtained in our scheme, which is much greater than the maximum efficiency obtained for laser beams with the same profiles.

  14. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  15. Electron acceleration by laser produced wake field: Pulse shape effect

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  16. Gamma-ray generation in the interaction of two tightly focused laser pulses with a low-density target composed of electrons

    NASA Astrophysics Data System (ADS)

    Jirka, M.; Klimo, O.; Weber, S.; Bulanov, Sergei V.; Esirkepov, Timur Zh.; Korn, G.

    2015-05-01

    With the continuing development of laser systems, new important and so-far unexplored fields of research related to interaction of ultra-intense laser beams with matter are opening. At intensities of the order of 1022 W=cm2, electrons may be accelerated in the electromagnetic field of the laser wave and achieve such a high energy that they can enter the regime affected by the radiation reaction. Due to the non-linear Thomson and Compton scattering the accelerated electrons emit photons. The interaction of emitted photons with the laser field may result in effective generation of electron-positron pairs by means of the Breit-Wheeler process. In this work we study the influence of laser pulse polarization on gamma-ray generation during interaction of two colliding and tightly focused laser pulses with a low density target composed of electrons. This paper focuses on evolution of electron trajectories and key parameters χe (probability of photon emission) and χγ(probability of pair generation) in the laser field. These interactions are studied using 2D PIC simulations. It is shown that in the case of circularly polarized and tightly focused laser beams, electrons are not following circular trajectories at the magnetic node of the standing wave established in the focus, which leads to lowering the radiation emission efficiency.

  17. On the Longitudinal Component of Paraxial Fields

    ERIC Educational Resources Information Center

    Carnicer, Artur; Juvells, Ignasi; Maluenda, David; Martinez-Herrero, Rosario; Mejias, Pedro M.

    2012-01-01

    The analysis of paraxial Gaussian beams features in most undergraduate courses in laser physics, advanced optics and photonics. These beams provide a simple model of the field generated in the resonant cavities of lasers, thus constituting a basic element for understanding laser theory. Usually, uniformly polarized beams are considered in the…

  18. Direct acceleration in intense laser fields used for bunch amplification of relativistic electrons

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Schnürer, M.

    2017-05-01

    A method, how electrons can be directly accelerated in intense laser fields, is investigated experimentally and discussed with numerical and analytical simulation. When ultrathin foil targets are exposed with peak laser intensities of 1x1020 W/cm2 , slow electrons ( keV kinetic energy), that are emitted from the ultrathin foil target along laser propagation direction, are post-accelerated in the transmitted laser field. They received significant higher kinetic energies (MeV), when this interaction was limited in duration and an enhanced number of fast electrons were detected. The decoupling of the light field from the electron interaction we realized with a second separator foil, blocking the transmitted laser light at a particular distance and allowing the fast electrons to pass. Variation of the propagation distance in the laser field results in different energy gains for the electrons. This finding is explained with electron acceleration in the electromagnetic field of a light pulse and confirms a concept being discussed for some time. In the experiments the effect manifests in an electron number amplification of about 3 times around a peak at 1 MeV electron energy. Measurements confirmed that the overall number in the whole bunch is enhanced to about 109 electrons covering kinetic energies between 0.5 to 5 MeV. The method holds promise for ultrashort electron bunch generation at MeV energies for direct application, e.g. ultra-fast electron diffraction, or for injection into post accelerator stages for different purposes.

  19. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.

    PubMed

    Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao

    2017-04-12

    Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.

  20. Enhanced THz radiation generation by photo-mixing of tophat lasers in rippled density plasma with a planar magnetostatic wiggler and s-parameter

    NASA Astrophysics Data System (ADS)

    Abedi-Varaki, M.

    2018-02-01

    In this paper, the effects of planar magnetostatic wiggler and s-parameter on the terahertz (THz) radiation generation through rippled plasma have been investigated. Efficient THz radiation generation by photo-mixing of tophat lasers for rippled density plasma in the presence of the wiggler field has been presented. Fundamental equations for the analysis of the non-linear current density and THz radiation generation by wiggler magnetostatic field have been derived. It is shown that for the higher order of the tophat lasers, the values of THz amplitude are greater. In fact, the higher order of the tophat lasers has a sharp gradient in the intensity of lasers, which leads to a stronger nonlinear ponderomotive force and, consequently, a stronger current density. In addition, it is seen that by increasing s-parameter, the normalized transverse profile becomes more focused near the axis of y. Furthermore, it is observed that the normalized laser efficiency has a decreasing trend with increasing normalized THz frequency for different values of the wiggler field. Also, it is shown that by employing a greater order of the tophat lasers and a stronger wiggler field, the efficiency of order of 30% can be achieved. Moreover, it is found that we can control focus and intensity of THz radiation emitted in rippled plasma by choosing the appropriate order of the tophat lasers and tuning of the wiggler field.

  1. Study of laser cooling in deep optical lattice: two-level quantum model

    NASA Astrophysics Data System (ADS)

    Prudnikov, O. N.; Il'enkov, R. Ya.; Taichenachev, A. V.; Yudin, V. I.; Rasel, E. M.

    2018-01-01

    We study a possibility of laser cooling of 24Mg atoms in deep optical lattice formed by intense off-resonant laser field in a presence of cooling field resonant to narrow (3s3s) 1 S 0 → (3s3p)3 P 1 (λ = 457 nm) optical transition. For description of laser cooling with taking into account quantum recoil effects we consider two quantum models. The first one is based on direct numerical solution of quantum kinetic equation for atom density matrix and the second one is simplified model based on decomposition of atom density matrix over vibration states in the lattice wells. We search cooling field intensity and detuning for minimum cooling energy and fast laser cooling.

  2. A laser beam quality definition based on induced temperature rise.

    PubMed

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  3. Near-field analysis of metallic DFB lasers at telecom wavelengths.

    PubMed

    Greusard, L; Costantini, D; Bousseksou, A; Decobert, J; Lelarge, F; Duan, G-H; De Wilde, Y; Colombelli, R

    2013-05-06

    We image in near-field the transverse modes of semiconductor distributed feedback (DFB) lasers operating at λ ≈ 1.3 μm and employing metallic gratings. The active region is based on tensile-strained InGaAlAs quantum wells emitting transverse magnetic polarized light and is coupled via an extremely thin cladding to a nano-patterned gold grating integrated on the device surface. Single mode emission is achieved, which tunes with the grating periodicity. The near-field measurements confirm laser operation on the fundamental transverse mode. Furthermore--together with a laser threshold reduction observed in the DFB lasers--it suggests that the patterning of the top metal contact can be a strategy to reduce the high plasmonic losses in this kind of systems.

  4. On a quantum particle in laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Frolov, E. N.; Dabagov, S. B.

    2018-02-01

    In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.

  5. Dynamic-Stark-effect-induced coherent mixture of virtual paths in laser-dressed helium: energetic electron impact excitation

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham; Makhoute, Abdelkader; Dubois, Alain

    2017-06-01

    We theoretically investigate quantum virtual path interference caused by the dynamic Stark effect in bound-bound electronic transitions. The effect is studied in an intermediate resonant region and in connection with the energetic electron impact excitation of a helium atom embedded in a weak low-frequency laser field. The process under investigation is dealt with via a Born-Floquet approach. Numerical calculations show a resonant feature in laser-assisted cross sections. The latter is found to be sensitive to the intensity of the laser field dressing. We show that this feature is a signature of quantum beats which result from the coherent mixture of different quantum virtual pathways, and that excitation may follow in order to end up with a common final channel. This mixture arises from the dynamic Stark effect, which produces a set of avoided crossings in laser-dressed states. The effect allows one to coherently control quantum virtual path interference by varying the intensity of the laser field dressing. Our findings suggest that the combination of an energetic electron and a weak laser field is a useful tool for the coherent control of nonadiabatic transitions in an intermediate resonant region.

  6. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    DTIC Science & Technology

    2016-04-15

    overarching goal of our program was to develop a novel laser and ion spectroscopy system and to use it for the study of strong-field light-matter...are accelerated into the ion TOF by means of a Fig. I.1 Schematic of ion spectroscopy with two color (EUV + mid-IR) laser fields, as constructed at...Abstract The overarching goal of our program was to develop a novel laser and ion spectroscopy system and to use it for the study of strong-field light

  7. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu, Shoujun [Berkeley, CA; Lowery, Thomas L [Belmont, MA; Budker, Dmitry [El Cerrito, CA; Yashchuk, Valeriy V [Richmond, CA; Wemmer, David E [Berkeley, CA; Pines, Alexander [Berkeley, CA

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  8. High-order-harmonic generation from Rydberg atoms driven by plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Tikman, Y.; Yavuz, I.; Ciappina, M. F.; Chacón, A.; Altun, Z.; Lewenstein, M.

    2016-02-01

    We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a highly excited n th Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional model to investigate systematically the phenomena. We then employ a more realistic situation, in which the interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold, thus without deterioration of the geometry and properties of the metallic nanostructure.

  9. Electron-hydrogen collisions in a laser field. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.H.; Flannery, M.R.

    1991-12-31

    The Floquet treatment has already been successfully employed (Chu, Potvliege and Shakeshaft) in calculations of laser-induced multiphoton ionizations, where it provides dressed states for an atom in a laser field. The (perturbative) dressing of target states can have important consequences in laser-assisted scattering was illustrated by Byron and Joachain. These dressed states are useful, not only for laser-induced phenomena, but also as a collisional basis set for laser-assisted collisions. In this role they are in fact very appealing, since the Floquet treatment naturally lends itself to a time-independent analysis, and hence are compatible with present field-free scattering theories. Despite themore » apparent applicability of this approach, work along these lines has only just recently appeared (Sharma and Mohan, Smith and Flannery, Burke et al). Byron and Joachain have illustrated that perturbative dressing of the target states can have important consequences in laser-assisted scattering. Floquet dressing however provides a more complete description (Smith and Flannery).« less

  10. In situ TEM near-field optical probing of nanoscale silicon crystallization.

    PubMed

    Xiang, Bin; Hwang, David J; In, Jung Bin; Ryu, Sang-Gil; Yoo, Jae-Hyuck; Dubon, Oscar; Minor, Andrew M; Grigoropoulos, Costas P

    2012-05-09

    Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.

  11. Free-Free Transitions of e-H System Inside a Dense Plasma Irradiated by a Laser Field at Very Low Incident Electron Energies

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, C.

    2012-01-01

    The free-free transition is studied for an electron-hydrogen in the ground state at low incident energies in the presence of an external homogenous, monochromatic, and linearly polarized laser-field inside a hot dense plasma.The effect of plasma screening is considered in the Debye-Huckel approximation. The calculations are performed in the soft photon limit, assuming that the plasma frequency is much higher than the laser frequency. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing the Volkov solutions in both the initial and final channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the electron exchange. The laser-assisted differential and total cross sections are calculated for single-photon absorption /emission and no photon exchange in the soft photon limit, the laser intensity being much less than the atomic field intensity. The calculations have been carried out for various values of Debye parameter, ranging from 0.005 to 0.12. A strong suppression is noted in the laser-assisted cross sections as compared to the field-free situation. A significant difference is noted for the singlet and triplet cross sections. The suppression is much more in the triplet states.

  12. Laser-To-Fibre Couplers In Optical Recording Applications

    NASA Astrophysics Data System (ADS)

    Ophey, W. G.; Benschop, J. P. H.

    1988-02-01

    In optical recording, the use of single-mode fibres can considerably increase the coupling efficiency of the laser light into the light path. Important here is the performance of the laser-to-fibre coupler used. A mathematical treatment of different kinds of laser-to-fibre couplers is presented using scalar diffraction theory in order to obtain the field incident on the front end of the fibre. In this case the coupling efficiency of a laser-to-fibre coupler, using an aberrated light source (astigmatism) with an asymmetric far-field pattern, can easily be calculated.

  13. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology

    PubMed Central

    Omi, Tokuya; Numano, Kayoko

    2014-01-01

    Background: Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. Rationale: The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. Conclusions: The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future. PMID:24771971

  14. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology.

    PubMed

    Omi, Tokuya; Numano, Kayoko

    2014-03-27

    Tremendous advances have been made in the medical application of the laser in the past few decades. Many diseases in the dermatological field are now indications for laser treatment that qualify for reimbursement by many national health insurance systems. Among laser types, the carbon dioxide (CO2) laser remains an important system for the dermatologist. The lasers used in photosurgery have wavelengths that differ according to their intended use and are of various types, but the CO2 laser is one of the most widely used lasers in the dermatology field. With its wavelength in the mid-infrared at 10,600 nm, CO2 laser energy is wellabsorbed in water. As skin contains a very high water percentage, this makes the CO2 laser ideal for precise, safe ablation with good hemostasis. In addition to its efficacy in ablating benign raised lesions, the CO2 laser has been reported to be effective in the field of esthetic dermatology in the revision of acne scars as well as in photorejuvenation. With the addition of fractionation of the beam of energy into myriad microbeams, the fractional CO2 laser has offered a bridge between the frankly full ablative indications and the nonablative skin rejuvenation systems of the 2000s in the rejuvenation of photoaged skin on and off the face. The CO2 laser remains an efficient, precise and safe system for the dermatologist. Technological advances in CO2 laser construction have meant smaller spot sizes and greater precision for laser surgery, and more flexibility in tip sizes and protocols for fractional CO2 laser treatment. The range of dermatological applications of the CO2 laser is expected to continue to increase in the future.

  15. Shaping propagation invariant laser beams

    NASA Astrophysics Data System (ADS)

    Soskind, Michael; Soskind, Rose; Soskind, Yakov

    2015-11-01

    Propagation-invariant structured laser beams possess several unique properties and play an important role in various photonics applications. The majority of propagation invariant beams are produced in the form of laser modes emanating from stable laser cavities. Therefore, their spatial structure is limited by the intracavity mode formation. We show that several types of anamorphic optical systems (AOSs) can be effectively employed to shape laser beams into a variety of propagation invariant structured fields with different shapes and phase distributions. We present a propagation matrix approach for designing AOSs and defining mode-matching conditions required for preserving propagation invariance of the output shaped fields. The propagation matrix approach was selected, as it provides a more straightforward approach in designing AOSs for shaping propagation-invariant laser beams than the alternative technique based on the Gouy phase evolution, especially in the case of multielement AOSs. Several practical configurations of optical systems that are suitable for shaping input laser beams into a diverse variety of structured propagation invariant laser beams are also presented. The laser beam shaping approach was applied by modeling propagation characteristics of several input laser beam types, including Hermite-Gaussian, Laguerre-Gaussian, and Ince-Gaussian structured field distributions. The influence of the Ince-Gaussian beam semifocal separation parameter and the azimuthal orientation between the input laser beams and the AOSs onto the resulting shape of the propagation invariant laser beams is presented as well.

  16. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  17. Laboratory simulation of energetic flows of magnetospheric planetary plasma

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Posukh, V. G.; Melekhov, A. V.; Boyarintsev, E. L.; Zakharov, Yu P.; Prokopov, P. A.; Ponomarenko, A. G.

    2017-01-01

    Dynamic interaction of super-sonic counter-streaming plasmas moving in dipole magnetic dipole is studied in laboratory experiment. First, a quasi-stationary flow is produced by plasma gun which forms a magnetosphere around the magnetic dipole. Second, explosive plasma expanding from inner dipole region outward is launch by laser beams focused at the surface of the dipole cover. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. Probe measurements showed that far from the initially formed magnetosphere laser plasma carries within itself a magnetic field of the same direction but order of magnitude larger in value than the vacuum dipole field at considered distances. Because no compression of magnetic field at the front of laser plasma was observed, the realized interaction is different from previous experiments and theoretical models of laser plasma expansion into uniform magnetized background. It was deduced based on the obtained data that laser plasma while expanding through inner magnetosphere picks up a magnetized shell formed by background plasma and carries it for large distances beyond previously existing magnetosphere.

  18. A simple laser locking system based on a field-programmable gate array.

    PubMed

    Jørgensen, N B; Birkmose, D; Trelborg, K; Wacker, L; Winter, N; Hilliard, A J; Bason, M G; Arlt, J J

    2016-07-01

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

  19. A simple laser locking system based on a field-programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, N. B.; Birkmose, D.; Trelborg, K.

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The lockingmore » system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.« less

  20. Distilling two-center-interference information during tunneling of aligned molecules with orthogonally polarized two-color laser fields

    NASA Astrophysics Data System (ADS)

    Gao, F.; Chen, Y. J.; Xin, G. G.; Liu, J.; Fu, L. B.

    2017-12-01

    When electrons tunnel through a barrier formed by the strong laser field and the two-center potential of a diatomic molecule, a double-slit-like interference can occur. However, this interference effect can not be probed directly right now, as it is strongly coupled with other dynamical processes during tunneling. Here, we show numerically and analytically that orthogonally polarized two-color (OTC) laser fields are capable of resolving the interference effect in tunneling, while leaving clear footprints of this effect in photoelectron momentum distributions. Moreover, this effect can be manipulated by changing the relative field strength of OTC fields.

  1. High-order harmonic generation driven by inhomogeneous plasmonics fields spatially bounded: influence on the cut-off law

    NASA Astrophysics Data System (ADS)

    Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.

    2018-03-01

    We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.

  2. Beam shaping in high-power laser systems with using refractive beam shapers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2012-06-01

    Beam Shaping of the spatial (transverse) profile of laser beams is highly desirable by building optical systems of high-power lasers as well in various applications with these lasers. Pumping of the crystals of Ti:Sapphire lasers by the laser radiation with uniform (flattop) intensity profile improves performance of these ultrashort pulse high-power lasers in terms of achievable efficiency, peak-power and stability, output beam profile. Specifications of the solid-state lasers built according to MOPA configuration can be also improved when radiation of the master oscillator is homogenized and then is amplified by the power amplifier. Features of building these high power lasers require that a beam shaping solution should be capable to work with single mode and multimode beams, provide flattop and super-Gauss intensity distributions, the consistency and divergence of a beam after the intensity re-distribution should be conserved and low absorption provided. These specific conditions are perfectly fulfilled by the refractive field mapping beam shapers due to their unique features: almost lossless intensity profile transformation, low output divergence, high transmittance and flatness of output beam profile, extended depth of field, adaptability to real intensity profiles of TEM00 and multimode laser sources. Combining of the refractive field mapping beam shapers with other optical components, like beam-expanders, relay imaging lenses, anamorphic optics makes it possible to generate the laser spots of necessary shape, size and intensity distribution. There are plenty of applications of high-power lasers where beam shaping bring benefits: irradiating photocathode of Free Electron Lasers (FEL), material ablation, micromachining, annealing in display making techniques, cladding, heat treating and others. This paper will describe some design basics of refractive beam shapers of the field mapping type, with emphasis on the features important for building and applications of high-power laser sources. There will be presented results of applying the refractive beam shapers in real installations.

  3. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  4. Analysis and studies on the threats to the composite material from laser

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Yao, Weixing; Wang, Liwei; Wang, Guoliang; Xie, Fang

    2015-10-01

    It is always an attracting research field for the interaction between laser and matters. The interaction between laser and matters is used not only in the natural science, but also in practical application, for example, laser machine, laser weapon, laser ablations and so on. In this paper, we will give the model for the damage effect of the composite materials caused by the superpower laser weapons. Mechanism of the laser damage on the composite materials have been researched and modeled by the numerical analysis methods. Through the designed model, we analyzed the temperature and the stress fields of the composite material after the superpower lasers attacks with different power densities. By analyzing these modeling results, we achieved some conclusions on the threats to the composite materials from the superpower lasers. From the results, we have obtained the Irradiated threshold from the Laser. This paper will provide the theoretical foundations for the anti-laser design of the composite materials.

  5. Creation of electron-positron plasma with superstrong laser field

    NASA Astrophysics Data System (ADS)

    Narozhny, N. B.; Fedotov, A. M.

    2014-05-01

    We present a short review of recent progress in studying QED effects within the interaction of ultra-relativistic laser pulses with vacuum and e - e + plasma. Current development in laser technologies promises very rapid growth of laser intensities in the near future. Two exawatt class facilities (ELI and XCELS, Russia) in Europe are already in the planning stage. Realization of these projects will make available a laser intensity of ˜ 1026 W/cm2 or even higher. Therefore, discussion of nonlinear optical effects in vacuum are becoming compelling for experimentalists and are currently gaining much attention. We show that, in spite of the fact that the expected field strength is still essentially less than E S = m 2 c 3/ eℏ = 1.32 · 1016 V/cm, the nonlinear vacuum effects will be accessible for observation at the ELI and XCELS facilities. The most promissory effect for observation is pair creation by a laser pulse in vacuum. It is shown, that at intensities ˜ 5 · 1025 W/cm2, creation even of a single pair is accompanied by the development of an avalanche QED cascade. There exists a distinctive feature of the laser-induced cascades, as compared with the air showers arising due primarily to cosmic rays entering the atmosphere. In our case the laser field plays not only the role of a target (similar to a nucleus in the case of air showers) but is also responsible for the acceleration of slow particles. It is shown that the effect of pair creation imposes a natural limit for the attainable laser intensity and, apparently, the field strength E ˜ E S is not accessible for a pair-creating electromagnetic field at all.

  6. Daytime Water Detection Based on Sky Reflections

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  7. Study of transport phenomena in laser-driven, non- equilibrium plasmas in the presence of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.

    2017-10-01

    We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with Hydra, a radiation-magnetohydrodyanmics code, showed increasing electron plasma temperature with increasing B-field strength - the result of thermal transport inhibition perpendicular to the B-field. The influence of this thermal transport inhibition on the experimental observables as a function of external field strength and target density will be shown and compared with simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by LDRD project 17-ERD-027.

  8. Comparison of the Effects of Manual Acupuncture, Laser Acupuncture, and Electromagnetic Field Stimulation at Acupuncture Point BL15 on Heart Rate Variability.

    PubMed

    Lee, Na Ra; Kim, Soo Byeong; Heo, Hyun; Lee, Yong Heum

    2016-10-01

    The aim of this study was to compare the influences of manual acupuncture, laser acupuncture, and electromagnetic field stimulation on the autonomic nervous system. We monitored the heart rate variability before and after stimulation to check the influence on the autonomic nervous system. The heart rate variabilities at low frequency (LF; 0.04-0.15 Hz) and high frequency (HF; 0.15-0.4 Hz) were analyzed to acquire LF/HF ratio. Xinshu (BL15) was selected as the stimulation point. Methods included manual acupuncture with a 1-cm depth and laser acupuncture at a wavelength of 660 nm and output power of 50 mW. An electromagnetic field of 2 Hz and 460 gauss (46 mT) was chosen. The LF and the LF/HF ratio were found to be lower in the manual acupuncture and the electromagnetic field groups, but to be higher in the laser acupuncture group. The HF was found to be lower in the laser acupuncture group, but higher in the manual acupuncture and the electromagnetic field groups. In conclusion, we found that manual acupuncture and electromagnetic field stimulation at BL15 activated the parasympathetic nervous system, whereas laser acupuncture at BL15 activated the sympathetic nervous system. Copyright © 2016. Published by Elsevier B.V.

  9. Laser Applications in Orthodontics

    PubMed Central

    Heidari, Somayeh; Torkan, Sepideh

    2013-01-01

    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  10. A novel "gain chip" concept for high-power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Mingzhong; Wang, Zhenguo; Yan, Xiongwei; Jiang, Xinying; Zheng, Jiangang; Cui, Xudong; Zhang, Xiaomin

    2017-05-01

    High-power lasers, including high-peak power lasers (HPPL) and high-average power lasers (HAPL), attract much interest for enormous variety of applications in inertial fusion energy (IFE), materials processing, defense, spectroscopy, and high-field physics research. To meet the requirements of high efficiency and quality, a "gain chip" concept is proposed to properly design the pumping, cooling and lasing fields. The gain chip mainly consists of the laser diode arrays, lens duct, rectangle wave guide and slab-shaped gain media. For the pumping field, the pump light will be compressed and homogenized by the lens duct to high irradiance with total internal reflection, and further coupled into the gain media through its two edge faces. For the cooling field, the coolant travels along the flow channel created by the adjacent slabs in the other two edge-face direction, and cool the lateral faces of the gain media. For the lasing field, the laser beam travels through the lateral faces and experiences minimum thermal wavefront distortions. Thereby, these three fields are in orthogonality offering more spatial freedom to handle them during the construction of the lasers. Transverse gradient doping profiles for HPPL and HAPL have been employed to achieve uniform gain distributions (UGD) within the gain media, respectively. This UGD will improve the management for both amplified spontaneous emission (ASE) and thermal behavior. Since each "gain chip" has its own pump source, power scaling can be easily achieved by placing identical "gain chips" along the laser beam axis without disturbing the gain and thermal distributions. To detail our concept, a 1-kJ pulsed amplifier is designed and optical-to-optical efficiency up to 40% has been obtained. We believe that with proper coolant (gas or liquid) and gain media (Yb:YAG, Nd:glass or Nd:YAG) our "gain chip" concept might provide a general configuration for high-power lasers with high efficiency and quality.

  11. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  12. Magnetic Field Generation by a Laser-Driven Capacitor-Coil Target

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica; Gao, Lan

    2016-10-01

    Magnetic fields generated by currents flowing through a capacitor-coil target were characterized using ultrafast proton radiography at the OMEGA EP Laser System. Two 1.25 kJ, 1-ns laser pulses propagated through the laser entrance holes in one foil of the capacitor, and were focused to the other with an intensity of 3 ×1016 W/cm2. The intense laser-solid interaction induced a high voltage between the foils and generated a large current in the connecting coil. The proton data show tens of kA current producing tens of Tesla magnetic fields at the center of the coil. Theoretical lumped circuit models based on the experimental parameters were developed to simulate the target behavior and calculate the time evolution of the current in the coil. The models take into account important elements such as plasmas conditions for building up the voltage, the capacitance between the gap, the resistive heating and skin effect to gain insights on the field generation mechanism. Applications to other coil geometries and magnetic field configurations will also be described.

  13. Laser ion source with solenoid field

    NASA Astrophysics Data System (ADS)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  14. Temporally resolved proton radiography of rapidly varying electric and magnetic fields in laser-driven capacitor coil targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.

    2017-02-01

    Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.

  15. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling

    DOE PAGES

    Montgomery, D. S.; Albright, B. J.; Barnak, D. H.; ...

    2015-01-13

    Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with B z ≤ 7.5-T. We found that an external field B z = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. As a result, the experiments weremore » modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh Deb, S.; Sinha, C.; Chattopadhyay, A.

    The modification in the dynamics of the electron-impact ionization process of a Li{sup +} ion due to an intense linearly polarized monochromatic laser field (n{gamma}e,2e) is studied theoretically using coplanar geometry. Significant laser modifications are noted due to multiphoton effects both in the shape and magnitude of the triple-differential cross sections (TDCSs) with respect to the field-free (FF) situation. The net effect of the laser field is to suppress the FF cross sections in the zeroth-order approximation [Coulomb-Volkov (CV)] of the ejected electron wave function, while in the first order [modified Coulomb-Volkov (MCV)], the TDCSs are found to be enhancedmore » or suppressed depending on the kinematics of the process. The strong FF recoil dominance for the (e,2e) process of an ionic target at low incident energy is destroyed in the presence of the laser field. The FF binary-to-recoil ratio changes remarkably in the presence of the laser field, particularly at low incident energies. The difference between the multiphoton CV and the FF results indicates that for the ionic target, the Kroll-Watson sum rule does not hold well at the present energy range in contrast to the neutral atom (He) case. The TDCSs are found to be quite sensitive with respect to the initial phase of the laser field, particularly at higher incident energies. A significant qualitative difference is noted in the multiphoton ejected energy distribution (double-differential cross sections) between the CV and the MCV models. Variation of the TDCSs with respect to the laser phase is also studied.« less

  17. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    NASA Astrophysics Data System (ADS)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  18. Integrated all-optical infrared switchable plasmonic quantum cascade laser.

    PubMed

    Kohoutek, John; Bonakdar, Alireza; Gelfand, Ryan; Dey, Dibyendu; Nia, Iman Hassani; Fathipour, Vala; Memis, Omer Gokalp; Mohseni, Hooman

    2012-05-09

    We report a type of infrared switchable plasmonic quantum cascade laser, in which far field light in the midwave infrared (MWIR, 6.1 μm) is modulated by a near field interaction of light in the telecommunications wavelength (1.55 μm). To achieve this all-optical switch, we used cross-polarized bowtie antennas and a centrally located germanium nanoslab. The bowtie antenna squeezes the short wavelength light into the gap region, where the germanium is placed. The perturbation of refractive index of the germanium due to the free carrier absorption produced by short wavelength light changes the optical response of the antenna and the entire laser intensity at 6.1 μm significantly. This device shows a viable method to modulate the far field of a laser through a near field interaction.

  19. Simulations of far-field optical beam quality influenced by the thermal distortion of the secondary mirror for high-power laser system

    NASA Astrophysics Data System (ADS)

    Guo, Ruhai; Chen, Ning; Zhuang, Xinyu; Wang, Bing

    2015-02-01

    In order to research the influence on the beam quality due to thermal deformation of the secondary mirror in the high power laser system, the theoretical simulation study is performed. Firstly, three typical laser power 10kW, 50kW and 100kW with the wavelength 1.064μm are selected to analyze thermal deformation of mirror through the finite element analyze of thermodynamics instantaneous method. Then the wavefront aberration can be calculated by ray-tracing theory. Finally, focus spot radius,beam quality (BQ) of far-filed beam can be calculated and comparably analyzed by Fresnel diffraction integration. The simulation results show that with the increasing laser power, the optical aberration of beam director gets worse, the far-field optical beam quality decrease, which makes the laser focus spot broadening and the peak optical intensity of center decreasing dramatically. Comparing the clamping ring and the three-point clamping, the former is better than the latter because the former only induces the rotation symmetric deformation and the latter introduces additional astigmatism. The far-field optical beam quality can be improved partly by simply adjusting the distance between the main mirror and the secondary mirror. But the far-field power density is still the one tenth as that without the heat distortion of secondary mirror. These results can also provide the reference to the thermal aberration analyze for high power laser system and can be applied to the field of laser communication system and laser weapon etc.

  20. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    NASA Astrophysics Data System (ADS)

    Favre, M.; Ruiz, H. M.; Bendixsen, L. S. Caballero; Reyes, S.; Veloso, F.; Wyndham, E.; Bhuyan, H.

    2017-08-01

    We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μ m, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

Top