Sample records for xvi infrared stars

  1. A TEMPORAL MAP IN GEOSTATIONARY ORBIT: THE COVER ETCHING ON THE EchoStar XVI ARTIFACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisberg, Joel M., E-mail: jweisber@carleton.edu; Paglen, Trevor, E-mail: trevor@paglen.com

    Geostationary satellites are unique among orbital spacecraft in that they experience no appreciable atmospheric drag. After concluding their respective missions, geostationary spacecraft remain in orbit virtually in perpetuity. As such, they represent some of human civilization's longest lasting artifacts. With this in mind, the EchoStar XVI satellite, to be launched in fall 2012, will play host to a time capsule intended as a message for the deep future. Inspired in part by the Pioneer Plaque and Voyager Golden Records, the EchoStar XVI Artifact is a pair of gold-plated aluminum jackets housing a small silicon disk containing 100 photographs. The Covermore » Etching, the subject of this paper, is etched onto one of the two jackets. It is a temporal map consisting of a star chart, pulsar timings, and other information describing the epoch from which EchoStar XVI came. The pulsar sample consists of 13 rapidly rotating objects, 5 of which are especially stable, having spin periods <10 ms and extremely small spin-down rates. In this paper, we discuss our approach to the time map etched onto the cover and the scientific data shown on it, and we speculate on the uses that future scientists may have for its data. The other portions of the EchoStar XVI Artifact will be discussed elsewhere.« less

  2. Comparing M31 and Milky Way satellites: The extended star formation histories of Andromeda II and Andromeda XVI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, Daniel R.; Skillman, Evan D.; McQuinn, Kristen B. W.

    We present the first comparison between the lifetime star formation histories (SFHs) of M31 and Milky Way (MW) satellites. Using the Advanced Camera for Surveys on board the Hubble Space Telescope, we obtained deep optical imaging of Andromeda II (And II; M{sub V} = –12.0; log(M {sub *}/M {sub ☉}) ∼ 6.7) and Andromeda XVI (And XVI; M{sub V} = –7.5; log(M {sub *}/M {sub ☉}) ∼ 4.9) yielding color-magnitude diagrams that extend at least 1 mag below the oldest main-sequence turnoff, and are similar in quality to those available for the MW companions. And II and And XVI showmore » strikingly similar SFHs: both formed 50%-70% of their total stellar mass between 12.5 and 5 Gyr ago (z ∼ 5-0.5) and both were abruptly quenched ∼5 Gyr ago (z ∼ 0.5). The predominance of intermediate age populations in And XVI makes it qualitatively different from faint companions of the MW and clearly not a pre-reionization fossil. Neither And II nor And XVI appears to have a clear analog among MW companions, and the degree of similarity in the SFHs of And II and And XVI is not seen among comparably faint-luminous pairs of MW satellites. These findings provide hints that satellite galaxy evolution may vary substantially among hosts of similar stellar mass. Although comparably deep observations of more M31 satellites are needed to further explore this hypothesis, our results underline the need for caution when interpreting satellite galaxies of an individual system in a broader cosmological context.« less

  3. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by eithermore » reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.« less

  4. A COMPREHENSIVE CENSUS OF NEARBY INFRARED EXCESS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotten, Tara H.; Song, Inseok, E-mail: tara@physast.uga.edu, E-mail: song@physast.uga.edu

    The conclusion of the Wide-Field Infrared Survey Explorer ( WISE ) mission presents an opportune time to summarize the history of using excess emission in the infrared as a tracer of circumstellar material and exploit all available data for future missions such as the James Webb Space Telescope . We have compiled a catalog of infrared excess stars from peer-reviewed articles and perform an extensive search for new infrared excess stars by cross-correlating the Tycho-2 and all-sky WISE (AllWISE) catalogs. We define a significance of excess in four spectral type divisions and select stars showing greater than either 3 σmore » or 5 σ significance of excess in the mid- and far-infrared. Through procedures including spectral energy distribution fitting and various image analyses, each potential excess source was rigorously vetted to eliminate false positives. The infrared excess stars from the literature and the new stars found through the Tycho-2 and AllWISE cross-correlation produced nearly 500 “Prime” infrared excess stars, of which 74 are new sources of excess, and >1200 are “Reserved” stars, of which 950 are new sources of excess. The main catalog of infrared excess stars are nearby, bright, and either demonstrate excess in more than one passband or have infrared spectroscopy confirming the infrared excess. This study identifies stars that display a spectral energy distribution suggestive of a secondary or post-protoplanetary generation of dust, and they are ideal targets for future optical and infrared imaging observations. The final catalogs of stars summarize the past work using infrared excess to detect dust disks, and with the most extensive compilation of infrared excess stars (∼1750) to date, we investigate various relationships among stellar and disk parameters.« less

  5. The Infrared Spectral Region of Stars

    NASA Astrophysics Data System (ADS)

    Jaschek, Carlos; Andrillat, Y.

    1991-09-01

    1. Stars in the infrared: results from IRAS H. J. G. L. M. Lamers and L. B. F. M. Watera; 2. What is expected from ISO J. P. Baluteau; 3. New infrared instrumentation S. Bensammar; 4. High resolution atomic spectroscopy in the infrared and its application to astrophysics S. Johansson; 5. Spectroscopy of early -type stars C. Jaschek; 6. Spectroscopy of late type stars U. F. Jøgensen; 7. Dust formation and evolution in circumstellar media J. P. J. Lafon; 8. The infrared solar spectrum N. Grevesse; 9. Symbiotic and related objects M. Hack; 10. Stellar photometry and spectrophotometry in the infrared R. F. Wing; 11. Stellar variability in the infrared A. Evans; 12. Circumstellar material in main sequence H. H. Aamann.

  6. Infrared Observations of FS CMa Stars

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Russell, R. W.; Lynch, D. K.; Grady, C. A.; Hammel, H. B.; Beerman, L. C.; Day, A. N.; Huelsman, D.; Rudy, R. J.; Brafford, S. M.; Halbedel, E. M.

    2009-01-01

    A subset of non-supergiant B[e] stars has recently been recognized as forming a fairly unique class of objects with very strong emission lines, infrared excesses, and locations not associated with star formation. The exact evolutionary state of these stars, named for the prototype FS CMa, is uncertain, and they have often been classified as isolated Herbig AeBe stars. We present infrared observations of two of these stars, HD 45677 (FS CMa), HD 50138 (MWC 158), and the candidate FS CMa star HD 190073 (V1295 Aql) that span over a decade in time. All three exhibit an emission band at 10 microns due to amorphous silicates, confirming that much (if not all) of the infrared excess is due to dust. HD 50138 is found to exhibit 20% variability between 3-13 microns that resembles that found in pre-main sequence systems (HD 163296 and HD 31648). HD 45677, despite large changes at visual wavelengths, has remained relatively stable in the infrared. To date, no significant changes have been observed in HD 190073. This work is supported in part by NASA Origins of Solar Systems grant NAG5-9475, NASA Astrophysics Data Program contract NNH05CD30C, and the Independent Research and Development program at The Aerospace Corporation.

  7. Infrared observations of metal-deficient stars

    NASA Astrophysics Data System (ADS)

    Arribas, S.; Martinez Roger, C.

    1987-09-01

    Infrared magnitudes in the J, H, K and L bands for 64 metal-deficient stars spanning a wide range in effective temperature, luminosity and metal content are presented. An accuracy of 0.02 magnitude is obtained for the JHK bands and 0.03 for the L filter. Infrared-infrared and optical-infrared colour-colour diagrams are discussed and compared with the mean intrinsic tracks for Population I stars. It is concluded that infrared colours are not notably dependent on metallicity, with some exceptions for the reddest giants, which can be also interpreted by residual effects in the transformation equations between different systems. The authors also discuss briefly the near infrared photometric system of the Observatorio del Teide, from the Instituto de Astrofisica de Canarias.

  8. Tracing Star Formation in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Wu, Ronin

    One of the most important missions of the 20th century in astrophysics is the launch of the Spitzer Space Telescope in August 2003. Since then, with its unprecedented sensitivity and spatial resolution in the infrared, this earth--trailing satellite has significantly improved our understanding of star--formation history and the composition of the interstellar medium from an extragalactic perspective. In this thesis, I present the statistical studies of several star--formation tracers and properties of star--forming galaxies using the photometric and spectroscopic data taken by the Spitzer Space Telescope. The first approach I take in understanding the mid-infrared star--forming tracers is studying the aromatic features at 7.7mum. Aromatic features are the dominant emission lines in the mid-infrared spectra of star--forming galaxies, but these features are much weaker in galaxies of low--luminosity. I combine the infrared and the optical imaging data to demonstrate this trend. Comparison with optical spectroscopic data shows that the strength of the 7.7mum aromatic feature is closely related to the stellar mass of galaxies. Our analysis shows that both oxygen abundance and radiation hardness affect the strength of this feature. However, the generally low oxygen abundance in low--luminosity galaxy interstellar environments, which prevents the synthesis of aromatic molecules, appears to have the stronger effect. The second approach I take is the analysis of the Spitzer SDSS Statistical Spectroscopic Survey (S5), a multi-wavelength study of ˜300 homogeneously selected star--forming galaxies at redshifts 0.05 < z < 0.1. The S5 galaxies span the color range of the Sloan Digital Sky Survey and span two orders of magnitudes in stellar mass. The key goal of the survey is to provide a deeper understanding of the properties of warm interstellar medium by comparing the optical and mid-infrared spectra of galaxies that are structurally similar. The S5 survey contains a

  9. A New Photometric Study of Ap and Am Stars in the Infrared

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-05-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer (WISE), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1-3 μm region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free-free emissions. It is also shown that in the 3-12 μm region, the majority of Ap stars and Am stars have very similar behavior, I.e., in the W1-W2 (3.4-4.6 μm) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W2-W3 (4.6-12 μm) region they have no or little infrared excess. In addition, in the 12-22 μm region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free-free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  10. A New Photometric Study of Ap and Am Stars in the Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P. S.; Liu, J. Y.; Shan, H. G., E-mail: chenps@ynao.ac.cn

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e.,more » in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.« less

  11. Infrared observations of RS CVn stars

    NASA Technical Reports Server (NTRS)

    Berriman, G.; De Campli, W. M.; Werner, M. W.; Hatchett, S. P.

    1983-01-01

    The paper presents infrared photometry of the RS CVn binary stars AR Lac (1.2-10 microns) and MM Her (1.2-3.5 microns) as they egressed from their primary and secondary eclipses; of the eclipsing systems RS CVn and Z Her at maximum light (1.2-10 microns) and of the non-eclipsing systems UX Ari and HR 1099 (1.2-10 microns). An analysis of these and published V data based on flux ratio diagrams (linear analogues of color-color diagrams) shows that G and K stars supply the infrared light of these systems. In AR Lac, the combined light of a G5-K0 subgiant and either a late F dwarf or an early F subgiant can account for the observed visual and infrared light curves. None of these systems shows infrared emission from circumstellar matter. This result is simply understood: dust grains would not be expected to form in the physical conditions surrounding the subgiant, and the corona and chromosphere (whose properties have been deduced from spectroscopic X-ray observations) should not produce appreciable infrared emission.

  12. VizieR Online Data Catalog: Infrared properties of barium stars (Chen+, 2001)

    NASA Astrophysics Data System (ADS)

    Chen, P. S.

    2001-04-01

    We present the results of a systematic survey for IRAS associations of barium stars. A total of 155 associations were detected, and IRAS low-resolution spectra exist for 50 barium stars. We use different color-color diagrams from the visual band to 60μm, relations between these colors and the spectral type, the barium intensity, and the IRAS low-resolution spectra to discuss physical properties of barium stars in the infrared. It is confirmed that most barium stars have infrared excesses in the near infrared. However, a new result of this work is that most barium stars have no excesses in the far infrared. This fact may imply that infrared excesses of barium stars are mainly due to the re-emission of energy lost from the Bond-Neff depression. It is also shown that the spectral type and the barium intensity of barium stars are not correlated with infrared colors, but may be correlated with V-K color. (1 data file).

  13. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  14. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Frogel, Jay (Technical Monitor); Smith, Howard A.

    2004-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our empha- sis has been on star formation in external, bright IR galaxies, but other areas of research have in- cluded young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spec- troscopic data sets. Three papers are included:The Infrared Lines of OH: Diagnostics of Molecular Cloud Conditions in Infrared Bright Galaxies; The Far-Infrared Spectrum of Arp 220; andThe Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068.

  15. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2002-01-01

    This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.

  16. Infrared Detection of Very Low Mass Stars.

    NASA Astrophysics Data System (ADS)

    Probst, Ronald George

    We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute

  17. Infrared observations of OB star formation in NGC 6334

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Gatley, I.

    1982-01-01

    Infrared photometry and maps from 2 to 100 microns are presented for three of the principal far infrared sources in NGC 6334. Each region is powered by two or more very young stars. The distribution of dust and ionized gas is probably strongly affected by the presence of the embedded stars; one of the sources is a blister H II region, another has a bipolar structure, and the third exhibits asymmetric temperature structure. The presence of protostellar objects throughout the region suggests that star formation has occurred nearly simultaneously in the whole molecular cloud rather than having been triggered sequentially from within.

  18. AKARI's infrared view on nearby stars. Using AKARI infrared camera all-sky survey, 2MASS, and Hipparcos catalogs

    NASA Astrophysics Data System (ADS)

    Ita, Y.; Matsuura, M.; Ishihara, D.; Oyabu, S.; Takita, S.; Kataza, H.; Yamamura, I.; Matsunaga, N.; Tanabé, T.; Nakada, Y.; Fujiwara, H.; Wada, T.; Onaka, T.; Matsuhara, H.

    2010-05-01

    Context. The AKARI, a Japanese infrared space mission, has performed an All-Sky Survey in six infrared-bands from 9 to 180 μm with higher spatial resolutions and better sensitivities than IRAS. Aims: We investigate the mid-infrared (9 and 18 μm) point source catalog (PSC) obtained with the infrared camera (IRC) onboard AKARI, in order to understand the infrared nature of the known objects and to identify previously unknown objects. Methods: Color-color diagrams and a color-magnitude diagram were plotted with the AKARI-IRC PSC and other available all-sky survey catalogs. We combined the Hipparcos astrometric catalog and the 2MASS all-sky survey catalog with the AKARI-IRC PSC. We furthermore searched literature and SIMBAD astronomical database for object types, spectral types, and luminosity classes. We identified the locations of representative stars and objects on the color-magnitude and color-color diagram schemes. The properties of unclassified sources can be inferred from their locations on these diagrams. Results: We found that the (B-V) vs. (V-S9W) color-color diagram is useful for identifying the stars with infrared excess emerged from circumstellar envelopes or disks. Be stars with infrared excess are separated well from other types of stars in this diagram. Whereas (J-L18W) vs. (S9W-L18W) diagram is a powerful tool for classifying several object types. Carbon-rich asymptotic giant branch (AGB) stars and OH/IR stars form distinct sequences in this color-color diagram. Young stellar objects (YSOs), pre-main sequence (PMS) stars, post-AGB stars, and planetary nebulae (PNe) have the largest mid-infrared color excess and can be identified in the infrared catalog. Finally, we plot the L18W vs. (S9W-L18W) color-magnitude diagram, using the AKARI data together with Hipparcos parallaxes. This diagram can be used to identify low-mass YSOs and AGB stars. We found that this diagram is comparable to the [24] vs. ([8.0]-[24]) diagram of Large Magellanic Cloud sources

  19. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  20. Star Formation as Seen by the Infrared Array Camera on Spitzer

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Allen, L.; Megeath, T.; Barmby, P.; Calvet, N.; Fazio, G.; Hartmann, L.; Myers, P.; Marengo, M.; Gutermuth, R.

    2004-01-01

    The Infrared Array Camera (IRAC) onboard Spitzer has imaged regions of star formation (SF) in its four IR bands with spatial resolutions of approximately 2"/pixel. IRAC is sensitive enough to detect very faint, embedded young stars at levels of tens of Jy, and IRAC photometry can categorize their stages of development: from young protostars with infalling envelopes (Class 0/1) to stars whose infrared excesses derive from accreting circumstellar disks (Class 11) to evolved stars dominated by photospheric emission. The IRAC images also clearly reveal and help diagnose associated regions of shocked and/or PDR emission in the clouds; we find existing models provide a good start at explaining the continuum of the SF regions IRAC observes.

  1. Near-infrared spectroscopy of candidate red supergiant stars in clusters

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Zhu, Qingfeng; Ivanov, Valentin D.; Figer, Donald F.; Davies, Ben; Menten, Karl M.; Kudritzki, Rolf P.; Chen, C.-H. Rosie

    2014-11-01

    Context. Clear identifications of Galactic young stellar clusters farther than a few kpc from the Sun are rare, despite the large number of candidate clusters. Aims: We aim to improve the selection of candidate clusters rich in massive stars with a multiwavelength analysis of photometric Galactic data that range from optical to mid-infrared wavelengths. Methods: We present a photometric and spectroscopic analysis of five candidate stellar clusters, which were selected as overdensities with bright stars (Ks< 7 mag) in GLIMPSE and 2MASS images. Results: A total of 48 infrared spectra were obtained. The combination of photometry and spectroscopy yielded six new red supergiant stars with masses from 10 M⊙ to 15 M⊙. Two red supergiants are located at Galactic coordinates (l,b) = (16.°7, -0.°63) and at a distance of about ~3.9 kpc; four other red supergiants are members of a cluster at Galactic coordinates (l,b) = (49.°3, + 0.°72) and at a distance of ~7.0 kpc. Conclusions: Spectroscopic analysis of the brightest stars of detected overdensities and studies of interstellar extinction along their line of sights are fundamental to distinguish regions of low extinction from actual stellar clusters. The census of young star clusters containing red supergiants is incomplete; in the existing all-sky near-infrared surveys, they can be identified as overdensities of bright stars with infrared color-magnitude diagrams characterized by gaps. Based on observations collected at the European Southern Observatory (ESO Programme 60.A-9700(E), and 089.D-0876), and on observations collected at the UKIRT telescope (programme ID H243NS).MM is currently employed by the MPIfR. Part of this work was performed at RIT (2009), at ESA (2010), and at the MPIfR.Tables 3, 4, and 6 are available in electronic form at http://www.aanda.org

  2. Probing Dust Formation Around Evolved Stars with Near-Infrared Interferometry

    NASA Astrophysics Data System (ADS)

    Sargent, B.; Srinivasan, S.; Riebel, D.; Meixner, M.

    2014-09-01

    Near-infrared interferometry holds great promise for advancing our understanding of the formation of dust around evolved stars. For example, the Magdalena Ridge Observatory Interferometer (MROI), which will be an optical/near-infrared interferometer with down to submilliarcsecond resolution, includes studying stellar mass loss as being of interest to its Key Science Mission. With facilities like MROI, many questions relating to the formation of dust around evolved stars may be probed. How close to an evolved star such as an asymptotic giant branch (AGB) or red supergiant (RSG) star does a dust grain form? Over what temperature ranges will such dust form? How does dust formation temperature and distance from star change as a function of the dust composition (carbonaceous versus oxygen-rich)? What are the ranges of evolved star dust shell geometries, and does dust shell geometry for AGB and RSG stars correlate with dust composition, similar to the correlation seen for planetary nebula outflows? At what point does the AGB star become a post-AGB star, when dust formation ends and the dust shell detaches? Currently we are conducting studies of evolved star mass loss in the Large Magellanic Cloud using photometry from the Surveying the Agents of a Galaxy's Evolution (SAGE; PI: M. Meixner) Spitzer Space Telescope Legacy program. We model this mass loss using the radiative transfer program 2Dust to create our Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS). For simplicity, we assume spherical symmetry, but 2Dust does have the capability to model axisymmetric, non-spherically-symmetric dust shell geometries. 2Dust can also generate images of models at specified wavelengths. We discuss possible connections of our GRAMS modeling using 2Dust of SAGE data of evolved stars in the LMC and also other data on evolved stars in the Milky Way's Galactic Bulge to near-infrared interferometric studies of such stars. By understanding the origins of dust around evolved

  3. Radio and infrared properties of young stars

    NASA Technical Reports Server (NTRS)

    Panagia, Nino

    1987-01-01

    Observing young stars, or more appropriately, pre-main-sequence (PMS) stars, in the infrared and at radio frequencies has the advantage over optical observation in that the heavy extinction associated with a star forming region is only a minor problem, so that the whole region can be studied thoroughly. Therefore, it means being able to: (1) search for stars and do statistical studies on the rate of star formation; (2) determine their luminosity, hence, to study luminosity functions and initial mass functions down to low masses; and (3) to study their spectra and, thus, to determine the prevailing conditions at and near the surface of a newly born star and its relations with the surrounding environment. The third point is of principal interest. The report limits itself to a consideration of the observations concerning the processes of outflows from, and accretion onto, PMS stars and the theory necessary to interpret them. Section 2 discusses the radiative processes relevant in stellar outflows. The main observational results are presented in Section 3. A discussion of the statistical properties of stellar winds from PMS stars are given in Section 4.

  4. DUST AROUND R CORONAE BOREALIS STARS. I. SPITZER/INFRARED SPECTROGRAPH OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anibal Garcia-Hernandez, D.; Kameswara Rao, N.; Lambert, David L., E-mail: agarcia@iac.es, E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    2011-09-20

    Spitzer/infrared spectrograph (IRS) spectra from 5 to 37 {mu}m for a complete sample of 31 R Coronae Borealis stars (RCBs) are presented. These spectra are combined with optical and near-infrared photometry of each RCB at maximum light to compile a spectral energy distribution (SED). The SEDs are fitted with blackbody flux distributions and estimates are made of the ratio of the infrared flux from circumstellar dust to the flux emitted by the star. Comparisons for 29 of the 31 stars are made with the Infrared Astronomical Satellite (IRAS) fluxes from three decades earlier: Spitzer and IRAS fluxes at 12 {mu}mmore » and 25 {mu}m are essentially equal for all but a minority of the sample. For this minority, the IRAS to Spitzer flux ratio exceeds a factor of three. The outliers are suggested to be stars where formation of a dust cloud or dust puff is a rare event. A single puff ejected prior to the IRAS observations may have been reobserved by Spitzer as a cooler puff at a greater distance from the RCB. RCBs which experience more frequent optical declines have, in general, a circumstellar environment containing puffs subtending a larger solid angle at the star and a quasi-constant infrared flux. Yet, the estimated subtended solid angles and the blackbody temperatures of the dust show a systematic evolution to lower solid angles and cooler temperatures in the interval between IRAS and Spitzer. Dust emission by these RCBs and those in the LMC is similar in terms of total 24 {mu}m luminosity and [8.0]-[24.0] color index.« less

  5. The Infrared Telescope Facility (IRTF) Spectral Library: Cool Stars

    NASA Astrophysics Data System (ADS)

    Rayner, John T.; Cushing, Michael C.; Vacca, William D.

    2009-12-01

    We present a 0.8-5 μm spectral library of 210 cool stars observed at a resolving power of R ≡ λ/Δλ ~ 2000 with the medium-resolution infrared spectrograph, SpeX, at the 3.0 m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. The stars have well-established MK spectral classifications and are mostly restricted to near-solar metallicities. The sample not only contains the F, G, K, and M spectral types with luminosity classes between I and V, but also includes some AGB, carbon, and S stars. In contrast to some other spectral libraries, the continuum shape of the spectra is measured and preserved in the data reduction process. The spectra are absolutely flux calibrated using the Two Micron All Sky Survey photometry. Potential uses of the library include studying the physics of cool stars, classifying and studying embedded young clusters and optically obscured regions of the Galaxy, evolutionary population synthesis to study unresolved stellar populations in optically obscured regions of galaxies and synthetic photometry. The library is available in digital form from the IRTF Web site.

  6. An infrared diagnostic for magnetism in hot stars

    NASA Astrophysics Data System (ADS)

    Oksala, M. E.; Grunhut, J. H.; Kraus, M.; Borges Fernandes, M.; Neiner, C.; Condori, C. A. H.; Campagnolo, J. C. N.; Souza, T. B.

    2015-06-01

    Magnetospheric observational proxies are used for indirect detection of magnetic fields in hot stars in the X-ray, UV, optical, and radio wavelength ranges. To determine the viability of infrared (IR) hydrogen recombination lines as a magnetic diagnostic for these stars, we have obtained low-resolution (R~ 1200), near-IR spectra of the known magnetic B2V stars HR 5907 and HR 7355, taken with the Ohio State Infrared Imager/Spectrometer (OSIRIS) attached to the 4.1 m Southern Astrophysical Research (SOAR) Telescope. Both stars show definite variable emission features in IR hydrogen lines of the Brackett series, with similar properties as those found in optical spectra, including the derived location of the detected magnetospheric plasma. These features also have the added advantage of a lowered contribution of stellar flux at these wavelengths, making circumstellar material more easily detectable. IR diagnostics will be useful for the future study of magnetic hot stars, to detect and analyze lower-density environments, and to detect magnetic candidates in areas obscured from UV and optical observations, increasing the number of known magnetic stars to determine basic formation properties and investigate the origin of their magnetic fields. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  7. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Najarro, F.; Geballe, T. R.; Figer, D. F.

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of eachmore » of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.« less

  8. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  9. Tracing the First Stars with Fluctuations of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.

    2005-01-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  10. Infrared Halo Frames a Newborn Star

    NASA Astrophysics Data System (ADS)

    2003-08-01

    Summary: Observations with the VLT of a star-forming cloud have revealed, for the first time, a ring of infrared light around a nascent star. The images also show the presence of jets that emanate from the young object and collide with the surrounding cloud. ESO PR Photo 26a/03 ESO PR Photo 26a/03 [Preview - JPEG: 974 x 400 pix - 404k [Normal - JPEG: 1947 x 800 pix - 1M] The DC303.8-14.2 globule A small and dark interstellar cloud with the rather cryptic name of DC303.8-14.2 is located in the inner part of the Milky Way galaxy. It is seen in the southern constellation Chamaeleon and consists of dust and gas. Astronomers classify it as a typical example of a "globule". As many other globules, this cloud is also giving birth to a star. Some years ago, observations in the infrared spectral region with the ESA IRAS satellite observatory detected the signature of a nascent star at its centre. Subsequent observations with the Swedish ESO Submillimetre Telescope (SEST) at La Silla (Chile) were carried out by Finnish astronomer Kimmo Lehtinen . He revealed that DC303.8-14.2 is collapsing under its own gravity, a process which will ultimately result in the birth of a new star from the gas and dust in this cloud. Additional SEST observations of the millimetre emission of carbon monoxide (CO) molecules demonstrated a strong outflow from the nascent star. A small part of the gas that falls inward onto the central object is re-injected into the surrounding via this outward-bound "bipolar stream" . The structure of DC303.8-14.2 The left panel in PR Photo 26a/03 shows the DC303.8-14.2 globule as it looks in red light. This image was obtained at wavelength 700 nm and has been reproduced from the Digitized Sky Survey (DSS) [1]. It covers a sky region of 20 x 20 arcmin 2 , or about 50% of the area of the full moon. The dust particles in the cloud reflect the light from stars, causing the cloud to appear brighter than the adjacent sky. The brightness distribution over the cloud

  11. Searching For Infrared Excesses Around White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Deeb Wilson, Elin; Rebull, Luisa M.; Debes, John H.; Stark, Chris

    2017-01-01

    Many WDs have been found to be “polluted,” meaning they contain heavier elements in their atmospheres. Either an active process that counters gravitational settling is taking place, or an external mechanism is the cause. One proposed external mechanism for atmospheric pollution of WDs is the disintegration and accretion of rocky bodies, which would result in a circumstellar (CS) disk. As CS disks are heated, they emit excess infrared (IR) emission. WDs with IR excesses indicative of a CS disk are known as dusty WDs. Statistical studies are still needed to determine how numerous dusty, polluted WDs are, along with trends and correlations regarding rate of planetary accretion, the lifetimes of CS disks, and the structure and evolution of CS disks. These findings will allow for a better understanding of the fates of planets along with potential habitability of surviving planets.In this work, we are trying to confirm IR excesses around a sample of 69 WD stars selected as part of the WISE InfraRed Excesses around Degenerates (WIRED) Survey (Debes et al. 2011). We have archival data from WISE, Spitzer, 2MASS, DENIS, and SDSS. The targets were initially selected from the Sloan Digital Sky Survey (SDSS), and identified as containing IR excesses based on WISE data. We also have data from the Four Star Infrared Camera array, which is part of Carnegie Institution’s Magellan 6.5 meter Baade Telescope located at Las Campanas Observatory in Chile. These Four Star data are much higher spatial resolution than the WISE data that were used to determine if each WD has an IR excess. There are often not many bands delineating the IR excess portion of the SED; therefore, we are using the Four Star data to check if there is another source in the WISE beam affecting the IR excess.

  12. Far-Infrared and Nebular Star-Formation Rate of Dusty Star Forming Galaxies from Herschel, CANDELS and 3D-HST at z~1

    NASA Astrophysics Data System (ADS)

    Hasan, Farhanul; Nayyeri, Hooshang; Cooray, Asantha R.; Herschel Group: University of California Irvine. Dept. of Physics & Astronomy. Led by professor Asantha Cooray, Reed College Undergraduate Research Committee

    2017-06-01

    We present a combined Herschel/PACS and SPIRE and HST/WFC3 observations of the five CANDELS fields, EGS, GOODS-N, GOODS-S, COSMOS and UDS, to study star-formation activity in dusty star-forming galaxies (DSFGs) at z~1. We use 3D-HST photometry and Grism spectroscopic redshifts to construct the Spectral Energy Distributions (SED) of galaxies in the near UV, optical and near infrared, along with IRAC measurements at 3.6-8 μm in the mid-infrared, and Herschel data at 250-500 μm in the far-infrared. The 3D-HST grism line measurements are used to estimate the star-formation rate from nebular emission. In particular, we compare the H-alpha measured SFRs (corrected for attenuation) to that of direct observations of the far-infrared from Herschel. We further look at the infrared excess in this sample of dusty star-forming galaxies (denoted by LIR/LUV) as a function of the UV slope. We find that the population of high-z DSFGs sit above the trend expected for normal star-forming galaxies. Additionally, we study the dependence of SFR on total dust attenuation and confirm a strong correlation between SFR(Ha) and the balmer decrement (Hα/Hβ).

  13. New far infrared images of bright, nearby, star-forming regions

    NASA Technical Reports Server (NTRS)

    Harper, D. AL, Jr.; Cole, David M.; Dowell, C. Darren; Lees, Joanna F.; Lowenstein, Robert F.

    1995-01-01

    Broadband imaging in the far infrared is a vital tool for understanding how young stars form, evolve, and interact with their environment. As the sensitivity and size of detector arrays has increased, a richer and more detailed picture has emerged of the nearest and brightest regions of active star formation. We present data on M 17, M 42, and S 106 taken recently on the Kuiper Airborne Observatory with the Yerkes Observatory 60-channel far infrared camera, which has pixel sizes of 17 in. at 60 microns, 27 in. at 100 microns, and 45 in. at 160 and 200 microns. In addition to providing a clearer view of the complex central cores of the regions, the images reveal new details of the structure and heating of ionization fronts and photodissociation zones where radiation form luminous stars interacts with adjacent molecular clouds.

  14. THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, G. C.; Kraemer, K. E.; McDonald, I.

    2016-07-20

    The Infrared Spectrograph on the Spitzer Space Telescope observed 184 carbon stars in the Magellanic Clouds. This sample reveals that the dust-production rate (DPR) from carbon stars generally increases with the pulsation period of the star. The composition of the dust grains follows two condensation sequences, with more SiC condensing before amorphous carbon in metal-rich stars, and the order reversed in metal-poor stars. MgS dust condenses in optically thicker dust shells, and its condensation is delayed in more metal-poor stars. Metal-poor carbon stars also tend to have stronger absorption from C{sub 2}H{sub 2} at 7.5 μ m. The relation betweenmore » DPR and pulsation period shows significant apparent scatter, which results from the initial mass of the star, with more massive stars occupying a sequence parallel to lower-mass stars, but shifted to longer periods. Accounting for differences in the mass distribution between the carbon stars observed in the Small and Large Magellanic Clouds reveals a hint of a subtle decrease in the DPR at lower metallicities, but it is not statistically significant. The most deeply embedded carbon stars have lower variability amplitudes and show SiC in absorption. In some cases they have bluer colors at shorter wavelengths, suggesting that the central star is becoming visible. These deeply embedded stars may be evolving off of the asymptotic giant branch and/or they may have non-spherical dust geometries.« less

  15. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recoveredmore » that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.« less

  16. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  17. Infrared spectra and interstellar reddening of anonymous type II OH/IR stars

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Hackwell, J. A.; Grasdalen, G. L.; Kleinmann, S. G.; Mason, S.

    1985-01-01

    Infrared positions and multicolor infrared photometry for a sample of type II OH/IR stars are reported. The infrared colors and 11.4-micron silicate optical depths of the confirmed sources in this group increase as a function of distance, suggesting that interstellar reddening must be taken into account in assessing their infrared energy distributions and physical characteristics.

  18. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  19. High-mass Star Formation Toward Southern Infrared Bubble S10

    NASA Astrophysics Data System (ADS)

    Ranjan Das, Swagat; Tej, Anandmayee; Vig, Sarita; Ghosh, Swarna K.; Ishwara Chandra, C. H.

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2 M ⊙, lies ˜7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μm image. The masses and linear diameter of these range between ˜300-1600 M ⊙ and 0.2-1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  20. Cosmic infrared background measurements and star formation history from Planck

    NASA Astrophysics Data System (ADS)

    Serra, Paolo; Serra

    2014-05-01

    We present new measurements of Cosmic Infrared Background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles l ~ 150 to 2500. The interpretation based on the halo model is able to associate star-forming galaxies with dark matter halos and their subhalos, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass, and it allows to simultaneously fit all auto- and cross- power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log(M eff/M ⊙) = 12.6 and that CIB galaxies have warmer temperatures as redshift increases.

  1. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints tomore » a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.« less

  2. Far-infrared observations of the exciting stars of Herbig-Haro objects. III - Circumstellar disks

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Harvey, P. M.; Schwartz, R. D.

    1985-01-01

    Far-infrared observations of the exciting stars of Herbig-Haro objects are presented that (1) show these stars to be of low luminosity; (2) indicate that it is not usual for these objects themselves to be visible at far-infrared wavelengths; and (3) demonstrate the existence of spatially resolved, physically large, potentially disklike structures. These latter structures are resolved perpendicular to the directions of flow from the stars, but not parallel to the flows. In addition to these general properties, two new HH-exciting stars were discovered by searching along the extrapolated proper motion vectors for these HHs; and the jetlike object 'DG Tau B' was also detected.

  3. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {submore » ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.« less

  4. Wind diagnostics and correlations with the near-infrared excess in Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Corcoran, M.; Ray, T. P.

    1998-03-01

    Intermediate dispersion spectroscopic observations of 37 Herbig Ae/Be stars reveal that the equivalent widths of their [OI]lambda 6300 and Hα emission lines, are related to their near-infrared colours in the same fashion as the T-Tauri stars. Such a correlation strongly supports the idea that the winds from Herbig Ae/Be stars arise in the same manner as those from T-Tauri stars, i.e. through accretion driven mass-loss. We also find that the [OI]lambda 6300 line luminosity correlates better with excess infrared luminosity than with stellar luminosities, again supporting the idea that Herbig Ae/Be winds are accretion driven. If one includes the lower mass analogues of the Herbig Ae/Be stars with forbidden line emission, i.e. the classical T-Tauri stars, the correlation between mass-loss rate and infrared excess spans 5 orders of magnitude in luminosity and a range of masses from 0.5Msun to approximately 10Msun. Our observations therefore extend the findings of Cohen et al. (1989) and Cabrit et al. (1990) for low mass young stars and, taken in conjunction with other evidence (Corcoran & Ray 1997), strongly support the presence of circumstellar disks around intermediate mass stars with forbidden line emission. An implication of our findings is that the same outflow model must be applicable to these Herbig Ae/Be stars and the classical T Tauri stars. Based on observations made at the La Palma Observatory, the Caltech Submillimeter Observatory, and the European Southern Observatory/Max Planck Institute 2.2m Telescope.

  5. Star formation history from the cosmic infrared background anisotropies

    NASA Astrophysics Data System (ADS)

    Maniyar, A. S.; Béthermin, M.; Lagache, G.

    2018-06-01

    We present a linear clustering model of cosmic infrared background (CIB) anisotropies at large scales that is used to measure the cosmic star formation rate density up to redshift 6, the effective bias of the CIB, and the mass of dark matter halos hosting dusty star-forming galaxies. This is achieved using the Planck CIB auto- and cross-power spectra (between different frequencies) and CIB × CMB (cosmic microwave background) lensing cross-spectra measurements, as well as external constraints (e.g. on the CIB mean brightness). We recovered an obscured star formation history which agrees well with the values derived from infrared deep surveys and we confirm that the obscured star formation dominates the unobscured formation up to at least z = 4. The obscured and unobscured star formation rate densities are compatible at 1σ at z = 5. We also determined the evolution of the effective bias of the galaxies emitting the CIB and found a rapid increase from 0.8 at z = 0 to 8 at z = 4. At 2 < z < 4, this effective bias is similar to that of galaxies at the knee of the mass functions and submillimetre galaxies. This effective bias is the weighted average of the true bias with the corresponding emissivity of the galaxies. The halo mass corresponding to this bias is thus not exactly the mass contributing the most to the star formation density. Correcting for this, we obtained a value of log(Mh/M⊙) = 12.77-0.125+0.128 for the mass of the typical dark matter halo contributing to the CIB at z = 2. Finally, using a Fisher matrix analysis we also computed how the uncertainties on the cosmological parameters affect the recovered CIB model parameters, and find that the effect is negligible.

  6. Luminous Infrared Sources in the Local Group: Identifying the Missing Links in Massive Star Evolution

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Bonanos, A. Z.; Mehner, A.

    2015-01-01

    We present the first systematic survey of dusty massive stars (RSGs, LBVs, sgB[e]) in nearby galaxies, with the goal of understanding their importance in massive star evolution. Using the fact that these stars are bright in mid-infrared colors due to dust, we provide a technique for selecting and identifying dusty evolved stars based on the results of Bonanos et al. (2009, 2010), Britavskiy et al. (2014), and archival Spitzer/IRAC photometry. We present the results of our spectroscopic follow-up of luminous infrared sources in the Local Group dwarf irregular galaxies: Pegasus, Phoenix, Sextans A and WLM. The survey aims to complete the census of dusty massive stars in the Local Group.

  7. Space infrared telescope pointing control system. Automated star pattern recognition

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Vanbezooijen, R. W. H.

    1985-01-01

    The Space Infrared Telescope Facility (SIRTF) is a free flying spacecraft carrying a 1 meter class cryogenically cooled infrared telescope nearly three oders of magnitude most sensitive than the current generation of infrared telescopes. Three automatic target acquisition methods will be presented that are based on the use of an imaging star tracker. The methods are distinguished by the number of guidestars that are required per target, the amount of computational capability necessary, and the time required for the complete acquisition process. Each method is described in detail.

  8. A model for the infrared emission from an OB star cluster environment

    NASA Technical Reports Server (NTRS)

    Leisawitz, D.

    1991-01-01

    A model for the infrared emission from the neighborhood of an OB star cluster is described. The distribution of gas and dust around the stars, properties of the dust, and the cluster and interstellar radiation fields are variable. The model can be applied to regions around clusters embedded to various degrees in their parental molecular clouds (i.e., compact H II regions, blister-type H II regions, and the tenuous H II regions ionized by naked O stars). The model is used to simulate IRAS observations of a typical blister H II region. Infrared surface brightness and spectral energy distributions are predicted and the impact of limited spatial resolution is illustrated. The model results are shown to be consistent with observations of the exemplary outer Galaxy OB cluster NGC 7380. It is planned to use the model as a diagnostic tool to probe the physical conditions and dust properties in star-formation regions and, ultimately, in an interpretation of the spectral energy distributions of spiral galaxies.

  9. Expanding shell and star formation in the infrared dust bubble N6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli

    2014-12-10

    We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to highermore » than 5000 M {sub ☉}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.« less

  10. Active Galactic Nuclei, Host Star Formation, and the Far Infrared

    NASA Astrophysics Data System (ADS)

    Draper, Aden R.; Ballantyne, D. R.

    2011-05-01

    Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nuclei (AGN) hosts. The FIR is also an important spectral region for observing AGN which are heavily enshrouded by dust, such as Compton thick (CT) AGN. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGN in the FIR. Expected differential number counts of AGN and their host galaxies are calculated in the Herschel bands. The expected contribution of AGN and their hosts to the cosmic infrared background (CIRB) is also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at 350 and 500 um are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. AGN and host differential number counts are dominated by CT AGN in the Herschel-SPIRE bands. Therefore, X-ray stacking of bright SPIRE sources is likely to disclose a large fraction of the CT AGN population.

  11. L' and M' standard stars for the Mauna Kea Observatories Near-Infrared system

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Hawarden, T. G.; Currie, M. J.; Adamson, A. J.; Carroll, T. C.; Kerr, T. H.; Kuhn, O. P.; Seigar, M. S.; Varricatt, W. P.; Wold, T.

    2003-10-01

    We present L' and M' photometry, obtained at the United Kingdom Infrared Telescope (UKIRT) using the Mauna Kea Observatories Near-Infrared (MKO-NIR) filter set, for 46 and 31 standard stars, respectively. The L' standards include 25 from the in-house `UKIRT Bright Standards' with magnitudes deriving from Elias et al. and observations at the Infrared Telescope Facility in the early 1980s, and 21 fainter stars. The M' magnitudes derive from the results of Sinton and Tittemore. We estimate the average external error to be 0.015 mag for the bright L' standards and 0.025 mag for the fainter L' standards, and 0.026 mag for the M' standards. The new results provide a network of homogeneously observed standards, and establish reference stars for the MKO system, in these bands. They also extend the available standards to magnitudes which should be faint enough to be accessible for observations with modern detectors on large and very large telescopes.

  12. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  13. Observing Star and Planet Formation in the Submillimeter and Far Infrared

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.

    2004-01-01

    Stars from in the densest parts of cold interstellar clouds which-due to presence of obscuring dust-cannot be observed with optical telescopes. Recent rapid progress in understanding how stars and planets are formed has gone hand in hand with our ability to observe extremely young systems in the infrared and (submillimeter) spectral regimes. The detections and silhouetted imaging of disks around young objects in the visible and NIR have demonstrated the common occurrence of circumstellar disks and their associated jets and outflows in star forming regions. However, in order to obtain quantitative information pertaining to even earlier evolutionary phases, studies at longer wavelengths are necessary. From spectro-photometric imaging at all wavelengths we learn about the temperature and density structure of the young stellar environment. From narrow band imaging in the far infrared and submillimeter spectral regimes we can learn much about the velocity structure and the chemical makeup (pre-biotic material) of the planet-forming regions.

  14. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, Paul A.

    2018-01-01

    We present a New Technology Telescope/Son-of-Isaac spectroscopic survey of infrared selected Wolf-Rayet (WR) candidates in the Scutum-Crux spiral arm (298° ≤ l ≤ 340°, |b| ≤ 0.5°. We obtained near-IR spectra of 127 candidates, revealing 17 WR stars - a ∼13 per cent success rate - of which 16 are newly identified here. The majority of the new WR stars are classified as narrow-lined WN5-7 stars, with two broad-lined WN4-6 stars and three WC6-8 stars. The new stars, with distances estimated from previous absolute magnitude calibrations, have no obvious association with the Scutum-Crux arm. Refined near-infrared (YHJK) classification criteria based on over a hundred Galactic and Magellanic Cloud WR stars, providing diagnostics for hydrogen in WN stars, plus the identification of WO stars and intermediate WN/C stars. Finally, we find that only a quarter of WR stars in the survey region are associated with star clusters and/or H II regions, with similar statistics found for luminous blue variables (LBVs) in the Milky Way. The relative isolation of evolved massive stars is discussed, together with the significance of the co-location of LBVs and WR stars in young star clusters.

  15. Near infrared observations of S155. evidence of induced star formation?

    NASA Astrophysics Data System (ADS)

    Hunt, L. K.; Lisi, F.; Felli, M.; Tofani, G.

    At the interface of the giant molecular cloud Cepheus OB3, S155 represents one of the most interesting examples of bright rim produced by the ionization of a nearby O-star. The interaction between the ionized HII region S155 and the hot molecular core Cepheus B may constitute the ideal site for new stars, according to the sequential star-formation theory. Past observations of molecular lines have shown the evidence of a hot spot in the cloud core, probably a compact region associated to a young stellar object. New J,H,K images recently obtained with the ARNICA array at the TIRGO telescope give evidence of stars with strong near-infrared excess, which must represent the newest generation of young stars.

  16. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Assef, R. J.

    2011-01-01

    We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars.We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks.We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  17. Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Koenig, X. P.; Leisawitz, D. T.; Benford, D. J.; Rebull, L. M.; Padgett, D. L.; Asslef, R. J.

    2012-01-01

    We present the results of a mid-infrared survey of II outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars.

  18. Infrared spectrum of an extremely cool white-dwarf star

    PubMed

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  19. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  20. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  1. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisari, Nora E.; Kelson, Daniel D., E-mail: nchisari@astro.princeton.edu

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handfulmore » of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.« less

  2. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  3. Shadows and Dust: Mid-Infrared Extinction Mapping of the Initial Conditions of Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation

  4. The UK Infrared Telescope M33 monitoring project - IV. Variable red giant stars across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; Saberi, Maryam; van Loon, Jacco Th.; Khosroshahi, Habib; Golabatooni, Najmeh; Mirtorabi, Mohammad Taghi

    2015-03-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope, of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fourth paper of the series, we present a search for variable red giant stars in an almost square degree region comprising most of the galaxy's disc, carried out with the WFCAM (Wide Field CAMera) instrument in the K band. These data, taken during the period 2005-2007, were complemented by J- and H-band images. Photometry was obtained for 403 734 stars in this region; of these, 4643 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. The variable stars are concentrated towards the centre of M33, more so than low-mass, less-evolved red giants. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. Most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey. The photometric catalogue is made publicly available at the Centre de Données astronomiques de Strasbourg.

  5. CONTINUOUS MID-INFRARED STAR FORMATION RATE INDICATORS: DIAGNOSTICS FOR 0 < z < 3 STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, A. J.; Calzetti, D.; Johnson, B. D.

    2015-02-20

    We present continuous, monochromatic star formation rate (SFR) indicators over the mid-infrared wavelength range of 6–70 μm. We use a sample of 58 star-forming galaxies (SFGs) in the Spitzer–SDSS–GALEX Spectroscopic Survey at z < 0.2, for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through to the infrared. The data from the Spitzer Infrared Spectrograph (IRS) of these galaxies, which spans 5–40 μm, is anchored to their photometric counterparts. The spectral region between 40–70 μm is interpolated using dust model fits to the IRS spectrum and Spitzer 70 and 160 μm photometry. Since theremore » are no sharp spectral features in this region, we expect these interpolations to be robust. This spectral range is calibrated as a SFR diagnostic using several reference SFR indicators to mitigate potential bias. Our band-specific continuous SFR indicators are found to be consistent with monochromatic calibrations in the local universe, as derived from Spitzer, WISE, and Herschel photometry. Our local composite template and continuous SFR diagnostics are made available for public use through the NASA/IPAC Infrared Science Archive (IRSA) and have typical dispersions of 30% or less. We discuss the validity and range of applicability for our SFR indicators in the context of unveiling the formation and evolution of galaxies. Additionally, in the era of the James Webb Space Telescope this will become a flexible tool, applicable to any SFG up to z ∼ 3.« less

  6. Near-infrared imaging polarimetry of dusty young stars

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Gledhill, T. M.; Barlow, M. J.; Lowe, K. T. E.

    2006-02-01

    We have carried out JHK polarimetric observations of 11 dusty young stars, by using the polarimeter module IRPOL2 with the near-infrared camera UIST on the 3.8-m United Kingdom Infrared Telescope (UKIRT). Our sample targeted systems for which UKIRT-resolvable discs had been predicted by model fits to their spectral energy distributions. Our observations have confirmed the presence of extended polarized emission around TW Hya and around HD 169142. HD 150193 and HD 142666 show the largest polarization values among our sample, but no extended structure was resolved. By combining our observations with Hubble Space Telescope (HST) coronographic data from the literature, we derive the J- and H-band intrinsic polarization radial dependences of the disc of TW Hya. We find the polarizing efficiency of the disc is higher at H than at J, and we confirm that the J- and H-band percentage polarizations are reasonably constant with radius in the region between 0.9 and 1.3arcsec from the star. We find that the objects for which we have detected extended polarizations are those for which previous modelling has suggested the presence of flared discs, which are predicted to be brighter than flat discs and thus would be easier to detect polarimetrically.

  7. Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Hasan, Hashima (Technical Monitor)

    2003-01-01

    In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and

  8. Examining the infrared variable star population discovered in the Small Magellanic Cloud using the SAGE-SMC survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsdofer, Elizabeth; Marengo, M.; Seale, J.

    2015-02-01

    We present our study on the infrared variability of point sources in the Small Magellanic Cloud (SMC). We use the data from the Spitzer Space Telescope Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally Stripped, Low Metallicity Small Magellanic Cloud” (SAGE-SMC) and the “Spitzer Survey of the Small Magellanic Cloud” (S{sup 3}MC) survey, over three different epochs, separated by several months to 3 years. Variability in the thermal infrared is identified using a combination of Spitzer’s InfraRed Array Camera 3.6, 4.5, 5.8, and 8.0 μm bands, and the Multiband Imaging Photometer for Spitzer 24 μm band. Anmore » error-weighted flux difference between each pair of three epochs (“variability index”) is used to assess the variability of each source. A visual source inspection is used to validate the photometry and image quality. Out of ∼2 million sources in the SAGE-SMC catalog, 814 meet our variability criteria. We matched the list of variable star candidates to the catalogs of SMC sources classified with other methods, available in the literature. Carbon-rich Asymptotic Giant Branch (AGB) stars make up the majority (61%) of our variable sources, with about a third of all of our sources being classified as extreme AGB stars. We find a small, but significant population of oxygen-rich (O-rich) AGB (8.6%), Red Supergiant (2.8%), and Red Giant Branch (<1%) stars. Other matches to the literature include Cepheid variable stars (8.6%), early type stars (2.8%), Young-stellar objects (5.8%), and background galaxies (1.2%). We found a candidate OH maser star, SSTISAGE1C J005212.88-730852.8, which is a variable O-rich AGB star, and would be the first OH/IR star in the SMC, if confirmed. We measured the infrared variability of a rare RV Tau variable (a post-AGB star) that has recently left the AGB phase. 59 variable stars from our list remain unclassified.« less

  9. Near infra-red astronomy with adaptive optics and laser guide stars at the Keck Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C.E.; Gavel, D.T.; Olivier, S.S.

    1995-08-03

    A laser guide star adaptive optics system is being built for the W. M. Keck Observatory`s 10-meter Keck II telescope. Two new near infra-red instruments will be used with this system: a high-resolution camera (NIRC 2) and an echelle spectrometer (NIRSPEC). The authors describe the expected capabilities of these instruments for high-resolution astronomy, using adaptive optics with either a natural star or a sodium-layer laser guide star as a reference. They compare the expected performance of these planned Keck adaptive optics instruments with that predicted for the NICMOS near infra-red camera, which is scheduled to be installed on the Hubblemore » Space Telescope in 1997.« less

  10. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  11. Infrared excesses in stars with and without planets using revised WISE photometry

    NASA Astrophysics Data System (ADS)

    Maldonado, Raul F.; Chavez, Miguel; Bertone, Emanuele; Cruz-Saenz de Miera, Fernando

    2017-11-01

    We present an analysis on the potential prevalence of mid-infrared excesses in stars with and without planetary companions. Based on an extended data base of stars detected with the Wide Infrared Survey Explorer (WISE) satellite, we studied two stellar samples: one with 236 planet hosts and another with 986 objects for which planets have been searched, but not found. We determined the presence of an excess over the photosphere by comparing the observed flux ratio at 22 and 12 μm (f22/f12) with the corresponding synthetic value, derived from results of classical model photospheres. We found a detection rate of 0.85 per cent at 22 μm (two excesses) in the sample of stars with planets and 0.1 per cent (1 detection) for the stars without planets. The difference of the detection rate between the two samples is not statistically significant, a result that is independent of the different approaches found in the literature to define an excess in the wavelength range covered by WISE observations. As an additional result, we found that the WISE fluxes required a normalization procedure to make them compatible with synthetic data, probably pointing out a revision of the WISE data calibration.

  12. Infrared Extinction and the Initial Conditions For Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2003-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication.

  13. Infrared Extinction and the Initial Conditions for Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2002-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: (1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds; (2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds; and (3) prepare results, where appropriate, for publication.

  14. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    NASA Astrophysics Data System (ADS)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  15. Spectral Irradiance Calibration in the Infrared. XVI. Improved Accuracy in the Infrared Spectra of the Secondary and Tertiary Standard Calibration Stars

    DTIC Science & Technology

    2006-10-01

    2004); (A) autoshape (see text). The number in brackets is the wavelength (in microns) at which that segment ends. The first segment starts at 1 pm...and is produced with autoshape . Where available, the Strecker et al. (1979) data cover 1.2-2.36 pm; otherwise, autoshape is used. The SWS spectra all...uncertainties are listed Table 2. The stars in parameter function autoshape , which was developed to fit the Table 1 are original Cohen et al. secondary

  16. Hunt for infrared photons from the first binary neutron star merger

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi; Growth Collaboration [Global Relay Of Observatories Watching Transients

    2017-10-01

    Yesterday, within two seconds of 2017 August 17 12:41:04 GMT, both LIGO interferometers and the Fermi satellite detected gravitational waves from a neutron star merger and a short contemporaneous gamma ray burst! We now have a promising optical and infrared counterpart. This may very well be a historic moment in multi-messenger astronomy, and may even prove to be of the same league as neutrinos from SN,1987A. Here, we request the Spitzer Space Telescope to engage in the hunt for infrared photons.

  17. The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani

    2018-01-01

    Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1

  18. Infrared radiation scene generation of stars and planets in celestial background

    NASA Astrophysics Data System (ADS)

    Guo, Feng; Hong, Yaohui; Xu, Xiaojian

    2014-10-01

    An infrared (IR) radiation generation model of stars and planets in celestial background is proposed in this paper. Cohen's spectral template1 is modified for high spectral resolution and accuracy. Based on the improved spectral template for stars and the blackbody assumption for planets, an IR radiation model is developed which is able to generate the celestial IR background for stars and planets appearing in sensor's field of view (FOV) for specified observing date and time, location, viewpoint and spectral band over 1.2μm ~ 35μm. In the current model, the initial locations of stars are calculated based on midcourse space experiment (MSX) IR astronomical catalogue (MSX-IRAC) 2 , while the initial locations of planets are calculated using secular variations of the planetary orbits (VSOP) theory. Simulation results show that the new IR radiation model has higher resolution and accuracy than common model.

  19. Infrared Extinction and the Initial Conditions for Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program are to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) prepare results, where appropriate, for publication. A description of how these goals were met are included.

  20. Is the filamentary dark cloud GF 6 a star forming region? — Stability analysis and infrared properties

    NASA Astrophysics Data System (ADS)

    Kim, Jaeheon; Kim, Hyun-Goo; Kim, Sang Joon; Zhang, Bo

    2017-12-01

    We present the results of mapping observations and stability analyses toward the filamentary dark cloud GF 6. We investigate the internal structures of a typical filamentary dark cloud GF 6 to know whether the filamentary dark cloud will form stars. We perform radio observations with both 12CO (J=1-0) and 13CO (J=1-0) emission lines to examine the mass distribution and its evolutionary status. The 13CO gas column density map shows eight subclumps in the GF 6 region with sizes on a sub-pc scale. The resulting local thermodynamic equilibrium masses of all the subclumps are too low to form stars against the turbulent dissipation. We also investigate the properties of embedded infrared point sources to know whether they are newly formed stars. The infrared properties also indicate that these point sources are not related to star forming activities associated with GF 6. Both radio and infrared properties indicate that the filamentary dark cloud GF 6 is too light to contract gravitationally and will eventually be dissipated away.

  1. Infrared Echoes of a Black Hole Eating a Star Illustration

    NASA Image and Video Library

    2016-09-15

    This illustration shows a glowing stream of material from a star as it is being devoured by a supermassive black hole in a tidal disruption flare. When a star passes within a certain distance of a black hole -- close enough to be gravitationally disrupted -- the stellar material gets stretched and compressed as it falls into the black hole. In the process of being accreted, the gas heats up and creates a lot of optical and ultraviolet light, which destroys nearby dust but merely heats dust further out. The farther dust that is heated emits a large amount of infrared light. In recent years, a few dozen such flares have been discovered, but they are not well understood. Astronomers gained new insights into tidal disruption flares thanks to data from NASA's Wide-field Infrared Survey Explorer (WISE). Studies using WISE data characterized tidal disruption flares by studying how surrounding dust absorbs and re-emits their light, like echoes. This approach allowed scientists to measure the energy of flares from stellar tidal disruption events more precisely than ever before. http://photojournal.jpl.nasa.gov/catalog/PIA20027

  2. Parameterizing the dust around Herbig Ae/Be stars: Multiwavelength imaging radiative transfer modeling, and near-infrared instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan Lee

    Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in

  3. On the Incidence of Wise Infrared Excess Among Solar Analog, Twin, and Sibling Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Costa, A. D.; Martins, B. L. Canto; Lima Jr, J. E.

    2017-03-01

    This study presents a search for infrared (IR) excess in the 3.4, 4.6, 12, and 22 μ m bands in a sample of 216 targets, composed of solar sibling, twin, and analog stars observed by the Wide-field Infrared Survey Explorer ( WISE ) mission. In general, an IR excess suggests the existence of warm dust around a star. We detected 12 μ m and/or 22 μ m excesses at the 3 σ level of confidence in five solar analog stars, corresponding to a frequency of 4.1% of the entire sample of solar analogs analyzed, and in one out of 29more » solar sibling candidates, confirming previous studies. The estimation of the dust properties shows that the sources with IR excesses possess circumstellar material with temperatures that, within the uncertainties, are similar to that of the material found in the asteroid belt in our solar system. No photospheric flux excess was identified at the W1 (3.4 μ m) and W2 (4.6 μ m) WISE bands, indicating that, in the majority of stars of the present sample, no detectable dust is generated. Interestingly, among the 60 solar twin stars analyzed in this work, no WISE photospheric flux excess was detected. However, a null-detection excess does not necessarily indicate the absence of dust around a star because different causes, including dynamic processes and instrument limitations, can mask its presence.« less

  4. Infrared circumstellar shells - Origins, and clues to the evolution of massive stars

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Pesce, Joseph E.; Bauer, Wendy Hagen

    1989-01-01

    The infrared fluxes, spatial and spectral characteristics for a sample of 111 supergiant stars of spectral types F0 through M5 are tabulated, and correlations examined with respect to the nature of their circumstellar envelopes. One-fourth of these objects were spatialy resolved by IRAS at 60 microns and possess extended circumstellar shell material, with implied expansion ages of about 10 to the 5th yr. Inferences about the production of dust, mass loss, and the relation of these characteristics of the evolution of massive stars, are discussed.

  5. Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Morello, Giuseppe; Morris, P. W.; Van Dyk, S. D.; Marston, A. P.; Mauerhan, J. C.

    2018-01-01

    We have investigated and applied machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet (WR) candidates. Objects taken from the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire (GLIMPSE) catalogue of the infrared objects in the Galactic plane can be classified into different stellar populations based on the colours inferred from their broad-band photometric magnitudes [J, H and Ks from 2 Micron All Sky Survey (2MASS), and the four Spitzer/IRAC bands]. The algorithms tested in this pilot study are variants of the k-nearest neighbours approach, which is ideal for exploratory studies of classification problems where interrelations between variables and classes are complicated. The aims of this study are (1) to provide an automated tool to select reliable WR candidates and potentially other classes of objects, (2) to measure the efficiency of infrared colour selection at performing these tasks and (3) to lay the groundwork for statistically inferring the total number of WR stars in our Galaxy. We report the performance results obtained over a set of known objects and selected candidates for which we have carried out follow-up spectroscopic observations, and confirm the discovery of four new WR stars.

  6. Space-based infrared scanning sensor LOS determination and calibration using star observation

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Xu, Zhan; An, Wei; Deng, Xin-Pu; Yang, Jun-Gang

    2015-10-01

    This paper provides a novel methodology for removing sensor bias from a space based infrared (IR) system (SBIRS) through the use of stars detected in the background field of the sensor. Space based IR system uses the LOS (line of sight) of target for target location. LOS determination and calibration is the key precondition of accurate location and tracking of targets in Space based IR system and the LOS calibration of scanning sensor is one of the difficulties. The subsequent changes of sensor bias are not been taking into account in the conventional LOS determination and calibration process. Based on the analysis of the imaging process of scanning sensor, a theoretical model based on the estimation of bias angles using star observation is proposed. By establishing the process model of the bias angles and the observation model of stars, using an extended Kalman filter (EKF) to estimate the bias angles, and then calibrating the sensor LOS. Time domain simulations results indicate that the proposed method has a high precision and smooth performance for sensor LOS determination and calibration. The timeliness and precision of target tracking process in the space based infrared (IR) tracking system could be met with the proposed algorithm.

  7. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    NASA Technical Reports Server (NTRS)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; hide

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  8. Star formation associated with a large-scale infrared bubble

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Long; Ju, Bing-Gang

    2014-09-01

    Aims: To investigate how a large-scale infrared bubble centered at l = 53.9° and b = 0.2° forms, and to study if star formation is taking place at the periphery of the bubble, we performed a multiwavelength study. Methods: Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study of a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J = 1-0, 13CO J = 1-0, and C18O J = 1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. In addition, we also used radiorecombination line and VLA data. To select young stellar objects (YSOs) consistent with this region, we used the GLIMPSE I catalog. Results: The large-scale infrared bubble shows a half-shell morphology at 8 μm. The H II regions of G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J = 1-0 components of the three H II regions, we found that the 8 μm emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), as well as three H II regions and two small-scale bubbles are found located in the G54.09-0.06 complex, indicating an active massive star-forming region. Emission from C18O at J = 1-0 presents four cloud clumps on the northeastern border of H II region G53.54-0.01. By comparing the spectral profiles of 12CO J = 1-0, 13CO J = 1-0, and C18O J = 1-0 at the peak position of each clump, we found the collected gas in the three clumps, except for the clump coinciding with a massive YSO (IRAS 19282+1814). Using the evolutive model of the H II region, we derived that

  9. Luminosities and temperatures of M dwarf stars from infrared photometry

    NASA Technical Reports Server (NTRS)

    Veeder, G. J.

    1974-01-01

    Bolometric magnitudes for a large number of M type dwarf stars, obtained by broadband infrared photometry at 1.65, 2.2, and 3.5 microns, are reviewed. The data obtained indicate that one parameter is sufficient to describe the blanketing in all of the UBVRI bands for all types of M dwarfs. In general, late M dwarfs seem to have lower effective temperatures than are predicted by theoretical models.

  10. Determining Mass-Loss Rates of Evolved Stars in the Galactic Bulge from Infrared Surveys

    NASA Astrophysics Data System (ADS)

    Riley, Allyssa; Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2018-06-01

    To investigate the relationship between mass loss from evolved stars and host galaxy metallicity, we are computing the dust mass loss budget due to red supergiant (RSG) and asymptotic giant branch (AGB) stars in the Galactic Bulge and comparing this result to that previously obtained for the Magellanic Clouds. We construct spectral energy distributions (SEDs) for our candidate RSG and AGB stars using observations from various infrared surveys, including the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Because Robitaille et al (2008, AJ, 136, 2413) have already identified Intrinsically Red Objects from the GLIMPSE I and II surveys, we use their method as a starting point and expand the study by using the GLIMPSE 3D survey. Because AGB stars can be variable, we also match the GLIMPSE I, II, and 3D sources to other surveys, such as DEEP GLIMPSE, WISE, VVV, and DENIS, in order to characterize the variability across the spectral energy distribution (SED) of each source. This allows us to determine the source’s average SED over multiple epochs. We use extinction curves derived from Spitzer studies of extinction in the Galaxy to determine the extinction corrections for our sample. To establish mass-loss rates of evolved stars in the Bulge, we use the Grid of Red supergiant and Asymptotic giant branch ModelS (GRAMS) of dust-enshrouded evolved stars (2011, A&A, 532, A54; 2011, ApJ, 728, 93). This allows us to determine the total mass return to the Bulge from these stars. This work has been supported by NASA ADAP grant 80NSSC17K0057.

  11. Infrared Rydberg Transitions in B Stars.

    NASA Astrophysics Data System (ADS)

    Sigut, Thomas Allan Aaron

    1995-01-01

    The infrared solar spectrum exhibits emission lines near 12 μm from the Mg scI high-l Rydberg transitions 6g - 7h and 6h - 7i. Chang et al. (1991) demonstrated that the emission arises from small deviations in the populations of these Rydberg levels from their thermodynamic equilibrium values. In this thesis, the possible operation of this emission mechanism is investigated in the B stars by performing non-LTE radiative transfer calculations for the high-l Rydberg transitions of Mg scII and O scI. Highly realistic atomic models are employed, complete in energy levels and radiative transitions far into the Rydberg regime. For Mg scII, the collisional excitation rates are improved by computing collision strengths in a 10 state close-coupling approximation using the R-matrix method. The collisional excitation rates derived from these collisions strengths include the full effects of autoionizing resonances and have an expected accuracy of +/-10% for transitions between levels lying low in energy in the close-coupling expansion. For Mg scII, wide-ranging infrared emission is found, spanning the entire range of B spectral types. The emission is caused by the same mechanism operative in the Rydberg levels of Mg scI in the sun. Small divergences between the Rydberg departure coefficients produce rising monochromatic source functions and emission. Flux profiles of the Mg scII high-l ( Delta n = +1) transitions from n = 4 and 5 show an emission peak superposed on wider absorption trough, similar in form to the solar Mg scI lines, while for higher n, the profiles are in full emission. The strongest emission is predicted for transitions from n = 5, 6, and 7 and strongly increases for lower surface gravities where the rates of thermalizing collisions are lower. The emission strengths reach maxima of Flambda /Fc ~ 1.15 and Wlambda ~ -0.1 A. Transitions from higher n exhibit progressively lower continuum contrasts due to the steep rise with wavelength of the continuous opacity

  12. A NEAR-INFRARED STUDY OF THE STAR-FORMING REGION RCW 34

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Walt, D. J.; De Villiers, H. M.; Czanik, R. J.

    2012-07-15

    We report the results of a near-infrared imaging study of a 7.8 Multiplication-Sign 7.8 arcmin{sup 2} region centered on the 6.7 GHz methanol maser associated with the RCW 34 star-forming region using the 1.4 m IRSF telescope at Sutherland. A total of 1283 objects were detected simultaneously in J, H, and K for an exposure time of 10,800 s. The J - H, H - K two-color diagram revealed a strong concentration of more than 700 objects with colors similar to what is expected of reddened classical T Tauri stars. The distribution of the objects on the K versus Jmore » - K color-magnitude diagram is also suggestive that a significant fraction of the 1283 objects is made up of lower mass pre-main-sequence stars. We also present the luminosity function for the subset of about 700 pre-main-sequence stars and show that it suggests ongoing star formation activity for about 10{sup 7} years. An examination of the spatial distribution of the pre-main-sequence stars shows that the fainter (older) part of the population is more dispersed over the observed region and the brighter (younger) subset is more concentrated around the position of the O8.5V star. This suggests that the physical effects of the O8.5V star and the two early B-type stars on the remainder of the cloud out of which they formed could have played a role in the onset of the more recent episode of star formation in RCW 34.« less

  13. First Surface-resolved Results with the Infrared Optical Telescope Array Imaging Interferometer: Detection of Asymmetries in Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Traub, W. A.; Berger, J.-P.; Danchi, W. C.; Monnier, J. D.; Willson, L. A.; Carleton, N. P.; Lacasse, M. G.; Millan-Gabet, R.; Pedretti, E.; Schloerb, F. P.; Cotton, W. D.; Townes, C. H.; Brewer, M.; Haguenauer, P.; Kern, P.; Labeye, P.; Malbet, F.; Malin, D.; Pearlman, M.; Perraut, K.; Souccar, K.; Wallace, G.

    2006-11-01

    We have measured nonzero closure phases for about 29% of our sample of 56 nearby asymptotic giant branch (AGB) stars, using the three-telescope Infrared Optical Telescope Array (IOTA) interferometer at near-infrared wavelengths (H band) and with angular resolutions in the range 5-10 mas. These nonzero closure phases can only be generated by asymmetric brightness distributions of the target stars or their surroundings. We discuss how these results were obtained and how they might be interpreted in terms of structures on or near the target stars. We also report measured angular sizes and hypothesize that most Mira stars would show detectable asymmetry if observed with adequate angular resolution.

  14. The red/infrared evolution in galaxies - Effect of the stars on the asymptotic giant branch

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Wright, Edward L.

    1987-01-01

    The effect of including the asymptotic giant branch (AGB) population in a spectral synthesis model of galaxy evolution is examined. Stars on the AGB are luminous enough and also evolve rapidly enough to affect the evolution of red and infrared colors in galaxies. The validity of using infrared colors as distance indicators to galaxies is then investigated in detail. It is found that for z of 1 or less infrared colors of model galaxies behave linearly with redshift.

  15. Infrared colours and inferred masses of metal-poor giant stars in the Keplerfield

    NASA Astrophysics Data System (ADS)

    Casey, A. R.; Kennedy, G. M.; Hartle, T. R.; Schlaufman, Kevin C.

    2018-05-01

    Intrinsically luminous giant stars in the Milky Way are the only potential volume-complete tracers of the distant disk, bulge, and halo. The chemical abundances of metal-poor giants also reflect the compositions of the earliest star-forming regions, providing the initial conditions for the chemical evolution of the Galaxy. However, the intrinsic rarity of metal-poor giants combined with the difficulty of efficiently identifying them with broad-band optical photometry has made it difficult to exploit them for studies of the Milky Way. One long-standing problem is that photometric selections for giant and/or metal-poor stars frequently include a large fraction of metal-rich dwarf contaminants. We re-derive a giant star photometric selection using existing public g-band and narrow-band DDO51photometry obtained in the Keplerfield. Our selection is simple and yields a contamination rate of main-sequence stars of ≲1% and a completeness of about 80 % for giant stars with Teff ≲ 5250 K - subject to the selection function of the spectroscopic surveys used to estimate these rates, and the magnitude range considered (11 ≲ g ≲ 15). While the DDO51filter is known to be sensitive to stellar surface gravity, we further show that the mid-infrared colours of DDO51-selected giants are strongly correlated with spectroscopic metallicity. This extends the infrared metal-poor selection developed by Schlaufman & Casey, demonstrating that the principal contaminants in their selection can be efficiently removed by the photometric separation of dwarfs and giants. This implies that any similarly efficient dwarf/giant discriminant (e.g., Gaiaparallaxes) can be used in conjunction with WISEcolours to select samples of giant stars with high completeness and low contamination. We employ our photometric selection to identify three metal-poor giant candidates in the Keplerfield with global asteroseismic parameters and find that masses inferred for these three stars using standard

  16. Infrared Extinction and the Initial Conditions for Star and Planet Formation

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funded a research program to use infrared extinction measurements to probe the detailed structure of dark molecular clouds and investigate the physical conditions which give rise to star and planet formation. The goals of the this program were to: 1) acquire deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds, 2) reduce and analyze the data obtained in order to produce detailed extinction maps of the clouds, 3) use the results to measure and quantitatively describe the physical conditions of the dense gas and dust that produce stars and their accompanying planetary systems in molecular clouds. The goals of this project were met and exceeded as described below. 1) The infrared data for the project were obtained in a number of observing runs using the 3.5-meter NTT and 8-meter VLT telescopes of the European Southern Observatory in Chile and the 1.2-meter telescope of the Smithsonian Astrophysical Observatory in Arizona, the 1 0-meter Keck telescope in Hawaii, the 6.5-meter MMT of the Smithsonian Astrophysical Observatory in Arizona, and the NASA Hubble Space Telescope. The molecular-line data was obtained in three runs using the IRAM 30-meter telescope in Spain and one run with the ESO-15 meter millimeter-wave telescope in Chile. Millimeter-wave continuum measurements were obtained with the 15-meter JCMT in Hawaii. 2) Considerable effort was expended to reduce the infrared imaging observations including the development of custom software to produce high quality photometry and source astrometry. All the millimeter-line data was reduced using standard reduction routines. The highlights of the infrared analysis were the production of detailed extinction maps and the construction of profiles of the density structure of the B68, Coalsack, B335 and Lupus clouds. 3) The principal scientific accomplishments of this research program include the following: We were able to use our infrared observations to determine the

  17. Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies

    NASA Technical Reports Server (NTRS)

    Capuano, J. M., Jr.; Thronson, H. A., Jr.; Witt, A. N.

    1993-01-01

    The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions.

  18. Stars and reionization: the cross-correlation of the 21 cm line and the near-infrared background

    NASA Astrophysics Data System (ADS)

    Fernandez, Elizabeth R.; Zaroubi, Saleem; Iliev, Ilian T.; Mellema, Garrelt; Jelić, Vibor

    2014-05-01

    With improving telescopes, it may now be possible to observe the Epoch of Reionization in multiple ways. We examine two of these observables - the excess light in the near-infrared background that may be due to high-redshift stars and ionized HII bubbles, and the 21 cm emission from neutral hydrogen. Because these two forms of emission should result from different, mutually exclusive regions, an anticorrelation should exist between them. We discuss the strengths of using cross-correlations between these observations to learn more about high-redshift star formation and reionization history. In particular, we create simulated maps of emission from both the near-infrared background and 21 cm emission. We find that these observations are anticorrelated, with the strongest anticorrelation originating from times when the universe is half ionized. This result is robust and does not depend on the properties of the stars themselves. Rather, it depends on the ionization history. Cross-correlations can provide redshift information, which the near-infrared background cannot provide alone. In addition, cross-correlations can help separate foreground emission from the true high-redshift component, making it possible to say with greater certainty that we are indeed witnessing the Epoch of Reionization.

  19. Star Formation and AGN Activity in Ultraluminous Infrared Galaxies at z > 1.15

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Kartaltepe, J.

    2012-01-01

    We studied active galactic nucleus (AGN) activity and star formation in a sample of 52 luminous and ultraluminous infrared galaxies ((U)LIRGs) with 1.17 < z < 1.602 and LIR > 1011.5 Lsolar. ULIRGs get their extreme infrared luminosities from the heating of dust by star formation and/or AGN. Studies done in the local universe have revealed that all local ULIRGs are mergers (Sanders & Mirabel 1996), and have proposed evolutionary schemes in which early merger stages are dominated by starbursts, intermediate merger stages are dominated by starburst-AGN composite objects, and late merger stages are dominated by AGN (Yuan et al. 2010). They have also shown that most ULIRGs with LIR > 1012.4-12.5 Lsolar appear AGN-like (Tran et al. 2001). We used near infrared spectroscopy in order to determine whether these trends extend to high redshift, utilizing the [NII]/H-alpha and [OIII]/H-beta line ratios to plot our objects on a BPT diagram which classifies them as star forming, AGN, or composite. We find that many of the objects in our sample show evidence of mergers or interactions, and that all objects in our sample with LIR >1012.5 Lsolar are AGN or composite objects. Vivienne Baldassare was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  20. Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.

    Overview: Induced Star Formation and Interactions Introduction Historical Background: First Hints Systematic Studies: Starbursts Interactions and Nuclear activity IRAS and Ultralumious starburst Galaxies The 1990's: HST, Supercomputers, and the Distant Universe Key Questions and Issues Organization of Lectures Star Formation Properties of Normal Galaxies Observational Techniques Results: Star Formation in Normal Galaxies Interpretation: Star Formation Histories Global Star Formation in interacting Galaxies A Gallery of Interactions and Mergers Star Formation Statistics: Guilt By Association Tests SFRs in Interacting vs Noninteracting Galaxies Kinematic Properties and Regulation of SFRs Induced Nuclear Activity and Star Formation Background: Nuclear Spectra and Classification Nuclear Star Formation and Starbursts Nuclear Star Formation and Interactions Induced AGN Activity: Statistics of Seyfert Galaxies Environments of Quasars Kinematic Clues to the Triggering of AGNs Infrared Luminous Galaxies and Starbursts Background: IR Luminous Galaxies and IRAS Infrared Luminosity Function and Spectra Infrared Structure and Morphology Interstellar Gas X-Ray Emission and Superwinds Optical, UV, and Near-Infrared Spectra Radio Continuum Emission Evidence for Interactions and Mergers The Power Source: Starbursts or Dusty AGNs? Spectral Diagnostics of Starbursts Evolutionary Synthesis Models Applications: Integrated Colors of Interacting Galaxies Applications: Hα Emission, Colors, and SFRs Applications: Spectral Modelling of Evolved Starbursts Infrared Starbursts and the IMF in starbursts Triggering and Regulation of Star Formation: The Problem Introduction: Star Formation as a Nonlinear Process The schmidt Law in Normal Galaxies Star Formation Regimes in Interacting Galaxies Summary Triggering and Regulation of Starbusts: Theoretical Ideas Gravitational Star Formation Thresholds Cloud Collision Models Radial Transport of Gas: Clues from Barred Galaxies Simulations of Starbursts

  1. Extinction and Star Formation Study in Molecular Clouds with DENIS infrared data and USNO optical data

    NASA Astrophysics Data System (ADS)

    Cambrésy, Laurent

    1999-11-01

    This thesis consists in a study of molecular clouds, essentially of the point of view of the interstellar environment, but also of the one of the star formation. The original method to estimate extinction presented here is based on adaptive star counts as well as on a wavelet decomposition. For the first time, an extinction map of the whole sky is proposed (USNO-PMM optical data). Access to very large field maps offers the opportunity to analyze the interstellar matter distribution in various environments. A first result is that the contained mass in regions for which AV > 1 would not exceed half of the total cloud mass. Using DENIS data, it becomes possible to probe dense regions of clouds. For instance, star counts in the Chamaeleon complex show cores which were not resolved before. Moreover, the selection of stars with a strong infrared excess yields about fifty T Tauri candidates. From their luminosity function, I derived the average lifetime of circumstellar disc of low--mass stars: ~4cdot 106 years. It is difficult to understand the relation between extinction and molecular emission, but it appears clearly that molecular emission is a bad estimator of the column density for low extinction area. Actually, thresholds exist in the CO detection and I conclude that photodissociation, density and cloud geometry have important consequences on the CO emission when AV < 2. Investigation of the relation between extinction and far--infrared emission in Polaris leads to a four times larger emissivity in cold areas than in hot areas. This result explains the low temperatures in this cloud and implies severe restrictions concerning the use of far--infrared fluxes as an extinction estimator.

  2. The Near-Infrared Na I Doublet Feature in M Stars

    NASA Astrophysics Data System (ADS)

    Schiavon, R. P.; Barbuy, B.; Rossi, S. C. F.; Milone; A.

    1997-04-01

    The Na I near-infrared feature has been used to indicate the dwarf/giant population in composite systems, but its interpretation is still an issue of contention. In order to try to understand the behavior of this controversial feature, we study the spectra of cool stars by means of both observed and synthetic spectra. We conclude that the Na I infrared feature can be used as a dwarf/giant indicator. We propose a modified definition of the Na I index by defining a red continuum at 8234 Å and by measuring the equivalent width in the range 8172-8197 Å, avoiding the region at λ > 8197 Å, which contains V I, Zr I, Fe I, and TiO lines. Observations collected at the European Southern Observatory, La Silla, Chile.

  3. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less

  4. Design of an infrared camera based aircraft detection system for laser guide star installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, H.; Macintosh, B.

    1996-03-05

    There have been incidents in which the irradiance resulting from laser guide stars have temporarily blinded pilots or passengers of aircraft. An aircraft detection system based on passive near infrared cameras (instead of active radar) is described in this report.

  5. Peering into the heart of galactic star formation: A detailed characterization of infrared-dark clouds

    NASA Astrophysics Data System (ADS)

    Ragan, Sarah E.

    2009-09-01

    Everything we know about other galaxies is based on light from massive stars, yet, in our own Galaxy, it's the formation of massive stars that is the least understood. Star formation studies to date have focused on nearby, low-mass regions, but the bulk of star formation takes place in massive clusters, which takes place primarily in the inner-Galaxy, where the bulk of the molecular gas resides. To learn about the conditions under which massive clusters form, we seek out their precursors, called infrared-dark clouds (IRDCs). We present the results of a high-resolution multi-wavelength observational study of IRDCs, which vastly improves our knowledge of the initial conditions of cluster formation. Beginning with IRDC candidates identified with Midcourse Science Experiment (MSX) survey data, we map 41 IRDCs in the N 2 H + 1 [arrow right] 0, CS 2 [arrow right] 1 and C 18 O 1 [arrow right] 0 molecular transitions using the Five College Radio Astronomy Observatory. We examine the stellar content and absorption structure with Spitzer Space Telescope observations of eleven IRDCs, and we use Very Large Array NH 3 observations to probe the kinematics and chemistry of six IRDCs. Our comprehensive high-resolution study of IRDCs confirms that these objects are cold and dense precursors to massive stars and clusters. For the first time. we quantify IRDC sub-structure on sub-parsec scales and show the kinematic structure of IRDCs is diverse and depends on associated local star- formation activity. Overall, IRDCs exhibit non-thermal dynamics, suggesting that turbulence and systematic motions dominate. IRDC temperatures are between 8 and 16 K and are mostly flat with hints of a rise near the edges due to external heating. This study shows that IRDCs are a unique star-forming environment, one that dominates the star formation in the Milky Way. Using high-resolution observations, we have quantified the structure, star formation, kinematics, and chemistry of infrared-dark clouds. Our

  6. A near-infrared tip-tilt sensor for the Keck I laser guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Wizinowich, Peter; Smith, Roger; Biasi, Roberto; Cetre, Sylvain; Dekany, Richard; Femenia-Castella, Bruno; Fucik, Jason; Hale, David; Neyman, Chris; Pescoller, Dietrich; Ragland, Sam; Stomski, Paul; Andrighettoni, Mario; Bartos, Randy; Bui, Khanh; Cooper, Andrew; Cromer, John; van Dam, Marcos; Hess, Michael; James, Ean; Lyke, Jim; Rodriguez, Hector; Stalcup, Thomas

    2014-07-01

    The sky coverage and performance of laser guide star (LGS) adaptive optics (AO) systems is limited by the natural guide star (NGS) used for low order correction. This limitation can be dramatically reduced by measuring the tip and tilt of the NGS in the near-infrared where the NGS is partially corrected by the LGS AO system and where stars are generally several magnitudes brighter than at visible wavelengths. We present the design of a near-infrared tip-tilt sensor that has recently been integrated with the Keck I telescope's LGS AO system along with some initial on-sky results. The implementation involved modifications to the AO bench, real-time control system, and higher level controls and operations software that will also be discussed. The tip-tilt sensor is a H2RG-based near-infrared camera with 0.05 arc second pixels. Low noise at high sample rates is achieved by only reading a small region of interest, from 2×2 to 16×16 pixels, centered on an NGS anywhere in the 100 arc second diameter field. The sensor operates at either Ks or H-band using light reflected by a choice of dichroic beamsplitters located in front of the OSIRIS integral field spectrograph.

  7. An image quality comparison study between XVI and OBI CBCT systems.

    PubMed

    Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R

    2011-02-04

    The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.

  8. Spitzer SAGE-Spec: Near infrared spectroscopy, dust shells, and cool envelopes in extreme Large Magellanic Cloud asymptotic giant branch stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, R. D.; Srinivasan, S.; Kemper, F.

    2014-11-01

    K-band spectra are presented for a sample of 39 Spitzer Infrared Spectrograph (IRS) SAGE-Spec sources in the Large Magellanic Cloud. The spectra exhibit characteristics in very good agreement with their positions in the near-infrared—Spitzer color-magnitude diagrams and their properties as deduced from the Spitzer IRS spectra. Specifically, the near-infrared spectra show strong atomic and molecular features representative of oxygen-rich and carbon-rich asymptotic giant branch stars, respectively. A small subset of stars was chosen from the luminous and red extreme ''tip'' of the color-magnitude diagram. These objects have properties consistent with dusty envelopes but also cool, carbon-rich ''stellar'' cores. Modest amountsmore » of dust mass loss combine with the stellar spectral energy distribution to make these objects appear extreme in their near-infrared and mid-infrared colors. One object in our sample, HV 915, a known post-asymptotic giant branch star of the RV Tau type, exhibits CO 2.3 μm band head emission consistent with previous work that demonstrates that the object has a circumstellar disk.« less

  9. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  10. Parameterizing the Dust Around Herbig Ae/Be Stars: Multiwavelength Imaging, Radiative Transfer Modeling, and Near-Infrared Instrumentation

    NASA Astrophysics Data System (ADS)

    Doering, Ryan L.

    2009-01-01

    Determining Herbig Ae/Be star dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation talk, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two-component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r-0.5 and r-1.8, giving disk dust masses of 3.0 x 10-4 and 5.9 x 10-5 Msun for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. Furthermore, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared ( 0.8 - 2.5 microns), includes 13 filters, and has a pixel size of 0.1 arcsec, resulting in a field of view of 3 arcmin x 3 arcmin. An angular resolution of 0.25 arcsec is anticipated. I provide an overview of the instrument and report performance results.

  11. DUST AROUND R CORONAE BOREALIS STARS. II. INFRARED EMISSION FEATURES IN AN H-POOR ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Hernandez, D. A.; Rao, N. Kameswara; Lambert, D. L., E-mail: agarcia@iac.es, E-mail: nkrao@iiap.res.in, E-mail: dll@astro.as.utexas.edu

    2013-08-20

    Residual Spitzer/Infrared Spectrograph spectra for a sample of 31 R Coronae Borealis (RCB) stars are presented and discussed in terms of narrow emission features superimposed on the quasi-blackbody continuous infrared emission. A broad {approx}6-10 {mu}m dust emission complex is seen in the RCBs showing an extreme H-deficiency. A secondary and much weaker {approx}11.5-15 {mu}m broad emission feature is detected in a few RCBs with the strongest {approx}6-10 {mu}m dust complex. The Spitzer infrared spectra reveal for the first time the structure within the {approx}6-10 {mu}m dust complex, showing the presence of strong C-C stretching modes at {approx}6.3 and 8.1 {mu}mmore » as well as of other dust features at {approx}5.9, 6.9, and 7.3 {mu}m, which are attributable to amorphous carbonaceous solids with little or no hydrogen. The few RCBs with only moderate H-deficiencies display the classical ''unidentified infrared bands (UIRs)'' and mid-infrared features from fullerene-related molecules. In general, the characteristics of the RCB infrared emission features are not correlated with the stellar and circumstellar properties, suggesting that the RCB dust features may not be dependent on the present physical conditions around RCB stars. The only exception seems to be the central wavelength of the 6.3 {mu}m feature, which is blueshifted in those RCBs showing also the UIRs, i.e., the RCBs with the smallest H deficiency.« less

  12. A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph

    DTIC Science & Technology

    2006-10-23

    spectral features, MSX SMC 029, in the Small Magellanic Cloud (SMC) usimg the low-resolution modules of the Infrared Spectrograph on the Spitzer Space ...029, in the Small Magellanic Cloud (SMC) using the low-resolution modules of the Infrared Spectrograph on the Spitzer Space Telescope. A cool dust... outer atmosphere expands and pulsates, pushing gas away from the star where it can cool and condense into dust grains. The resulting circumstellar dust

  13. Far-infrared properties of flare stars and dM stars

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Stencel, R. E.; Backman, D. E.

    1989-01-01

    Results are reported from a search of the IRAS data base for flare stars and for a control sample of dM stars. At 12 microns, 70-80 percent of both samples have been detected. The K-12 colors of flare stars are significantly different from those of dM stars: for a given K magnitude, a flare star is about 70 percent brighter at 12 microns than a dM star. At 100 microns, 27 percent of the flare stars which are sources at 12 microns have been detected, while none of the comparable dM stars has been detected. Implications for microflaring are discussed.

  14. AGN contamination in total infrared determined star formation rates in dusty galaxies at z~2-3

    NASA Astrophysics Data System (ADS)

    Mazzei, Renato; Sharon, Chelsea E.; Riechers, Dominik

    2017-01-01

    Along with theoretical work that suggests feedback from active galactic nuclei (AGN) may quench star formation in massive galaxies, the temporal coincidence between the peak of cosmic star formation rates and black hole accretion rates suggests that AGN are common in star forming galaxies at z~2-3. Since star forming galaxies at these epochs are also very dusty, it is important that we correct galaxies’ long-wavelength properties for the presence of dust-obscured AGN in order to accurately capture their star formation rates and gas characteristics. We present a spectral energy distribution (SED) analysis of several un-lensed z~2-3 dusty star-forming galaxies from Pope et al. (2008) and Coppin et al. (2010), which we compare to several other high-z starbursts with well sampled SEDs. We constructed dust SEDs from existing Spitzer, Herschel, and SCUBA-2 photometry catalogues with data between 3.6 and 850 μm. For the SED fits, we used the Code Investigating GALaxy Emission (CIGALE), since it self-consistently determines the dust attenuation of stars and dust emission in the infrared in addition to determining the dust emission from obscured AGN (Noll et al. 2009; Serra et al. 2011). Our best-fit SEDs have typical reduced χ2 values between 0.2 and ~3. We use the output from CIGALE to determine the fraction of the total infrared luminosity (LTIR 8-1000 um) from star formation and from any potential obscured AGN. In order to examine the effects of buried AGN on the integrated Schmidt-Kennicutt relation (log(LTIR) vs. log(L'CO)), we compare our new LTIR to recently obtained CO(1-0) line luminosities from the Karl G. Jansky Very Large Array. Unaccounted for dust emission from AGN can artificially inflate the star formation rate inferred from LTIR, and may therefore offset starburst galaxies from the local Schmidt-Kennicutt relation and increase the slope of the relation, which can affect the inferred drivers of star formation.

  15. Near-infrared counterparts of three transient very faint neutron star X-ray binaries

    NASA Astrophysics Data System (ADS)

    Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.

    2017-10-01

    We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.

  16. How dusty is α Centauri?. Excess or non-excess over the infrared photospheres of main-sequence stars

    NASA Astrophysics Data System (ADS)

    Wiegert, J.; Liseau, R.; Thébault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims: We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, Tmin, of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that Tmin may have on the detectability of unresolved dust discs around other stars. Methods: We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results: For solar-type stars more distant than α Cen, a fractional dust luminosity fd ≡ Ldust/Lstar 2 × 10-7 could account for SEDs that do not exhibit the Tmin effect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to fd (1-3) × 10-5, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲4 × 10-6 M≤ftmoon of 4 to 1000 μm size

  17. The Star Formation Reference Survey - II. Activity demographics and host-galaxy properties for infrared-selected galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2018-04-01

    We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.

  18. Calibrating Star Formation in WISE Using Total Infrared Luminosity

    NASA Astrophysics Data System (ADS)

    Cluver, M. E.; Jarrett, T. H.; Dale, D. A.; Smith, J.-D. T.; August, Tamlyn; Brown, M. J. I.

    2017-11-01

    We present accurate resolved WISE photometry of galaxies in the combined SINGS and KINGFISH sample. The luminosities in the W3 12 μm and W4 23 μm bands are calibrated to star formation rates (SFRs) derived using the total infrared luminosity, avoiding UV/optical uncertainties due to dust extinction corrections. The W3 relation has a 1σ scatter of 0.15 dex that is over nearly 5 orders of magnitude in SFR and 12 μm luminosity, and a range in host stellar mass from dwarfs (107 {M}⊙ ) to ˜ 3× {M}{\\star } (1011.5 {M}⊙ ) galaxies. In the absence of deep silicate absorption features and powerful active galactic nuclei, we expect this to be a reliable SFR indicator chiefly due to the broad nature of the W3 band. By contrast, the W4 SFR relation shows more scatter (1σ =0.18 dex). Both relations show reasonable agreement with radio-continuum-derived SFRs and excellent accordance with so-called “hybrid” Hα + 24 μm and FUV+24 μm indicators. Moreover, the WISE SFR relations appear to be insensitive to the metallicity range in the sample. We also compare our results with IRAS-selected luminous infrared galaxies, showing that the WISE relations maintain concordance, but systematically deviate for the most extreme galaxies. Given the all-sky coverage of WISE and the performance of the W3 band as an SFR indicator, the {L}12μ {{m}} SFR relation could be of great use to studies of nearby galaxies and forthcoming large-area surveys at optical and radio wavelengths.

  19. GROUND-BASED Paα NARROW-BAND IMAGING OF LOCAL LUMINOUS INFRARED GALAXIES. I. STAR FORMATION RATES AND SURFACE DENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro

    2015-03-15

    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with thosemore » from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.« less

  20. The UK Infrared Telescope M 33 monitoring project - V. The star formation history across the galactic disc

    NASA Astrophysics Data System (ADS)

    Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib G.; Tabatabaei, Fatemeh; Hamedani Golshan, Roya; Rashidi, Maryam

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope of the Local Group spiral galaxy M 33 (Triangulum). On the basis of their variability, we have identified stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. In this fifth paper of the series, we construct the birth mass function and hence derive the star formation history across the galactic disc of M 33. The star formation rate has varied between ˜0.010 ± 0.001 (˜0.012 ± 0.007) and 0.060±0.005 (0.052±0.009) M⊙ yr-1 kpc-2 statistically (systematically) in the central square kiloparsec of M 33, comparable with the values derived previously with another camera. The total star formation rate in M 33 within a galactocentric radius of 14 kpc has varied between ˜0.110 ± 0.005 (˜0.174 ± 0.060) and ˜0.560 ± 0.028 (˜0.503 ± 0.100) M⊙ yr-1 statistically (systematically). We find evidence of two epochs during which the star formation rate was enhanced by a factor of a few - one that started ˜6 Gyr ago and lasted ˜3 Gyr and produced ≥71 per cent of the total mass in stars, and one ˜250 Myr ago that lasted ˜200 Myr and formed ≤13 per cent of the mass in stars. Radial star formation history profiles suggest that the inner disc of M 33 was formed in an inside-out formation scenario. The outskirts of the disc are dominated by the old population, which may be the result of dynamical effects over many Gyr. We find correspondence to spiral structure for all stars, but enhanced only for stars younger than ˜100 Myr; this suggests that the spiral arms are transient features and not a part of a global density wave potential.

  1. Research on camera on orbit radial calibration based on black body and infrared calibration stars

    NASA Astrophysics Data System (ADS)

    Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng

    2018-05-01

    Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.

  2. Structure of the Large Magellanic Cloud from near infrared magnitudes of red clump stars

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Subramaniam, A.

    2013-04-01

    Context. The structural parameters of the disk of the Large Magellanic Cloud (LMC) are estimated. Aims: We used the JH photometric data of red clump (RC) stars from the Magellanic Cloud Point Source Catalog (MCPSC) obtained from the InfraRed Survey Facility (IRSF) to estimate the structural parameters of the LMC disk, such as the inclination, i, and the position angle of the line of nodes (PAlon), φ. Methods: The observed LMC region is divided into several sub-regions, and stars in each region are cross-identified with the optically identified RC stars to obtain the near infrared magnitudes. The peak values of H magnitude and (J - H) colour of the observed RC distribution are obtained by fitting a profile to the distributions and by taking the average value of magnitude and colour of the RC stars in the bin with largest number. Then the dereddened peak H0 magnitude of the RC stars in each sub-region is obtained from the peak values of H magnitude and (J - H) colour of the observed RC distribution. The right ascension (RA), declination (Dec), and relative distance from the centre of each sub-region are converted into x,y, and z Cartesian coordinates. A weighted least square plane fitting method is applied to this x,y,z data to estimate the structural parameters of the LMC disk. Results: An intrinsic (J - H)0 colour of 0.40 ± 0.03 mag in the Simultaneous three-colour InfraRed Imager for Unbiased Survey (SIRIUS) IRSF filter system is estimated for the RC stars in the LMC and a reddening map based on (J - H) colour of the RC stars is presented. When the peaks of the RC distribution were identified by averaging, an inclination of 25°.7 ± 1°.6 and a PAlon = 141°.5 ± 4°.5 were obtained. We estimate a distance modulus, μ = 18.47 ± 0.1 mag to the LMC. Extra-planar features which are both in front and behind the fitted plane are identified. They match with the optically identified extra-planar features. The bar of the LMC is found to be part of the disk within 500

  3. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  4. The VLA-COSMOS 3 GHz Large Project: The infrared-radio correlation of star-forming galaxies and AGN to z ≲ 6

    NASA Astrophysics Data System (ADS)

    Delhaize, J.; Smolčić, V.; Delvecchio, I.; Novak, M.; Sargent, M.; Baran, N.; Magnelli, B.; Zamorani, G.; Schinnerer, E.; Murphy, E. J.; Aravena, M.; Berta, S.; Bondi, M.; Capak, P.; Carilli, C.; Ciliegi, P.; Civano, F.; Ilbert, O.; Karim, A.; Laigle, C.; Le Fèvre, O.; Marchesi, S.; McCracken, H. J.; Salvato, M.; Seymour, N.; Tasca, L.

    2017-06-01

    We examine the behaviour of the infrared-radio correlation (IRRC) over the range 0 infrared data from the Herschel Space Observatory in the 2 deg2 COSMOS field. We distinguish between objects where emission is believed to arise solely from star-formation, and those where an active galactic nucleus (AGN) is thought to be present. We account for non-detections in the radio or in the infrared using a doubly-censored survival analysis. We find that the IRRC of star-forming galaxies, quantified by the infrared-to-1.4 GHz radio luminosity ratio (qTIR), decreases with increasing redshift: qTIR(z) = (2.88 ± 0.03)(1 + z)- 0.19 ± 0.01. This is consistent with several previous results from the literature. Moderate-to-high radiative luminosity AGN do not follow the same qTIR(z) trend as star-forming galaxies, having a lower normalisation and steeper decrease with redshift. We cannot rule out the possibility that unidentified AGN contributions only to the radio regime may be steepening the observed qTIR(z) trend of the star-forming galaxy population. We demonstrate that the choice of the average radio spectral index directly affects the normalisation, as well as the derived trend with redshift of the IRRC. An increasing fractional contribution to the observed 3 GHz flux by free-free emission of star-forming galaxies may also affect the derived evolution. However, we find that the standard (M82-based) assumption of the typical radio spectral energy distribution (SED) for star-forming galaxies is inconsistent with our results. This suggests a more complex shape of the typical radio SED for star-forming galaxies, and that imperfect K corrections in the radio may govern the derived trend of decreasing qTIR with increasing redshift. A more detailed understanding of the radio spectrum is therefore required for robust K corrections in the radio and to fully understand the

  5. The SUNBIRD survey: characterizing the super star cluster populations of intensely star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Randriamanakoto, Zara; Väisänen, Petri

    2017-03-01

    Super star clusters (SSCs) represent the youngest and most massive form of known gravitationally bound star clusters in the Universe. They are born abundantly in environments that trigger strong and violent star formation. We investigate the properties of these massive SSCs in a sample of 42 nearby starbursts and luminous infrared galaxies. The targets form the sample of the SUperNovae and starBursts in the InfraReD (SUNBIRD) survey that were imaged using near-infrared (NIR) K-band adaptive optics mounted on the Gemini/NIRI and the VLT/NaCo instruments. Results from i) the fitted power-laws to the SSC K-band luminosity functions, ii) the NIR brightest star cluster magnitude - star formation rate (SFR) relation and iii) the star cluster age and mass distributions have shown the importance of studying SSC host galaxies with high SFR levels to determine the role of the galactic environments in the star cluster formation, evolution and disruption mechanisms.

  6. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harborsmore » an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.« less

  7. Star formation in the inner galaxy: A far-infrared and radio study of two H2 regions

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Dinerstein, H. L.; Werner, M. W.; Harvey, P. M.; Evans, N. J.; Brown, R. L.

    1985-01-01

    Far-infrared and radio continuum maps have been made of the central 6' of the inner-galaxy HII regions G30.8-0.0 (in the W43 complex) and G25.4-0.2, along with radio and molecular line measurements at selected positions. The purpose of this study is an effort to understand star formation in the molecular ring at 5 kpc in galactic radius. Measurements at several far infrared wavelengths allow the dust temperature structures and total far infrared fluxes to be determined. Comparison of the radio and infrared maps shows a close relationship between the ionized gas and the infrared-emitting material. There is evidence that parts of G30.8 are substantially affected by extinction, even at far-infrared wavelengths. Using radio recombination line and CO line data for G25.4-0.2, the distance ambiguity for this source is resolved. The large distance previously ascribed to the entire complex is found to apply to only one of the two main components. The confusion in distance determination is found to result from an extraordinary near-superposition of two bright HII regions. Using the revised distances of 4.3 kpc for G25.4SE and 12 kpc for G25.4NW, it is found that the latter, which is apparently the fainter of the two sources, is actually the more luminous. The ratio of total luminosity to ionizing luminosity is very similar to that of HII regions in the solar circle. Assuming a coeval population of ionizing stars, a normal initial mass function is indicated.

  8. The Evolution of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Chan, S. Josephine

    1993-04-01

    This dissertation is concerned with the nature of the carbon stars, unusual late-type stars in which the abundance of carbon in the photosphere is greater than that of oxygen. Data from the Infrared Astronomical Satellite (IRAS) survey has shown that carbon stars which were identified from optical surveys and those identified from the SiC dust features in their IRAS Low Resolution Spectrometer LRS spectra have different IRAS colours. The former (which will be referred to as visual carbon stars) are visually bright and have large excesses at 6 microns, while the latter group (which will be referred to as infrared carbon stars) have blackbody energy distributions. The origin of visual carbon stars has been discussed by Chan and Kwok (1988) based on the hypothesis of Willems and de Jong (1988). A complete sample of visual carbon stars detected by IRAS with 12 microns flux densities greater than 5 Jy was selected, and 207 LRS spectra were extracted for those sources without previous \\lrs data. Of these, 152 sources had new LRS spectra with reasonably good signal-to-noise ratio and 575 sources had previously released LRS spectra. All these spectra have been classified with the scheme of Volk and Cohen (1989). When the LRS spectra of these 727 IRAS CCGCS sources were examined, 15 were found to show the 9.7 microns silicate emission feature which is expected to occur only in an oxygen-rich circumstellar shell. Eight of these are reported for the first time in this dissertation. This group of visual carbon stars (hereafter called silicate carbon stars) may represent transition objects between oxygen-rich and carbon stars on the asymptotic giant branch (AGB) because the photosphere is carbon-rich while the circumstellar material resembles that from a typical M-type star. A radiative transfer dust shell model for these silicate carbon stars is presented. The model spectra produce excellent fits to the observed energy distributions of these silicate carbon stars. The J

  9. Missing GRB host galaxies in deep mid-infrared observations: implications on the use of GRBs as star formation tracers

    NASA Astrophysics Data System (ADS)

    Le Floc'h, Emeric; Charmandaris, Vassilis; Forrest, Bill; Mirabel, Félix; Armus, Lee; Devost, Daniel

    2006-05-01

    We report on the first mid-infrared observations of 16 GRB host galaxies performed with the Spitzer Space Telescope, and investigate the presence of evolved stellar populations and dust-enshrouded star-forming activity associated with GRBs. Only a very small fraction of our sample is detected by Spitzer, which is not consistent with recent works suggesting the presence of a GRB host population dominated by massive and strongly-starbursting galaxies (SFR >~ 100Msolaryr-1). Should the GRB hosts be representative of star-forming galaxies at high redshift, models of galaxy evolution indicate that >~ 50% of GRB hosts would be easily detected at the depth of our mid-infrared observations. Unless our sample suffers from a strong observational bias which remains to be understood, we infer in this context that the GRBs identified with the current techniques can not be directly used as unbiased probes of the global and integrated star formation history of the Universe.

  10. Field Red Horizontal Branch Star Chemical Compositions from High Resolution Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Sneden, Chris; Afsar, Melike; Bozkurt, Zeynep; Bocek-Topcu, Gamze; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; Kidder, Benjamin; McLane, Jacob

    2017-06-01

    We have observed three field red horizontal branch stars with the Immersion Grating Infrared Spectrograph (IGRINS). The high resolution (R~45000) high signal-to-noise (S/N > 200) spectra obtained with IGRINS cover the complete H-band (1.50-1.80 micron) and K-band (1.90-2.45 micron). We analyzed hundreds of lines of the ubiquitous OH, CN, and CO molecular bands, and found more than 80 lines of atomic species that were useful for abundance work. A combination of good laboratory transition probabilities (when available) and ones derived from reverse solar analyses were employed. Our transition data were checked through studies of the Arcturus Atlas spectrum. We derived abundances from synthetic spectra instead of from equivalent widths. With IGRINS data we were able to extract metallicities and abundance ratios for more than 20 elements, including several not detectable or poorly represented in optical wavelength regions. Our abundances from IGRINS spectra are in excellent accord with those derived from optical spectrum studies. These results are directly applicable to calibrations of results from lower-resolution and/or S/N infrared spectral surveys. IGRINS observations will give high reolution spectroscopic access to heavily obscured normal red giants and other cool stars with unusual element mixes.This work used the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation (NSF; grant AST-1229522), of the University of Texas at Austin, and of the Korean GMT Project of KASI. Our project also has been supported by NSF grants AST~1211585 and AST~1616040, by the University of Texas Rex G. Baker, Jr. Centennial Research Endowment, and by The Scientific and Technological Research Council of Turkey (TUBITAK, project No. 112T929).

  11. Origins Space Telescope: 3D infrared surveys of star formation and black hole growth in galaxies over cosmic time

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Armus, Lee; bradford, charles; Origins Space Telescope STDT

    2018-01-01

    In the coming decade, new telescope facilities and surveys aim to provide a 3D map of the unobscured Universe over cosmic time. However, much of galaxy formation and evolution occurs behind dust, and is only observable through infrared observations. Previous extragalactic infrared surveys were fundamentally limited to a 2D mapping of the most extreme populations of galaxies due to spatial resolution and sensitivity. The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies sponsored by NASA to provide input to the 2020 Astronomy and Astrophysics Decadal survey. OST is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum, which will achieve spectral line sensitivities up to 1000 times deeper than previous infrared facilities. With powerful instruments such as the Medium Resolution Survey Spectrometer (MRSS), capable of simultaneous imaging and spectroscopy, the extragalactic infrared sky can finally be surveyed in 3D. In addition to spectroscopic redshifts, the rich suite of lines in the infrared provides unique diagnostics of the ongoing star formation (both obscured and unobscured) and the central supermassive black hole growth. In this poster, we present a simulated extragalactic survey with OST/MRSS which will detect millions of galaxies down to well below the knee of the infrared luminosity function. We demonstrate how this survey can map the coeval star formation and black hole growth in galaxies over cosmic time.

  12. Mid-infrared spectroscopy of disks around classical T Tauri stars

    NASA Astrophysics Data System (ADS)

    Forrest, W. J.; Sargent, B.; Furlan, E.; Chen, C. H.; Kemper, F.; Calvet, N.; Hartmann, L.; Uchida, K. I.; Watson, D. M.; Green, J. D.; Keller, L. D.; Sloan, G. C.; Herter, T. L.; Brandl, B. R.; Houck, J. R.; Barry, D. J.; Hall, P.; Morris, P. W.; Najita, J.; Myers, P. C.; D'Alessio, P.; Jura, M.

    2004-05-01

    We present the first Spitzer Infrared Spectrograph* observations of the disks around classical T Tauri stars: spectra in the 5.3-30 micron range of six stars that appear not to be members of close binary systems. The spectra are dominated by emission features from amorphous silicate dust, and a continuous component from 5 to 8 microns that in most cases comprises an excess above the photosphere throughout our spectral range. There is considerable variation in the silicate feature/continuum ratio, which implies variations of inclination, disk flaring, and stellar mass accretion rate. In some of our stars, structure in the silicate feature suggests the presence of a crystalline component, somewhat surprising for objects this young (1-2 Myr). In one, CoKu Tau 4, no excess above the photosphere appears at wavelengths shortward of the silicate features, similar to 10 Myr old TW Hya, TWA 3 and HR 4796A. This indicates a truncation of the inner the disk, a feature suggestive of gravitational influence by planets or close stellar companions; CoKu Tau 4 would be the first star in the million-year-old age range in which such a central clearing is found. * The IRS was a collaborative venture between Cornell University and Ball Aerospace Corporation funded by NASA through the Jet Propulsion Laboratory and the Ames Research Center. This work is based [in part] on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA through Contract Number 1257184 issued by JPL/Caltech. Support for this work was provided by NASA through the Spitzer Fellowship Program, under award 011 808-001.

  13. Low-Resolution Near-infrared Stellar Spectra Observed by the Cosmic Infrared Background Experiment (CIBER)

    NASA Astrophysics Data System (ADS)

    Kim, Min Gyu; Lee, Hyung Mok; Arai, Toshiaki; Bock, James; Cooray, Asantha; Jeong, Woong-Seob; Kim, Seong Jin; Korngut, Phillip; Lanz, Alicia; Lee, Dae Hee; Lee, Myung Gyoon; Matsumoto, Toshio; Matsuura, Shuji; Nam, Uk Won; Onishi, Yosuke; Shirahata, Mai; Smidt, Joseph; Tsumura, Kohji; Yamamura, Issei; Zemcov, Michael

    2017-02-01

    We present near-infrared (0.8-1.8 μm) spectra of 105 bright ({m}J < 10) stars observed with the low-resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment. As our observations are performed above the Earth's atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All-Sky Survey photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.

  14. Infra-Red Characteristics of Faint Galactic Carbon Stars from the First Byurakan Spectral Sky Survey

    NASA Astrophysics Data System (ADS)

    Kostandyan, G. R.; Gigoyan, K. S.

    2017-07-01

    Infra-Red (IR) astronomical databases, namely, IRAS, 2MASS, WISE, and Spitzer, are used to analyze photometric data of 126 carbon (C) stars whose spectra are visible in the First Byurakan Survey (FBS) (Markarian et al. 1989) low-resolution (lr) spectral plates. In this work several IR color-color diagrams are studied. Early and late-type C stars are separated in the JHK Near-Infra-Red (NIR) color-color plots, as well as in the WISE W3-W4 versus W1-W2 diagram. Late N-type Asymptotic Giant Branch (AGB) stars are redder in W1-W2, while early-types (CH and R giants) are redder in W3-W4 as expected. Objects with W2-W3 > 1.0m show double-peaked spectral energy distribution (SED), indicating the existence of the circumstellar envelopes around them. 26 N-type stars have IRAS Point Source Catalog (PSC) associations. The reddest object among the targets is N-type C star FBS 2213+421, which belong to the group of the cold post-AGB R Coronae Borealis (R CrB) variables (Rossi et al. 2016).

  15. Far-infrared observations of a star-forming region in the Corona Australis dark cloud

    NASA Technical Reports Server (NTRS)

    Cruz-Gonzalez, I.; Mcbreen, B.; Fazio, G. G.

    1984-01-01

    A high-resolution far-IR (40-250-micron) survey of a 0.9-sq-deg section of the core region of the Corona Australis dark cloud (containing very young stellar objects such as T Tauri stars, Herbig Ae and Be stars, Herbig-Haro objects, and compact H II regions) is presented. Two extended far-IR sources were found, one associated with the Herbig emission-line star R CrA and the other with the irregular emission-line variable star TY CrA. The two sources have substantially more far-IR radiation than could be expected from a blackbody extrapolation of their near-IR fluxes. The total luminosities of these sources are 145 and 58 solar luminosity, respectively, implying that the embedded objects are of intermediate or low mass. The infrared observations of the sources associated with R CrA and TY CrA are consistent with models of the evolution of protostellar envelopes of intermediate mass. However, the TY CrA source appears to have passed the evolutionary stage of expelling most of the hot dust near the central source, yielding an age of about 1 Myr.

  16. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  17. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bethermin, M.; Bielewicz, P.; Blagrave, K.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Kalberla, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Welikala, N.; White, M.; White, S. D. M.; Winkel, B.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We present new measurements of cosmic infrared background (CIB) anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross-frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to compute the CIB power spectrum and bispectrum are about 2240 and 4400 deg2, respectively. After careful removal of the contaminants (cosmic microwave background anisotropies, Galactic dust, and Sunyaev-Zeldovich emission), and a complete study of systematics, the CIB power spectrum is measured with unprecedented signal to noise ratio from angular multipoles ℓ ~ 150 to 2500. The bispectrum due to the clustering of dusty, star-forming galaxies is measured from ℓ ~ 130 to 1100, with a total signal to noise ratio of around 6, 19, and 29 at 217, 353, and 545 GHz, respectively. Two approaches are developed for modelling CIB power spectrum anisotropies. The first approach takes advantage of the unique measurements by Planck at large angular scales, and models only the linear part of the power spectrum, with a mean bias of dark matter haloes hosting dusty galaxies at a given redshift weighted by their contribution to the emissivities. The second approach is based on a model that associates star-forming galaxies with dark matter haloes and their subhaloes, using a parametrized relation between the dust-processed infrared luminosity and (sub-)halo mass. The two approaches simultaneously fit all auto- and cross-power spectra very well. We find that the star formation history is well constrained up to redshifts around 2, and agrees with recent estimates of the obscured star-formation density using Spitzer and Herschel. However, at higher redshift, the accuracy of the star formation history measurement is strongly degraded by the uncertainty in the spectral energy distribution of CIB galaxies. We also find that the mean halo mass which is most efficient at hosting star formation is log (Meff/M⊙) = 12

  18. A SIMPLE CONNECTION BETWEEN THE NEAR- AND MID-INFRARED EMISSION OF GALAXIES AND THEIR STAR FORMATION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mentuch, Erin; Abraham, Roberto G.; Zibetti, Stefano

    2010-12-20

    We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Pixels from each galaxy are grouped into regions of increasingly red near-infrared colors. As expected, the majority of pixels are shown to have relatively constant NIR flux ratios (log{sub 10} I{sub 3.6}/I{sub 1.25} = -0.30 {+-} 0.07 and log{sub 10} I{sub 4.5}/I{sub 3.6} = -0.19 {+-} 0.02), representing the blackbody continuum emission of main sequence stars. However, pixels with red NIR colors correspond to pixels with higher H{sub {alpha}} emission andmore » dust extinction. We show that the NIR colors are correlated to both quantities, with the strongest correlation to the intrinsic H{sub {alpha}} emission. In addition, in regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25 {mu}m, 3.6 {mu}m, 4.5 {mu}m, 5.6 {mu}m, 8.0 {mu}m and 24 {mu}m) scales linearly with the intrinsic intensity of H{alpha} emission, and thus with the star formation rate (SFR) within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star formation. This is surprising because the shorter wavelength bands in our study (1.25 {mu}m-5.6 {mu}m) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or polycyclic aromatic hydrocarbon (PAH) molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2 {mu}m-5 {mu}m and PAH emission at 5.6 {mu}m and 8.0 {mu}m scales linearly with warm dust emission at 24 {mu}m and the intrinsic H{alpha} emission. Since both are tied to the SFR, our analysis shows that the NIR excess

  19. Near-infrared Observations of SiO Maser-emitting Asymptotic Giant Branch (AGB) Stars

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Miyahara, Takeshi; Omodaka, Toshihiro; Ohta, Takashi; Fujii, Takahiro; Tanaka, Masuo; Motohara, Kentaro; Makoto, Miyoshi

    2016-02-01

    Near-infrared (NIR) monitoring observations of asymptotic giant branch stars exciting bright SiO masers have been made with the 1 m telescope of Kagoshima University. In order to investigate the properties of these stars and their envelopes, we combined our NIR photometric data with mid- and far-infrared flux data obtained by the IRAS satellite, SiO maser flux data provided by the Nobeyama Radio Observatory, visual magnitude data provided by the AAVSO, and the reported data on the expansion velocities of the circumstellar envelopes. The absolute magnitudes at the K-band and the distances are estimated using the period-luminosity relation of Mira variables determined by Feast et al. Then, mass-loss rates and isotropic luminosities of an SiO maser are estimated. The mass-loss rates range from approximately 10-8 {M}⊙ \\{{yr}}-1 to over 10-5 {M}⊙ {{yr}}-1. We found that the NIR pulsation amplitudes are correlated with the pulsation periods and the observed wavelengths. We also found correlations of the isotropic luminosities of SiO masers with the mass-loss rates and absolute magnitudes at the K-band. These results will help us to understand the pumping mechanism of SiO masers. We measured, for the first time, the periods and/or NIR magnitudes of TX Cam, BW Cam, IRAS 06297+4045, IRAS 18387-0423, and RT Cep.

  20. B- and A-Type Stars in the Taurus-Auriga Star-Forming Region

    NASA Technical Reports Server (NTRS)

    Mooley, Kunal; Hillenbrand, Lynne; Rebull, Luisa; Padgett, Deborah; Knapp, Gillian

    2013-01-01

    We describe the results of a search for early-type stars associated with the Taurus-Auriga molecular cloud complex, a diffuse nearby star-forming region noted as lacking young stars of intermediate and high mass. We investigate several sets of possible O, B, and early A spectral class members. The first is a group of stars for which mid-infrared images show bright nebulae, all of which can be associated with stars of spectral-type B. The second group consists of early-type stars compiled from (1) literature listings in SIMBAD, (2) B stars with infrared excesses selected from the Spitzer Space Telescope survey of the Taurus cloud, (3) magnitude- and color-selected point sources from the Two Micron All Sky Survey, and (4) spectroscopically identified early-type stars from the Sloan Digital Sky Survey coverage of the Taurus region. We evaluated stars for membership in the Taurus-Auriga star formation region based on criteria involving: spectroscopic and parallactic distances, proper motions and radial velocities, and infrared excesses or line emission indicative of stellar youth. For selected objects, we also model the scattered and emitted radiation from reflection nebulosity and compare the results with the observed spectral energy distributions to further test the plausibility of physical association of the B stars with the Taurus cloud. This investigation newly identifies as probable Taurus members three B-type stars: HR 1445 (HD 28929), t Tau (HD 29763), 72 Tau (HD 28149), and two A-type stars: HD 31305 and HD 26212, thus doubling the number of stars A5 or earlier associated with the Taurus clouds. Several additional early-type sources including HD 29659 and HD 283815 meet some, but not all, of the membership criteria and therefore are plausible, though not secure, members.

  1. Far infrared supplement: Catalog of infrared observations

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Schmitz, M.; Mead, J. M.

    1984-01-01

    The Far Infrared Supplement: catalog of infrared observations summarizes all infrared astronomical observations at far infrared wavelengths published in the scientific literature between 1965 and 1982. The Supplement list contains 25% of the observations in the full catalog of infrared observations (C10), and essentially eliminates most visible stars from the listings. The Supplement is more compact than the main Catalog (it does not contain the bibliography and position index of the C10), and is intended for easy reference during astronomical observations.

  2. Star formation in infrared bright and infrared faint starburst interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.

    1990-01-01

    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.

  3. CO OBSERVATIONS AND INVESTIGATION OF TRIGGERED STAR FORMATION TOWARD THE N10 INFRARED BUBBLE AND SURROUNDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gama, D. R. G.; Lepine, J. R. D.; Mendoza, E.

    We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ m, are ideal regions to investigate the effect of the expansion of the H ii region on its surroundings and the eventual triggering of star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting because infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered on the edge of the H ii region. We carried out observations of {sup 12}CO(1-0) andmore » {sup 13}CO(1-0) emission at PMO 13.7 m toward N10. We also analyzed the IR and sub-millimeter emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding H ii region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation timescale favors the “Radiation-Driven Implosion” mechanism of star formation. N10 is a case of particular interest with gas structures in a narrow frontier between the H ii region and surrounding molecular material, and with a range of ages of YSOs situated in the region, indicating triggered star formation.« less

  4. An Infrared Study of the Circumstellar Material Associated with the Carbon Star R Sculptoris

    NASA Astrophysics Data System (ADS)

    Hankins, M. J.; Herter, T. L.; Maercker, M.; Lau, R. M.; Sloan, G. C.

    2018-01-01

    The asymptotic giant branch (AGB) star R Sculptoris (R Scl) is one of the most extensively studied stars on the AGB. R Scl is a carbon star with a massive circumstellar shell (M shell ∼ 7.3 × 10‑3 M ⊙) that is thought to have been produced during a thermal pulse event ∼2200 years ago. To study the thermal dust emission associated with its circumstellar material, observations were taken with the Faint Object InfraRed CAMera for the SOFIA Telescope (FORCAST) at 19.7, 25.2, 31.5, 34.8, and 37.1 μm. Maps of the infrared emission at these wavelengths were used to study the morphology and temperature structure of the spatially extended dust emission. Using the radiative-transfer code DUSTY, and fitting the spatial profile of the emission, we find that a geometrically thin dust shell cannot reproduce the observed spatially resolved emission. Instead, a second dust component in addition to the shell is needed to reproduce the observed emission. This component, which lies interior to the dust shell, traces the circumstellar envelope of R Scl. It is best fit by a density profile with n ∝ r α , where α ={0.75}-0.25+0.45 and a dust mass of {M}d={9.0}-4.1+2.3× {10}-6 {M}ȯ . The strong departure from an r ‑2 law indicates that the mass-loss rate of R Scl has not been constant. This result is consistent with a slow decline in the post-pulse mass loss that has been inferred from observations of the molecular gas.

  5. Spitzer Digs Up Hidden Stars

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] 3-Panel Version Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible Light Figure 2 Infrared (IRAC) Figure 3 Combined Figure 4

    Two rambunctious young stars are destroying their natal dust cloud with powerful jets of radiation, in an infrared image from NASA's Spitzer Space Telescope.

    The stars are located approximately 600 light-years away in a cosmic cloud called BHR 71. In visible light (left panel), BHR 71 is just a large black structure. The burst of yellow light toward the bottom of the cloud is the only indication that stars might be forming inside. In infrared light (center panel), the baby stars are shown as the bright yellow smudges toward the center. Both of these yellow spots have wisps of green shooting out of them. The green wisps reveal the beginning of a jet. Like a rainbow, the jet begins as green, then transitions to orange, and red toward the end. The combined visible-light and infrared composite (right panel) shows that a young star's powerful jet is responsible for the rupture at the bottom of the dense cloud in the visible-light image. Astronomers know this because burst of light in the visible-light image overlaps exactly with a jet spouting-out of the left star, in the infrared image.

    The jets' changing colors reveal a cooling effect, and may suggest that the young stars are spouting out radiation in regular bursts. The green tints at the beginning of the jet reveal really hot hydrogen gas, the orange shows warm gas, and the reddish wisps at the end represent the coolest gas. The fact that gas toward the beginning of the jet is hotter than gas near the middle suggests that the stars must give off regular bursts of energy -- and the material closest to the star is being heated by shockwaves from a recent stellar outburst. Meanwhile, the tints of orange reveal gas that is

  6. Search of massive star formation with COMICS

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  7. NEAR-INFRARED ADAPTIVE OPTICS IMAGING OF INFRARED LUMINOUS GALAXIES: THE BRIGHTEST CLUSTER MAGNITUDE-STAR FORMATION RATE RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randriamanakoto, Z.; Väisänen, P.; Escala, A.

    2013-10-01

    We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relationmore » with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.« less

  8. Subsonic islands within a high-mass star-forming infrared dark cloud

    NASA Astrophysics Data System (ADS)

    Sokolov, Vlas; Wang, Ke; Pineda, Jaime E.; Caselli, Paola; Henshaw, Jonathan D.; Barnes, Ashley T.; Tan, Jonathan C.; Fontani, Francesco; Jiménez-Serra, Izaskun; Zhang, Qizhou

    2018-03-01

    High-mass star forming regions are typically thought to be dominated by supersonic motions. We present combined Very Large Array and Green Bank Telescope (VLA+GBT) observations of NH3 (1,1) and (2,2) in the infrared dark cloud (IRDC) G035.39-00.33, tracing cold and dense gas down to scales of 0.07 pc. We find that, in contrast to previous, similar studies of IRDCs, more than a third of the fitted ammonia spectra show subsonic non-thermal motions (mean line width of 0.71 km s-1), and sonic Mach number distribution peaks around ℳ = 1. As possible observational and instrumental biases would only broaden the line profiles, our results provide strong upper limits to the actual value of ℳ, further strengthening our findings of narrow line widths. This finding calls for a re-evaluation of the role of turbulent dissipation and subsonic regions in massive-star and cluster formation. Based on our findings in G035.39, we further speculate that the coarser spectral resolution used in the previous VLA NH3 studies may have inhibited the detection of subsonic turbulence in IRDCs. The reduced turbulent support suggests that dynamically important magnetic fields of the 1 mG order would be required to support against possible gravitational collapse. Our results offer valuable input into the theories and simulations that aim to recreate the initial conditions of high-mass star and cluster formation.

  9. IRAS far-infrared colours of normal stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Cote, J.; Aumann, H. H.

    1987-01-01

    The analysis of IRAS observations at 12, 25, 60 and 100 microns of bright stars of spectral type O to M is presented. The objective is to identify the 'normal' stellar population and to characterize it in terms of the relationships between (B-V) and (V-/12/), between (R-I) and (V-/12/), and as a function of spectral type and luminosity class. A well-defined relation is found between the color of normal stars in the visual (B-V), (R-I) and in the IR, which does not depend on luminosity class. Using the (B-V), (V-/12/) relation for normal stars, it is found that B and M type stars show a large fraction of deviating stars, mostly with IR excess that is probably caused by circumstellar material. A comparison of IRAS colors with the Johnson colors as a function of spectral type shows good agreement except for the K0 to M5 type stars. The results will be useful in identifying the deviating stars detected with IRAS.

  10. 20 CFR 416.590 - Are there additional methods for recovery of title XVI benefit overpayments?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Are there additional methods for recovery of title XVI benefit overpayments? 416.590 Section 416.590 Employees' Benefits SOCIAL SECURITY..., and Underpayments § 416.590 Are there additional methods for recovery of title XVI benefit...

  11. 20 CFR 416.590 - Are there additional methods for recovery of title XVI benefit overpayments?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Are there additional methods for recovery of title XVI benefit overpayments? 416.590 Section 416.590 Employees' Benefits SOCIAL SECURITY..., and Underpayments § 416.590 Are there additional methods for recovery of title XVI benefit...

  12. 20 CFR 416.590 - Are there additional methods for recovery of title XVI benefit overpayments?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Are there additional methods for recovery of title XVI benefit overpayments? 416.590 Section 416.590 Employees' Benefits SOCIAL SECURITY..., and Underpayments § 416.590 Are there additional methods for recovery of title XVI benefit...

  13. 20 CFR 416.590 - Are there additional methods for recovery of title XVI benefit overpayments?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Are there additional methods for recovery of title XVI benefit overpayments? 416.590 Section 416.590 Employees' Benefits SOCIAL SECURITY..., and Underpayments § 416.590 Are there additional methods for recovery of title XVI benefit...

  14. Infrared Studies of the Variability and Mass Loss of Dusty Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin; Groenewegen, M. A. T.

    2018-01-01

    The asymptotic giant branch (AGB) phase is one of the last phases of a star's life. AGB stars lose mass in an outflow in which dust condenses and is pushed away from the star. Extreme AGB stars are so named because their very red colors suggest very large amounts of dust, which in turn suggests extremely high mass loss rates. AGB stars also vary in brightness, and studies show that extreme AGB stars tend to have longer periods than other AGB stars and are more likely to be fundamental mode pulsators than other AGB stars. Extreme AGB stars are difficult to study, as their colors are so red due to their copious amounts of circumstellar dust that they are often not detected at optical wavelengths. Therefore, they must be observed at infrared wavelengths to explore their variability. Using the Spitzer Space Telescope, my team and I have observed a sample of extreme AGB stars in the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) over Cycles 9 through 12 during the Warm Spitzer mission. For each cycle, we typically observed a set of extreme AGB stars at both 3.6 and 4.5 microns wavelength approximately monthly for most of a year. These observations reveal a wide range of variability properties. I present results from our analysis of the data obtained from these Spitzer variability programs, including light curve analyses and comparison to period-luminosity diagrams. Funding is acknowledged from JPL RSA # 1561703.

  15. Extreme infrared variables from UKIDSS - II. An end-of-survey catalogue of eruptive YSOs and unusual stars

    NASA Astrophysics Data System (ADS)

    Lucas, P. W.; Smith, L. C.; Contreras Peña, C.; Froebrich, D.; Drew, J. E.; Kumar, M. S. N.; Borissova, J.; Minniti, D.; Kurtev, R.; Monguió, M.

    2017-12-01

    We present a catalogue of 618 high-amplitude infrared variable stars (1 < ΔK < 5 mag) detected by the two widely separated epochs of 2.2 μm data in the UKIDSS Galactic plane survey, from searches covering ∼1470 deg2. Most were discovered by a search of all fields at 30 < l < 230°. Sources include new dusty Mira variables, three new cataclysmic variable candidates, a blazar and a peculiar source that may be an interacting binary system. However, ∼60 per cent are young stellar obbjects (YSOs), based on spatial association with star-forming regions at distances ranging from 300 pc to over 10 kpc. This confirms our initial result in Contreras Peña et al. (Paper I) that YSOs dominate the high-amplitude infrared variable sky in the Galactic disc. It is also supported by recently published VISTA Variables in the Via Lactea (VVV) results at 295 < l < 350°. The spectral energy distributions of the YSOs indicate class I or flat-spectrum systems in most cases, as in the VVV sample. A large number of variable YSOs are associated with the Cygnus X complex and other groups are associated with the North America/Pelican nebula, the Gemini OB1 molecular cloud, the Rosette complex, the Cone nebula, the W51 star-forming region and the S86 and S236 H II regions. Most of the YSO variability is likely due to variable/episodic accretion on time-scales of years, albeit usually less extreme than classical FUors and EXors. Luminosities at the 2010 Wide-field Infrared Survey Explorer epoch range from ∼0.1 to 103 L⊙ but only rarely exceed 102.5 L⊙.

  16. Far infrared supplement: Catalog of infrared observations, second edition

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Schmitz, Marion; Mead, Jaylee M.

    1988-01-01

    The Far Infrared Supplement: Catalog of Infrared Observations summarizes all infrared astronomical observations at far infrared wavelengths (5 to 1000 microns) published in the scientific literature from 1965 through 1986. The Supplement list contain 25 percent of the observations in the full Catalog of Infrared Observations (CIO), and essentially eliminates most visible stars from the listings. The Supplement is thus more compact than the main catalog, and is intended for easy reference during astronomical observations. The Far Infrared Supplement (2nd Edition) includes the Index of Infrared Source Positions and the Bibliography of Infrared Astronomy for the subset of far infrared observations listed.

  17. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Astrophysics Data System (ADS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-12-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  18. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Terebey, S.; Fich, M.; Taylor, R.

    1999-01-01

    A summary of research activities carried out in this eighth and final progress report. The final report includes: this summary document, copies of three published research papers, plus a draft manuscript of a fourth research paper entitled "The Contribution of Ionizing Stars to the FarInfrared and Radio Emission in the Milky Way; Evidence for a Swept-up Shell and Diffuse Ionized Halo around the W4 Chimney/Supershell." The main activity during the final quarterly reporting period was research on W4, including analysis of the radio and far-infrared images, generation of shell models, a literature search, and preparation of a research manuscript. There will be additional consultation with co-authors prior to submission of the paper to the Astrophysical Journal. The results will be presented at the 4th Tetons Summer Conference on "Galactic Structure, Stars, and the ISM" in May 2000. In this fourth and last paper we show W4 has a swept-up partially ionized shell of gas and dust which is powered by the OCl 352 star cluster. Analysis shows there is dense interstellar material directly below the shell, evidence that that the lower W4 shell "ran into a brick wall" and stalled, whereas the upper W4 shell achieved "breakout" to form a Galactic chimney. An ionized halo is evidence of Lyman continuum leakage which ionizes the WIM (warm ionized medium). It has long been postulated that the strong winds and abundant ionizing photons from massive stars are responsible for much of the large scale structure in the interstellar medium (ISM), including the ISM in other galaxies. However standard HII region theory predicts few photons will escape the local HII region. The significance of W4 and this work is it provides a direct example of how stellar winds power a galactic chimney, which in turn leads to a low density cavity from which ionizing photons can escape to large distances to ionize the WIM.

  19. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  20. Observationally Testing the Triple Origin of Blue Straggler Stars with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohler, Jacob P.; Gosnell, Natalie M.; Sokal, Kimberly R.; Mace, Gregory N.

    2018-01-01

    Presented are results to constrain blue straggler star (BSS) formation mechanisms in open cluster NGC 188 using data from the Immersion Grating INfrared Spectrometer (IGRINS) while at the Discovery Channel Telescope. The majority (at least 16 of 21) of NGC 188s BSSs are binaries, and, to date, seven white dwarf (WD) companions have been detected. This leaves at least nine undetected companion stars. Observations show a sharp peak of the BSSs companion mass distribution at 0.5 solar masses, highly suggestive of a WD or M-type main sequence (MS) star. Under our tested formation mechanism, the progenitors of BSSs are arranged in primordial hierarchical triple star systems that dynamically evolve through the Kozai-cycle tidal friction (KCTF) process into a binary composed of a BSS and, statistically, an M dwarf companion. We test for the presence of an M dwarf by cross-correlating a near-IR spectrum with both a BSS template and an M dwarf template. We present, for the first time, a preliminary detection of a 3800K, 0.5 solar mass M dwarf companion in each of the long period (log[P(d)]=3), single-lined binaries WOCS 451 and WOCS 5671 in NGC 188. To assess the possibility of a false M dwarf detection, we carry out Monte Carlo simulations cross-correlating an M dwarf template with a BSS-only spectrum with a signal-to-noise ratio matching our observations. Theoretical detection limits for various BSS-M dwarf pairs are reported. In the case of a non-detection, such as in WOCS 4970, we are able to place an upper limit on the mass, and thus temperature, of the companion star. Current and future research goals aim for further insight into the BSS formation mechanism frequencies of NGC 188.

  1. Unveiling the hearts of luminous and ultra-luminous infrared galaxy mergers with laser guide star adaptive optics

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.

    2013-03-01

    Gas-rich galaxies across cosmic time exhibit one or both of two phenomena: ongoing star formation and an active galactic nucleus indicating current black hole accretion. These two processes are important mechanisms through which galaxies evolve and grow, but their effects are difficult to disentangle. Both will use up some available gas, and both are capable of producing winds strong enough to eject remaining gas from the galaxy. One must look at high spatial resolutions in order to separate the dynamical effects of star formation going on near the nucleus of a galaxy from the black hole growth going on in the nucleus. We present high spatial resolution integral field spectroscopy of fifteen nearby luminous and ultra-luminous infrared galaxies. These systems are extremely bright in the infrared exactly because they host powerful starbursts and active nuclei, which in turn heat the surrounding dust. Our data provide resolved stellar and gaseous kinematics of the central kiloparsec of each of these systems by removing atmospheric blurring with adaptive optics, an observing technique that measures the turbulence in the Earth's atmosphere and then uses a deformable mirror to correct the resulting distortions. Our kinematic maps reveal nuclear disks of gas and stars with radii ˜ a few hundred parsecs surrounding the central black holes. Because the stellar and gas kinematics match well, we conclude that the stars are forming in situ from the gas in the disks. These disks may be the progenitors of kinematically decoupled cores seen in many isolated elliptical galaxies, and may have a significant effect on the merger rate of binary black holes. Additionally, these disks may be used to measure black hole masses which, when combined with host galaxy properties and placed on scaling relations, indicate that black holes grow as or more quickly than their host galaxies during a merger. This suggests that a sudden burst of black hole growth at in the final stages of the merger

  2. Red but not dead: unveiling the star-forming far-infrared spectral energy distribution of SpARCS brightest cluster galaxies at 0 < z < 1.8

    NASA Astrophysics Data System (ADS)

    Bonaventura, N. R.; Webb, T. M. A.; Muzzin, A.; Noble, A.; Lidman, C.; Wilson, G.; Yee, H. K. C.; Geach, J.; Hezaveh, Y.; Shupe, D.; Surace, J.

    2017-08-01

    We present the results of a Spitzer/Herschel infrared photometric analysis of the largest (716) and the highest-redshift (z = 1.8) sample of brightest cluster galaxies (BCGs), those from the Spitzer Adaptation of the Red-Sequence Cluster Survey Given the tension that exists between model predictions and recent observations of BCGs at z < 2, we aim to uncover the dominant physical mechanism(s) guiding the stellar mass buildup of this special class of galaxies, the most massive in the Universe and uniquely residing at the centres of galaxy clusters. Through a comparison of their stacked, broad-band, infrared spectral energy distributions (SEDs) to a variety of model templates in the literature, we identify the major sources of their infrared energy output, in multiple redshift bins between 0 < z < 1.8. We derive estimates of various BCG physical parameters from the stacked νLν SEDs, from which we infer a star-forming, as opposed to a 'red and dead' population of galaxies, producing tens to hundreds of solar masses per year down to z = 0.5. This discovery challenges the accepted belief that BCGs should only passively evolve through a series of gas-poor, minor mergers since z ˜ 4, but agrees with an improved semi-analytic model of hierarchical structure formation that predicts star-forming BCGs throughout the epoch considered. We attribute the star formation inferred from the stacked infrared SEDs to both major and minor 'wet' (gas-rich) mergers, based on a lack of key signatures (to date) of cooling-flow-induced star formation, as well as a number of observational and simulation-based studies that support this scenario.

  3. Young Star Clusters: Keys to Understanding Massive Stars

    NASA Astrophysics Data System (ADS)

    Davies, B.

    2012-12-01

    Young, coeval clusters of stars provide the perfect laboratory in which to test our understanding of how massive stars evolve. Early optical observations limited us to a handful of low-mass clusters within 1kpc. However, thanks to the recent progress in infrared astronomy, the Milky Way's population of young massive star clusters is now beginning to be revealed. Here, I will review the recent progress made in this field, what it has told us about the evolution of massive stars to supernova and beyond, the prospects for this field, and some issues that should be taken into account when interpreting the results.

  4. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2011-04-01 2011-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced student...

  5. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2010-04-01 2010-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced student...

  6. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2014-04-01 2014-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced student...

  7. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2012-04-01 2011-04-01 true Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced student...

  8. 25 CFR 36.43 - Standard XVI-Student activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... activities that include special interest clubs, physical activities, student government, and cultural affairs... 25 Indians 1 2013-04-01 2013-04-01 false Standard XVI-Student activities. 36.43 Section 36.43... § 36.43 Standard XVI—Student activities. All schools shall provide and maintain a well-balanced student...

  9. Dead Star Rumbles

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Composite of Supernova Remnant Cassiopeia A This Spitzer Space Telescope composite shows the supernova remnant Cassiopeia A (white ball) and surrounding clouds of dust (gray, orange and blue). It consists of two processed images taken one year apart. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Blue represents an earlier time and orange, a later time.

    These observations illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    An infrared echo is created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. This apparent motion can be seen here by the shift in colored dust clumps.

    Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The earlier Spitzer image was taken on November 30

  10. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated formore » global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.« less

  11. The mid-infrared spectrum of the carbon star HD 38218 and its possible relation to polycyclic aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Buss, Richard H., Jr.; Tielens, A. G. G. M.; Snow, Theodore P.

    1991-01-01

    The mid-infrared spectra of carbon giant stars with hot companions are investigated in order to search for infrared emission bands from polycyclic aromatic hydrocarbons (PAH) in the envelopes of the C giants. A strong 8-micron emission band found in TU Tau = HD 38218 is attributed to the binary A star companion. It is argued that if the 8-micron feature in HD 38218 arises from PAHs, they seem to be important constituents of the C-giant shell, and they might be large compared with some interstellar PAHs. It is suggested that because no other IR spectra of C giants show clear PAH features, the greater flux of hard radiation in the binary HD 38218 seems likely to be responsible for the 8-micron feature and for its absence in many other C giants. Thus, PAHs could be present in the same amounts relative to SiC grains in the shells of similar single C giants, and the formation of carbonaceous grains could proceed through the formation of PAHs in C giant shells.

  12. Automated classification of periodic variable stars detected by the wide-field infrared survey explorer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masci, Frank J.; Grillmair, Carl J.; Cutri, Roc M.

    2014-07-01

    We describe a methodology to classify periodic variable stars identified using photometric time-series measurements constructed from the Wide-field Infrared Survey Explorer (WISE) full-mission single-exposure Source Databases. This will assist in the future construction of a WISE Variable Source Database that assigns variables to specific science classes as constrained by the WISE observing cadence with statistically meaningful classification probabilities. We have analyzed the WISE light curves of 8273 variable stars identified in previous optical variability surveys (MACHO, GCVS, and ASAS) and show that Fourier decomposition techniques can be extended into the mid-IR to assist with their classification. Combined with other periodicmore » light-curve features, this sample is then used to train a machine-learned classifier based on the random forest (RF) method. Consistent with previous classification studies of variable stars in general, the RF machine-learned classifier is superior to other methods in terms of accuracy, robustness against outliers, and relative immunity to features that carry little or redundant class information. For the three most common classes identified by WISE: Algols, RR Lyrae, and W Ursae Majoris type variables, we obtain classification efficiencies of 80.7%, 82.7%, and 84.5% respectively using cross-validation analyses, with 95% confidence intervals of approximately ±2%. These accuracies are achieved at purity (or reliability) levels of 88.5%, 96.2%, and 87.8% respectively, similar to that achieved in previous automated classification studies of periodic variable stars.« less

  13. Massive Star Makes Waves

    NASA Image and Video Library

    2012-12-18

    The giant star Zeta Ophiuchi, a young, large and hot star located around 370 light-years away, is having a hocking effect on the surrounding dust clouds in this infrared image from NASA Spitzer Space Telescope.

  14. NEW YOUNG STAR CANDIDATES IN CG4 AND Sa101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebull, L. M.; Laine, S.; Laher, R.

    2011-07-15

    The CG4 and Sa101 regions together cover a region of {approx}0.5 deg{sup 2} in the vicinity of a 'cometary globule' that is part of the Gum Nebula. There are seven previously identified young stars in this region; we have searched for new young stars using mid- and far-infrared data (3.6-70 {mu}m) from the Spitzer Space Telescope, combined with ground-based optical data and near-infrared data from the Two Micron All Sky Survey. We find infrared excesses in all six of the previously identified young stars in our maps and identify 16 more candidate young stars based on apparent infrared excesses. Mostmore » (73%) of the new young stars are Class II objects. There is a tighter grouping of young stars and young star candidates in the Sa101 region, in contrast to the CG4 region, where there are fewer young stars and young star candidates, and they are more dispersed. Few likely young objects are found in the 'fingers' of the dust being disturbed by the ionization front from the heart of the Gum Nebula.« less

  15. Collisions of Terrestrial Worlds: The Occurrence of Extreme Mid-infrared Excesses around Low-mass Field Stars

    NASA Astrophysics Data System (ADS)

    Theissen, Christopher A.; West, Andrew A.

    2017-04-01

    We present the results of an investigation into the occurrence and properties (stellar age and mass trends) of low-mass field stars exhibiting extreme mid-infrared (MIR) excesses ({L}{IR}/{L}* ≳ 0.01). Stars for the analysis were initially selected from the Motion Verified Red Stars (MoVeRS) catalog of photometric stars with Sloan Digital Sky Survey, 2MASS, and WISE photometry and significant proper motions. We identify 584 stars exhibiting extreme MIR excesses, selected based on an empirical relationship for main-sequence W1-W3 colors. For a small subset of the sample, we show, using spectroscopic tracers of stellar age (Hα and Li I) and luminosity class, that the parent sample is most likely comprised of field dwarfs (≳ 1 Gyr). We also develop the Low-mass Kinematics (LoKi) galactic model to estimate the completeness of the extreme MIR excess sample. Using Galactic height as a proxy for stellar age, the completeness-corrected analysis indicates a distinct age dependence for field stars exhibiting extreme MIR excesses. We also find a trend with stellar mass (using r - z color as a proxy). Our findings are consistent with the detected extreme MIR excesses originating from dust created in a short-lived collisional cascade (≲100,000 years) during a giant impact between two large planetismals or terrestrial planets. These stars with extreme MIR excesses also provide support for planetary collisions being the dominant mechanism in creating the observed Kepler dichotomy (the need for more than a single mode, typically two, to explain the variety of planetary system architectures Kepler has observed), rather than different formation mechanisms.

  16. Short-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.

    Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.

    The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H

  17. Star Formation in Henize 206

    NASA Image and Video Library

    2004-03-08

    This image from NASA Spitzer Space Telescope, shows the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera IRAC. The LMC is a small satellite galaxy gravitationally bound to our own Milky Way. Yet the gravitational effects are tearing the companion to shreds in a long-playing drama of 'intergalactic cannibalism.' These disruptions lead to a recurring cycle of star birth and star death. Astronomers are particularly interested in the LMC because its fractional content of heavy metals is two to five times lower than is seen in our solar neighborhood. [In this context, 'heavy elements' refer to those elements not present in the primordial universe. Such elements as carbon, oxygen and others are produced by nucleosynthesis and are ejected into the interstellar medium via mass loss by stars, including supernova explosions.] As such, the LMC provides a nearby cosmic laboratory that may resemble the distant universe in its chemical composition. The primary Spitzer image, showing the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera (IRAC) at near-infrared wavelengths and the mid-infrared data from a multiband imaging photometer (MIPS). Blue represents invisible infrared light at wavelengths of 3.6 and 4.5 microns. Note that most of the stars in the field of view radiate primarily at these short infrared wavelengths. Cyan denotes emission at 5.8 microns, green depicts the 8.0 micron light, and red is used to trace the thermal emission from dust at 24 microns. The separate instrument images are included as insets to the main composite. An inclined ring of emission dominates the central and upper regions of the image. This delineates a bubble of hot, x-ray emitting gas that was blown into space when a massive star died in a supernova explosion millions of years ago. The shock waves from that explosion impacted a

  18. Spectroastrometric Study of Ro-vibrational CO Emission from the Herbig Ae Star HD 179218 with ISHELL on the NASA Infrared Telescope Facility

    NASA Astrophysics Data System (ADS)

    Brittain, Sean D.; Carr, John S.; Najita, Joan R.

    2018-07-01

    We present analysis of commissioning M-band data acquired with the infrared echelle spectrograph (iSHELL) on NASA’s Infrared Telescope Facility. In this paper we describe the delivered performance of the instrument for these M-band observations and the data reduction process. The feasibility of using iSHELL for spectro-astrometry is tested on the Herbig Ae/Be star HD 179218 and we show that sub-milliarcsecond fidelity is achievable..

  19. Molecular Shocks Associated with Massive Young Stars: CO Line Images with a New Far-Infrared Spectroscopic Camera on the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Watson, Dan M.

    1997-01-01

    Under the terms of our contract with NASA Ames Research Center, the University of Rochester (UR) offers the following final technical report on grant NAG 2-958, Molecular shocks associated with massive young stars: CO line images with a new far-infrared spectroscopic camera, given for implementation of the UR Far-Infrared Spectroscopic Camera (FISC) on the Kuiper Airborne Observatory (KAO), and use of this camera for observations of star-formation regions 1. Two KAO flights in FY 1995, the final year of KAO operations, were awarded to this program, conditional upon a technical readiness confirmation which was given in January 1995. The funding period covered in this report is 1 October 1994 - 30 September 1996. The project was supported with $30,000, and no funds remained at the conclusion of the project.

  20. Electromagnetic and light scattering by nonspherical particles XVI

    NASA Astrophysics Data System (ADS)

    Berg, Matthew J.; Eversole, Jay D.; Kolokolova, Ludmilla; Mishchenko, Michael I.; Videen, Gorden

    2017-11-01

    The 16th Electromagnetic and Light Scattering Conference (ELS-XVI) was held in College Park, MD from 19-25 March 2017 (Fig. 1). This conference built on the success of the previous meetings held in Amsterdam (1995) [1], Helsinki (1997) [2], New York (1998) [3], Vigo (1999), Halifax (2000) [4], Gainesville (2002) [5], Bremen (2003) [6], Salobreña (2005) [7], St. Petersburg (2006) [8], Bodrum (2007) [9], Hatfield (2008) [10], Helsinki (2010) [11], Taormina (2011) [12], Lille (2013) [13], and Leipzig (2015) [14], as well as of three related workshops held in Bremen (1996, 1998) and Moscow (1997). As before, the main objective of this conference was to assemble scientists, engineers, and PhD students researching various aspects of electromagnetic scattering by particles and particle groups and to provide a stimulating atmosphere for in-depth discussions of theory, measurements, and applications. The conference featured 143 presentations by 132 registered participants from 18 countries. The program and the abstracts of conference presentations are available at the official conference web site https://www.giss.nasa.gov/staff/mmishchenko/ELS-XVI.

  1. Discovery of the near-infrared counterpart to the luminous neutron-star low-mass X-ray binary GX 3+1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Berg, Maureen; Fridriksson, Joel K.; Homan, Jeroen

    2014-10-01

    Using the High Resolution Camera on board the Chandra X-ray Observatory, we have measured an accurate position for the bright persistent neutron star X-ray binary and atoll source GX 3+1. At a location that is consistent with this new position, we have discovered the near-infrared (NIR) counterpart to GX 3+1 in images taken with the PANIC and FourStar cameras on the Magellan Baade Telescope. The identification of this K{sub s} = 15.8 ± 0.1 mag star as the counterpart is based on the presence of a Br γ emission line in an NIR spectrum taken with the Folded-port InfraRed Echelettemore » spectrograph on the Baade Telescope. The absolute magnitude derived from the best available distance estimate to GX 3+1 indicates that the mass donor in the system is not a late-type giant. We find that the NIR light in GX 3+1 is likely dominated by the contribution from a heated outer accretion disk. This is similar to what has been found for the NIR flux from the brighter class of Z sources, but unlike the behavior of atolls fainter (L{sub X} ≈ 10{sup 36}-10{sup 37} erg s{sup –1}) than GX 3+1, where optically thin synchrotron emission from a jet probably dominates the NIR flux.« less

  2. A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Defrère, D.; Absil, O.; Le Bouquin, J.-B.; Augereau, J.-C.; Berger, J.-P.; Blind, N.; Bonsor, A.; Lagrange, A.-M.; Lebreton, J.; Marion, L.; Milli, J.; Olofsson, J.

    2016-10-01

    Context. Extended circumstellar emission has been detected within a few 100 milli-arcsec around ≳10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over the timescale of a few years and to search for variability of our previously detected excesses. Methods: Using Very Large Telescope Interferometer (VLTI)/Precision Integrated Optics Near Infrared ExpeRiment (PIONIER) in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected using the same observation technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2σ, and in 7 of 16 follow-up observations significant excess (> 3σ) is re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over the timescale of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.C-0266, 089.C-0365, 090.C-0526, 091.C-0576, 091.C-0597, 094.C-0232, and commissioning data.

  3. Development of a near-infrared high-resolution spectrograph (WINERED) for a survey of bulge stars

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.; Gouda, N.

    2008-07-01

    We are developing a new near-infrared high-resolution (R[max] = 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9 1.35 μm. WINERED employs an innovative optical system; a portable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide precise positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical composition will be measured by WINERED. These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for observations of single objects by the end of 2008 and to attach it to various 4 10m telescopes as a PI-type instrument. We hope to upgrade WINERED with a multi-object feed in the future for efficient survey of the JASMINE bulge stars.

  4. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  5. The infrared-radio correlation of spheroid- and disc-dominated star-forming galaxies to z ˜ 1.5 in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Molnár, Dániel Cs; Sargent, Mark T.; Delhaize, Jacinta; Delvecchio, Ivan; Smolčić, Vernesa; Novak, Mladen; Schinnerer, Eva; Zamorani, Giovanni; Bondi, Marco; Herrera-Ruiz, Noelia; Murphy, Eric J.; Vardoulaki, Eleni; Karim, Alexander; Leslie, Sarah; Magnelli, Benjamin; Carollo, C. Marcella; Middelberg, Enno

    2018-03-01

    Using infrared data from the Herschel Space Observatory and Karl G. Jansky Very Large Array 3 GHz observations in the COSMOS field, we investigate the redshift evolution of the infrared-radio correlation (IRRC) for star-forming galaxies (SFGs) we classify as either spheroid- or disc-dominated based on their morphology. The sample predominantly consists of disc galaxies with stellar mass ≳ 1010 M⊙, and residing on the star-forming main sequence (MS). After the removal of AGN using standard approaches, we observe a significant difference between the redshift evolution of the median IR/radio ratio \\overline{q}_{TIR} of (i) a sample of ellipticals, plus discs with a substantial bulge component (`spheroid-dominated' SFGs) and, (ii) virtually pure discs and irregular systems (`disc-dominated' SFGs). The spheroid-dominated population follows a declining \\overline{q}_{TIR} versus z trend similar to that measured in recent evolutionary studies of the IRRC. However, for disc-dominated galaxies, where radio and IR emission should be linked to star formation in the most straightforward way, we measure very little change in \\overline{q}_{TIR}. This suggests that low-redshift calibrations of radio emission as a star formation rate (SFR) tracer may remain valid out to at least z ≃ 1-1.5 for pure star-forming systems. We find that the different redshift evolution of qTIR for the spheroid- and disc-dominated sample is mainly due to an increasing radio excess for spheroid-dominated galaxies at z ≳ 0.8, hinting at some residual AGN activity in these systems. This finding demonstrates that in the absence of AGN, the IRRC is independent of redshift, and that radio observations can therefore be used to estimate SFRs at all redshifts for genuinely star-forming galaxies.

  6. RED EYES ON WOLF-RAYET STARS: 60 NEW DISCOVERIES VIA INFRARED COLOR SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W., E-mail: mauerhan@ipac.caltech.edu

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of {approx}20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution ofmore » all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to {approx}40%; 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of {approx}6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster

  7. Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W.

    2011-08-01

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of ≈20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to ≈40% 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of ≈6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work

  8. Speed-Demon Star Creates a Shock

    NASA Image and Video Library

    2011-03-10

    NASA Wide-field Infrared Survey Explorer captured this image of the star Alpha Camelopardalis, or Alpha Cam speeding through the sky like a motorcyclist zipping through rush-hour traffic. The supergiant star Alpha Cam is the bright star in the middle.

  9. Star & Planet Formation Studies and Opportunities with SOFIA

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico

    2018-01-01

    Star formation, the most fundamental process in the universe, is linked to planet formation and thus to the origin and evolution of life. We have a general outline of how planets and stars form, yet unraveling the details of the physics and chemistry continues to challenge us. The infrared and submillimeter part of the spectrum hold the most promise for studying the beginnings of star formation. The observational landscape recently shaped by Spitzer, Herschel and ALMA, continues to challenge our current theories. SOFIA, the Stratospheric Observatory for Infrared Astronomy, equipped with state-of-the-art infrared instrumentation to a vantage point at 45,000 feet (13.7 kilometers) flight altitude that is above 99.9 percent of the Earth's water vapor, enables observations in the infrared through terahertz frequencies not possible from the ground. SOFIA is a community observatory, about to start its sixth annual observing cycle. My talk will focus on recent results in advancing star and planet formation processes using SOFIA's imaging and polarimetric capabilities, and the upcoming science enabled by the 3rd generation instrument High-Resolution Mid-Infrared Spectrometer (HIRMES) to be commissioned in 2019. I will show how mid-infrared imaging is used to test massive star formation theories, how far-infrared polarimetry on sub-parsec scales is directly testing the role of magnetic fields in molecular clouds, and how velocity-resolved high-resolution spectroscopy will push forward our understanding of proto-planetary disk science. I will also summarize upcoming opportunities with the SOFIA observatory. For the latest news about your flying observatory, see https://sofia.usra.edu/.

  10. Modelling the Dust Around Vega-Like Stars

    NASA Technical Reports Server (NTRS)

    Sylvester, Roger J.; Skinner, C. J.; Barlow, M. J.

    1996-01-01

    Models are presented of four Vega-like stars: main-sequence stars with infrared emission from circumstellar dust. The dusty environments of the four stars are rather diverse, as shown by their spectral energy distributions. Good fits to the observations were obtained for all four stars.

  11. Genomic analysis of the blood attributed to Louis XVI (1754-1793), king of France.

    PubMed

    Olalde, Iñigo; Sánchez-Quinto, Federico; Datta, Debayan; Marigorta, Urko M; Chiang, Charleston W K; Rodríguez, Juan Antonio; Fernández-Callejo, Marcos; González, Irene; Montfort, Magda; Matas-Lalueza, Laura; Civit, Sergi; Luiselli, Donata; Charlier, Philippe; Pettener, Davide; Ramírez, Oscar; Navarro, Arcadi; Himmelbauer, Heinz; Marquès-Bonet, Tomàs; Lalueza-Fox, Carles

    2014-04-24

    A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754-1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.

  12. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  13. Germanium blocked impurity band far infrared detectors

    NASA Astrophysics Data System (ADS)

    Rossington, Carolyn Sally

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the Star Wars nuclear defense scheme proposed by the Reagan administration.

  14. Feasibility Study of Utilizing Existing Infrared Array Cameras for Daylight Star Tracking on NASA's Ultra Long Duration Balloon (ULDB) Missions

    NASA Technical Reports Server (NTRS)

    Tueller, Jack (Technical Monitor); Fazio, Giovanni G.; Tolls, Volker

    2004-01-01

    The purpose of this study was to investigate the feasibility of developing a daytime star tracker for ULDB flights using a commercially available off-the-shelf infrared array camera. This report describes the system used for ground-based tests, the observations, the test results, and gives recommendations for continued development.

  15. Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud. III. Near-infrared study

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Rejkuba, M.; Minniti, D.; Catelan, M.; Ivanov, V. D.

    2009-08-01

    Context: RR Lyrae variable stars are the primary Population II distance indicator. Likewise, the Large Magellanic Cloud (LMC) constitutes a key step in the extragalactic distance scale. Aims: By combining near-IR photometry and spectroscopically measured metallicities for a homogeneous sample of 50 RR Lyr stars in the LMC, we investigate the metallicity dependence of the period-luminosity relation in the near-infrared (IR), use the newly derived relations to re-derive the distance to the LMC, and compare the distance moduli obtained from RR Lyr and red clump stars. Methods: This paper presents new (single-epoch) J-band and (multi-epoch) K_s-band photometry of RR Lyr stars in 7 different LMC fields, observed with the near-IR camera SOFI at ESO's New Technology Telescope. Additional K_s-band data for another two LMC fields were taken with the ISPI infrared array at CTIO's Blanco 4m telescope. The near-IR photometry was cross-correlated with the MACHO and OGLE databases, resulting in a catalog of 62 RR Lyr stars with BVRIJKs photometry. A subsample of 50 stars also has spectroscopically measured metallicities. Results: In the deep JK color-magnitude diagrams of 7 fields, red giant branch, red clump and RR Lyr stars are detected. The majority of RR Lyr stars are located within the instability strip with near-IR colors between 0.14 ≤ (J-K_s)_0<0.32. The period-luminosity relation only has a very mild dependence on metallicity in the K band, consistent with no dependence: MKs =2.11(± 0.17) log{P} + 0.05(± 0.07) [Fe/H] - 1.05. In the J band the currently available data do not allow firm conclusions regarding the metallicity dependence of the period-luminosity relation. Conclusions: The distance modulus of the LMC, derived using our near-IR period-luminosity-metallicity relation for RR Lyr stars, is (m-M)_0=18.53 ± 0.13, in very good agreement with the distance modulus from the red clump stars, 18.46 ± 0.07. However, LMC modulus derived from the RR Lyrae stars

  16. The Contribution of Ionizing Stars to the Far-Infrared and Radio Emission in the Galaxy

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Terebey, Susan; Prince, Thomas A.; Beichman, Charles A.

    1997-01-01

    This is the first report of a new contract. However, this project represents ongoing work, so there are completed tasks as well as newly started tasks to report. The project involves the completion of the IRAS Galaxy Atlas (IGA), a large image database produced using data from the Infrared Astronomical Satellite (IRAS). In this phase, the project switches from the production and characterization of the IGA to its use in astronomical research studies of massive star formation. The research utilizes the IGA as well as two other large data sets being produced by research partners.

  17. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  18. The Serpent Star-Forming Cloud Spawns Stars

    NASA Image and Video Library

    2014-05-28

    Studied by astronomers, Serpens Cloud Core is one of the youngest collections of stars ever seen in our galaxy. This infrared image combines data from NASA Spitzer with shorter-wavelength observations from the Two Micron All Sky Survey.

  19. A study of the Galactic star forming region IRAS 02593+6016/S 201 in infrared and radio wavelengths

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; Kulkarni, V. K.; Testi, L.; Verma, R. P.; Vig, S.

    2004-03-01

    We present infrared and radio continuum observations of the S 201 star forming region. A massive star cluster is seen, which contains different classes of young stellar objects. The near-infrared colour-colour and colour-magnitude diagrams are studied to determine the nature of these sources. We have discovered knots of molecular hydrogen emission at 2.122 μm in the central region of S 201. These knots are clearly seen along the diffuse emission to the north-west and are probably obscured Herbig-Haro objects. High sensitivity and high resolution radio continuum images from GMRT observations at 610 and 1280 MHz show an arc-shaped structure due to the interaction between the HII region and the adjacent molecular cloud. The ionization front at the interface between the HII region and the molecular cloud is clearly seen comparing the radio, molecular hydrogen and Brγ images. The emission from the carriers of Unidentified Infrared Bands in the mid-infrared 6-9 μm (possibly due to PAHs) as extracted from the Midcourse Space Experiment survey (at 8, 12, 14 and 21 μm) is compared with the radio emission. The HIRES processed IRAS maps at 12, 25, 60 and 100 μm have also been used for comparison. The spatial distribution of the temperature and the optical depth of the warm dust component around the S 201 region has been generated from the mid-infrared images. This paper is based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the CNAA (Consorzio Nazionale per l'Astronomia e l'Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the

  20. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    NASA Astrophysics Data System (ADS)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  1. SALT Spectroscopy of Evolved Massive Stars

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  2. Star Formation in Henize 206

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] IRA-MIPS Composite

    [figure removed for brevity, see original site] Visible

    [figure removed for brevity, see original site] IRAC

    [figure removed for brevity, see original site] MIPS

    The LMC is a small satellite galaxy gravitationally bound to our own Milky Way. Yet the gravitational effects are tearing the companion to shreds in a long-playing drama of 'intergalactic cannibalism.' These disruptions lead to a recurring cycle of star birth and star death.

    Astronomers are particularly interested in the LMC because its fractional content of heavy metals is two to five times lower than is seen in our solar neighborhood. [In this context, 'heavy elements' refer to those elements not present in the primordial universe. Such elements as carbon, oxygen and others are produced by nucleosynthesis and are ejected into the interstellar medium via mass loss by stars, including supernova explosions.] As such, the LMC provides a nearby cosmic laboratory that may resemble the distant universe in its chemical composition.

    The primary Spitzer image, showing the wispy filamentary structure of Henize 206, is a four-color composite mosaic created by combining data from an infrared array camera (IRAC) at near-infrared wavelengths and the mid-infrared data from a multiband imaging photometer (MIPS). Blue represents invisible infrared light at wavelengths of 3.6 and 4.5 microns. Note that most of the stars in the field of view radiate primarily at these short infrared wavelengths. Cyan denotes emission at 5.8 microns, green depicts the 8.0 micron light, and red is used to trace the thermal emission from dust at 24 microns. The separate instrument images are included as insets to the main composite.

    An inclined ring of emission dominates the central and upper regions of the image. This delineates a bubble of hot, x-ray emitting gas that was blown into space when a massive star died in a supernova

  3. KEPLER RAPIDLY ROTATING GIANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surfacemore » rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.« less

  4. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.

    PubMed

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-29

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45}  cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  5. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-01

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2 ×10-45 cm2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  6. The Discovery of λ Bootis Stars: The Southern Survey I

    NASA Astrophysics Data System (ADS)

    Gray, R. O.; Riggs, Q. S.; Koen, C.; Murphy, S. J.; Newsome, I. M.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.

    2017-07-01

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μm. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μm.

  7. Massive Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  8. The VLT-FLAMES Tarantula Survey. XVI. The optical and NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.; Evans, C. J.; Barbá, R. H.; Gräfener, G.; Bestenlehner, J. M.; Crowther, P. A.; García, M.; Herrero, A.; Sana, H.; Simón-Díaz, S.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Walborn, N. R.

    2014-04-01

    Context. The commonly used extinction laws of Cardelli et al. (1989, ApJ, 345, 245) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical and near-infrared (NIR) photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical and NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions, such as the family of extinction laws. Results: We derive a new family of optical and NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag. Appendices are available in electronic form at http://www.aanda.org

  9. The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets

    NASA Astrophysics Data System (ADS)

    Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng

    2016-06-01

    We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si II recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

  10. Two views of the Andromeda Galaxy H-alpha and far infrared

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Price, Rob; Wells, Lisa A.; Duric, Neb

    1994-01-01

    A complete H-alpha image of the Andromeda Galaxy (M31) is presented allowing the first direct measurement of the total H-alpha luminosity which is (7.3 +/- 2.4) x 10(exp 6) solar luminosity. The H-alpha emission is associated with three morphologically distinct components; a large scale star-forming ring, approximately 1.65 deg in diameter, contributing 66% of the total H-alpha emission, a bright nucleus contributing 6% of the total H-alpha emission with the remaining 28% contributed by a previously unidentified component of extended and filamentary H-alpha emission interior to the star forming ring. The correspondence between the H-alpha image and the Infrared Astronomy Satellite (IRAS) far-infrared high resolution image is striking when both are convolved to a common resolution of 105 arcsec. The close correspondence between the far-infrared and H-alpha images suggests a common origin for the two emissions. The star-forming ring contributes 70% of the far-infrared luminosity of M31. Evidence that the ring emission is energized by high mass stars includes the fact that peaks in the far-infrared emission coincide identically with H II regions in the H-alpha image. In addition, the far-infrared to H-alpha luminosity ratio within the star-forming ring is similar to what one would expect for H II regions powered by stars of spectral types ranging between O9 and B0. The origin of the filamentary H-alpha and far-infrared luminosity interior to the star-forming ring is less clear, but it is almost certainly not produced by high mass stars.

  11. α Centauri A in the far infrared. First measurement of the temperature minimum of a star other than the Sun

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Montesinos, B.; Olofsson, G.; Bryden, G.; Marshall, J. P.; Ardila, D.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; Thébault, P.; Wiegert, J.; White, G. J.

    2013-01-01

    Context. Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. Aims: The region of the temperature reversal can be directly observed only in the far infrared and submillimetre spectral regime. We aim at determining the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star α Cen A. As a bonus this will also provide a detailed mapping of the spectral energy distribution, i.e. knowledge that is crucial when searching for faint, Kuiper belt-like dust emission around other stars. Methods: For the nearby binary system α Cen, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate stellar model atmospheres in the grid of Gaia/PHOENIX and compute the corresponding model for the G2 V star α Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to Spitzer-MIPS, Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of α Cen A in the far infared. Results: Similar to the Sun, the far infrared (FIR) emission of α Cen A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of α Cen A appears marginally cooler, Tmin ~ T160 μm = 3920 ± 375 K. Beyond the minimum near 160 μm, the brightness temperatures increase, and this radiation very likely originates in warmer regions of the chromosphere of α Cen A. Conclusions: To the best of

  12. UV, optical and infrared properties of star forming galaxies

    NASA Technical Reports Server (NTRS)

    Huchra, John P.

    1987-01-01

    The UVOIR properties of galaxies with extreme star formation rates are examined. These objects seem to fall into three distinct classes which can be called (1) extragalactic H II regions, (2) clumpy irregulars, and (3) starburst galaxies. Extragalactic H II regions are dominated by recently formed stars and may be considered 'young' galaxies if the definition of young is having the majority of total integrated star formation occurring in the last billion years. Clumpy irregulars are bursts of star formation superposed on an old population and are probably good examples of stochastic star formation. It is possible that star formation in these galaxies is triggered by the infall of gas clouds or dwarf companions. Starburst galaxies are much more luminous, dustier and more metal rich than the other classes. These objects show evidence for shock induced star formation where shocks may be caused by interaction with massive companions or are the result of an extremely strong density wave.

  13. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  14. Exploring the relationship between black hole accretion and star formation with blind mid-/far-infrared spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Pozzi, F.; Gruppioni, C.; Danese, L.

    2014-11-01

    We present new estimates of redshift-dependent luminosity functions of IR lines detectable by SPICA/SAFARI (SPace InfraRed telescope for Cosmology and Astrophysics/SpicA FAR infrared Instrument) and excited both by star formation and by AGN activity. The new estimates improve over previous work by using updated evolutionary models and dealing in a self-consistent way with emission of galaxies as a whole, including both the starburst and the AGN component. New relationships between line and AGN bolometric luminosity have been derived and those between line and IR luminosities of the starburst component have been updated. These ingredients were used to work out predictions for the source counts in 11 mid-/far-IR emission lines partially or entirely excited by AGN activity. We find that the statistics of the emission line detection of galaxies as a whole is mainly determined by the star formation rate, because of the rarity of bright AGNs. We also find that the slope of the line integral number counts is flatter than two implying that the number of detections at fixed observing time increases more by extending the survey area than by going deeper. We thus propose a wide spectroscopic survey of 1 h integration per field of view over an area of 5 deg2 to detect (at 5σ) ˜760 AGNs in [O IV]25.89 μm - the brightest AGN mid-infrared line - out to z ˜ 2. Pointed observations of strongly lensed or hyperluminous galaxies previously detected by large area surveys such as those by Herschel and by the South Pole Telescope can provide key information on the galaxy-AGN co-evolution out to higher redshifts.

  15. Far-Infrared Hydrogen Lasers in the Peculiar Star MWC 349A

    NASA Technical Reports Server (NTRS)

    Strelnitski, Vladimir; Haas, Michael R.; Smith, Howard A.; Erickson, Edwin F.; Colgan, Sean W. J.; Hollenbach, David J.

    1996-01-01

    Far-infrared hydrogen recombination lines H15(alpha)(169.4 micrometers), H12(alpha)(88.8 micrometers), and H10(alpha)(52.5 micrometers) were detected in the peculiar luminous star MWC 349A from the Kuiper Airborne Observatory. Here it is shown that at least H15(alpha) is strongly amplified, with the probable amplification factor being greater than or about equal to 10(exp 3) and a brightness temperature that is greater than or about equal to 10(exp 7) kelvin. The other two lines also show signs of amplification, although to a lesser degree. Beyond H10(alpha) the amplification apparently vanishes. The newly detected amplified lines fall into the laser wavelength domain. These lasers, as well as the previously detected hydrogen masers may originate in the photoionized circumstellar disk of MWC 349A and constrain the disk's physics and structure.

  16. Line Identifications and Preliminary Synthesis of High-resolution Infrared Spectra of CP and Herbig Ae Stars

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Castelli, F.; Hubrig, S.; Wolff, B.; Elkin, V.

    2012-01-01

    We report on surveys of infrared spectra of chemically peculiar and Herbig Ae stars based on CRIRES (Kaufl, et al. SPIE, 5492, 1218 2004). We discuss the magnetic CP stars Gamma Equ and HD 154708, and multiple-phase observations of the Herbig Ae star HD 101412. The Be star HR 4537 and HgMn HR 6620 were also examined. The primary emphasis of the present work is on line identifications primarily in four regions, 1065-1091, 1084-1109,1550-1587, and 2276-2313nm (with order gaps). Observations were reduced with recipes available from the ESO CRIRES data reduction pipeline. Wavelength calibration is determined from daytime ThAr arc lamp exposures. Generally speaking, this is not rich in atomic lines. The strongest features are the Paschen line P6 (1093.81nm), and He I (108.30nm). The latter shows phase variations indicative of a more complex magnetic field than that of a pure dipole. No individual molecular lines were found in these early stars, though CO emission from circumstellar material is likely present in HR 4537 and HD 101412. We used atomic line lists from Kurucz's site (kurucz.harvard.edu) and VALD (http://vald.astro.univie.ac.at/ cf. Kupka et al. 1999, A&AS, 138, 119), supplemented by Outred (J. Phys. Chem. Ref. Data 7, 1, 1978). The following spectra were identified in Gamma Equ: C I, Si I, Ca I, Mg I, II, Cr I, Fe I, Sr II, and Ce III (1584.75nm). The Ap star spectra show broad Zeeman patterns compatible with published models and field strengths. Synthetic calculations used SYNTHE and SYNTHMAG (Piskunov N. E., 1999, in Astrophys. Space Sci. Library Vol. 243, Solar polarization. Kluwer, p 515). The γ Equ model is from Heiter et al. (2002, A&A, 392, 619). and the line list from VALD.

  17. Star Formation Everywhere You Look

    NASA Image and Video Library

    2011-06-24

    This image from NASA Wide-field Infrared Survey Explorer highlights several star-forming regions. There are five distinct centers of star birth in this one image alone. The largest, brightest cloud, in the upper right is known as Gum 22.

  18. A multiwavelength study of young stars in the Elephant Trunk

    NASA Astrophysics Data System (ADS)

    López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.

    2013-05-01

    We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.

  19. Lighting up a Dead Star's Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image from NASA's Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer's infrared detectors 'picked' through these remains and found that much of the star's original layering had been preserved.

    In this false-color image, the faint, blue glow surrounding the dead star is material that was energized by a shock wave, called the forward shock, which was created when the star blew up. The forward shock is now located at the outer edge of the blue glow. Stars are also seen in blue. Green, yellow and red primarily represent material that was ejected in the explosion and heated by a slower shock wave, called the reverse shock wave.

    The picture was taken by Spitzer's infrared array camera and is a composite of 3.6-micron light (blue); 4.5-micron light (green); and 8.0-micron light (red).

  20. Infrared photometry of the dwarf nova V2051 Ophiuchi - I. The mass-donor star and the distance

    NASA Astrophysics Data System (ADS)

    Wojcikiewicz, Eduardo; Baptista, Raymundo; Ribeiro, Tiago

    2018-04-01

    We report the analysis of time series of infrared JHKs photometry of the dwarf nova V2051 Oph in quiescence. We modelled the ellipsoidal variations caused by the distorted mass-donor star to infer its JHKs fluxes. From its infrared colours, we estimate a spectral type of M(8.0 ± 1.5) and an equivalent blackbody temperature of TBB = (2700 ± 270) K. We used the Barnes & Evans relation to infer a photometric parallax distance of dBE = (102 ± 16) pc to the binary. At this short distance, the corresponding accretion disc temperatures in outburst are too low to be explained by the disc-instability model for dwarf nova outbursts, underscoring a previous suggestion that the outbursts of this binary are powered by mass-transfer bursts.

  1. The Discovery of λ Bootis Stars: The Southern Survey I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R. O.; Riggs, Q. S.; Newsome, I. M.

    The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars weremore » discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μ m. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μ m.« less

  2. WISE Catches a Runaway Star in Flames

    NASA Image and Video Library

    2010-11-24

    NASA Wide-field Infrared Survey captured this view of a runaway star racing away from its original home. Surrounded by a glowing cloud of gas and dust, the star AE Aurigae appears on fire. Appropriately, the cloud is called the Flaming Star nebula.

  3. The INfrared Survey of Young Nebulous Clusters (IN-SYNC): Surveying the Dynamics and Star Formation Histories of Young Clusters with APOGEE

    NASA Astrophysics Data System (ADS)

    Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Da Rio, Nicola; Tan, Jonathan; Meyer, Michael; Nidever, David L.; Flaherty, Kevin M.; Arce, Hector G.; Rebull, Luisa M.; Chojnowski, S. Drew; Frinchaboy, Peter M.; Hearty, Fred R.; Majewski, Steven R.; Skrutskie, Michael F.; Stassun, Keivan; Wilson, John C.; Zasowski, Gail

    2015-01-01

    Young clusters are the most prolific sites of star formation in the Milky Way, but demographic studies indicate that relatively few of the Milky Way's stellar clusters persist as bound structures for 100 Myrs or longer. Uniform & precise measurements of the stellar populations and internal dynamics of these regions are difficult to obtain, however, particularly for extremely young clusters whose optical visibility is greatly hampered by their parental molecular cloud. The INfrared Survey of Young Nebulous Clusters (IN-SYNC), an SDSS-III ancillary science program, leverages the stability and multiplex capability of the APOGEE spectrograph to obtain high resolution spectra at near-infrared wavelengths, where photospheric emission is better able to penetrate the dusty shrouds that surround sites of active star formation. We summarize our recent measurements of the kinematics and stellar populations of IC 348 and NGC 1333, two young clusters in the Perseus Molecular Cloud, and of the members of the Orion Nebula Cluster (ONC) and L1641 filament in the Orion molecular complex. These measurements highlight the dynamically 'warm' environment within these young clusters, and suggest a range of stellar radii within these quasi-single-age populations. We close with a preview of plans for continuing this work as part of the APOGEE-2 science portfolio: self-consistent measurements of the kinematics and star formation histories for clusters spanning a range of initial conditions and ages will provide a opportunity to disentangle the mechanisms that drive the formation and dissolution of sites of active star formation.

  4. How Dead are Dead Galaxies? Mid-Infrared Fluxes of Quiescent Galaxies at Redshift 0.3< Z< 2.5: Implications for Star Formation Rates and Dust Heating

    NASA Technical Reports Server (NTRS)

    Fumagalli, Mattia; Labbe, Ivo; Patel, Shannon G.; Franx, Marijn; vanDokkum, Pieter; Brammer, Gabriel; DaCunha, Elisabete; FoersterSchreiber, Natascha M.; Kriek, Mariska; Quadri, Ryan; hide

    2013-01-01

    We investigate star formation rates of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution fitting (rest frame optical and near-IR) indicates very low star formation rates for quiescent galaxies (sSFR approx. 10(exp -12)/yr. However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stack the MIPS-24 micron images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 micron detections, we find sSFR approx. 10(exp -11.9) × (1 + z)(sup 4)/yr. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well above that at lower redshifts.

  5. Circumnuclear star formation in Mrk 42 mapped with Gemini Near-infrared Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Hennig, Moiré G.; Riffel, Rogemar A.; Dors, O. L.; Riffel, Rogerio; Storchi-Bergmann, Thaisa; Colina, Luis

    2018-06-01

    We present Gemini Near-infrared Integral Field Spectrograph (NIFS) observations of the inner 1.5 × 1.5 kpc2 of the narrow-line Seyfert 1 galaxy Mrk 42 at a spatial resolution of 60 pc and spectral resolution of 40 km s^{-1}. The emission-line flux and equivalent width maps clearly show a ring of circumnuclear star formation regions surrounding the nucleus with radius of ˜500 pc. The spectra of some of these regions show molecular absorption features which are probably of CN, TiO, or VO, indicating the presence of massive evolved stars in the thermally pulsing asymptotic giant branch phase. The gas kinematics of the ring is dominated by rotation in the plane of the galaxy, following the large-scale disc geometry, while at the nucleus an additional outflowing component is detected blueshifted by 300-500 km s^{-1}, relative to the systemic velocity of the galaxy. Based on the equivalent width of Br γ we find pieces of evidence of gradients in the age of H II regions along the ring of Mrk 42, favouring the pearls on a string scenario of star formation. The broad component of Pa β emission line presents a Full Width at Half Maximum of ˜1480 km s^{-1}, implying in a mass of ˜2.5 × 106 M⊙ for the central supermassive black hole. Based on emission-line ratios we conclude that besides the active galactic nucleus, Mrk 42 presents nuclear Starburst activity.

  6. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  7. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Tie; Wu Yuefang; Zhang Huawei

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed towardmore » core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.« less

  8. HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinas, N.; Telesco, C. M.; Packham, C.

    2011-08-20

    We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU.more » Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.« less

  9. SNR-shock impact on star formation

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Dincel, B.

    2016-06-01

    While stars form out of cores of molecular clouds due to gravitational collapse of the clouds, external pressure caused by shock waves of stellar winds or supernovae are believed to be responsible for triggering star formation. However, since massive stars evolve fast and their supernova remnants (SNRs) can only be observed up to an age of around 10^5 years, SNRs found near star-forming regions have most likely resulted from the same generation of stars as the young stellar objects (YSOs). Shock waves of these SNRs might show interaction with the existing YSOs and change their nature. We study YSO candidates in Galactic SNRs CTB 109, IC 443 and HB21, which are known to show interaction with molecular clouds and have associated infrared emission. By photometric and spectroscopic studies of YSOs in the optical and the near-infrared, we aim to find clear observational evidences for an interaction of SNR-shocks with YSOs.

  10. Lighting up a Dead Star Layers

    NASA Image and Video Library

    2006-10-26

    This image from NASA Spitzer Space Telescope shows the scattered remains of an exploded star named Cassiopeia A. Spitzer infrared detectors picked through these remains and found that much of the star original layering had been preserved.

  11. Cosmic Infrared Background From Population III Stars and Its Effect on Spectra of High-z Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    2005-01-01

    We discuss the contribution of Population III stars to the near-IR (NIR) cosmic infrared background (CIB) and its effect on spectra of high-z, high-energy gamma-ray bursts (GRBs) and other sources. It is shown that if Population III is composed of massive stars, the claimed NIR CIB excess will be reproduced if only approx. 4% plus or minus 2% of all baryons went through these stars. Regardless of the precise amount of the NIR CIB due to them, they likely left enough photons to provide a large optical depth for high-energy photons from distant GRBs. Observations of such GRBs are expected following the planned launch of NASA's GLAST mission. Detecting such damping in the spectra of high-z GRBs will then provide important information on the emissions from the Population III epoch, and the location of this cutoff may serve as an indicator of the GRBs' redshifts. We also point out the difficulty of unambiguously detecting the CIB part originating from Population III in spectra of low-z blazars.

  12. Infrared Spectro-Interferometry of Massive Stars: Disks, Winds, Outflows, and Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan

    2007-06-01

    Interferometry is the ultimate technology for overcoming the limitations which diffraction and the atmosphere-induced seeing impose on the resolution achievable with ground-based telescopes. The latest generation of long-baseline interferometric instruments (in particular VLTI/AMBER and VLTI/MIDI), combines the high spatial resolution (typically a few milliarcseconds) with spectroscopic capabilities, allowing one to characterize the geometry of a continuum-emitting region over a wide spectral range or to spatially resolve the emitting region of Doppler-broadened spectral lines in many velocity channels. One branch of astrophysics which might particularly benefit from these advances in technology is the study of massive (O-B type) stars. In order to characterize these stars and their companions and to study accretion and outflow processes in their vicinity with unprecedented angular resolution, we have performed interferometric studies on four key objects, representing the still most enigmatic evolutionary phases of massive stars; namely the pre-main-sequence (MWC 147, NGC 7538 IRS1, Theta 1 Orionis C) and the post-main-sequence phase (Eta Carinae). MWC 147: As indicated by its strong infrared excess, this young Herbig Be star (B6-type) is still associated with residual material from its formation; maybe arranged in a circumstellar disk. In order to investigate the geometry of the material, we combined, for the first time, long-baseline spectro-interferometric observations at near- (NIR) and mid-infrared (MIR) wavelengths (using VLTI/AMBER, VLTI/MIDI, and archival PTI data). Fitting analytic models to the obtained interferometric data revealed a significant elongation of the continuum-emitting region. For a physical interpretation, we modeled the geometry of the dust distribution using 2-D radiative transfer simulations of Keplerian disks with and without a puffed-up inner rim, simultaneously fitting the wavelength-dependent visibilities and the SED, which we

  13. All That Remains of Exploded Star

    NASA Image and Video Library

    2011-10-24

    Infrared images from NASA Spitzer Space Telescope and Wide-field Infrared Survey Explorer are combined in this image of RCW 86, the dusty remains of the oldest documented example of an exploding star, or supernova.

  14. Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Grygar, J.

    2018-04-01

    Although infrared radiation was described by W. Herschel already in 1800, technical problems delayed its use in astronomy for 160 years. After the invention of a sensitive bolometer and semiconducting CCD arrays for very wide infrared window the progress in the field accelerated. Many high-altitude observatories started their work in the last three decades of XXth century and since 1983 space observatories became most important due to the fact that infrared radiation penetrates through opaque cold shells. Moreover, cosmological expansion of the Universe shifts the maximum of spectral energy of distant hot objects from ultraviolet to near infrared region. Infrared astronomy is also essential for improving our knowledge of the cold universe, particularly for studies about the birth of stars, planetary systems and galaxies.

  15. Infrared Spectroscopy of the Late-Type Star in the Neutron Star X-ray Symbiotic System 4U 1700+24 = V934 Herculis

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth; Fekel, Francis; Joyce, Richard; Mikolajewska, Joanna; Galan, Cezary

    2018-01-01

    V934 Her = 4U 1700+24 is a previously known M giant - neutron star X-ray symbiotic system. Employing newly measured optical and infrared radial velocities spanning 29 years plus the extensive set of velocities in the literature, we have computed the orbit of the M III in that system. We determine an orbital period of 4391 days or 12.0 yr, far longer than the 404 day orbit commonly cited in the literature. In addition to the 12.0 yr orbital period we find a shorter period of 420 days, similar to that previously found. Instead of orbital motion, we attribute this shorter period to a long secondary pulsation (LSP) period in the SRb variable M3 III. The orbit is seen nearly pole on explaining why X-ray pulsations associated with the neutron star have not been detected. Arguments are made that this orientation supports a pulsation origin for LSP. We also measure CNO and Fe peak abundances of the M giant. Basic properties of the M giant are derived. We discuss the possible evolutionary paths this system has taken to get to its current state.

  16. Active star formation in NGC 2264

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Thronson, H. A., Jr.; Odenwald, S. F.; Glaccum, W.; Loewenstein, R. F.; Wolf, G.

    1985-01-01

    The region of NGC 2264 near the cone nebula is the site of active star formation in a rotating ring seen nearly edge on as a two lobed source. Allen's infrared source (IRS 1) surrounds a B3V star still embedded in the southern lobe of the cloud. The northern lobe, IRS 2, also probably contains young stars.

  17. Spectroscopic observations of X-ray selected late type stars

    NASA Technical Reports Server (NTRS)

    Takalo, L. O.

    1988-01-01

    A spectroscopic survey of nine X-ray selected late type stars was conducted. These stars are serendipitously discovered EINSTEIN X-ray sources, selected from two large x-ray surveys: the Columbia Astrophysical Laboratory survey (five stars) and the CFA Medium Sensitivity survey (four stars). Four of the Columbia survey stars were found to be short period binaries. The fifth was found to be an active single G dwarf. None of the Medium Sensitivity survey stars were found to be either binaries or active stars. Activity was measured by comparing the H-alpha and the CaII infrared triplet (8498, 8542) lines in these stars to the lines in inactive stars of similar spectral type. A correlation was found between the excess H-alpha lime emission and V sin(i) and between the excess H-alpha line emission and X-ray luminosity. No correlation was found between the infrared line emission and any other measured quantity.

  18. Near-Infrared Mass Loss Diagnostics for Massive Stars

    NASA Technical Reports Server (NTRS)

    Sonneborn, George; Bouret, J. C.

    2010-01-01

    Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem.

  19. Distributions of Dusty Star Forming Region in Local Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Tateuchi, K.; Motohara, K.; Konishi, M.; Takahashi, H.; Kato, N.; Kitagawa, Y.; Yoshii, Y.; Doi, M.; Kohno, K.; Kawara, K.; Tanaka, M.; Miyata, T.; Tanabe, T.; Minezaki, T.; Sako, S.; Morokuma, T.; Tamura, Y.; Aoki, T.; Soyano, T.; Tarusawa, K.; Koshida, S.; Kamizuka, T.; Asano, K.; Uchiyama, M.; Okada, K.

    2013-10-01

    Since the first light observation of ANIR in June 2009, we have been carrying out a Paα narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs). Because Paα is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.

  20. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter

    2016-05-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s{sup −1}with a long-term stability of 15–50 m s{sup −1} over longer baselines. We obtain the best NIR RVmore » constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s{sup −1} at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s{sup −1} in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.« less

  1. Mapping the Infrared Sky Artist Concept

    NASA Image and Video Library

    2009-11-17

    This artist conception shows NASA Wide-field Infrared Survey Explorer mapping the whole sky in infrared. The mission will unveil hundreds of thousands of asteroids, and hundreds of millions of stars and galaxies.

  2. Evolutionary status of isolated B[e] stars

    NASA Astrophysics Data System (ADS)

    Lee, Chien-De; Chen, Wen-Ping; Liu, Sheng-Yuan

    2016-08-01

    Aims: We study a sample of eight B[e] stars with uncertain evolutionary status to shed light on the origin of their circumstellar dust. Methods: We performed a diagnostic analysis on the spectral energy distribution beyond infrared wavelengths, and conducted a census of neighboring region of each target to ascertain its evolutionary status. Results: In comparison to pre-main sequence Herbig stars, these B[e] stars show equally substantial excess emission in the near-infrared, indicative of existence of warm dust, but much reduced excess at longer wavelengths, so the dusty envelopes should be compact in size. Isolation from star-forming regions excludes the possibility of their pre-main sequence status. Six of our targets, including HD 50138, HD 45677, CD-24 5721, CD-49 3441, MWC 623, and HD 85567, have been previously considered as FS CMa stars, whereas HD 181615/6 and HD 98922 are added to the sample by this work. We argue that the circumstellar grains of these isolated B[e] stars, already evolved beyond the pre-main sequence phase, should be formed in situ. This is in contrast to Herbig stars, which inherit large grains from parental molecular clouds. It has been thought that HD 98922, in particular, is a Herbig star because of its large infrared excess, but we propose it being in a more evolved stage. Because dust condenses out of stellar mass loss in an inside-out manner, the dusty envelope is spatially confined, and anisotropic mass flows, or anomalous optical properties of tiny grains, lead to the generally low line-of-sight extinction toward these stars.

  3. Far infrared spectroscopy of star formation regions in M82

    NASA Technical Reports Server (NTRS)

    Duffy, P. B.; Erickson, E. F.; Haas, M. R.; Houck, J. R.

    1986-01-01

    Emission lines of (O III) at 52 microns and 88 microns and of (N III) at 57 microns in the nucleus of the galaxy M82 have been observed from the Kuiper Airborne Observatory with the facility's cooled grating spectrometer. The (N III) line has not been previously detected in any extragalactic source. The fluxes in the lines indicate approx 4 x 10 to the 7th power M of ionized gas and a large population of massive stars (equivalent to 5 x 10 to the 5th power 08.5 stars), sufficient to power the infrared luminosity of the nucleus. We use the 52 to 88 micron line intensity ratio to find an average electron density of 210 + or 75 in the nucleus; this is 10 to 100 times lower than values typically observed in individual compact HII regions in our Galaxy. The relative line strengths of the (O III) and (N III) lines imply an N(++)/O(++) ratio of 0.45 + or - 0.1, significantly lower than is measured by the same method in individual HII regions at similar galactocentric distances (equal to or less than 400 pc) in our Galaxy. This lower N(++)/O(++) ratio may be due to a lower N/O ratio, higher stellar temperatures, or both, in M82. At spectral resolutions of approx. 90 km/s, all three line profiles are similarly asymmetric. They can be well fitted by two Gaussian distributions with widths of approx. 150 km/s and central velocities of approx. 110 and approx. 295 km/s, bracketing the systemic velocity of the nucleus of approx. 210 km/s. Within uncertainties, both the N(++)/O(++) ratio and the electron density are the same for both Gaussian components; this indicates no major large-scale gradient in either quantity within the nucleus.

  4. Dragonfish Coming At You in Infrared

    NASA Image and Video Library

    2011-12-12

    This infrared image from NASA Spitzer Space Telescope shows the nebula nicknamed the Dragonfish. This turbulent region, jam-packed with stars, is home to some of the most luminous massive stars in our Milky Way galaxy.

  5. Young Stellar Populations in MYStIX Star-forming Regions: Candidate Protostars

    NASA Astrophysics Data System (ADS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-12-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra-based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  6. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample ismore » newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.« less

  7. Omega Centauri Looks Radiant in Infrared

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Poster Version

    A cluster brimming with millions of stars glistens like an iridescent opal in this image from NASA's Spitzer Space Telescope. Called Omega Centauri, the sparkling orb of stars is like a miniature galaxy. It is the biggest and brightest of the 150 or so similar objects, called globular clusters, that orbit around the outside of our Milky Way galaxy. Stargazers at southern latitudes can spot the stellar gem with the naked eye in the constellation Centaurus.

    Globular clusters are some of the oldest objects in our universe. Their stars are over 12 billion years old, and, in most cases, formed all at once when the universe was just a toddler. Omega Centauri is unusual in that its stars are of different ages and possess varying levels of metals, or elements heavier than boron. Astronomers say this points to a different origin for Omega Centauri than other globular clusters: they think it might be the core of a dwarf galaxy that was ripped apart and absorbed by our Milky Way long ago.

    In this new view of Omega Centauri, Spitzer's infrared observations have been combined with visible-light data from the National Science Foundation's Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile. Visible-light data with a wavelength of .55 microns is colored blue, 3.6-micron infrared light captured by Spitzer's infrared array camera is colored green and 24-micron infrared light taken by Spitzer's multiband imaging photometer is colored red.

    Where green and red overlap, the color yellow appears. Thus, the yellow and red dots are stars revealed by Spitzer. These stars, called red giants, are more evolved, larger and dustier. The stars that appear blue were spotted in both visible and 3.6-micron-, or near-, infrared light. They are less evolved, like our own sun. Some of the red spots in the picture are distant galaxies beyond our own.

    Spitzer found very little dust

  8. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  9. AGB stars as tracers to IC 1613 evolution.

    NASA Astrophysics Data System (ADS)

    Hashemi, S. A.; Javadi, A.; van Loon, J. Th.

    We are going to apply AGB stars to find star formation history for IC 1613 galaxy; this a new and simple method that works well for nearby galaxies. IC 1613 is a Local Group dwarf irregular galaxy that is located at distance of 750 kpc, a gas rich and isolated dwarf galaxy that has a low foreground extinction. We use the long period variable stars (LPVs) that represent the very final stage of evolution of stars with low and intermediate mass at the AGB phase and are very luminous and cool so that they emit maximum brightness in near-infrared bands. Thus near-infrared photometry with using stellar evolutionary models help us to convert brightness to birth mass and age and from this drive star formation history of the galaxy. We will use the luminosity distribution of the LPVs to reconstruct the star formation history-a method we have successfully applied in other Local Group galaxies. Our analysis shows that the IC 1613 has had a nearly constant star formation rate, without any dominant star formation episode.

  10. Studies of Evolved Star Mass Loss: GRAMS Modeling of Red Supergiant and Asymptotic Giant Branch Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, S.; Riebel, D.; Boyer, M.; Meixner, M.

    2012-01-01

    As proposed in our NASA Astrophysics Data Analysis Program (ADAP) proposal, my colleagues and I are studying mass loss from evolved stars. Such stars lose their own mass in their dying stages, and in their expelled winds they form stardust. To model mass loss from these evolved stars, my colleagues and I have constructed GRAMS: the Grid of Red supergiant and Asymptotic giant branch star ModelS. These GRAMS radiative transfer models are fit to optical through mid-infrared photometry of red supergiant (RSG) stars and asymptotic giant branch (AGB) stars. I will discuss our current studies of mass loss from AGB and RSG stars in the Small Magellanic Cloud (SMC), fitting GRAMS models to the photometry of SMC evolved star candidates identified from the SAGE-SMC (PI: K. Gordon) Spitzer Space Telescope Legacy survey. This work will be briefly compared to similar work we have done for the LMC. I will also discuss Spitzer Infrared Spectrograph (IRS) studies of the dust produced by AGB and RSG stars in the LMC. BAS is grateful for support from the NASA-ADAP grant NNX11AB06G.

  11. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  12. First Stars or Stray Stars? A Cosmic Infrared Mystery

    NASA Image and Video Library

    2014-11-06

    Our sky is filled with a diffuse background glow, known as the cosmic infrared background. Much of the light is from galaxies we know about, but previous Spitzer measurements have shown an extra component of unknown origin.

  13. Community Plan for Far-Infrared/Submillimeter Space Astronomy

    NASA Technical Reports Server (NTRS)

    Ade, Peter; Akeson, Rachel; Ali, Shafinaz; Amato, Michael; Arendt, Richard; Baker, Charles; Benford, Dominic; Blain, Andrew; Bock, James; Borne, Kirk

    2004-01-01

    This paper represents the consensus view of the 124 participants in the Second Workshop on New Concepts for Far-Infrared/Submillimeter Space Astronomy.We recommend that NASA pursue the vision for far-IR astronomy outlined in the NAS Decadal Survey, which said: A rational coordinated program for space optical and infrared astronomy would build on the experience gained with NGST1 to construct [a JWST-scale filled-aperture far-IR telescope SAFIR, and then ultimately, in the decade 2010 to 2020, build on the SAFIR, TPF, and SIM experience to assemble a space-based, far-infrared interferometer. SAFIR will study star formation in the young universe, the buildup of elements heavier than hydrogen over cosmic history, the process of galaxy formation, and the early phases of star formation, which occur behind a veil of dust that precludes detection at mid IR and shorter wavelengths. The far-infrared interferometer will resolve distant galaxies to study protogalaxy interactions and mergers and the processes that led to enhanced star formation activity and the formation of Active Galactic Nuclei, and will resolve protostars and debris disks in our Galaxy to study how stars and planetary systems form.

  14. Star Formation in the DR21 Region A

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more stars are discerned in this image because near-infrared light pierces through some of

  15. Star Formation in the DR21 Region (A)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Annotated mosaic

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

    Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more

  16. Galaxy Packs Big Star-Making Punch

    NASA Image and Video Library

    2013-04-23

    The tiny red spot in this image is one of the most efficient star-making galaxies ever observed, converting gas into stars at the maximum possible rate. The galaxy is shown here is from NASA WISE, which first spotted the rare galaxy in infrared light.

  17. The Araucaria Project: The Distance to the Fornax Dwarf Galaxy from Near-infrared Photometry of RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Górski, Marek; Gieren, Wolfgang; Bersier, David

    2017-12-01

    We have obtained single-phase near-infrared (NIR) magnitudes in the J and K bands for 77 RR Lyrae (RRL) stars in the Fornax Dwarf Spheroidal Galaxy. We have used different theoretical and empirical NIR period-luminosity-metallicity calibrations for RRL stars to derive their absolute magnitudes, and found a true, reddening-corrected distance modulus of 20.818+/- 0.015{{(statistical)}}+/- 0.116{{(systematic)}} mag. This value is in excellent agreement with the results obtained within the Araucaria Project from the NIR photometry of red clump stars (20.858 ± 0.013 mag), the tip of the red giant branch (20.84+/- 0.04+/- 0.14 mag), as well as with other independent distance determinations to this galaxy. The effect of metallicity and reddening is substantially reduced in the NIR domain, making this method a robust tool for accurate distance determination at the 5% level. This precision is expected to reach the level of 3% once the zero points of distance calibrations are refined thanks to the Gaia mission. NIR period-luminosity-metallicity relations of RRL stars are particularly useful for distance determinations to galaxies and globular clusters up to 300 kpc, that lack young standard candles, like Cepheids. Based on data collected with the VLT/HAWK-I instrument at ESO Paranal Observatory, Chile, as a part of programme 082.D-0123(B).

  18. No evidence of disk destruction by OB stars

    NASA Astrophysics Data System (ADS)

    Richert, Alexander J. W.; Feigelson, Eric

    2015-01-01

    It has been suggested that the hostile environments observed in massive star forming regions are inhospitable to protoplanetary disks and therefore to the formation of planets. The Orion Proplyds show disk evaporation by extreme ultraviolet (EUV) photons from Theta1 Orionis C (spectral type O6). In this work, we examine the spatial distributions of disk-bearing and non-disk bearing young stellar objects (YSOs) relative to OB stars in 17 massive star forming regions in the MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey. Any tendency of disky YSOs, identified by their infrared excess, to avoid OB stars would reveal complete disk destruction.We consider a sample of MYStIX that includes 78 O3-O9 stars, 256 B stars, 5,606 disky YSOs, and 5,794 non-disky YSOs. For each OB star, we compare the cumulative distribution functions of distances to disky and non-disky YSOs. We find no significant avoidance of OB stars by disky YSOs. This result indicates that OB stars are not sufficiently EUV-luminous and long-lived to completely destroy a disk within its ordinary lifetime. We therefore conclude that massive star forming regions are not clearly hostile to the formation of planets.

  19. Asteroid 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Spitzer Space Telescope set its infrared eyes upon the dusty remains of shredded asteroids around several dead stars. This artist's concept illustrates one such dead star, or 'white dwarf,' surrounded by the bits and pieces of a disintegrating asteroid. These observations help astronomers better understand what rocky planets are made of around other stars.

    Asteroids are leftover scraps of planetary material. They form early on in a star's history when planets are forming out of collisions between rocky bodies. When a star like our sun dies, shrinking down to a skeleton of its former self called a white dwarf, its asteroids get jostled about. If one of these asteroids gets too close to the white dwarf, the white dwarf's gravity will chew the asteroid up, leaving a cloud of dust.

    Spitzer's infrared detectors can see these dusty clouds and their various constituents. So far, the telescope has identified silicate minerals in the clouds polluting eight white dwarfs. Because silicates are common in our Earth's crust, the results suggest that planets similar to ours might be common around other stars.

  20. Star formation across galactic environments

    NASA Astrophysics Data System (ADS)

    Young, Jason

    I present here parallel investigations of star formation in typical and extreme galaxies. The typical galaxies are selected to be free of active galactic nuclei (AGN), while the extreme galaxies host quasars (the most luminous class of AGN). These two environments are each insightful in their own way; quasars are among the most violent objects in the universe, literally reshaping their host galaxies, while my sample of AGN-free star-forming galaxies ranges from systems larger than the Milky Way to small galaxies which are forming stars at unsustainably high rates. The current paradigm of galaxy formation and evolution suggests that extreme circumstances are key stepping stones in the assembly of galaxies like our Milky Way. To test this paradigm and fully explore its ramifications, this dual approach is needed. My sample of AGN-free galaxies is drawn from the KPNO International Spectroscopic Survey. This Halpha-selected, volume-limited survey was designed to detect star-forming galaxies without a bias toward continuum luminosity. This type of selection ensures that this sample is not biased toward galaxies that are large or nearby. My work studies the KISS galaxies in the mid- and far-infrared using photometry from the IRAC and MIPS instruments aboard the Spitzer Space Telescope. These infrared bands are particularly interesting for star formation studies because the ultraviolet light from young stars is reprocessed into thermal emission in the far-infrared (24mum MIPS) by dust and into vibrational transitions features in the mid-infrared (8.0mum IRAC) by polycyclic aromatic hydrocarbons (PAHs). The work I present here examines the efficiencies of PAH and thermal dust emission as tracers of star-formation rates over a wide range of galactic stellar masses. I find that the efficiency of PAH as a star-formation tracer varies with galactic stellar mass, while thermal dust has a highly variable efficiency that does not systematically depend on galactic stellar mass

  1. WISE Eyes Evolution of Massive Stars

    NASA Image and Video Library

    2011-04-08

    In the Perseus spiral arm of the Milky Way galaxy, opposite the galactic center, lies the nebula SH 2-235. As seen in infrared light, NASA Wide-field Infrared Survey Explorer reveals SH 2-235 to be a huge star formation complex.

  2. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  3. How dead are dead galaxies? Mid-infrared fluxes of quiescent galaxies at redshift 0.3 < z < 2.5: implications for star formation rates and dust heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fumagalli, Mattia; Labbé, Ivo; Patel, Shannon G.

    We investigate star formation rates (SFRs) of quiescent galaxies at high redshift (0.3 < z < 2.5) using 3D-HST WFC3 grism spectroscopy and Spitzer mid-infrared data. We select quiescent galaxies on the basis of the widely used UVJ color-color criteria. Spectral energy distribution (SED) fitting (rest-frame optical and near-IR) indicates very low SFRs for quiescent galaxies (sSFR ∼ 10{sup –12} yr{sup –1}). However, SED fitting can miss star formation if it is hidden behind high dust obscuration and ionizing radiation is re-emitted in the mid-infrared. It is therefore fundamental to measure the dust-obscured SFRs with a mid-IR indicator. We stackmore » the MIPS 24 μm images of quiescent objects in five redshift bins centered on z = 0.5, 0.9, 1.2, 1.7, 2.2 and perform aperture photometry. Including direct 24 μm detections, we find sSFR ∼ 10{sup –11.9} × (1 + z){sup 4} yr{sup –1}. These values are higher than those indicated by SED fitting, but at each redshift they are 20-40 times lower than those of typical star-forming galaxies. The true SFRs of quiescent galaxies might be even lower, as we show that the mid-IR fluxes can be due to processes unrelated to ongoing star formation, such as cirrus dust heated by old stellar populations and circumstellar dust. Our measurements show that star formation quenching is very efficient at every redshift. The measured SFR values are at z > 1.5 marginally consistent with the ones expected from gas recycling (assuming that mass loss from evolved stars refuels star formation) and well below that at lower redshifts.« less

  4. Storm of Stars in the Trifid Nebula

    NASA Image and Video Library

    2014-01-29

    Radiation and winds from massive stars have blown a cavity into the surrounding dust and gas, creating the Trifid nebula, as seen here in infrared light by NASA Wide-field Infrared Survey Explorer, or WISE.

  5. Optical and Near-infrared Radial Velocity Content of M Dwarfs: Testing Models with Barnard’s Star

    NASA Astrophysics Data System (ADS)

    Artigau, Étienne; Malo, Lison; Doyon, René; Figueira, Pedro; Delfosse, Xavier; Astudillo-Defru, Nicola

    2018-05-01

    High-precision radial velocity (RV) measurements have been central in the study of exoplanets during the last two decades, from the early discovery of hot Jupiters, to the recent mass measurements of Earth-sized planets uncovered by transit surveys. While optical RV is now a mature field, there is currently a strong effort to push the technique into the near-infrared domain (chiefly Y, J, H, and K bandpasses) to probe planetary systems around late-type stars. The combined lower mass and luminosity of M dwarfs leads to an increased reflex RV signal for planets in the habitable zone compared to Sun-like stars. The estimates on the detectability of planets rely on various instrumental characteristics but also on a prior knowledge of the stellar spectrum. While the overall properties of M dwarf spectra have been extensively tested against observations, the same is not true for their detailed line profiles, which leads to significant uncertainties when converting a given signal-to-noise ratio to a corresponding RV precision as attainable on a given spectrograph. By combining archival CRIRES and HARPS data with ESPaDOnS data of Barnard’s star, we show that state-of-the-art atmosphere models over-predict the Y- and J-band RV content by more than a factor of ∼2, while under-predicting the H- and K-band content by half.

  6. Dusty Mass Loss from Galactic Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel H.

    2016-06-01

    We are probing how mass loss from Asymptotic Giant Branch (AGB) stars depends upon their metallicity. Asymptotic giant branch (AGB) stars are evolved stars that eject large parts of their mass in outflows of dust and gas in the final stages of their lives. Our previous studies focused on mass loss from AGB stars in lower metallicity galaxies: the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). In our present study, we analyze AGB star mass loss in the Galaxy, with special attention to the Bulge, to investigate how mass loss differs in an overall higher metallicity environment. We construct radiative transfer models of the spectral energy distributions (SEDs) of stars in the Galaxy identified as AGB stars from infrared and optical surveys. Our Magellanic Cloud studies found that the AGB stars with the highest mass loss rates tended to have outflows with carbon-rich dust, and that overall more carbon-rich (C-rich) dust than oxygen-rich (O-rich) was produced by AGB stars in both LMC and SMC. Our radiative transfer models have enabled us to determine reliably the dust chemistry of the AGB star from the best-fit model. For our Galactic sample, we are investigating both the dust chemistries of the AGB stars and their mass-loss rates, to compare the balance of C-rich dust to O-rich dust between the Galactic bulge and the Magellanic Clouds. We are also constructing detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs of Galactic AGB stars. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  7. The best and brightest metal-poor stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C.; Casey, Andrew R., E-mail: kschlauf@mit.edu, E-mail: arc@ast.cam.ac.uk

    2014-12-10

    The chemical abundances of large samples of extremely metal-poor (EMP) stars can be used to investigate metal-free stellar populations, supernovae, and nucleosynthesis as well as the formation and galactic chemical evolution of the Milky Way and its progenitor halos. However, current progress on the study of EMP stars is being limited by their faint apparent magnitudes. The acquisition of high signal-to-noise spectra for faint EMP stars requires a major telescope time commitment, making the construction of large samples of EMP star abundances prohibitively expensive. We have developed a new, efficient selection that uses only public, all-sky APASS optical, 2MASS near-infrared,more » and WISE mid-infrared photometry to identify bright metal-poor star candidates through their lack of molecular absorption near 4.6 microns. We have used our selection to identify 11,916 metal-poor star candidates with V < 14, increasing the number of publicly available candidates by more than a factor of five in this magnitude range. Their bright apparent magnitudes have greatly eased high-resolution follow-up observations that have identified seven previously unknown stars with [Fe/H] ≲ –3.0. Our follow-up campaign has revealed that 3.8{sub −1.1}{sup +1.3}% of our candidates have [Fe/H] ≲ –3.0 and 32.5{sub −2.9}{sup +3.0}% have –3.0 ≲ [Fe/H] ≲ –2.0. The bulge is the most likely location of any existing Galactic Population III stars, and an infrared-only variant of our selection is well suited to the identification of metal-poor stars in the bulge. Indeed, two of our confirmed metal-poor stars with [Fe/H] ≲ –2.7 are within about 2 kpc of the Galactic center. They are among the most metal-poor stars known in the bulge.« less

  8. Star Formation Activity Beyond the Outer Arm. I. WISE -selected Candidate Star-forming Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumi, Natsuko; Yasui, Chikako; Saito, Masao

    The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at R {sub G} ≥ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer ( WISE ) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions inmore » the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at R {sub G} ≥ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) {sup 12}CO survey of the outer Galaxy, of which the survey region is 102.°49 ≤  l  ≤ 141.°54, −3.°03 ≤  b  ≤ 5.°41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star formation properties, including star formation rate, star formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.« less

  9. DISENTANGLING CONFUSED STARS AT THE GALACTIC CENTER WITH LONG-BASELINE INFRARED INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Jordan M.; Eisner, J. A.; Monnier, J. D.

    2012-08-01

    We present simulations of Keck Interferometer ASTRA and VLTI GRAVITY observations of mock star fields in orbit within {approx}50 mas of Sgr A*. Dual-field phase referencing techniques, as implemented on ASTRA and planned for GRAVITY, will provide the sensitivity to observe Sgr A* with long-baseline infrared interferometers. Our results show an improvement in the confusion noise limit over current astrometric surveys, opening a window to study stellar sources in the region. Since the Keck Interferometer has only a single baseline, the improvement in the confusion limit depends on source position angles. The GRAVITY instrument will yield a more compact andmore » symmetric point-spread function, providing an improvement in confusion noise which will not depend as strongly on position angle. Our Keck results show the ability to characterize the star field as containing zero, few, or many bright stellar sources. We are also able to detect and track a source down to m{sub K} {approx} 18 through the least confused regions of our field of view at a precision of {approx}200 {mu}as along the baseline direction. This level of precision improves with source brightness. Our GRAVITY results show the potential to detect and track multiple sources in the field. GRAVITY will perform {approx}10 {mu}as astrometry on an m{sub K} = 16.3 source and {approx}200 {mu}as astrometry on an m{sub K} = 18.8 source in 6 hr of monitoring a crowded field. Monitoring the orbits of several stars will provide the ability to distinguish between multiple post-Newtonian orbital effects, including those due to an extended mass distribution around Sgr A* and to low-order general relativistic effects. ASTRA and GRAVITY both have the potential to detect and monitor sources very close to Sgr A*. Early characterizations of the field by ASTRA, including the possibility of a precise source detection, could provide valuable information for future GRAVITY implementation and observation.« less

  10. Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana

    1999-01-01

    This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.

  11. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor Toward the Supergiant Star VY Canis Majoris

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.

  12. IRAS 22150+6109 - a young B-type star with a large disc

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.; Miroshnichenko, Anatoly S.; Kuratov, Kenesken S.; Zakhozhay, Vladimir A.; Khokhlov, Serik A.; Zharikov, Sergey V.; Manset, Nadine

    2018-06-01

    We present the results of a spectroscopic analysis and spectral energy distribution (SED) modelling of the optical counterpart of the infrared source IRAS 22150+6109. The source was suggested to be a Herbig Be star located in the star-forming region L 1188. Absorption lines in the optical spectrum indicate a spectral type B3, while weak Balmer emission lines reflect the presence of a circumstellar gaseous disc. The star shows no excess radiation in the near-infrared spectral region and a strong excess in the far-infrared that we interpret as radiation from a large disc, the inner edge of which is located very far from the star (550 au) and does not attenuate its radiation. We conclude that IRAS 22150+6109 is an intermediate-mass star that is currently undergoing a short pre-main-sequence evolutionary stage.

  13. A near-infrared high-resolution spectroscopic survey of bulge stars - JASMINE prestudy

    NASA Astrophysics Data System (ADS)

    Tsujimoto, T.; Gouda, N.; Kobayashi, N.; Yasui, C.; Kondo, S.; Minami, A.; Motohara, K.; Ikeda, Y.

    2006-08-01

    We are developing a new near-infrared high-resolution (R[max]= 100,000) and high-sensitive spectrograph WINERED, which is specifically customized for short NIR bands at 0.9-1.35 μm. WINERED employs the novelty in the optical system; a potable design and a warm optics without any cold stops. The planned astrometric space mission JASMINE will provide the exact positions, distances, and proper motions of the bulge stars. The missing components, the radial velocity and chemical compositions will be measured by WINERED with high accuracies (δV< 1km/s). These combined data brought by JASMINE and WINERED will certainly reveal the nature of the Galactic bulge. We plan to complete this instrument for the observation of a single object by the end of 2008 and hope to attach it to various 4-10m telescopes as a PI-type instrument. In succession, we will develop it to the design for a simultaneous multi-object spectroscopy.

  14. A near infrared speckle imaging study of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Mccarthy, D. W., Jr.; Weinberger, A. J.; Neugebauer, G.; Matthews, K.

    1994-01-01

    The results of a speckle imaging survey of T Tauri stars suggest that most, if not all, young low mass stars have companions. Repeated observations of these young binary stars have revealed orbital motion in the closest pairs (less than or = 0.3 sec), providing that these systems are indeed gravitationally bound and providing the basis for mass estimates in the upcoming years. These mass estimates are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date.

  15. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10 7 -year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  16. The Infrared Hunter

    NASA Image and Video Library

    2006-08-15

    NASA Spitzer Space Telescope and the National Optical Astronomy Observatory compare infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation sword.

  17. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  18. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    PubMed

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  19. The star-forming cores in the centre of the Trifid nebula (M 20): from Herschel to the near-infrared

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Román-Zúñiga, C.; Elia, D.; Giovannelli, F.; Sabau-Graziati, L.

    2018-04-01

    A new detailed infrared (IR) study of eight star-forming dense condensations (TCs) in M 20, the Trifid nebula, is presented. The aim is to determine the physical properties of the dust in such globules and establish the presence and properties of their embedded protostellar and/or young stellar population. For this, we analysed new Herschel far-IR and Calar Alto near-IR images of the region, combined with Spitzer Infrared Array Camera (Spitzer/IRAC) archival observations. We confirm the presence of several young stellar objects (YSOs), most with mid-IR colours of Class II sources in all but one of the observed cores. Five TCs are dominated in the far-IR by Class I sources with bolometric luminosities between 100 and 500 L⊙. We report the discovery of a possible counterjet to HH 399 and its protostellar engine inside the photodissociation region TC2, as well as a bipolar outflow system, signposted by symmetric H2 emission knots, embedded in TC3. The present results are compatible with previous suggestions that star formation has been active in the region for some 3 × 105 yr, and that the most recent events in some of these TCs may have been triggered by the expansion of the H II region. We also obtained a revised value for the distance to M 20 of 2.0 ± 0.1 kpc.

  20. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    NASA Technical Reports Server (NTRS)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  1. Mass return to the interstellar medium from highly-evolved carbon stars

    NASA Technical Reports Server (NTRS)

    Latter, W. B.; Thronson, H. A., Jr.; Hacking, P.; Bally, J.; Black, J.

    1986-01-01

    Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated.

  2. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  3. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  4. Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.

    2007-09-01

    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.

  5. A Wide Area Survey for High-Redshift Massive Galaxies. II. Near-Infrared Spectroscopy of BzK-Selected Massive Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Onodera, Masato; Arimoto, Nobuo; Daddi, Emanuele; Renzini, Alvio; Kong, Xu; Cimatti, Andrea; Broadhurst, Tom; Alexander, Dave M.

    2010-05-01

    Results are presented from near-infrared spectroscopic observations of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5 < z < 2.3 that were obtained with OHS/CISCO at the Subaru telescope and with SINFONI at the Very Large Telescope. Among the 28 sBzKs observed, Hα emission was detected in 14 objects, and for 11 of them the [N II] λ6583 flux was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Hα and [N II] emissions have allowed us to estimate star formation rates (SFRs), metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Hα with those derived from rest-frame UV and mid-infrared, additional obscuration for the emission lines (that originate in H II regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR (SSFR), and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that near-infrared selected galaxies tend to be a chemically more evolved population. The sBzKs show SSFRs that are systematically higher, by up to ~2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and SSFR are then compared with those of evolutionary population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star formation (sime100 Myr) and large initial gas mass appear to be required

  6. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverman, J. D.; Rujopakarn, W.; Daddi, E.

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxiesmore » having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.« less

  7. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z ˜ 1.6 Well Above the Star-forming Main Sequence

    NASA Astrophysics Data System (ADS)

    Silverman, J. D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; Kartaltepe, J.; Nagao, T.; Arimoto, N.; Berta, S.; Béthermin, M.; Koekemoer, A.; Lutz, D.; Magdis, G.; Mancini, C.; Onodera, M.; Zamorani, G.

    2015-10-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ˜ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (˜300-800 M⊙ yr-1) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ˜ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (˜30%-50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  8. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  9. A Multi-Wavelength Survey of Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.

    2015-01-01

    Current research into Galactic star formation has focused on either massive star-forming regions or nearby low-mass regions. We present results from a survey of Galactic intermediate-mass star-forming regions (IM SFRs). These regions were selected from IRAS colors that specify cool dust and large PAH contribution, suggesting that they produce stars up to but not exceeding about 8 solar masses. Using WISE data we have classified 984 candidate IM SFRs as star-like objects, galaxies, filamentary structures, or blobs/shells based on their mid-infrared morphologies. Focusing on the blobs/shells, we combined follow-up observations of deep near-infrared (NIR) imaging with optical and NIR spectroscopy to study the stellar content, confirming the intermediate-mass nature of these regions. We also gathered CO data from OSO and APEX to study the molecular content and dynamics of these regions. We compare these results to those of high-mass star formation in order to better understand their role in the star-formation paradigm.

  10. The possible nature of socket stars in H II regions

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socket stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen.

  11. Mass-loss rates and luminosities of evolved stars in the Magellanic Clouds .

    NASA Astrophysics Data System (ADS)

    Groenewegen, M. A. T.; Sloan, G. C.

    Stars on the asymptotic giant branch (AGB) stars play an important role in the chemical evolution of their host galaxies and the life cycle of dust in the interstellar medium. A detailed and quantitative understanding of they lose mass and eject their envelopes remains elusive, particularly how that process depends on metallicity. Groenewegen & Sloan (2017, hereafter GS17) recently presented dust radiative transfer models for 225 carbon stars and 171 oxygen-rich evolved stars in the Magellanic Clouds and four nearby dSphs which were observed with the Infrared spectrograph on the Spitzer Space Telescope. They applied a minimisation procedure to fit models to spectral energy distributions constructed from the infrared spectra and the available optical and infrared photometry for each star to determine its luminosity and dust mass-loss rate (MLR). In this contribution two items from that paper are highlighted: an update on MSX SMC 055, which Groenewegen et al. (2009) suggested could be a super-AGB star, and a discussion of synthetic colour-colour and colour-magnitude diagrams expected from the James Webb Space Telescope.

  12. Infrared Space Observatory Observations of Far-Infrared Rotational Emission Lines of Water Vapor toward the Supergiant Star VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-06-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 μm grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power λ/Δλ of ~2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of ~25 Lsolar. In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the 2Π1/2(J=5/2)<--2Π3/2(J=3/2) OH feature near 34.6 μm in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 725-616 line at 29.8367 μm, the 441-312 line at 31.7721 μm, and the 432-303 line at 40.6909 μm. The higher spectral resolving power λ/Δλ of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the ``P Cygni'' profiles that are characteristic of emission from an outflowing envelope. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the UK) with the participation of ISAS and NASA.

  13. The multiple infrared source GL 437

    NASA Technical Reports Server (NTRS)

    Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.

    1981-01-01

    Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.

  14. Infrared Properties of Star Forming Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Vaduvescu, Ovidiu

    2005-11-01

    Dwarf galaxies are the most common galaxies in the Universe. They are systems believed to consist of matter in a near-primordial state, from which giant galaxies probably form. As such, they are important probes for studying matter in its near-primordial state. In an effort to study the main physical and chemical properties of dwarfs, the present thesis focuses upon the main physical properties of dwarfs. Two classes of star forming dwarf galaxies are considered: dwarf irregulars (dIs), and blue compact dwarfs (BCDs). A third class, dwarf ellipticals (dEs), is studied based on its structural properties and compared with dIs. Possible evolutionary connections are addressed between dIs and BCDs. To measure the luminosity, deep imaging in the near-infrared (NIR) is considered. Compared with the visible, the NIR domain gives a better gauge of the galaxy mass contained in the old stellar populations, minimising the starburst contribution and also the effects of extinction. Two observing samples of star-forming dwarf galaxies are considered. The first includes 34 dIs in the Local Volume closer than 5 Mpc. The second sample includes 16 BCDs in the Virgo Cluster. In six observing runs between 2001 and 2004, we acquired deep NIR images (J and K_s) using the 3.6m Canada-France-Hawaii-Telescope (CFHT) in Hawaii and the 2.1m telescope at the National Astronomical Observatory ''San Pedro Martir'' (OAN-SPM) in Mexico. Deep spectrocopy was acquired in 2003 on the 8.1m Gemini-North telescope in Hawaii. We completed the observed samples with spectroscopic data from the literature, and photometry from the 2MASS survey and GOLDMine database. From a statistical study at CFHT, we derived some strategies necessary to image optimally faint extended sources in the NIR. Due to the airglow variation in the atmosphere and the thermal contribution of the dome, telescope and the instrumentation, repeated observations of the sky must be alternated every 3-4 minutes with the science images, in

  15. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of the...

  16. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of the...

  17. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of the...

  18. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of the...

  19. 45 CFR 233.145 - Expiration of medical assistance programs under titles I, IV-A, X, XIV and XVI of the Social...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... titles I, IV-A, X, XIV and XVI of the Social Security Act. 233.145 Section 233.145 Public Welfare... FINANCIAL ASSISTANCE PROGRAMS § 233.145 Expiration of medical assistance programs under titles I, IV-A, X..., enacted July 30, 1965, no payment may be made to any State under title I, IV-A, X, XIV or XVI of the...

  20. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Smith, J. D. T.; Schlawin, E. A.; Armus, L.; Buckalew, B. A.; Cohen, S. A.; Helou, G.; Jarrett, T. H.; Johnson, L. C.; Moustakas, J.; Murphy, E. J.; Roussel, H.; Sheth, K.; Staudaher, S.; Bot, C.; Calzetti, D.; Engelbracht, C. W.; Gordon, K. D.; Hollenbach, D. J.; Kennicutt, R. C.; Malhotra, S.

    2009-03-01

    High-resolution mid-infrared spectra are presented for 155 nuclear and extranuclear regions from the Spitzer Infrared Nearby Galaxies Survey (SINGS). The fluxes for nine atomic forbidden and three molecular hydrogen mid-infrared emission lines are also provided, along with upper limits in key lines for infrared-faint targets. The SINGS sample shows a wide range in the ratio of [S III] 18.71 μm/[S III] 33.48 μm, but the average ratio of the ensemble indicates a typical interstellar electron density of 300-400 cm-3 on ~23'' × 15'' scales and 500-600 cm-3 using ~11'' × 9'' apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an active galactic nuclei (AGN) environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [Ne III] 15.56 μm/[Ne II] 12.81 μm, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [Ne III] 15.56 μm/[Ne II] 12.81 μm ratios. Finally, [Fe II] 25.99 μm/[Ne II] 12.81 μm versus [Si II] 34.82 μm/[S III] 33.48 μm also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [Ne III] 15.56 μm/[Ne II] 12.81 μm, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  1. EDITORIAL: XVI Brazilian Colloquium on Orbital Dynamics

    NASA Astrophysics Data System (ADS)

    de Melo, Cristiano F.; Macau, Elbert E. N.; Prado, Antonio B. A.; Hetem Jnr, Annibal

    2013-10-01

    The XVI Brazilian Colloquium on Orbital Dynamics was held from 26-30 November 2012, at the Biazi Grand Hotel, Serra Negra, São Paulo, Brazil. The Brazilian Colloquia on Orbital Dynamics are scientific events that occur bi-annually and are designed to develop those areas of research in celestial mechanics, orbital dynamics, planetary science, fundamental astronomy, aerospace engineering, and nonlinear systems and chaos. The meeting has been held for 30 years and it brings together researchers, professors and students from South American and also from other continents. Acknowledgements National Council for Scientific and Technological Development - CNPq Coordination for the Improvement of Higher Level - CAPES São Paulo Research Foundation - FAPESP

  2. Massive Stars in the SDSS-IV/APOGEE SURVEY. I. OB Stars

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.; Román-Zúñiga, C.; Tapia, Mauricio; Chojnowski, Drew; Gómez Maqueo Chew, Y.; García-Hernández, D. A.; Borissova, Jura; Minniti, Dante; Covey, Kevin R.; Longa-Peña, Penélope; Fernandez-Trincado, J. G.; Zamora, Olga; Nitschelm, Christian

    2018-03-01

    In this work, we make use of DR14 APOGEE spectroscopic data to study a sample of 92 known OB stars. We developed a near-infrared semi-empirical spectral classification method that was successfully used in case of four new exemplars, previously classified as later B-type stars. Our results agree well with those determined independently from ECHELLE optical spectra, being in line with the spectral types derived from the “canonical” MK blue optical system. This confirms that the APOGEE spectrograph can also be used as a powerful tool in surveys aiming to unveil and study a large number of moderately and highly obscured OB stars still hidden in the Galaxy.

  3. Coronal Structures in Cool Stars

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.

    2005-01-01

    We have extended our study of the structure of coronas in cool stars to very young stars still accreting from their surrounding disks. In addition we are pursing the connection between coronal X-rays and a powerful diagnostic line in the infrared, the He I 10830Angstrom transition of helium. Highlights of these are summarized below including publications during this reporting period and presentations. Spectroscopy of the infrared He I (lambda10830) line with KECK/NIRSPEC and IRTF/CSHELL and of the ultraviolet C III (lambda977) and O VI (lambda1032) emission with FUSE reveals that the classical T Tauri star TW Hydrae exhibits P Cygni profiles, line asymmetries, and absorption indicative of a continuous, fast (approximately 400 kilometers per second), hot (approximately 300,000 K) accelerating outflow with a mass loss rate approximately 10(exp -11)-10(exp -12) solar mass yr(sup -1) or larger. Spectra of T Tauri N appear consistent with such a wind. The source of the emission and outflow seems restricted to the stars themselves. Although the mass accretion rate is an order of magnitude less for TW Hya than for T Tau, the outflow reaches higher velocities at chromospheric temperatures in TW Hya. Winds from young stellar objects may be substantially hotter and faster than previously thought. The ultraviolet emission lines, when corrected for absorption are broad. Emission associated with the accretion flow and shock is likely to show turbulent broadening. We note that the UV line widths are significantly larger than the X-ray line widths. If the X-rays from TW Hya are generated at the accretion shock, the UV lines may not be directly associated with the shock. On the other hand, studies of X-ray emission in young star clusters, suggest that the strength of the X-ray emission is correlated with stellar rotation, thus casting doubt on an accretion origin for the X-rays. We are beginning to access the infrared spectral region where the He I 108308Angstroms transition

  4. The possible nature of socket stars in H II regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelaz, M.W.

    1990-01-01

    Close inspection of faint stars (V of about 14 mag) in H II regions show that they appear to be surrounded by circumstellar envelopes of about 10 arcsecs in diameter (as reported by Feibelman in 1989). The present premise is that the sockets are envelopes of obscuring dust which should emit a measurable amount of infrared radiation based on a simple thermal equilibrium model. A search of literature shows that, of 36 socket stars listed by Feibelman, 17 have been measured in the infrared. Of the 17, 14 show excess IR emission. This is very strong evidence that the socketmore » stars are really stars with circumstellar envelopes. Socket stars may be a new type of astronomical object or well-known astronomical objects in environments or evolutionary states not previously seen. 22 refs.« less

  5. Seeing Stars in Serpens

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope.

    The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars.

    Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy.

    The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation.

    The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.

  6. Dark Star-Making Factory

    NASA Image and Video Library

    2009-10-02

    In this infrared view from the Herschel Observatory, a European Space Agency mission, blue shows the warmest dust, and red, the coolest. The choppy clouds of gas and dust are just starting to condense into new stars.

  7. ZZ Canis Minoris as a symbiotic star

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.

    1984-01-01

    The H-aplha and Na I D-line regions of the M6 giant star ZZ Canis Minoris (ZZ CMi) were observed with the Kitt Peak coude feed telescope and a CCD detector. It is shown that ZZ CMi has similar spectroscopic and photoproperties to the symbiotic star EG And. The data are used to argue for the classification of ZZ CMi as a symbiotic star despite its current listing in the General Catalog of Variable Stars (GCVS) as a semi-regular variable. The infrared magnitudes of ZZ CMi and the known symbiotic stars are compared in a table.

  8. Infrared space astrometry project JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Yano

    2008-07-01

    A Japanese plan of an infrared (z-band:0.9 μas or k-band:2.2 μas) space astrometry (JASMINE-project) is introduced. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the bulge of the Milky Way. It will measure parallaxes, positions with an accuracy of 10 μas and proper motions with an accuracy of 10 μas/year for stars brighter than z=14 mag or k=11 mag. JASMINE will observe about ten million stars belonging to the bulge component of our Galaxy. With a completely new “map” of the Galactic bulge, it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a targeted launch date around 2016. Science targets, preliminary design of instruments, observing strategy, critical technical issues in JASMINE and also Nano-JASMINE project are described in this paper.

  9. Faint CO Line Wings in Four Star-forming (Ultra)luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leroy, Adam K.; Walter, Fabian; Decarli, Roberto; Bolatto, Alberto; Zschaechner, Laura; Weiss, Axel

    2015-09-01

    We report the results of a search for large velocity width, low-intensity line wings—a commonly used signature of molecular outflows—in four low redshift (ultra)luminous infrared galaxies that appear to be dominated by star formation. The targets were drawn from a sample of fourteen targets presented in Chung et al., who showed the stacked CO spectrum of the sample to exhibit 1000 km s-1-wide line wings. We obtained sensitive, wide bandwidth imaging of our targets using the IRAM Plateau de Bure Interferometer. We detect each target at very high significance but do not find the claimed line wings in these four targets. Instead, we constrain the flux in the line wings to be only a few percent. Casting our results as mass outflow rates following Cicone et al. we show them to be consistent with a picture in which very high mass loading factors preferentially occur in systems with high active galactic nucleus contributions to their bolometric luminosity. We identify one of our targets, IRAS 05083 (VII Zw 31), as a candidate molecular outflow.

  10. What powers Hyperluminous infrared galaxies at z˜1-2?

    NASA Astrophysics Data System (ADS)

    Symeonidis, M.; Page, M. J.

    2018-06-01

    We investigate what powers hyperluminous infrared galaxies (HyLIRGs; LIR, 8-1000μm > 1013 L⊙) at z˜1-2, by examining the behaviour of the infrared AGN luminosity function in relation to the infrared galaxy luminosity function. The former corresponds to emission from AGN-heated dust only, whereas the latter includes emission from dust heated by stars and AGN. Our results show that the two luminosity functions are substantially different below 1013 L⊙ but converge in the HyLIRG regime. We find that the fraction of AGN dominated sources increases with total infrared luminosity and at L_IR>10^{13.5} L_{⊙} AGN can account for the entire infrared emission. We conclude that the bright end of the 1 < z < 2 infrared galaxy luminosity function is shaped by AGN rather than star-forming galaxies.

  11. Cygnus OB2: Star Formation Ugly Duckling Causes a Flap

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Wright, Nicholas; Guarcello, Mario

    2015-08-01

    Cygnus OB2 is one of the largest known OB associations in our Galaxy, with a total stellar mass of 30,000 Msun and boasting an estimated 65 O-type stars and hundreds of OB stars. At a distance of only 1.4kpc, it is also the closest truly massive star forming region and provides a valuable testbed for star and planet formation theory. We have performed a deep stellar census using observations from X-ray to infrared, which has enabled studies of sub-structuring, mass segregation and dynamics, while infrared data reveal a story of protoplanetary disk attrition in an extremely harsh radiation environment. I will discuss how Cygnus OB2 challenges the idea that stars must form in dense, compact clusters, and demonstrates that stars as massive as 100 Msun can form in relatively low-density environments. Convincing evidence of disk photoevaporation poses a potential problem for planet formation and growth in starburst environments.

  12. An infrared search for low-mass companions of stars near the sun

    NASA Technical Reports Server (NTRS)

    Skrutskie, M. F.; Forrest, W. J.; Shure, Mark

    1989-01-01

    Using a CCD camera on the IRTF telescope on Mauna Kea, a search was conducted for low-mass companions to stars in the solar neighborhood. The K band (2.2 microns) survey includes 55 condidates closer than 12 pc, as well as eight stars in the Pleiades star cluster. Due to the saturation of the primary star image, the survey was insensitive to companions within about 2 arcsec of the primary star. The survey detected a single low-mass candidate object, a companion to the star Gliese 569, which lies near or below the hydrogen-burning mass limit and resembles extremely low-mass stars similar to VB 10 and LHS 2924.

  13. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.; Wittkowski, M.

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument in prism mode within the framework of the Science Demonstration Time (SDT) program in Feb. 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m.As we show by means of radiative transfer modelin with the code DUSTY [3], the wavelength dependence of the visibility and the N-band spectrum measured with MIDI can be interpreted as thesignature of a circumstellar dust shell which is dominated by silicate dust.

  14. Charting the Winds that Change the Universe, II The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David

    2003-01-01

    The Single Aperture Far Infrared Observatory (SAFIR) will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  15. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA DETAILS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are two views of a highly active region of star birth located northeast of the central cluster, R136, in 30 Doradus. The orientation and scale are identical for both views. The top panel is a composite of images in two colors taken with the Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The bottom panel is a composite of pictures taken through three infrared filters with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). In both cases the colors of the displays were chosen to correlate with the nebula's and stars' true colors. Seven very young objects are identified with numbered arrows in the infrared image. Number 1 is a newborn, compact cluster dominated by a triple system of 'hefty' stars. It has formed within the head of a massive dust pillar pointing toward R136. The energetic outflows from R136 have shaped the pillar and triggered the collapse of clouds within its summit to form the new stars. The radiation and outflows from these new stars have in turn blown off the top of the pillar, so they can be seen in the visible-light as well as the infrared image. Numbers 2 and 3 also pinpoint newborn stars or stellar systems inside an adjacent, bright-rimmed pillar, likewise oriented toward R136. These objects are still immersed within their natal dust and can be seen only as very faint, red points in the visible-light image. They are, however, among the brightest objects in the infrared image, since dust does not block infrared light as much as visible light. Thus, numbers 2 and 3 and number 1 correspond respectively to two successive stages in the birth of massive stars. Number 4 is a very red star that has just formed within one of several very compact dust clouds nearby. Number 5 is another very young triple-star system with a surrounding cluster of fainter stars. They also can be seen in the visible-light picture. Most remarkable are the glowing patches numbered 6 and 7, which astronomers

  16. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.

    2007-11-01

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument within the framework of the Science Demonstration Time (SDT) program in February 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m. All visibility measurements show a distinct wavelength dependence: a rather steep decrease between 8 and 10 μm, and a shallower monotonic increase longward of 10 μm. For the corresponding uniform disk diameter, this visibility shape translates into a diameter increase by a factor of 2 from 25 to 50 mas between 8 and 10 μm and an almost wavelength-independent diameter between 10 and 13 μm. As we show by means of radiative transfer modeling with the code dusty, this wavelength dependence measured with VLTI/MIDI can be interpreted as the mid-infrared signature of a circumstellar dust shell which is dominated by silicate dust.

  17. The MYStIX Infrared-Excess Source Catalog

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; Kuhn, Michael A.; Getman, Konstantin V.; Busk, Heather A.; Feigelson, Eric D.; Broos, Patrick S.; Townsley, Leisa K.; King, Robert R.; Naylor, Tim

    2013-12-01

    The Massive Young Star-Forming Complex Study in Infrared and X-rays (MYStIX) project provides a comparative study of 20 Galactic massive star-forming complexes (d = 0.4-3.6 kpc). Probable stellar members in each target complex are identified using X-ray and/or infrared data via two pathways: (1) X-ray detections of young/massive stars with coronal activity/strong winds or (2) infrared excess (IRE) selection of young stellar objects (YSOs) with circumstellar disks and/or protostellar envelopes. We present the methodology for the second pathway using Spitzer/IRAC, 2MASS, and UKIRT imaging and photometry. Although IRE selection of YSOs is well-trodden territory, MYStIX presents unique challenges. The target complexes range from relatively nearby clouds in uncrowded fields located toward the outer Galaxy (e.g., NGC 2264, the Flame Nebula) to more distant, massive complexes situated along complicated, inner Galaxy sightlines (e.g., NGC 6357, M17). We combine IR spectral energy distribution (SED) fitting with IR color cuts and spatial clustering analysis to identify IRE sources and isolate probable YSO members in each MYStIX target field from the myriad types of contaminating sources that can resemble YSOs: extragalactic sources, evolved stars, nebular knots, and even unassociated foreground/background YSOs. Applying our methodology consistently across 18 of the target complexes, we produce the MYStIX IRE Source (MIRES) Catalog comprising 20,719 sources, including 8686 probable stellar members of the MYStIX target complexes. We also classify the SEDs of 9365 IR counterparts to MYStIX X-ray sources to assist the first pathway, the identification of X-ray-detected stellar members. The MIRES Catalog provides a foundation for follow-up studies of diverse phenomena related to massive star cluster formation, including protostellar outflows, circumstellar disks, and sequential star formation triggered by massive star feedback processes.

  18. Multi-wavelength investigations on feedback of massive star formation

    NASA Astrophysics Data System (ADS)

    Yuan, Jinghua

    2014-05-01

    In the course of massive star formation, outflows, ionizing radiation and intense stellar winds could heavily affect their adjacent environs and natal clouds. There are several outstanding open questions related to these processes: i) whether they can drive turbulence in molecular clouds; ii) whether they are able to trigger star formation; iii) whether they can destroy natal clouds to terminate star formation at low efficiencies. This thesis investigates feedback in different stages of massive star formation. Influence of such feedback to the ambient medium has been revealed. A new type of millimeter methanol maser is detected for the first time. An uncommon bipolar outflow prominent in the mid-infrared is discovered. And features of triggered star formation are found on the border of an infrared bubble and in the surroundings of a Herbig Be star. Extended green objects (EGOs) are massive outflow candidates showing prominent shocked features in the mid-infrared. We have carried out a high resolution study of the EGO G22.04+0.22 (hereafter, G22) based on archived SMA data. Continuum and molecular lines at 1.3 mm reveal that G22 is still at a hot molecular core stage. A very young multi-polar outflow system is detected, which is interacting with the adjacent dense gas. Anomalous emission features from CH3OH (8,-1,8 - 7,0,7) and CH3OH (4,2,2 - 3,1,2) are proven to be millimeter masers. It is the first time that maser emission of CH3OH (8,-1,8 - 7,0,7) at 218.440 GHz is detected in a massive star-forming region. Bipolar outflows have been revealed and investigated almost always in the microwave or radio domain. It's sort of rare that hourglass-shaped morphology be discovered in the mid-infrared. Based on GLIMPSE data, we have discovered a bipolar object resembling an hourglass at 8.0 um. It is found to be associated with IRAS 18114-1825. Analysis based on fitted SED, optical spectroscopy, and infrared color indices suggests IRAS 18114-1825 is an uncommon bipolar

  19. The Growing-up of a Star

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Using ESO's Very Large Telescope Interferometer, astronomers have probed the inner parts of the disc of material surrounding a young stellar object, witnessing how it gains its mass before becoming an adult. ESO PR Photo 03/08 ESO PR Photo 03a/08 The disc around MWC 147 (Artist's Impression) The astronomers had a close look at the object known as MWC 147, lying about 2,600 light years away towards the constellation of Monoceros ('the Unicorn'). MWC 147 belongs to the family of Herbig Ae/Be objects. These have a few times the mass of our Sun and are still forming, increasing in mass by swallowing material present in a surrounding disc. MWC 147 is less than half a million years old. If one associated the middle-aged, 4.6 billion year old Sun with a person in his early forties, MWC 147 would be a 1-day-old baby [1]. The morphology of the inner environment of these young stars is however a matter of debate and knowledge of it is important to better understand how stars and their cortège of planets form. The astronomers Stefan Kraus, Thomas Preibisch, and Keiichi Ohnaka have used the four 8.2-m Unit Telescopes of ESO's Very Large Telescope to this purpose, combining the light from two or three telescopes with the MIDI and AMBER instruments. "With our VLTI/MIDI and VLTI/AMBER observations of MWC147, we combine, for the first time, near- and mid-infrared interferometric observations of a Herbig Ae/Be star, providing a measurement of the disc size over a wide wavelength range [2]," said Stefan Kraus, lead-author of the paper reporting the results. "Different wavelength regimes trace different temperatures, allowing us to probe the disc's geometry on the smaller scale, but also to constrain how the temperature changes with the distance from the star." The near-infrared observations probe hot material with temperatures of up to a few thousand degrees in the innermost disc regions, while the mid-infrared observations trace cooler dust further out in the disc. The

  20. High-Resolution Near-Infrared Speckle Interferometry and Radiative Transfer Modeling of the OH/IR Star OH 26.5+0.6

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Riechers, D.; Balega, Y. Y.; Hofmann, K.-H.; Men'shchikov, A. B.; Weigelt, G.

    We present near-infrared speckle interferometry of the OH/IR star OH 26.5+0.6 in the K' band obtained with the 6m telescope of the Special Astrophysical Observatory (SAO) in Oct. 2003. At a wavelength of λ = 2.13 μm the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. In accordance with the deep silicate absorption feature in the spectral energy distribution (SED), the drop of the visibility function to a value of 0.36 at the cutoff frequency indicates a rather large optical depth of the CDS. To determine the structure and the properties of the CDS of OH 26.5+0.6, radiative transfer calculations using the code DUSTY[3] were performed to simultaneously model its visibility and the SED. Since OH 26.5+0.6 is highly variable, the observational data taken into consideration for the modeling correspond to different phases of the object's variability cycle. As in the case of another OH/IR star, OH 104.9+2.4 (see [5] and Riechers et al., this volume), we used these observational constraints at different epochs to derive several physical parameters of the central star and the CDS of OH 26.5+0.6 as a function of phase

  1. Wide-field Infrared Survey Explorer

    NASA Technical Reports Server (NTRS)

    Padgett, Deborah

    2012-01-01

    We present WISE (Wide-field Infrared Survey Explorer) mid-infrared photometry of young stellar object candidates in the Canis Majoris clouds at a distance of 1 kpc. WISE has identified 682 objects with apparent 12 and 22 micron excess emission in a 7 deg x 10 deg field around the CMa Rl cloud . While a substantial fraction of these candidates are likely galaxies, AGB stars, and artifacts from confusion along the galactic plane, others are part of a spectacular cluster of YSOs imaged by WISE along a dark filament in the R1 cloud. Palomar Double Spectrograph observations of several sources in this cluster confirm their identity as young A and B stars with strong emission lines. In this contribution, we plot the optical -mid-infrared spectral energy distribution for the WISE YSO candidates and discuss potential contaminants to the sample . The data demonstrate the utility of WISE in performing wide-area surveys for young stellar objects.

  2. Zeta Ophiuchi -- Runaway Star Plowing through Space Dust

    NASA Image and Video Library

    2011-01-24

    The blue star near the center of this image is Zeta Ophiuchi. Zeta Ophiuchi is actually a very massive, hot, bright blue star plowing its way through a large cloud of interstellar dust and gas in this image from NASA Wide-field Infrared Survey Explorer.

  3. Ages of M Dwarf Stars from their Alpha Enhancement

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip Steven; Veyette, Mark

    2018-01-01

    M dwarf stars dominate stellar populations, and recent results from NASA's Kepler Mission suggest rocky planets are abundant around M dwarf stars. With so many planets orbiting M dwarfs, exoplanet scientists can now turn to questions about their history and evolution. Unfortunately, measuring fundamental properties of M dwarfs is challenging for a variety of reasons. I will discuss the importance of near-infrared spectroscopy in this effort. With high-resolution near-infrared spectroscopy covering Y to K band, we can measure detailed fundamental properties of low-mass stars. With new techniques to measure stellar alpha and iron abundances, we can begin to measure the most challenging fundamental property of M dwarfs: their age. These efforts are even more exciting in the coming years, when the TESS spacecraft is expected to discover five times as many planets orbiting low-mass stars as Kepler.

  4. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  5. BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2011-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.

  6. Star-formation rate in compact star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Izotova, I. Y.; Izotov, Y. I.

    2018-03-01

    We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.

  7. Coronet: A Star-Formation Neighbor

    NASA Image and Video Library

    2007-09-13

    This composite image shows the Coronet in X-rays from Chandra and infrared from NASA Spitzer Space Telescope orange, green, and cyan. The Spitzer data show young stars plus diffuse emission from dust.

  8. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  9. James Webb Space Telescope (JWST) and Star Formation

    NASA Technical Reports Server (NTRS)

    Greene, Thomas P.

    2010-01-01

    The 6.5-m aperture James Webb Space Telescope (JWST) will be a powerful tool for studying and advancing numerous areas of astrophysics. Its Fine Guidance Sensor, Near-Infrared Camera, Near-Infrared Spectrograph, and Mid-Infrared Instrument will be capable of making very sensitive, high angular resolution imaging and spectroscopic observations spanning 0.7 - 28 ?m wavelength. These capabilities are very well suited for probing the conditions of star formation in the distant and local Universe. Indeed, JWST has been designed to detect first light objects as well as to study the fine details of jets, disks, chemistry, envelopes, and the central cores of nearby protostars. We will be able to use its cameras, coronagraphs, and spectrographs (including multi-object and integral field capabilities) to study many aspects of star forming regions throughout the galaxy, the Local Group, and more distant regions. I will describe the basic JWST scientific capabilities and illustrate a few ways how they can be applied to star formation issues and conditions with a focus on Galactic regions.

  10. Dead Star Creates Celestial Havoc

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A star's spectacular death in the constellation Taurus was observed on Earth as the supernova of 1054 A.D. Now, almost a thousand years later, a superdense neutron star left behind by the stellar death is spewing out a blizzard of extremely high-energy particles into the expanding debris field known as the Crab Nebula.

    This composite image uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope's infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star, which has the mass equivalent to the sun crammed into a rapidly spinning ball of neutrons twelve miles across, is the bright white dot in the center of the image.

  11. Dead Star Creates Celestial Havoc

    NASA Image and Video Library

    2006-10-27

    A star's spectacular death in the constellation Taurus was observed on Earth as the supernova of 1054 A.D. Now, almost a thousand years later, a superdense neutron star left behind by the stellar death is spewing out a blizzard of extremely high-energy particles into the expanding debris field known as the Crab Nebula. This composite image uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope's infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star, which has the mass equivalent to the sun crammed into a rapidly spinning ball of neutrons twelve miles across, is the bright white dot in the center of the image. http://photojournal.jpl.nasa.gov/catalog/PIA01320

  12. Far-infrared observations of young clusters embedded in the R Coronae Austrinae and RHO Ophiuchi dark clouds

    NASA Technical Reports Server (NTRS)

    Wilking, B. A.; Harvey, P. M.; Joy, M.; Hyland, A. R.; Jones, T. J.

    1985-01-01

    Multicolor far infrared maps in two nearby dark clouds, R Coronae Austrinae and rho Ophiuchi, were made in order to investigate the individual contribution of low mass stars to the energetics and dynamics of the surrounding gas and dust. Emission from cool dust associated with five low mass stars in Cr A and four in rho Oph was detected; their far infrared luminosities range from 2 far infrared luminosities L. up to 40 far infrared luminosities. When an estimate of the bolometric luminosity was possible, it was found that typically more than 50% of the star's energy was radiated longward of 20 micrometers. meaningful limits to the far infrared luminosities of an additional eleven association members in Cr A and two in rho Oph were also obtained. The dust optical depth surrounding the star R Cr A appears to be asymmetric and may control the dynamics of the surrounding molecular gas. The implications of the results for the cloud energetics and star formation efficiency in these two clouds are discussed.

  13. Tracers of Star Formation in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ardila, A.; Gruenwald, R.; de Souza, R.

    2010-04-01

    Starburst features in the optical are nowadays well known, but the use of this knowledge is not always possible (e.g. objects heavily obscured). In this case the near-IR is of unprecedented value. Recent models show that TP-AGB stars should dominate the NIR spectra of populations 0.3 to 2 Gyr old. While the optical spectra is insensitive to the presence of these stars, the near-IR changes dramatically. Not only does the absolute flux in the near-IR is affected, but also peculiar absorption features appear. These features can be used as indicators of 1 Gyr stellar population. In this work we used the IRTF Spex to create the first empirical database of NIR spectra of carefully selected starbursts, to test for the first time and in a consistent way the new stellar population models that account for the TP-AGB. The methodology used is to do stellar population synthesis in the optical and in the NIR, and compare the predictions of both spectral regions. We also compare the strength of important features of the TP-AGB stars, like the CN (1.1 microns) and CO (2.3 microns) bands with optical diagnostics.

  14. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    NASA Technical Reports Server (NTRS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): High Angular Resolution Astronomy at Far-Infrared Wavelengths

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission. and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however. is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (-0.5 arcsec) in this band. BETTII will use a double- Fourier instrument to simultaneously obtain both spatial and spectral informatioT. he spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  16. A Spitzer Space Telescope Survey of Extreme Asymptotic Giant Branch Stars in M32

    NASA Technical Reports Server (NTRS)

    Jones, O.C.; McDonald, I.; Rich, R.M.; Kemper, F.; Boyer, M.L.; Zijlstra, A.A.; Bendo, G.J.

    2014-01-01

    We investigate the population of cool, evolved stars in the Local Group dwarf elliptical galaxy M32, using Infrared Array Camera observations from the Spitzer Space Telescope. We construct deep mid-infrared colour-magnitude diagrams for the resolved stellar populations within 3.5 arcminutes of M32's centre, and identify those stars that exhibit infrared excess. Our data is dominated by a population of luminous, dustproducing stars on the asymptotic giant branch (AGB) and extend to approximately 3 magnitudes below the AGB tip. We detect for the first time a sizeable population of 'extreme' AGB stars, highly enshrouded by circumstellar dust and likely completely obscured at optical wavelengths. The total dust-injection rate from the extreme AGB candidates is measured to be 7.5 x 10 (sup -7) solar masses per year, corresponding to a gas mass-loss rate of 1.5 x 10 (sup -4) solar masses per year. These extreme stars may be indicative of an extended star-formation epoch between 0.2 and 5 billion years ago.

  17. A GLIMPSE of Star Formation in the Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Winston, Elaine; Hora, Joseph L.; Tolls, Volker

    2018-01-01

    The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.

  18. Detecting stellar-wind bubbles through infrared arcs in H II regions

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  19. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  20. THE YOUNG STELLAR POPULATION OF LYNDS 1340. AN INFRARED VIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kun, M.; Moór, A.; Wolf-Chase, G.

    We present results of an infrared study of the molecular cloud Lynds 1340, forming three groups of low- and intermediate-mass stars. Our goals are to identify and characterize the young stellar population of the cloud, study the relationships between the properties of the cloud and the emergent stellar groups, and integrate L1340 into the picture of the star-forming activity of our Galactic environment. We selected candidate young stellar objects (YSOs) from the Spitzer and WISE databases using various published color criteria and classified them based on the slope of the spectral energy distribution (SED). We identified 170 Class II, 27more » flat SED, and 45 Class 0/I sources. High angular resolution near-infrared observations of the RNO 7 cluster, embedded in L1340, revealed eight new young stars of near-infrared excess. The surface density distribution of YSOs shows three groups, associated with the three major molecular clumps of L1340, each consisting of ≲100 members, including both pre-main-sequence stars and embedded protostars. New Herbig–Haro objects were identified in the Spitzer images. Our results demonstrate that L1340 is a prolific star-forming region of our Galactic environment in which several specific properties of the intermediate-mass mode of star formation can be studied in detail.« less

  1. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1993-01-01

    This report describes research activities related to the Infrared Astronomical Satellite (IRAS) sky survey. About 745 luminous stars were examined for the presence of interstellar dust heated by a nearby star. The 'cirrus' discovered by IRAS is thermal radiation from interstellar dust at moderate and high galactic latitudes. The IRAS locates the dust which must (at some level) scatter ultraviolet starlight, although it was expected that thermal emission would be found around virtually every star, most stars shown no detectable emission. And the emission found is not uniform. It is not that the star is embedded in 'an interstellar medium', but rather what is found are discrete clouds that are heated by starlight. An exception is the dearth of clouds near the very hottest stars, implying that the very hottest stars play an active role with respect to destroying or substantially modifying the dust clouds over time. The other possibility is simply that the hottest stars are located in regions lacking in dust, which is counter-intuitive. A bibliography of related journal articles is attached.

  2. A near infrared classification of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Alonso-Martínez, M.; Meeus, G.; Eiroa, C.

    2017-03-01

    T Tauri stars are young solar analogues (M ≤ 1.5M_{⊙}), harbouring a disc and with ongoing accretion. The T Tauri phase has been estimated to last around 10 Myr. We have obtained J and K band spectra with WHT/LIRIS and NOT/NOTCam of 112 T Tauri stars in the Taurus star forming region. By measuring the equivalent widths of common and strong spectral features, known to follow a tight relation with temperature, we aim at providing a direct and fast method to derive stellar effective temperatures. Line ratios of strong absorption features relatively close in wavelength are used to overcome the effects of veiling. Besides, the Al I (1.313μm) line is strongly gravity-dependent and used to discern between surface gravities. Finally, we estimate accretion rates using the H-lines Pa-β and Br-γ.

  3. A NON-LTE STUDY OF SILICON ABUNDANCES IN GIANT STARS FROM THE Si i INFRARED LINES IN THE zJ -BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Kefeng; Shi, Jianrong; Zhao, Gang

    We investigate the feasibility of Si i infrared (IR) lines as Si abundance indicators for giant stars. We find that Si abundances obtained from the Si i IR lines based on the local thermodynamic equilibrium (LTE) analysis show large line-to-line scatter (mean value of 0.13 dex), and are higher than those from the optical lines. However, when non-LTE effects are taken into account, the line-to-line scatter reduces significantly (mean value of 0.06 dex), and the Si abundances are consistent with those from the optical lines. The typical average non-LTE correction of [Si/Fe] for our sample stars is about −0.35 dex.more » Our results demonstrate that the Si i IR lines could be reliable abundance indicators, provided that the non-LTE effects are properly taken into account.« less

  4. Near-infrared spectroscopy of post-starburst galaxies: a limited impact of TP-AGB stars on galaxy spectral energy distributions

    NASA Astrophysics Data System (ADS)

    Zibetti, Stefano; Gallazzi, Anna; Charlot, Stéphane; Pierini, Daniele; Pasquali, Anna

    2013-01-01

    We present Very Large Telescope Infrared Spectrometer And Array Camera (ISAAC) near-infrared (NIR) spectrophotometric observations of 16 post-starburst galaxies aimed at constraining the debated influence of thermally pulsing asymptotic giant branch (TP-AGB) stars on the spectral energy distribution (SED) of galaxies with stellar ages between 0.5 and 2 Gyr, hence critical for high-redshift studies. Post-starburst galaxies are characterized by negligible ongoing star formation and a SED dominated by the stellar population formed in a recent (<2 Gyr) burst. By selecting post-starburst galaxies with mean luminosity-weighted ages between 0.5 and 1.5 Gyr and a broad range of metallicities (based on Sloan Digital Sky Survey optical spectroscopy), we explore the parameter space over which the relative energy output of TP-AGB stars peaks. A key feature of the present study is that we target galaxies at z ≈ 0.2, so that two main spectral features of TP-AGB stars (C-molecule band-head drops at 1.41 and 1.77 μm, blended with strong telluric absorption features, hence hardly observable from the ground, for targets at z ≈ 0) move inside the H and K atmospheric windows and can be constrained for the first time to high accuracy. Our observations provide key constraints to stellar population synthesis models. Our main results are (i) the NIR regions around 1.41 and 1.77 μm (rest frame) are featureless for all galaxies in our sample over the whole range of relevant ages and metallicities at variance with the Maraston `TP-AGB heavy' models, which exhibit marked drops there, and (ii) no flux boosting is observed in the NIR. The optical-NIR SEDs of most of our post-starburst galaxies can be consistently reproduced with the 2003 version of the Bruzual & Charlot models, using either simple stellar populations of corresponding light-weighted ages and metallicities or a more realistic burst plus an underlying old population containing up to approximately 60 per cent of the total

  5. Tabby's Star (Illustration)

    NASA Image and Video Library

    2017-10-04

    This illustration depicts a hypothetical uneven ring of dust orbiting KIC 8462852, also known as Boyajian's Star or Tabby's Star. Astronomers have found the dimming of the star over long periods appears to be weaker at longer infrared wavelengths of light and stronger at shorter ultraviolet wavelengths. Such reddening is characteristic of dust particles and inconsistent with more fanciful "alien megastructure" concepts, which would evenly dim all wavelengths of light. By studying observations from NASA's Spitzer and Swift telescopes, as well as the Belgian AstroLAB IRIS observatory, the researchers have been able to better constrain the size of the dust particles. This places them within the range found in dust disks orbiting stars, and larger than the particles typically found in interstellar dust. The system is portrayed with a couple of comets, consistent with previous studies that have found evidence for cometary activity within the system. https://photojournal.jpl.nasa.gov/catalog/PIA22081

  6. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  7. Dust-enshrouded super star-clusters

    NASA Astrophysics Data System (ADS)

    Sauvage, Marc; Plante, Stéphanie

    2003-04-01

    With the advent of either sensitive space-born infrared cameras, or their high-resolution ground-based siblings, we are uncovering a new category of star clusters: the dust-enshrouded super-star clusters. These manifest themselves only beyond a few microns, as their shroud of dust is able to block all light emitted by the stars themselves. Here we present our results on the spectacular cluster in SBS 0335-052, a very metal-poor galaxy. We also point to the growing number of galaxy analogs to SBS 0335-052, revealing the possibility that these clusters signal a major mode of star formation in starbursts. We conclude by listing a number of open points these clusters raise, in particular with respect to high-redshift counterparts.

  8. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combinationmore » of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.« less

  9. Infrared Photometric Study of Wolf–Rayet Galaxies

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Yang, X. H.; Liu, J. Y.; Shan, H. G.

    2018-01-01

    We collected observational data on 781 Wolf–Rayet (WR) galaxies from the literature to photometrically study their infrared properties measured by the 2MASS, WISE, IRAS, AKARI, and Herschel missions. It is found that in the 1–5 μm range the radiations of WR galaxies are dominated by the free–free emissions from the stellar winds and the circumstellar dust from the late-type stars in the host galaxy. In the 5–22 μm range, the radiation of WR galaxies is dominated by the free–free emissions and the synchrotron radiation from the central active galactic nucleus (AGN; but not always present). In the 22–140 μm range, the radiations of WR galaxies are dominated by the free–free emissions and the star formation/starburst activities. In the 250–500 μm range, the radiation of WR galaxies is dominated by the free–free emissions. In addition, the comparison with the non-WR galaxies is made. It is shown that some star formation WR galaxies have redder near-infrared colors than non-WR star-forming galaxies probably due to the gas emission in the near-infrared. In the 2–5 μm region WR galaxies have redder colors due to the thermal emission from circumstellar dust of late-type stars and the enhanced gas emission. In the 5–22 μm region, both WR galaxies and non-WR galaxies have similar behavior, indicative of having similar free–free emission as the dominant radiation. In the 25–140 μm region, both types of galaxies also have similar behavior, indicative of having free–free emission from the stellar winds or the thermal radiation from the starburst/star formation as the dominant radiation.

  10. Mid-Infrared Observational and Theoretical Studies of Star Formation and Early Solar Systems

    NASA Technical Reports Server (NTRS)

    Jones, Barbara

    1997-01-01

    The first 2 years of this program were used to make mid-IR observations of regions of star formation in the Orion nebula with the UCSD mid-IR camera at the UCSD/University of Minnesota telescope at Mt. Lemmon. These observations attempted to make the first systematic study of an extended region, known to have newly forming stars, and expected to have complex mid-IR emission. We discovered, to our surprise, that most of the thermal emission originated from extended sources rather than from point sources. This interesting observation made the analysis of the data much more complex, since the chop/nod procedures used at these wavelengths produce a differential measurement of the emission in one region compared to that in the adjacent region. Disentangling complex extended emission in such a situation is very difficult. In parallel with this work we were also observing comets in the thermal infrared, the other component of the original proposal. Some spectacular data on the comet Swift-Tuttle was acquired and published. A changing jet structure observed over a 2 week period is described. The rotation period of the comet can be measured at 66 hours. The size of the nucleus can also be estimated (at 30 km) from the observed excess flux from the nucleus. These data have lead to the development of models describing the action of dust particles of differing sizes and composition leaving the nucleus. The spatial distribution of the predicted IR emission has been compared to the observed jet structures, leading to estimates of both particles sizes, relative amounts of silicate vs organic grains, and the amounts of dust emitted in the jets vs isotopic emission.

  11. Star Formation in Nearby Clusters (SFiNCs)

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin

    Most stars form in clusters that rapidly disperse, yet we have a poor understanding of the processes of cluster formation and early evolution. Do clusters form `top-down', rapidly in a dense molecular cloud core? Or, since clouds are turbulent, do clusters form `bottomup' by merging subclusters produced in small kinematically-distinct molecular structures? Do clusters principally form in elongated molecular structures such as Infrared Dark Clouds and Herschel filaments? One of the central reasons for slow progress in resolving these questions is the lack of homogeneous and reliable census of stellar members (both disk-bearing and disk-free) for a wide range of star forming environments. To address these issues we are now completing our major effort, called MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray). It combines the Chandra archive with UKIRT+2MASS near-infrared and Spitzer mid-infrared surveys to identify young stellar objects in a wide range of evolutionary stages, from protostars to disk-free pre-main sequence stars, in 20 star forming regions at distances from 0.4 to 3.6 kpc. Each MYStIX region was chosen to have a rich OB-dominated cluster. Started in 2009 with NASA/ADAP and NSF funding, MYStIX has emerged with 8 technical/catalog and the first 4 of a series of science papers (http://astro.psu.edu/mystix). Early MYStIX results include: demonstration of diverse morphologies of young clusters from simple ellipsoids to elongated, clumpy substructures; demonstration of spatio-age gradients across star formation regions; the discovery of core-halo age gradients within two rich nearby MYStIX clusters; and the discovery of important astrophysically empirical correlations among different subcluster properties such as age, absorption, core radius, central stellar density, and total intrinsic population. The early MYStIX result provide new observational evidence for subcluster merging and cluster expansion following gas dissipation. We

  12. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  13. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  14. Flat spectrum T Tauri stars: The case for infall

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  15. Charting the Winds that Change the Universe, II: The Single Aperture Far Infrared Observatory (SAFIR)

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Benford, D. J.; Harvey, P. M.; Lawrence, C. R.; Leisawitz, D. T.; Lester, D. F.; Mather, J. C.; Stacey, G. J.; Werner, M. W.; Yorke, H. W.

    2004-01-01

    SAFIR will study the birth and evolution of stars and planetary systems so young that they are invisible to optical and near-infrared telescopes such as NGST. Not only does the far-infrared radiation penetrate the obscuring dust clouds that surround these systems, but the protoplanetary disks also emit much of their radiation in the far infrared. Furthermore, the dust reprocesses much of the optical emission from the newly forming stars into this wavelength band. Similarly, the obscured central regions of galaxies, which harbor massive black holes and huge bursts of star formation, can be seen and analyzed in the far infrared. SAFIR will have the sensitivity to see the first dusty galaxies in the universe. For studies of both star-forming regions in our galaxy and dusty galaxies at high redshifts, SAFIR will be essential in tying together information that NGST will obtain on these systems at shorter wavelengths and that ALMA will obtain at longer wavelengths.

  16. The Herschel Virgo Cluster Survey - XVI. A cluster inventory

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Bianchi, S.; Baes, M.; Bendo, G. J.; Clemens, M.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Fuller, C.; Pappalardo, C.; Hughes, T. M.; Madden, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.

    2014-03-01

    Herschel far-infrared (FIR) observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The FIR spectral energy distributions are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is overdense in dust by about a factor of 100 compared to the field. The same emissivity (β)-temperature relation applies for different galaxies as that found for different regions of M31. We use optical and H I data to show that Virgo is overdense in stars and atomic gas by about a factor of 100 and 20, respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is ˜0.7 solar, and ˜50 per cent of the metals are in the dust. For the cluster as a whole, the mass density of stars in galaxies is eight times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in the effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.

  17. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  18. The Carbon Stars Adventure

    NASA Astrophysics Data System (ADS)

    Rau, Gioia; Paladini, C.; Hron, J.; Aringer, B.; Eriksson, K.; Groenewegen, M. A. T.; Nowotny, W.

    We compare in a systematic way spectrometric, photometric and mid-infrared (VLTI/MIDI) interferometric measurements with different types of model atmospheres. Self-consistent dynamic model atmospheres in particular were used to interpret in a consistent way the dynamic behavior of gas and dust. The results underline how the joint use of different kind of observations, as photometry, spectroscopy and interferometry, is essential to understand the atmospheres of pulsating C-rich AGB stars. The sample of C-rich stars discussed in this work provides crucial constraints for the atmospheric structure.

  19. High Resolution Spectroscopy of Vega-like Stars: Abundances and Circumstellar Gas

    NASA Technical Reports Server (NTRS)

    Dunkin, S. K.; Barlow, M. J.; Ryan, Sean G.

    1996-01-01

    Vega-like stars are main-sequence stars exhibiting excess infrared emission. In an effort to improve the information available on this class of star, 13 stars have been analyzed which have been classed as Vega-like, or have an infra-red excess attributable to dust in their circumstellar environment. In a separate paper stellar properties such as effective temperature and log g have been derived and in this poster we highlight the results of the photospheric abundance analysis also carried out during this work. King recently drew attention to the possible link between Vega-like stars and the photospheric metal-depleted class of A-stars, the Lambda Bootis stars. Since Vega-like stars are thought to have disks of dust, it might be expected that accretion of depleted gas onto the surface of these stars may cause this same phenomenon. In the 6 stars studied for depletions, none showed the extreme underabundance patterns observed in Lambda Bootis stars. However, depletions of silicon and magnesium were found in two of the sample, suggesting that these elements are in silicate dust grains in the circumstellar environment of these stars. Absorption lines attributed to circumstellar gas have been positively identified in three stars in our sample. Individual cases show evidence either of high-velocity outflowing gas, variability in the circumstellar lines observed, or evidence of circumstellar gas in excited lines of Fe II. No previous identification of circumstellar material has been made for two of the stars in question.

  20. Determining the Locations of Brown Dwarfs in Young Star Clusters

    NASA Technical Reports Server (NTRS)

    Porter, Lauren A.

    2005-01-01

    Brown dwarfs are stellar objects with masses less than 0.08 times that of the Sun that are unable to sustain nuclear fusion. Because of the lack of fusion, they are relatively cold, allowing the formation of methane and water molecules in their atmospheres. Brown dwarfs can be detected by examining stars' absorption spectra in the near-infrared to see whether methane and water are present. The objective of this research is to determine the locations of brown dwarfs in Rho Ophiuchus, a star cluster that is only 1 million years old. The cluster was observed in four filters in the near-infrared range using the Wide-Field Infra-Red Camera (WIRC) on the 100" DuPont Telescope and Persson's Auxiliary Nasymith Infrared Camera (PANIC) on the 6.5-m Magellan Telescope. By comparing the magnitude of a star in each of the four filters, an absorption spectrum can be formed. This project uses standard astronomical techniques to reduce raw frames into final images and perform photometry on them to obtain publishable data. Once this is done, it will be possible to determine the locations and magnitudes of brown dwarfs within the cluster.

  1. The embedded population around Herbig Ae/Be stars

    NASA Astrophysics Data System (ADS)

    Testi, L.; Stanga, R. M.; Natta, A.; Palla, F.; Prusti, T.; Baffa, C.; Hunt, L. K.; Lisi, F.

    Herbig Ae/Be stars are intermediate mass young stars in the pre-main sequence phase of evolution. There are only few stars of this type known so far, and all of them seem to be relatively isolated, in contrast to their low mass counterparts, the T Tauri stars. A possible explanation of this fact is that other young stars formed near the known YSO are deeply embedded in the molecular cloud environment and are not detectable at optical wavelengths. We used the new ARcetri Near Infrared CAmera (ARNICA) to survey in the J, H and K bands the regions of sky around Herbig stars. The aim of this work is to identify embedded YSO and investigate the clustering properties of these young stars.

  2. VLT/PIONIER Imaging of Red Supergiant Stars

    NASA Astrophysics Data System (ADS)

    Montargès, Miguel

    2018-04-01

    PIONIER (Precision Integrated-Optics Near-infrared Imaging ExpeRiment) was the first 4-telescope instrument installed at the Very Large Telescope Interferometer (VLTI) in 2010. Benefiting from the multiple interferometric configurations available at the Cerro Paranal observatory, it can efficiently image stellar surfaces. With their large linear sizes, nearby red supergiant stars are among the most interesting targets for such instrument. Near infrared interferometry allows to study their surface in order to get a better understanding of their mass loss, mostly by constraining the characteristics of their photospheric features. I will review recent results obtain with VLTI/PIONIER on red supergiant stars, and emphasize the different techniques used to analyze these observations.

  3. Hierarchical fragmentation and differential star formation in the Galactic `Snake': infrared dark cloud G11.11-0.12

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Zhang, Qizhou; Testi, Leonardo; van der Tak, Floris; Wu, Yuefang; Zhang, Huawei; Pillai, Thushara; Wyrowski, Friedrich; Carey, Sean; Ragan, Sarah E.; Henning, Thomas

    2014-04-01

    We present Submillimeter Array (SMA) λ = 0.88 and 1.3 mm broad-band observations, and Very Large Array (VLA) observations in NH3 (J, K) = (1,1) up to (5,5), H2O and CH3OH maser lines towards the two most massive molecular clumps in infrared dark cloud (IRDC) G11.11-0.12. Sensitive high-resolution images reveal hierarchical fragmentation in dense molecular gas from the ˜1 pc clump scale down to ˜0.01 pc condensation scale. At each scale, the mass of the fragments is orders of magnitude larger than the Jeans mass. This is common to all four IRDC clumps we studied, suggesting that turbulence plays an important role in the early stages of clustered star formation. Masers, shock heated NH3 gas, and outflows indicate intense ongoing star formation in some cores while no such signatures are found in others. Furthermore, chemical differentiation may reflect the difference in evolutionary stages among these star formation seeds. We find NH3 ortho/para ratios of 1.1 ± 0.4, 2.0 ± 0.4, and 3.0 ± 0.7 associated with three outflows, and the ratio tends to increase along the outflows downstream. Our combined SMA and VLA observations of several IRDC clumps present the most in-depth view so far of the early stages prior to the hot core phase, revealing snapshots of physical and chemical properties at various stages along an apparent evolutionary sequence.

  4. The Chemistry of Extragalactic Carbon Stars

    NASA Technical Reports Server (NTRS)

    Woods, Paul; Walsh, C.; Cordiner, M. A.; Kemper, F.

    2013-01-01

    Prompted by the ongoing interest in Spitzer Infrared Spectrometer spectra of carbon stars in the Large Magellanic Cloud, we have investigated the circumstellar chemistry of carbon stars in low-metallicity environments. Consistent with observations, our models show that acetylene is particularly abundant in the inner regions of low metallicity carbon-rich asymptotic giant branch stars - more abundant than carbon monoxide. As a consequence, larger hydrocarbons have higher abundances at the metallicities of the Magellanic Clouds than in stars with solar metallicity. We also find that the oxygen and nitrogen chemistry is suppressed at lower metallicity, as expected. Finally, we calculate molecular line emission from carbon stars in the Large and Small Magellanic Cloud and find that several molecules should be readily detectable with the Atacama Large Millimeter Array at Full Science operations.

  5. Search for OB stars running away from young star clusters. I. NGC 6611

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  6. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  7. Stacked Average Far-infrared Spectrum of Dusty Star-forming Galaxies from the Herschel/SPIRE Fourier Transform Spectrometer

    NASA Astrophysics Data System (ADS)

    Wilson, Derek; Cooray, Asantha; Nayyeri, Hooshang; Bonato, Matteo; Bradford, Charles M.; Clements, David L.; De Zotti, Gianfranco; Díaz-Santos, Tanio; Farrah, Duncan; Magdis, Georgios; Michałowski, Michał J.; Pearson, Chris; Rigopoulou, Dimitra; Valtchanov, Ivan; Wang, Lingyu; Wardlow, Julie

    2017-10-01

    We present stacked average far-infrared spectra of a sample of 197 dusty star-forming galaxies (DSFGs) at 0.005< z< 4 using about 90% of the Herschel Space Observatory SPIRE Fourier Transform Spectrometer (FTS) extragalactic data archive based on 3.5 years of science operations. These spectra explore an observed-frame 447-1568 GHz frequency range, allowing us to observe the main atomic and molecular lines emitted by gas in the interstellar medium. The sample is subdivided into redshift bins, and a subset of the bins are stacked by infrared luminosity as well. These stacked spectra are used to determine the average gas density and radiation field strength in the photodissociation regions (PDRs) of DSFGs. For the low-redshift sample, we present the average spectral line energy distributions of CO and H2O rotational transitions and consider PDR conditions based on observed [C I] 370 and 609 μm, and CO (7-6) lines. For the high-z (0.8< z< 4) sample, PDR models suggest a molecular gas distribution in the presence of a radiation field that is at least a factor of 103 larger than the Milky Way and with a neutral gas density of roughly {10}4.5-{10}5.5 cm-3. The corresponding PDR models for the low-z sample suggest a UV radiation field and gas density comparable to those at high-z. Given the challenges in obtaining adequate far-infrared observations, the stacked average spectra we present here will remain the measurements with the highest signal-to-noise ratio for at least a decade and a half until the launch of the next far-infrared facility. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. Supergiant Star Near Giraffe Hind Foot

    NASA Image and Video Library

    2011-02-19

    NASA Wide-field Infrared Survey Explorer captured this colorful image of the nebula BFS 29 surrounding the star CE-Camelopardalis, found hovering in the band of the night sky comprising the Milky Way.

  9. Neutron star evolution and emission

    NASA Astrophysics Data System (ADS)

    Epstein, R. I.; Edwards, B. C.; Haines, T. J.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.

  10. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  11. Ultraviolet properties of IRAS-selected Be stars

    NASA Technical Reports Server (NTRS)

    Bjorkman, Karen S.; Snow, Theodore P.

    1988-01-01

    New IUE observations were obtained of 35 Be stars from a list of stars which show excess infrared fluxes in IRAS data. The IRAS-selected Be stars show larger C IV and Si IV equivalent widths than other Be stars. Excess C IV and Si IV absorption seems to be independent of spectral type for IRAS-selected Be stars later than spectral type B4. This is interpreted as evidence for a possible second mechanism acting in conjunction with radiation pressure for producing the winds in Be stars. No clear correlation of IR excess of v sin i with C IV or Si IV equivalent widths is seen, although a threshold for the occurrence of excess C IV and Si IV absorption appears at a v sin i of 150 km/sec.

  12. TW Hydrae Family of Stars

    NASA Image and Video Library

    2016-04-19

    A sky map taken by NASA Wide-field Infrared Survey Explorer, or WISE, shows the location of the TW Hydrae family, or association, of stars, which lies about 175 light-years from Earth and is centered in the Hydra constellation.

  13. Far-infrared data for symbiotic stars. II - The IRAS survey observations

    NASA Technical Reports Server (NTRS)

    Kenyon, S. J.; Fernandez-Castro, T.; Stencel, R. E.

    1988-01-01

    IRAS survey data for all known symbiotic binaries are reported. S type systems have 25 micron excesses much larger than those of single red giant stars, suggesting that these objects lose mass more rapidly than do normal giants. D type objects have far-IR colors similar to those of Mira variables, implying mass-loss rate of about 10 to the -6th solar masses/yr. The near-IR extinctions of the D types indicate that their Mira components are enshrouded in optically thick dust shells, while their hot companions lie outside the shells. If this interpretation of the data is correct, then the very red near-IR colors of D type symbiotic stars are caused by extreme amounts of dust absorption rather than dust emission. The small group of D prime objects possesses far-IR colors resembling those of compact planetary nebulae or extreme OH/IR stars. It is speculated that these binaries are not symbiotic stars at all, but contain a hot compact star and an exasymptotic branch giant which is in the process of ejecting a planetary nebula shell.

  14. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  15. Hubble's Wide View of 'Mystic Mountain' in Infrared

    NASA Image and Video Library

    2010-04-23

    NASA image release April 22, 2010 This is a NASA Hubble Space Telescope near-infrared-light image of a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby stars in the tempestuous stellar nursery called the Carina Nebula, located 7,500 light-years away in the southern constellation Carina. The image marks the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. The image reveals a plethora of stars behind the gaseous veil of the nebula's wall of hydrogen, laced with dust. The foreground pillar becomes semi-transparent because infrared light from background stars penetrates through much of the dust. A few stars inside the pillar also become visible. The false colors are assigned to three different infrared wavelength ranges. Hubble's Wide Field Camera 3 observed the pillar in February and March 2010. Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  16. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less

  17. Precision analysis of autonomous orbit determination using star sensor for Beidou MEO satellite

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Chang, Jiachao; Zhang, Jun; Li, Guotong

    2018-04-01

    This paper focuses on the autonomous orbit determination accuracy of Beidou MEO satellite using the onboard observations of the star sensors and infrared horizon sensor. A polynomial fitting method is proposed to calibrate the periodic error in the observation of the infrared horizon sensor, which will greatly influence the accuracy of autonomous orbit determination. Test results show that the periodic error can be eliminated using the polynomial fitting method. The User Range Error (URE) of Beidou MEO satellite is less than 2 km using the observations of the star sensors and infrared horizon sensor for autonomous orbit determination. The error of the Right Ascension of Ascending Node (RAAN) is less than 60 μrad and the observations of star sensors can be used as a spatial basis for Beidou MEO navigation constellation.

  18. 20 CFR 416.1535 - Services in a proceeding under title XVI of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Services in a proceeding under title XVI of the Act. 416.1535 Section 416.1535 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Representation of Parties § 416.1535 Services in a...

  19. 20 CFR 416.1535 - Services in a proceeding under title XVI of the Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Services in a proceeding under title XVI of the Act. 416.1535 Section 416.1535 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Representation of Parties § 416.1535 Services in a...

  20. Miras among C stars

    NASA Astrophysics Data System (ADS)

    Battinelli, P.; Demers, S.

    2014-08-01

    Context. Carbon stars are among the brightest intermediate-age stars. They are seen in nearly all galaxies of the Local Group. In the Milky Way they are members of the thin disk but over a hundred have been identified in the Galactic halo. Since the halo consists essentially of an old stellar population, these carbon stars warrant special attention. We believe that such stars are trespassers and belong to streams left over by disrupted dwarf spheroidal galaxies. Aims: By performing photometric monitoring we intend to identify Miras among the halo carbon stars. Methods: We obtained, over several semesters, K and J images centered on the carbon stars in order to determine their variation and periodicity. Results: We establish the variability for a number of stars and identify the Miras among them. We collect data from the literature on the Miras among various carbon star populations and show that the fraction of Miras among carbon stars is fairly constant. We demonstrate that such fractions for the halo and Sagittarius are biased because of the way targets are selected. We finally investigate the near-infrared color distribution of Miras and carbon stars. Based on observations made with the REM Telescope, INAF Chile.The observed K and J magnitudes are available only at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A100

  1. The 3.5 micron light curves of long period variable stars. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Strecker, D. W.

    1973-01-01

    Infrared observations at an effective wavelength of 3.5 microns of a selected group of long period variable (LPV) stars are presented. Mira type and semiregular stars of M, S, and C spectral classifications were monitored throughout the full cycle of variability. Although the variable infrared radiation does not exactly repeat in intensity or time, the regularity is sufficient to produce mean 3.5 micron light curves. The 3.5 micron maximum radiation lags the visual maximum by about one-seventh of a cycle, while the minimum 3.5 micron intensity occurs nearly one-half cycle after infrared maximum. In some stars, there are inflections or humps on the ascending portion of the 3.5 micron light curve which may also be seen in the visual variations.

  2. Young star clusters in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  3. Characterizing the Population of Bright Infrared Sources in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μm. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope (JWST). Color-color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  4. Comparison of stellar population model predictions using optical and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.

    2018-02-01

    We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.

  5. Massive infrared clusters in the Milky Way

    NASA Astrophysics Data System (ADS)

    Chené, André-Nicolas; Ramírez Alegría, Sebastian; Borissova, Jordanka; Hervé, Anthony; Martins, Fabrice; Kuhn, Michael; Minniti, Dante; VVV Science Team

    2017-11-01

    Our position in the Milky Way (MW) is both a blessing and a curse. We are nearby to many star clusters, but the dust that is a product of their very existence obscures them. Also, many massive young clusters are expected to be located near, or across the Galactic Center, where the dust extinction is extreme (A V > 15 mag) and can be better penetrated by infrared photons. This paper reviews the discoveries and the study of new MW massive stars and massive clusters made possible by near infrared observations that are part of the VISTA Variables in the Vía Láctea (VVV) survey. It discusses what the studies of their fundamental parameters have taught us.

  6. Artist Concept of Wide-field Infrared Survey Explorer WISE

    NASA Image and Video Library

    2004-10-08

    Artist concept of Wide-field Infrared Survey Explorer. A new NASA mission will scan the entire sky in infrared light in search of nearby cool stars, planetary construction zones and the brightest galaxies in the universe. http://photojournal.jpl.nasa.gov/catalog/PIA06927

  7. High-redshift galaxies and low-mass stars

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Stanway, Elizabeth R.; Bremer, Malcolm N.

    2014-03-01

    The sensitivity available to near-infrared surveys has recently allowed us to probe the galaxy population at z ≈ 7 and beyond. The existing Hubble Wide Field Camera 3 (WFC3) and Visible and Infrared Survey Telescope for Astronomy (VISTA) Infrared Camera (VIRCam) instruments allow deep surveys to be undertaken well beyond 1 μm - a capability that will be further extended with the launch and commissioning of the James Webb Space Telescope (JWST). As new regions of parameter space in both colour and depth are probed, new challenges for distant galaxy surveys are identified. In this paper, we present an analysis of the colours of L- and T-dwarf stars in widely used photometric systems. We also consider the implications of the newly identified Y-dwarf population - stars that are still cooler and less massive than T-dwarfs for both the photometric selection and spectroscopic follow-up of faint and distant galaxies. We highlight the dangers of working in the low-signal-to-noise regime, and the potential contamination of existing and future samples. We find that Hubble/WFC3 and VISTA/VIRCam Y-drop selections targeting galaxies at z ˜ 7.5 are vulnerable to contamination from T- and Y-class stars. Future observations using JWST, targeting the z ˜ 7 galaxy population, are also likely to prove difficult without deep medium-band observations. We demonstrate that single emission line detections in typical low-signal-to-noise spectroscopic observations may also be suspect, due to the unusual spectral characteristics of the cool dwarf star population.

  8. Update On the Puzzling Boyajian's Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    original article, or check out Wrights own summary of the article here!Pulsations, polar spots, and other stellar variability: unlikelyThe authors show that the variety of timescales observed for dimming events make scenarios involving stellar variations unlikely.Circumstellar material: unlikelyMaterial orbiting the star (like comets) would explain some of the light-curve dips, but it cant explain the long-term dimming observed.Post-merger return to normal: unclearPerhaps Boyajians Star recently merged with a brown dwarf or other star? Now it could be gradually dimming as it returns to its normal brightness, and restructuring of the stars material could causethe short-term dips. Though this scenariois possible, the timescales for the brightness changes are shorter than we would expect.Artificial structures: unclearSpherical swarms of structures would intercept the stars light and re-radiate it in infrared. Since long-wavelength observations have found no evidence of such radiation, the authors declare spherical geometries to be unlikely. Other structure geometries cant yet be ruled out, though.Small-scale interstellar medium (ISM) structure: plausibleSmall-scale density variations in the ISM between us and Boyajians Star could cause the dimming we observe, but the fact that nearby stars dont show similar dimming sets tight limits on the size of such ISM clumps.Spectral energy distribution of Boyajians Star. The upper-limit arrows on the right-hand side indicate that big clouds of megastructures are unlikely, because we would detect their heat as they re-radiate the stars light in infrared. [Wright et al. 2016]Looking to the FutureOf the possible locations for the source of the dimming, Wright and Sigurdsson deem the interstellar space between us and Boyajians Star to be the most likely culprit. They identify several future lines of research that could help us further eliminate possibilities, however, including a study of the ISM toward Boyajians Star, a hunt for similar

  9. Hubble Discovery of Runaway Star Yields Clues to Breakup of Multiple-Star System

    NASA Image and Video Library

    2017-12-08

    NASA's Hubble Space Telescope has helped astronomers find the final piece of a celestial puzzle by nabbing a third runaway star. As British royal families fought the War of the Roses in the 1400s for control of England's throne, a grouping of stars was waging its own contentious skirmish — a star war far away in the Orion Nebula. The stars were battling each other in a gravitational tussle, which ended with the system breaking apart and at least three stars being ejected in different directions. The speedy, wayward stars went unnoticed for hundreds of years until, over the past few decades, two of them were spotted in infrared and radio observations, which could penetrate the thick dust in the Orion Nebula. Read more: go.nasa.gov/2ni3EZX NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Massive star formation at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2004-05-01

    This thesis studies the early phases of massive stars and their impact on the surrounding. The capabilities of continuum radiative transfer (RT) codes to interpret the observations are also investigated. The main results of this work are: 1) Two massive star-forming regions are observed in the infrared. The thermal emission from the ultra-compact H II regions is resolved and the spectral type of the ionizing stars is estimated. The hot cores are not detected thus implying line-of-sight extinction larger than 200 visual magnitude. 2) The first mid-infrared interferometric measurements towards a young massive star resolve thermal emission on scales of 30-50 AU probing the size of the predicted disk. The visibility curve differs from those of intermediate-mass stars. 3) The close vicinity of Θ1C Ori are imaged using the NACO adaptive optics system. The binary proplyd Orion 168-326 and its interaction with the wind from Θ1C Ori are resolved. A proplyd uniquely seen face-on is also identified. 4) Five RT codes are compared in a disk configuration. The solutions provide the first 2D benchmark and serve to test the reliability of other RT codes. The images/visibilities from two RT codes are compared for a distorted disk. The parameter range in which such a distortion is detectable with MIDI is explored.

  11. HUBBLE'S INFRARED GALAXY GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used the NASA Hubble Space Telescope to produce an infrared 'photo essay' of spiral galaxies. By penetrating the dust clouds swirling around the centers of these galaxies, the telescope's infrared vision is offering fresh views of star birth. These six images, taken with the Near Infrared Camera and Multi-Object Spectrometer, showcase different views of spiral galaxies, from a face-on image of an entire galaxy to a close-up of a core. The top row shows spirals at diverse angles, from face-on, (left); to slightly tilted, (center); to edge-on, (right). The bottom row shows close-ups of the hubs of three galaxies. In these images, red corresponds to glowing hydrogen, the raw material for star birth. The red knots outlining the curving spiral arms in NGC 5653 and NGC 3593, for example, pinpoint rich star-forming regions where the surrounding hydrogen gas is heated by intense ultraviolet radiation from young, massive stars. In visible light, many of these regions can be hidden from view by the clouds of gas and dust in which they were born. The glowing hydrogen found inside the cores of these galaxies, as in NGC 6946, may be due to star birth; radiation from active galactic nuclei (AGN), which are powered by massive black holes; or a combination of both. White is light from middle-age stars. Clusters of stars appear as white dots, as in NGC 2903. The galaxy cores are mostly white because of their dense concentration of stars. The dark material seen in these images is dust. These galaxies are part of a Hubble census of about 100 spiral galaxies. Astronomers at Space Telescope Science Institute took these images to fill gaps in the scheduling of a campaign using the NICMOS-3 camera. The data were non-proprietary, and were made available to the entire astronomical community. Filters: Three filters were used: red, blue, and green. Red represents emission at the Paschen Alpha line (light from glowing hydrogen) at a wavelength of 1.87 microns. Blue shows the

  12. Cool Star Beginnings: YSOs in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Young, Kaisa E.; Young, Chadwick H.

    2015-01-01

    Nearby molecular clouds, where there is considerable evidence of ongoing star formation, provide the best opportunity to observe stars in the earliest stages of their formation. The Perseus molecular cloud contains two young clusters, IC 348 and NGC 1333 and several small dense cores of the type that produce only a few stars. Perseus is often cited as an intermediate case between quiescent low-mass and turbulent high-mass clouds, making it perhaps an ideal environment for studying ``typical low-mass star formation. We present an infrared study of the Perseus molecular cloud with data from the Spitzer Space Telescope as part of the ``From Molecular Cores to Planet Forming Disks (c2d) Legacy project tep{eva03}. By comparing Spitzer's near- and mid-infrared maps, we identify and classify the young stellar objects (YSOs) in the cloud using updated extinction corrected photometry. Virtually all of the YSOs in Perseus are forming in the clusters and other smaller associations at the east and west ends of the cloud with very little evidence of star formation in the midsection even in areas of high extinction.

  13. MEASURING STAR FORMATION RATES AND FAR-INFRARED COLORS OF HIGH-REDSHIFT GALAXIES USING THE CO(7–6) AND [N II] 205 μm LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanyao; Zhao, Yinghe; Xu, C. Kevin

    2015-03-20

    To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios ofmore » the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.« less

  14. Luminous Infrared Galaxies Observed from the Ground and Space in the 2020s

    NASA Astrophysics Data System (ADS)

    Inami, Hanae; Armus, L.; Packham, C.; Dickinson, M.

    2014-07-01

    The dust-penetrating power of infrared observations will allow us to reveal the physical and chemical properties in and around the dust enshrouded nuclei of galaxies. While current near-infrared spectroscopic observations with 8-10m class telescopes can access to z=1-3 regime, they are still very challenging and limited to luminous targets. For z=0 objects, these telescopes can resolve HII regions, but we still do not fully understand the properties of more extreme star formation environments (e.g., rich in gas), which are more prevalent at higher redshifts. Near- and mid-infrared TMT instruments (e.g., two of the first light instruments IRIS and IRMS, and a planned mid-infrared instrument MICHI) will exploit TMT's unprecedented high spatial resolution to constrain the physical processes in individual dusty, intense star-forming regions of local galaxies as well as obtain resolved spectra for z=2-3 star-forming galaxies. During the era of 2020, JWST and SPICA are also expected to be commissioned. The high sensitivity of these space-based infrared observatories will facilitate investigations of the properties of dusty galaxies at even higher redshifts (z > 3). Only with the combination of ground- and space-observatories, we will be able to obtain a complete picture of star formation and AGN activity to explore the evolution of LIRGs which dominate the peak of the galaxy growth in the universe.

  15. Echoes from a Dying Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    When a passing star is torn apart by a supermassive black hole, it emits a flare of X-ray, ultraviolet, and optical light. What can we learn from the infrared echo of a violent disruption like this one?Stellar DestructionOptical (black triangles) and infrared (blue circles and red squares) observations of F010042237. Day 0 marks the day the optical emission peaked. The infrared emission rises steadily through the end of the data. [Dou et al. 2017]Tidal disruption events occur when a star passes within the tidal radius of a supermassive black hole. After tidal forces pull the star apart, much of the stellar matter falls onto the black hole, radiating briefly in X-ray, ultraviolet and optical as it accretes. This signature rise and gradual fall of emission has allowed us to detect dozens of tidal disruption events thus far.One of the recently discovered candidate events is a little puzzling. Not only does the candidate in ultraluminous infrared galaxy F010042237 have an unusual host most disruptions occur in galaxies that are no longer star-forming, in contrast to this one but its optical light curve also shows an unusually long decay time.Now mid-infrared observations of this event have beenpresented by a team of scientists led by Liming Dou (Guangzhou University and Department of Education, Guangdong Province, China), revealing why this disruption is behaving unusually.Schematic of a convex dusty ring (red bows) that absorbs UV photons and re-emits in the infrared. It simultaneously scatters UV and optical photons into our line of sight. The dashed lines illustrate the delays at lags of 60 days, 1, 2, 3, 4, and 5 years. [Adapted from Dou et al. 2017]A Dusty Solution?The optical flare from F010042237s nucleus peaked in 2010, so Dou and collaborators obtained archival mid-infrared data from the WISE and NEOWISE missions from 2010 to 2016. The data show that the galaxy is quiescent in mid-infrared in 2010 but in data from three years later, the infrared emission has

  16. Winds from cool stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1995-01-01

    Spectral observations of cool stars enable study of the presence and character of winds and the mass loss process in objects with effective temperatures, gravities, and atmospheric compositions which differ from that of the Sun. A wealth of recent spectroscopic measurements from the Hubble Space Telescope, and the Extreme Ultraviolet Explorer complement high resolution ground-based measures in the optical and infrared spectral regions. Such observations when combined with realistic semi-empirical atmospheric modeling allow us to estimate the physical conditions in the atmospheres and winds of many classes of cool stars. Line profiles support turbulent heating and mass motions. In low gravity stars, evidence is found for relatively fast (approximately 200 km s(exp -1)), warm winds with rapid acceleration occurring in the chromosphere. In some cases outflows commensurate with stellar escape velocities are present. Our current understanding of cool star winds will be reviewed including the implications of stellar observations for identification of atmospheric heating and acceleration processes.

  17. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, J.; Courteau, S.; Cuillandre, J.-C.

    2014-03-01

    The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.

  18. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)

  19. The Maximum Flux of Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-04-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*, crit ˜ 1013L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  20. The maximum flux of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Krumholz, Mark R.; Thompson, Todd A.; Clutterbuck, Julie

    2018-07-01

    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here, we derive the conditions under which a self-gravitating mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently, taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area \\dot{Σ }_*,crit ˜ 10^3 M_{⊙} pc-2 Myr-1, corresponding to a critical flux of F*,crit ˜ 1013 L⊙ kpc-2 similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our 1D models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.

  1. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  2. A SPITZER VIEW OF STAR FORMATION IN THE CYGNUS X NORTH COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beerer, I. M.; Koenig, X. P.; Hora, J. L.

    2010-09-01

    We present new images and photometry of the massive star-forming complex Cygnus X obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope. A combination of IRAC, MIPS, UKIRT Deep Infrared Sky Survey, and Two Micron All Sky Survey data are used to identify and classify young stellar objects (YSOs). Of the 8231 sources detected exhibiting infrared excess in Cygnus X North, 670 are classified as class I and 7249 are classified as class II. Using spectra from the FAST Spectrograph at the Fred L. Whipple Observatory and Hectospecmore » on the MMT, we spectrally typed 536 sources in the Cygnus X complex to identify the massive stars. We find that YSOs tend to be grouped in the neighborhoods of massive B stars (spectral types B0 to B9). We present a minimal spanning tree analysis of clusters in two regions in Cygnus X North. The fraction of infrared excess sources that belong to clusters with {>=}10 members is found to be 50%-70%. Most class II objects lie in dense clusters within blown out H II regions, while class I sources tend to reside in more filamentary structures along the bright-rimmed clouds, indicating possible triggered star formation.« less

  3. Seyfert Galaxies in the Infrared

    NASA Astrophysics Data System (ADS)

    Ruiz-Nishiky, Milagros

    1997-10-01

    This thesis contains complementary aspects of the Seyfert phenomenon, each of which is analysed to bring a better understanding of present unification theories. Observations of the nuclear regions of various types of Seyfert galaxies were mostly made at infrared wavelengths which allow the study of dusty environments and provide new information on the physical conditions of these objects. For example, near infrared spectroscopy of Seyfert 2 galaxies revealed that there is a subclass of type 2 Seyferts with hot IR excess at ~3μm with broad IR emission lines suggesting that some Seyfert 2s do in fact contain a hidden Seyfert 1 nucleus. Additional spectropolarimetry showed that the scattering screens, postulated in the standard model, are not always present in Seyfert 2s. At mid infrared wavelengths, it was found that the 10 μm nuclear emission of Seyferts with broad emission lines is intrinsically brighter than that of Seyferts with no broad lines. The extended 10μm emission shows that Seyfert 2 galaxies present enhanced star-formation when compared to Seyfert 1s. Both results pose obstacles for present unification ideas and I discuss possible interpretations to these observations. Seyfert galaxies were also observed at radio wavelengths to study their large scale emission of 1-0 CO. Surprisingly, this emission usually related with star formation activity was found to be similar in both types of Seyfert galaxies and therefore does not explain why Seyfert 2 galaxies have enhanced star formation as concluded in the 10μm study. A study of galaxy morphology and companions in this set of Seyferts shows at a significant statistical level that Seyfert 2s present a higher incidence of asymmetric morphologies compared to Seyfert 1s and field galaxies, and therefore are undergoing gravitational perturbations which may induce star formation. Near infrared spectroscopy of a large sample of Seyfert galaxies is analysed to study the excitation mechanisms of (FeII) and H2 lines

  4. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Silverburg, Robert

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The comparatively low spatial resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths. We have proposed a new high altitude balloon experiment, the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). High altitude operation makes far-infrared (30- 300micron) observations possible, and BETTII's 8-meter baseline provides unprecedented angular resolution (approx. 0.5 arcsec) in this band. BETTII will use a double-Fourier instrument to simultaneously obtain both spatial and spectral information. The spatially resolved spectroscopy provided by BETTII will address key questions about the nature of disks in young cluster stars and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the groundwork for future space interferometers.

  5. Massive Star Goes Out With a Whimper Instead of a Bang

    NASA Image and Video Library

    2017-05-25

    This pair of visible-light and near-infrared photos from NASA's Hubble Space Telescope shows the giant star N6946-BH1 before and after it vanished out of sight by imploding to form a black hole. The left image shows the star, which is 25 times the mass of our sun, as it looked in 2007. In 2009, the star shot up in brightness to become over 1 million times more luminous than our sun for several months. But then it seemed to vanish, as seen in the right panel image from 2015. A small amount of infrared light has been detected from where the star used to be. This radiation probably comes from debris falling onto a black hole. The black hole is located 22 million light-years away in the spiral galaxy NGC 6946. https://photojournal.jpl.nasa.gov/catalog/PIA21467

  6. Socket stars: UBVRJIK radial profiles

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    1995-05-01

    Visual inspectin of stars embedded in H II nebulae has shown a significant fraction to be surrounded by nearly symmetric extended regions within which the nebular brightness is apparently significantly fainter than is typical for the surrounding area. These 'socket stars' might be caused by a bubble in the nebula blown out by a stellar wind or they might be caused by a circumstellar envelope of dust hiding the emission behind the star. As such, the sockets could be the first manifestation of a previously unknown component of pre-main-sequence stars. Unfortunately, no quantitative proof of the existence of sockets has been presented. To fill this need, I have imaged 10 socket stars and six background stars with CCD cameras and infrared array cameras. From these images, I have constructed radial plots which should reveal dips in brightness immediately outside the seeing disk. The radial plots do not show any evidence for the existence of sockets. A detailed examination of the photographs orginally used to identify the sockets show that the causes of these reports are (1) artifacts resulting from the photographic process of dodging and (2) random coincidence of stars with local minima in nebular brightness. Thus, I conclude that 'socket stars' do not exist.

  7. Mass Loss from Dusty AGB and Red Supergiant Stars in the Magellanic Clouds and in the Galaxy

    NASA Astrophysics Data System (ADS)

    Sargent, Benjamin A.; Srinivasan, Sundar; Meixner, Margaret; Kastner, Joel

    2016-01-01

    Asymptotic giant branch (AGB) and red supergiant (RSG) stars are evolved stars that eject large parts of their mass in outflows of dust and gas. As part of an ongoing effort to measure mass loss from evolved stars in our Galaxy and in the Magellanic Clouds, we are modeling mass loss from AGB and RSG stars in these galaxies. Our approach is twofold. We pursue radiative transfer modeling of the spectral energy distributions (SEDs) of AGB and RSG stars in the Large Magellanic Cloud (LMC), in the Small Magellanic Cloud (SMC), and in the Galactic bulge and in globular clusters of the Milky Way. We are also constructing detailed dust opacity models of AGB and RSG stars in these galaxies for which we have infrared spectra; e.g., from the Spitzer Space Telescope Infrared Spectrograph (IRS). Our sample of infrared spectra largely comes from Spitzer-IRS observations. The detailed dust modeling of spectra informs our choice of dust properties to use in radiative transfer modeling of SEDs. We seek to determine how mass loss from these evolved stars depends upon the metallicity of their host environments. BAS acknowledges funding from NASA ADAP grant NNX15AF15G.

  8. The spectra of the chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Hack, M.

    The spectral properties of the chemically peculiar (CP) stars and the information which is obtainable from them are reviewed. The identification and classification of CP stars in the basis of their spectra is discussed with particular emphasis on the He-rich stars and CNO stars, and recent classification systems based on narrow-band photometry, low-resolution spectrometry or UV spectra are considered. Attention is given to continuum flux distributions, particularly the infrared excesses and UV deficiencies, and the stellar properties (effective temperature and gravity, line blocking, discontinuities, mass and radius) that may be derived from them, and to the magnetic field measurements and evidence for spotted element distributions that may be inferred from spectral surface composition analyses made using LTE model atmospheres are considered which involve both large sample of stars and individual stars, and statistical studies of rotation, magnetic braking and membership in binary systems and clusters are indicated. Finally, UV and X-ray evidence for chromospheres and coronas in some CP stars is noted.

  9. GOODS Far Infrared Imaging with Herschel

    NASA Astrophysics Data System (ADS)

    Frayer, David T.; Elbaz, D.; Dickinson, M.; GOODS-Herschel Team

    2010-01-01

    Most of the stars in galaxies formed at high redshift in dusty environments, where their energy was absorbed and re-radiated at infrared wavelengths. Similarly, much of the growth of nuclear black holes in active galactic nuclei (AGN) was also obscured from direct view at UV/optical and X-ray wavelengths. The Great Observatories Origins Deep Survey Herschel (GOODS-H) open time key program will obtain the deepest far-infrared view of the distant universe, mapping the history of galaxy growth and AGN activity over a broad swath of cosmic time. GOODS-H will image the GOODS-North field with the PACS and SPIRE instruments at 100 to 500 microns, matching the deep survey of GOODS-South in the guaranteed time key program. GOODS-H will also observe an ultradeep sub-field within GOODS-South with PACS, reaching the deepest flux limits planned for Herschel (0.6 mJy at 100 microns with S/N=5). GOODS-H data will detect thousands of luminous and ultraluminous infrared galaxies out to z=4 or beyond, measuring their far-infrared luminosities and spectral energy distributions, and providing the best constraints on star formation rates and AGN activity during this key epoch of galaxy and black hole growth in the young universe.

  10. CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio

    2014-04-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.

  11. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    NASA Astrophysics Data System (ADS)

    Kasliwal, Mansi M.; Bally, John; Masci, Frank; Cody, Ann Marie; Bond, Howard E.; Jencson, Jacob E.; Tinyanont, Samaporn; Cao, Yi; Contreras, Carlos; Dykhoff, Devin A.; Amodeo, Samuel; Armus, Lee; Boyer, Martha; Cantiello, Matteo; Carlon, Robert L.; Cass, Alexander C.; Cook, David; Corgan, David T.; Faella, Joseph; Fox, Ori D.; Green, Wayne; Gehrz, R. D.; Helou, George; Hsiao, Eric; Johansson, Joel; Khan, Rubab M.; Lau, Ryan M.; Langer, Norbert; Levesque, Emily; Milne, Peter; Mohamed, Shazrene; Morrell, Nidia; Monson, Andy; Moore, Anna; Ofek, Eran O.; O' Sullivan, Donal; Parthasarathy, Mudumba; Perez, Andres; Perley, Daniel A.; Phillips, Mark; Prince, Thomas A.; Shenoy, Dinesh; Smith, Nathan; Surace, Jason; Van Dyk, Schuyler D.; Whitelock, Patricia A.; Williams, Robert

    2017-04-01

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer/IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between -11 and -14 (Vega-mag) and [3.6]-[4.5] colors between 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr-1 to >7 mag yr-1. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.

  12. Infrared spectra of rotating protostars

    NASA Technical Reports Server (NTRS)

    Adams, F. C.; Shu, F. H.

    1986-01-01

    Earlier calculations of the infrared emission expected from stars in the process of being made are corrected to include the most important observable effects of rotation and generalized. An improved version of the spherical model of a previous paper is developed, and the corresponding emergent spectral energy distributions are calculated for the theoretically expected mass infall rate in the cores of cool and quiescent molecular clouds. The dust grain opacity model and the temperature profile parameterization are improved. It is shown that the infrared spectrum of the IRAS source 04264+2426, which is associated with a Herbig-Haro object, can be adequately represented in terms of a rotating and accreting protostar. This strengthens the suggestion that collimated outflows in young stellar objects originate when a stellar wind tries to emerge and reverse the swirling pattern of infall which gave birth to the central star.

  13. The Wide-Field Infrared Explorer

    NASA Technical Reports Server (NTRS)

    Schember, Helene; Hacking, Perry

    1993-01-01

    More than 30% of current star formation is taking place ingalaxies known as starburst galaxies. Do starburst galaxies play a central role in the evolution of all galaxies, and can they lead us to the birth of galaxies and the source of quasars? We have proposed to build the Wide Field Infrared Explorer (WIRE), capable of detecting typical starburst galaxies at a redshift of 0.5, ultraluminous infrared galaxies behond a redshift of 2, and luminous protogalaxies beyond a redshift of 5.

  14. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29

  15. Spectra from the IRS of Bright Oxygen-Rich Evolved Stars in the SMC

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Sloan, Greg; Wood, Peter

    2016-06-01

    We have used Spitzer's Infrared Spectrograph (IRS) to obtain spectra of stars in the Small Magellanic Cloud (SMC). The targets were chosen from the Point Source Catalog of the Mid-Course Space Experiment (MSX), which detected the 243 brightest infrared sources in the SMC. Our SMC sample of oxygen-rich evolved stars shows more dust than found in previous samples, and the dust tends to be dominated by silicates, with little contribution from alumina. Both results may arise from the selection bias in the MSX sample and our sample toward more massive stars. Additionally, several sources show peculiar spectral features such as PAHs, crystalline silicates, or both carbon-rich and silicate features. The spectrum of one source, MSX SMC 145, is a combination of an ordinary AGB star and a background galaxy at z~0.16, rather than an OH/IR star as previously suggested.

  16. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. X. ULTRAVIOLET TO INFRARED PHOTOMETRY OF 117 MILLION EQUIDISTANT STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Weisz, Daniel R.

    We have measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury survey, we measured photometry with simultaneous point-spread function (PSF) fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 mas accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W ∼ 28, while in the crowded, high surface brightness bulge, the photometry reachesmore » F475W ∼ 25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest-resolution filters (WFC3/IR) providing color-magnitude diagrams (CMDs) that are up to 2.5 mag deeper when compared with CMDs from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that the largest sources of systematic error in the photometry are due to spatial variations in the PSF models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.« less

  17. Kinematics and Energetics in Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    U, Vivian; Sanders, D. B.; GOALS Team

    2012-01-01

    In the present paradigm of the merger-driven galaxy evolution scenario, gas-rich spirals interact and merge, triggering intense star formation and nuclear activity that can deplete the gas in progenitors of giant ellipticals. Starburst and AGN activities in systems like these cause an infrared-luminous stage associated with enhanced star formation rate and black hole growth. Therefore, the local luminous and ultraluminous infrared galaxies ((U)LIRGs) provide the ideal nearby, extreme environments in which we study black hole accretion, AGN feeding and feedback, and the nature of star formation in starbursts, the connection among which remains poorly understood due to limitations of previous instrumentation. Our new high-resolution submillimeter and near-infrared integral-field data cube of the nuclei in (U)LIRGs taken with the Submillimeter Array (SMA) and the Keck Telescopes reveal circumnuclear gas kinematics at an unprecedented level of details. At the distances of these local mergers, our SMA long-baseline and Keck laser guide star adaptive optics observations probe the physical conditions of the centers of these systems at the scale of 50-200 pc. For instance, the molecular gas emission in between the two AGNs in NGC 6240 has been resolved into two peaks that may be consistent with a scenario where two pre-coalescence gas disks are interacting at an angle; near-infrared integral-field spectra of the two nuclei in Mrk 273 disclose the temperature and excitation mechanism around an AGN and the nuclear disk of a potential second AGN. These findings give a detailed description of the molecular gas kinematics as well as AGN/starburst activities in the central dusty region of these merging systems, and paint an overall picture of the evolution of the energetics in (U)LIRGs as the merger sequence progresses. VU would like to acknowledge partial funding support from the NASA Harriet G. Jenkins Predoctoral Fellowship Project.

  18. [right] - DUST RING AROUND STAR OFFERS NEW CLUES INTO PLANET FORMATION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope false-color near infrared image of a novel type of structure seen in space - a dust ring around a star. Superficially resembling Saturn's rings -- but on a vastly larger scale -- the 'hula-hoop' around the star called HR 4796A offers new clues into the possible presence of young planets. The near-infrared light reflecting off the dust ring is about 1,000 times fainter than the illuminating central star. Astronomers used a coronagraphic camera on Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), specifically designed to enable observations of very faint and low surface brightness objects in the close proximity to bright stars. Even with the coronagraph, the glare from HR 4796A overwhelms the much-fainter ring at distances less than about 4 billion miles (inside the blacked-out circle, centered on the star). Hubble's crisp view was able to resolve the ring, seen at lower resolution at longer wavelengths, in ground-based thermal infrared images, as a disk with some degree of central clearing. The ring has an angular radius of 1.05 arc seconds, equivalent to the apparent size of a dime seen more than 4 miles away. Unlike the extensive disks of dust seen around other young stars, the HR 4796A dust ring, 6.5 billion miles from the star, is tightly confined within a relatively narrow zone less than 17 Astronomical Units wide. An Astronomical Unit is the distance from the Earth to the Sun). For comparison, the ring width is approximately equal to the distance separating the orbits of Mars and Uranus in our own Solar System. All dust rings, whether around stars or planets, can only stay intact by some mechanism confining the dust, likely the gravitational tug of unseen planets. The image was taken on March 15, 1998, centered at a near infrared wavelength of 1.1 microns. The false-color corresponds to the ring's brightness (yellow is bright, purple is faint). The ring, which is undoubtedly circular, appears elliptical since

  19. First light observations with TIFR Near Infrared Imaging Camera (TIRCAM-II)

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; D'Costa, S. L. A.; Naik, M. B.; Sandimani, P. R.; Poojary, S. S.; Bhagat, S. B.; Jadhav, R. B.; Meshram, G. S.; Bakalkar, C. B.; Ramaprakash, A. N.; Mohan, V.; Joshi, J.

    TIFR near infrared imaging camera (TIRCAM-II) is based on the Aladdin III Quadrant InSb focal plane array (512×512 pixels; 27.6 μm pixel size; sensitive between 1 - 5.5 μm). TIRCAM-II had its first engineering run with the 2 m IUCAA telescope at Girawali during February - March 2011. The first light observations with TIRCAM-II were quite successful. Several infrared standard with TIRCAM-II were quite successful. Several infrared standard stars, the Trapezium Cluster in Orion region, McNeil's nebula, etc., were observed in the J, K and in a narrow-band at 3.6 μm (nbL). In the nbL band, some bright stars could be detected from the Girawali site. The performance of TIRCAM-II is discussed in the light of preliminary observations in near infrared bands.

  20. Non-LTE aluminium abundances in late-type stars

    NASA Astrophysics Data System (ADS)

    Nordlander, T.; Lind, K.

    2017-11-01

    Aims: Aluminium plays a key role in studies of the chemical enrichment of the Galaxy and of globular clusters. However, strong deviations from LTE (non-LTE) are known to significantly affect the inferred abundances in giant and metal-poor stars. Methods: We present non-local thermodynamic equilibrium (NLTE) modeling of aluminium using recent and accurate atomic data, in particular utilizing new transition rates for collisions with hydrogen atoms, without the need for any astrophysically calibrated parameters. For the first time, we perform 3D NLTE modeling of aluminium lines in the solar spectrum. We also compute and make available extensive grids of abundance corrections for lines in the optical and near-infrared using one-dimensional model atmospheres, and apply grids of precomputed departure coefficients to direct line synthesis for a set of benchmark stars with accurately known stellar parameters. Results: Our 3D NLTE modeling of the solar spectrum reproduces observed center-to-limb variations in the solar spectrum of the 7835 Å line as well as the mid-infrared photospheric emission line at 12.33 μm. We infer a 3D NLTE solar photospheric abundance of A(Al) = 6.43 ± 0.03, in exact agreement with the meteoritic abundance. We find that abundance corrections vary rapidly with stellar parameters; for the 3961 Å resonance line, corrections are positive and may be as large as +1 dex, while corrections for subordinate lines generally have positive sign for warm stars but negative for cool stars. Our modeling reproduces the observed line profiles of benchmark K-giants, and we find abundance corrections as large as -0.3 dex for Arcturus. Our analyses of four metal-poor benchmark stars yield consistent abundances between the 3961 Å resonance line and lines in the UV, optical and near-infrared regions. Finally, we discuss implications for the galactic chemical evolution of aluminium.

  1. 'Witch Head' Brews Baby Stars

    NASA Image and Video Library

    2017-12-08

    A witch appears to be screaming out into space in this new image from NASA's Wide-Field Infrared Survey Explorer, or WISE. The infrared portrait shows the Witch Head nebula, named after its resemblance to the profile of a wicked witch. Astronomers say the billowy clouds of the nebula, where baby stars are brewing, are being lit up by massive stars. Dust in the cloud is being hit with starlight, causing it to glow with infrared light, which was picked up by WISE's detectors. The Witch Head nebula is estimated to be hundreds of light-years away in the Orion constellation, just off the famous hunter's knee. WISE was recently "awakened" to hunt for asteroids in a program called NEOWISE. The reactivation came after the spacecraft was put into hibernation in 2011, when it completed two full scans of the sky, as planned. Image credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Infrared Polarization of the Molecular Cloud Associated to IRAS 18236-1205

    NASA Astrophysics Data System (ADS)

    Luna, A.; Retes, R.; Devaraj, R.; Maya, Y. D.; Carrasco, L.

    2017-07-01

    We present the near-infrared polarization observations towards the star forming molecular cloud associated with the IRAS source 18236-1205, obtained with the near-infrared (NIR) imaging polarimeter POLICAN at the Guillermo Haro Astrophysical Observatory in Cananea, Sonora, México.

  3. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  4. Massive Star Formation Viewed through Extragalactic-Tinted Glasses

    NASA Astrophysics Data System (ADS)

    Willis, Sarah; Marengo, M.; Smith, H. A.; Allen, L.

    2014-01-01

    Massive Galactic star forming regions are the local analogs to the luminous star forming regions that dominate the emission from star forming galaxies. Their proximity to us enables the characterization of the full range of stellar masses that form in these more massive environments, improving our understanding of star formation tracers used in extragalactic studies. We have surveyed a sample of massive star forming regions with a range of morphologies and luminosities to probe the star formation activity in a variety of environments. We have used Spitzer IRAC and deep ground based J, H, Ks observations to characterize the Young Stellar Object (YSO) content of 6 massive star forming regions. These YSOs provide insight into the rate and efficiency of star formation within these regions, and enable comparison with nearby, low mass star forming regions as well as extreme cases of Galactic star formation including ‘mini-starburst’ regions. In addition, we have conducted an in-depth analysis of NGC 6334 to investigate how the star formation activity varies within an individual star forming region, using Herschel data in the far-infrared to probe the earliest stages of the ongoing star formation activity.

  5. Stars and their Environments at High-Resolution with IGRINS

    NASA Astrophysics Data System (ADS)

    Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike

    2016-06-01

    TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.

  6. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks moremore » like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.« less

  7. Prospects for star formation studies with infrared instruments (TIRCAM2 and TANSPEC) on the 3.6-m Devasthal Optical Telescope

    NASA Astrophysics Data System (ADS)

    Ojha, Devendra; Ghosh, Swarna Kanti; Sharma, Saurabh; Pandey, Anil Kumar; Baug, Tapas; Ninan, Joe Philip; Kumar, Brijesh; Puravankara, Manoj; D'Costa, Savio; Naik, Milind; Poojari, Satheesha; Bhagat, Shailesh; Jadhav, Rajesh; Meshram, Ganesh; Sandimani, Pradeep; Gharat, Sanjay; Bakalkar, Chandrakant

    2018-04-01

    We present a brief description of the activities of the infrared astronomy group of Tata Institute of Fundamental Research with special emphasis on the ground-based near infrared instrumentation for star formation studies. We describe the unique capability of TIRCAM2 for observations in the polycyclic aromatic hydrocarbon (λcen˜3.3 μm) and narrow-band L (λcen˜3.59 μm) bands, currently being used by the astronomy community, and of the upcoming TANSPEC, which is being built for India's largest telescope, i.e. the 3.6-m Devasthal Optical Telescope (DOT). The TIRCAM2 on the 3.6-m DOT was successfully commissioned in June 2016, and the subsequent characterization and astronomical observations are presented here. Based on the successful engineering runs on the 3.6-m DOT, TIRCAM2 has been made available to the Indian and Belgian astronomical community for science observations since Early Science Cycle 2017A (May 2017) onwards. The fabrication of TANSPEC is in an advanced stage and the spectrometer is expected to be commissioned by the end of January 2018.

  8. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${<}5$~Myr) massive star forming regions. IMPS have masses between 2 and 8 $M_{\\odot}$ and are getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  9. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  10. Space Infrared Telescope Facility (SIRTF) science instruments

    NASA Technical Reports Server (NTRS)

    Ramos, R.; Hing, S. M.; Leidich, C. A.; Fazio, G.; Houck, J. R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem.

  11. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  12. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-12-08

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Order Amidst Chaos of Star's Explosion

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Order Amidst Chaos of Star's Explosion

    This artist's animation shows the explosion of a massive star, the remains of which are named Cassiopeia A. NASA's Spitzer Space Telescope found evidence that the star exploded with some degree of order, preserving chunks of its onion-like layers as it blasted apart.

    Cassiopeia A is what is known as a supernova remnant. The original star, about 15 to 20 times more massive than our sun, died in a cataclysmic 'supernova' explosion viewable from Earth about 340 years ago. The remnant is located 10,000 light-years away in the constellation Cassiopeia.

    The movie begins by showing the star before it died, when its layers of elements (shown in different colors) were stacked neatly, with the heaviest at the core and the lightest at the top. The star is then shown blasting to smithereens. Spitzer found evidence that the star's original layers were preserved, flinging outward in all directions, but not at the same speeds. In other words, some chunks of the star sped outward faster than others, as illustrated by the animation.

    The movie ends with an actual picture of Cassiopeia A taken by Spitzer. The colored layers containing different elements are seen next to each other because they traveled at different speeds.

    The infrared observatory was able to see the tossed-out layers because they light up upon ramming into a 'reverse' shock wave created in the aftermath of the explosion. When a massive star explodes, it creates two types of shock waves. The forward shock wave darts out quickest, and, in the case of Cassiopeia A, is now traveling at supersonic speeds up to 7,500 kilometers per second (4,600 miles/second). The reverse shock wave is produced when the forward shock wave slams into a shell of surrounding material expelled before the star died. It tags along behind the forward shock wave at slightly slower speeds.

    Chunks

  14. Obscured Active Galactic Nuclei in Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shier, L. M.; Rieke, M. J.; Rieke, G. H.

    1996-10-01

    We examine the nature of the central power source in very luminous infrared galaxies. The infrared properties of the galaxies, including their far-infrared and 2.2 micron fluxes, CO indices, and Brackett line fluxes are compared to models of starburst stellar populations. Among seven galaxies we found two dominated by emission from young stars, two dominated by emission from an AGN, and three transition cases. Our results are consistent with evidence for active nuclei in the same galaxies at other wavelengths. Nuclear mass measurements obtained for the galaxies indicate an initial mass function biased toward high-mass stars in two galaxies. After demonstrating our methods in well-studied galaxies, we define complete samples of high luminosity and ultraluminous galaxies. We find that the space density of embedded and unembedded quasars in the local universe is similar for objects of similar luminosity. If quasars evolve from embedded sources to optically prominent objects, it appears that the lifetime of a quasar is no more than about 108 yr.

  15. The Balloon Experimental Twin Telescope for Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2008-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scales on which mid- to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths, a powerful tool for scientific discovery, We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers,

  16. NGC 6334 V revisited: The complex nature of the infrared nebula

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Roth, M.

    2017-07-01

    A comprehensive analysis is presented of the most recent infrared observations of the small, very young and enigmatic infrared nebula associated with NGC 6334-V. We re-analized images from the Spitzer/IRAC (3.6 a 8 μm), Herschel/SPIRE/PACS (70 a 500 μm), VISTA (1.2 a 2.2 μm), VLT/VISIR (11.3 a 18.7 μm) and HST/NICMOS (2.0 μm) archives. The very high spatial resolution from the latter two sets, combined with very recent sub-millimetre maps, allow us to suggest several possible star-formation scenarios that explain the observed infrared and radio properties of the region. Evidence is provided of the presence of a small population of low and medium-mass young stars embedded in the infrared reflection nebulosity NGC 6334 V that coexist with the nearby much younger Class 0 protostars.

  17. Neutron stars at the dark matter direct detection frontier

    NASA Astrophysics Data System (ADS)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  18. Strong far-infrared cooling lines, peculiar CO kinematics, and possible star-formation suppression in Hickson compact group 57

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alatalo, K.; Appleton, P. N.; Ogle, P. M.

    2014-11-10

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L {sub FIR} and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normalmore » distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H{sub 2} emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.« less

  19. Strong Far-infrared Cooling Lines, Peculiar CO Kinematics, and Possible Star-formation Suppression in Hickson Compact Group 57

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.; Bitsakis, T.; Guillard, P.; Charmandaris, V.; Cluver, M.; Dopita, M. A.; Freeland, E.; Jarrett, T.; Kewley, L. J.; Ogle, P. M.; Rasmussen, J.; Rich, J. A.; Verdes-Montenegro, L.; Xu, C. K.; Yun, M.

    2014-11-01

    We present [C II] and [O I] observations from Herschel and CO(1-0) maps from the Combined Array for Research in Millimeter Astronomy (CARMA) of the Hickson compact group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG 57a has been previously shown to contain enhanced quantities of warm molecular hydrogen consistent with shock or turbulent heating. Our observations show that HCG 57d has strong [C II] emission compared to L FIR and weak CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies at the upper end of the normal distribution of the [C II]/CO and [C II]/FIR ratios, and its far-infrared (FIR) cooling supports a low-density, warm, diffuse gas that falls close to the boundary of acceptable models of a photon-dominated region. However, the power radiated in the [C II] and warm H2 emissions have similar magnitudes, as seen in other shock-dominated systems and predicted by recent models. We suggest that shock heating of the [C II] is a viable alternative to photoelectric heating in violently disturbed, diffuse gas. The existence of shocks is also consistent with the peculiar CO kinematics in the galaxy, indicating that highly noncircular motions are present. These kinematically disturbed CO regions also show evidence of suppressed star formation, falling a factor of 10-30 below normal galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar properties of both galaxies are consistent with a highly dissipative, off-center collisional encounter between HCG 57d and 57a, creating ring-like morphologies in both systems. Highly dissipative gas-on-gas collisions may be more common in dense groups because of the likelihood of repeated multiple encounters. The possibility of shock-induced star-formation suppression may explain why a subset of these HCG galaxies has been found previously to fall in the mid-infrared green valley.

  20. Long-period variable stars in NGC 147 and NGC 185 - I. Their star formation histories

    NASA Astrophysics Data System (ADS)

    Hamedani Golshan, Roya; Javadi, Atefeh; van Loon, Jacco Th.; Khosroshahi, Habib; Saremi, Elham

    2017-04-01

    NGC 147 and NGC 185 are two of the most massive satellites of the Andromeda galaxy (M 31). Close together in the sky, of similar mass and morphological type dE, they possess different amounts of interstellar gas and tidal distortion. The question therefore is, how do their histories compare? Here, we present the first reconstruction of the star formation histories of NGC 147 and NGC 185 using long-period variable stars. These represent the final phase of evolution of low- and intermediate-mass stars at the asymptotic giant branch, when their luminosity is related to their birth mass. Combining near-infrared photometry with stellar evolution models, we construct the mass function and hence the star formation history. For NGC 185, we found that the main epoch of star formation occurred 8.3 Gyr ago, followed by a much lower, but relatively constant star formation rate. In the case of NGC 147, the star formation rate peaked only 7 Gyr ago, staying intense until ˜3 Gyr ago, but no star formation has occurred for at least 300 Myr. Despite their similar masses, NGC 147 has evolved more slowly than NGC 185 initially, but more dramatically in more recent times. This is corroborated by the strong tidal distortions of NGC 147 and the presence of gas in the centre of NGC 185.

  1. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previouslymore » known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.« less

  2. On the Origin of the Near-infrared Emission from the Neutron-star Low-mass X-Ray Binary GX 9+1

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen; Homan, Jeroen

    2017-01-01

    We have determined an improved position for the luminous persistent neutron-star low-mass X-ray binary and atoll source GX 9+1 from archival Chandra X-ray Observatory data. The new position significantly differs from a previously published Chandra position for this source. Based on the revised X-ray position we have identified a new near-infrared (NIR) counterpart to GX 9+1 in Ks-band images obtained with the PANIC and FourStar cameras on the Magellan Baade Telescope. NIR spectra of this {K}s=16.5+/- 0.1 mag star, taken with the FIRE spectrograph on the Baade Telescope, show a strong Br γ emission line, which is a clear signature that we discovered the true NIR counterpart to GX 9+1. The mass donor in GX 9+1 cannot be a late-type giant, as such a star would be brighter than the estimated absolute Ks magnitude of the NIR counterpart. The slope of the dereddened NIR spectrum is poorly constrained due to uncertainties in the column density NH and NIR extinction. Considering the source’s distance and X-ray luminosity, we argue that NH likely lies near the high end of the previously suggested range. If this is indeed the case, the NIR spectrum is consistent with thermal emission from a heated accretion disk, possibly with a contribution from the secondary. In this respect, GX 9+1 is similar to other bright atolls and the Z sources, whose NIR spectra do not show the slope that is expected for a dominant contribution from optically thin synchrotron emission from the inner regions of a jet. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Photometry of Galactic and Extragalactic Far-Infrared Sources using the 91.5 cm Airborne Infrared Telescope

    NASA Technical Reports Server (NTRS)

    Harper, D. A.

    1996-01-01

    The objective of this grant was to construct a series of far infrared photometers, cameras, and supporting systems for use in astronomical observations in the Kuiper Airborne Observatory. The observations have included studies of galaxies, star formation regions, and objects within the Solar System.

  4. AGB stars in Leo P and their use as metallicity probes

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2016-09-01

    Leo P is the most metal-poor yet star-forming galaxy in the local volume, and has the potential to serve as a local counterpart to interpret the properties of distant galaxies in the early universe. We present a comprehensive search of asymptotic giant branch (AGB) stars in Leo P using deep infrared imaging. AGB stars are the major dust contributors; the metal poor nature of Leo P can help to shed light on the dust formation process in very low-metallicity environments, similar to the early Universe. We select and classify oxygen-rich and carbon-rich candidate AGB stars using J - K versus K colour-magnitude diagram. To filter out contaminations from background galaxies, we exploit the high-resolution Hubble Space Telescope imaging and identify 9 oxygen-rich AGBs and 13 carbon-rich AGB stars in Leo P. We then use the ratio of carbon-rich and oxygen-rich AGB stars (C/M ratio) as an indicator of on-site metallicity and derive the global metallicity [Fe/H] = -1.8 dex for Leo P, in good agreement with previous studies using isochrone fitting. Follow-up observations of these Leo P AGB stars in the mid-infrared [e.g. Spitzer, James Webb Space Telescope (JWST)] will be invaluable to measure the dust formation rates using Spectral energy distribution (SED) fitting.

  5. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  6. SPIRITS: Uncovering Unusual Infrared Transients with Spitzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasliwal, Mansi M.; Jencson, Jacob E.; Tinyanont, Samaporn

    2017-04-20

    We present an ongoing, five-year systematic search for extragalactic infrared transients, dubbed SPIRITS—SPitzer InfraRed Intensive Transients Survey. In the first year, using Spitzer /IRAC, we searched 190 nearby galaxies with cadence baselines of one month and six months. We discovered over 1958 variables and 43 transients. Here, we describe the survey design and highlight 14 unusual infrared transients with no optical counterparts to deep limits, which we refer to as SPRITEs (eSPecially Red Intermediate-luminosity Transient Events). SPRITEs are in the infrared luminosity gap between novae and supernovae, with [4.5] absolute magnitudes between −11 and −14 (Vega-mag) and [3.6]–[4.5] colors betweenmore » 0.3 mag and 1.6 mag. The photometric evolution of SPRITEs is diverse, ranging from <0.1 mag yr{sup −1} to >7 mag yr{sup −1}. SPRITEs occur in star-forming galaxies. We present an in-depth study of one of them, SPIRITS 14ajc in Messier 83, which shows shock-excited molecular hydrogen emission. This shock may have been triggered by the dynamic decay of a non-hierarchical system of massive stars that led to either the formation of a binary or a protostellar merger.« less

  7. ULTRAVIOLET+INFRARED STAR FORMATION RATES: HICKSON COMPACT GROUPS WITH SWIFT AND SPITZER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzanavaris, P.; Hornschemeier, A. E.; Immler, S.

    2010-06-10

    use the Spitzer Infrared Nearby Galaxy Survey (SINGS) to construct a comparison subsample of galaxies that (1) match HCG galaxies in J-band total galaxy luminosity and (2) are not strongly interacting and largely isolated. This selection eliminates mostly low-luminosity dwarfs and galaxies with some degree of peculiarity, providing a substantially improved, quiescent control sample. Unlike HCG galaxies, galaxies in the comparison SINGS subsample are continuously distributed both in SSFR and {alpha}{sub IRAC}, although they show ranges in SFR{sub TOTAL} values, morphologies and stellar masses similar to those for HCG systems. We test the SSFR bimodality against a number of uncertainties, and find that these can only lead to its further enhancement. Excluding galaxies belonging to HCGs with three giant galaxies (triplets) leaves both the SSFR and the {alpha}{sub IRAC} bimodality completely unaffected. We interpret these results as further evidence that an environment characterized by high galaxy number densities and low galaxy velocity dispersions, such as the one found in compact groups, plays a key role in accelerating galaxy evolution by enhancing star formation processes in galaxies and favoring a fast transition to quiescence.« less

  8. Ultraviolet+Infrared Star Formation Rates: Hickson Compact Groups with Swift and SPitzer

    NASA Technical Reports Server (NTRS)

    Tzanavaris, P.; Hornschemeier, A. E.; Gallagher, S. C.; Johnson, K. E.; Gronwall, C.; Immler, S.; Reines, A. E.; Hoversten, E.; Charlton, J. C.

    2010-01-01

    We present Swift UVOT ultraviolet (UV; 1600-3000 A) data with complete three-band UV photometry for a sample of 41 galaxies in 11 nearby (<4500 km/s) Hickson Compact Groups (HCGs) of galaxies. We use UVOT uvw2-band (2000A) photometry to estimate the dust-unobscured component, SFR(sub uv), of the total star formation rate, SFR(sub TOTAL). We use Spitzer MIPS 24 micron photometry to estimate SFR(sub IR), the component of SFR(sub TOTAL) that suffers dust extinction in the UV and is re-emitted in the IR. By combining the two components, we obtain SFR(sub TOTAL) estimates for all HCG galaxies. We obtain total stellar mass, M(sub *) estimates by means of Two Micron All Sky Survey K(sub s)-band luminosities, and use them to calculate specific star formation rates, SSFR is identical with SFR(sub TOTAL)/ M (sub *). SSFR values show a clear and significant bimodality, with a gap between low (approximately <3.2 x 10(exp -11) / yr) and high-SSFR (approximately > 1.2 x lO)exp -10)/yr) systems. We compare this bimodality to the previously discovered bimodality in alpha-IRAC, the MIR activity index from a power-law fit to the Spitzer IRAC 4.5-8 micron data for these galaxies. We find that all galaxies with alpha-IRAC <= 0 (> 0) are in the high- (low-) SSFR locus, as expected if high levels of star-forming activity power MIR emission from polycyclic aromatic hydrocarbon molecules and a hot dust continuum. Consistent with this finding, all elliptical/SO galaxies are in the low-SSFR locus, while 22 out of 24 spirals / irregulars are in the high-SSFR locus, with two borderline cases. We further divide our sample into three subsamples (I, II, and III) according to decreasing H I richness of the parent galaxy group to which a galaxy belongs. Consistent with the SSFR and alpha-IRAC bimodality, 12 out of 15 type I (11 out of 12 type III) galaxies are in the high- (low-) SSFR locus, while type II galaxies span almost the full range of SSFR values. We use the Spitzer Infrared Nearby Galaxy

  9. Star formation towards the southern cometary H II region IRAS 17256-3631

    NASA Astrophysics Data System (ADS)

    Veena, V. S.; Vig, S.; Tej, A.; Varricatt, W. P.; Ghosh, S. K.; Chandrasekhar, T.; Ashok, N. M.

    2016-03-01

    IRAS 17256-3631 is a southern Galactic massive star-forming region located at a distance of 2 kpc. In this paper, we present a multiwavelength investigation of the embedded cluster, the H II region, as well as the parent cloud. Radio images at 325, 610 and 1372 MHz were obtained using Giant Metrewave Radio Telescope, India while the near-infrared imaging and spectroscopy were carried out using United Kingdom Infrared Telescope and Mt. Abu Infrared Telescope, India. The near-infrared K-band image reveals the presence of a partially embedded infrared cluster. The spectral features of the brightest star in the cluster, IRS-1, spectroscopically agree with a late O or early B star and could be the driving source of this region. Filamentary H2 emission detected towards the outer envelope indicates the presence of highly excited gas. The parent cloud is investigated at far-infrared to millimetre wavelengths and 18 dust clumps have been identified. The spectral energy distributions of these clumps have been fitted as modified blackbodies and the best-fitting peak temperatures are found to range from 14 to 33 K, while the column densities vary from 0.7 to 8.5 × 1022 cm-2. The radio maps show a cometary morphology for the distribution of ionized gas that is density bounded towards the north-west and ionization bounded towards the south-east. This morphology is better explained with the champagne flow model as compared to the bow-shock model. Using observations at near-, mid- and far-infrared, submillimetre and radio wavelengths, we examine the evolutionary stages of various clumps.

  10. A Star-Formation Laboratory

    NASA Image and Video Library

    2011-05-13

    The dwarf galaxy NGC 4214 is ablaze with young stars and gas clouds. Located around 10 million light-years away in the constellation of Canes Venatici (The Hunting Dogs), the galaxy's close proximity, combined with the wide variety of evolutionary stages among the stars, make it an ideal laboratory to research the triggers of star formation and evolution. Intricate patterns of glowing hydrogen formed during the star-birthing process, cavities blown clear of gas by stellar winds, and bright stellar clusters of NGC 4214 can be seen in this optical and near-infrared image. Observations of this dwarf galaxy have also revealed clusters of much older red supergiant stars. Additional older stars can be seen dotted all across the galaxy. The variety of stars at different stages in their evolution indicates that the recent and ongoing starburst periods are not the first, and the galaxy's abundant supply of hydrogen means that star formation will continue into the future. This color image was taken using the Wide Field Camera 3 in December 2009. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration Acknowledgment: R. O'Connell (University of Virginia) and the WFC3 Scientific Oversight Committee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. The mean star formation rates of unobscured QSOs: searching for evidence of suppressed or enhanced star formation

    NASA Astrophysics Data System (ADS)

    Stanley, F.; Alexander, D. M.; Harrison, C. M.; Rosario, D. J.; Wang, L.; Aird, J. A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; Knudsen, K. K.; Michałowski, M. J.; Valiante, E.; De Zotti, G.; Furlanetto, C.; Ivison, R.; Maddox, S.; Smith, M. W. L.

    2017-12-01

    We investigate the mean star formation rates (SFRs) in the host galaxies of ∼3000 optically selected quasi-stellar objects (QSOs) from the Sloan Digital Sky Survey within the Herschel-ATLAS fields, and a radio-luminous subsample covering the redshift range of z = 0.2-2.5. Using Wide-field Infrared Survey Explorer (WISE) and Herschel photometry (12-500 μm) we construct composite spectral energy distributions (SEDs) in bins of redshift and active galactic nucleus (AGN) luminosity. We perform SED fitting to measure the mean infrared luminosity due to star formation, removing the contamination from AGN emission. We find that the mean SFRs show a weak positive trend with increasing AGN luminosity. However, we demonstrate that the observed trend could be due to an increase in black hole (BH) mass (and a consequent increase of inferred stellar mass) with increasing AGN luminosity. We compare to a sample of X-ray selected AGN and find that the two populations have consistent mean SFRs when matched in AGN luminosity and redshift. On the basis of the available virial BH masses, and the evolving BH mass to stellar mass relationship, we find that the mean SFRs of our QSO sample are consistent with those of main sequence star-forming galaxies. Similarly the radio-luminous QSOs have mean SFRs that are consistent with both the overall QSO sample and with star-forming galaxies on the main sequence. In conclusion, on average QSOs reside on the main sequence of star-forming galaxies, and the observed positive trend between the mean SFRs and AGN luminosity can be attributed to BH mass and redshift dependencies.

  12. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  13. The Space Infrared Interferometric Telescope (SPIRIT)

    NASA Technical Reports Server (NTRS)

    Leisawitz, David T.

    2014-01-01

    The far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation and chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. The Space Infrared Interferometric Telescope (SPIRIT) is a wide field-of-view space-based spatio-spectral interferometer designed to operate in the 25 to 400 micron wavelength range. This talk will summarize the SPIRIT mission concept, with a focus on the science that motivates it and the technology that enables it. Without mentioning SPIRIT by name, the astrophysics community through the NASA Astrophysics Roadmap Committee recently recommended this mission as the first in a series of space-based interferometers. Data from a laboratory testbed interferometer will be used to illustrate how the spatio-spectral interferometry technique works.

  14. HUBBLE PROVIDES 'ONE-TWO PUNCH' TO SEE BIRTH OF STARS IN GALACTIC WRECKAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Two powerful cameras aboard NASA's Hubble Space Telescope teamed up to capture the final stages in the grand assembly of galaxies. The photograph, taken by the Advanced Camera for Surveys (ACS) and the revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS), shows a tumultuous collision between four galaxies located 1 billion light-years from Earth. The galactic car wreck is creating a torrent of new stars. The tangled up galaxies, called IRAS 19297-0406, are crammed together in the center of the picture. IRAS 19297-0406 is part of a class of galaxies known as ultraluminous infrared galaxies (ULIRGs). ULIRGs are considered the progenitors of massive elliptical galaxies. ULIRGs glow fiercely in infrared light, appearing 100 times brighter than our Milky Way Galaxy. The large amount of dust in these galaxies produces the brilliant infrared glow. The dust is generated by a firestorm of star birth triggered by the collisions. IRAS 19297-0406 is producing about 200 new Sun-like stars every year -- about 100 times more stars than our Milky Way creates. The hotbed of this star formation is the central region [the yellow objects]. This area is swamped in the dust created by the flurry of star formation. The bright blue material surrounding the central region corresponds to the ultraviolet glow of new stars. The ultraviolet light is not obscured by dust. Astronomers believe that this area is creating fewer new stars and therefore not as much dust. The colliding system [yellow and blue regions] has a diameter of about 30,000 light-years, or about half the size of the Milky Way. The tail [faint blue material at left] extends out for another 20,000 light-years. Astronomers used both cameras to witness the flocks of new stars that are forming from the galactic wreckage. NICMOS penetrated the dusty veil that masks the intense star birth in the central region. ACS captured the visible starlight of the colliding system's blue outer region. IRAS 19297-0406 may be

  15. New Galactic star clusters discovered in the VVV survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  16. Weighing the Smallest Stars

    NASA Astrophysics Data System (ADS)

    2005-01-01

    VLT Finds Young, Very Low Mass Objects Are Twice As Heavy As Predicted Summary Thanks to the powerful new high-contrast camera installed at the Very Large Telescope, photos have been obtained of a low-mass companion very close to a star. This has allowed astronomers to measure directly the mass of a young, very low mass object for the first time. The object, more than 100 times fainter than its host star, is still 93 times as massive as Jupiter. And it appears to be almost twice as heavy as theory predicts it to be. This discovery therefore suggests that, due to errors in the models, astronomers may have overestimated the number of young "brown dwarfs" and "free floating" extrasolar planets. PR Photo 03/05: Near-infrared image of AB Doradus A and its companion (NACO SDI/VLT) A winning combination A star can be characterised by many parameters. But one is of uttermost importance: its mass. It is the mass of a star that will decide its fate. It is thus no surprise that astronomers are keen to obtain a precise measure of this parameter. This is however not an easy task, especially for the least massive ones, those at the border between stars and brown dwarf objects. Brown dwarfs, or "failed stars", are objects which are up to 75 times more massive than Jupiter, too small for major nuclear fusion processes to have ignited in its interior. To determine the mass of a star, astronomers generally look at the motion of stars in a binary system. And then apply the same method that allows determining the mass of the Earth, knowing the distance of the Moon and the time it takes for its satellite to complete one full orbit (the so-called "Kepler's Third Law"). In the same way, they have also measured the mass of the Sun by knowing the Earth-Sun distance and the time - one year - it takes our planet to make a tour around the Sun. The problem with low-mass objects is that they are very faint and will often be hidden in the glare of the brighter star they orbit, also when viewed

  17. New Galactic Candidate Luminous Blue Variables and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy S.; Gvaramadze, Vasilii V.; Beletsky, Yuri; Kniazev, Alexei Y.

    2012-04-01

    We have undertaken a near-infrared spectral survey of stars associated with compact mid-IR shells recently revealed by the MIPSGAL (24 μm) and GLIMPSE (8 μm) Spitzer surveys, whose morphologies are typical of circumstellar shells produced by massive evolved stars. Through spectral similarity with known Luminous Blue Variable (LBV) and Wolf-Rayet (WR) stars, a large population of candidate LBVs (cLBVs) and a smaller number of new WR stars are being discovered. This significantly increases the Galactic cLBV population and confirms that nebulae are inherent to most (if not all) objects of this class.

  18. AKARI IRC 2.5-5 μm spectroscopy of infrared galaxies over a wide luminosity range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichikawa, Kohei; Ueda, Yoshihiro; Imanishi, Masatoshi

    2014-10-20

    We present the result of a systematic infrared 2.5-5 μm spectroscopic study of 22 nearby infrared galaxies over a wide infrared luminosity range (10{sup 10} L {sub ☉} < L {sub IR} < 10{sup 13} L {sub ☉}) obtained from the AKARI Infrared Camera (IRC). The unique band of the AKARI IRC spectroscopy enables us to access both the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature from star-forming activity and the continuum of torus-dust emission heated by an active galactic nucleus (AGN). Applying our AGN diagnostics to the AKARI spectra, we discover 14 buried AGNs. The large fraction ofmore » buried AGNs suggests that AGN activity behind the dust is almost ubiquitous in ultra-/luminous infrared galaxies (U/LIRGs). We also find that both the fraction and energy contribution of buried AGNs increase with infrared luminosity from 10{sup 10} L {sub ☉} to 10{sup 13} L {sub ☉}, including normal infrared galaxies with L {sub IR} < 10{sup 11} L {sub ☉}. The energy contribution from AGNs in the total infrared luminosity is only ∼7% in LIRGs and ∼20% in ULIRGs, suggesting that the majority of the infrared luminosity originates from starburst activity. Using the PAH emission, we investigate the luminosity relation between star formation and AGNs. We find that these infrared galaxies exhibit higher star formation rates than optically selected Seyfert galaxies with the same AGN luminosities, implying that infrared galaxies could be an early evolutionary phase of AGN.« less

  19. NTT Observations Indicate that Brown Dwarfs Form Like Stars

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Dusty Disks Detected around Very Young Substellar Objects in the Orion Nebula Summary An international team of astronomers [2] is announcing today the discovery of dusty disks surrounding numerous very faint objects that are believed to be recently formed Brown Dwarfs in the Orion Nebula [3]. This finding is based on detailed observations with SOFI, a specialised infrared-sensitive instrument at the ESO 3.5-m New Technology Telescope at the La Silla Observatory. It is of special interest because it sheds light on the origin and nature of substellar objects, known as "Brown Dwarfs" . In particular, these results suggest that Brown Dwarfs share a common origin with stars and that Brown Dwarfs are more similar in nature to stars than to planets and, like stars, have the potential to form with accompanying systems of planets. Moreover, the presence of dusty protoplanetary disks around the faintest objects in the Orion Nebula cluster confirms both the membership of these faint stars in the cluster and their nature as bona-fide substellar objects, making this the largest population of Brown Dwarf objects yet known . These important results are being reported today to the American Astronomical Society Meeting in Pasadena (California, USA). PR Photo 22a/01 : Infrared picture of the Orion Nebula (NTT + SOFI). PR Photo 22b/01 : "Finding Chart" for Very Young Brown Dwarfs in the Orion Nebula. PR Photo 22c/01 : Animated GIF presentation of PR Photos 22a+b/01. Faint substellar objects in the Milky Way Over the past 5 years, several groups of astronomers have identified a type of very faint, substellar objects within our Milky Way galaxy. These gaseous objects have very low masses and will never shine like normal stars because they cannot achieve central temperatures high enough for sustained thermal nuclear reactions to occur in their cores. Such objects weigh less than about 7% of our Sun and have been variously called "Brown Dwarfs" , "Failed Stars" or "Super Planets

  20. Far-infrared observations of young clusters embedded in the R Coronae Australis and Rho Ophiuchi dark clouds

    NASA Technical Reports Server (NTRS)

    Wilking, B. A.; Harvey, P. M.; Joy, M.; Hyland, A. R.; Jones, T. J.

    1985-01-01

    Multicolor far-infrared maps in two nearby dark clouds, R Coronae Australis and Rho Ophiuchi, have been made in order to investigate the individual contribution of low-mass stars to the energetics and dynamics of the surrounding gas and dust. Emission from cool dust associated with five low-mass stars has been detected in CrA and four in Rho Oph; their far-infrared luminosities range from 2 solar luminosities to 40 solar luminosities. When an estimate of the bolometric luminosity was possible, it was found that typically more than 50 percent of the star's energy was radiated longward of 20 microns. Meaningful limits to the far-infrared luminosities of an additional 11 association members in CrA and two in Rho Oph were also obtained. The dust optical depth surrounding the star R CrA appears to be asymmetric and may control the dynamics of the surrounding molecular gas. The implications of these results for the cloud energetics and star formation efficiency in these two clouds are discussed.

  1. Reconstructing merger timelines using star cluster age distributions: the case of MCG+08-11-002

    NASA Astrophysics Data System (ADS)

    Davies, Rebecca L.; Medling, Anne M.; U, Vivian; Max, Claire E.; Sanders, David; Kewley, Lisa J.

    2016-05-01

    We present near-infrared imaging and integral field spectroscopy of the centre of the dusty luminous infrared galaxy merger MCG+08-11-002, taken using the Near InfraRed Camera 2 (NIRC2) and the OH-Suppressing InfraRed Imaging Spectrograph (OSIRIS) on Keck II. We achieve a spatial resolution of ˜25 pc in the K band, allowing us to resolve 41 star clusters in the NIRC2 images. We calculate the ages of 22/25 star clusters within the OSIRIS field using the equivalent widths of the CO 2.3 μm absorption feature and the Br γ nebular emission line. The star cluster age distribution has a clear peak at ages ≲ 20 Myr, indicative of current starburst activity associated with the final coalescence of the progenitor galaxies. There is a possible second peak at ˜65 Myr which may be a product of the previous close passage of the galaxy nuclei. We fit single and double starburst models to the star cluster age distribution and use Monte Carlo sampling combined with two-sided Kolmogorov-Smirnov tests to calculate the probability that the observed data are drawn from each of the best-fitting distributions. There is a >90 per cent chance that the data are drawn from either a single or double starburst star formation history, but stochastic sampling prevents us from distinguishing between the two scenarios. Our analysis of MCG+08-11-002 indicates that star cluster age distributions provide valuable insights into the timelines of galaxy interactions and may therefore play an important role in the future development of precise merger stage classification systems.

  2. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  3. 20 CFR 416.590 - Are there additional methods for recovery of title XVI benefit overpayments?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... entered into such an arrangement, you have failed to make any payment for two consecutive months. (3) You... those sections, we have determined that we will not waive collection of the overpayment. (4) You have... may recover an overpayment under title XVI of the Act from you under the rules in subparts D and E of...

  4. The Spitzer Infrared Nearby Galaxies Survey: A High-Resolution Spectroscopy Anthology

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; SINGS Team

    2009-05-01

    Results from high resolution mid-infrared spectroscopy are presented for 155 nuclear and extranuclear regions from SINGS. The SINGS sample shows a wide range in the ratio of [SIII]18.71/[SIII]33.48, but the average ratio of the ensemble indicates a typical interstellar electron density of 300--400 cm-3 on 23"x15" scales and 500--600 cm-3 using 11"x9" apertures, independent of whether the region probed is a star-forming nuclear, a star-forming extranuclear, or an AGN environment. Evidence is provided that variations in gas-phase metallicity play an important role in driving variations in radiation field hardness, as indicated by [NeIII]15.56/[NeII]12.81, for regions powered by star formation. Conversely, the radiation hardness for galaxy nuclei powered by accretion around a massive black hole is independent of metal abundance. Furthermore, for metal-rich environments AGN are distinguishable from star-forming regions by significantly larger [NeIII]15.56/[NeII]12.81 ratios. Finally, [FeII]25.99/[NeII]12.81 versus [SiII]34.82/[SIII]33.48 also provides an empirical method for discerning AGN from normal star-forming sources. However, similar to [NeIII]15.56/[NeII]12.81, these mid-infrared line ratios lose their AGN/star-formation diagnostic powers for very low metallicity star-forming systems with hard radiation fields.

  5. Imaging and Modeling Nearby Stellar Systems through Infrared Interferometers

    NASA Astrophysics Data System (ADS)

    Che, Xiao; Monnier, J. D.; Ten Brummelaar, T.; Sturmann, L.; Millan-Gabet, R.; Baron, F.; Kraus, S.; Zhao, M.; CHARA

    2014-01-01

    Long-baseline infrared interferometers with sub-milliarcsecond angular resolution can now resolve photospheric features and the circumstellar environments of nearby massive stars. Closure phase measurements have made model-independent imaging possible. During the thesis, I have expanded Michigan Infrared Combiner (MIRC) from a 4-beam combiner to a 6-beam combiner to improve the (u,v) coverage, and installed Photometric Channels system to reduce the RMS of data by a factor of 3. I am also in charge of the Wavefront Sensor of the CHARA Adaptive Optics project to increase the sensitivity of the telescope array to enlarge the observable Young Stellar Objects (YSOs). My scientific research has focused on using mainly MIRC at CHARA to model and image rapidly rotating stars. The results are crucial for testing the next generation of stellar models that incorporate evolution of internal angular momentum. Observations of Be stars with MIRC have resolved the innermost parts of the disks, allowing us to study the evolution of the disks and star-disk interactions. I have also adopted a semi-analytical disk model to constrain Mid-InfraRed (MIR) disks of YSOs using interferometric and spectroscopic data.

  6. Artist's Concept of Wide-field Infrared Survey Explorer (WISE)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Artist's concept of Wide-field Infrared Survey Explorer.

    A new NASA mission will scan the entire sky in infrared light in search of nearby cool stars, planetary construction zones and the brightest galaxies in the universe.

    Called the Wide-field Infrared Survey Explorer, the mission has been approved to proceed into the preliminary design phase as the next in NASA's Medium-class Explorer program of lower cost, highly focused, rapid-development scientific spacecraft. It is scheduled to launch in 2008.

  7. Interpreting the cosmic far-infrared background anisotropies using a gas regulator model

    NASA Astrophysics Data System (ADS)

    Wu, Hao-Yi; Doré, Olivier; Teyssier, Romain; Serra, Paolo

    2018-04-01

    Cosmic far-infrared background (CFIRB) is a powerful probe of the history of star formation rate (SFR) and the connection between baryons and dark matter across cosmic time. In this work, we explore to which extent the CFIRB anisotropies can be reproduced by a simple physical framework for galaxy evolution, the gas regulator (bathtub) model. This model is based on continuity equations for gas, stars, and metals, taking into account cosmic gas accretion, star formation, and gas ejection. We model the large-scale galaxy bias and small-scale shot noise self-consistently, and we constrain our model using the CFIRB power spectra measured by Planck. Because of the simplicity of the physical model, the goodness of fit is limited. We compare our model predictions with the observed correlation between CFIRB and gravitational lensing, bolometric infrared luminosity functions, and submillimetre source counts. The strong clustering of CFIRB indicates a large galaxy bias, which corresponds to haloes of mass 1012.5 M⊙ at z = 2, higher than the mass associated with the peak of the star formation efficiency. We also find that the far-infrared luminosities of haloes above 1012 M⊙ are higher than the expectation from the SFR observed in ultraviolet and optical surveys.

  8. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  9. IRAS observations of chromospherically active dwarf stars

    NASA Technical Reports Server (NTRS)

    Tsikoudi, Vassiliki

    1989-01-01

    Far-infrared observations of chromospherically active, spotted, and plage stars in the dF7-dk7 spectral range are examined. Most (75 percent) of the stars have detectable 12-micron fluxes, and 50 percent of them have 25-micron emission. The 12-micron luminosity, L(12), is found to be in the range of 1.5-13 x 10 to the 30th ergs/s and to comprise only 0.2-0.5 percent of the star's total luminosity, L(bol). The present work extends to earlier spectral types and higher stellar luminosities the L(12) vs L(bol) relationship noted previously for late-type active dwarfs (K5-M5).

  10. Extreme Variables in Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    The notion that low- to intermediate-mass young stellar objects (YSOs) gain mass at a constant rate during the early stages of their evolution appears to be challenged by observations of YSOs suffering sudden increases of the rate at which they gain mass from their circumstellar discs. Also, this idea that stars spend most of their lifetime with a low accretion rate and gain most of their final mass during short-lived episodes of high accretion bursts, helps to solve some long-standing problems in stellar evolution. The original classification of eruptive variables divides them in two separate subclasses known as FU Orionis stars (FUors) and EX Lupi stars (EXors). In this classical view FUors are at an early evolutionary stage and are still gaining mass from their parent envelopes, whilst EXors are thought to be older objects only surrounded by an accretion disc. The problem with this classical view is that it excludes younger protostars which have higher accretion rates but are too deeply embedded in circumstellar matter to be observed at optical wavelengths. Optically invisible protostars have been observed to display large variability in the near-infrared. These and some recent discoveries of new eruptive variables, show characteristics that can be attributed to both of the optically-defined subclasses of eruptive variables. The new objects have been proposed to be part of a new class of eruptive variables. However, a more accepted scenario is that in fact the original classes only represent two extremes of the same phenomena. In this sense eruptive variability could be explained as arising from one physical mechanism, i.e. unsteady accretion, where a variation in the parameters of such mechanism can cause the different characteristics observed in the members of this class. With the aim of studying the incidence of episodic accretion among young stellar objects, and to characterize the nature of these eruptive variables we searched for high amplitude variability

  11. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emissionmore » lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are

  12. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  13. Determining the forsterite abundance of the dust around asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    de Vries, B. L.; Min, M.; Waters, L. B. F. M.; Blommaert, J. A. D. L.; Kemper, F.

    2010-06-01

    Aims: We present a diagnostic tool to determine the abundance of the crystalline silicate forsterite in AGB stars surrounded by a thick shell of silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB stars we obtain the forsterite abundance of their dust shells. Methods: We use a monte carlo radiative transfer code to calculate infrared spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss rate and outer radius. We focus on the strength of the 11.3 and the 33.6 μm forsterite bands, that probe the most recent (11.3 μm) and older (33.6 μm) mass-loss history of the star. Simple diagnostic diagrams are derived, allowing direct comparison to observed band strengths. Results: Our analysis shows that the 11.3 μm forsterite band is a robust indicator for the forsterite abundance of the current mass-loss period for AGB stars with an optically thick dust shell. The 33.6 μm band of forsterite is sensitive to changes in the density and the geometry of the emitting dust shell, and so a less robust indicator. Applying our method to six high mass-loss rate AGB stars shows that AGB stars can have forsterite abundances of 12% by mass and higher, which is more than the previously found maximum abundance of 5%.

  14. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  15. The Productivity of Oxygenic Photosynthesis around Cool, M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Lehmer, Owen R.; Catling, David C.; Parenteau, Mary N.; Hoehler, Tori M.

    2018-06-01

    In the search for life around cool stars, the presence of atmospheric oxygen is a prominent biosignature, as it may indicate oxygenic photosynthesis (OP) on the planetary surface. On Earth, most oxygenic photosynthesizing organisms (OPOs) use photons between 400 and 750 nm, which have sufficient energy to drive the photosynthetic reaction that generates O2 from H2O and CO2. OPOs around cool stars may evolve similar biological machinery capable of producing oxygen from water. However, in the habitable zones (HZs) of the coolest M dwarf stars, the flux of 400–750 nm photons may be just a few percent that of Earth’s. We show that the reduced flux of 400–750 nm photons around M dwarf stars could result in Earth-like planets being growth limited by light, unlike the terrestrial biosphere, which is limited by nutrient availability. We consider stars with photospheric temperatures between 2300 and 4200 K and show that such light-limited worlds could occur at the outer edge of the HZ around TRAPPIST-1-like stars. We find that even if OP can use photons longer than 750 nm, there would still be insufficient energy to sustain the Earth’s extant biosphere throughout the HZ of the coolest stars. This is because such stars emit largely in the infrared and near-infrared, which provide sufficient energy to make the planet habitable, but limits the energy available for OP. TRAPPIST-1f and g may fall into this category. Biospheres on such planets, potentially limited by photon availability, may generate small biogenic signals, which could be difficult for future observations to detect.

  16. Stellar populations in the outskirts of M31: the mid-infrared view

    NASA Astrophysics Data System (ADS)

    Barmby, P.; Ravandi, M. Rafiei

    2017-03-01

    The mid-infrared provides a unique view of galaxy stellar populations, sensitive to both the integrated light of old, low-mass stars and to individual dusty mass-losing stars. We present results from an extended Spitzer/IRAC survey of M31 with total lengths of 6.6 and 4.4 degrees along the major and minor axes, respectively. The integrated surface brightness profile proves to be surprisingly difficult to trace in the outskirts of the galaxy, but we can also investigate the disk/halo transition via a star count profile, with careful correction for foreground and background contamination. Our point-source catalog allows us to report on mid-infrared properties of individual objects in the outskirts of M31, via cross-correlation with PAndAS, WISE, and other catalogs.

  17. The star-forming complex LMC-N79 as a future rival to 30 Doradus

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Zinnecker, Hans; Nayak, Omnarayani; Bally, John; Meixner, Margaret; Jones, Olivia C.; Indebetouw, Remy; Rahman, Mubdi

    2017-11-01

    Within the early Universe, `extreme' star formation may have been the norm rather than the exception1,2. Super star clusters (with masses greater than 105 solar masses) are thought to be the modern-day analogues of globular clusters, relics of a cosmic time (redshift z ≳ 2) when the Universe was filled with vigorously star-forming systems3. The giant H ii region 30 Doradus in the Large Magellanic Cloud is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star-forming complex spanning about 500 pc in the unexplored southwest region of the Large Magellanic Cloud, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star-formation efficiency greater than that of 30 Doradus, by a factor of about 2, as measured over the past 0.5 Myr. Moreover, at the heart of N79 lies the most luminous infrared compact source discovered with large-scale infrared surveys of the Large Magellanic Cloud and Milky Way, possibly a precursor to the central super star cluster of 30 Doradus, R136. The discovery of a nearby candidate super star cluster may provide invaluable information to understand how extreme star formation proceeds in the current and high-redshift Universe.

  18. Discovery Of An Infrared Bow Shock Associated With Delta Cephei

    NASA Astrophysics Data System (ADS)

    Remage Evans, Nancy; Marengo, M.; Barmby, P.; Matthews, L. D.; Bono, G.; Welch, D. L.; Romaniello, M.; Huelsman, D.; Su, K. Y. L.; Fazio, G.

    2010-05-01

    We have obtained Spitzer Infrared Array Camera (IRAC) and Multiband Infrared Photometer for Spitzer (MIPS) observations of a sample of classical Cepheids both to derive infrared Leavitt Laws (Period-Luminosity Relations) and to look for evidence of mass loss in the spectral energy distributions. The MIPS 24 and 70 micron images of Delta Cep were particularly striking, since they show an arc of emission offset about an arcmin from Delta Cep. The emission is shaped like a bow shock and is aligned with the space motion of the Cepheid, implying it is physically related to the star. Bow shock structures of this kind can be formed when ram pressure of the ambient ISM balances the wind from a mass-losing star, raising the intriguing possibility that delta Cep is undergoing mass-loss during the Cepheid phase. Circumstellar emission is not a general feature of our Cepheid observations, but 2 unusual circumstances may make it visible around Delta Cep. If the Cepheid was already surrounded by interstellar matter, mass loss from the star could have created the bow shock. Second, Delta Cep has a physical companion 40" to the South, HD 213317, itself a binary. This B7-8 III-IV star is hot enough that it may produce infrared emission by heating dust within the ejected material. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. P. B. and D. W. both acknowledge research support through Discovery Grants from the Natural Sciences and Engineering Research Council of Canada. N. R. E. acknowledges support from the Chandra X-Ray Center grant NAS8-03060.

  19. A Dying Star in a Different Light

    NASA Image and Video Library

    2010-11-17

    This image composite shows two views of a puffy, dying star, or planetary nebula, known as NGC 1514. At left is a view from a ground-based, visible-light telescope; the view on the right shows the object in infrared light from NASA WISE telescope.

  20. Classification of O Stars in the Yellow-Green: The Exciting Star VES 735

    NASA Astrophysics Data System (ADS)

    Kerton, C. R.; Ballantyne, D. R.; Martin, P. G.

    1999-05-01

    Acquiring data for spectral classification of heavily reddened stars using traditional criteria in the blue-violet region of the spectrum can be prohibitively time consuming using small to medium sized telescopes. One such star is the Vatican Observatory emission-line star VES 735, which we have found excites the H II region KR 140. In order to classify VES 735, we have constructed an atlas of stellar spectra of O stars in the yellow-green (4800-5420 Å). We calibrate spectral type versus the line ratio He I lambda4922:He II lambda5411, showing that this ratio should be useful for the classification of heavily reddened O stars associated with H II regions. Application to VES 735 shows that the spectral type is O8.5. The absolute magnitude suggests luminosity class V. Comparison of the rate of emission of ionizing photons and the bolometric luminosity of VES 735, inferred from radio and infrared measurements of the KR 140 region, to recent stellar models gives consistent evidence for a main-sequence star of mass 25 M_solar and age less than a few million years with a covering factor 0.4-0.5 by the nebular material. Spectra taken in the red (6500-6700 Å) show that the stellar Hα emission is double-peaked about the systemic velocity and slightly variable. Hβ is in absorption, so that the emission-line classification is ``(e)''. However, unlike the case of the more well-known O(e) star zeta Oph, the emission from VES 735 appears to be long-lived rather than episodic.

  1. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Towards the First Flight

    NASA Technical Reports Server (NTRS)

    Rizzo, Maxime J.; Rinehart, S. A.; Dhabal, A.; Ade, P.; Benford, D. J.; Fixsen, D. J.; Griffin, M.; Juanola Parramon, R.; Leisawitz, D. T.; Maher, S. F.; hide

    2016-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is a balloon-borne, far-infrared direct detection interferometer with a baseline of 8 m and two collectors of 50 cm. It is designed to study galactic clustered star formation by providing spatially-resolved spectroscopy of nearby star clusters. It is being assembled and tested at NASA Goddard Space Flight Center for a first flight in Fall 2016. We report on recent progress concerning the pointing control system and discuss the overall status of the project as it gets ready for its commissioning flight.

  2. Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Lester, Daniel F.

    1988-01-01

    A multicolor analysis of new near-infrared line and continuum measurements indicates that nebular recombination emission and photospheric radiation from young blue stars produce most of the near-infrared continuum emission in the central 6 arcsec of the dwarf galaxy II Zw 40. The derived nebular recombination level is in excellent agreement with independent observations of the radio free-free continuum. It is found that evolved stars, which dominate the near-infrared emission from normal galaxies, contribute no more than 25 percent of the total 2.2 micron flux in the central region of II Zw 40. It is concluded that the total mass of the evolved stellar population in the central 400 pc of the galaxy is less than about two hundred million solar. The total mass of recently formed stars is about two million solar, and the stellar mass ratio is exceptionally large. Thus, II Zw 40 is a quintessential starburst galaxy.

  3. MOLECULAR GAS AND STAR-FORMATION PROPERTIES IN THE CENTRAL AND BAR REGIONS OF NGC 6946

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hsi-An; Sorai, Kazuo; Kuno, Nario

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of {sup 13}CO (1–0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1–0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1)more » the large velocity gradient calculations using our observations and archival {sup 12}CO (1–0), {sup 12}CO(2–1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to {sup 12}CO (1–0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.« less

  4. The Outcome of Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-10-01

    Black hole-neutron star and neutron star-neutron star mergers are among the main sources of gravitational waves which will be detected in the coming years by the Advanced LIGO/VIRGO/KAGRA observatories. In some cases, these mergers can also power bright electromagnetic emissions: they are the most likely progenitors of short gamma-ray bursts, and the radioactive decay of neutron-rich material ejected by the merger can power optical/infrared transients days after the merger. Finally, they may provide important constraints on the equation of state of cold dense matter, and on the source of heavy elements in the universe. I will discuss the general relativistic simulations which are required to properly model these events, and what they have told us so far about the outcome of neutron star mergers. I will also discuss efforts to improve the physical realism of the simulations by improving the treatment of the most important effects beyond general relativistic hydrodynamics: magnetic fields, neutrinos, and the properties of nuclear matter.

  5. Dust near luminous ultraviolet stars

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1992-01-01

    More than 700 luminous stars in the infrared astronomical satellite (IRAS) Skyflux plates were examined for the presence of dust heated by a nearby star. This dust may be distinguished from the ubiquitous cool cirrus by its higher temperature and thus enhanced 60 micron emission. More than 120 dust clouds were found around only 106 of the stars with a volume filling factor of 0.006 and an intercloud separation of 46 pc. A region of dust smoothly distributed through the volume of space heated by the star could not be found and hence an upper limit of 0.05 cm(exp -3) is placed on the equivalent gas density in the intercloud regions. The clouds have an average density of 0.22 cm(exp -3) and a radius of 1.9 pc, albeit with wide variations in their properties. Two different scale heights of 140 and 540 pc were found. This was interpreted as evidence for different distributions of dust in and out of the galactic disk.

  6. Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2003-12-01

    associated with regions of active star formation. What is different about the Cloverleaf is the huge quantity of dense gas along with very powerful infrared radiation from the star formation. Ten billion times the mass of the Sun is contained in dense, star-forming gas clouds. "At the rate this galaxy is seen to be forming stars, that dense gas will be used up in only about 10 million years," Solomon said. In addition to giving astronomers a fascinating glimpse of a huge burst of star formation in the early Universe, the new information about the Cloverleaf helps answer a longstanding question about bright galaxies of that era. Many distant galaxies have supermassive black holes at their cores, and those black holes power "central engines" that produce bright emission. Astronomers have wondered specifically about those distant galaxies that emit large amounts of infrared light, galaxies like the Cloverleaf which has a black hole and central engine. "Is this bright infrared light caused by the black-hole-powered core of the galaxy or by a huge burst of star formation? That has been the question. Now we know that, in at least one case, much of the infrared light is produced by intense star formation," Carilli said. The rapid star formation, called a starburst, and the black hole are both generating the bright infrared light in the Cloverleaf. The starburst is a major event in the formation and evolution of this galaxy. "This detection of HCN gives us a unique new window through which we can study star formation in the early Universe," Carilli said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  7. Supporting research and technology activities in the preparation of a three-dimensional map of the infrared sky

    NASA Technical Reports Server (NTRS)

    Tarter, Jill C.

    1993-01-01

    The final report for the period 15 Mar. 1986 to 31 Mar. 1993 for the Cooperative Agreement is presented. The purpose of this Cooperative Agreement was to collaborate with NASA civil servant and contractor personnel, and other Institute personnel in a project to use all available cataloged astronomical infrared data to construct a detailed three dimensional model of the infrared sky. Areas of research included: IRAS colors of normal stars and the infrared excesses in Be stars; galactic structure; how to use the observed IRAS source counts as a function of position to deduce the physical structure of the galaxy; IRAS properties of metal-poor stars; IRAS database studies; and solar space exploration including projects such as the Space Station Gas-Grain Simulator and the Mars Rover/Sample Return Mission.

  8. Near--Infrared Imaging of the Starburst Ring in UGC12815

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Herter, T.; Haynes, M. P.; Neff, S. G.

    1995-05-01

    Starburst galaxies define an enigmatic class of objects undergoing a brief, intense episode of star formation. In order to investigate the nature of nearby starbursts, we have analyzed the 20 starburst galaxies with the highest 4.85 GHz luminosities from the survey of Condon, Frayer, & Broderick (1991, AJ, 101, 362) at infrared and optical wavelengths. As part of our study, we recently used the Cassegrain Infrared Camera at the Hale 5 m telescope to obtain high spatial resolution near--infrared images of the cores of 17 of these galaxies in order to better understand the starburst triggering mechanism. We find that one galaxy, UGC12815 (NGC7771), possesses a nucleus surrounded by a bright starburst ring. We present 1.25, 1.65, and 2.2 microns (J, H, and K band) images of the nuclear region of UGC12815 and a preliminary analysis of the properties of the starburst ring. The resolution of our K band image is 0.6('') FWHM. The ring is ~ 1.6 kpc (6('') ) in diameter assuming H_0=75 km/s/Mpc; several knots are detected in the ring at 2.2 microns. The spatial distribution of these knots is compared to that observed at 6 cm. The luminosities of the ring and nucleus, as mapped in the near--infrared and radio, are also discussed. Color maps (H-K and J-H) constructed from the near--infrared images trace the relative roles of extinction, and emission from evolved red stars, blue stars, thermal gas, and hot dust in the nucleus and starburst ring. A comparison between UGC12815 and other systems with circumnuclear starbursts is also made.

  9. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  10. Observational Research on Star and Planetary System Formation

    NASA Astrophysics Data System (ADS)

    Simpson, Janet P.

    1998-07-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  11. Common Warm Dust Temperatures Around Main Sequence Stars

    NASA Technical Reports Server (NTRS)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  12. The Star, the Dwarf and the Planet

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have detected a new faint companion to the star HD 3651, already known to host a planet. This companion, a brown dwarf, is the faintest known companion of an exoplanet host star imaged directly and one of the faintest T dwarfs detected in the Solar neighbourhood so far. The detection yields important information on the conditions under which planets form. "Such a system is an interesting example that might prove that planets and brown dwarfs can form around the same star", said Markus Mugrauer, lead author of the paper presenting the discovery. ESO PR Photo 39a/06 ESO PR Photo 39a/06 The Companion to HD 3651 HD 3651 is a star slightly less massive than the Sun, located 36 light-years away in the constellation Pisces (the "Fish"). For several years, it has been known to harbour a planet less massive than Saturn, sitting closer to its parent star than Mercury is from the Sun: the planet accomplishes a full orbit in 62 days. Mugrauer and his colleagues first spotted the faint companion in 2003 on images from the 3.8-m United Kingdom Infrared Telescope (UKIRT) in Hawaii. Observations in 2004 and 2006 using ESO's 3.6 m New Technology Telescope (NTT) at La Silla provided the crucial confirmation that the speck of light is not a spurious background star, but indeed a true companion. The newly found companion, HD 3651B, is 16 times further away from HD 3651 than Neptune is from the Sun. HD 3651B is the dimmest directly imaged companion of an exoplanet host star. Furthermore, as it is not detected on the photographic plates of the Palomar All Sky Survey, the companion must be even fainter in the visible spectral range than in the infrared, meaning it is a very cool low-mass sub-stellar object. Comparing its characteristics with theoretical models, the astronomers infer that the object has a mass between 20 and 60 Jupiter masses, and a temperature between 500 and 600 degrees Celsius. It is thus ten times colder and 300 000 less luminous than the Sun. These

  13. Properties and Expected Number Counts of Active Galactic Nuclei and Their Hosts in the Far-infrared

    NASA Astrophysics Data System (ADS)

    Draper, A. R.; Ballantyne, D. R.

    2011-03-01

    Telescopes like Herschel and the Atacama Large Millimeter/submillimeter Array (ALMA) are creating new opportunities to study sources in the far-infrared (FIR), a wavelength region dominated by cold dust emission. Probing cold dust in active galaxies allows for study of the star formation history of active galactic nucleus (AGN) hosts. The FIR is also an important spectral region for observing AGNs which are heavily enshrouded by dust, such as Compton thick (CT) AGNs. By using information from deep X-ray surveys and cosmic X-ray background synthesis models, we compute Cloudy photoionization simulations which are used to predict the spectral energy distribution (SED) of AGNs in the FIR. Expected differential number counts of AGNs and their host galaxies are calculated in the Herschel bands. The expected contribution of AGNs and their hosts to the cosmic infrared background (CIRB) and the infrared luminosity density are also computed. Multiple star formation scenarios are investigated using a modified blackbody star formation SED. It is found that FIR observations at ~500 μm are an excellent tool in determining the star formation history of AGN hosts. Additionally, the AGN contribution to the CIRB can be used to determine whether star formation in AGN hosts evolves differently than in normal galaxies. The contribution of CT AGNs to the bright end differential number counts and to the bright source infrared luminosity density is a good test of AGN evolution models where quasars are triggered by major mergers.

  14. Milliarcsecond resolution infrared observations of young stars in Taurus and Ophiuchus

    NASA Astrophysics Data System (ADS)

    Simon, M.; Howell, R. R.; Longmore, A. J.; Wilking, B. A.; Peterson, D. M.; Chen, W.-P.

    1987-09-01

    The paper reports K-band lunar occultation observations of 18 stars in the Taurus and Ophiuchus star-forming regions. Four of the systems, HQ Tau, FF Tau, and SR 12 and ROX 31 in Ophiuchus, are binaries. Their separations, as observed in the projection along the directions of their occultations, range from about 5 to 186 milliarcseconds (mas). SR 12 was also observed by the technique of speckle interferometry in the J, H, and K bands. These observations, taken together with the lunar occultation results, show that SR 12 is an about 0.30 arcsec binary system whose components are late-type stars still approaching the main sequence. The lunar occultation observations reveal extended structure associated with two objects. Elias 29 in Ophiuchus contains a central component about 7 mas in diameter, that radiates most of the flux, and a much larger diffuse component. YLW 16A, also in Ophiuchus, is an extended object about 0.5 arcsec in diameter.

  15. Massive pre-main-sequence stars in M17

    NASA Astrophysics Data System (ADS)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H II regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H II region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  16. Infrared interferometric observations of nearby exozodiacal disks: current status and perspectives

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; di Folco, E.; Coudé du Foresto, V.; Mérand, A.; Augereau, J.-C.

    2010-10-01

    Directly detecting exozodiacal dust in the inner part of extrasolar planetary systems is nowadays feasible thanks to the advance of high-precision near-infrared interferometry. Investigating this region around nearby stars provides unique information to understand the global architecture of planetary systems and to define the population of stars suitable for future exo-Earth characterization missions. Over the last few years, a survey of nearby main-sequence stars has been ongoing at the CHARA array using the FLUOR beam combiner. The goal of this survey is to directly probe the inner part of circumstellar disks in order to detect the signature of hot dust accounting for about 1% of the near-infrared stellar flux. In this paper, we present the status of this survey and provide the first statistical results about the occurrence of bright exozodiacal disks around nearby main-sequence stars. We also report on the first H-band interferometric observations of the exozodiacal disk around Vega which have been obtained with IOTA/IONIC, and discuss the implications on the disk properties.

  17. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J. P.; Cotton, D. V.; Bott, K.

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scatteredmore » light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.« less

  18. Far infrared maps of the ridge between OMC-1 and OMC-2

    NASA Technical Reports Server (NTRS)

    Keene, J.; Smith, J.; Harper, D. A.; Hildebrand, R. H.; Whitcomb, S. E.

    1979-01-01

    Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating.

  19. A reevaluation of the infrared-radio correlation for spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Eales, Stephen A.

    1989-01-01

    The infrared radio correlation has been reexamined for a sample of 237 optically bright spiral galaxies which range from 10 to the 8th to 10 to the 11th solar luminosities in far-infrared luminosity. The slope of the correlation is not unity. A simple model in which dust heating by both star formation and the interstellar radiation field contribute to the far-infrared luminosity can account for the nonunity slope. The model differs from previous two component models, however, in that the relative contribution of the two components is independent of far-infrared color temperature, but is dependent on the far-infrared luminosity.

  20. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.