Sample records for xylella fastidiosa xf

  1. Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa.

    PubMed

    Marques, M V; da Silva, A M; Gomes, S L

    2001-05-01

    The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.

  2. Plasmid transfer by conjugation in Xylella fastidiosa.

    USDA-ARS?s Scientific Manuscript database

    Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...

  3. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    PubMed

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. PemK toxin encoded by the Xylella fastidiosa IncP-1 plasmid pXF-RIV11 is a ribonuclease

    USDA-ARS?s Scientific Manuscript database

    Stable inheritance of the IncP-1 plasmid pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. Here, PemK toxin and PemI ant...

  5. Visualization of Twitching Motility and Characterization of the Role of the PilG in Xylella fastidiosa.

    PubMed

    Shi, Xiangyang; Lin, Hong

    2016-04-08

    Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility.

  6. Grapevines undergo varying shifts in secondary metabolic profiles when infected with Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease (PD) is a devastating disease of grapevine caused by the bacterial pathogen Xylella fastidiosa (Xf). Key to the development and optimization of PD-tolerant grape cultivars is improved understanding about how grapevines defend themselves against Xf. This study complements histologica...

  7. Toxin-antitoxin systems mqsR/ygiT and dinJ/RelE of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    The plant pathogen Xylella fastidiosa (Xf) encodes multiple toxin-antitoxin (TA) system homologues, including relE/dinJ and mqsR/ygiT. Phylogenetic analyses indicate these two Xf TA systems have distinct evolutionary histories. Genomic comparisons among Xf subspecies/strains reveal TA systems are ...

  8. Evaluation of pathogenicity and insect transmission of Xylella fastidiosa strains to olive plants

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) is a xylem-limited bacterium that causes disease in a number of economically important crops in California and worldwide. Newly observed scorching symptoms in olive trees may be due to Xf infection. If true, “olive leaf scorch disease” (OLSD) would represent a new threat to...

  9. VapD in Xylella fastidiosa Is a Thermostable Protein with Ribonuclease Activity.

    PubMed

    Mendes, Juliano S; Santiago, André da S; Toledo, Marcelo A S; Rosselli-Murai, Luciana K; Favaro, Marianna T P; Santos, Clelton A; Horta, Maria Augusta C; Crucello, Aline; Beloti, Lilian L; Romero, Fabian; Tasic, Ljubica; de Souza, Alessandra A; de Souza, Anete P

    2015-01-01

    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.

  10. Identification of a low copy number plasmid in Xylella fastidiosa Strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) causes Pierce’s Disease (PD) in grapevine. The Stag’s Leap strain is known for its high virulence level and is a model for PD research. Research on Xf has been difficult due to its nutritional fastidiousness. One difficult research issue is the low copy number plasmid. Plasmi...

  11. Grapevine phenolics in xylem sap and tissues are significantly altered during infection by Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine (PD), caused by the bacterial pathogen Xylella fastidiosa (X.f.), remains a serious problem for grape production in California and elsewhere. This research examined induction of phenolic compounds in grapevines (cv. Thompson Seedless) infected with X.f. over a six month...

  12. The distribution and biology of potential vectors of Xylella fastidiosa on coffee and citrus in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Plant diseases caused by Xylella fastidiosa (Wells et al.) (Xf) surround the Caribbean Basin. Two major commodities of Puerto Rico, coffee and citrus, are highly susceptible to Xf. We surveyed potential vectors of Xf in coffee and citrus farms in western Puerto Rico over an 18 month period. Cicadel...

  13. Xylella fastidiosa infection of grapevines affects xylem levels of phenolic compounds and pathogenesis-related proteins

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease (PD), caused by the xylem-dwelling pathogen Xylella fastidiosa (X.f.), is a serious threat to grape production. The effects of X.f. infection six months post-inoculation on defense-associated proteins and phenolic compounds found in xylem sap and tissue were evaluated. Defense-assoc...

  14. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    PubMed Central

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.

    2016-01-01

    ABSTRACT Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa. X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. PMID:27435463

  15. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease.

    USDA-ARS?s Scientific Manuscript database

    Stable inheritance of pXF-RIV11 in Xylella fastidiosa is conferred by the pemI/pemK plasmid addiction system. PemK serves as a toxin inhibiting bacterial growth; PemI is the corresponding antitoxin that blocks activity of PemK toxin by direct binding. PemK toxin and PemI antitoxin were over-expre...

  16. Characterization of a Diffusible Signaling Factor from Xylella fastidiosa

    PubMed Central

    Beaulieu, Ellen D.; Ionescu, Michael; Chatterjee, Subhadeep; Yokota, Kenji; Trauner, Dirk; Lindow, Steven

    2013-01-01

    ABSTRACT Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. PMID:23300249

  17. Glassy-winged sharpshooter can use a mechanical mechanism to inoculate Xylella fastidiosa into grapevines

    USDA-ARS?s Scientific Manuscript database

    Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...

  18. Arabidopsis Thaliana Ecotypes With Differential Susceptibility To The Bacterial Pathogen Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapes and almond leaf scorch are devastating diseases caused by the bacterium Xylella fastidiosa (Xf). To date, progress in determining the mechanisms of host plant susceptibility, tolerance or resistance has been slow, due in large part to the long generation time and limited a...

  19. Support for the salivation-egestion hypothesis for Xylella fastidiosa inoculation: salivary glucanase is injected into xylem during vector feeding.

    USDA-ARS?s Scientific Manuscript database

    The salivation-egestion hypothesis for the inoculation mechanism of Xylella fastidiosa (Xf) proposes that saliva secreted into plants is taken up into the vector’s precibarium. There, saliva loosens the Xf bacterial biofilm by enzymatically degrading ß-1, 4 glucans that form the chemical backbone o...

  20. Whole genome sequence analyses of Xylella fastidiosa PD strains from different geographical regions

    USDA-ARS?s Scientific Manuscript database

    Genome sequences were determined for two Pierce’s disease (PD) causing Xylella fastidiosa (Xf) strains, one from Florida and one from Taiwan. The Florida strain was ATCC 35879, the type of strain used as a standard reference for related taxonomy research. By contrast, the Taiwan strain used was only...

  1. Evidence that explains absence of a latent period for Xylella fastidiosa in its sharpshooter vectors

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), and other sharpshooter (Cicadelline) leafhoppers transmit Xylella fastidiosa (Xf), the causative agent of Pierce’s disease of grapevine and other scorch diseases. Past research has supported that vectors have virtually no late...

  2. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  3. Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF.

    PubMed

    Ionescu, Michael; Baccari, Clelia; Da Silva, Aline Maria; Garcia, Angelica; Yokota, Kenji; Lindow, Steven E

    2013-12-01

    Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes.

  4. Diffusible Signal Factor (DSF) Synthase RpfF of Xylella fastidiosa Is a Multifunction Protein Also Required for Response to DSF

    PubMed Central

    Ionescu, Michael; Baccari, Clelia; Da Silva, Aline Maria; Garcia, Angelica; Yokota, Kenji

    2013-01-01

    Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes. PMID:24056101

  5. Detection and typing of Xylella fastidiosa from glassy-winged sharpshooter for Pierce’s disease epidemiology

    USDA-ARS?s Scientific Manuscript database

    Epidemiology of Pierce’s disease of grape, caused by the bacterial pathogen Xylella fastidiosa (Xf), is largely dependent on populations of insect vectors such as the invasive glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis). In the grape-growing regions of the southern San Joaquin Valley...

  6. A conjugative 38 kB plasmid is present in multiple subspecies of Xylella fastidiosa.

    PubMed

    Rogers, Elizabeth E; Stenger, Drake C

    2012-01-01

    A ≈ 38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19(th) century.

  7. A Conjugative 38 kB Plasmid Is Present in Multiple Subspecies of Xylella fastidiosa

    PubMed Central

    Rogers, Elizabeth E.; Stenger, Drake C.

    2012-01-01

    A ∼38kB plasmid (pXF-RIV5) was present in the Riv5 strain of Xylella fastidiosa subsp. multiplex isolated from ornamental plum in southern California. The complete nucleotide sequence of pXF-RIV5 is almost identical to that of pXFAS01 from X. fastidiosa subsp. fastidiosa strain M23; the two plasmids vary at only 6 nucleotide positions. BLAST searches and phylogenetic analyses indicate pXF-RIV5 and pXFAS01 share some similarity to chromosomal and plasmid (pXF51) sequences of X. fastidiosa subsp. pauca strain 9a5c and more distant similarity to plasmids from a wide variety of bacteria. Both pXF-RIV5 and pXFAS01 encode homologues of a complete Type IV secretion system involved in conjugation and DNA transfer among bacteria. Mating pair formation proteins (Trb) from Yersinia pseudotuberculosis IP31758 are the mostly closely related non-X. fastidiosa proteins to most of the Trb proteins encoded by pXF-RIV5 and pXFAS01. Unlike many bacterial conjugative plasmids, pXF-RIV5 and pXFAS01 do not carry homologues of known accessory modules that confer selective advantage on host bacteria. However, both plasmids encode seven hypothetical proteins of unknown function and possess a small transposon-associated region encoding a putative transposase and associated factor. Vegetative replication of pXF-RIV5 and pXFAS01 appears to be under control of RepA protein and both plasmids have an origin of DNA replication (oriV) similar to that of pRP4 and pR751 from Escherichia coli. In contrast, conjugative plasmids commonly encode TrfA and have an oriV similar to those found in IncP-1 incompatibility group plasmids. The presence of nearly identical plasmids in single strains from two distinct subspecies of X. fastidiosa is indicative of recent horizontal transfer, probably subsequent to the introduction of subspecies fastidiosa to the United States in the late 19th century. PMID:23251694

  8. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural and Biochemical Characterization of Xylella fastidiosa DsbA Family Members: New insightsinto the Enzyme-Substrate Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, F.; Meza, A; Gulmarges, B

    2009-01-01

    Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determinationmore » of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.« less

  10. Characterization of a diffusible signaling factor from Xylella fastidiosa.

    PubMed

    Beaulieu, Ellen D; Ionescu, Michael; Chatterjee, Subhadeep; Yokota, Kenji; Trauner, Dirk; Lindow, Steven

    2013-01-08

    Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. X. fastidiosa causes diseases in many important plants, including grape, where it incites Pierce's disease. Virulence of X. fastidiosa for grape is coordinated by cell-cell signaling molecules, designated DSF (Diffusible Signaling Factor). Mutants blocked in DSF production are hypervirulent for grape, suggesting that virulence is suppressed upon DSF accumulation and that disease could be controlled by artificial elevation of the DSF level in plants. In this work, we describe the isolation of the DSF produced by X. fastidiosa and the verification of its biological activity as an antivirulence factor. We also have developed X. fastidiosa DSF biosensors to evaluate the specificity of cell-cell signaling to be investigated.

  11. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  12. Structural and biochemical characterization of Xylella fastidiosa DsbA family members: new insights into the enzyme-substrate interaction.

    PubMed

    Rinaldi, Fábio C; Meza, Andréia N; Guimarães, Beatriz G

    2009-04-21

    Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.

  13. Preliminary findings suggest that vector feeding behaviors controlling inoculation of Xylella fastidiosa are performed less on Vitis arizonica than on V. vinifera ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    The most successful example of classical grapevine breeding for resistance to Xylella fastidiosa (Xf) is the PdR1 gene, which mediates resistance to Xf multiplication and spread in the host, once Xf has been inoculated. No effort has been made to determine whether resistance of PdR1 or its parent wi...

  14. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa.

    PubMed

    Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C

    2010-12-01

    Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.

  15. Characterization of Xylella fastidiosa lipopolysaccharide and its role in key steps of the disease cycle in grapevine

    USDA-ARS?s Scientific Manuscript database

    This project aims to elucidate molecular mechanisms of Xylella fastidiosa (Xf) pathogenicity. Work is focused on the lipopolysaccharide (LPS) component of the outer membrane, which consists of lipid A, core oligosaccharides, and a variable O-antigen moiety. Specifically, the O-antigen portion of LPS...

  16. Lipopolysaccharide O-antigen delays plant innate immune recognition of Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Blanco-Ulate, Barbara; Muszyński, Artur; Figueroa-Balderas, Rosa; Morales-Cruz, Abraham; Azadi, Parastoo; Dobruchowska, Justyna M; Castro, Claudia; Cantu, Dario; Roper, M Caroline

    2018-01-26

    Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.

  17. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System.

    PubMed

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T; Lindow, Steven E

    2016-07-19

    Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate host harboring X. fastidiosa RpfF (XfRpfF) is capable of producing a variety of both saturated and unsaturated free fatty acids. However, only 2-cis unsaturated acids were found to be biologically active in X. fastidiosa X. fastidiosa produces, and is particularly responsive to, a novel DSF species, 2-cis-hexadecanoic acid that we term XfDSF2. It is also responsive to other, even longer 2-enoic acids to which other taxa such as Xanthomonas campestris are unresponsive. The 2-enoic acids that are produced by X. fastidiosa are strongly affected by the cellular growth environment, with XfDSF2 not detected in culture media in which 2-tetradecenoic acid (XfDSF1) had previously been found. X. fastidiosa is responsive to much lower concentrations of XfDSF2 than XfDSF1. Apparently competitive interactions can occur between various saturated and unsaturated fatty acids that block the function of those agonistic 2-enoic fatty acids. By altering the particular 2-enoic acids produced and the relative balance of free enoic and saturated fatty acids, X. fastidiosa might modulate the extent of DSF-mediated quorum sensing. X. fastidiosa, having a complicated lifestyle in which it moves and multiplies within plants but also must be vectored by insects, utilizes DSF-based quorum sensing to partition the expression of traits needed for these two processes within different cells in this population based on local cellular density. The finding that it can produce a variety of DSF species in a strongly

  18. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease

    USDA-ARS?s Scientific Manuscript database

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce’s disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that ...

  19. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Ivanova, Natalia; D'Souza, Mark; Bernal, Axel; Lykidis, Athanasios; Kapatral, Vinayak; Anderson, Iain; Larsen, Niels; Los, Tamara; Reznik, Gary; Selkov, Eugene; Walunas, Theresa L; Feil, Helene; Feil, William S; Purcell, Alexander; Lassez, Jean-Louis; Hawkins, Trevor L; Haselkorn, Robert; Overbeek, Ross; Predki, Paul F; Kyrpides, Nikos C

    2002-09-17

    Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.

  20. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    PubMed

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  1. Genotypic analysis of Xylella fastidiosa isolates from different hosts using sequences homologous to the Xanthomonas rpf genes.

    PubMed

    Meinhardt, Lyndel W; Ribeiro, Milena P M A; Coletta-Filho, Helvécio D; Dumenyo, C Korsi; Tsai, Sui M; De M Bellato, Cláudia

    2003-09-01

    SUMMARY This is the first report of a genotypic analysis of the phytopathogenic bacteria Xylella fastidiosa (Xf) using differences within intra- and intergenic regions of pathogenic genes. Orthologous sequences from the genome of Xf were identified for genes involved in the regulation of pathogenicity factors (rpf) from Xanthomonas campestris pv. campestris (Xcc). While the rpf genes were conserved, the chromosomal region revealed differences in gene sizes and intergenic spacings and a major translocational event when compared to Xcc. Primers were designed to amplify three regions: the intragenic region of rpfA (2354 bp), the intergenic region between rpfA and rpfB (5772 bp), and the intergenic region between rpfC and rpfF (2314 bp). Amplicons were obtained for all three regions from 32 of the 33 Xf isolates tested from citrus, grape, coffee, plum, hibiscus and periwinkle. Three Xcc isolates from cruciferous plants only generated PCR products for the rpfC-F region. Cleaved amplified polymorphic sequences (CAPS) (Taq(alpha)I) revealed differential banding profiles for the rpfA-B and rpfC-F regions. Xylella isolates were separated into seven groups via rpfA-B, of which five contained only citrus, while the other two had citrus, grape and coffee, and citrus, coffee, plum and hibiscus isolates. rpfC-F separated the isolates into three host-related groups. Citrus, coffee and hibiscus isolates formed one group, while the other two groups were comprised solely of grape and plum isolates. Xcc isolates formed an out-group. In silico analysis supports these results, which reveal the potential of the rpf genes for genotypic analysis of Xylella fastidiosa.

  2. Characterization of the LysR-type transcriptional regulator YcjZ-like from Xylella fastidiosa overexpressed in Escherichia coli.

    PubMed

    Santiago, André S; Santos, Clelton A; Mendes, Juliano S; Toledo, Marcelo A S; Beloti, Lilian L; Souza, Alessandra A; Souza, Anete P

    2015-09-01

    The Xylella fastidiosa 9a5c strain is a xylem-limited phytopathogen that is the causal agent of citrus variegated chlorosis (CVC). This bacterium is able to form a biofilm and occlude the xylem vessels of susceptible plants, which leads to significant agricultural and economic losses. Biofilms are associated with bacterial pathogenicity because they are very resistant to antibiotics and other metal-based chemicals that are used in agriculture. The X. fastidiosa YcjZ-like (XfYcjZ-like) protein belongs to the LysR-type transcriptional regulator (LTTR) family and is involved in various cellular functions that range from quorum sensing to bacterial survival. In the present study, we report the cloning, expression and purification of XfYcjZ-like, which was overexpressed in Escherichia coli. The secondary folding of the recombinant and purified protein was assessed by circular dichroism, which revealed that XfYcjZ-like contains a typical α/β fold. An initial hydrodynamic characterization showed that XfYcjZ-like is a globular tetramer in solution. In addition, using a polyclonal antibody against XfYcjZ-like, we assessed the expression profile of this protein during the different developmental phases of X. fastidiosa in in vitro cultivated biofilm cells and demonstrated that XfYcjZ-like is upregulated in planktonic cells in response to a copper shock treatment. Finally, the ability of XfYcjZ-like to interact with its own predicted promoter was confirmed in vitro, which is a typical feature of LysR. Taken together, our findings indicated that the XfYcjZ-like protein is involved in both the organization of the architecture and the maturation of the bacterial biofilm and that it is responsive to oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Characterization of the TolB-Pal trans-envelope complex from Xylella fastidiosa reveals a dynamic and coordinated protein expression profile during the biofilm development process.

    PubMed

    Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P

    2015-10-01

    The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Draft genome sequence of Xylella fastidiosa subsp. fastidiosa strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease....

  5. Feeding Behaviors That Promote Inoculation Of Xylella fastidiosa Are Performed Less By Glassy-winged Sharpshooters on Resistant Vitis Candicans Than On Susceptible V. vinifera cv. ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    Development of grape varieties resistant to Pierce’s Disease, caused by the lethal bacterium Xylella fastidiosa (Xf), is considered the most sustainable, long-term solution to the disease. Grape breeders are working to develop varieties resistant to multiplication and spread of the bacterium, by in...

  6. Microarray analyses of Xylella fastidiosa provide evidence of coordinated transcription control of laterally transferred elements.

    PubMed

    Nunes, Luiz R; Rosato, Yoko B; Muto, Nair H; Yanai, Giane M; da Silva, Vivian S; Leite, Daniela B; Gonçalves, Edmilson R; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Lopes, Silvio A; de Oliveira, Regina Costa

    2003-04-01

    Genetically distinct strains of the plant bacterium Xylella fastidiosa (Xf) are responsible for a variety of plant diseases, accounting for severe economic damage throughout the world. Using as a reference the genome of Xf 9a5c strain, associated with citrus variegated chlorosis (CVC), we developed a microarray-based comparison involving 12 Xf isolates, providing a thorough assessment of the variation in genomic composition across the group. Our results demonstrate that Xf displays one of the largest flexible gene pools characterized to date, with several horizontally acquired elements, such as prophages, plasmids, and genomic islands (GIs), which contribute up to 18% of the final genome. Transcriptome analysis of bacteria grown under different conditions shows that most of these elements are transcriptionally active, and their expression can be influenced in a coordinated manner by environmental stimuli. Finally, evaluation of the genetic composition of these laterally transferred elements identified differences that may help to explain the adaptability of Xf strains to infect such a wide range of plant species.

  7. Initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa related to the human cytosolic 5'-nucleotidase I.

    PubMed

    Santos, Clelton A; Saraiva, Antonio M; Toledo, Marcelo A S; Beloti, Lilian L; Crucello, Aline; Favaro, Marianna T P; Horta, Maria A C; Santiago, André S; Mendes, Juliano S; Souza, Alessandra A; Souza, Anete P

    2013-01-01

    The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Xylella fastidiosa PD1063 protein is secreted in association with outer membrane vesicles.

    PubMed

    Pierce, Brittany K; Voegel, Tanja; Kirkpatrick, Bruce C

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa.

  9. Selection of single chain variable fragments (scFv) against Xylella fastidiosa subsp. pauca by phage display

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a gram-negative member of the gamma proteobacteria. Xylella fastidiosa subsp pauca causes citrus variegated chlorosis in Brazil and enjoys ‘select agent’ status in the United States. Antibody based detection assays are commercially available for Xylella fastidiosa, and are ef...

  10. A new member of the aldo-keto reductase family from the plant pathogen Xylella fastidiosa.

    PubMed

    Rosselli, Luciana K; Oliveira, Cristiano L P; Azzoni, Adriano R; Tada, Susely F S; Catani, Cleide F; Saraiva, Antonio M; Soares, José Sérgio M; Medrano, Francisco J; Torriani, Iris L; Souza, Anete P

    2006-09-15

    The Xylella fastidiosa genome program generated a large number of gene sequences that belong to pathogenicity, virulence and adaptation categories from this important plant pathogen. One of these genes (XF1729) encodes a protein similar to a superfamily of aldo-keto reductase together with a number of structurally and functionally related NADPH-dependent oxidoreductases. In this work, the similar sequence XF1729 from X. fastidiosa was cloned onto the pET32Xa/LIC vector in order to overexpress a recombinant His-tag fusion protein in Escherichia coli BL21(DE3). The expressed protein in the soluble fraction was purified by immobilized metal affinity chromatography (agarose-IDA-Ni resin). Secondary structure contents were verified by circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) measurements furnish general structural parameters and provide a strong indication that the protein has a monomeric form in solution. Also, ab initio calculations show that the protein has some similarities with a previously crystallized aldo-keto reductase protein. The recombinant XF1729 purified to homogeneity catalyzed the reduction of dl-glyceraldehyde (K(cat) 2.26s(-1), Km 8.20+/-0.98 mM) and 2-nitrobenzaldehyde (K(cat) 11.74 s(-1), Km 0.14+/-0.04 mM) in the presence of NADPH. The amino acid sequence deduced from XF1729 showed the highest identity (40% or higher) with several functional unknown proteins. Among the identified AKRs, we found approximately 29% of identity with YakC (AKR13), 30 and 28% with AKR11A and AKR11B, respectively. The results establish XF1729 as the new member of AKR family, AKR13B1. Finally, the first characterization by gel filtration chromatography assays indicates that the protein has an elongated shape, which generates an apparent higher molecular weight. The study of this protein is an effort to fight X. fastidiosa, which causes tremendous losses in many economically important plants.

  11. The Xylella fastidiosa PD1063 Protein Is Secreted in Association with Outer Membrane Vesicles

    PubMed Central

    Pierce, Brittany K.; Voegel, Tanja; Kirkpatrick, Bruce C.

    2014-01-01

    Xylella fastidiosa is a gram-negative, xylem-limited plant pathogenic bacterium that causes disease in a variety of economically important agricultural crops including Pierce's disease of grapevines. Xylella fastidiosa biofilms formed in the xylem vessels of plants play a key role in early colonization and pathogenicity by providing a protected niche and enhanced cell survival. Here we investigate the role of Xylella fastidiosa PD1063, the predicted ortholog of Xanthomonas oryzae pv. oryzae PXO_03968, which encodes an outer membrane protein. To assess the function of the Xylella fastidiosa ortholog, we created Xylella fastidiosa mutants deleted for PD1063 and then assessed biofilm formation, cell-cell aggregation and cell growth in vitro. We also assessed disease severity and pathogen titers in grapevines mechanically inoculated with the Xylella fastidiosa PD1063 mutant. We found a significant decrease in cell-cell aggregation among PD1063 mutants but no differences in cell growth, biofilm formation, disease severity or titers in planta. Based on the demonstration that Xanthomonas oryzae pv. oryzae PXO_03968 encodes an outer membrane protein, secreted in association with outer membrane vesicles, we predicted that PD1063 would also be secreted in a similar manner. Using anti-PD1063 antibodies, we found PD1063 in the supernatant and secreted in association with outer membrane vesicles. PD1063 purified from the supernatant, outer membrane fractions and outer membrane vesicles was 19.2 kD, corresponding to the predicted size of the processed protein. Our findings suggest Xylella fastidiosa PD1063 is not essential for development of Pierce's disease in Vitis vinifera grapevines although further research is required to determine the function of the PD1063 outer membrane protein in Xylella fastidiosa. PMID:25426629

  12. Xylella fastidiosa: an examination of a re-emerging plant pathogen.

    PubMed

    Rapicavoli, Jeannette; Ingel, Brian; Blanco-Ulate, Barbara; Cantu, Dario; Roper, Caroline

    2018-04-01

    Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of

  13. Comparative genomic characterization of citrus-associated Xylella fastidiosa strains.

    PubMed

    da Silva, Vivian S; Shida, Cláudio S; Rodrigues, Fabiana B; Ribeiro, Diógenes C D; de Souza, Alessandra A; Coletta-Filho, Helvécio D; Machado, Marcos A; Nunes, Luiz R; de Oliveira, Regina Costa

    2007-12-21

    The xylem-inhabiting bacterium Xylella fastidiosa (Xf) is the causal agent of Pierce's disease (PD) in vineyards and citrus variegated chlorosis (CVC) in orange trees. Both of these economically-devastating diseases are caused by distinct strains of this complex group of microorganisms, which has motivated researchers to conduct extensive genomic sequencing projects with Xf strains. This sequence information, along with other molecular tools, have been used to estimate the evolutionary history of the group and provide clues to understand the capacity of Xf to infect different hosts, causing a variety of symptoms. Nonetheless, although significant amounts of information have been generated from Xf strains, a large proportion of these efforts has concentrated on the study of North American strains, limiting our understanding about the genomic composition of South American strains - which is particularly important for CVC-associated strains. This paper describes the first genome-wide comparison among South American Xf strains, involving 6 distinct citrus-associated bacteria. Comparative analyses performed through a microarray-based approach allowed identification and characterization of large mobile genetic elements that seem to be exclusive to South American strains. Moreover, a large-scale sequencing effort, based on Suppressive Subtraction Hybridization (SSH), identified 290 new ORFs, distributed in 135 Groups of Orthologous Elements, throughout the genomes of these bacteria. Results from microarray-based comparisons provide further evidence concerning activity of horizontally transferred elements, reinforcing their importance as major mediators in the evolution of Xf. Moreover, the microarray-based genomic profiles showed similarity between Xf strains 9a5c and Fb7, which is unexpected, given the geographical and chronological differences associated with the isolation of these microorganisms. The newly identified ORFs, obtained by SSH, represent an approximately 10

  14. Effects of grapevine sap phenolics on the in vitro growth of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a serious threat to grape production in the United States. Previous work indicated that grapevines infected with Xylella fastidiosa respond by producing greater levels of phenolic compounds in xylem sap and tissues, presumably to l...

  15. Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa.

    PubMed

    Almeida, Rodrigo P P; Killiny, Nabil; Newman, Karyn L; Chatterjee, Subhadeep; Ionescu, Michael; Lindow, Steven E

    2012-04-01

    In Xylella fastidiosa the fatty acid signal molecule diffusible signaling factor (DSF) is produced and sensed by components of the regulation of pathogenicity factors (rpf) cluster; lack of DSF production in RpfF mutants results in a non-vector-transmissible phenotype yet cells are hypervirulent to grape. rpfB has not been characterized in Xylella fastidiosa, although its homolog has been suggested to be required for DSF synthesis in Xanthomonas campestris pv. campestris. We show that RpfB is involved in DSF processing in both Xylella fastidiosa and Xanthomonas campestris, affecting the profile of DSF-like fatty acids observed in thin-layer chromatography. Although three fatty acids whose production is dependent on RpfF were detected in Xylella fastidiosa and Xanthomonas campestris wild-type strains, their respective rpfB mutants accumulated primarily one chemical species. Although no quantifiable effect of rpfB on plant colonization by Xylella fastidiosa was found, insect colonization and transmission was reduced. Thus, RpfB apparently is involved in DSF processing, and like Xanthomonas campestris, Xylella fastidiosa also produces multiple DSF molecules. It is possible that Xylella fastidiosa coordinates host vector and plant colonization by varying the proportions of different forms of DSF signals via RpfB.

  16. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines

    PubMed Central

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W.; Almeida-Souza, Hebréia O.; Tu, Aye; Rao, Basuthkar J.; Feldstein, Paul A.; Bruening, George; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms. PMID:26753904

  17. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines.

    PubMed

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W; Almeida-Souza, Hebréia O; Tu, Aye; Rao, Basuthkar J; Feldstein, Paul A; Bruening, George; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-12

    Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms.

  18. Optimizing EPG settings to record blue-green sharpshooter X waves for future studies of grape host plant resistance to Xf inoculation

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of the research reported in this review is to develop methodology for assessment of grapevine resistant to sharpshooter inoculation of Xylella fastidiosa(Xf)into healthy grapevines, thereby preventing Xf infection. Such a trait would be quite different from the more common mechani...

  19. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS.

    PubMed

    Colnaghi Simionato, Ana Valéria; da Silva, Denise Santos; Lambais, Marcio Rodrigues; Carrilho, Emanuel

    2007-10-01

    Xylella fastidiosa (X.f.) is a plant pathogen with high levels of genomic similarity to Xanthomonas campestris pv. campestris (X.c.c.). It has been shown that X. fastidiosa synthesizes a putative diffusible signal factor (X.f.-DSF) that activates regulation of pathogenicity factor (rpf) genes in a X.c.c. reporter system, which might be involved in the regulation of pathogenesis associated genes as in X.c.c., as well as in quorum-sensing. The nature of the X.f.-DSF is not known, whereas the X.c.c.-DSF has been identified as cis-11-methyl-2-dodecenoic acid. In this work, the chemical nature of a putative X.f.-DSF molecule, able to restore endoglucanase activity in a X.c.c. rpfF mutant, was investigated as if it was a fatty acid derivative. Bioassays with X.c.c. reporter bacterium and X.f. culture extracts, based on endoglucanase restoration activity, were also carried out in order to confirm the DSFs molecules similarities. For this reason, a gas chromatography-mass spectrometry method was developed with standard fatty acids methyl esters mixtures. The retention time, as well as the fragmentation patterns, of each standard was used to identify the DSF molecule synthesized by X.f. in the culture medium. Typical ester fragmentation patterns (the derivatized analyte) were observed, such as: McLafferty rearrangement and migration of the Hdelta followed by 1,4-hydrogen shift and cleavage of the bond Cbeta--Cgamma, confirming the nature of this molecule. This confirmation was corroborated by the common peaks in both spectra. Besides, the observed retention time reinforces our conclusion since it corresponds to a methyl ester with 15 carbons. Since the X.f.-DSF molecule was tentatively identified as 12-methyl-tetradecanoic acid (by mass spectra library comparison), this standard compound was also analyzed, strongly suggesting that this is the identification of such a molecule. To our knowledge, this is the first time a DSF produced by X.f. has been characterized.

  20. Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS.

    PubMed

    Colnaghi Simionato, Ana Valéria; da Silva, Denise Santos; Lambais, Marcio Rodrigues; Carrilho, Emanuel

    2007-04-01

    Xylella fastidiosa (X.f.) is a plant pathogen with high levels of genomic similarity to Xanthomonas campestris pv. campestris (X.c.c.). It has been shown that X. fastidiosa synthesizes a putative diffusible signal factor (X.f.-DSF) that activates regulation of pathogenicity factor (rpf) genes in a X.c.c. reporter system, which might be involved in the regulation of pathogenesis associated genes as in X.c.c., as well as in quorum-sensing. The nature of the X.f.-DSF is not known, whereas the X.c.c.-DSF has been identified as cis-11-methyl-2-dodecenoic acid. In this work, the chemical nature of a putative X.f.-DSF molecule, able to restore endoglucanase activity in a X.c.c. rpfF mutant, was investigated as if it was a fatty acid derivative. Bioassays with X.c.c. reporter bacterium and X.f. culture extracts, based on endoglucanase restoration activity, were also carried out in order to confirm the DSFs molecules similarities. For this reason, a gas chromatography-mass spectrometry method was developed with standard fatty acids methyl esters mixtures. The retention time, as well as the fragmentation patterns, of each standard was used to identify the DSF molecule synthesized by X.f. in the culture medium. Typical ester fragmentation patterns (the derivatized analyte) were observed, such as: McLafferty rearrangement and migration of the Hdelta followed by 1,4-hydrogen shift and cleavage of the bond Cbeta-Cgamma, confirming the nature of this molecule. This confirmation was corroborated by the common peaks in both spectra. Besides, the observed retention time reinforces our conclusion since it corresponds to a methyl ester with 15 carbons. Since the X.f.-DSF molecule was tentatively identified as 12-methyl-tetradecanoic acid (by mass spectra library comparison), this standard compound was also analyzed, strongly suggesting that this is the identification of such a molecule. To our knowledge, this is the first time a DSF produced by X.f. has been characterized. Copyright

  1. Gene expression profile of the plant pathogen Xylella fastidiosa during biofilm formation in vitro.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2004-08-15

    A biofilm is a community of microorganisms attached to a solid surface. Cells within biofilms differ from planktonic cells, showing higher resistance to biocides, detergent, antibiotic treatments and host defense responses. Even though there are a number of gene expression studies in bacterial biofilm formation, limited information is available concerning plant pathogen. It was previously demonstrated that the plant pathogen Xylella fastidiosa could grow as a biofilm, a possibly important factor for its pathogenicity. In this study we utilized analysis of microarrays to specifically identify genes expressed in X. fastidiosa cells growing in a biofilm, when compared to planktonic cells. About half of the differentially expressed genes encode hypothetical proteins, reflecting the large number of ORFs with unknown functions in bacterial genomes. However, under the biofilm condition we observed an increase in the expression of some housekeeping genes responsible for metabolic functions. We also found a large number of genes from the pXF51 plasmid being differentially expressed. Some of the overexpressed genes in the biofilm condition encode proteins involved in attachment to surfaces. Other genes possibly confer advantages to the bacterium in the environment that it colonizes. This study demonstrates that the gene expression in the biofilm growth condition of the plant pathogen X. fastidiosa is quite similar to other characterized systems.

  2. Differences in Stylet Penetration Behaviors of Glassy-winged Sharpshooters on Xylella-Resistant Vitis candicans vs. Susceptible Vitis vinifera cv. ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    Electrical penetration graph (EPG) monitoring was used to compare stylet penetration behaviors of glassy-winged sharpshooter (GWSS), a vector of Xylella fastidiosa (Xf), on Xf-resistant Vitis candicans grape vs. susceptible V. vinifera cv. ‘Chardonnay.’ Frequency of occurrence of X waves (represent...

  3. Validation of Small RNAs In Xylella fastidiosa by qRT-PCR

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa causes many economically important crop diseases including almond leaf scorch disease and Pierce’ disease of grapevine. Although non-coding small RNAs (sRNAs) are regarded as ubiquitous regulatory elements in bacteria, research attention to sRNAs in X. fastidiosa has been limited...

  4. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Xylella fastidiosa subsp pauca causes citrus variegat...

  5. Morphological evidence for phages in Xylella fastidiosa

    PubMed Central

    Chen, Jianchi; Civerolo, Edwin L

    2008-01-01

    Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM) in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm) and a small type (about 30 nm). Filamentous phage-like particles (17 × 120 to 6,300 nm) were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures. PMID:18538030

  6. Evaluation of assembling methods on determination of whole genome sequence of Xylella fastidiosa blueberry bacterial leaf scorch strain

    USDA-ARS?s Scientific Manuscript database

    Blueberry bacterial leaf scorch (BBLS) disease, a threat to blueberry production in the Southern USA and potentially elsewhere, is caused by Xylella fastidiosa. Efficient control of BBLS requires knowledge of the pathogen. However, this is challenging because Xylella fastidiosa is difficult to cultu...

  7. Identification and characterization of plasmids from Xylella fastidiosa using next generation sequencing analyses

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa causes diseases in many economically important crops, e.g. Pierce’s disease (PD) of grapevines and blueberry bacterial leaf scorch (BBLS) disease in the U.S. Biological research on X. fastidiosa has been difficult due to its nutritional fastidiousness. Genomic research provides a ...

  8. Temperature dependent RNA metabolism in Xylella fastidiosa during cold stress and grapevine infection

    USDA-ARS?s Scientific Manuscript database

    Re-occurrence of Pierce’s disease of grapes, caused by Xylella fastidiosa, is known to be influenced by environmental factors, particularly cold temperatures during overwintering. Grapevines in colder regions are often cured of X. fastidiosa infection over the winter season, depending on cultivar, t...

  9. Xylella fastidiosa in rabbiteye blueberry: A newly studied host of an old foe

    USDA-ARS?s Scientific Manuscript database

    The bacterium Xylella fastidiosa causes a number of plant diseases, including bacterial leaf scorch of southern highbush blueberry. In Louisiana, X. fastidiosa has been detected in rabbiteye blueberry orchards, and we wanted to know if it affected yield in rabbiteye blueberry plants. We detected X...

  10. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new Xylella species.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-10-01

    A total of 21 Xylella fastidiosa strains were assessed by comparing their genomes to infer their taxonomic relationships. The whole-genome-based average nucleotide identity and tetranucleotide frequency correlation coefficient analyses were performed. In addition, a consensus tree based on comparisons of 956 core gene families, and a genome-wide phylogenetic tree and a Neighbor-net network were constructed with 820,088 nucleotides (i.e., approximately 30-33 % of the entire X. fastidiosa genome). All approaches revealed the occurrence of three well-demarcated genetic clusters that represent X. fastidiosa subspecies fastidiosa, multiplex and pauca, with the latter appeared to diverge. We suggest that the proposed but never formally described subspecies 'sandyi' and 'morus' are instead members of the subspecies fastidiosa. These analyses support the view that the Xylella strain isolated from Pyrus pyrifolia in Taiwan is likely to be a new species. A widely used multilocus sequence typing analysis yielded conflicting results.

  11. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  12. Evaluation of olive as a host of Xylella fastidiosa and associated sharpshooter vectors

    USDA-ARS?s Scientific Manuscript database

    Olive (Olea europaea L.) trees exhibiting leaf scorch and/or branch dieback symptoms in California were surveyed for the xylem-limited, fastidious bacterium Xylella fastidiosa. Only ~17% of diseased trees tested positive for X. fastidiosa by PCR, and disease symptoms could not be attributed to X. fa...

  13. A genomic approach to the understanding of Xylella fastidiosa pathogenicity.

    PubMed

    Lambais, M R; Goldman, M H; Camargo, L E; Goldman, G H

    2000-10-01

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes several economically important plant diseases, including citrus variegated chlorosis (CVC). X. fastidiosa is the first plant pathogen to have its genome completely sequenced. In addition, it is probably the least previously studied of any organism for which the complete genome sequence is available. Several pathogenicity-related genes have been identified in the X. fastidiosa genome by similarity with other bacterial genes involved in pathogenesis in plants, as well as in animals. The X. fastidiosa genome encodes different classes of proteins directly or indirectly involved in cell-cell interactions, degradation of plant cell walls, iron homeostasis, anti-oxidant responses, synthesis of toxins, and regulation of pathogenicity. Neither genes encoding members of the type III protein secretion system nor avirulence-like genes have been identified in X. fastidiosa.

  14. Conjugative plasmid transfer in Xylella fastidiosa is dependent on tra and trb operon functions

    USDA-ARS?s Scientific Manuscript database

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer and recombination, leading to diversity between strains and the categorization of X. fastidiosa into multiple subspecies. Although natural transformation is shown to occur at high rates in X. fa...

  15. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome compositi...

  16. Identification of novel secreted virulence factors from Xylella fastidiosa using a TRV expression system

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a bacterium that causes leaf scorch diseases of agriculturally important crops including grapevines and almonds. Little is known about virulence factors that are necessary for X. fastidiosa to grow and cause disease in the xylem vessels of a plant host. Any protein secreted by ...

  17. The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus.

    PubMed

    Lacava, Paulo Teixeira; Li, Wenbin; Araújo, Welington Luiz; Azevedo, João Lúcio; Hartung, John Stephen

    2007-10-01

    Citrus variegated chlorosis (CVC) is a disease of the sweet orange [Citrus sinensis (L.)], which is caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that has been shown to infect all sweet orange cultivars. Sweet orange trees have been occasionally observed to be infected by Xylella fastidiosa without evidencing severe disease symptoms, whereas other trees in the same grove may exhibit severe disease symptoms. The principal endophytic bacterial species isolated from such CVC-asymptomatic citrus plants is Curtobacterium flaccumfaciens. The Madagascar periwinkle [Citrus sinensis (L.)] is a model plant which has been used to study X. fastidiosa in greenhouse environments. In order to characterize the interactions of X. fastidiosa and C. flaccumfaciens, periwinkle plants were inoculated separately with C. flaccumfaciens, X. fastidiosa, and both bacteria together. The number of flowers produced by the plants, the heights of the plants, and the exhibited disease symptoms were evaluated. PCR-primers for C. flaccumfaciens were designed in order to verify the presence of this endophytic bacterium in plant tissue, and to complement an existing assay for X. fastidiosa. These primers were capable of detecting C. flaccumfaciens in the periwinkle in the presence of X. fastidiosa. X. fastidiosa induced stunting and reduced the number of flowers produced by the periwinkle. When C. flaccumfaciens was inoculated together with X. fastidiosa, no stunting was observed. The number of flowers produced by our doubly- inoculated plants was an intermediate between the number produced by the plants inoculated with either of the bacteria separately. Our data indicate that C. flaccumfaciens interacted with X. fastidiosa in C. roseus, and reduced the severity of the disease symptoms induced by X. fastidiosa. Periwinkle is considered to be an excellent experimental system by which the interaction of C. flaccumfaciens and other endophytic bacteria with X. fastidiosa can be

  18. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions.

    PubMed

    Burbank, Lindsey P; Van Horn, Christopher R

    2017-11-01

    The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa , but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb , putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 ( X. fastidiosa subsp. fastidiosa ) or Dixon ( X. fastidiosa subsp. multiplex ) as the donor strain and Temecula ( X. fastidiosa subsp. fastidiosa ) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa , possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa , or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence

  19. Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions

    PubMed Central

    Van Horn, Christopher R.

    2017-01-01

    ABSTRACT The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa, but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb, putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 (X. fastidiosa subsp. fastidiosa) or Dixon (X. fastidiosa subsp. multiplex) as the donor strain and Temecula (X. fastidiosa subsp. fastidiosa) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa, possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa, or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence

  20. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA.

    PubMed

    Rosselli-Murai, Luciana K; Sforça, Maurício L; Sassonia, Rogério C; Azzoni, Adriano R; Murai, Marcelo J; de Souza, Anete P; Zeri, Ana C

    2012-10-01

    The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide (1)H and (15)N chemical shift signals for a sample of XfH-NS(56-134) were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coli and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as β-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. An Evaluation of the Genetic Diversity of Xylella fastidiosa Isolated from Diseased Citrus and Coffee in São Paulo, Brazil.

    PubMed

    Qin, X; Miranda, V S; Machado, M A; Lemos, E G; Hartung, J S

    2001-06-01

    ABSTRACT Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Café, respectively, were indistinguishable based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.

  2. Acquisition of Xyllela fastidiosa causes changes to the inoculation behavior (EPG X wave) of an efficient sharpshooter vector

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) is a foregut-borne bacterium that is inoculated into xylem cells of a healthy plant during feeding by sharpshooter vectors. Inoculation occurs during salivation and egestion behaviors that are likely represented by the sharpshooter X wave. The objective of this study was to t...

  3. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species.

  4. Ribosome Display of Combinatorial Antibody Libraries Derived from Mice Immunized with Heat-Killed Xylella fastidiosa and the Selection of MopB-Specific Single-Chain Antibodies

    PubMed Central

    Azizi, Armaghan; Arora, Arinder; Markiv, Anatoliy; Lampe, David J.; Miller, Thomas A.

    2012-01-01

    Pierce's disease is a devastating lethal disease of Vitus vinifera grapevines caused by the bacterium Xylella fastidiosa. There is no cure for Pierce's disease, and control is achieved predominantly by suppressing transmission of the glassy-winged sharpshooter insect vector. We present a simple robust approach for the generation of panels of recombinant single-chain antibodies against the surface-exposed elements of X. fastidiosa that may have potential use in diagnosis and/or disease transmission blocking studies. In vitro combinatorial antibody ribosome display libraries were assembled from immunoglobulin transcripts rescued from the spleens of mice immunized with heat-killed X. fastidiosa. The libraries were used in a single round of selection against an outer membrane protein, MopB, resulting in the isolation of a panel of recombinant antibodies. The potential use of selected anti-MopB antibodies was demonstrated by the successful application of the 4XfMopB3 antibody in an enzyme-linked immunosorbent assay (ELISA), a Western blot assay, and an immunofluorescence assay (IFA). These immortalized in vitro recombinant single-chain antibody libraries generated against heat-killed X. fastidiosa are a resource for the Pierce's disease research community that may be readily accessed for the isolation of antibodies against a plethora of X. fastidiosa surface-exposed antigenic molecules. PMID:22327580

  5. Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.

    PubMed

    Shi, Xiangyang; Bi, Jianlong; Morse, Joseph G; Toscano, Nick C; Cooksey, Donald A

    2010-03-01

    Xylella fastidiosa causes a serious Pierce's disease (PD) in grapevine. Xylella fastidiosa cells from a PD strain were grown in a pure xylem fluid of a susceptible grapevine cultivar vs. xylem fluid from citrus, which is not a host for this strain of X. fastidiosa. When grown in grapevine xylem fluid, cells of the PD strain formed clumps and biofilm formed to a greater extent than in citrus xylem fluid, although the PD strain did grow in xylem fluid of three citrus varieties. The differential expression of selected genes of a PD X. fastidiosa strain cultured in the two xylem fluids was analyzed using a DNA macroarray. Compared with citrus xylem fluid, grapevine xylem fluid stimulated the expression of X. fastidiosa genes involved in virulence regulation, such as gacA, algU, xrvA, and hsq, and also genes involved in the biogenesis of pili and twitching motility, such as fimT, pilI, pilU, and pilY1. Increased gene expression likely contributes to PD expression in grapevine, whereas citrus xylem fluid did not support or possibly suppressed the expression of these virulence genes.

  6. Initial genetic analysis of Xylella fastidiosa in Texas.

    PubMed

    Morano, Lisa D; Bextine, Blake R; Garcia, Dennis A; Maddox, Shermel V; Gunawan, Stanley; Vitovsky, Natalie J; Black, Mark C

    2008-04-01

    Xylella fastidiosa is the causative agent of Pierce's Disease of grape. No published record of X. fastidiosa genetics in Texas exists despite growing financial risk to the U.S. grape industry, a Texas population of the glassy-winged sharpshooter insect vector (Homalodisca vitripennis) now spreading in California, and evidence that the bacterium is ubiquitous to southern states. Using sequences of conserved gyrB and mopB genes, we have established at least two strains in Texas, grape strain and ragweed strain, corresponding genetically with subsp. piercei and multiplex, respectively. The grape strain in Texas is found in Vitis vinifera varieties, hybrid vines, and wild Vitis near vineyards, whereas the ragweed strain in Texas is found in annuals, shrubs, and trees near vineyards or other areas. RFLP and QRT PCR techniques were used to differentiate grape and ragweed strains with greater efficiency than sequencing and are practical for screening numerous X. fastidiosa isolates for clade identity.

  7. Functional and Evolutionary Characterization of a UDP-Xylose Synthase Gene from the Plant Pathogen Xylella fastidiosa, Involved in the Synthesis of Bacterial Lipopolysaccharide.

    PubMed

    Alencar, Valquíria Campos; Jabes, Daniela Leite; Menegidio, Fabiano Bezerra; Sassaki, Guilherme Lanzi; de Souza, Lucas Rodrigo; Puzer, Luciano; Meneghetti, Maria Cecília Zorél; Lima, Marcelo Andrade; Tersariol, Ivarne Luis Dos Santos; de Oliveira, Regina Costa; Nunes, Luiz R

    2017-02-07

    Xylella fastidiosa is a plant-infecting bacillus, responsible for many important crop diseases, such as Pierce's disease of vineyards, citrus variegated chlorosis, and coffee leaf scorch (CLS), among others. Recent genomic comparisons involving two CLS-related strains, belonging to X. fastidiosa subsp. pauca, revealed that one of them carries a frameshift mutation that inactivates a gene encoding an oxidoreductase of the short-chain dehydrogenase/reductase (SDR) superfamily, which may play important roles in determining structural variations in bacterial glycans and glycoconjugates. However, the exact nature of this SDR has been a matter of controversy, as different annotations of X. fastidiosa genomes have implicated it in distinct reactions. To confirm the nature of this mutated SDR, a comparative analysis was initially performed, suggesting that it belongs to a subgroup of SDR decarboxylases, representing a UDP-xylose synthase (Uxs). Functional assays, using a recombinant derivative of this enzyme, confirmed its nature as XfUxs, and carbohydrate composition analyses, performed with lipopolysaccharide (LPS) molecules obtained from different strains, indicate that inactivation of the X. fastidiosa uxs gene affects the LPS structure among CLS-related X. fastidiosa strains. Finally, a comparative sequence analysis suggests that this mutation is likely to result in a morphological and evolutionary hallmark that differentiates two subgroups of CLS-related strains, which may influence interactions between these bacteria and their plant and/or insect hosts.

  8. Characterization of Xylella fastidiosa pear leaf scorch strain in Taiwan through whole genome sequence analyses

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram-negative bacterium causing diseases in many economically important crops mostly in the Americas but also in Asia and Europe. A strain of X. fastidiosa was found to cause pear leaf scorch (PLS) disease in Taiwan in 1992. Because of nutritional fastidiousness, characteriza...

  9. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots.

    PubMed

    Pérez-Donoso, Alonso G; Greve, L Carl; Walton, Jeffrey H; Shackel, Ken A; Labavitch, John M

    2007-02-01

    It is conventionally thought that multiplication of the xylem-limited bacterium Xylella fastidiosa (Xf) within xylem vessels is the sole factor responsible for the blockage of water movement in grapevines (Vitis vinifera) affected by Pierce's disease. However, results from our studies have provided substantial support for the idea that vessel obstructions, and likely other aspects of the Pierce's disease syndrome, result from the grapevine's active responses to the presence of Xf, rather than to the direct action of the bacterium. The use of magnetic resonance imaging (MRI) to observe the distribution of water within the xylem has allowed us to follow nondestructively the development of vascular system obstructions subsequent to inoculation of grapevines with Xf. Because we have hypothesized a role for ethylene produced in vines following infection, the impact of vine ethylene exposure on obstruction development was also followed using MRI. In both infected and ethylene-exposed plants, MRI shows that an important proportion of the xylem vessels become progressively air embolized after the treatments. The loss of xylem water-transporting function, assessed by MRI, has been also correlated with a decrease in stem-specific hydraulic conductivity (K(S)) and the presence of tyloses in the lumens of obstructed water conduits. We have observed that the ethylene production of leaves from infected grapevines is greater than that from healthy vines and, therefore, propose that ethylene may be involved in a series of cellular events that coordinates the vine's response to the pathogen.

  10. Evaluation of Arabidopsis thaliana as a model host for Xylella fastidiosa.

    PubMed

    Rogers, Elizabeth E

    2012-06-01

    The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.

  11. RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses

    USDA-ARS?s Scientific Manuscript database

    Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...

  12. In vitro Determination of Extracellular Proteins from Xylella fastidiosa.

    PubMed

    Mendes, Juliano S; Santiago, André S; Toledo, Marcelo A S; Horta, Maria A C; de Souza, Alessandra A; Tasic, Ljubica; de Souza, Anete P

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa . Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa . Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3-30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components.

  13. In vitro Determination of Extracellular Proteins from Xylella fastidiosa

    PubMed Central

    Mendes, Juliano S.; Santiago, André S.; Toledo, Marcelo A. S.; Horta, Maria A. C.; de Souza, Alessandra A.; Tasic, Ljubica; de Souza, Anete P.

    2016-01-01

    The phytopathogen Xylella fastidiosa causes economic losses in important agricultural crops. Xylem vessel occlusion caused by biofilm formation is the major mechanism underlying the pathogenicity of distinct strains of X. fastidiosa. Here, we provide a detailed in vitro characterization of the extracellular proteins of X. fastidiosa. Based on the results, we performed a comparison with a strain J1a12, which cannot induce citrus variegated chlorosis symptoms when inoculated into citrus plants. We then extend this approach to analyze the extracellular proteins of X. fastidiosa in media supplemented with calcium. We verified increases in extracellular proteins concomitant with the days of growth and, consequently, biofilm development (3–30 days). Outer membrane vesicles carrying toxins were identified beginning at 10 days of growth in the 9a5c strain. In addition, a decrease in extracellular proteins in media supplemented with calcium was observed in both strains. Using mass spectrometry, 71 different proteins were identified during 30 days of X. fastidiosa biofilm development, including proteases, quorum-sensing proteins, biofilm formation proteins, hypothetical proteins, phage-related proteins, chaperones, toxins, antitoxins, and extracellular vesicle membrane components. PMID:28082960

  14. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines.

    PubMed

    Roper, M Caroline; Greve, L Carl; Warren, Jeremy G; Labavitch, John M; Kirkpatrick, Bruce C

    2007-04-01

    Xylella fastidiosa is the causal agent of Pierce's disease of grape, an economically significant disease for the grape industry. X. fastidiosa systemically colonizes the xylem elements of grapevines and is able to breach the pit pore membranes separating xylem vessels by unknown mechanisms. We hypothesized that X. fastidiosa utilizes cell wall degrading enzymes to break down pit membranes, based on the presence of genes involved in plant cell wall degradation in the X. fastidiosa genome. These genes include several beta-1,4 endoglucanases, several xylanases, several xylosidases, and one polygalacturonase (PG). In this study, we demonstrated that the pglA gene encodes a functional PG. A mutant in pglA lost pathogenicity and was compromised in its ability to systemically colonize Vitis vinifera grapevines. The results indicate that PG is required for X. fastidiosa to successfully infect grapevines and is a critical virulence factor for X. fastidiosa pathogenesis in grapevine.

  15. Functional characterization of the role of rpfA in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa coordinates virulence in grapevines via quorum sensing signal molecules that are regulated and synthesized by the rpf gene cluster (regulation of pathogenicity factors). rpfA encodes aconitate hydratase and could play a regulator role involved in virulence. To elucidate the role o...

  16. Xylella fastidiosa infection of grapevines affects host secondary metabolite and defense-related protein levels within xylem

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine is a serious threat to grape production and is caused by the xylem-dwelling bacterial pathogen Xylella fastidiosa. Microscopy studies have documented morphological changes to grapevine xylem due to infection by X. fastidiosa. Comparatively, less is known about the bi...

  17. Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay.

    PubMed

    Oliveira, Antonio C; Vallim, Marcelo A; Semighini, Camile P; Araújo, Welington L; Goldman, Gustavo H; Machado, Marcos A

    2002-10-01

    ABSTRACT Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease of sweet orange cultivars in Brazil. Polymerase chain reaction (PCR)-based assays constitute the principal diagnostic method for detection of these bacteria. In this work, we established a real-time quantitative PCR (QPCR) assay to quantify X. fastidiosa in naturally and artificially infected citrus. The X. fastidiosa cell number detected in the leaves increased according to the age of the leaf, and bacteria were not detected in the upper midrib section in young leaves, indicating temporal and spatial distribution patterns of bacteria, respectively. In addition, the X. fastidiosa cell number quantified in leaves of 'Pera' orange and 'Murcott' tangor reflected the susceptible and resistant status of these citrus cultivars. None of the 12 endophytic citrus bacteria or the four strains of X. fastidiosa nonpathogenic to citrus that were tested showed an increase in the fluorescence signal during QPCR. In contrast, all 10 CVC-causing strains exhibited an increase in fluorescence signal, thus indicating the specificity of this QPCR assay. Our QPCR provides a powerful tool for studies of different aspects of the Xylella-citrus interactions, and can be incorporated into breeding programs in order to select CVC-resistant plants more quickly.

  18. Effects of rootstock on Xylella fastidiosa infection and grapevine sap phenolics

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease, caused by the bacterium Xylella fastidiosa, poses a threat to grape production in the United States and warm climates elsewhere. There are numerous grapevine rootstocks available that may impart increased vigor or tolerance to soil-borne pests. However, little is known about the po...

  19. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary,; Bruce, R; Stubben, Christopher J

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  20. Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce's disease

    PubMed Central

    Wallis, Christopher M.; Wallingford, Anna K.; Chen, Jianchi

    2013-01-01

    The xylem-limited bacterium Xylella fastidiosa (Xf) causes Pierce's disease (PD), an important disease of grapevine, Vitis vinifera L. Grapevine rootstocks were developed to provide increased resistance to root disease, but rootstock effects on cane and vine diseases remain unclear. Grapevines that consisted of Cabernet Sauvignon or Chardonnay grafted to 13 different rootstocks were inoculated with Xf and evaluated for PD severity and Xf titer after 6 months. A subset of six rootstock/scion combinations had xylem sap phenolic levels assessed in non-infected and Xf-infected grapevines. Vigor also was analyzed by measuring root lengths and masses. Cabernet Sauvignon grafted to 101-14MG, 1103P, 420A, or Schwarzmann had reduced PD severity compared to Cabernet Sauvignon grafted to 110R, 5BB, or SO4. Chardonnay grafted to Salt Creek or Freedom had reduced PD severity compared to Chardonnay grafted to RS3 or Schwarzmann. Chardonnay grafted to RS3 had greater Xf titer than Chardonnay grafted to 101-14MG, Freedom, or Salt Creek. No other differences in Xf titer among rootstocks were observed. Of the six scion/rootstock combinations which had xylem sap phenolics analyzed, Chardonnay/RS3 had the highest levels of most phenolics whereas Cabernet Sauvignon/101-14MG had the lowest phenolic levels. However, Chardonnay/101-14MG, which had mild PD symptoms, had greater sap levels of caftaric acid than other scion/rootstock combinations. Sap levels of caftaric acid, methyl salicylate, a procyanidin trimer, and quinic acid were greater in Xf-infected vs. non-infected grapevines. Chardonnay on 101-14MG or Salt Creek had greater root mass than Chardonnay on RS3. Cabernet Sauvignon on 101-14MG had greater root mass than Cabernet Sauvignon on 110R. These results identified rootstocks with the capacity for reducing PD symptom progression. Rootstocks also were shown to affect Xf titer, xylem sap phenolic levels, and plant vigor. PMID:24376452

  1. Xylella fastidiosa gene expression analysis by DNA microarrays.

    PubMed

    Travensolo, Regiane F; Carareto-Alves, Lucia M; Costa, Maria V C G; Lopes, Tiago J S; Carrilho, Emanuel; Lemos, Eliana G M

    2009-04-01

    Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM(2) and liquid BCYE). All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others). The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  2. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram-negative, xylem-limited pathogenic bacterium that causes Pierce’s disease of grapevines. Type IV pili of X. fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon involving signal transduction pathways. To elucidate the role of pilG in twitching motil...

  3. Chromosome-based genetic complementation system for Xylella fastidiosa.

    PubMed

    Matsumoto, Ayumi; Young, Glenn M; Igo, Michele M

    2009-03-01

    Xylella fastidiosa is a xylem-limited, gram-negative bacterium that causes Pierce's disease of grapevine. Here, we describe the construction of four vectors that facilitate the insertion of genes into a neutral site (NS1) in the X. fastidiosa chromosome. These vectors carry a colE1-like (pMB1) replicon and DNA sequences from NS1 flanking a multiple-cloning site and a resistance marker for one of the following antibiotics: chloramphenicol, erythromycin, gentamicin, or kanamycin. In X. fastidiosa, vectors with colE1-like (pMB1) replicons have been found to result primarily in the recovery of double recombinants rather than single recombinants. Thus, the ease of obtaining double recombinants and the stability of the resulting insertions at NS1 in the absence of selective pressure are the major advantages of this system. Based on in vitro and in planta characterizations, strains carrying insertions within NS1 are indistinguishable from wild-type X. fastidiosa in terms of growth rate, biofilm formation, and pathogenicity. To illustrate the usefulness of this system for complementation analysis, we constructed a strain carrying a mutation in the X. fastidiosa cpeB gene, which is predicted to encode a catalase/peroxidase, and showed that the sensitivity of this mutant to hydrogen peroxide could be overcome by the introduction of a wild-type copy of cpeB at NS1. Thus, this chromosome-based complementation system provides a valuable genetic tool for investigating the role of specific genes in X. fastidiosa cell physiology and virulence.

  4. Xylella fastidiosa Isolates from Both subsp. multiplex and fastidiosa Cause Disease on Southern Highbush Blueberry (Vaccinium sp.) Under Greenhouse Conditions.

    PubMed

    Oliver, J E; Cobine, P A; De La Fuente, L

    2015-07-01

    Xylella fastidiosa is a xylem-limited gram-negative plant pathogen that affects numerous crop species, including grape, citrus, peach, pecan, and almond. Recently, X. fastidiosa has also been found to be the cause of bacterial leaf scorch on blueberry in the southeastern United States. Thus far, all X. fastidiosa isolates obtained from infected blueberry have been classified as X. fastidiosa subsp. multiplex; however, X. fastidiosa subsp. fastidiosa isolates are also present in the southeastern United States and commonly cause Pierce's disease of grapevines. In this study, seven southeastern U.S. isolates of X. fastidiosa, including three X. fastidiosa subsp. fastidiosa isolates from grape, one X. fastidiosa subsp. fastidiosa isolate from elderberry, and three X. fastidiosa subsp. multiplex isolates from blueberry, were used to infect the southern highbush blueberry 'Rebel'. Following inoculation, all isolates colonized blueberry, and isolates from both X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa caused symptoms, including characteristic stem yellowing and leaf scorch symptoms as well as dieback of the stem tips. Two X. fastidiosa subsp. multiplex isolates from blueberry caused more severe symptoms than the other isolates examined, and infection with these two isolates also had a significant impact on host mineral nutrient content in sap and leaves. These findings have potential implications for understanding X. fastidiosa host adaptation and expansion and the development of emerging diseases caused by this bacterium.

  5. Diversity of Xylella fastidiosa host suitability among siblings from a non-traditional almond X peach cross

    USDA-ARS?s Scientific Manuscript database

    Ten F2 clones from an initial hybridization of Prunus webbii X P. persica cv Harrow Blood were evaluated under greenhouse conditions for their reaction to Xylella fastidiosa subsp. fastidiosa strain M23 during two growing seasons. Clonal accessions used for the study were selected on the basis of ho...

  6. Analyses of Xylella whole genome sequences and proposal of Xylella taiwanensis sp. nov.

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative, xylem limited and nutritionally fastidious plant pathogenic bacterium that cause disease in many economically important plants. A single species, fastidiosa, with three subspecies (fastidiosa, multiplex, and pauca) have been described. Most Xylella strains were...

  7. Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media.

    PubMed

    Shriner, Anthony D; Andersen, Peter C

    2014-12-01

    Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.

  8. Comparative Genomics- Identifying similarities and differences across three leafhopper vectors of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Leafhoppers are the second most important vectors of agricultural diseases, thus we examined the gene expression across three leafhopper leafhoppers, Homalodisca vitripennis, Graphocephala atropunctata, and Oncometopia nigricans, which are vectors of the plant-infecting bacterium, Xylella fastidiosa...

  9. Absence of classical heat shock response in the citrus pathogen Xylella fastidiosa.

    PubMed

    Martins-de-Souza, Daniel; Martins, Daniel; Astua-Monge, Gustavo; Coletta-Filho, Helvécio Della; Winck, Flavia Vischi; Baldasso, Paulo Aparecido; de Oliveira, Bruno Menezes; Marangoni, Sérgio; Machado, Marcos Antônio; Novello, José Camillo; Smolka, Marcus Bustamante

    2007-02-01

    The fastidious bacterium Xylella fastidiosa is associated with important crop diseases worldwide. We have recently shown that X. fastidiosa is a peculiar organism having unusually low values of gene codon bias throughout its genome and, unexpectedly, in the group of the most abundant proteins. Here, we hypothesized that the lack of codon usage optimization in X. fastidiosa would incapacitate this organism to undergo quick and massive changes in protein expression as occurs in a classical stress response. Proteomic analysis of the response to heat stress in X. fastidiosa revealed that no changes in protein expression can be detected. Moreover, stress-inducible proteins identified in the closely related citrus pathogen Xanthomonas axonopodis pv citri were found to be constitutively expressed in X. fastidiosa. These proteins have extremely high codon bias values in the X. citri and other well-studied organisms, but low values in X. fastidiosa. Because biased codon usage is well known to correlate to the rate of protein synthesis, we speculate that the peculiar codon bias distribution in X. fastidiosa is related to the absence of a classical stress response, and, probably, alternative strategies for survival of X. fastidiosa under stressfull conditions.

  10. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    PubMed

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  11. Expression of green fluorescent protein in Xylella fastidiosa is affected by passage through host plants.

    PubMed

    Qin, Xiaoting; Hartung, John S

    2004-09-01

    Xylella fastidiosa, a Gram-negative bacterial plant pathogen, causes Pierce's disease of grapevine in North America. In South America the pathogen causes citrus variegated chlorosis, which is widespread in Brazil. We have introduced into Xylella fastidiosa a mini-Tn5 transposon that encodes a green fluorescent protein (GFP) gene optimized for expression in bacteria. The mini-Tn5 derivative was inserted into different sites of the genome in independent transconjugants as determined by Southern blotting. The GFP gene was expressed well and to different levels in different transconjugants. Four independent transconjugants were separately used to inoculate sweet orange and tobacco seedlings. The transconjugants were able to colonize the plants and were subsequently isolated from points distal to the inoculation sites. When the relative fluorescence of the transconjugants that had been passed through either tobacco or sweet orange was compared with that of the same transconjugant maintained continuously in vitro, we observed that passage through either plant host significantly increased the level of expression of the GFP. The increased level of expression of GFP was transient, and was lost upon further culture in vitro. Xylella fastidiosa forms biofilms in planta which are believed to represent a metabolically differentiated state. The increased expression of GFP observed after passage through plants may be accounted for by this phenomenon.

  12. Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity.

    PubMed

    da Silva, F R; Vettore, A L; Kemper, E L; Leite, A; Arruda, P

    2001-09-25

    The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.

  13. The importance of multilocus sequence typing: cautionary tales from the bacterium Xylella fastidiosa.

    PubMed

    Nunney, L; Elfekih, S; Stouthamer, R

    2012-05-01

    Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.

  14. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States.

    PubMed

    Randall, Jennifer J; Goldberg, Natalie P; Kemp, John D; Radionenko, Maxim; French, Jason M; Olsen, Mary W; Hanson, Stephen F

    2009-09-01

    Xylella fastidiosa, the causal agent of several scorch diseases, is associated with leaf scorch symptoms in Chitalpa tashkentensis, a common ornamental landscape plant used throughout the southwestern United States. For a number of years, many chitalpa trees in southern New Mexico and Arizona exhibited leaf scorch symptoms, and the results from a regional survey show that chitalpa trees from New Mexico, Arizona, and California are frequently infected with X. fastidiosa. Phylogenetic analysis of multiple loci was used to compare the X. fastidiosa infecting chitalpa strains from New Mexico, Arizona, and trees imported into New Mexico nurseries with previously reported X. fastidiosa strains. Loci analyzed included the 16S ribosome, 16S-23S ribosomal intergenic spacer region, gyrase-B, simple sequence repeat sequences, X. fastidiosa-specific sequences, and the virulence-associated protein (VapD). This analysis indicates that the X. fastidiosa isolates associated with infected chitalpa trees in the Southwest are a highly related group that is distinct from the four previously defined taxons X. fastidiosa subsp. fastidiosa (piercei), X. fastidiosa subsp. multiplex, X. fastidiosa subsp. sandyi, and X. fastidiosa subsp. pauca. Therefore, the classification proposed for this new subspecies is X. fastidiosa subsp. tashke.

  15. The DinJ/RelE toxin-antitoxin system suppresses virulence in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa, the causal agent of a number agriculturally important plant diseases, encodes multiple toxin-antitoxin (TA) systems. TA modules consist of a toxin protein co-expressed with a specific antitoxin, and are often acquired through horizontal gene transfer. Antitoxin molecules (RNA or ...

  16. Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes.

    PubMed

    Guilhabert, M R; Hoffman, L M; Mills, D A; Kirkpatrick, B C

    2001-06-01

    Pierce's disease, a lethal disease of grapevine, is caused by Xylella fastidiosa, a gram-negative, xylem-limited bacterium that is transmitted from plant to plant by xylem-feeding insects. Strains of X. fastidiosa also have been associated with diseases that cause tremendous losses in many other economically important plants, including citrus. Although the complete genome sequence of X. fastidiosa has recently been determined, the inability to transform or produce transposon mutants of X. fastidiosa has been a major impediment to understanding pathogen-, plant-, and insect-vector interactions. We evaluated the ability of four different suicide vectors carrying either Tn5 or Tn10 transposons as well as a preformed Tn5 transposase-transposon synaptic complex (transposome) to transpose X. fastidiosa. The four suicide vectors failed to produce any detectable transposition events. Electroporation of transposomes, however, yielded 6 x 10(3) and 4 x 10(3) Tn5 mutants per microg of DNA in two different grapevine strains of X. fastidiosa. Molecular analysis showed that the transposition insertions were single, independent, stable events. Sequence analysis of the Tn5 insertion sites indicated that the transpositions occur randomly in the X. fastidiosa genome. Transposome-mediated mutagenesis should facilitate the identification of X. fastidiosa genes that mediate plant pathogenicity and insect transmission.

  17. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis.

    PubMed

    Simpson, A J; Reinach, F C; Arruda, P; Abreu, F A; Acencio, M; Alvarenga, R; Alves, L M; Araya, J E; Baia, G S; Baptista, C S; Barros, M H; Bonaccorsi, E D; Bordin, S; Bové, J M; Briones, M R; Bueno, M R; Camargo, A A; Camargo, L E; Carraro, D M; Carrer, H; Colauto, N B; Colombo, C; Costa, F F; Costa, M C; Costa-Neto, C M; Coutinho, L L; Cristofani, M; Dias-Neto, E; Docena, C; El-Dorry, H; Facincani, A P; Ferreira, A J; Ferreira, V C; Ferro, J A; Fraga, J S; França, S C; Franco, M C; Frohme, M; Furlan, L R; Garnier, M; Goldman, G H; Goldman, M H; Gomes, S L; Gruber, A; Ho, P L; Hoheisel, J D; Junqueira, M L; Kemper, E L; Kitajima, J P; Krieger, J E; Kuramae, E E; Laigret, F; Lambais, M R; Leite, L C; Lemos, E G; Lemos, M V; Lopes, S A; Lopes, C R; Machado, J A; Machado, M A; Madeira, A M; Madeira, H M; Marino, C L; Marques, M V; Martins, E A; Martins, E M; Matsukuma, A Y; Menck, C F; Miracca, E C; Miyaki, C Y; Monteriro-Vitorello, C B; Moon, D H; Nagai, M A; Nascimento, A L; Netto, L E; Nhani, A; Nobrega, F G; Nunes, L R; Oliveira, M A; de Oliveira, M C; de Oliveira, R C; Palmieri, D A; Paris, A; Peixoto, B R; Pereira, G A; Pereira, H A; Pesquero, J B; Quaggio, R B; Roberto, P G; Rodrigues, V; de M Rosa, A J; de Rosa, V E; de Sá, R G; Santelli, R V; Sawasaki, H E; da Silva, A C; da Silva, A M; da Silva, F R; da Silva, W A; da Silveira, J F; Silvestri, M L; Siqueira, W J; de Souza, A A; de Souza, A P; Terenzi, M F; Truffi, D; Tsai, S M; Tsuhako, M H; Vallada, H; Van Sluys, M A; Verjovski-Almeida, S; Vettore, A L; Zago, M A; Zatz, M; Meidanis, J; Setubal, J C

    2000-07-13

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.

  18. Network analysis reveals why Xylella fastidiosa will persist in Europe.

    PubMed

    Strona, Giovanni; Carstens, Corrie Jacobien; Beck, Pieter S A

    2017-03-06

    The insect vector borne bacterium Xylella fastidiosa was first detected in olive trees in Southern Italy in 2013, and identified as the main culprit behind the 'olive quick decline syndrome'. Since then, the disease has spread rapidly through Italy's main olive oil producing region. The epidemiology of the outbreak is largely unstudied, with the list of X. fastidiosa hosts and vectors in Europe likely incomplete, and the role humans play in dispersal unknown. These knowledge gaps have led to management strategies based on general assumptions that require, among others, local vector control and, in certain areas, the destruction of infected plants and healthy ones around them in an attempt to eradicate or halt the spreading pest. Here we show that, regardless of epidemiological uncertainties, the mere distribution of olive orchards in Southern Italy makes the chances of eradicating X. fastidiosa from the region extremely slim. Our results imply that Southern Italy is becoming a reservoir for X. fastidiosa. As a consequence, management strategies should keep the prevalence of X. fastidiosa in the region as low as possible, primarily through vector control, lest the pathogen, that has also been detected in southern France and the island of Mallorca (Spain), continues spreading through Italy and Europe.

  19. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  20. Transmission of Xylella fastidiosa to Grapevine by the Meadow Spittlebug.

    PubMed

    Cornara, D; Sicard, A; Zeilinger, A R; Porcelli, F; Purcell, A H; Almeida, R P P

    2016-11-01

    There is little information available on Xylella fastidiosa transmission by spittlebugs (Hemiptera, Cercopoidea). This group of insect vectors may be of epidemiological relevance in certain diseases, so it is important to better understand the basic parameters of X. fastidiosa transmission by spittlebugs. We used grapevines as a host plant and the aphrophorid Philaenus spumarius as a vector to estimate the effect of plant access time on X. fastidiosa transmission to plants; in addition, bacterial population estimates in the heads of vectors were determined and correlated with plant infection status. Results show that transmission efficiency of X. fastidiosa by P. spumarius increased with plant access time, similarly to insect vectors in another family (Hemiptera, Cicadellidae). Furthermore, a positive correlation between pathogen populations in P. spumarius and transmission to plants was observed. Bacterial populations in insects were one to two orders of magnitude lower than those observed in leafhopper vectors, and population size peaked within 3 days of plant access period. These results suggest that P. spumarius has either a limited number of sites in the foregut that may be colonized, or that fluid dynamics in the mouthparts of these insects is different from that in leafhoppers. Altogether our results indicate that X. fastidiosa transmission by spittlebugs is similar to that by leafhoppers. In addition, the relationship between cell numbers in vectors and plant infection may have under-appreciated consequences to pathogen spread.

  1. Draft genome sequence of Xylella fastidiosa pear leaf scorch strain in Taiwan

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of Xylella fastidiosa pear leaf scorch strain (PLS229) isolated from pear cultivar Hengshan (Pyrus pyrifolia) in Taiwan is reported. The bacterium has a genome size of 2,733,013 bp with a G+C content of 53.1%. The PLS229 strain genome was annotated to have 3,259 open readin...

  2. Characterization of an oxidative stress response regulator, homologous to Escherichia coli OxyR, from the phytopathogen Xylella fastidiosa.

    PubMed

    Toledo, M A S; Schneider, D R; Azzoni, A R; Favaro, M T P; Pelloso, A C; Santos, C A; Saraiva, A M; Souza, A P

    2011-02-01

    The OxyR oxidative stress transcriptional regulator is a DNA-binding protein that belongs to the LysR-type transcriptional regulators (LTTR) family. It has the ability to sense oxidative species inside the cell and to trigger the cell's response, activating the transcription of genes involved in scavenging oxidative species. In the present study, we have overexpressed, purified and characterized the predicted OxyR homologue (orf xf1273) of the phytopathogen Xylella fastidiosa. This bacterium is the causal agent of citrus variegated chlorosis (CVC) disease caused by the 9a5c strain, resulting in economic and social losses. The secondary structure of the recombinant protein was analyzed by circular dichroism. Gel filtration showed that XfoxyR is a dimer in solution. Gel shift assays indicated that it does bind to its own predicted promoter under in vitro conditions. However, considering our control experiment we cannot state that this interaction occurs in vivo. Functional complementation assays indicated that xfoxyR is able to restore the oxidative stress response in an oxyr knockout Escherichia coli strain. These results show that the predicted orfxf1273 codes for a transcriptional regulator, homologous to E. coli OxyR, involved in the oxidative stress response. This may be important for X. fastidiosa to overcome the defense mechanisms of its host during the infection and colonization processes. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Distribution of Xylella fastidiosa in Sycamore associated with low temperature and host resistance

    Treesearch

    T.S.M. Henneberger; K.L. Stevenson; C.J. Chang

    2004-01-01

    Experiments were conducted in the field and laboratory to determine effects of low temperatures 4% on Xylella fastidiosa populations in American sycamore. Roots and shoots from naturally infected trees at two locations were collected monthly. Sap extracted from the samples was tested by enzyme-linked immunosorbent assay for presence of X...

  4. Xylella fastidiosa Afimbrial Adhesins Mediate Cell Transmission to Plants by Leafhopper Vectors▿

    PubMed Central

    Killiny, Nabil; Almeida, Rodrigo P. P.

    2009-01-01

    The interactions between the economically important plant-pathogenic bacterium Xylella fastidiosa and its leafhopper vectors are poorly characterized. We used different approaches to determine how X. fastidiosa cells interact with the cuticular surface of the foreguts of vectors. We demonstrate that X. fastidiosa binds to different polysaccharides with various affinities and that these interactions are mediated by cell surface carbohydrate-binding proteins. In addition, competition assays showed that N-acetylglucosamine inhibits bacterial adhesion to vector foregut extracts and intact wings, demonstrating that attachment to leafhopper surfaces is affected in the presence of specific polysaccharides. In vitro experiments with several X. fastidiosa knockout mutants indicated that hemagglutinin-like proteins are associated with cell adhesion to polysaccharides. These results were confirmed with biological experiments in which hemagglutinin-like protein mutants were transmitted to plants by vectors at lower rates than that of the wild type. Furthermore, although these mutants were defective in adhesion to the cuticle of vectors, their growth rate once attached to leafhoppers was similar to that of the wild type, suggesting that these proteins are important for initial adhesion of X. fastidiosa to leafhoppers. We propose that X. fastidiosa colonization of leafhopper vectors is a complex, stepwise process similar to the formation of biofilms on surfaces. PMID:19011051

  5. The Complex Biogeography of the Plant Pathogen Xylella fastidiosa: Genetic Evidence of Introductions and Subspecific Introgression in Central America

    PubMed Central

    Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A.; Ruiz Sánchez, Rebeca; Stouthamer, Richard

    2014-01-01

    The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa. PMID:25379725

  6. The complex biogeography of the plant pathogen Xylella fastidiosa: genetic evidence of introductions and Subspecific introgression in Central America.

    PubMed

    Nunney, Leonard; Ortiz, Beatriz; Russell, Stephanie A; Ruiz Sánchez, Rebeca; Stouthamer, Richard

    2014-01-01

    The bacterium Xylella fastidiosa is a plant pathogen with a history of economically damaging introductions of subspecies to regions where its other subspecies are native. Genetic evidence is presented demonstrating the introduction of two new taxa into Central America and their introgression into the native subspecies, X. fastidiosa subsp. fastidiosa. The data are from 10 genetic outliers detected by multilocus sequence typing (MLST) of isolates from Costa Rica. Six (five from oleander, one from coffee) defined a new sequence type (ST53) that carried alleles at six of the eight loci sequenced (five of the seven MLST loci) diagnostic of the South American subspecies Xylella fastidiosa subsp. pauca which causes two economically damaging plant diseases, citrus variegated chlorosis and coffee leaf scorch. The two remaining loci of ST53 carried alleles from what appears to be a new South American form of X. fastidiosa. Four isolates, classified as X. fastidiosa subsp. fastidiosa, showed a low level of introgression of non-native DNA. One grapevine isolate showed introgression of an allele from X. fastidiosa subsp. pauca while the other three (from citrus and coffee) showed introgression of an allele with similar ancestry to the alleles of unknown origin in ST53. The presence of X. fastidiosa subsp. pauca in Central America is troubling given its disease potential, and establishes another route for the introduction of this economically damaging subspecies into the US or elsewhere, a threat potentially compounded by the presence of a previously unknown form of X. fastidiosa.

  7. Whole genome sequencing and analyses of Xylella fastidiosa subsp. fastidiosa strain GV156 causing Pierce’s disease of grapevine in Taiwan

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a nutritionally fastidious Gram-negative bacterium causing Pierce’s disease (PD) of grapevines. PD was first reported in Anaheim, California in 1892 and is currently endemic in California and the southeastern U.S. PD also was found outside the U.S. but is limited to the America...

  8. Transcriptome Analysis of the Phytobacterium Xylella fastidiosa Growing under Xylem-Based Chemical Conditions

    PubMed Central

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R.

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates. PMID:20625415

  9. Transcriptome analysis of the phytobacterium Xylella fastidiosa growing under xylem-based chemical conditions.

    PubMed

    Ciraulo, Maristela Boaceff; Santos, Daiene Souza; Rodrigues, Ana Claudia de Freitas Oliveira; de Oliveira, Marcus Vinícius; Rodrigues, Tiago; de Oliveira, Regina Costa; Nunes, Luiz R

    2010-01-01

    Xylella fastidiosa is a xylem-limited bacterium responsible for important plant diseases, like citrus-variegated chlorosis (CVC) and grapevine Pierce's disease (PD). Interestingly, in vitro growth of X. fastidiosa in chemically defined media that resemble xylem fluid has been achieved, allowing studies of metabolic processes used by xylem-dwelling bacteria to thrive in such nutrient-poor conditions. Thus, we performed microarray hybridizations to compare transcriptomes of X. fastidiosa cells grown in 3G10-R, a medium that resembles grape sap, and in Periwinkle Wilt (PW), the complex medium traditionally used to cultivate X. fastidiosa. We identified 299 transcripts modulated in response to growth in these media. Some 3G10R-overexpressed genes have been shown to be upregulated in cells directly isolated from infected plants and may be involved in plant colonization, virulence and environmental competition. In contrast, cells cultivated in PW show a metabolic switch associated with increased aerobic respiration and enhanced bacterial growth rates.

  10. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination.

    PubMed

    Jacques, Marie-Agnès; Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique

    2015-12-28

    Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination

    PubMed Central

    Denancé, Nicolas; Legendre, Bruno; Morel, Emmanuelle; Briand, Martial; Mississipi, Stelly; Durand, Karine; Olivier, Valérie; Portier, Perrine; Poliakoff, Françoise; Crouzillat, Dominique

    2015-01-01

    Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants. PMID:26712553

  12. Enhanced Reliability and Accuracy for Field Deployable Bioforensic Detection and Discrimination of Xylella fastidiosa subsp. pauca, Causal Agent of Citrus Variegated Chlorosis Using Razor Ex Technology and TaqMan Quantitative PCR

    PubMed Central

    Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets. PMID:24312333

  13. Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using razor ex technology and TaqMan quantitative PCR.

    PubMed

    Ouyang, Ping; Arif, Mohammad; Fletcher, Jacqueline; Melcher, Ulrich; Ochoa Corona, Francisco Manuel

    2013-01-01

    A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.

  14. Potential complications when developing gene deletion clones in Xylella fastidiosa.

    PubMed

    Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia

    2015-04-16

    The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.

  15. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization.

    PubMed

    Harakava, Ricardo; Gabriel, Dean W

    2003-02-01

    Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.

  16. Genetic discovery in Xylella fastidiosa through sequence analysis of selected randomly amplified polymorphic DNAs.

    PubMed

    Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C

    2005-02-01

    Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.

  17. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants

    PubMed Central

    Newman, Karyn L.; Almeida, Rodrigo P. P.; Purcell, Alexander H.; Lindow, Steven E.

    2004-01-01

    Xylella fastidiosa, which causes Pierce's disease of grapevine and other important plant diseases, is a xylem-limited bacterium that depends on insect vectors for transmission. Although many studies have addressed disease symptom development and transmission of the pathogen by vectors, little is known about the bacterial mechanisms driving these processes. Recently available X. fastidiosa genomic sequences and molecular tools have provided new routes for investigation. Here, we show that a diffusible signal molecule is required for biofilm formation in the vector and for vector transmission to plants. We constructed strains of X. fastidiosa mutated in the rpfF gene and determined that they are unable to produce the signal activity. In addition, rpfF mutants are more virulent than the wild type when mechanically inoculated into plants. This signal therefore directs interaction of X. fastidiosa with both its insect vector and plant host. Interestingly, rpfF mutants can still form in planta biofilms, which differ architecturally from biofilms in insects, suggesting that biofilm architecture, rather than a passive response to the environment, is actively determined by X. fastidiosa gene expression. This article reports a cell-cell signaling requirement for vector transmission. Identification of the genes regulated by rpfF should elucidate bacterial factors involved in transmission and biofilm formation in the insect. PMID:14755059

  18. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    PubMed

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  19. Habitat Effects on Population Density and Movement of Insect Vectors of Xylella fastidiosa in California, USA

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a xylem-limited bacterium that causes disease in grapevines, almonds, citrus, pear, alfalfa, and many other economically important plants. In California, USA, the bacteria are transmitted by several species of leafhoppers including the cicadellids Draeculacephala minerva Ball a...

  20. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    PubMed

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  1. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence.

    PubMed

    Caserta, R; Picchi, S C; Takita, M A; Tomaz, J P; Pereira, W E L; Machado, M A; Ionescu, M; Lindow, S; De Souza, A A

    2014-11-01

    Xylella fastidiosa and Xanthomonas citri subsp. citri, that cause citrus variegated chlorosis (CVC) and citrus canker diseases, respectively, utilize diffusible signal factor (DSF) for quorum sensing. DSF, produced by RpfF, are similar fatty acids in both organisms, although a different set of genes is regulated by DSF in each species. Because of this similarity, Xylella fastidiosa DSF might be recognized and affect the biology of Xanthomonas citri. Therefore, transgenic Citrus sinensis and Carrizo citrange plants overexpressing the Xylella fastidiosa rpfF were inoculated with Xanthomonas citri and changes in symptoms of citrus canker were observed. X. citri biofilms formed only at wound sites on transgenic leaves and were thicker; however, bacteria were unable to break through the tissue and form pustules elsewhere. Although abundant growth of X. citri occurred at wound sites on inoculated transgenic leaves, little growth was observed on unwounded tissue. Genes in the DFS-responsive core in X. citri were downregulated in bacteria isolated from transgenic leaves. DSF-dependent expression of engA was suppressed in cells exposed to xylem sap from transgenic plants. Thus, altered symptom development appears to be due to reduced expression of virulence genes because of the presence of antagonists of DSF signaling in X. citri in rpfF-expressing plants.

  2. Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation

    PubMed Central

    de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I.; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne

    2008-01-01

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes. PMID:19116666

  3. Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation.

    PubMed

    de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne

    2008-01-01

    Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.

  4. A suitable Xylella fastidiosa CVC strain for post-genome studies.

    PubMed

    Teixeira, Diva do Carmo; Rocha, Sanvai Regina Prado; de Santos, Mateus Almeida; Mariano, Anelise Galdino; Li, Wen Bin; Monteiro, Patricia Brant

    2004-12-01

    The genome sequence of the pathogen Xylella fastidiosa Citrus Variegated Chlorosis (CVC) strain 9a5c has revealed many genes related to pathogenicity mechanisms and virulence determinants. However, strain 9a5c is resistant to genetic transformation, impairing mutant production for the analysis of pathogenicity mechanisms and virulence determinants of this fastidious phytopathogen. By screening different strains, we found out that cloned strains J1a12, B111, and S11400, all isolated from citrus trees affected by CVC, are amenable to transformation, and J1a12 has been used as a model strain in a functional genomics program supported by FAPESP (São Paulo State Research Foundation). However, we have found that strain J1a12, unlike strains 9a5c and B111, was incapable of inducing CVC symptoms when inoculated in citrus plants. We have now determined that strain B111 is an appropriate candidate for post-genome studies of the CVC strain of X. fastidiosa.

  5. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa.

    PubMed

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A; Jacobson, Aaron; Phinney, Brett S; Dolan, David; Durbin-Johnson, Blythe P; Antonova, Elena S; Lindow, Steven E; Mellema, Matthew S; Goulart, Luiz R; Dandekar, Abhaya M

    2016-08-05

    Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.

  6. The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa

    PubMed Central

    Gouran, Hossein; Gillespie, Hyrum; Nascimento, Rafael; Chakraborty, Sandeep; Zaini, Paulo A.; Jacobson, Aaron; Phinney, Brett S.; Dolan, David; Durbin-Johnson, Blythe P.; Antonova, Elena S.; Lindow, Steven E.; Mellema, Matthew S.; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease “PrtA” that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa. PMID:27492542

  7. Crystal structure of a small heat-shock protein from Xylella fastidiosa reveals a distinct high-order structure.

    PubMed

    Fonseca, Emanuella Maria Barreto; Scorsato, Valéria; Dos Santos, Marcelo Leite; Júnior, Atilio Tomazini; Tada, Susely Ferraz Siqueira; Dos Santos, Clelton Aparecido; de Toledo, Marcelo Augusto Szymanski; de Souza, Anete Pereira; Polikarpov, Igor; Aparicio, Ricardo

    2017-04-01

    Citrus variegated chlorosis is a disease that attacks economically important citrus plantations and is caused by the plant-pathogenic bacterium Xylella fastidiosa. In this work, the structure of a small heat-shock protein from X. fastidiosa (XfsHSP17.9) is reported. The high-order structures of small heat-shock proteins from other organisms are arranged in the forms of double-disc, hollow-sphere or spherical assemblies. Unexpectedly, the structure reported here reveals a high-order architecture forming a nearly square cavity.

  8. Association of the sharpshooter X wave with xylem inoculation of Xylella fastidiosa leading to systemic, symptomatic Pierce’s diesease infection in grape

    USDA-ARS?s Scientific Manuscript database

    Despite several decades of study, the mechanism of inoculation of X. fastidiosa (Xf) to grapevines by its sharpshooter vectors still is not fully understood. Recent research showed that Xf is inoculated into or onto artificial diets by a combination of egestion and salivation. However, the salivatio...

  9. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by gacA.

    PubMed

    Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A

    2009-04-01

    The xylem-limited, insect-transmitted bacterium Xylella fastidiosa causes Pierce's disease in grapes through cell aggregation and vascular clogging. GacA controls various physiological processes and pathogenicity factors in many gram-negative bacteria, including biofilm formation in Pseudomonas syringae pv. tomato DC3000. Cloned gacA of X. fastidiosa was found to restore the hypersensitive response and pathogenicity in gacA mutants of P. syringae pv. tomato DC3000 and Erwinia amylovora. A gacA mutant of X. fastidiosa (DAC1984) had significantly reduced abilities to adhere to a glass surface, form biofilm, and incite disease symptoms on grapevines, compared with the parent (A05). cDNA microarray analysis identified 7 genes that were positively regulated by GacA, including xadA and hsf, predicted to encode outer membrane adhesion proteins, and 20 negatively regulated genes, including gumC and an antibacterial polypeptide toxin gene, cvaC. These results suggest that GacA of X. fastidiosa regulates many factors, which contribute to attachment and biofilm formation, as well as some physiological processes that may enhance the adaptation and tolerance of X. fastidiosa to environmental stresses and the competition within the host xylem.

  10. Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.

    PubMed

    Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard

    2010-06-01

    Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.

  11. Expression of Xylella fastidiosa Fimbrial and Afimbrial Proteins during Biofilm Formation▿

    PubMed Central

    Caserta, R.; Takita, M. A.; Targon, M. L.; Rosselli-Murai, L. K.; de Souza, A. P.; Peroni, L.; Stach-Machado, D. R.; Andrade, A.; Labate, C. A.; Kitajima, E. W.; Machado, M. A.; de Souza, A. A.

    2010-01-01

    Complete sequencing of the Xylella fastidiosa genome revealed characteristics that have not been described previously for a phytopathogen. One characteristic of this genome was the abundance of genes encoding proteins with adhesion functions related to biofilm formation, an essential step for colonization of a plant host or an insect vector. We examined four of the proteins belonging to this class encoded by genes in the genome of X. fastidiosa: the PilA2 and PilC fimbrial proteins, which are components of the type IV pili, and XadA1 and XadA2, which are afimbrial adhesins. Polyclonal antibodies were raised against these four proteins, and their behavior during biofilm development was assessed by Western blotting and immunofluorescence assays. In addition, immunogold electron microscopy was used to detect these proteins in bacteria present in xylem vessels of three different hosts (citrus, periwinkle, and hibiscus). We verified that these proteins are present in X. fastidiosa biofilms but have differential regulation since the amounts varied temporally during biofilm formation, as well as spatially within the biofilms. The proteins were also detected in bacteria colonizing the xylem vessels of infected plants. PMID:20472735

  12. Plasmid transfer by conjugation as a possible route of horizontal gene transfer and recombination in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Horizontal gene transfer is an important component of evolution and adaptation of bacterial species. Xylella fastidiosa has the ability to incorporate exogenous DNA into its genome by homologous recombination at relatively high rates. This genetic recombination is believed to play a role in adaptati...

  13. Association of Xylella fastidiosa with Yield Loss and Altered Fruit Quality in a Naturally Infected Rabbiteye Blueberry Orchard

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa causes disease in a number of plants in the southeastern United States, including southern highbush blueberry, but little was known concerning its potential impact in rabbiteye blueberry (Vaccinium virgatum). In a naturally infected orchard in Louisiana, mean yields of X. fastidi...

  14. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in apulian olive groves of southern Italy

    USDA-ARS?s Scientific Manuscript database

    A study on seasonal abundance and infectivity by Xylella fastidiosa of Auchenorrhyncha species in the Apulia region of Italy was conducted to identify ideal periods for monitoring and adoption of potential control measures against insect vectors. Adult populations of Auchenorrhyncha species were mon...

  15. The DinJ/RelE toxin-antitoxin system suppresses bacterial proliferation and virulence of Xylella fastidiosa in grapevine

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa, the causal agent of Pierce’s disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf scorching symptoms, senescence, and vine decline. It appears ...

  16. Natural Competence and Recombination in the Plant Pathogen Xylella fastidiosa

    PubMed Central

    Kung, Stephanie H.; Almeida, Rodrigo P. P.

    2011-01-01

    Homologous recombination is one of many forces contributing to the diversity, adaptation, and emergence of pathogens. For naturally competent bacteria, transformation is one possible route for the acquisition of novel genetic material. This study demonstrates that Xylella fastidiosa, a generalist bacterial plant pathogen responsible for many emerging plant diseases, is naturally competent and able to homologously recombine exogenous DNA into its genome. Several factors that affect transformation and recombination efficiencies, such as nutrient availability, growth stage, and methylation of transforming DNA, were identified. Recombination was observed in at least one out of every 106 cells when exogenous plasmid DNA was supplied and one out of every 107 cells when different strains were grown together in vitro. Based on previous genomic studies and experimental data presented here, there is mounting evidence that recombination can occur at relatively high rates and could play a large role in shaping the genetic diversity of X. fastidiosa. PMID:21666009

  17. Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa.

    PubMed

    Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L

    2006-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.

  18. Detection and characterization of pXFSL21, a novel single-copy plasmid from Xylella fastidiosa Strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa Strain Stag’s Leap, originally isolated from Napa Valley, California, is highly virulent in causing Pierce’s Disease (PD) of grapevine. Plasmids are extrachromosomal genetic elements associated with bacterial environmental adaptation such as virulence development. In this study, t...

  19. Draft genome sequence of Xylella fastidiosa supsp. multiplex strain Griffin-1 from Quercus rubra in Georgia

    USDA-ARS?s Scientific Manuscript database

    The draft genome sequence of Xylella fastidiosa subsp. multiplex Strain Griffin-1 isolated from a red oak tree (Quercus rubra) in Georgia, U.S.A. is reported. The bacterium has a genome size of 2,387,314 bp with 51.7% G+C content and comprises 2,903 predicted open reading frames (ORFs), and 50 RNA g...

  20. Comparative genomic analysis of coffee-infecting Xylella fastidiosa strains isolated from Brazil.

    PubMed

    Barbosa, Deibs; Alencar, Valquíria Campos; Santos, Daiene Souza; de Freitas Oliveira, Ana Cláudia; de Souza, Alessandra A; Coletta-Filho, Helvecio D; de Oliveira, Regina Souza; Nunes, Luiz R

    2015-05-01

    Strains of Xylella fastidiosa constitute a complex group of bacteria that develop within the xylem of many plant hosts, causing diseases of significant economic importance, such as Pierce's disease in North American grapevines and citrus variegated chlorosis in Brazil. X. fastidiosa has also been obtained from other host plants, in direct correlation with the development of diseases, as in the case of coffee leaf scorch (CLS)--a disease with potential to cause severe economic losses to the Brazilian coffee industry. This paper describes a thorough genomic characterization of coffee-infecting X. fastidiosa strains, initially performed through a microarray-based approach, which demonstrated that CLS strains could be subdivided in two phylogenetically distinct subgroups. Whole-genomic sequencing of two of these bacteria (one from each subgroup) allowed identification of ORFs and horizontally transferred elements (HTEs) that were specific to CLS-related X. fastidiosa strains. Such analyses confirmed the size and importance of HTEs as major mediators of chromosomal evolution amongst these bacteria, and allowed identification of differences in gene content, after comparisons were made with previously sequenced X. fastidiosa strains, isolated from alternative hosts. Although direct experimentation still needs to be performed to elucidate the biological consequences associated with such differences, it was interesting to verify that CLS-related bacteria display variations in genes that produce toxins, as well as surface-related factors (such as fimbrial adhesins and LPS) that have been shown to be involved with recognition of specific host factors in different pathogenic bacteria. © 2015 The Authors.

  1. Radicinin from Cochliobolus sp. inhibits Xylella fastidiosa, the causal agent of Pierce's Disease of grapevine.

    PubMed

    Aldrich, Thomas J; Rolshausen, Philippe E; Roper, M Caroline; Reader, Jordan M; Steinhaus, Matthew J; Rapicavoli, Jeannette; Vosburg, David A; Maloney, Katherine N

    2015-08-01

    The fastidious phytopathogenic bacterium, Xylella fastidiosa, poses a substantial threat to many economically important crops, causing devastating diseases including Pierce's Disease of grapevine. Grapevines (Vitis vinifera L.) planted in an area under Pierce's Disease pressure often display differences in disease severity and symptom expression, with apparently healthy vines growing alongside the dying ones, despite the fact that all the vines are genetic clones of one another. Under the hypothesis that endophytic microbes might be responsible for this non-genetic resistance to X. fastidiosa, endophytic fungi were isolated from vineyard cvs. 'Chardonnay' and 'Cabernet Sauvignon' grown under high Pierce's Disease pressure. A Cochliobolus sp. isolated from a Cabernet Sauvignon grapevine inhibited the growth of X. fastidiosa in vitro. Bioassay-guided isolation of an organic extract of Cochliobolus sp. yielded the natural product radicinin as the major active compound. Radicinin also inhibited proteases isolated from the culture supernatant of X. fastidiosa. In order to assess structure-activity relationships, three semi-synthetic derivatives of radicinin were prepared and tested for activity against X. fastidiosa in vitro. Assay results of these derivatives are consistent with enzyme inactivation by conjugate addition to carbon-10 of radicinin, as proposed previously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. XatA, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1

    PubMed Central

    Matsumoto, Ayumi; Huston, Sherry L; Killiny, Nabil; Igo, Michele M

    2012-01-01

    Xylella fastidiosa Temecula1 is the causative agent of Pierce's disease of grapevine, which is spread by xylem-feeding insects. An important feature of the infection cycle is the ability of X. fastidiosa to colonize and interact with two distinct environments, the xylem of susceptible plants and the insect foregut. Here, we describe our characterization of XatA, the X. fastidiosa autotransporter protein encoded by PD0528. XatA, which is classified as an AT-1 (classical) autotransporter, has a C-terminal β-barrel domain and a passenger domain composed of six tandem repeats of approximately 50 amino acids. Localization studies indicate that XatA is present in both the outer membrane and membrane vesicles and its passenger domain can be found in the supernatant. Moreover, XatA is important for X. fastidiosa autoaggregation and biofilm formation based on mutational analysis and the discovery that Escherichia coli expressing XatA acquire these traits. The xatA mutant also shows a significant decrease in Pierce's disease symptoms when inoculated into grapevines. Finally, X. fastidiosa homologs to XatA, which can be divided into three distinct groups based on synteny, form a single, well-supported clade, suggesting that they arose from a common ancestor. PMID:22950010

  3. A Temperature-Independent Cold-Shock Protein Homolog Acts as a Virulence Factor in Xylella fastidiosa.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-05-01

    Xylella fastidiosa, causal agent of Pierce's disease (PD) of grapevine, is a fastidious organism that requires very specific conditions for replication and plant colonization. Cold temperatures reduce growth and survival of X. fastidiosa both in vitro and in planta. However, little is known regarding physiological responses of X. fastidiosa to temperature changes. Cold-shock proteins (CSP), a family of nucleic acid-binding proteins, act as chaperones facilitating translation at low temperatures. Bacterial genomes often encode multiple CSP, some of which are strongly induced following exposure to cold. Additionally, CSP contribute to the general stress response through mRNA stabilization and posttranscriptional regulation. A putative CSP homolog (Csp1) with RNA-binding activity was identified in X. fastidiosa Stag's Leap. The csp1 gene lacked the long 5' untranslated region characteristic of cold-inducible genes and was expressed in a temperature-independent manner. As compared with the wild type, a deletion mutant of csp1 (∆csp1) had decreased survival rates following cold exposure and salt stress in vitro. The deletion mutant also was significantly less virulent in grapevine, as compared with the wild type, in the absence of cold stress. These results suggest an important function of X. fastidiosa Csp1 in response to cellular stress and during plant colonization.

  4. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques

    PubMed Central

    Baldi, Paolo; La Porta, Nicola

    2017-01-01

    In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific

  5. Plasmid vectors for Xylella fastidiosa utilizing a toxin-antitoxin system for plasmid stability in the absence of antibiotic selection

    USDA-ARS?s Scientific Manuscript database

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacte...

  6. RpfF-dependent regulon of Xylella fastidiosa.

    PubMed

    Wang, Nian; Li, Jian-Liang; Lindow, Steven E

    2012-11-01

    ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate < 0.05) were identified when cells were grown in PW liquid medium. Among them, 165 genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.

  7. Analysis of the biofilm proteome of Xylella fastidiosa.

    PubMed

    Silva, Mariana S; De Souza, Alessandra A; Takita, Marco A; Labate, Carlos A; Machado, Marcos A

    2011-09-22

    Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. We observed overexpression of proteins related to quorum sensing, proving the existence of

  8. Analysis of the biofilm proteome of Xylella fastidiosa

    PubMed Central

    2011-01-01

    Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins related to quorum

  9. Two whole genome sequences of Xylella fastidiosa (strains M12 and M23) causing almond leaf scorch disease in California

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a Gram negative, nutritionally fastidious plant pathogenic bacterium that causes many economically important diseases including almond leaf scorch disease (ALSD) and Pierce’s disease of grape in California, as well as citrus variegated chlorosis in South America. Genome inform...

  10. Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.

    PubMed

    Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.

  11. Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas

    PubMed Central

    Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry

    2014-01-01

    The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944

  12. Expression of pathogenicity-related genes of Xylella fastidiosa in vitro and in planta.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Pereira, Eridan O; Coletta-Filho, Helvécio D; Machado, Marcos A

    2005-04-01

    Xylella fastidiosa is responsible for several economically important plant diseases. It is currently assumed that the symptoms are caused by vascular occlusion due to biofilm formation. Microarray technology was previously used to examine the global gene expression profile of X. fastidiosa freshly isolated from symptomatic plants or after several passages by axenic culture medium, and different pathogenicity profiles have been obtained. In the present study the expression of some pathogenicity-related genes was evaluated in vitro and in planta by RT-PCR. The results suggest that adhesion is important at the beginning of biofilm formation, while the genes related to adaptation are essential for the organism's maintenance in planta. Similar results were observed in vitro mainly for the adhesion genes. The pattern of expression observed suggests that adhesion modulates biofilm formation whereas the expression of some adaptation genes may be related to the environment in which the organism is living.

  13. Direct Evidence of Egestion and Salivation of Xylella fastidiosa Suggests Sharpshooters Can Be "Flying Syringes".

    PubMed

    Backus, Elaine A; Shugart, Holly J; Rogers, Elizabeth E; Morgan, J Kent; Shatters, Robert

    2015-05-01

    Xylella fastidiosa is unique among insect-transmitted plant pathogens because it is propagative but noncirculative, adhering to and multiplying on the cuticular lining of the anterior foregut. Any inoculation mechanism for X. fastidiosa must explain how bacterial cells exit the vector's stylets via the food canal and directly enter the plant. A combined egestion-salivation mechanism has been proposed to explain these unique features. Egestion is the putative outward flow of fluid from the foregut via hypothesized bidirectional pumping of the cibarium. The present study traced green fluorescent protein-expressing X. fastidiosa or fluorescent nanoparticles acquired from artificial diets by glassy-winged sharpshooters, Homalodisca vitripennis, as they were egested into simultaneously secreted saliva. X. fastidiosa or nanoparticles were shown to mix with gelling saliva to form fluorescent deposits and salivary sheaths on artificial diets, providing the first direct, conclusive evidence of egestion by any hemipteran insect. Therefore, the present results strongly support an egestion-salivation mechanism of X. fastidiosa inoculation. Results also support that a column of fluid is transiently held in the foregut without being swallowed. Evidence also supports (but does not definitively prove) that bacteria were suspended in the column of fluid during the vector's transit from diet to diet, and were egested with the held fluid. Thus, we hypothesize that sharpshooters could be true "flying syringes," especially when inoculation occurs very soon after uptake of bacteria, suggesting the new paradigm of a nonpersistent X. fastidiosa transmission mechanism.

  14. De Novo whole genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 from blueberry in Georgia, USA

    USDA-ARS?s Scientific Manuscript database

    This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....

  15. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants.

    PubMed

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  16. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    PubMed Central

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  17. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  18. Xylella fastidiosa in rabbiteye blueberry in Louisiana is genetically similar to a strain found in Southern highbush blueberry in Georgia

    USDA-ARS?s Scientific Manuscript database

    During the past ten years, Xylella fastidiosa has been confirmed as a pathogen of Southern highbush blueberry (Vaccinium corymbosum interspecific hybrids) in Georgia and Florida. Recent work in Louisiana has shown that it is also associated with reduced yield and altered fruit quality in ‘Tifblue’ ...

  19. Control of Pierce's Disease by Phage

    PubMed Central

    Das, Mayukh; Bhowmick, Tushar Suvra; Ahern, Stephen J.; Young, Ry; Gonzalez, Carlos F.

    2015-01-01

    Pierce’s Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella. PMID:26107261

  20. Differentiation of Xylella fastidiosa Strains via Multilocus Sequence Analysis of Environmentally Mediated Genes (MLSA-E)

    PubMed Central

    Parker, Jennifer K.; Havird, Justin C.

    2012-01-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing

  1. Differentiation of Xylella fastidiosa strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E).

    PubMed

    Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo

    2012-03-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing

  2. TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines.

    PubMed

    Reddy, Joseph D; Reddy, Stephanie L; Hopkins, Don L; Gabriel, Dean W

    2007-04-01

    Xylella fastidiosa infects a wide range of hosts and causes serious diseases on some of them. The complete genomic sequences of both a citrus variegated chlorosis (CVC) and a Pierce's disease (PD) strain revealed two type I protein secretion plus two multidrug resistance efflux systems, and all evidently were dependent on a single tolC homolog. Marker exchange mutagenesis of the single tolC gene in PD strain Temecula resulted in a total loss of pathogenicity on grape. Importantly, the tolC- mutant strains were not recovered after inoculation into grape xylem, strongly indicating that multidrug efflux is critical to survival of this fastidious pathogen. Both survival and pathogenicity were restored by complementation using tolC cloned in shuttle vector pBBR1MCS-5, which was shown to replicate autonomously, without selection, for 60 days in Temecula growing in planta. These results also demonstrate the ability to complement mutations in X. fastidiosa.

  3. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    PubMed

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  4. Population Structure of Xylella fastidiosa Associated with Almond Leaf Scorch Disease in the San Joaquin Valley of California.

    PubMed

    Lin, Hong; Islam, Md Sajedul; Cabrera-La Rosa, Juan C; Civerolo, Edwin L; Groves, Russell L

    2015-06-01

    Xylella fastidiosa causes disease in many commercial crops, including almond leaf scorch (ALS) disease in susceptible almond (Prunus dulcis). In this study, genetic diversity and population structure of X. fastidiosa associated with ALS disease were evaluated. Isolates obtained from two almond orchards in Fresno and Kern County in the San Joaquin Valley of California were analyzed for two successive years. Multilocus simple-sequence repeat (SSR) analysis revealed two major genetic clusters that were associated with two host cultivars, 'Sonora' and 'Nonpareil', respectively, regardless of the year of study or location of the orchard. These relationships suggest that host cultivar selection and adaptation are major driving forces shaping ALS X. fastidiosa population structure in the San Joaquin Valley. This finding will provide insight into understanding pathogen adaptation and host selection in the context of ALS disease dynamics.

  5. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.

    PubMed

    Coltri, Patricia P; Rosato, Yoko B

    2005-04-01

    Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.

  6. Effects of Grape Xylem Sap and Cell-Wall Constituents on In Vitro Growth, Biofilm Formation and Cellular Aggregation of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Purified cell-wall constituents or grape xylem sap added to media affected in vitro growth, biofilm formation, cell aggregation and gene expression of Xylella fastidiosa. Media containing xylem sap from Pierce’s disease (PD)-susceptible plants provided better support for bacterial growth and biofil...

  7. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  8. Phenology of Xylella fastidiosa and Draeculocephala minerva in California almond nurseries: an assessment of plant vulnerability to almond leaf scorch disease

    USDA-ARS?s Scientific Manuscript database

    Management of a plant disease requires knowledge of all possible infection pathways. Almond leaf scorch disease (ALSD) is caused by the xylem-limited bacterium Xylella fastidiosa, which is transmitted by several species of leafhoppers. The objectives of this research were to elucidate the fate of b...

  9. Characterization of the Xylella fastidiosa PD1311 gene mutant and its suppression of Pierce's disease on grapevines.

    PubMed

    Hao, Lingyun; Johnson, Kameka; Cursino, Luciana; Mowery, Patricia; Burr, Thomas J

    2017-06-01

    Xylella fastidiosa causes Pierce's disease (PD) on grapevines, leading to significant economic losses in grape and wine production. To further our understanding of X. fastidiosa virulence on grapevines, we examined the PD1311 gene, which encodes a putative acyl-coenzyme A (acyl-CoA) synthetase, and is highly conserved across Xylella species. It was determined that PD1311 is required for virulence, as the deletion mutant, ΔPD1311, was unable to cause disease on grapevines. The ΔPD1311 strain was impaired in behaviours known to be associated with PD development, including motility, aggregation and biofilm formation. ΔPD1311 also expressed enhanced sensitivity to H 2 O 2 and polymyxin B, and showed reduced survival in grapevine sap, when compared with wild-type X. fastidiosa Temecula 1 (TM1). Following inoculation, ΔPD1311 could not be detected in grape shoots, which may be related to its altered growth and sensitivity phenotypes. Inoculation with ΔPD1311 2 weeks prior to TM1 prevented the development of PD in a significant fraction of vines and eliminated detectable levels of TM1. In contrast, vines inoculated simultaneously with TM1 and ΔPD1311 developed disease at the same level as TM1 alone. In these vines, TM1 populations were distributed similarly to populations in TM1-only inoculated plants. These findings suggest that, through an indirect mechanism, pretreatment of vines with ΔPD1311 suppresses pathogen population and disease. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Metabolic Profiling of Xylem Sap from Pierce’s Disease Resistant and Susceptible Grapevines

    USDA-ARS?s Scientific Manuscript database

    Pierce’s Disease (PD) of grapevines is caused by a gram-negative, xylem-limited bacterium Xylella fastidiosa (Xf). All Vitis vinifera-based cultivars are highly susceptible to Xf infection. However, some grape species from the southern United States such as V. arizonica, V. Shuttleworthii, and Musca...

  11. Site-Directed Disruption of the fimA and fimF Fimbrial Genes of Xylella fastidiosa.

    PubMed

    Feil, Helene; Feil, William S; Detter, John C; Purcel, Alexander H; Lindow, Steven E

    2003-06-01

    ABSTRACT Xylella fastidiosa causes Pierce's disease, a serious disease of grape, citrus variegated chlorosis, almond and oleander leaf scorches, and many other similar diseases. Although the complete genome sequences of several strains of this organism are now available, the function of most genes in this organism, especially those conferring virulence, is lacking. Attachment of X. fastidiosa to xylem vessels and insect vectors may be required for virulence and transmission; therefore, we disrupted fimA and fimF, genes encoding the major fimbrial protein FimA and a homolog of the fimbrial adhesin MrkD, to determine their role in the attachment process. Disruption of the fimA and fimF genes in Temecula1 and STL grape strains of X. fastidiosa was obtained by homologous recombination using plasmids pFAK and pFFK, respectively. These vectors contained a kanamycin resistance gene cloned into either the fimA or fimF genes of X. fastidiosa grape strains Temecula1 or STL. Efficiency of transformation was sufficiently high ( approximately 600 transformants per mug of pFFK DNA) to enable selection of rare recombination events. Polymerase chain reaction and Southern blot analyses of the mutants indicated that a double crossover event had occurred exclusively within the fimA and fimF genes, replacing the chromosomal gene with the disrupted gene and abolishing production of the corresponding proteins, FimA or FimF. Scanning electron microscopy revealed that fimbriae size and number, cell aggregation, and cell size were reduced for the FimA or FimF mutants of X. fastidiosa when compared with the parental strain. FimA or FimF mutants of X. fastidiosa remained pathogenic to grapevines, with bacterial populations slightly reduced compared with those of the wild-type X. fastidiosa cells. These mutants maintained their resistance to kanamycin in planta for at least 6 months in the greenhouse.

  12. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces.

    PubMed

    Ionescu, Michael; Zaini, Paulo A; Baccari, Clelia; Tran, Sophia; da Silva, Aline M; Lindow, Steven E

    2014-09-16

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an "exploratory" lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents.

  13. Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces

    PubMed Central

    Ionescu, Michael; Zaini, Paulo A.; Baccari, Clelia; Tran, Sophia; da Silva, Aline M.; Lindow, Steven E.

    2014-01-01

    Outer membrane vesicles (OMVs) of Gram-negative bacteria have been studied intensively in recent years, primarily in their role in delivering virulence factors and antigens during pathogenesis. However, the near ubiquity of their production suggests that they may play other roles, such as responding to envelope stress or trafficking various cargoes to prevent dilution or degradation by other bacterial species. Here we show that OMVs produced by Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, block its interaction with various surfaces such as the walls of xylem vessels in host plants. The release of OMVs was suppressed by the diffusible signal factor-dependent quorum-sensing system, and a X. fastidiosa ΔrpfF mutant in which quorum signaling was disrupted was both much more virulent to plants and less adhesive to glass and plant surfaces than the WT strain. The higher virulence of the ΔrpfF mutant was associated with fivefold higher numbers of OMVs recovered from xylem sap of infected plants. The frequency of attachment of X. fastidiosa to xylem vessels was 20-fold lower in the presence of OMVs than in their absence. OMV production thus is a strategy used by X. fastidiosa cells to adjust attachment to surfaces in its transition from adhesive cells capable of insect transmission to an “exploratory” lifestyle for systemic spread within the plant host which would be hindered by attachment. OMV production may contribute to the movement of other bacteria in porous environments by similarly reducing their contact with environmental constituents. PMID:25197068

  14. Transmission efficiency of Xylella fastidiosa by sharpshooters (Hemiptera: Cicadellidae) in coffee and citrus.

    PubMed

    Marucci, Rosangela C; Lopes, João R S; Cavichioli, Rodney R

    2008-08-01

    Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacterial pathogen transmitted by several sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L.) and citrus [Citrus sinensis (L.) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret)] sharpshooters that occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%), but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations, vector efficiency in coffee and citrus is lower than that reported in other hosts.

  15. Xylella fastidiosa differentially accumulates mineral elements in biofilm and planktonic cells.

    PubMed

    Cobine, Paul A; Cruz, Luisa F; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo

    2013-01-01

    Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen.

  16. Detection and analysis of the bacterium, Xylella fastidiosa, in glassy-winged sharpshooter, Homalodisca vitripennis, populations in Texas.

    PubMed

    Hail, Daymon; Mitchell, Forrest; Lauzière, Isabelle; Marshall, Patrick; Brady, Jeff; Bextine, Blake

    2010-01-01

    The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections.

  17. Detection and Analysis of the Bacterium, Xylella fastidiosa, in Glassy-Winged Sharpshooter, Homalodisca vitripennis, Populations in Texas

    PubMed Central

    Hail, Daymon; Mitchell, Forrest; Lauzière, Isabelle; Marshall, Patrick; Brady, Jeff; Bextine, Blake

    2010-01-01

    The glassy-winged sharpshooter, Homalodisca vitripeninis Germar (Hemiptera: Cicadellidae), is a xylophagous insect that is an endemic pest of several economically important plants in Texas. H. vitripennis is the main vector of Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the bacterium that causes Pierce's disease of grapevine and can travel long distances putting much of Texas grape production at risk. Understanding the movement of H. vitripennis populations capable of transmitting X. fastidiosa into Pierce's-disease-free areas is critical for developing a management program for Pierce's disease. To that end, the USDA-APHIS has developed a program to sample vineyards across Texas to monitor populations of H. vitripennis. From this sampling, H vitripennis collected during 2005 and 2006 over the months of May, June, and July from eight vineyards in different regions of Texas were recovered from yellow sticky traps and tested for the presence of X. fastidiosa. The foregut contents were vacuum extracted and analyzed using RT-PCR to determine the percentage of H. vitripennis within each population that harbor X. fastidiosa and have the potential to transmit this pathogen. H. vitripennis from vineyards known to have Pierce's disease routinely tested positive for the presence of X. fastidiosa. While almost all H. vitripennis collected from vineyards with no history of Pierce's disease tested negative for the presence of the pathogen, three individual insects tested positive. Furthermore, all three insects were determined, by DNA sequencing, to be carrying a strain of X. fastidiosa homologous to known Pierce's disease strains, signifying them as a risk factor for new X. fastidiosa infections. PMID:21062210

  18. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats.

    PubMed

    Kandel, Prem P; Lopez, Samantha M; Almeida, Rodrigo P P; De La Fuente, Leonardo

    2016-09-01

    Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium

  19. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats

    PubMed Central

    Kandel, Prem P.; Lopez, Samantha M.; Almeida, Rodrigo P. P.

    2016-01-01

    ABSTRACT Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro. Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect

  20. Detecting genetic introgression: high levels of intersubspecific recombination found in Xylella fastidiosa in Brazil.

    PubMed

    Nunney, Leonard; Yuan, Xiaoli; Bromley, Robin E; Stouthamer, Richard

    2012-07-01

    Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee.

  1. Detecting Genetic Introgression: High Levels of Intersubspecific Recombination Found in Xylella fastidiosa in Brazil

    PubMed Central

    Yuan, Xiaoli; Bromley, Robin E.; Stouthamer, Richard

    2012-01-01

    Documenting the role of novel mutation versus homologous recombination in bacterial evolution, and especially in the invasion of new hosts, is central to understanding the long-term dynamics of pathogenic bacteria. We used multilocus sequence typing (MLST) to study this issue in Xylella fastidiosa subsp. pauca from Brazil, a bacterium causing citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). All 55 citrus isolates typed (plus one coffee isolate) defined three similar sequence types (STs) dominated by ST11 (85%), while the remaining 22 coffee isolates defined two STs, mainly ST16 (74%). This low level of variation masked unusually large allelic differences (>1% divergence with no intermediates) at five loci (leuA, petC, malF, cysG, and holC). We developed an introgression test to detect whether these large differences were due to introgression via homologous recombination from another X. fastidiosa subspecies. Using additional sequencing around these loci, we established that the seven randomly chosen MLST targets contained seven regions of introgression totaling 2,172 bp of 4,161 bp (52%), only 409 bp (10%) of which were detected by other recombination tests. This high level of introgression suggests the hypothesis that X. fastidiosa subsp. pauca became pathogenic on citrus and coffee (crops cultivated in Brazil for several hundred years) only recently after it gained genetic variation via intersubspecific recombination, facilitating a switch from native hosts. A candidate donor is the subspecies infecting plum in the region since 1935 (possibly X. fastidiosa subsp. multiplex). This hypothesis predicts that nonrecombinant native X. fastidiosa subsp. pauca (not yet isolated) does not cause disease in citrus or coffee. PMID:22544234

  2. On the role of extracellular polymeric substances during early stages of Xylella fastidiosa biofilm formation.

    PubMed

    Lorite, Gabriela S; de Souza, Alessandra A; Neubauer, Daniel; Mizaikoff, Boris; Kranz, Christine; Cotta, Mônica A

    2013-02-01

    The structural integrity and protection of bacterial biofilms are intrinsically associated with a matrix of extracellular polymeric substances (EPS) produced by the bacteria cells. However, the role of these substances during biofilm adhesion to a surface remains largely unclear. In this study, the influence of EPS on Xylella fastidiosa biofilm formation was investigated. This bacterium is associated with economically important plant diseases; it presents a slow growth rate and thus allows us to pinpoint more precisely the early stages of cell-surface adhesion. Scanning electron microscopy and atomic force microscopy show evidence of EPS production in such early stages and around individual bacteria cells attached to the substrate surface even a few hours after inoculation. In addition, EPS formation was investigated via attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR). To this end, X. fastidiosa cells were inoculated within an ATR liquid cell assembly. IR-ATR spectra clearly reveal EPS formation already during the early stages of X. fastidiosa biofilm formation, thereby providing supporting evidence for the hypothesis of the relevance of the EPS contribution to the adhesion process. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington D.C.

    PubMed

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship.

  4. Population Structure of the Bacterial Pathogen Xylella fastidiosa among Street Trees in Washington D.C.

    PubMed Central

    Harris, Jordan Lee; Balci, Yilmaz

    2015-01-01

    Bacterial leaf scorch, associated with the bacterial pathogen Xylella fastidiosa, is a widely established and problematic disease of landscape ornamentals in Washington D.C. A multi-locus sequence typing analysis was performed using 10 housekeeping loci for X. fastidiosa strains in order to better understand the epidemiology of leaf scorch disease in this municipal environment. Samples were collected from 7 different tree species located throughout the District of Columbia, consisting of 101 samples of symptomatic and asymptomatic foliage from 84 different trees. Five strains of the bacteria were identified. Consistent with prior data, these strains were host specific, with only one strain associated with members of the red oak family, one strain associated with American elm, one strain associated with American sycamore, and two strains associated with mulberry. Strains found for asymptomatic foliage were the same as strains from the symptomatic foliage on individual trees. Cross transmission of the strains was not observed at sites with multiple species of infected trees within an approx. 25 m radius of one another. X. fastidiosa strain specificity observed for each genus of tree suggests a highly specialized host-pathogen relationship. PMID:25815838

  5. A triply cloned strain of xylella fastidiosa multiplies and induces symptoms of citrus variegated chlorosis in sweet orange

    PubMed

    Li; Zreik; Fernandes; Miranda; Teixeira; Ayres; Garnier; Bov

    1999-08-01

    Xylella fastidiosa isolate 8.1.b obtained from a sweet orange tree affected by citrus variegated chlorosis in the state of Sao Paulo, Brazil, and shown in 1993 to be the causal agent of the disease, was cloned by repeated culture in liquid and on solid PW medium, yielding triply cloned strain 9a5c. The eighth and the 16th passages of strain 9a5c were mechanically inoculated into sweet orange plants. Presence of X. fastidiosa in sweet orange leaves of shoots having grown after inoculation (first-flush shoots) was detected by DAS-ELISA and PCR. Thirty-eight days after inoculation, 70% of the 20 inoculated plants tested positive, and all plants gave strong positive reactions 90 days after inoculation. Symptoms first appeared after 3 months and were conspicuous after 5 months. X. fastidiosa was reisolated from sweet orange leaves, 44 days after inoculation. These results indicate that X. fastidiosa strain 9a5c, derived from pathogenic isolate 8.1.b by triply cloning, is also pathogenic. Strain 9a5c is now used for the X. fastidiosa genome sequencing project undertaken on a large scale in Brazil.http://link. springer-ny.com/link/service/journals/00284/bibs/39n2p106.html

  6. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog

    PubMed Central

    Cruz, Luisa F.; Parker, Jennifer K.; Cobine, Paul A.

    2014-01-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. PMID:25217013

  7. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.

    PubMed

    Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo

    2014-12-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Whole genome evaluation of tandem repeat polymorphisms between two pathogenically similar strains of Xylella fastidiosa isolated from almond and grape in California

    USDA-ARS?s Scientific Manuscript database

    Whole genome tandem repeat polymorphisms were evaluated between two closely related Xylella fastidiosa strains, M23 and Temecula1, both cause almond leaf scorch disease (ALSD) and grape Pierce’s disease (PD) in California. Strain M23 was isolated from almond and the genome was sequenced in this stu...

  9. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter, Homalodisca vitripennis, is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa, the causal agent of several plant diseases in the Americas. While the role of plant water stress on the population density and dispersal of H. vitripennis has been studie...

  10. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  11. Xylella fastidiosa Differentially Accumulates Mineral Elements in Biofilm and Planktonic Cells

    PubMed Central

    Cobine, Paul A.; Cruz, Luisa F.; Navarrete, Fernando; Duncan, Daniel; Tygart, Melissa; De La Fuente, Leonardo

    2013-01-01

    Xylella fastidiosa is a bacterial plant pathogen that infects numerous plant hosts. Disease develops when the bacterium colonizes the xylem vessels and forms a biofilm. Inductively coupled plasma optical emission spectroscopy was used to examine the mineral element content of this pathogen in biofilm and planktonic states. Significant accumulations of copper (30-fold), manganese (6-fold), zinc (5-fold), calcium (2-fold) and potassium (2-fold) in the biofilm compared to planktonic cells were observed. Other mineral elements such as sodium, magnesium and iron did not significantly differ between biofilm and planktonic cells. The distribution of mineral elements in the planktonic cells loosely mirrors the media composition; however the unique mineral element distribution in biofilm suggests specific mechanisms of accumulation from the media. A cell-to-surface attachment assay shows that addition of 50 to 100 µM Cu to standard X. fastidiosa media increases biofilm, while higher concentrations (>200 µM) slow cell growth and prevent biofilm formation. Moreover cell-to-surface attachment was blocked by specific chelation of copper. Growth of X. fastidiosa in microfluidic chambers under flow conditions showed that addition of 50 µM Cu to the media accelerated attachment and aggregation, while 400 µM prevented this process. Supplementation of standard media with Mn showed increased biofilm formation and cell-to-cell attachment. In contrast, while the biofilm accumulated Zn, supplementation to the media with this element caused inhibited growth of planktonic cells and impaired biofilm formation. Collectively these data suggest roles for these minerals in attachment and biofilm formation and therefore the virulence of this pathogen. PMID:23349991

  12. Xylella fastidiosa, a new plant pathogen that threatens global farming: Ecology, molecular biology, search for remedies.

    PubMed

    Bucci, Enrico M

    2018-07-12

    Recently, the emergence of an important alien plant pathogen in Europe was evident when the Olive Quick Decline Syndrome (OQDS), a previously unknown disease causing rapid scorching and death of the trees, invested with particular virulence a substantial portion of the vast olive wood of Southern Italy (Salento, part of the Apulia region). Early evidence indicated a connection between the OQDS and the gram-negative bacterium Xylella fastidiosa. This bacterium can target several important crops, so that researchers from all over the world have investigated its association with host plants and vectors, the molecular biology of the infection mechanism, and the molecular reaction of the infected plants. Potentially resistant or tolerant cultivars and molecular targets which might be useful to control the infection have been identified. In vitro tests of compounds active against Xylella have also been performed. In this contribution, the literature and the available data will be reviewed to provide an up-to-date picture of the currently available knowledge on the role of Xylella in OQDS, and in diseases of other plants, with focus on the emerging threats to European farming. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    PubMed Central

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  14. Intersubspecific Recombination in Xylella fastidiosa Strains Native to the United States: Infection of Novel Hosts Associated with an Unsuccessful Invasion

    PubMed Central

    Hopkins, Donald L.; Morano, Lisa D.; Russell, Stephanie E.; Stouthamer, Richard

    2014-01-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry. PMID:24296499

  15. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion.

    PubMed

    Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard

    2014-02-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.

  16. A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy)

    USDA-ARS?s Scientific Manuscript database

    The bacterium Xylella fastidiosa subsp. pauca is associated with the “olive quick decline syndrome” in the Apulia region of southern Italy. To investigate control of this phytopathogen, a compound containing zinc and copper complexed with citric-acid hydracids (Dentamet®) was evaluated for in vitro ...

  17. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction

    PubMed Central

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E.; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains. PMID:26061051

  18. Specific Detection and Identification of American Mulberry-Infecting and Italian Olive-Associated Strains of Xylella fastidiosa by Polymerase Chain Reaction.

    PubMed

    Guan, Wei; Shao, Jonathan; Elbeaino, Toufic; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2015-01-01

    Xylella fastidiosa causes bacterial leaf scorch in many landscape trees including elm, oak, sycamore and mulberry, but methods for specific identification of a particular tree host species-limited strain or differentiation of tree-specific strains are lacking. It is also unknown whether a particular landscape tree-infecting X. fastidiosa strain is capable of infecting multiple landscape tree species in an urban environment. We developed two PCR primers specific for mulberry-infecting strains of X. fastidiosa based on the nucleotide sequence of a unique open reading frame identified only in mulberry-infecting strains among all the North and South American strains of X. fastidiosa sequenced to date. PCR using the primers allowed for detection and identification of mulberry-infecting X. fastidiosa strains in cultures and in samples collected from naturally infected mulberry trees. In addition, no mixed infections with or non-specific detections of the mulberry-infecting strains of X. fastidiosa were found in naturally X. fastidiosa-infected oak, elm and sycamore trees growing in the same region where naturally infected mulberry trees were grown. This genotype-specific PCR assay will be valuable for disease diagnosis, studies of strain-specific infections in insects and plant hosts, and management of diseases caused by X. fastidiosa. Unexpectedly but interestingly, the unique open reading frame conserved in the mulberry-infecting strains in the U. S. was also identified in the recently sequenced olive-associated strain CoDiRO isolated in Italy. When the primer set was tested against naturally infected olive plant samples collected in Italy, it allowed for detection of olive-associated strains of X. fastidiosa in Italy. This PCR assay, therefore, will also be useful for detection and identification of the Italian group of X. fastidiosa strains to aid understanding of the occurrence, evolution and biology of this new group of X. fastidiosa strains.

  19. Seasonal Fluctuations of Sap-Feeding Insect Species Infected by Xylella fastidiosa in Apulian Olive Groves of Southern Italy.

    PubMed

    Ben Moussa, Issam Eddine; Mazzoni, Valerio; Valentini, Franco; Yaseen, Thaer; Lorusso, Donato; Speranza, Stefano; Digiaro, Michele; Varvaro, Leonardo; Krugner, Rodrigo; D'Onghia, Anna Maria

    2016-08-01

    A study on seasonal abundance of Auchenorrhyncha species and their infectivity by Xylella fastidiosa in the Apulia region of Italy was conducted to identify ideal periods for monitoring and adoption of potential control measures against insect vectors. Adult populations of Auchenorrhyncha species were monitored monthly over a 2-yr period from five olive groves. A total of 15 species were captured, identified, and tested for presence of X. fastidiosa by polymerase chain reaction (PCR). For three species, Philaenus spumarius L., Neophilaenus campestris (Fallèn), and Euscelis lineolatus Brullé, positive reactions to X. fastidiosa were obtained, on average, in 16.3, 15.9 and 18.4% of adult insects, respectively. Philaneous spumarius was the dominant species (39.8% of total Auchenorrhyncha captured) with the highest adult abundance in summer months. Adult P. spumarius and N. campestris were first detected between March and May in both years, and all insects tested during these periods (year 1: n = 42, year 2: n = 132) gave negative reactions to X. fastidiosa by PCR. Similarly, first adults of E. lineolatus that appeared from October to November (year 1: n = 20, year 2: n = 15) tested negative for presence of X. fastidiosa Given the lack of transstadial and transovarial transmission of X. fastidiosa and considering that P. spumarius is univoltine, control measures against nymphal stages of P. spumarius should be investigated as means of population suppression to reduce spread of X. fastidiosa in olive groves. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry.

    PubMed

    Nunney, Leonard; Schuenzel, Erin L; Scally, Mark; Bromley, Robin E; Stouthamer, Richard

    2014-05-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry.

  1. Large-Scale Intersubspecific Recombination in the Plant-Pathogenic Bacterium Xylella fastidiosa Is Associated with the Host Shift to Mulberry

    PubMed Central

    Schuenzel, Erin L.; Scally, Mark; Bromley, Robin E.; Stouthamer, Richard

    2014-01-01

    Homologous recombination plays an important role in the structuring of genetic variation of many bacteria; however, its importance in adaptive evolution is not well established. We investigated the association of intersubspecific homologous recombination (IHR) with the shift to a novel host (mulberry) by the plant-pathogenic bacterium Xylella fastidiosa. Mulberry leaf scorch was identified about 25 years ago in native red mulberry in the eastern United States and has spread to introduced white mulberry in California. Comparing a sequence of 8 genes (4,706 bp) from 21 mulberry-type isolates to published data (352 isolates representing all subspecies), we confirmed previous indications that the mulberry isolates define a group distinct from the 4 subspecies, and we propose naming the taxon X. fastidiosa subsp. morus. The ancestry of its gene sequences was mixed, with 4 derived from X. fastidiosa subsp. fastidiosa (introduced from Central America), 3 from X. fastidiosa subsp. multiplex (considered native to the United States), and 1 chimeric, demonstrating that this group originated by large-scale IHR. The very low within-type genetic variation (0.08% site polymorphism), plus the apparent inability of native X. fastidiosa subsp. multiplex to infect mulberry, suggests that this host shift was achieved after strong selection acted on genetic variants created by IHR. Sequence data indicate that a single ancestral IHR event gave rise not only to X. fastidiosa subsp. morus but also to the X. fastidiosa subsp. multiplex recombinant group which infects several hosts but is the only type naturally infecting blueberry, thus implicating this IHR in the invasion of at least two novel native hosts, mulberry and blueberry. PMID:24610840

  2. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease.

    PubMed

    Lindow, Steven; Newman, Karyn; Chatterjee, Subhadeep; Baccari, Clelia; Lavarone, Anthony T; Ionescu, Michael

    2014-03-01

    The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in 'Freedom' grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental 'Freedom' plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.

  3. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    PubMed

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  4. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1.

    PubMed

    Zhang, Shujian; Chakrabarty, Pranjib K; Fleites, Laura A; Rayside, Patricia A; Hopkins, Donald L; Gabriel, Dean W

    2015-01-01

    Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry.

  5. Three New Pierce's Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1

    PubMed Central

    Zhang, Shujian; Chakrabarty, Pranjib K.; Fleites, Laura A.; Rayside, Patricia A.; Hopkins, Donald L.; Gabriel, Dean W.

    2015-01-01

    Xylella fastidiosa (X. fastidiosa) infects a wide range of plant hosts and causes economically serious diseases, including Pierce's Disease (PD) of grapevines. X. fastidiosa biocontrol strain EB92-1 was isolated from elderberry and is infectious and persistent in grapevines but causes only very slight symptoms under ideal conditions. The draft genome of EB92-1 revealed that it appeared to be missing genes encoding 10 potential PD pathogenicity effectors found in Temecula1. Subsequent PCR and sequencing analyses confirmed that EB92-1 was missing the following predicted effectors found in Temecula1: two type II secreted enzymes, including a lipase (LipA; PD1703) and a serine protease (PD0956); two identical genes encoding proteins similar to Zonula occludens toxins (Zot; PD0915 and PD0928), and at least one relatively short, hemagglutinin-like protein (PD0986). Leaves of tobacco and citrus inoculated with cell-free, crude protein extracts of E. coli BL21(DE3) overexpressing PD1703 exhibited a hypersensitive response (HR) in less than 24 hours. When cloned into shuttle vector pBBR1MCS-5, PD1703 conferred strong secreted lipase activity to Xanthomonas citri, E. coli and X. fastidiosa EB92-1 in plate assays. EB92-1/PD1703 transformants also showed significantly increased disease symptoms on grapevines, characteristic of PD. Genes predicted to encode PD0928 (Zot) and a PD0986 (hemagglutinin) were also cloned into pBBR1MCS-5 and moved into EB92-1; both transformants also showed significantly increased symptoms on V. vinifera vines, characteristic of PD. Together, these results reveal that PD effectors include at least a lipase, two Zot-like toxins and a possibly redundant hemagglutinin, none of which are necessary for parasitic survival of X. fastidiosa populations in grapevines or elderberry. PMID:26218423

  6. Global gene expression under nitrogen starvation in Xylella fastidiosa: contribution of the σ54 regulon

    PubMed Central

    2010-01-01

    Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon. PMID:20799976

  7. A cell–cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa

    PubMed Central

    Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E.

    2008-01-01

    Cell–cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF. PMID:18268318

  8. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa.

    PubMed

    Chatterjee, Subhadeep; Wistrom, Christina; Lindow, Steven E

    2008-02-19

    Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.

  9. Development of single chain variable fragment (scFv) antibodies against Xylella fastidiosa subsp. pauca by phage display.

    PubMed

    Yuan, Qing; Jordan, Ramon; Brlansky, Ronald H; Istomina, Olga; Hartung, John

    2015-10-01

    Xylella fastidiosa is a member of the gamma proteobacteria. It is fastidious, insect-vectored and xylem-limited and causes a variety of diseases, some severe, on a wide range of economically important perennial crops, including grape and citrus. Antibody based detection assays are commercially available for X. fastidiosa, and are effective at the species, but not at the subspecies level. We have made a library of scFv antibody fragments directed against X. fastidiosa subsp. pauca strain 9a5c (citrus) by using phage display technology. Antibody gene repertoires were PCR-amplified using 23 primers for the heavy chain variable region (V(H)) and 21 primers for the light chain variable region (V(L)). The V(H) and V(L) were joined by overlap extension PCR, and then the genes of the scFv library were ligated into the phage vector pKM19. The library contained 1.2×10(7) independent clones with full-length scFv inserts. In each of 3cycles of affinity-selection with 9a5c, about 1.0×10(12) phage were used for panning with 4.1×10(6), 7.1×10(6), 2.1×10(7) phage recovered after the first, second and third cycles, respectively. Sixty-six percent of clones from the final library bound X. fastidiosa 9a5c in an ELISA. Some of these scFv antibodies recognized strain 9a5c and did not recognize X. fastidiosa strains that cause Pierce's disease of grapevine. Published by Elsevier B.V.

  10. O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa

    PubMed Central

    Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon

    2015-01-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  11. Analysis of gene expression in two growth states of Xylella fastidiosa and its relationship with pathogenicity.

    PubMed

    de Souza, Alessandra A; Takita, Marco A; Coletta-Filho, Helvécio D; Caldana, Camila; Goldman, Gustavo H; Yanai, Giane M; Muto, Nair H; de Oliveira, Regina C; Nunes, Luiz R; Machado, Marcos A

    2003-10-01

    Xylella fastidiosa is a plant pathogen responsible for diseases of economically important crops. Although there is considerable disagreement about its mechanism of pathogenicity, blockage of the vessels is one of the most accepted hypotheses. Loss of virulence by this bacterium was observed after serial passages in axenic culture. To confirm the loss of pathogenicity of X. fastidiosa, the causing agent of citrus variegated chlorosis (CVC), freshly-isolated bacteria (first passage [FP] condition) as well as bacteria obtained after 46 passages in axenic culture (several passage [SP] condition) were inoculated into sweet orange and periwinkle plants. Using real time quantitative polymerase chain reaction, we verified that the colonization of FP cells was more efficient for both hosts. The sequence of the complete X. fastidiosa genome allowed the construction of a DNA microarray that was used to investigate the total changes in gene expression associated with the FP condition. Most genes found to be induced in the FP condition were associated with adhesion and probably with adaptation to the host environment. This report represents the first study of the transcriptome of this pathogen, which has recently gained more importance, since the genome of several strains has been either partially or entirely sequenced.

  12. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa.

    PubMed

    Choi, Hong-Kyu; Iandolino, Alberto; da Silva, Francisco Goes; Cook, Douglas R

    2013-06-01

    Pierce's disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grape, currently restricted to the Americas. To test the long-standing hypothesis that Pierce's disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a redirection of gene transcription involving 822 genes with a minimum twofold change (P < 0.05), including the upregulation of transcripts for phenylpropanoid and flavonoid biosynthesis, pathogenesis-related proteins, abscisic acid- and jasmonic acid-responsive biosynthesis, and downregulation of transcripts related to photosynthesis, growth, and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlate of the classical concept of the disease triangle in which environment impacts disease severity.

  13. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.

    PubMed

    Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P

    2017-04-01

    Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.

  14. The exopolysaccharide of Xylella fastidiosa is essential for biofilm formation, plant virulence, and vector transmission.

    PubMed

    Killiny, N; Martinez, R Hernandez; Dumenyo, C Korsi; Cooksey, D A; Almeida, R P P

    2013-09-01

    Exopolysaccharides (EPS) synthesized by plant-pathogenic bacteria are generally essential for virulence. The role of EPS produced by the vector-transmitted bacterium Xylella fastidiosa was investigated by knocking out two genes implicated in the EPS biosynthesis, gumD and gumH. Mutant strains were affected in growth characteristics in vitro, including adhesion to surfaces and biofilm formation. In addition, different assays were used to demonstrate that the mutant strains produced significantly less EPS compared with the wild type. Furthermore, gas chromatography-mass spectrometry showed that both mutant strains did not produce oligosaccharides. Biologically, the mutants were deficient in movement within plants, resulting in an avirulent phenotype. Additionally, mutant strains were affected in transmission by insects: they were very poorly transmitted by and retained within vectors. The gene expression profile indicated upregulation of genes implicated in cell-to-cell signaling and adhesins while downregulation in genes was required for within-plant movement in EPS-deficient strains. These results suggest an essential role for EPS in X. fastidiosa interactions with both plants and insects.

  15. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious

    PubMed Central

    Chatelet, David S.; Wistrom, Christina M.; Purcell, Alexander H.; Rost, Thomas L.; Matthews, Mark A.

    2011-01-01

    Background and Aims The bacterium Xylella fastidiosa (Xf), responsible for Pierce's disease (PD) of grapevine, colonizes the xylem conduits of vines, ultimately killing the plant. However, Vitis vinifera grapevine varieties differ in their susceptibility to Xf and numerous other plant species tolerate Xf populations without showing symptoms. The aim of this study was to examine the xylem structure of grapevines with different susceptibilities to Xf infection, as well as the xylem structure of non-grape plant species that support or limit movement of Xf to determine if anatomical differences might explain some of the differences in susceptibility to Xf. Methods Air and paint were introduced into leaves and stems to examine the connectivity between stem and leaves and the length distribution of their vessels. Leaf petiole and stem anatomies were studied to determine the basis for the free or restricted movement of Xf into the plant. Key Results There were no obvious differences in stem or petiole vascular anatomy among the grape varieties examined, nor among the other plant species that would explain differences in resistance to Xf. Among grape varieties, the more tolerant ‘Sylvaner’ had smaller stem vessel diameters and 20 % more parenchyma rays than the other three varieties. Alternative hosts supporting Xf movement had slightly longer open xylem conduits within leaves, and more connection between stem and leaves, when compared with alternative hosts that limit Xf movement. Conclusions Stem–leaf connectivity via open xylem conduits and vessel length is not responsible for differences in PD tolerance among grape varieties, or for limiting bacterial movement in the tolerant plant species. However, it was found that tolerant host plants had narrower vessels and more parenchyma rays, possibly restricting bacterial movement at the level of the vessels. The implications of xylem structure and connectivity for the means and regulation of bacterial movement are

  16. Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa.

    PubMed

    Fogaça, Andréa C; Zaini, Paulo A; Wulff, Nelson A; da Silva, Patrícia I P; Fázio, Marcos A; Miranda, Antônio; Daffre, Sirlei; da Silva, Aline M

    2010-05-01

    In the xylem vessels of susceptible hosts, such as citrus trees, Xylella fastidiosa forms biofilm-like colonies that can block water transport, which appears to correlate to disease symptoms. Besides aiding host colonization, bacterial biofilms play an important role in resistance against antimicrobial agents, for instance antimicrobial peptides (AMPs). Here, we show that gomesin, a potent AMP from a tarantula spider, modulates X. fastidiosa gene expression profile upon 60 min of treatment with a sublethal concentration. DNA microarray hybridizations revealed that among the upregulated coding sequences, some are related to biofilm production. In addition, we show that the biofilm formed by gomesin-treated bacteria is thicker than that formed by nontreated cells or cells exposed to streptomycin. We have also observed that the treatment of X. fastidiosa with a sublethal concentration of gomesin before inoculation in tobacco plants correlates with a reduction in foliar symptoms, an effect possibly due to the trapping of bacterial cells to fewer xylem vessels, given the enhancement in biofilm production. These results warrant further investigation of how X. fastidiosa would respond to the AMPs produced by citrus endophytes and by the insect vector, leading to a better understanding of the mechanism of action of these molecules on bacterial virulence.

  17. Draft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Reznik, Gary; Feil, Helene; Feil, William S; Anderson, Iain; Bernal, Axel; D'Souza, Mark; Ivanova, Natalia; Kapatral, Vinayak; Larsen, Niels; Los, Tamara; Lykidis, Athanasios; Selkov, Eugene; Walunas, Theresa L; Purcell, Alexander; Edwards, Rob A; Hawkins, Trevor; Haselkorn, Robert; Overbeek, Ross; Kyrpides, Nikos C; Predki, Paul F

    2002-10-01

    Draft sequencing is a rapid and efficient method for determining the near-complete sequence of microbial genomes. Here we report a comparative analysis of one complete and two draft genome sequences of the phytopathogenic bacterium, Xylella fastidiosa, which causes serious disease in plants, including citrus, almond, and oleander. We present highlights of an in silico analysis based on a comparison of reconstructions of core biological subsystems. Cellular pathway reconstructions have been used to identify a small number of genes, which are likely to reside within the draft genomes but are not captured in the draft assembly. These represented only a small fraction of all genes and were predominantly large and small ribosomal subunit protein components. By using this approach, some of the inherent limitations of draft sequence can be significantly reduced. Despite the incomplete nature of the draft genomes, it is possible to identify several phage-related genes, which appear to be absent from the draft genomes and not the result of insufficient sequence sampling. This region may therefore identify potential host-specific functions. Based on this first functional reconstruction of a phytopathogenic microbe, we spotlight an unusual respiration machinery as a potential target for biological control. We also predicted and developed a new defined growth medium for Xylella.

  18. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease.

    PubMed

    Hao, Lingyun; Zaini, Paulo A; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.

  19. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease

    PubMed Central

    Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2016-01-01

    Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce’s disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility. PMID:27508296

  20. Seasonal Abundance and Natural Inoculativity of Insect Vectors of Xylella fastidiosa in Oklahoma Tree Nurseries and Vineyards.

    PubMed

    Overall, Lisa M; Rebek, Eric J

    2015-12-01

    Xylella fastidiosa is the causative agent of diseases of perennial plants including peach, plum, elm, oak, pecan, and grape. This bacterial pathogen is transmitted by xylem-feeding insects. In recent years, Pierce's disease of grape has been detected in 10 counties in central and northeastern Oklahoma, prompting further investigation of the disease epidemiology in this state. We surveyed vineyards and tree nurseries in Oklahoma for potential insect vectors to determine species composition, infectivity, and natural inoculativity of commonly captured insect vectors. Yellow sticky cards were used to sample insect fauna at each location. Insects were removed from sticky cards and screened for X. fastidiosa using immunocapture-PCR to determine their infectivity. A second objective was to test the natural inoculativity of insect vectors that are found in vineyards. Graphocephala versuta (Say), Graphocephala coccinea (Forster), Paraulacizes irrorata (F.), Oncometopia orbona (F.), Cuerna costalis (F.), and Entylia carinata Germar were collected from vineyards and taken back to the lab to determine their natural inoculativity. Immunocapture-PCR was used to test plant and insect samples for presence of X. fastidiosa. The three most frequently captured species from vineyards and tree nurseries were G. versuta, Clastoptera xanthocephala Germar, and O. orbona. Of those insects screened for X. fastidiosa, 2.4% tested positive for the bacterium. Field-collected G. versuta were inoculative to both ragweed and alfalfa. Following a 7-d inoculation access period, a higher percentage of alfalfa became infected than ragweed. Results from this study provide insight into the epidemiology of X. fastidiosa in Oklahoma. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The iron stimulon of Xylella fastidiosa includes genes for type IV pilus and colicin V-like bacteriocins.

    PubMed

    Zaini, Paulo A; Fogaça, Andréa C; Lupo, Fernanda G N; Nakaya, Helder I; Vêncio, Ricardo Z N; da Silva, Aline M

    2008-04-01

    Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.

  2. Real-time investigation of mannosyltransferase function of a Xylella fastidiosa recombinant GumH protein using QCM-D.

    PubMed

    Alves, Claudia A; Pedroso, Mariele M; de Moraes, Marcela C; Souza, Dulce H F; Cass, Quezia B; Faria, Ronaldo C

    2011-05-20

    Xylella fastidiosa is a gram-negative bacterium that causes serious diseases in economically important crops, including grapevine, coffee, and citrus fruits. X. fastidiosa colonizes the xylem vessels of the infected plants, thereby blocking water and nutrient transport. The genome sequence of X. fastidiosa has revealed an operon containing nine genes possibly involved in the synthesis of an exopolisaccharide (EPS) named fastidian gum that can be related with the pathogenicity of this bacterium. The α-1,3-mannosyltransferase (GumH) enzyme from X. fastidiosa is involved in fastidian gum production. GumH is responsible for the transfer of mannose from guanosine diphosphate mannose (GDP-man) to the cellobiose-pyrophosphate-polyprenol carrier lipid (CPP-Lip) during the assembly and biosynthesis of EPS. In this work, a method for real-time detection of recombinant GumH enzymatic activity was successfully developed using a Quartz Crystal Microbalance with dissipation monitoring (QCM-D). The QCM-D transducer was strategically modified with CPP-Lip by using a solid-supported lipid bilayer that makes use of a self-assembled monolayer of 1-undecanethiol. Monitoring the real-time CPP-Lip QCM-D transducer in the presence of GDP-man and GumH enzyme shows a mass increase, indicating the transfer of mannose. The real-time QCM-D determination of mannosyltransferase function was validated by a High Performance Liquid Chromatography (LC) method developed for determination of GDP produced by enzymatic reaction. LC results confirmed the activity of recombinant GumH protein, which is the first enzyme involved in the biosynthesis of the EPS from X. fastidiosa enzymatically characterized. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    PubMed

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Major Outer Membrane Protein MopB Is Required for Twitching Movement and Affects Biofilm Formation and Virulence in Two Xylella fastidiosa strains.

    PubMed

    Chen, Hongyu; Kandel, Prem P; Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2017-11-01

    MopB is a major outer membrane protein (OMP) in Xylella fastidiosa, a bacterial plant pathogen that causes losses on many economically important crops. Based on in silico analysis, the uncharacterized MopB protein of X. fastidiosa contains a β-barrel structure with an OmpA-like domain and a predicted calcium-binding motif. Here, MopB function was studied by mutational analysis taking advantage of the natural competence of X. fastidiosa. Mutants of mopB were constructed in two different X. fastidiosa strains, the type strain Temecula and the more virulent WM1-1. Deletion of the mopB gene impaired cell-to-cell aggregation, surface attachment, and biofilm formation in both strains. Interestingly, mopB deletion completely abolished twitching motility. Electron microscopy of the bacterial cell surface revealed that mopB deletion eliminated type IV and type I pili formation, potentially caused by destabilization of the outer membrane. Both mopB mutants showed reduced virulence using tobacco (Nicotiana tabacum) as a host under greenhouse conditions. These results suggest that MopB has pleiotropic functions in biofilm formation and twitching motility and is important for virulence of X. fastidiosa.

  5. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    PubMed

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Zinc Detoxification Is Required for Full Virulence and Modification of the Host Leaf Ionome by Xylella fastidiosa.

    PubMed

    Navarrete, Fernando; De La Fuente, Leonardo

    2015-04-01

    Zinc (Zn) is an essential element for all forms of life because it is a structural or catalytic cofactor of many proteins, but it can have toxic effects at high concentrations; thus, microorganisms must tightly regulate its levels. Here, we evaluated the role of Zn homeostasis proteins in the virulence of the xylem-limited bacterium Xylella fastidiosa, causal agent of Pierce's disease of grapevine, among other diseases. Two mutants of X. fastidiosa 'Temecula' affected in genes which regulate Zn homeostasis (zur) and Zn detoxification (czcD) were constructed. Both knockouts showed increased sensitivity to Zn at physiologically relevant concentrations and increased intracellular accumulation of this metal compared with the wild type. Increased Zn sensitivity was correlated with decreased growth in grapevine xylem sap, reduced twitching motility, and downregulation of exopolysaccharide biosynthetic genes. Tobacco plants inoculated with either knockout mutant showed reduced foliar symptoms and a much reduced (czcD) or absent (zur) modification of the leaf ionome (i.e., the mineral nutrient and trace element composition), as well as reduced bacterial populations. The results show that detoxification of Zn is crucial for the virulence of X. fastidiosa and verifies our previous findings that modification of the host leaf ionome correlates with bacterial virulence.

  8. Proteome analysis of the plant pathogen Xylella fastidiosa reveals major cellular and extracellular proteins and a peculiar codon bias distribution.

    PubMed

    Smolka, Marcus Bustamante; Martins-de-Souza, Daniel; Martins, Daniel; Winck, Flavia Vischi; Santoro, Carlos Eduardo; Castellari, Rafael Ramos; Ferrari, Fernanda; Brum, Itaraju Junior; Galembeck, Eduardo; Della Coletta Filho, Helvécio; Machado, Marcos Antonio; Marangoni, Sergio; Novello, Jose Camillo

    2003-02-01

    The bacteria Xylella fastidiosa is the causative agent of a number of economically important crop diseases, including citrus variegated chlorosis. Although its complete genome is already sequenced, X. fastidiosa is very poorly characterized by biochemical approaches at the protein level. In an initial effort to characterize protein expression in X. fastidiosa we used one- and two-dimensional gel electrophoresis and mass spectrometry to identify the products of 142 genes present in a whole cell extract and in an extracellular fraction of the citrus isolated strain 9a5c. Of particular interest for the study of pathogenesis are adhesion and secreted proteins. Homologs to proteins from three different adhesion systems (type IV fimbriae, mrk pili and hsf surface fibrils) were found to be coexpressed, the last two being detected only as multimeric complexes in the high molecular weight region of one-dimensional electrophoresis gels. Using a procedure to extract secreted proteins as well as proteins weakly attached to the cell surface we identified 30 different proteins including toxins, adhesion related proteins, antioxidant enzymes, different types of proteases and 16 hypothetical proteins. These data suggest that the intercellular space of X. fastidiosa colonies is a multifunctional microenvironment containing proteins related to in vivo bacterial survival and pathogenesis. A codon usage analysis of the most expressed proteins from the whole cell extract revealed a low biased distribution, which we propose is related to the slow growing nature of X. fastidiosa. A database of the X. fastidiosa proteome was developed and can be accessed via the internet (URL: www.proteome.ibi.unicamp.br).

  9. Spatial Genetic Structure of Coffee-Associated Xylella fastidiosa Populations Indicates that Cross Infection Does Not Occur with Sympatric Citrus Orchards.

    PubMed

    Francisco, Carolina S; Ceresini, Paulo C; Almeida, Rodrigo P P; Coletta-Filho, Helvécio D

    2017-04-01

    Xylella fastidiosa, an economically important plant-pathogenic bacterium, infects both coffee and citrus trees in Brazil. Although X. fastidiosa in citrus is well studied, knowledge about the population structure of this bacterium infecting coffee remains unknown. Here, we studied the population structure of X. fastidiosa infecting coffee trees in São Paulo State, Brazil, in four regions where citrus is also widely cultivated. Genotyping of over 500 isolates from coffee plants using 14 genomic microsatellite markers indicated that populations were largely geographically isolated, as previously found with populations of X. fastidiosa infecting citrus. These results were supported by a clustering analysis, which indicated three major genetic groups among the four sampled regions. Overall, approximately 38% of isolates showed significant membership coefficients not related to their original geographical populations (i.e., migrants), characterizing a significant degree of genotype flow among populations. To determine whether admixture occurred between isolates infecting citrus and coffee plants, one site with citrus and coffee orchards adjacent to each other was selected; over 100 isolates were typed from each host plant. No signal of natural admixture between citrus- and coffee-infecting isolates was found; artificial cross-infection assays with representative isolates also yielded no successful cross infection. A comparison determined that X. fastidiosa populations from coffee have higher genetic diversity and allelic richness compared with citrus. The results showed that coffee and citrus X. fastidiosa populations are effectively isolated from each other and, although coffee populations are spatially structured, migration has an important role in shaping diversity.

  10. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    PubMed

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  11. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    PubMed

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  12. DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence†

    PubMed Central

    Koide, Tie; Zaini, Paulo A.; Moreira, Leandro M.; Vêncio, Ricardo Z. N.; Matsukuma, Adriana Y.; Durham, Alan M.; Teixeira, Diva C.; El-Dorry, Hamza; Monteiro, Patrícia B.; da Silva, Ana Claudia R.; Verjovski-Almeida, Sergio; da Silva, Aline M.; Gomes, Suely L.

    2004-01-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease. PMID:15292146

  13. Detection of the Bacterium, Xylella fastidiosa, in Saliva of Glassy-Winged Sharpshooter, Homalodisca vitripennis

    PubMed Central

    Ramirez, Jose L.; Lacava, Paulo T.; Miller, Thomas A.

    2008-01-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), the glassy-winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei (Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post-acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella-infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post-acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei-infecuvity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts. PMID:20233080

  14. Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity.

    PubMed

    Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard

    2005-12-01

    Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.

  15. Comparative analyses of Xanthomonas and Xylella complete genomes.

    PubMed

    Moreira, Leandro M; De Souza, Robson F; Digiampietri, Luciano A; Da Silva, Ana C R; Setubal, João C

    2005-01-01

    Computational analyses of four bacterial genomes of the Xanthomonadaceae family reveal new unique genes that may be involved in adaptation, pathogenicity, and host specificity. The Xanthomonas genus presents 3636 unique genes distributed in 1470 families, while Xylella genus presents 1026 unique genes distributed in 375 families. Among Xanthomonas-specific genes, we highlight a large number of cell wall degrading enzymes, proteases, and iron receptors, a set of energy metabolism genes, second copy of the type II secretion system, type III secretion system, flagella and chemotactic machinery, and the xanthomonadin synthesis gene cluster. Important genes unique to the Xylella genus are an additional copy of a type IV pili gene cluster and the complete machinery of colicin V synthesis and secretion. Intersections of gene sets from both genera reveal a cluster of genes homologous to Salmonella's SPI-7 island in Xanthomonas axonopodis pv citri and Xylella fastidiosa 9a5c, which might be involved in host specificity. Each genome also presents important unique genes, such as an HMS cluster, the kdgT gene, and O-antigen in Xanthomonas axonopodis pv citri; a number of avrBS genes and a distinct O-antigen in Xanthomonas campestris pv campestris, a type I restriction-modification system and a nickase gene in Xylella fastidiosa 9a5c, and a type II restriction-modification system and two genes related to peptidoglycan biosynthesis in Xylella fastidiosa temecula 1. All these differences imply a considerable number of gene gains and losses during the divergence of the four lineages, and are associated with structural genome modifications that may have a direct relation with the mode of transmission, adaptation to specific environments and pathogenicity of each organism.

  16. Characterization of the Xylella fastidiosa PD1671 gene encoding degenerate c-di-GMP GGDEF/EAL domains, and its role in the development of Pierce's disease.

    PubMed

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R; Galvani, Cheryl D; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce's disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence.

  17. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa.

    PubMed

    Chatterjee, Subhadeep; Almeida, Rodrigo P P; Lindow, Steven

    2008-01-01

    Diseases caused by Xylella fastidiosa have attained great importance worldwide as the pathogen and its insect vectors have been disseminated. Since this is the first plant pathogenic bacterium for which a complete genome sequence was determined, much progress has been made in understanding the process by which it spreads within the xylem vessels of susceptible plants as well as the traits that contribute to its acquisition and transmission by sharpshooter vectors. Although this pathogen shares many similarities with Xanthomonas species, such as its use of a small fatty acid signal molecule to coordinate virulence gene expression, the traits that it utilizes to cause disease and the manner in which they are regulated differ substantially from those of related plant pathogens. Its complex lifestyle as both a plant and insect colonist involves traits that are in conflict with these stages, thus apparently necessitating the use of a gene regulatory scheme that allows cells expressing different traits to co-occur in the plant.

  18. Development and systematic validation of qPCR assays for rapid and reliable differentiation of Xylella fastidiosa strains causing citrus variegated chlorosis.

    PubMed

    Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene

    2013-01-01

    The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the

  19. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions.

    PubMed

    Navarrete, Fernando; De La Fuente, Leonardo

    2014-02-01

    The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.

  20. Response of Xylella fastidiosa to Zinc: Decreased Culturability, Increased Exopolysaccharide Production, and Formation of Resilient Biofilms under Flow Conditions

    PubMed Central

    Navarrete, Fernando

    2014-01-01

    The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events. PMID:24271184

  1. Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape.

    PubMed

    Chatterjee, Subhadeep; Newman, Karyn L; Lindow, Steven E

    2008-10-01

    Cell-to-cell signaling mediated by a fatty acid diffusible signaling factor (DSF) is central to the regulation of the virulence of Xylella fastidiosa. DSF production by X. fastidiosa is dependent on rpfF and, although required for insect colonization, appears to reduce its virulence to grape. To understand what aspects of colonization of grape are controlled by DSF in X. fastidiosa and, thus, those factors that contribute to virulence, we assessed the colonization of grape by a green fluorescent protein-marked rpfF-deficient mutant. The rpfF-deficient mutant was detected at a greater distance from the point of inoculation than the wild-type strain at a given sampling time, and also attained a population size that was up to 100-fold larger than that of the wild-type strain at a given distance from the point of inoculation. Confocal laser-scanning microscopy revealed that approximately 10-fold more vessels in petioles of symptomatic leaves harbored at least some cells of either the wild type or rpfF mutant when compared with asymptomatic leaves and, thus, that disease symptoms were associated with the extent of vessel colonization. Importantly, the rpfF mutant colonized approximately threefold more vessels than the wild-type strain. Although a wide range of colony sizes were observed in vessels colonized by both the wild type and rpfF mutant, the proportion of colonized vessels harboring large numbers of cells was significantly higher in plants inoculated with the rpfF mutant than with the wild-type strain. These studies indicated that the hypervirulence phenotype of the rpfF mutant is due to both a more extensive spread of the pathogen to xylem vessels and unrestrained multiplication within vessels leading to blockage. These results suggest that movement and multiplication of X. fastidiosa in plants are linked, perhaps because cell wall degradation products are a major source of nutrients. Thus, DSF-mediated cell-to-cell signaling, which restricts movement and

  2. Identification of a response regulator involved in surface attachment, cell-cell aggregation, exopolysaccharide production and virulence in the plant pathogen Xylella fastidiosa.

    PubMed

    Voegel, Tanja M; Doddapaneni, Harshavardhan; Cheng, Davis W; Lin, Hong; Stenger, Drake C; Kirkpatrick, Bruce C; Roper, M Caroline

    2013-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapevine, possesses several two-component signal transduction systems that allow the bacterium to sense and respond to changes in its environment. Signals are perceived by sensor kinases that autophosphorylate and transfer the phosphate to response regulators (RRs), which direct an output response, usually by acting as transcriptional regulators. In the X. fastidiosa genome, 19 RRs were found. A site-directed knockout mutant in one unusual RR, designated XhpT, composed of a receiver domain and a histidine phosphotransferase output domain, was constructed. The resulting mutant strain was analysed for changes in phenotypic traits related to biofilm formation and gene expression using microarray analysis. We found that the xhpT mutant was altered in surface attachment, cell-cell aggregation, exopolysaccharide (EPS) production and virulence in grapevine. In addition, this mutant had an altered transcriptional profile when compared with wild-type X. fastidiosa in genes for several biofilm-related traits, such as EPS production and haemagglutinin adhesins. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  3. EPG waveforms of blue green sharpshooter: impedance and voltage level effects on stylet probing

    USDA-ARS?s Scientific Manuscript database

    Blue-green sharpshooter (BGSS), Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf) a foregut-borne bacterium that is the causal agent of Pierce’s disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG) was used to record probing behaviors of adult B...

  4. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of input resistor and voltage levels on waveform appearance and probing behaviors

    USDA-ARS?s Scientific Manuscript database

    Graphocephala atropunctata is a vector of Xylella fastidiosa (Xf), the causal agent of Pierce’s disease of grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents a com...

  5. Characterization of the Xylella fastidiosa PD1671 Gene Encoding Degenerate c-di-GMP GGDEF/EAL Domains, and Its Role in the Development of Pierce’s Disease

    PubMed Central

    Cursino, Luciana; Athinuwat, Dusit; Patel, Kelly R.; Galvani, Cheryl D.; Zaini, Paulo A.; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.; Mowery, Patricia

    2015-01-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases including Pierce’s disease of grapevines. X. fastidiosa is thought to induce disease by colonizing and clogging xylem vessels through the formation of cell aggregates and bacterial biofilms. Here we examine the role in X. fastidiosa virulence of an uncharacterized gene, PD1671, annotated as a two-component response regulator with potential GGDEF and EAL domains. GGDEF domains are found in c-di-GMP diguanylate cyclases while EAL domains are found in phosphodiesterases, and these domains are for c-di-GMP production and turnover, respectively. Functional analysis of the PD1671 gene revealed that it affected multiple X. fastidiosa virulence-related phenotypes. A Tn5 PD1671 mutant had a hypervirulent phenotype in grapevines presumably due to enhanced expression of gum genes leading to increased exopolysaccharide levels that resulted in elevated biofilm formation. Interestingly, the PD1671 mutant also had decreased motility in vitro but did not show a reduced distribution in grapevines following inoculation. Given these responses, the putative PD1671 protein may be a negative regulator of X. fastidiosa virulence. PMID:25811864

  6. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  7. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  8. Xylella taiwanensis sp. nov. cause of pear leaf scorch disease in Taiwan

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa is a group of xylem-limited and nutritionally fastidious plant pathogenic bacteria. While mostly found in the Americas, new X. fastidiosa strains have been reported from other continents such as Asia, including a pear leaf scorch (PLS) strain from Taiwan. Current taxonomy of X. fa...

  9. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  10. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa.

    PubMed

    Clifford, Jennifer C; Rapicavoli, Jeannette N; Roper, M Caroline

    2013-06-01

    Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.

  11. Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility.

    PubMed

    Cruz, Luisa F; Cobine, Paul A; De La Fuente, Leonardo

    2012-03-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl(2). The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures.

  12. Calcium Increases Xylella fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility

    PubMed Central

    Cruz, Luisa F.; Cobine, Paul A.

    2012-01-01

    Xylella fastidiosa is a plant-pathogenic bacterium that forms biofilms inside xylem vessels, a process thought to be influenced by the chemical composition of xylem sap. In this work, the effect of calcium on the production of X. fastidiosa biofilm and movement was analyzed under in vitro conditions. After a dose-response study with 96-well plates using eight metals, the strongest increase of biofilm formation was observed when medium was supplemented with at least 1.0 mM CaCl2. The removal of Ca by extracellular (EGTA, 1.5 mM) and intracellular [1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM), 75 μM] chelators reduced biofilm formation without compromising planktonic growth. The concentration of Ca influenced the force of adhesion to the substrate, biofilm thickness, cell-to-cell aggregation, and twitching motility, as shown by assays with microfluidic chambers and other assays. The effect of Ca on attachment was lost when cells were treated with tetracycline, suggesting that Ca has a metabolic or regulatory role in cell adhesion. A double mutant (fimA pilO) lacking type I and type IV pili did not improve biofilm formation or attachment when Ca was added to the medium, while single mutants of type I (fimA) or type IV (pilB) pili formed more biofilm under conditions of higher Ca concentrations. The concentration of Ca in the medium did not significantly influence the levels of exopolysaccharide produced. Our findings indicate that the role of Ca in biofilm formation may be related to the initial surface and cell-to-cell attachment and colonization stages of biofilm establishment, which rely on critical functions by fimbrial structures. PMID:22194297

  13. Cloning, expression, and purification of the virulence-associated protein D from Xylella fastidiosa.

    PubMed

    Catani, Cleide Ferreira; Azzoni, Adriano Rodrigues; Paula, Débora Pires; Tada, Susely Ferraz Siqueira; Rosselli, Luciana Kauer; de Souza, Anete Pereira; Yano, Tomomasa

    2004-10-01

    In this study, an efficient expression system, based on the pET32Xa/LIC vector, for producing a Xylella fastidiosa virulence-associated protein D, found to have a strong similarity to Riemerella anatipestifer and Actinobacillus actinomycetencomitans VapD protein, is presented. The protein has a molecular mass of 17.637 Da and a calculated pI of 5.49. The selected XFa0052 gene was cloned in the pET32Xa/LIC vector and the plasmid was transformed into Escherichia coli BL21 (DE3) strain at 37 degrees C, with an induction time of 2 h and 1 mM IPTG concentration. The protein present in the soluble fraction was purified by immobilized metal affinity chromatography (IMAC), and had its identity determined by mass spectrometry (MALDI-TOF) and N-terminal sequencing. The purified protein was found as a single band on SDS-PAGE and its correct folding was verified by circular dichroism spectroscopy.

  14. Nanofilms of hyaluronan/chitosan assembled layer-by-layer: An antibacterial surface for Xylella fastidiosa.

    PubMed

    Hernández-Montelongo, Jacobo; Nascimento, Vicente F; Murillo, Duber; Taketa, Thiago B; Sahoo, Prasana; de Souza, Alessandra A; Beppu, Marisa M; Cotta, Monica A

    2016-01-20

    In this work, nanofilms of hyaluronan/chitosan (HA/CHI) assembled layer by layer were synthesized; their application as a potential antimicrobial material was demonstrated for the phytopathogen Xylella fastidiosa, a gram-negative bacterium, here used as a model. For the synthesis, the influence of pH and ionic strength of these natural polymer stem-solutions on final characteristics of the HA/CHI nanofilms was studied in detail. The antibacterial effect was evaluated using widefield fluorescence microscopy. These results were correlated with the chemical properties of the nanofilms, studied by FTIR and Raman spectroscopy, as well as with their morphology and surface properties characterized using SEM and AFM. The present findings can be extended to design and optimize HA/CHI nanofilms with enhanced antimicrobial behavior for other type of phytopathogenic gram-negative bacteria species, such as Xanthomonas citri, Xanthomas campestri and Ralstonia solanacearum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    PubMed

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-04-20

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.

  16. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

    PubMed Central

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  17. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    PubMed

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  18. Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development

    PubMed Central

    Lorite, Gabriela S.; Janissen, Richard; Clerici, João H.; Rodrigues, Carolina M.; Tomaz, Juarez P.; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A.; Cotta, Mônica A.

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant. PMID:24073256

  19. Factors affecting the initial adhesion and retention of the plant pathogen Xylella fastidiosa in the foregut of an insect vector.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design.

  20. Factors Affecting the Initial Adhesion and Retention of the Plant Pathogen Xylella fastidiosa in the Foregut of an Insect Vector

    PubMed Central

    Almeida, Rodrigo P. P.

    2014-01-01

    Vector transmission of bacterial plant pathogens involves three steps: pathogen acquisition from an infected host, retention within the vector, and inoculation of cells into susceptible tissue of an uninfected plant. In this study, a combination of plant and artificial diet systems were used to determine the importance of several genes on the initial adhesion and retention of the bacterium Xylella fastidiosa to an efficient insect vector. Mutant strains included fimbrial (fimA and pilB) and afimbrial (hxfA and hxfB) adhesins and three loci involved in regulatory systems (rpfF, rpfC, and cgsA). Transmission assays with variable retention time indicated that HxfA and HxfB were primarily important for early adhesion to vectors, while FimA was necessary for both adhesion and retention. The long pilus protein PilB was not deficient in initial adhesion but may be important for retention. Genes upregulated under the control of rpfF are important for both initial adhesion and retention, as transmission rates of this mutant strain were initially low and decreased over time, while disruption of rpfC and cgsA yielded trends similar to that shown by the wild-type control. Because induction of an X. fastidiosa transmissible state requires pectin, a series of experiments were used to test the roles of a polygalacturonase (pglA) and the pectin and galacturonic acid carbohydrates on the transmission of X. fastidiosa. Results show that galacturonic acid, or PglA activity breaking pectin into its major subunit (galacturonic acid), is required for X. fastidiosa vector transmission using an artificial diet system. This study shows that early adhesion and retention of X. fastidiosa are mediated by different factors. It also illustrates that the interpretation of results of vector transmission experiments, in the context of vector-pathogen interaction studies, is highly dependent on experimental design. PMID:24185853

  1. Plant water stress effects on stylet probing behaviors of Homalodisca vitripennis (Hemiptera: Cicadellidae) associated with acquisition and inoculation of the bacterium Xylella fastidiosa.

    PubMed

    Krugner, Rodrigo; Backus, Elaine A

    2014-02-01

    ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a xylem fluid-ingesting leafhopper that transmits Xylella fastidiosa Wells et al., a plant-infecting bacterium that causes several plant diseases in the Americas. Although the role of plant water stress on the population density and dispersal ofH. vitripennis has been studied, nothing is known about the effects of plant water stress on the transmission of X. fastidiosa by H. vitripennis. A laboratory study was conducted to determine the influence of plant water stress on the sharpshooter stylet probing behaviors associated with the acquisition and inoculation of X. fastidiosa. Electrical penetration graph was used to monitor H. vitripennis feeding behaviors for 20-h periods on citrus [Citrus sinensis (L.) Osbeck] and almond [Prunus dulcis (Miller) D.A. Webb] plants subjected to levels of water stress. Adult H. vitripennis successfully located xylem vessels, then performed behaviors related to the evaluation of the xylem cell and fluid, and finally ingested xylem fluid from citrus and almond plants under the tested fluid tensions ranging from -5.5 to -33.0 bars and -6.0 to -24.5 bars, respectively. In general, long and frequent feeding events associated with the acquisition and inoculation of X. fastidiosa were observed only in fully irrigated plants (i.e., >-10 bars), which suggests that even low levels of plant water stress may reduce the spread of X. fastidiosa. Results provided insights to disease epidemiology and support the hypothesis that application of regulated deficit irrigation has the potential to reduce the incidence of diseases caused by X.fastidiosa by reducing the number of vectors and by decreasing pathogen transmission efficiency.

  2. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation.

    PubMed

    Merfa, Marcus V; Niza, Bárbara; Takita, Marco A; De Souza, Alessandra A

    2016-01-01

    Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis-CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions.

  3. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation

    PubMed Central

    Merfa, Marcus V.; Niza, Bárbara; Takita, Marco A.; De Souza, Alessandra A.

    2016-01-01

    Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis—CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions. PMID:27375608

  4. The Xylella fastidosa RTX operons: evidence for the evolution of protein mosaics through novel genetic exchanges.

    PubMed

    Gambetta, Gregory A; Matthews, Mark A; Syvanen, Michael

    2018-05-04

    Xylella fastidiosa (Xf) is a gram negative bacterium inhabiting the plant vascular system. In most species this bacterium lives as a benign symbiote, but in several agriculturally important plants (e.g. coffee, citrus, grapevine) Xf is pathogenic. Xf has four loci encoding homologues to hemolysin RTX proteins, virulence factors involved in a wide range of plant pathogen interactions. We show that all four genes are expressed during pathogenesis in grapevine. The sequences from these four genes have a complex repetitive structure. At the C-termini, sequence diversity between strains is what would be expected from orthologous genes. However, within strains there is no N-terminal homology, indicating these loci encode RTXs of different functions and/or specificities. More striking is that many of the orthologous loci between strains share this extreme variation at the N-termini. Thus these RTX orthologues are most easily visualized as fusions between the orthologous C-termini and different N-termini. Further, the four genes are found in operons having a peculiar structure with an extensively duplicated module encoding a small protein with homology to the N-terminal region of the full length RTX. Surprisingly, some of these small peptides are most similar not to their corresponding full length RTX, but to the N-termini of RTXs from other Xf strains, and even other remotely related species. These results demonstrate that these genes are expressed in planta during pathogenesis. Their structure suggests extensive evolutionary restructuring through horizontal gene transfers and heterologous recombination mechanisms. The sum of the evidence suggests these repetitive modules are a novel kind of mobile genetic element.

  5. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa.

    PubMed

    Backus, Elaine A; Andrews, Kim B; Shugart, Holly J; Carl Greve, L; Labavitch, John M; Alhaddad, Hasan

    2012-07-01

    A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away

  6. Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.

    2010-01-01

    The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028

  7. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response.

    PubMed

    Rodrigues, Carolina M; de Souza, Alessandra A; Takita, Marco A; Kishi, Luciano T; Machado, Marcos A

    2013-10-03

    Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen.

  8. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response

    PubMed Central

    2013-01-01

    Background Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa, is one the most important citrus diseases, and affects all varieties of sweet orange (Citrus sinensis L. Osb). On the other hand, among the Citrus genus there are different sources of resistance against X. fastidiosa. For these species identifying these defense genes could be an important step towards obtaining sweet orange resistant varieties through breeding or genetic engineering. To assess these genes we made use of mandarin (C. reticulata Blanco) that is known to be resistant to CVC and shares agronomical characteristics with sweet orange. Thus, we investigated the gene expression in Ponkan mandarin at one day after infection with X. fastidiosa, using RNA-seq. A set of genes considered key elements in the resistance was used to confirm its regulation in mandarin compared with the susceptible sweet orange. Results Gene expression analysis of mock inoculated and infected tissues of Ponkan mandarin identified 667 transcripts repressed and 724 significantly induced in the later. Among the induced transcripts, we identified genes encoding proteins similar to Pattern Recognition Receptors. Furthermore, many genes involved in secondary metabolism, biosynthesis and cell wall modification were upregulated as well as in synthesis of abscisic acid, jasmonic acid and auxin. Conclusions This work demonstrated that the defense response to the perception of bacteria involves cell wall modification and activation of hormone pathways, which probably lead to the induction of other defense-related genes. We also hypothesized the induction of auxin-related genes indicates that resistant plants initially recognize X. fastidiosa as a necrotrophic pathogen. PMID:24090429

  9. Genome-Wide Analysis Provides Evidence on the Genetic Relatedness of the Emergent Xylella fastidiosa Genotype in Italy to Isolates from Central America.

    PubMed

    Giampetruzzi, Annalisa; Saponari, Maria; Loconsole, Giuliana; Boscia, Donato; Savino, Vito Nicola; Almeida, Rodrigo P P; Zicca, Stefania; Landa, Blanca B; Chacón-Diaz, Carlos; Saldarelli, Pasquale

    2017-07-01

    Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp

  10. Xylella fastidiosa CoDiRO strain associated with the olive quick decline syndrome in southern Italy belongs to a clonal complex of the subspecies pauca that evolved in Central America.

    PubMed

    Marcelletti, Simone; Scortichini, Marco

    2016-12-01

    Xylella fastidiosa, a xylem-limited bacterium transmitted by xylem-fluid-feeding Hemiptera insects, causes economic losses of both woody and herbaceous plant species. A Xyl. fastidiosa subsp. pauca strain, namely CoDiRO, was recently found to be associated with the 'olive quick decline syndrome' in southern Italy (i.e. Apulia region). Recently, some Xyl. fastidiosa strains intercepted in France from Coffea spp. plant cuttings imported from Central and South America were characterized. The introduction of infected plant material from Central America in Apulia was also postulated even though an ad hoc study to confirm this hypothesis is lacking. In the present study, we assessed the complete and draft genome of 27 Xyl. fastidiosa strains. Through a genome-wide approach, we confirmed the occurrence of three subspecies within Xyl. fastidiosa, namely fastidiosa, multiplex and pauca, and demonstrated the occurrence of a genetic clonal complex of four Xyl. fastidiosa strains belonging to subspecies pauca which evolved in Central America. The CoDiRO strain displayed 13 SNPs when compared with a strain isolated in Costa Rica from Coffea sp. and 32 SNPs when compared with two strains obtained from Nerium oleander in Costa Rica. These results support the close relationships of the two strains. The four strains in the clonal complex contain prophage-like genes in their genomes. This study strongly supports the possibility of the introduction of Xyl. fastidiosa in southern Italy via coffee plants grown in Central America. The data also stress how the current global circulation of agricultural commodities potentially threatens the agrosystems worldwide.

  11. Ectopic Expression of Xylella fastidiosa rpfF Conferring Production of Diffusible Signal Factor in Transgenic Tobacco and Citrus Alters Pathogen Behavior and Reduces Disease Severity.

    PubMed

    Caserta, R; Souza-Neto, R R; Takita, M A; Lindow, S E; De Souza, A A

    2017-11-01

    The pathogenicity of Xylella fastidiosa is associated with its ability to colonize the xylem of host plants. Expression of genes contributing to xylem colonization are suppressed, while those necessary for insect vector acquisition are increased with increasing concentrations of diffusible signal factor (DSF), whose production is dependent on RpfF. We previously demonstrated that transgenic citrus plants ectopically expressing rpfF from a citrus strain of X. fastidiosa subsp. pauca exhibited less susceptibility to Xanthomonas citri subsp. citri, another pathogen whose virulence is modulated by DSF accumulation. Here, we demonstrate that ectopic expression of rpfF in both transgenic tobacco and sweet orange also confers a reduction in disease severity incited by X. fastidiosa and reduces its colonization of those plants. Decreased disease severity in the transgenic plants was generally associated with increased expression of genes conferring adhesiveness to the pathogen and decreased expression of genes necessary for active motility, accounting for the reduced population sizes achieved in the plants, apparently by limiting pathogen dispersal through the plant. Plant-derived DSF signal molecules in a host plant can, therefore, be exploited to interfere with more than one pathogen whose virulence is controlled by DSF signaling.

  12. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by algU.

    PubMed

    Shi, Xiang Yang; Dumenyo, C Korsi; Hernandez-Martinez, Rufina; Azad, Hamid; Cooksey, Donald A

    2007-11-01

    Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.

  13. Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.)

    PubMed Central

    Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo

    2018-01-01

    The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910

  14. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells.

    PubMed

    Muranaka, Lígia S; Takita, Marco A; Olivato, Jacqueline C; Kishi, Luciano T; de Souza, Alessandra A

    2012-09-01

    Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable.

  15. Global Expression Profile of Biofilm Resistance to Antimicrobial Compounds in the Plant-Pathogenic Bacterium Xylella fastidiosa Reveals Evidence of Persister Cells

    PubMed Central

    Muranaka, Lígia S.; Takita, Marco A.; Olivato, Jacqueline C.; Kishi, Luciano T.

    2012-01-01

    Investigations of biofilm resistance response rarely focus on plant-pathogenic bacteria. Since Xylella fastidiosa is a multihost plant-pathogenic bacterium that forms biofilm in the xylem, the behavior of its biofilm in response to antimicrobial compounds needs to be better investigated. We analyzed here the transcriptional profile of X. fastidiosa subsp. pauca in response to inhibitory and subinhibitory concentrations of copper and tetracycline. Copper-based products are routinely used to control citrus diseases in the field, while antibiotics are more widely used for bacterial control in mammals. The use of antimicrobial compounds triggers specific responses to each compound, such as biofilm formation and phage activity for copper. Common changes in expression responses comprise the repression of genes associated with metabolic functions and movement and the induction of toxin-antitoxin systems, which have been associated with the formation of persister cells. Our results also show that these cells were found in the population at a ca. 0.05% density under inhibitory conditions for both antimicrobial compounds and that pretreatment with subinhibitory concentration of copper increases this number. No previous report has detected the presence of these cells in X. fastidiosa population, suggesting that this could lead to a multidrug tolerance response in the biofilm under a stressed environment. This is a mechanism that has recently become the focus of studies on resistance of human-pathogenic bacteria to antibiotics and, based on our data, it seems to be more broadly applicable. PMID:22730126

  16. [Survey of sharpshooters (Hemiptera: Cicadellidae) associated with Xylella fastidiosa transmission in citrus groves of the North Coast of Bahia State].

    PubMed

    De Miranda, Marcelo P; Lopes, João R S; Do Nascimento, Antonio S; Dos Santos, José L; Cavichioli, Rodney R

    2009-01-01

    The causal agent of citrus variegated clorosis, Xylella fastidiosa, is transmitted by leafhoppers of the subfamily Cicadellinae, whose species vary regionally. The goal of this study was to identify potential vectors of this pathogen in citrus groves of Bahia North Coast, Brazil. The survey was done from March/2002 to February/2003 in three seven- to nine-year-old sweet orange (Citrus sinensis, Pêra variety) groves located in Rio Real, BA. Fifteen yellow sticky cards (8.5x11.5 cm) were installed 40 m apart in each grove, hanged at 1.5 m high on the upper north side of citrus canopies, and replaced fortnightly. A sweep net was periodically used to sample leafhoppers on herbaceous weeds inside the groves, by selecting five points at random and performing 30 sweeps in each point. A total of 1,360 specimens of 49 Auchenorrhyncha species were collected in this study, mostly in the family Cicadellidae (90.2%). The subfamily Cicadellinae, which includes the sharpshooter vectors of X. fastidiosa, showed the largest number of species (14) and specimens (84.8%). Acrogonia flagellata Young, A. citrina Marucci & Cavichioli, Homalodisca spottii Takiya, Cavichioli & McKamey and an unidentified Cicadellini (species 1) were the dominant species trapped on citrus canopies, while Hortensia similis (Walker) and Erythrogonia dubia (Medler) were dominant in the weedy vegetation. Among the Cicadellinae species already known as vectors of X. fastidiosa in citrus, only A. citrina, Bucephalogonia xanthophis (Berg) e Ferrariana trivittata (Signoret) were found. The two latter species were accidentally trapped by sweep net in the weedy vegetation.

  17. Citrus Functional Genomics and Molecular Modeling in Relation to Citrus sinensis (Sweet Orange) Infection with Xylella fastidiosa (Citrus Variegated Chlorosis).

    PubMed

    Dwivedi, Upendra N; Tiwari, Sameeksha; Prasanna, Pragya; Awasthi, Manika; Singh, Swati; Pandey, Veda P

    2016-08-01

    Citrus are among the economically most important fruit tree crops in the world. Citrus variegated chlorosis (CVC), caused by Xylella fastidiosa infection, is a serious disease limiting citrus production at a global scale. With availability of citrus genomic resources, it is now possible to compare citrus expressed sequence tag (EST) data sets and identify single-nucleotide polymorphisms (SNPs) within and among different citrus cultivars that can be exploited for citrus resistance to infections, citrus breeding, among others. We report here, for the first time, SNPs in the EST data sets of X. fastidiosa-infected Citrus sinensis (sweet orange) and their functional annotation that revealed the involvement of eight C. sinensis candidate genes in CVC pathogenesis. Among these genes were xyloglucan endotransglycosylase, myo-inositol-1-phosphate synthase, and peroxidase were found to be involved in plant cell wall metabolism. These have been further investigated by molecular modeling for their role in CVC infection and defense. Molecular docking analyses of the wild and the mutant (SNP containing) types of the selected three enzymes with their respective substrates revealed a significant decrease in the binding affinity of substrates for the mutant enzymes, thus suggesting a decrease in the catalytic efficiency of these enzymes during infection, thereby facilitating a favorable condition for infection by the pathogen. These findings offer novel agrigenomics insights in developing future molecular targets and strategies for citrus fruit cultivation in ways that are resistant to X. fastidiosa infection, and by extension, with greater harvesting efficiency and economic value.

  18. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa Strain Stag's Leap.

    PubMed

    Chen, J; Wu, F; Zheng, Z; Deng, X; Burbank, L P; Stenger, D C

    2016-04-21

    ITALIC! Xylella fastidiosasubsp. ITALIC! fastidiosacauses Pierce's disease of grapevine. Presented here is the draft genome sequence of the Stag's Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce's disease resistance and a phenotypic assessment of knockout mutants to determine gene function. Copyright © 2016 Chen et al.

  19. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    PubMed

    Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  20. N-Acetylcysteine in Agriculture, a Novel Use for an Old Molecule: Focus on Controlling the Plant–Pathogen Xylella fastidiosa

    PubMed Central

    Muranaka, Lígia S.; Giorgiano, Thais E.; Takita, Marco A.; Forim, Moacir R.; Silva, Luis F. C.; Coletta-Filho, Helvécio D.; Machado, Marcos A.; de Souza, Alessandra A.

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria. PMID:24009716

  1. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

    PubMed

    Nunney, Leonard; Vickerman, Danel B; Bromley, Robin E; Russell, Stephanie A; Hartman, John R; Morano, Lisa D; Stouthamer, Richard

    2013-04-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 "non-IHR" isolates, 2 minimally recombinant "intermediate" ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): "almond," "peach," and "oak" types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity.

  2. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    PubMed Central

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  3. Xylella taiwanensis sp. nov., causing pear leaf scorch disease.

    PubMed

    Su, C-C; Deng, W-L; Jan, F-J; Chang, C-J; Huang, H; Shih, H-T; Chen, J

    2016-11-01

    A Gram-stain-negative, nutritionally fastidious bacterium (PLS229T) causing pear leaf scorch was identified in Taiwan and previously grouped into Xylella fastidiosa. Yet, significant variations between PLS229T and Xylellafastidiosa were noted. In this study, PLS229T was evaluated phenotypically and genotypically against representative strains of Xylellafastidiosa, including strains of the currently known subspecies of Xylellafastidiosa, Xylella fastidiosa subsp. multiplex and 'Xylella fastidiosasubsp.pauca'. Because of the difficulty of in vitro culture characterization, emphases were made to utilize the available whole-genome sequence information. The average nucleotide identity (ANI) values, an alternative for DNA-DNA hybridization relatedness, between PLS229T and Xylellafastidiosa were 83.4-83.9 %, significantly lower than the bacterial species threshold of 95 %. In contrast, sequence similarity of 16S rRNA genes was greater than 98 %, higher than the 97 % threshold to justify if two bacterial strains belong to different species. The uniqueness of PLS229T was also evident by observing only about 87 % similarity in the sequence of the 16S-23S internal transcribed spacer (ITS) between PLS229T and strains of Xylellafastidiosa, discovering significant single nucleotide polymorphisms at 18 randomly selected housekeeping gene loci, observing a distinct fatty acid profile for PLS229T compared with Xylellafastidiosa, and PLS229T having different observable phenotypes, such as different susceptibility to antibiotics. A phylogenetic tree derived from 16S rRNA gene sequences showed a distinct PLS229T phyletic lineage positioning it between Xylellafastidiosa and members of the genus Xanthomonas. On the basis of these data, a novel species, Xylella taiwanensis sp. nov. is proposed. The type strain is PLS229T (=BCRC 80915T=JCM 31187T).

  4. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    PubMed Central

    Doddapaneni, Harshavardhan; Yao, Jiqiang; Lin, Hong; Walker, M Andrew; Civerolo, Edwin L

    2006-01-01

    Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c), 54 (Dixon), 83 (Ann1) and 9 (Temecula-1). A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes have been identified as the

  5. Sequence/structural analysis of xylem proteome emphasizes pathogenesis-related proteins, chitinases and β-1, 3-glucanases as key players in grapevine defense against Xylella fastidiosa.

    PubMed

    Chakraborty, Sandeep; Nascimento, Rafael; Zaini, Paulo A; Gouran, Hossein; Rao, Basuthkar J; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-01

    Background. Xylella fastidiosa, the causative agent of various plant diseases including Pierce's disease in the US, and Citrus Variegated Chlorosis in Brazil, remains a continual source of concern and economic losses, especially since almost all commercial varieties are sensitive to this Gammaproteobacteria. Differential expression of proteins in infected tissue is an established methodology to identify key elements involved in plant defense pathways. Methods. In the current work, we developed a methodology named CHURNER that emphasizes relevant protein functions from proteomic data, based on identification of proteins with similar structures that do not necessarily have sequence homology. Such clustering emphasizes protein functions which have multiple copies that are up/down-regulated, and highlights similar proteins which are differentially regulated. As a working example we present proteomic data enumerating differentially expressed proteins in xylem sap from grapevines that were infected with X. fastidiosa. Results. Analysis of this data by CHURNER highlighted pathogenesis related PR-1 proteins, reinforcing this as the foremost protein function in xylem sap involved in the grapevine defense response to X. fastidiosa. β-1, 3-glucanase, which has both anti-microbial and anti-fungal activities, is also up-regulated. Simultaneously, chitinases are found to be both up and down-regulated by CHURNER, and thus the net gain of this protein function loses its significance in the defense response. Discussion. We demonstrate how structural data can be incorporated in the pipeline of proteomic data analysis prior to making inferences on the importance of individual proteins to plant defense mechanisms. We expect CHURNER to be applicable to any proteomic data set.

  6. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides.

    PubMed

    Ito, Takao; Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays.

  7. Universal detection of phytoplasmas and Xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides

    PubMed Central

    Suzaki, Koichi

    2017-01-01

    Phytoplasmas and Xylella spp. are bacteria that cause many economically important plant diseases worldwide. TaqMan probe-based quantitative real-time polymerase chain reaction (qPCR) assays have been utilized to universally detect phytoplasmas or Xylella fastidiosa. To develop a superior universal qPCR method, we used a dual priming oligonucleotide (DPO) with two annealing sites as a reverse primer to target the well-conserved bacterial 16S rDNA. The new qPCR assays universally detected various species of phytoplasmas and subspecies of X. fastidiosa as well as Xylella taiwanensis, and generally showed superior threshold cycle values when amplifying specific or non-specific products compared to current universal qPCR assays. The proposed qPCR assays were integrated to develop a multiplex qPCR assay that simultaneously detected phytoplasmas, Xylella spp., and an internal plant DNA positive control within 1 hour. This assay could detect a minimum of ten bacterial cells and was compatible with crude extractions used in the rapid screening of various plants. The amplicons were of sufficient lengths to be directly sequenced for preliminary identification, and the primers could be used in universal conventional PCR assays. Additionally, reverse DPO primers can be utilized to improve other probe-based qPCR assays. PMID:28957362

  8. Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling.

    PubMed

    de Souza, Alessandra A; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M; Lindow, Steven E

    2013-06-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3'-5')-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates.

  9. Phenotype Overlap in Xylella fastidiosa Is Controlled by the Cyclic Di-GMP Phosphodiesterase Eal in Response to Antibiotic Exposure and Diffusible Signal Factor-Mediated Cell-Cell Signaling

    PubMed Central

    de Souza, Alessandra A.; Ionescu, Michael; Baccari, Clelia; da Silva, Aline M.

    2013-01-01

    Eal is an EAL domain protein in Xylella fastidiosa homologous to one involved in resistance to tobramycin in Pseudomonas aeruginosa. EAL and HD-GYP domain proteins are implicated in the hydrolysis of the secondary messenger bis-(3′-5′)-cyclic dimeric GMP (cyclic di-GMP). Cell density-dependent communication mediated by a Diffusible Signal Factor (DSF) also modulates cyclic di-GMP levels in X. fastidiosa, thereby controlling the expression of virulence genes and genes involved in insect transmission. The possible linkage of Eal to both extrinsic factors such as antibiotics and intrinsic factors such as quorum sensing, and whether both affect virulence, was thus addressed. Expression of eal was induced by subinhibitory concentrations of tobramycin, and an eal deletion mutant was more susceptible to this antibiotic than the wild-type strain and exhibited phenotypes similar to those of an rpfF deletion mutant blocked in DSF production, such as hypermotility, reduced biofilm formation, and hypervirulence to grape. Consistent with that, the rpfF mutant was more susceptible than the wild-type strain to tobramycin. Therefore, we propose that cell-cell communication and antibiotic stress can apparently lead to similar modulations of cyclic di-GMP in X. fastidiosa, resulting in similar phenotypes. However, the effect of cell density is dominant compared to that of antibiotic stress, since eal is suppressed by RpfF, which may prevent inappropriate behavioral changes in response to antibiotic stress when DSF accumulates. PMID:23542613

  10. Diffusible signal factor-repressed extracellular traits enable attachment of Xylella fastidiosa to insect vectors and transmission.

    PubMed

    Baccari, Clelia; Killiny, Nabil; Ionescu, Michael; Almeida, Rodrigo P P; Lindow, Steven E

    2014-01-01

    The hypothesis that a wild-type strain of Xylella fastidiosa would restore the ability of rpfF mutants blocked in diffusible signal factor production to be transmitted to new grape plants by the sharpshooter vector Graphocephala atropunctata was tested. While the rpfF mutant was very poorly transmitted by vectors irrespective of whether they had also fed on plants infected with the wild-type strain, wild-type strains were not efficiently transmitted if vectors had fed on plants infected with the rpfF mutant. About 100-fewer cells of a wild-type strain attached to wings of a vector when suspended in xylem sap from plants infected with an rpfF mutant than in sap from uninfected grapes. The frequency of transmission of cells suspended in sap from plants that were infected by the rpfF mutant was also reduced over threefold. Wild-type cells suspended in a culture supernatant of an rpfF mutant also exhibited 10-fold less adherence to wings than when suspended in uninoculated culture media. A factor released into the xylem by rpfF mutants, and to a lesser extent by the wild-type strain, thus inhibits their attachment to, and thus transmission by, sharpshooter vectors and may also enable them to move more readily through host plants.

  11. Chitin Utilization by the Insect-Transmitted Bacterium Xylella fastidiosa▿ †

    PubMed Central

    Killiny, Nabil; Prado, Simone S.; Almeida, Rodrigo P. P.

    2010-01-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa. PMID:20656858

  12. [Population fluctuation of sharpshooters vectors of Xylella fastidiosa Wells et al. in commercial citrus groves in northwestern Paraná State].

    PubMed

    Nunes, William M C; Molina, Rúbia de O; de Albuquerque, Fernando A; Corazza-Nunes, Maria J; Zanutto, Carlos A; Machado, Marcos A

    2007-01-01

    The citrus variegated chlorosis (CVC), an important disease of citrus in Brazil, is caused by the bacterium Xylella fastidiosa Wells et al. and transmitted by xylem-feeding sharpshooters (Hemiptera: Cicadellidae). This study evaluated the fluctuation of populations of species of sharpshooters belonging to the tribes Cicadellini and Proconiini, from subfamily Cicadelinae, in a commercial sweet orange [Citrus sinensis (L.) Osb.] grove, located in the Northwest Region of Paraná State, Brazil, in four varieties: Valência, Natal, Pêra, and Folha Murcha. Sharpshooters population was monitored using yellow stick traps sampled at 15 day-intervals, in 24 traps, from November of 1999 to March of 2004. The most abundant species were Dilobopterus costalimai Young (tribe Cicadellini) and Acrogonia citrina Marucci & Cavichioli (tribe Proconiini). Both species were detected during the complete period studied, which is important because they have great potential for transmitting CVC. Thus, since more than a sharpshooter species were detected, more efforts are recommended to monitor and control these insects in citrus groves, aiming to reduce the dissemination of CVC.

  13. Molecular Profiling of Pierce's Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection.

    PubMed

    Zaini, Paulo A; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R; Dandekar, Abhaya M

    2018-01-01

    Pierce's disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa . Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels' secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  14. Molecular Profiling of Pierce’s Disease Outlines the Response Circuitry of Vitis vinifera to Xylella fastidiosa Infection

    PubMed Central

    Zaini, Paulo A.; Nascimento, Rafael; Gouran, Hossein; Cantu, Dario; Chakraborty, Sandeep; Phu, My; Goulart, Luiz R.; Dandekar, Abhaya M.

    2018-01-01

    Pierce’s disease is a major threat to grapevines caused by the bacterium Xylella fastidiosa. Although devoid of a type 3 secretion system commonly employed by bacterial pathogens to deliver effectors inside host cells, this pathogen is able to influence host parenchymal cells from the xylem lumen by secreting a battery of hydrolytic enzymes. Defining the cellular and biochemical changes induced during disease can foster the development of novel therapeutic strategies aimed at reducing the pathogen fitness and increasing plant health. To this end, we investigated the transcriptional, proteomic, and metabolomic responses of diseased Vitis vinifera compared to healthy plants. We found that several antioxidant strategies were induced, including the accumulation of gamma-aminobutyric acid (GABA) and polyamine metabolism, as well as iron and copper chelation, but these were insufficient to protect the plant from chronic oxidative stress and disease symptom development. Notable upregulation of phytoalexins, pathogenesis-related proteins, and various aromatic acid metabolites was part of the host responses observed. Moreover, upregulation of various cell wall modification enzymes followed the proliferation of the pathogen within xylem vessels, consistent with the intensive thickening of vessels’ secondary walls observed by magnetic resonance imaging. By interpreting the molecular profile changes taking place in symptomatic tissues, we report a set of molecular markers that can be further explored to aid in disease detection, breeding for resistance, and developing therapeutics.

  15. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  16. The chemotaxis regulator pilG of Xylella fastidiosa is required for virulence in Vitis vinifera grapevines

    USDA-ARS?s Scientific Manuscript database

    Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant and complementary strain contai...

  17. Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission.

    PubMed

    Chatterjee, Subhadeep; Killiny, Nabil; Almeida, Rodrigo P P; Lindow, Steven E

    2010-10-01

    Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.

  18. Fatty Acid Methyl Ester (FAME) analyses for characterization and detection of grapevine pathogens

    USDA-ARS?s Scientific Manuscript database

    Grapevines can become infected by a variety of devastating pathogens, including the bacterium Xylella fastidiosa and canker fungi. Multiple strains of Xylella fastidiosa exist, each causing different diseases on various hosts. Although sequence-based genotyping can assist in distinguishing these str...

  19. A TaqMan-based real time PCR assay for specific detection and quantification of Xylella fastidiosa strains causing bacterial leaf scorch in oleander.

    PubMed

    Guan, Wei; Shao, Jonathan; Singh, Raghuwinder; Davis, Robert E; Zhao, Tingchang; Huang, Qi

    2013-02-15

    A TaqMan-based real-time PCR assay was developed for specific detection of strains of X. fastidiosa causing oleander leaf scorch. The assay uses primers WG-OLS-F1 and WG-OLS-R1 and the fluorescent probe WG-OLS-P1, designed based on unique sequences found only in the genome of oleander strain Ann1. The assay is specific, allowing detection of only oleander-infecting strains, not other strains of X. fastidiosa nor other plant-associated bacteria tested. The assay is also sensitive, with a detection limit of 10.4fg DNA of X. fastidiosa per reaction in vitro and in planta. The assay can also be applied to detect low numbers of X. fastidiosa in insect samples, or further developed into a multiplex real-time PCR assay to simultaneously detect and distinguish diverse strains of X. fastidiosa that may occupy the same hosts or insect vectors. Specific and sensitive detection and quantification of oleander strains of X. fastidiosa should be useful for disease diagnosis, epidemiological studies, management of oleander leaf scorch disease, and resistance screening for oleander shrubs. Published by Elsevier B.V.

  20. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template.

    PubMed

    Gouran, Hossein; Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction.

  1. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template

    PubMed Central

    Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  2. Identification of Bacterial Plant Pathogens Using Multilocus Polymerase Chain Reaction/Electrospray Ionization-Mass Spectrometry

    DTIC Science & Technology

    2008-01-01

    sandii FK-53; OLF#1 Oleander; USA 1 Xylophilus ampelinus FB-1178 Grape; S. Africa 1 Xylophilus ampelinus FJ-3; 60002 Grape; S. Africa 1 1160...campestris Xanthomonas campestris Xylella fastidiosa (6 strains) Xylella fastidiosa Xylophilus ampelinus (2 strains) Xylophilus ampelinus ...Rathayibacter iranicus Rathayibacter iranicus Xylophilus ampelinus Xylophilus ampelinus a Purified DNAs from multiple bacteria were mixed at equal

  3. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    PubMed

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Invasive Threats to the American Homeland

    DTIC Science & Technology

    2004-04-01

    The second example is the glassy-winged sharpshooter, an invasive insect that hosts the bacterium Xylella Fastidiosa . The insect was first de- tected... Xylella Fastidiosa causes Pierce’s Disease in grapes, which infects and kills the grapevine. The glassy-winged sharpshooter transmits and spreads the...netic processes.” Adversaries of the United States may modify the genetics of an invasive species to increase its competitiveness, virulence , lethality

  5. Invasive Species - A Threat to the Homeland?

    DTIC Science & Technology

    2003-04-07

    sharpshooter, an invasive insect that hosts the bacterium Xylella Fastidiosa . The insect was first detected in California in 1990. Although it is...uncertain how it arrived in California, it is believed to have arrived on plants imported from an infected area. The bacterium Xylella Fastidiosa causes...United States may modify the genetics of an invasive species to increase its competitiveness, virulence , lethality, or resistance to control measures

  6. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca.

    PubMed

    Giampetruzzi, Annalisa; Morelli, Massimiliano; Saponari, Maria; Loconsole, Giuliana; Chiumenti, Michela; Boscia, Donato; Savino, Vito N; Martelli, Giovanni P; Saldarelli, Pasquale

    2016-06-27

    The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv. Leccino show much milder symptoms, than the more widely grown and highly susceptible cv. Ogliarola salentina. To determine whether these field observations underlie a tolerant condition of cv. Leccino, which could be exploited for lessening the economic impact of the disease on the local olive industry, transcriptional changes occurring in plants of the two cultivars affected by Xfp were investigated. A global quantitative transcriptome profiling comparing susceptible (Ogliarola salentina) and tolerant (Leccino) olive cultivars, infected or not by Xfp, was done on messenger RNA (mRNAs) extracted from xylem tissues. The study revealed that 659 and 447 genes were differentially regulated in cvs Leccino and Ogliarola upon Xfp infection, respectively, whereas 512 genes were altered when the transcriptome of both infected cultivars was compared. Analysis of these differentially expressed genes (DEGs) shows that the presence of Xfp is perceived by the plants of both cultivars, in which it triggers a differential response strongly involving the cell wall. Up-regulation of genes encoding receptor-like kinases (RLK) and receptor-like proteins (RLP) is the predominant response of cv. Leccino, which is missing in cv. Ogliarola salentina. Moreover, both cultivars react with a strong re-modelling of cell wall proteins. These data suggest that Xfp elicits a different transcriptome response in the two cultivars, which determines a lower pathogen concentration in cv. Leccino and indicates that this cultivar may harbor genetic constituents and/or regulatory elements which counteract Xfp infection. Collectively these findings suggest that cv. Leccino is endowed with an intrinsic tolerance to Xfp, which makes it eligible for further studies

  7. Infectivity and transmission of Xylella fastidiosa Salento strain by Philaenus spumarius L. (Hemiptera: Aphrophoridae) in Apulia, Italy

    USDA-ARS?s Scientific Manuscript database

    Discovery of X. fastidiosa from olive trees with “Olive quick decline syndrome" (OQDS) in October 2013 on the western coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards was the meado...

  8. A Simple Defined Medium for the Production of True Diketopiperazines in Xylella fastidiosa and Their Identification by Ultra-Fast Liquid Chromatography-Electrospray Ionization Ion Trap Mass Spectrometry.

    PubMed

    Silva, Michelli Massaroli da; Andrade, Moacir Dos Santos; Bauermeister, Anelize; Merfa, Marcus Vinícius; Forim, Moacir Rossi; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Maria Fátima das Graças Fernandes da; Lopes, Norberto Peporine; Machado, Marcos Antônio; Souza, Alessandra Alves de

    2017-06-13

    Diketopiperazines can be generated by non-enzymatic cyclization of linear dipeptides at extreme temperature or pH, and the complex medium used to culture bacteria and fungi including phytone peptone and trypticase peptone, can also produce cyclic peptides by heat sterilization. As a result, it is not always clear if many diketopiperazines reported in the literature are artifacts formed by the different complex media used in microorganism growth. An ideal method for analysis of these compounds should identify whether they are either synthesized de novo from the products of primary metabolism and deliver true diketopiperazines. A simple defined medium ( X. fastidiosa medium or XFM) containing a single carbon source and no preformed amino acids has emerged as a method with a particularly high potential for the grown of X. fastidiosa and to produce genuine natural products. In this work, we identified a range of diketopiperazines from X. fastidiosa 9a5c growth in XFM, using Ultra-Fast Liquid Chromatography coupled with mass spectrometry. Diketopiperazines are reported for the first time from X. fastidiosa , which is responsible for citrus variegated chlorosis. We also report here fatty acids from X. fastidiosa , which were not biologically active as diffusible signals, and the role of diketopiperazines in signal transduction still remains unknown.

  9. Anterior foregut microbiota of the glassy-winged sharpshooter explored using deep 16S rRNA gene sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  10. Exploring glassy-winged sharpshooter microbiota using deep 16S rRNA sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  11. Glassy-winged sharpshooter Microbiota explored using deep 16S rRNA sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  12. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae)

    USDA-ARS?s Scientific Manuscript database

    Homalodisca vitripennis, one of the main vectors of Xylella fastidiosa, is associated with citrus plantings in California, USA. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce’s disease (PD). An analysis of the pattern and rate of movement ...

  13. Rootstock effects on almond leaf scorch disease incidence and severity

    USDA-ARS?s Scientific Manuscript database

    A five-year field study was conducted to evaluate effects of duration and exclusion of Xylella fastidiosa infections on young almond tree performance and their links to tree vigor. ‘Nemaguard’, ‘Okinawa’, ‘Nonpareil’, and Y119 were used as rootstocks for almond scion ‘Sonora’. Among X.fastidiosa-inf...

  14. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of adhesive, input resistor, and voltage levels on waveform appearance and stylet probing behaviors.

    PubMed

    Cervantes, Felix A; Backus, Elaine A

    2018-05-31

    Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9  Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9  Ohms) was performed. Intermediate Ri levels 10 7 and 10 8  Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa

  15. Fatigue and nanomechanical properties of K3XF nickel-titanium instruments.

    PubMed

    Shen, Y; Zhou, H; Campbell, L; Wang, Z; Wang, R; Du, T; Haapasalo, M

    2014-12-01

    To examine the fatigue behaviour of heat-treated NiTi instruments when immersed in aqueous media and to determine the effect of cyclic fatigue on the hardness and elastic modulus of NiTi instruments using a nanoindentation technique. K3XF and K3 NiTi instruments, both in sizes 25, 0.04 taper and 40, 0.04 taper, were subjected to rotational bending at a curvature of 42° either in air or under deionized water, and the number of revolutions to fracture (Nf ) was recorded. The fracture surface of all fragments was examined with a scanning electron microscope. The hardness and elastic modulus of the fracture surface of instruments sized 25, 0.04 taper were then measured using a nanoindentation test. The K3XF instruments had a fatigue resistance superior to K3 instruments under dry and aqueous environments (P < 0.05). The fatigue life of K3 instruments was similar under both conditions, whereas the Nf of K3XF was greater under water than in air, especially at the size 40, 0.04 taper (P < 0.05). The values for the fraction of the area occupied by the dimple region were significantly smaller in K3XF instruments than in K3 instruments, especially under water (P < 0.05). There was no difference in hardness on K3XF instruments between new files and instruments subjected to the fatigue process. The hardness of instruments subjected to the fatigue process was significantly lower in K3XF than in K3 instruments (P < 0.05). The fatigue life of K3XF instruments under water is longer than it is for K3XF instruments in air. There was no work-hardening effect on K3XF instruments subjected to the fatigue process. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry.

    PubMed

    Soares, Márcio Santos; da Silva, Danielle Fernandes; Forim, Moacir Rossi; da Silva, Maria Fátima das Graças Fernandes; Fernandes, João Batista; Vieira, Paulo Cezar; Silva, Denise Brentan; Lopes, Norberto Peporine; de Carvalho, Sérgio Alves; de Souza, Alessandra Alves; Machado, Marcos Antônio

    2015-07-01

    A high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for quantifying hesperidin and rutin levels in leaves and stems of Citrus limonia, with a good linearity over a range of 1.0-80.0 and 1.0-50.0 μg mL(-1) respectively, with r(2)>0.999 for all curves. The limits of detection (LOD) for both flavonoids were 0.6 and 0.5 μg mL(-1), respectively, with quantification (LOQ) being 2.0 and 1.0 μg mL(-1), respectively. The quantification method was applied to Citrus sinensis grafted onto C. limonia with and without CVC (citrus variegated chlorosis) symptoms after Xylella fastidiosa infection. The total content of rutin was low and practically constant in all analyses in comparison with hesperidin, which showed a significant increase in its amount in symptomatic leaves. Scanning electron microscopy studies on leaves with CVC symptoms showed vessel occlusion by biofilm, and a crystallized material was noted. Considering the difficulty in isolating these crystals for analysis, tissue sections were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) to confirm the presence of hesperidin at the site of infection. The images constructed from MS/MS data with a specific diagnostic fragment ion (m/z 483) also showed higher ion intensities for it in infected plants than in healthy ones, mainly in the vessel regions. These data suggest that hesperidin plays a role in the plant-pathogen interaction, probably as a phytoanticipin. This method was also applied to C. sinensis and C. limonia seedlings, and comparison with the graft results showed that the rootstock had an increased hesperidin content ∼3.6 fold greater in the graft stem than in the stem of C. sinensis seedlings. Increase in hesperidin content by rootstock can be related to induced internal defense mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Genomic Diversity of Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Prophage in B. pseudomallei 1026b

    DTIC Science & Technology

    2004-06-01

    identification of several new virulence gene candidates. In particular, K96243 harbors multiple genomic islands with relatively low GC contents...differences were observed. Prophage-encoded virulence factors in other bacterial species have been described (5), and it was of interest to see if gene ... Xylella fastidiosa (11, 16, 17). The genomic sequencing results for multiple strains of Streptococcus and Xylella suggest that different disease

  18. Identification of a virulence-related surface protein XF in piscine Streptococcus agalactiae by pre-absorbed immunoproteomics.

    PubMed

    Liu, Guangjin; Zhang, Wei; Liu, Yongjie; Yao, Huochun; Lu, Chengping; Xu, Pao

    2014-10-26

    Since 2009, large-scale Streptococcus agalactiae infections have broken out in cultured tilapia farms in China, resulting in considerable economic losses. Screening of the surface proteins is required to identify virulence factors or protective antigens involved in piscine S.agalactiae infections in tilapia. Pre-absorbed immunoproteomics method (PAIM) is a useful method previously established in our laboratory for identifying bacterial surface proteins. A serine-rich repeat protein family 1 (Srr-1), designated XF, was identified by PAIM in piscine S. agalactiae isolate GD201008-001. To investigate the role of XF in the pathogenesis of piscine S. agalactiae, an isogenic xf mutant strain (Δxf) and a complemented strain (CΔxf) were successfully constructed. The Δxf mutant and CΔxf showed no significant differences in growth characteristics and adherence to HEp-2 cells compared with the wild-type strain. However the 50% lethal dose of Δxf was increased (4-fold) compared with that of the parental strain in a zebrafish infection model. The findings demonstrated that XF is a virulence-related, highly immunoreactive surface protein and is involved in the pathogenicity of S. agalactiae infections in fish.

  19. Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments.

    PubMed

    Shen, Ya; Zhou, Hui-Min; Wang, Zhejun; Campbell, Les; Zheng, Yu-feng; Haapasalo, Markus

    2013-07-01

    The bending and torsional properties of thermomechanically treated K3XF (SybronEndo, Orange, CA) nickel-titanium instruments in relation to their phase transformation behavior were evaluated. NiTi instruments K3 (SybronEndo) and K3XF, both in sizes 25/.04 and 40/.04, were examined by differential scanning calorimetry and X-ray diffraction. The metal composition was determined by scanning electron microscopy with X-ray energy-dispersive spectrometric analyses. The bending property of K3 and K3XF instruments was measured in a cantilever-bending test with a maximum deflection of 4.00 mm. A torsional test of the instruments was evaluated according to the American National Standards Institute/American Dental Association Specification No. 28. K3 and K3XF instruments had approximately the same chemical composition with a nickel content of 48-49 atomic %. The differential scanning calorimetry analyses showed that each segment of the K3XF instruments (24.89°C ± 1.98°C) had a higher austenite finish temperature than the K3 instruments (17.63°C ± 1.76°C) (P < .05). The bending load values were significantly lower for K3XF than for K3 in the superelastic ranges (P < .05). There was no statistically significant difference between K3 and K3XF in the maximum torque or maximum angular deflection before failure. The torque at fracture values of K3 and K3XF increased significantly with the diameter (P < .05). K3XF exhibited different phase transformation behavior and flexibility when compared with K3, which may be attributed to the special heat treatment history of K3XF instruments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Filamentation and spatiotemporal distribution of extracellular polymeric substances: role on X.fastidiosa single cell adhesion and biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Monteiro, Moniellen P.; César, Carlos L.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2016-04-01

    Biofilms can be defined as a community of microorganisms attached to a surface, living embedded in a self- produced matrix of hydrated extracellular polymeric substances (EPS) which comprises most of the biofilm mass. We have recently used an extensive pool of microscopy techniques (confocal fluorescence, electron and scanning probe microscopies) at the micro and nanoscales in order to create a detailed temporal observation of Xylella fastidiosa biofilm formation, using both wild type strain and Green Fluorescent Protein (GFP)-modified cells of this citrus phytopathogen. We have identified three different EPS compositions, as well as their spatial and temporal distribution from single cell to mature biofilm formation stages. In the initial adhesion stage, soluble-EPS (S-EPS) accumulates at cell polar regions and forms a surface layer which facilitates irreversible cell attachment and cell cluster formation. These small clusters are subsequently connected by filamentous cells; further S-EPS surface coverage facilitates cell attachment and form filaments, leading to a floating framework of mature biofilms. The important role of EPS in X.fastidiosa biology was further investigated by imunolabelling experiments to detect the distribution of XadA1 adhesin, which is expressed in early stages of biofilm formation and released in outer membrane vesicles. This protein is located mainly in S-EPS covered areas, as well as on the filaments, indicating a molecular pathway to the enhanced cell attachment previously observed. These results suggest that S-EPS may thus represent an important target for disease control, slow plant colonization by the bacteria, keeping the plant more productive in the field.

  1. Mating disruption of Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) by playback of vibrational signals in vineyard trellis

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of the bacterium Xylella fastidiosa, the causal agent of Pierce’s disease of grapevine. Area-wide applications of neonicotinoid insecticides have suppressed GWSS populati...

  2. Playback interference of glassy-winged sharp shooter communication

    USDA-ARS?s Scientific Manuscript database

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  3. Playback of natural vibrational signals in vineyard trellis for mating disruption of glassy-winged sharpshooter

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a vector of Xylella fastidiosa, an important bacterial pathogen of several crops in the Americas and Europe. Mating communication of this and many other cicadellid pests involves the exchange of substrate-...

  4. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  5. Effects of nymphal diet and adult feeding on allocation of resources to glassy-winged sharpshooter egg production

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter is an invasive insect capable of transmitting the bacterial pathogen Xylella fastidiosa. Pre-oviposition periods of laboratory reared glassy-winged sharpshooters are variable. Here, two questions were addressed: does nymphal diet affect pre-oviposition period and how d...

  6. From rags to riches: insights from the first genomic sequence of a plant pathogenic bacterium

    PubMed Central

    Keen, Noel T; Korsi Dumenyo, C; Yang, Ching-Hong; Cooksey, Donald A

    2000-01-01

    The recently published genomic sequence of Xylella fastidiosa is the first for a free-living plant pathogen and provides clues to mechanisms of pathogenesis and survival in insect vectors. The sequence data should lead to improved control of this pathogen. PMID:11178244

  7. Modeling deployment of Pierce’s disease resistant grapevines

    USDA-ARS?s Scientific Manuscript database

    Deployment of Pierce’s disease resistant grapevines is a key solution to mitigating economic losses caused by Xylella fastidiosa. While Pierce’s disease resistant grapevines under development display mild symptoms and have lower bacterial populations than susceptible varieties, all appear to remain ...

  8. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  9. Propagation of Homalodisca Coagulata Virus-01 via Homalodisca Vitripennis cell culture

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa, a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevin...

  10. Study the taxonomy of Xylella based on whole genome sequences

    USDA-ARS?s Scientific Manuscript database

    Members of the genus Xylella cause diseases on many economically important crops in the Americas, including Pierce's disease (PD) of grapevine in U.S., and citrus variegated chlorosis (CVC) disease in Brazil. In the past decade, Xylella-caused diseases from outside the Americas, such as pear leaf sc...

  11. Management of almond leaf scorch disease: long term data on yield, tree vitality, and disease progress

    USDA-ARS?s Scientific Manuscript database

    Almond leaf scorch (ALS) disease has been a chronic problem for California almond growers. This disease is caused by the bacterial pathogen Xylella fastidiosa and is transmitted by xylem-feeding insects. Previous research suggested that retaining, rather than roguing, ALS-affected trees may be more ...

  12. North American XF-82 Twin Mustang Prepares for Ramjet Test Flight

    NASA Image and Video Library

    1949-04-21

    Pilot William Swann, right cockpit, prepares the North American XF-82 Twin Mustang for flight at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The aircraft was one of only two prototypes built by North American in October 1945 and powered by Packard Merlin V-1650 piston engines. Over 270 of the F-82 long-distance pursuit fighters were produced during the 1940s. The Mustang’s unique two-pilot configuration allowed one pilot to rest during the long missions and thus be ready for action upon arrival. The NACA took possession of this XF-82 in October 1947. NACA Lewis used the XF-82 as a test bed for ramjet flight tests. Ramjets are continually burning tubes that use the compressed atmospheric air to produce thrust. Ramjets are extremely efficient at high speeds, but rely on some sort of booster to attain that high speed. NACA Lewis undertook an extensive ramjet program in the 1940s that included combustion studies in the Altitude Wind Tunnel, a number of flight tests, and missile drops from aircraft. The 16-inch diameter ramjet missile was fixed to the XF-82 Mustang’s wing and dropped from high altitudes off of Wallops Island. The tests determined the ramjet’s performance and operational characteristics in the transonic range.

  13. 76 FR 8603 - Citrus Seed Imports; Citrus Greening and Citrus Variegated Chlorosis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... strain of the bacterium Xylella fastidiosa, CVC causes severe chlorosis between veins on the leaves of...\\ ARS researchers did note, however, that the bacterium causing HLB remained at a very low titer in... these 769 seedlings tested positive for the disease. However, titer levels of the bacterium were low...

  14. Asteroid 1997 XF11 Could Collide with Earth

    NASA Astrophysics Data System (ADS)

    Marsden, B. G.

    1999-09-01

    Early in 1998, the 2-km asteroid 1997 XF11 became of interest as a possible danger to the earth because it would clearly pass within--possibly well within--the earth's sphere of influence on 2028 Oct. 26 (IAUC 6837). Given the usual model of the solar system, the 2028 passage was entirely predictable in that there was then no possibility of collision with the earth (IAUC 6879). Nevertheless, despite this predictability, several colleagues insisted on estimating impact probabilities, with results ranging from 10(-3) to 10(-1117) ; although this latter figure by Muinonen may be technically correct, it surely invites the imagination of bizarre scenarios that would increase it. Surprisingly, despite a stated desire for ``peer review'' of pronouncements of an asteroid hazard, there was no consideration that 1997 XF11 might have posed a danger to the earth a few years after 2028. Given the 88-day arc of observations, the uncertainty in the 2028 miss distance meant that the object's revolution period, currently 1.73 years, could subsequently have been anything from 1.53 to 1.99 years. Furthermore, the essentially linear annual change of 4000 km in the minimum distance between the earth's orbit and the object's descending node would reduce this distance to zero during the late 2030s. Given the possibility of a post-2028 earth-resonant period such as 5/3, 7/4, 9/5 or 12/7 years, it was also predictable that there existed trajectories for 1997 XF11, entirely consistent with the available observations, that would yield an earth impact during this timeframe. A possible deep impact in 2040, a grazing impact in 2037 and other passages within 2 or 3 earth radii were in fact found. Although the chaos induced in 2028 renders the calculation of impact probabilities rather difficult, a simplistic argument gives a value of about 10(-5) in at least one of the relevant years (albeit at a very specific time). This is larger than the estimated annual 10(-6) impact probability for unknown

  15. Fotometria dell'asteroide (35396) 1997 XF11

    NASA Astrophysics Data System (ADS)

    Foglia, Sergio

    2005-04-01

    Radar and photometric observations of (35396) 1997 XF11 were made during its close approach with the Earth in 2002. The photometric parameters found are: period of rotation = 3.2567±0.0001 hours, light curve amplitude = 0.71 mag., (V-R) = 0.5 and absolute magnitude H = 17.0±0.4.

  16. Bacterial leaf scorch distribution and isothermal lines (PROJECT NC-EM-08-02)

    Treesearch

    Gerard C. Adams; Mursel Catall; James Walla; Ann B. Gould

    2013-01-01

    Bacterial leaf scorch (BLS) of shade trees is the common name for a disease caused by Xylella fastidiosa, a xylem-inhabiting bacterium that has fastidious nutritional requirements and is difficult to culture or verify by culturing. Forest trees including oak, sycamore, elm, planetree, sweetgum, mulberry and maple are species susceptible to ...

  17. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis

    PubMed Central

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613

  18. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    PubMed

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  19. Bacterial Leaf Scorch of Amenity Trees a Wide-Spread Problem of Economic Significance to the Urban Forest

    Treesearch

    James Lashomb; Alan Iskra; Ann Brooks Gould; George Hamilton

    2003-01-01

    Bacterial leaf scorch (BLS) of amenity trees is caused by the bacterium Xylella fastidiosa, a xylem-limited pathogen that causes water stress resulting in leaf scorch, decline, and eventual death of affected trees. Recent surveys indicate that BLS is widespread throughout the eastern half of the United States. In New Jersey, BLS primarily affects red and pin oaks...

  20. Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata

    PubMed Central

    Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, João Lucio

    2014-01-01

    The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content. PMID:24994795

  1. Genomic Diversity of Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Propage in B. pseudomallei 1026b

    DTIC Science & Technology

    2004-06-01

    identification of several new virulence gene candidates. In particular, K96243 harbors multiple genomic islands with relatively low GC contents, suggesting...coli, Streptococcus pyogenes, Staphylococcus aureus, S. enterica, and Xylella fastidiosa (11, 16, 17). The genomic sequencing results for multiple... virulence genes by subtractive hybridization: identifica- tion of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant

  2. McDonnell XF-88B Experimental Jet Fighter

    NASA Image and Video Library

    1955-08-10

    91,591 Overhead view. McDonnell XF-88B Experimental Jet Fighter. Langley used this aircraft in the mid-1950s to explore the potential of a supersonic propeller. Photographed in Engineer in Charge A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 508. **Note see L57-2259 for eye level view.

  3. Writing instrument interfaces with xf/tktcl

    NASA Technical Reports Server (NTRS)

    Henden, A. A.

    1992-01-01

    Tcl is an embedded control language written in C, running primarily under Unix and with an interpreted C look-and-feel. Tk is an X11 toolkit based on tcl. Xf is an application builder for tk. The entire package is public domain and available from sprite.berkeley.edu. This paper discusses the use of tk to develop a user interface for OSIRIS, an infrared camera/spectrograph now operational on the OSU Perkins 1.8m telescope. The good and bad features of the development process are described.

  4. X-FIDO: An Effective Application for Detecting Olive Quick Decline Syndrome with Deep Learning and Data Fusion.

    PubMed

    Cruz, Albert C; Luvisi, Andrea; De Bellis, Luigi; Ampatzidis, Yiannis

    2017-01-01

    We have developed a vision-based program to detect symptoms of Olive Quick Decline Syndrome (OQDS) on leaves of Olea europaea L. infected by Xylella fastidiosa , named X-FIDO ( Xylella FastIdiosa Detector for O. europaea L.). Previous work predicted disease from leaf images with deep learning but required a vast amount of data which was obtained via crowd sourcing such as the PlantVillage project. This approach has limited applicability when samples need to be tested with traditional methods (i.e., PCR) to avoid incorrect training input or for quarantine pests which manipulation is restricted. In this paper, we demonstrate that transfer learning can be leveraged when it is not possible to collect thousands of new leaf images. Transfer learning is the re-application of an already trained deep learner to a new problem. We present a novel algorithm for fusing data at different levels of abstraction to improve performance of the system. The algorithm discovers low-level features from raw data to automatically detect veins and colors that lead to symptomatic leaves. The experiment included images of 100 healthy leaves, 99 X. fastidiosa -positive leaves and 100 X. fastidiosa -negative leaves with symptoms related to other stress factors (i.e., abiotic factors such as water stress or others diseases). The program detects OQDS with a true positive rate of 98.60 ± 1.47% in testing, showing great potential for image analysis for this disease. Results were obtained with a convolutional neural network trained with the stochastic gradient descent method, and ten trials with a 75/25 split of training and testing data. This work shows potential for massive screening of plants with reduced diagnosis time and cost.

  5. Host structural carbohydrate induces vector transmission of a bacterial plant pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2009-12-29

    Many insect-borne pathogens have complex life histories because they must colonize both hosts and vectors for successful dissemination. In addition, the transition from host to vector environments may require changes in gene expression before the pathogen's departure from the host. Xylella fastidiosa is a xylem-limited plant-pathogenic bacterium transmitted by leafhopper vectors that causes diseases in a number of economically important plants. We hypothesized that factors of host origin, such as plant structural polysaccharides, are important in regulating X. fastidiosa gene expression and mediating vector transmission of this pathogen. The addition of pectin and glucan to a simple defined medium resulted in dramatic changes in X. fastidiosa's phenotype and gene-expression profile. Cells grown in the presence of pectin became more adhesive than in other media tested. In addition, the presence of pectin and glucan in media resulted in significant changes in the expression of several genes previously identified as important for X. fastidiosa's pathogenicity in plants. Furthermore, vector transmission of X. fastidiosa was induced in the presence of both polysaccharides. Our data show that host structural polysaccharides mediate gene regulation in X. fastidiosa, which results in phenotypic changes required for vector transmission. A better understanding of how vector-borne pathogens transition from host to vector, and vice versa, may lead to previously undiscovered disease-control strategies.

  6. Gene expression analysis of six GC-rich Gram-negative phytopathogens.

    PubMed

    Fu, Qing-Shan; Li, Feng; Chen, Ling-Ling

    2005-07-01

    Predicted highly expressed (PHX) genes are comparatively analyzed for six GC-rich Gram-negative phytopathogens, i.e., Ralstonia solanacearum, Agrobacterium tumefaciens, Xanthomonas campestris pv. campestris (Xcc), Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. tomato, and Xylella fastidiosa. Enzymes involved in energy metabolism, such as ATP synthase, and genes involved in TCA cycle, are PHX in most bacteria except X. fastidiosa, which prefers an anaerobic environment. Most pathogenicity-related factors, including flagellar proteins and some outer membrane proteins, are PHX, except that flagellar proteins are missing in X. fastidiosa which is spread by insects and does not need to move during invasion. Although type III secretion system apparatus are homologous to flagellar proteins, none of them is PHX, which support the viewpoint that the two types of genes have evolved independently. Furthermore, it is revealed that some biosynthesis-related enzymes are highly expressed in certain bacteria. The PHX genes may provide potential drug targets for the design of new bactericide.

  7. Identification of Xylella fastidiosa antivirulence genes: hemagglutinin adhesins contribute a biofilm maturation to X. fastidios and colonization and attenuate virulence.

    PubMed

    Guilhabert, Magalie R; Kirkpatrick, Bruce C

    2005-08-01

    Xylella fastidosa, a gram-negative, xylem-limited bacterium, is the causal agent of several economically important plant diseases, including Pierce's disease (PD) and citrus variegated chlorosis (CVC). Until recently, the inability to transform or produce transposon mutants of X. fastidosa had been a major impediment to identifying X. fastidosa genes that mediate pathogen and plant interactions. A random transposon (Tn5) library of X. fastidosa was constructed and screened for mutants showing more severe symptoms and earlier grapevine death (hypervirulence) than did vines infected with the wild type. Seven hypervirulent mutants identified in this screen moved faster and reached higher populations than the wild type in grapevines. These results suggest that X. fastidosa attenuates its virulence in planta and that movement is important in X. fastidosa virulence. The mutated genes were sequenced and none had been described previously as antivirulence genes, although six of them showed similarity with genes of known functions in other organisms. One transposon insertion inactivated a hemagglutinin adhesin gene (PD2118), which we named HxfA. Another mutant in a second putative X. fastidosa hemagglutinin gene, PD1792 (HxfB), was constructed, and further characterization of these hxf mutants suggests that X. fastidosa hemagglutinins mediate contact between X. fastidosa cells, which results in colony formation and biofilm maturation within the xylem vessels.

  8. Gene regulation mediates host specificity of a bacterial pathogen.

    PubMed

    Killiny, Nabil; Almeida, Rodrigo P P

    2011-12-01

    Many bacterial plant pathogens have a gene-for-gene relationship that determines host specificity. However, there are pathogens such as the xylem-limited bacterium Xylella fastidiosa that do not carry genes considered essential for the gene-for-gene model, such as those coding for a type III secretion system and effector molecules. Nevertheless, X. fastidiosa subspecies are host specific. A comparison of symptom development and host colonization after infection of plants with several mutant strains in two hosts, grapevines and almonds, indicated that X. fastidiosa virulence mechanisms are similar in those plants. Thus, we tested if modification of gene regulation patterns, by affecting the production of a cell-cell signalling molecule (DSF), impacted host specificity in X. fastidiosa. Results show that disruption of the rpfF locus, required for DSF synthesis, in a strain incapable of causing disease in grapevines, leads to symptom development in that host. These data are indicative that the core machinery required for the colonization of grapevines is present in that strain, and that changes in gene regulation alone can lead X. fastidiosa to exploit a novel host. The study of the evolution and mechanisms of host specificity mediated by gene regulation at the genome level could lead to important insights on the emergence of new diseases. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  9. Polysaccharide Compositions of Intervessel Pit Membranes Contribute to Pierce’s Disease Resistance of Grapevines1[OA

    PubMed Central

    Sun, Qiang; Greve, L. Carl; Labavitch, John M.

    2011-01-01

    Symptom development of Pierce’s disease (PD) in grapevine (Vitis vinifera) depends largely on the ability of the bacterium Xylella fastidiosa to use cell wall-degrading enzymes (CWDEs) to break up intervessel pit membranes (PMs) and spread through the vessel system. In this study, an immunohistochemical technique was developed to analyze pectic and hemicellulosic polysaccharides of intervessel PMs. Our results indicate that PMs of grapevine genotypes with different PD resistance differed in the composition and structure of homogalacturonans (HGs) and xyloglucans (XyGs), the potential targets of the pathogen’s CWDEs. The PMs of PD-resistant grapevine genotypes lacked fucosylated XyGs and weakly methyl-esterified HGs (ME-HGs), and contained a small amount of heavily ME-HGs. In contrast, PMs of PD-susceptible genotypes all had substantial amounts of fucosylated XyGs and weakly ME-HGs, but lacked heavily ME-HGs. The intervessel PM integrity and the pathogen’s distribution in Xylella-infected grapevines also showed differences among the genotypes. In pathogen-inoculated, PD-resistant genotypes PM integrity was well maintained and Xylella cells were only found close to the inoculation site. However, in inoculated PD-susceptible genotypes, PMs in the vessels associated with bacteria lost their integrity and the systemic presence of the X. fastidiosa pathogen was confirmed. Our analysis also provided a relatively clear understanding of the process by which intervessel PMs are degraded. All of these observations support the conclusion that weakly ME-HGs and fucosylated XyGs are substrates of the pathogen’s CWDEs and their presence in or absence from PMs may contribute to grapevine’s PD susceptibility. PMID:21343427

  10. Bacteria causing important diseases of citrus utilise distinct modes of pathogenesis to attack a common host.

    PubMed

    Vojnov, Adrián Alberto; do Amaral, Alexandre Morais; Dow, John Maxwell; Castagnaro, Atilio Pedro; Marano, Marìa Rosa

    2010-06-01

    In this review, we summarise the current knowledge on three pathogens that exhibit distinct tissue specificity and modes of pathogenesis in citrus plants. Xanthomonas axonopodis pv. citri causes canker disease and invades the host leaf mesophyll tissue through natural openings and can also survive as an epiphyte. Xylella fastidiosa and Candidatus Liberibacter are vectored by insects and proliferate in the vascular system of the host, either in the phloem (Candidatus Liberibacter) or xylem (X. fastidiosa) causing variegated chlorosis and huanglongbing diseases, respectively. Candidatus Liberibacter can be found within host cells and is thus unique as an intracellular phytopathogenic bacterium. Genome sequence comparisons have identified groups of species-specific genes that may be associated with the particular lifestyle, mode of transmission or symptoms produced by each phytopathogen. In addition, components that are conserved amongst bacteria may have diverse regulatory actions underpinning the different bacterial lifestyles; one example is the divergent role of the Rpf/DSF cell-cell signalling system in X. citri and X. fastidiosa. Biofilm plays a key role in epiphytic fitness and canker development in X. citri and in the symptoms produced by X. fastidiosa. Bacterial aggregation may be associated with vascular occlusion of the xylem vessels and symptomatology of variegated chlorosis.

  11. In vitro comparison in a manikin model: increasing apical enlargement with K3 and K3XF rotary instruments.

    PubMed

    Olivieri, Juan Gonzalo; Stöber, Eva; García Font, Marc; González, Jose Antonio; Bragado, Pablo; Roig, Miguel; Duran-Sindreu, Fernando

    2014-09-01

    The aim of the study was to compare the K3 and K3XF systems (SybronEndo, Glendora, CA) after 1 and 2 uses by evaluating apical transportation, working length loss, and working time in a manikin model. Mesial canals of 40 extracted first mandibular molars were instrumented. Radiographs taken after instrumentation with #25, #30, #35, and #40 files were superimposed on the preoperative image in both mesiodistal and buccolingual angulations. AutoCAD (Autodesk Inc, San Rafael, CA) was used to measure working length loss and apical transportation at 0, 0.5, and 1 mm from the working length (WL). The working time was measured. Group comparison was analyzed using post hoc Tukey honestly significant difference tests (P < .05). No significant differences were found in apical transportation, working length loss between K3 and K3XF systems, or between the number of uses. Significant differences were found when canal enlargement was performed to a #35-40 (P < .05). K3 instrumentation performed significantly faster (29.6 ± 15.4) than with the K3XF system (40.2 ± 17.7) (P < .05). No differences were observed in working time when comparing the number of uses. K3 and R-phase K3XF rotary systems shaped curved root canals safely with minimal apical transportation, even up to a 40/04 file. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants.

    PubMed

    Guo, Shengye; Li, Xingyu; He, Pengfei; Ho, Honhing; Wu, Yixin; He, Yueqiu

    2015-06-01

    Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

  13. Spin Tests of 1/20-Scale Models of the Chance Vought Revised XF6U-1 and F6U-1 Airplanes, TED No. NACA 2390

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Berman, Theodore

    1948-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel on the 1/20-scale model of the Chance Vought XF6U-1 airplane altered to represent the XF6U-1 airplane as it will be spin-tested in flight, and also altered to represent the F6U-1 airplane as it will be produced for service use. Spin tests were made to determine the effects of control settings and movements at the normal loading. The results show that the spins obtained on the revised XF6U-1 airplane will be oscillatory in roll and yaw and that recoveries by rudder reversal will be rapid. Model test results indicate that the F6U-1 airplane will probably not spin. Inasmuch as the results of this investigation show that the new designs are as good as or better than the original XF6U-1 design in regard to spin recovery, it is felt that the conclusions and recommendations reached for the original design can be applied to the new designs for all loading conditions.

  14. Convair XF-102 Model in the 8- by 6-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1953-08-21

    A .10-scale model of Convair’s XF-102 in the 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory for jet exit studies. The XF-102 was a prototype of the F-102 Delta Dagger. The F-102 served as an interceptor against long range bombers from the Soviet Union. The aircraft was powered by a Pratt and Whitney J57 turbojet. The first prototype crashed two weeks after is first flight on October 24, 1953, just months after this photograph. Engineers then incorporated the fixed-wing design to reduce drag at supersonic speeds. The production model F-102 became the first delta-wing supersonic aircraft in operation. The 8- by 6-Foot Supersonic Wind Tunnel is used to study propulsion systems, including inlets and exit nozzles, combustion fuel injectors, flame holders, exit nozzles, and controls on ramjet and turbojet engines. Flexible sidewalls alter the tunnel’s nozzle shape to vary the Mach number during operation. A seven-stage axial compressor, driven by three electric motors that yield a total of 87,000 horsepower, generates air speeds from Mach 0.36 to 2.0.

  15. A Study of the Hadronic Production of $D^0$ and $$\\overline{D}\\,{^0}$$ Mesons: $$x_F$$ and $$p_t$$ Distributions (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Mello Neto, Joao Torres

    Using a 250 Ge V hadron beam incident on thin targets foils of Be, Al, Cu and W, themore » $$x_F$$ and $$p_t$$ distributions of $D^0$ and $$\\bar{D}^0$$ were measured from Fermilab experiment E769 using the decay mode $$D^0 \\to K^- \\pi^+$$ and c.c. The measurements were made with the $$\\pi^-$$ induced sample, 607 ± 29 events. Fitting the $$x_F$$ distribution to (1- $$x_F)^{\\eta}$$ it was measured $$\\eta$$ = 3.86 ± 0.25 ± 0.10 for $$D0/\\bar{D}^0$$ , $$\\eta$$ = 3.89 ± 0.40 for $D^0$ and $$\\eta$$ = 3.74 ± 0.34 for $$\\bar{D}^0$$ • Fitting the $$p^2_t$$ distribuition to exp $$bp^2_t$$;, it was measured $b$ = 1.05 ± 0.06 ± 0.02 for $$DO/\\bar{D}^0$$ $b$ = 1.12 ± 0.09 for $D^0$ and $b$ = 1.00 ± 0.07 for $$\\bar{D}^0$$. The $$x_F$$ distribution is consistent with the perturbative QCD calculations.« less

  16. Electronic structures and geometries of the XF{sub 3} (X = Cl, Br, I, At) fluorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergentu, Dumitru-Claudiu; CEISAM, UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3; Amaouch, Mohamed

    The potential energy surfaces of the group 17 XF{sub 3} (X = Cl, Br, I, At) fluorides have been investigated for the first time with multiconfigurational wave function theory approaches. In agreement with experiment, bent T-shaped C{sub 2v} structures are computed for ClF{sub 3}, BrF{sub 3}, and IF{sub 3}, while we predict that an average D{sub 3h} structure would be experimentally observed for AtF{sub 3}. Electron correlation and scalar relativistic effects strongly reduce the energy difference between the D{sub 3h} geometry and the C{sub 2v} one, along the XF{sub 3} series, and in the X = At case, spin-orbit couplingmore » also slightly reduces this energy difference. AtF{sub 3} is a borderline system where the D{sub 3h} structure becomes a minimum, i.e., the pseudo-Jahn-Teller effect is inhibited since electron correlation and scalar-relativistic effects create small energy barriers leading to the global C{sub 2v} minima, although both types of effects interfere.« less

  17. Preliminary Evaluation of the Spin and Recovery Characteristics of the Douglas XF3D-1 Airplane

    NASA Technical Reports Server (NTRS)

    Scher, Stanley H.

    1947-01-01

    A preliminary evaluation of the spin and recovery characteristics of the XF3D-1 airplane has been made, based primarily on the results of the free-spinning tunnel tests of a model which closely simulated the XF3D-1 in tail design, tail length, and mass loading. Estimates have been made of the rudder-pedal force that may be encountered in effecting recovery from a spin and of the spin recovery parachute requirements of the airplane for demonstration spins. The method of bail-out which should be used if it becomes necessary for the crew to abandon the airplane during a spin is indicated. It was indicated that the recovery characteristics of the XF3D-1 airplane in the clean condition for erect and inverted spins would be satisfactory for all loadings specified by the contractor as possible on the airplane. However, if a spin is inadvertently entered while the landing flaps are down, recovery may be slow. The slow-down brakes and the landing flaps should be retracted immediately upon the inception of a spinning condition, after which recovery from the spin should be attempted. The pedal force necessary to reverse the rudder during a spin will be within the physical capabilities of the pilot. Opening a 10-foot diameter parachute attached to the tail (laid-out-flat diameter, drag coefficient 0.7) or a 4.5-foot diameter parachute attached to the outboard wing tip will insure satisfactory spin recovery from demonstration spins. If it becomes necessary for the crew to abandon the airplane during a spin, they should leave from the outboard side of the cockpit.

  18. Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads.

    PubMed

    Dow, Max

    2008-05-27

    The virulence of plant pathogenic bacteria belonging to the genera Xanthomonas and Xylella depends upon cell-to-cell signaling mediated by the diffusible signal molecule DSF (Diffusible Signaling Factor). Synthesis and perception of the DSF signal require products of the rpf gene cluster. The synthesis of DSF depends on RpfF, whereas the RpfC/RpfG two-component system is implicated in DSF perception and signal transduction. The sensor RpfC acts to negatively regulate synthesis of DSF. In Xanthomonas campestris, mutation of rpfF or rpfC leads to a coordinate down-regulation in synthesis of virulence factors and a reduction in virulence. In contrast, in Xylella fastidiosa, the causal agent of Pierce's disease of grape, mutation of rpfF and rpfC have opposite effects on virulence, with rpfF mutants exhibiting a hypervirulent phenotype. The findings suggest that different xanthomonads have adapted the perception and function of similar types of signaling molecule to fit the specific needs for colonization of different hosts.

  19. Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria.

    PubMed

    Lacava, Paulo Teixeira; Araújo, Welington Luiz; Azevedo, João Lúcio

    2007-02-01

    Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

  20. Danger zone analysis using cone beam computed tomography after apical enlargement with K3 and K3XF in a manikin model

    PubMed Central

    Olivier, Juan-Gonzalo; García-Font, Marc; Gonzalez-Sanchez, Jose-Antonio; Roig-Cayon, Miguel

    2016-01-01

    Background The objective of the study was to evaluate and compare how apical enlargement with K3 and K3XF nickel-titanium (NiTi) rotary instruments reduces the root thickness in the danger zone and affects canal transportation and centering ability in mandibular molar mesial canals in a manikin extracted tooth model. Material and Methods Seventy-two mesial root canals of first mandibular molars were instrumented. Initial and post-instrumentation Cone Beam Computed Tomography scans were performed after root canal preparation up to size 25, 30, 35 and 40 files. Canal transportation, canal centering and remaining root dentin thickness toward the danger zone were calculated in sections 1, 2 and 3 mm under the furcation level. Data were analyzed using non-parametric Kruskal-Wallis analysis of variance at a significance level of P < 0.05. Results K3 instruments removed more dentin toward the danger zone compared with K3XF instruments (P< .05) and significant differences in dentin thickness were found when canal enlargement was performed to a #35-40 with both systems (P< 0.05). No significant differences in canal transportation and centering ability were found between systems, except when canal enlargement was performed to a #40 (P = 0,0136). No differences were observed when comparing the number of uses in both systems (P> 0.05). Conclusions Under the conditions of this study K3 removed a significant amount of dentin at the furcation level compared with the R-Phase K3XF rotary system in curved root canals. Enlargement to a 35-40/04 file removed significantly more dentin with both systems. Key words:K3, K3XF, R-phase, center ability, canal transportation, dentin thickness, increased apical enlargement, danger zone, dentin thickness. PMID:27703602

  1. Investigation of the Potential for Mutational Resistance to XF-73, Retapamulin, Mupirocin, Fusidic Acid, Daptomycin, and Vancomycin in Methicillin-Resistant Staphylococcus aureus Isolates during a 55-Passage Study ▿

    PubMed Central

    Farrell, David J.; Robbins, Marion; Rhys-Williams, William; Love, William G.

    2011-01-01

    XF-73 is a dicationic porphyrin drug with rapid Gram-positive antibacterial activity currently undergoing clinical trials for the nasal decolonization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA). In multistep (55-passage) resistance selection studies in the presence of subinhibitory concentrations of XF-73, retapamulin, mupirocin, fusidic acid, and vancomycin against four Network on Antimicrobial Resistance in Staphylococcus aureus MRSA strains, there was no >4-fold increase in the MIC for XF-73 after 55 passages. In contrast, there was an increase in the MICs for retapamulin (from 0.25 μg/ml to 4 to 8 μg/ml), for mupirocin (from 0.12 μg/ml to 16 to 512 μg/ml), for fusidic acid (from 0.12 μg/ml to 256 μg/ml), and for vancomycin (from 1 μg/ml to 8 μg/ml in two of the four strains tested). Further investigations using S. aureus NRS384 (USA300) and daptomycin demonstrated a 64-fold increase in the MIC after 55 passages (from 0.5 μg/ml to 32 μg/ml) with a >4-fold increase in the MIC obtained after only five passages. Sequencing analysis of selected isolates confirmed previously reported point mutations associated with daptomycin resistance. No cross-resistance to XF-73 was observed with the daptomycin-resistant strains, suggesting that whereas the two drugs act on the bacterial cell membrane, their specific site of action differs. XF-73 thus represents the first in a new class of antibacterial drugs, which (unlike the comparator antibiotics) after 55 passages exhibited a ≤4-fold increase in MIC against the strains tested. Antibacterial drugs with a low propensity for inducing bacterial resistance are much needed for the prevention and treatment of multidrug-resistant bacteria both within and outside the hospital setting. PMID:21149626

  2. Compositions and Methods for the Treatment of Pierce's Disease

    DOEpatents

    Gupta, Goutam

    2008-10-07

    Chimeric anti-microbial proteins, compositions, and methods for the therapeutic and prophylactic treatment of plant diseases caused by the bacterial pathogen Xylella fastidiosa are provided. The anti-microbial proteins of the invention generally comprise a surface recognition domain polypeptide, capable of binding to a bacterial membrane component, fused to a bacterial lysis domain polypeptide, capable of affecting lysis or rupture of the bacterial membrane, typically via a fused polypeptide linker. In particular, methods and compositions for the treatment or prevention of Pierce's disease of grapevines are provided. Methods for the generation of transgenic Vitus vinefera plants expressing xylem-secreted anti-microbial chimeras are also provided.

  3. Quantitative evaluation of apical extrusion of intracanal bacteria using rotary ProTaper, K3XF, twisted and hand K-file system: An ex vivo study.

    PubMed

    Ghogre, Priyanka; Chourasia, Hemant Ramesh; Agarwal, Manish; Singh, M P; Gurav, Sandeep; Ghogre, Rahul

    2015-01-01

    The aim of this study was to evaluate the number of intracanal bacteria extruded apically during root canal preparation using rotary ProTaper, K3XF, twisted, and hand K-file system. Seventy extracted single-rooted human mandibular premolar teeth were used. Access cavities were prepared and the teeth were mounted in glass vials. Root canals were then contaminated with a pure culture of Enterococcus faecalis (ATCC 29212) and incubated at 37°C for 24 h. The contaminated roots were divided into four experimental groups of 15 teeth each and one control group of 10 teeth. Group 1: ProTaper; Group 2: K3XF; Group 3: Twisted file; Group 4: Hand K-file; Group 5: Control group. Bacteria extruded from the apical foramen during instrumentation were collected into vials. The microbiological samples were incubated in culture media for 24 h. Colonies of bacteria were counted and the results were given as number of colony-forming units (CFU)/ml. The obtained data were analyzed using the Kruskal-Wallis one-way analysis of variance and Mann-Whitney U-tests. There was a significant difference between the rotary and hand instrumentation system related to the apically extruded intracanal bacteria. Both the rotary and hand instrumentation systems extruded intracanal bacteria through the apical foramen. K3XF file system showed least bacterial extrusion amongst all instrumentation groups.

  4. The Search for an Advanced Fighter: A History from the XF-108 to the Advanced Tactical Fighter

    DTIC Science & Technology

    1986-04-01

    V, ,tt AIR COMMAND AND- STAFF COLLEGE STUDENT REPORT THE SEARCH FOR AN ADVANCED FIGHTER, A HISTORY FROM THE XF-108 TO THE &ELECTE j - MAJOR ROBERT P...expressed in this document are those of the author. They are- J not intended and should not be thought to represent official ideas, attitudes, or policies of...the general public. A loan copy of the document may be obtained from the Air University Interlibrary Loan Service (AULILDEX, Maxwell AFB, Alabama

  5. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    PubMed

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  6. Next-to-next-to-leading order fits to CCFR'97 xF3 data and infrared renormalons

    NASA Astrophysics Data System (ADS)

    Kataev, A. L.; Parente, G.; Sidorov, A. V.

    2003-08-01

    We briefly summarize the outcome of our recent improved fits to the experimental data of CCFR collaboration for xF3 structure function of nuN deep-inelastic scattering at the next-to-next-to-leading order. Special attention is paid to the extraction of alphas(MZ) and the parameter of the infrared renormalon model for 1/Q2-correction at different orders of the perturbation theory. The results can be of interest for planning similar studies using possible future data of Neutrino Factories.

  7. Initiation of a pan-genomic research project for Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Differences in genomic structure and nucleotide polymorphism among strains form the genetic basis for adaptability of a bacterial species. This can be described by a bacterial pan-genome, which is defined as the full complement of genes in all strains of a species. The pan-genome is composed of a "c...

  8. Virulence of plant pathogenic bacteria attenuated by degradation of fatty acid cell-to-cell signaling factors.

    PubMed

    Newman, Karyn L; Chatterjee, Subhadeep; Ho, Kimberly A; Lindow, Steven E

    2008-03-01

    Diffusible signal factor (DSF) is a fatty acid signal molecule involved in regulation of virulence in several Xanthomonas species as well as Xylella fastidiosa. In this study, we identified a variety of bacteria that could disrupt DSF-mediated induction of virulence factors in Xanthomonas campestris pv. campestris. While many bacteria had the ability to degrade DSF, several bacterial strains belonging to genera Bacillus, Paenibacillus, Microbacterium, Staphylococcus, and Pseudomonas were identified that were capable of particularly rapid degradation of DSF. The molecular determinants for rapid degradation of DSF in Pseudomonas spp. strain G were elucidated. Random transposon mutants of strain G lacking the ability to degrade DSF were isolated. Cloning and characterization of disrupted genes in these strains revealed that carAB, required for the synthesis of carbamoylphosphate, a precursor for pyrimidine and arginine biosynthesis is required for rapid degradation of DSF in strain G. Complementation of carAB mutants restored both pyrimidine prototrophy and DSF degradation ability of the strain G mutant. An Escherichia coli strain harboring carAB of Pseudomonas spp. strain G degrades DSF more rapidly than the parental strain, and overexpression of carAB in trans increased the ability of Pseudomonas spp. strain G to degrade as compared with the parental strain. Coinoculation of X. campestris pv. campestris with DSF-degrading bacteria into mustard and cabbage leaves reduced disease severity up to twofold compared with plants inoculated only with the pathogen. Likewise, disease incidence and severity in grape stems coinoculated with Xylella fastidiosa and DSF-degrading strains were significantly reduced compared with plants inoculated with the pathogen alone. Coinoculation of grape plants with a carAB mutant of Pseudomonas spp. strain G complemented with carAB in trans reduced disease severity as well or better than the parental strain. These results indicate that

  9. Influence of Xylella fastidiosa cold shock proteins on pathogenesis in grapevine.

    USDA-ARS?s Scientific Manuscript database

    Cold shock proteins (CSPs), a family of nucleic acid binding proteins are an essential part of microbial adaptation to temperature changes. Bacterial CSPs are often expressed in a temperature-dependent manner, and act as chaperones, facilitating translation at low temperature by stabilizing mRNA. In...

  10. Mechanochemical synthesis, structure and properties of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2018-03-01

    The paper deals with the mechanochemical synthesis of lead containing alkaline earth metal fluoride solid solutions MxPb1-xF2 (M = Ca, Sr, Ba) by high-energy ball milling. Several metal precursors and fluorinating agents were tested for synthesizing M0.5Pb0.5F2. Metal acetates and ammonium fluoride as precursors show the most promising results and were therefore used for the formation of MxPb1-xF2 with different metal cationic ratios. The characterization of the local fluorine coordination and the crystal structure was performed by 19F MAS NMR spectroscopy and X-ray diffraction. Additional calculations of 19F chemical shifts using the superposition model allow a deeper insight into the local structure of the compounds. The fluoride ion conductivity was followed by temperature dependent DC conductivity measurements. Significantly higher conductivities were found in comparison with those of the corresponding binary fluorides. The highest values were observed for samples with high lead content M0.25Pb0.75F2, bearing in mind the much higher conductivity of PbF2 compared to MF2.

  11. Longitudinal Stability and Control Characteristics at Transonic Speeds of a 1/30-Scale Model of the Republic XF-103 Airplane

    NASA Technical Reports Server (NTRS)

    Luoma, Arvo A.

    1954-01-01

    The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.

  12. On the oxidation of the three-dimensional aromatics [B(12)X(12)](2-) (X=F, Cl, Br, I).

    PubMed

    Boeré, René T; Derendorf, Janis; Jenne, Carsten; Kacprzak, Sylwia; Kessler, Mathias; Riebau, Rainer; Riedel, Sebastian; Roemmele, Tracey L; Rühle, Monika; Scherer, Harald; Vent-Schmidt, Thomas; Warneke, Jonas; Weber, Stefan

    2014-04-07

    The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso-boranes B12 X12 (X=Cl, Br). These compounds were characterized by single-crystal X-ray diffraction of dark blue B12 Cl12 and [Na(SO2 )6 ][B12 Br12 ]⋅B12 Br12 . Sublimation of the crude reaction products that contained B12 X12 (X=Cl, Br) resulted in pure dark blue B12 Cl12 or decomposition to red B9 Br9 , respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2-TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12 X12 ](2-) dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12 X12 ](2-) dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) (X=F, Cl, Br, I) by cyclic and Osteryoung square-wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12 X12 ](2-) (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi-reversible (with oxidation potentials in the range between +1

  13. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    PubMed

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  14. Tests of a Full-Scale Model of the Republic XF-91 Airplane in the Ames 40- by 80-Foot Wind Tunnel. Force and Moment Data

    NASA Technical Reports Server (NTRS)

    Hunten, Lynn W.; Dew, Joseph K.

    1949-01-01

    Wind-tunnel tests of a full-scale model of the Republic XF-91 airplane having swept-back wings and a vee tail were conducted to determine both the stability and control characteristics of the model longitudinally, laterally, and directionally. Configurations of the model were investigated involving such variables as external fuel tanks, a landing gear, trailing-edge flaps, leading-edge slats, and a range of wing incidences and tail incidences.

  15. Single-vortex pinning and penetration depth in superconducting NdFeAsO 1-xF x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jessie T.; Kim, Jeehoon; Huefner, Magdalena

    2015-10-12

    We use a magnetic force microscope (MFM) to investigate single vortex pinning and penetration depth in NdFeAsO 1-xF x, one of the highest-T c iron-based superconductors. In fields up to 20 Gauss, we observe a disordered vortex arrangement, implying that the pinning forces are stronger than the vortex-vortex interactions. We measure the typical force to depin a single vortex, F depin ≃ 4.5 pN, corresponding to a critical current up to J c ≃ 7×10 5 A/cm 2. As a result, our MFM measurements allow the first local and absolute determination of the superconducting in-plane penetration depth in NdFeAsO 1-xFmore » x, λ ab = 320 ± 60 nm, which is larger than previous bulk measurements.« less

  16. Growth, electrical, structural, and magnetic properties of half-Heusler CoT i1 -xF exSb

    NASA Astrophysics Data System (ADS)

    Harrington, S. D.; Rice, A. D.; Brown-Heft, T. L.; Bonef, B.; Sharan, A.; McFadden, A. P.; Logan, J. A.; Pendharkar, M.; Feldman, M. M.; Mercan, O.; Petukhov, A. G.; Janotti, A.; Colakerol Arslan, L.; Palmstrøm, C. J.

    2018-01-01

    Epitaxial thin films of the substitutionally alloyed half-Heusler series CoT i1 -xF exSb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0 ≤x ≤1.0 . The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and x-ray diffraction. Using in situ x-ray photoelectron spectroscopy, only small changes in the valence band are detected for x ≤0.5 . For films with x ≥0.05 , ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x ≤0.5 . Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x =0.3 ) are observed for higher Fe content films. Evidence of superparamagnetism for x =0.3 and 0.2 suggests, for moderate levels of Fe, that demixing of the CoT i1 -xF exSb films into Fe-rich and Fe-deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in an x =0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.

  17. An ab initio study on MgX 3- and CaX 3- superhalogen anions (X=F, Cl, Br)

    NASA Astrophysics Data System (ADS)

    Anusiewicz, Iwona; Sobczyk, Monika; Dąbkowska, Iwona; Skurski, Piotr

    2003-06-01

    The vertical electron detachment energies (VDEs) of twenty MX 3- (M=Mg, Ca; X=F, Cl, Br) anions were calculated at the OVGF level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for MgF 3- system (8.793 eV). All negatively charged species possess the VDEs that are larger than 5.9 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the MX 3- species on the ligand-central atom (M-X) distance and on the partial atomic charge localized on Mg or Ca was observed and discussed, as well as the other factors that may influence the electronic stability of such anions.

  18. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer.

    PubMed

    Iuso, Arcangela; Repp, Birgit; Biagosch, Caroline; Terrile, Caterina; Prokisch, Holger

    2017-01-01

    Working with isolated mitochondria is the gold standard approach to investigate the function of the electron transport chain in tissues, free from the influence of other cellular factors. In this chapter, we outline a detailed protocol to measure the rate of oxygen consumption (OCR) with the high-throughput analyzer Seahorse XF96. More importantly, this protocol wants to provide practical tips for handling many different samples at once, and take a real advantage of using a high-throughput system. As a proof of concept, we have isolated mitochondria from brain, heart, liver, muscle, kidney, and lung of a wild-type mouse, and measured basal respiration (State II), ADP-stimulated respiration (State III), non-ADP-stimulated respiration (State IV o ), and FCCP-stimulated respiration (State III u ) using respiratory substrates specific to the respiratory chain complex I (RCCI) and complex II (RCCII). Mitochondrial purification and Seahorse runs were performed in less than eight working hours.

  19. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy.

    PubMed

    Gai, Cláudia Santos; Lacava, Paulo Teixeira; Maccheroni, Walter; Glienke, Chirlei; Araújo, Welington Luiz; Miller, Thomas Albert; Azevedo, João Lúcio

    2009-10-01

    Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of São Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were re-isolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mechanical reduction of the intracanal Enterococcus faecalis population by Hyflex CM, K3XF, ProTaper Next, and two manual instrument systems: an in vitro comparative study.

    PubMed

    Tewari, Rajendra K; Ali, Sajid; Mishra, Surendra K; Kumar, Ashok; Andrabi, Syed Mukhtar-Un-Nisar; Zoya, Asma; Alam, Sharique

    2016-05-01

    In the present study, the effectiveness of three rotary and two manual nickel titanium instrument systems on mechanical reduction of the intracanal Enterococcus faecalis population was evaluated. Mandibular premolars with straight roots were selected. Teeth were decoronated and instrumented until 20 K file and irrigated with physiological saline. After sterilization by ethylene oxide gas, root canals were inoculated with Enterococcus faecalis. The specimens were randomly divided into five groups for canal instrumentation: Manual Nitiflex and Hero Shaper nickel titanium files, and rotary Hyflex CM, ProTaper Next, and K3XF nickel titanium files. Intracanal bacterial sampling was done before and after instrumentation. After serial dilution, samples were plated onto the Mitis Salivarius agar. The c.f.u. grown were counted, and log10 transformation was calculated. All instrumentation systems significantly reduced the intracanal bacterial population after root canal preparation. ProTaper Next was found to be significantly more effective than Hyflex CM and manual Nitiflex and Hero Shaper. However, ProTaper Next showed no significant difference with K3XF. Canal instrumentation by all the file systems significantly reduced the intracanal Enterococcus faecalis counts. ProTaper Next was found to be most effective in reducing the number of bacteria than other rotary or hand instruments. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark-Type Oxygen Electrode.

    PubMed

    Divakaruni, Ajit S; Rogers, George W; Murphy, Anne N

    2014-05-27

    Measurements of mitochondrial respiration in intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Although cells can be offered various substrates in the assay medium, many cell types can oxidize stored pools of energy substrates. A general bioenergetic profile can therefore be obtained using intact cells, but the inability to control substrate provision to the mitochondria can restrict an in-depth, mechanistic understanding. Mitochondria can be isolated from intact cells, but the yield and quality of the end product is often poor and prone to subselection during isolation. Plasma membrane permeabilization of cells provides a solution to this challenge, allowing experimental control of the medium surrounding the mitochondria. This unit describes techniques to measure respiration in permeabilized adherent cells using a Seahorse XF Analyzer or permeabilized suspended cells in a Hansatech Oxygraph. Copyright © 2014 John Wiley & Sons, Inc.

  2. Critical Temperature of Randomly Diluted Two-Dimensional Heisenberg Ferromagnet, K2CuxZn(1-x)F4

    NASA Astrophysics Data System (ADS)

    Okuda, Yuichi; Tohi, Yasuto; Yamada, Isao; Haseda, Taiichiro

    1980-09-01

    The susceptibility of randomly diluted two-dimensional Heisenberg-like ferromagnet K2CuxZn(1-x)F4 was measured down to 50 mK, using the 3He-4He dilution refrigerator and a SQUID magnetometer. The ferromagnetic critical temperature Tc(x) was obtained for x{=}0.98, 0.94, 0.85, 0.82, 0.68, 0.60, 0.54, 0.50 and 0.42. The value of [1/Tc(1)][(d/dx)Tc(x)]x=1 was approximately 3.0. The critical temperature versus x curve exhibits a noticeable tail near the critical concentration, which may stem from the second nearest-neighbor interaction. The critical concentration xc, below which concentration there is no long range order down to T{=}0 K, was estimated to be 0.45˜0.50. The susceptibility of sample with x{=}0.42 behaves as if it obeys the Curie law down to 50 mK.

  3. Summary of Low-Lift Drag and Directional Stability Data from Rocket Models of the Douglas XF4D-1 Airplane with and without External Stores and Rocket Packets at Mach Numbers from 0.8 to 1.38 TED No. NACA DE-349

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S.; Hastings, Earl C., Jr.

    1952-01-01

    At the request of the Bureau of Aeronautics, Department of the Navy, an investigation at transonic and low supersonic speeds of the drag and longitudinal trim characteristics of the Douglas XF4D-1 airplane is being conducted by the Langley Pilotless Aircraft Research Division. The Douglas XF4D-1 is a jet-propelled, low-aspect-ratio, swept-wing, tailless, interceptor-type airplane designed to fly at low supersonic speeds. As a part of this investigation, flight tests were made using rocket- propelled 1/10- scale models to determine the effect of the addition of 10 external stores and rocket packets on the drag at low lift coefficients. In addition to these data, some qualitative values of the directional stability parameter C(sub n beta) and duct total-pressure recovery are also presented.

  4. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  5. Longitudinal Stability and Stalling Characteristics of a 1/8.33-Scale Model of the Republic XF-12 Airplane

    NASA Technical Reports Server (NTRS)

    Pepper, Edward; Foster, Gerald V.

    1946-01-01

    The XF-12 airplane is a high performance, photo-reconnaissance aircraft designed by the Republic Aviation Corporation for Army Air Forces. A series of tests of a 1/8.33-scale powered model was conducted in the Langley 9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. This report presents the results of tests to determine the static longitudinal stability and stalling characteristics of the model. From this investigation it was indicated that the airplane will possess a positive static margin for all probable flight conditions. The stalling characteristics are considered satisfactory in that the stall initiates near the root section and progresses toward the tips. Early root section stalling occurs, with the flaps retracted and may cause undesirable tail buffeting and erratic elevator control in the normal flight range. From considerations of sinking speed landing flap deflections of 40 degrees may be preferable to 55 degrees of 65 degrees.

  6. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  7. Measurement of the structure functions F 2 and xF 3 and comparison with QCD predictions including kinematical and dynamical higher twist effects

    NASA Astrophysics Data System (ADS)

    Varvell, K.; Cooper-Sarkar, A. M.; Parker, M. A.; Sansum, R. A.; Aderholz, M.; Armenise, N.; Baton, J. P.; Bullock, F. W.; Berggren, M.; Bertrand, D.; Brisson, V.; Burkot, W.; Calcchio, M.; Claytoh, E. F.; Coghen, T.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hulth, P. O.; Iaselli, G.; Jones, G. T.; Kasper, P.; Klein, H.; Kochowski, C.; Marage, P.; Mermikides, M.; Middleton, R. P.; Morrison, D. R. O.; Mobayyen, M. M.; Natali, S.; Neveu, M.; Nuzzo, S.; O'Neale, S. W.; Petiau, P.; Petrides, A.; Ruggieri, F.; Sacton, J.; Simopoulou, E.; Vallee, C.; Vayaki, A.; Venus, W. A.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1987-03-01

    The isoscalar nucleon structure functions F 2( x, Q 2) and xF 3( x, Q 2) are measured in the range 0< Q 2<64 GeV2, 1.7< W 2<250 GeV2, x<0.7 using ν andbar v interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such low W 2 values, it is found that a lowΛ _{overline {MS} } value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.

  8. Wind-Tunnel Investigation of a 1/5-Scale Model of the Ryan XF2R Airplane

    NASA Technical Reports Server (NTRS)

    Wong, Park Y.

    1947-01-01

    Wind-tunnel tests on a 1/5-scale model of the Ryan XF2R airplane were conducted to determine the aerodynamic characteristics of the air intake for the front power plant, a General Electric TG-100 gas turbine, and to determine the stability and control characteristics of the airplane. The results indicated low-dynamic-pressure recover3- for the air intake to the TG-100 gas turbine rith the standard propeller in operation. Propeller cuffs were designed and tested for the purpose of impoving the dynamic-pressure recovery. Data obtained with the cuffs installed and the gap between the spinner an& the cuff sealed indicated a substantial gain in dynamic pressure recovery over that obtained with the standard propeller and with the cuffed propeller unsealed. Stability and control tests were conducted with the sealed cuffs installed on the propeller. The data from these tests indicated the following unsatisfactory characteristics for the airplane: 1. Marginal static longitudinal stability. 2. Inadequate directional stability and control. 3. Rudder-pedal-force reversal in the climb condition. 4. Negative dihedral effect in the power-on approach and wave-off conditions.

  9. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  10. Preliminary Results Obtained from Flight Test of a Rocket Model Having the Tail Only of the Grumman XF10F Airplane Configuration, TED No. NACA DE 354

    NASA Technical Reports Server (NTRS)

    Gardner, William N.; Edmondson, James L.

    1950-01-01

    A flight test was made to determine the servoplane effectiveness and stability characteristics of the free-floating horizontal stabilizer to be used on the XF10F airplane. The results of this test indicate that servoplane effectiveness is practically constant through the speed range up to a Mach number of 1.15, and the stabilizer static stability is satisfactory. A loss of damping occurs over a narrow Mach number range near M = 1.0, resulting in dynamic instability of the stabilizer in this narrow range. Above M = 1.0 there is a gradual positive trim change of the stabilizer.

  11. Egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae); a vector of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Rates of spread of insect-transmitted plant pathogens are a function of vector abundance. Despite this, factors affecting population growth rates of insects that transmit plant pathogens have received limited attention. The glassy-winged sharpshooter (Homalodisca vitripennis) feeds on xylem-sap and ...

  12. Transition métal—isolant dans V 1-xMn xO 2-2xF 2x (0 < x ≤ 0, 10)étude des propriétés structurales, magnétiques, etélectriques

    NASA Astrophysics Data System (ADS)

    Akroune, A.; Casalot, A.

    1987-05-01

    V 1- xMn xO 2-2 xF 2 x samples (0 < x ≤ 0, 10) have been prepared by solid state reaction in sealed platinium tubes. The metal ⇄ insulator transition occurs at a quickly decreasing temperatures as MnF 2 increases. The crystallographic, magnetic, transport properties, and DTA have been determined and discussed.

  13. A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica.

    PubMed

    Doucleff, M; Jin, Y; Gao, F; Riaz, S; Krivanek, A F; Walker, M A

    2004-10-01

    A genetic linkage map of grape was constructed, utilizing 116 progeny derived from a cross of two Vitis rupestris x V. arizonica interspecific hybrids, using the pseudo-testcross strategy. A total of 475 DNA markers-410 amplified fragment length polymorphism, 24 inter-simple sequence repeat, 32 random amplified polymorphic DNA, and nine simple sequence repeat markers-were used to construct the parental maps. Markers segregating 1:1 were used to construct parental framework maps with confidence levels >90% with the Plant Genome Research Initiative mapping program. In the maternal (D8909-15) map, 105 framework markers and 55 accessory markers were ordered in 17 linkage groups (756 cM). The paternal (F8909-17) map had 111 framework markers and 33 accessory markers ordered in 19 linkage groups (1,082 cM). One hundred eighty-one markers segregating 3:1 were used to connect the two parental maps' parents. This moderately dense map will be useful for the initial mapping of genes and/or QTL for resistance to the dagger nematode, Xiphinema index, and Xylella fastidiosa, the bacterial causal agent of Pierce's disease.

  14. Development and validation of a real-time PCR assay for the glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae).

    PubMed

    Waite, D W; Li, D; D'Souza, M; Gunawardana, D

    2017-06-01

    The glassy-winged sharpshooter (Homalodisca vitripennis) is an invasive pest organism, which is found throughout Central America and has recently invaded a few countries in the Pacific Islands. As a carrier of the highly virulent plant pathogenic bacterium Xylella fastidiosa, it is of great economic significance to horticulture and is estimated to cost Californian vineyards over US$100 million per year in control and losses. New Zealand is currently free from this pest, but its recent spread through the Pacific has raised concerns of it establishing in New Zealand, potentially as a result of introduction through human travel. We report here a real-time polymerase chain reaction assay for the rapid identification of H. vitripennis. The assay was extensively validated in silico then optimized and tested against a range of Cicadellidae species, both internationally collected and local to New Zealand. This assay was able to correctly identify H. vitripennis samples, and distinguish between H. vitripennis and close relatives, such as the smoke-tree sharpshooter (Homalodisca liturata) and will be of great benefit to New Zealand biosecurity.

  15. Identification of genomic islands in six plant pathogens.

    PubMed

    Chen, Ling-Ling

    2006-06-07

    Genomic islands (GIs) play important roles in microbial evolution, which are acquired by horizontal gene transfer. In this paper, the GIs of six completely sequenced plant pathogens are identified using a windowless method based on Z curve representation of DNA sequences. Consequently, four, eight, four, one, two and four GIs are recognized with the length greater than 20-Kb in plant pathogens Agrobacterium tumefaciens str. C58, Rolstonia solanacearum GMI1000, Xanthomonas axonopodis pv. citri str. 306 (Xac), Xanthomonas campestris pv. campestris str. ATCC33913 (Xcc), Xylella fastidiosa 9a5c and Pseudomonas syringae pv. tomato str. DC3000, respectively. Most of these regions share a set of conserved features of GIs, including an abrupt change in GC content compared with that of the rest of the genome, the existence of integrase genes at the junction, the use of tRNA as the integration sites, the presence of genetic mobility genes, the difference of codon usage, codon preference and amino acid usage, etc. The identification of these GIs will benefit the research for the six important phytopathogens.

  16. Plant water stress effects on the net dispersal rate of the insect vector Homalodisca vitripennis (Hemiptera: Cicadellidae) and movement of its egg parasitoid, Gonatocerus ashmeadi (Hymenoptera: Mymaridae).

    PubMed

    Krugner, Rodrigo; Hagler, James R; Groves, Russell L; Sisterson, Mark S; Morse, Joseph G; Johnson, Marshall W

    2012-12-01

    Homalodisca vitripennis (Germar), a vector of Xylella fastidiosa, is associated with citrus plantings in California. Infested citrus orchards act as a source of vectors to adjacent vineyards where X. fastidiosa causes Pierce's disease. An analysis of the pattern and rate of movement of H. vitripennis and its egg parasitoid, Gonatocerus ashmeadi Girault, was conducted in a citrus orchard by using a protein mark-capture technique to quantify movement and net dispersal rates in the experimental areas. Treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)), 80, and 60% ET(c). Sex-specific net dispersal rates showed that H. vitripennis males and females moved consistently and contributed equally to the level of population change within treated areas. Trees irrigated at 60% ET(c) were the least preferred by H. vitripennis. Among all protein-marked individuals captured in the 60% ET(c) treatment, ≈ 75 and 88% in 2005 and 2006, respectively, were inflow individuals. Movement toward less preferable plants indicates that in agricultural landscapes dominated by perennial monocultures, there is a random component to H. vitripennis movement, which may result from the inability of H. vitripennis to use plant visual cues, olfactory cues, or both to make well-informed long-range decisions. The 80% ET(c) areas were a significant source of adult H. vitripennis and G. ashmeadi compared with the other treatments. Colonization rates by parasitoids were synchronized with the spatiotemporal distribution of H. vitripennis eggs. Results suggest that H. vitripennis movement from citrus into adjacent vineyards could be a result of random dispersal rather than oriented movement in response to host-plant characteristics.

  17. The gas-phase on-line formation of antimony oxide trihalides, SbOX 3 where X=F and Cl and their identifications by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Allaf, Abdul W.; Ajji, Z.

    2000-09-01

    Antimony oxide trihalides, SbOX 3 molecules, where X=F or Cl have been produced, by means of an on-line process, using antimony trichloride, SbOCl 3 as starting material passed over heated silver oxide at 230°C. The antimony oxide trichloride SbOCl 3 formed is then reacted with sodium fluoride, NaF at 550°C to produce antimony oxide trifluoride, SbOF 3. The products have been characterized by the IR spectra of their vapors. Low resolution gas-phase Fourier transform infrared spectra show strong bands centered at 1272 and 1217 cm -1, assigned to ν 1(a 1), the OSb stretching fundamental of SbOF 3 and SbOCl 3, respectively. Both observed bands show typical PQR-type structure with a strong Q-head.

  18. Ditching Tests of a 1/8-Scale Model of the Chance Vought XF6U-1 Airplane, TED No. NACA DE319

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J., Jr.; McBride, Ellis E.

    1953-01-01

    Tests were made with a 1/8-scale dynamically similar model of the Chance Vought XF6U-1 airplane to study its behavior when ditched. The model was ditched in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and conditions of damage were simulated. The behavior of the model was determined from visual observations, by recording time histories of the accelerations, and by taking motion pictures of the ditchings. From the results of the tests it was concluded that the airplane should be ditched at the near-stall, tail-down attitude (12 deg). The flaps should be fully extended to obtain the lowest possible landing speed. The wing-tip tanks should be jettisoned. The underside of the fuselage will be critically damaged in a ditching and the airplane will dive violently after a run of about three fuselage lengths. Maximum longitudinal decelerations up to about 7g and maximum vertical accelerations up to about 5g will be encountered.

  19. The effect of the cation substitution on the structural and vibrational properties of Cs2NaGaxSc1-xF6 solid solution

    NASA Astrophysics Data System (ADS)

    Doriguetto, A. C.; Boschi, T. M.; Pizani, P. S.; Mascarenhas, Y. P.; Ellena, J.

    2004-08-01

    Raman scattering and x-ray diffration were used to characterize the structural and vibrational properties of the Cs2NaGaxSc1-xF6 solid solutions, for x ranging from 0.0 to 1.0. The Raman spectra, taken at room and low temperature, allow us to follow the phase evolution in detail and indicate the breaking of the local symmetry since low Ga concentration levels. Five compositions were studied by x-ray diffraction: x=0.0, 0.2, 0.5, 0.8, and 1.0. A cubic space group, Fm3¯m, was found to x=0.0 and x=0.2 and a trigonal one was found to x=0.5, 0.8, and 1.0. Details of both phases are presented and the correlation between x-ray diffraction and Raman scattering is discussed.

  20. High-Speed Wind-Tunnel Investigation of the Longitudinal Stability and Control Characteristics of a 0.10-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE301

    NASA Technical Reports Server (NTRS)

    Polhamus, Edward C.; King, Thomas J., Jr.

    1948-01-01

    An investigation was made in the Langley high-speed 7-by 10-foot tunnel to determine the high-speed longitudinal stability end con&o1 characteristics of a 0.01-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicated that the lift and drag force breaks occurred at a Mach number of about 0.76. The aerodynamic-center position moved rearward after the force break and control position stability was present for all Mach numbers up to a Mach number of 0.80.

  1. Lateral Stability Characteristics of a 1/8.33-Scale Powered Model of the Republic XF-12 Airplane

    NASA Technical Reports Server (NTRS)

    Pepper, Edward; Foster, Gerald V.

    1947-01-01

    The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.

  2. Crossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF{sub 3}: A comparative study with XF{sub 3} (X = C, N, and CH) molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.

    2015-07-14

    Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less

  3. Suppression of the cooperative Jahn-Teller distortion and its effect on the Raman octahedra-rotation modes of TbM n1 -xF exO3

    NASA Astrophysics Data System (ADS)

    Vilarinho, R.; Passos, D. J.; Queirós, E. C.; Tavares, P. B.; Almeida, A.; Weber, M. C.; Guennou, M.; Kreisel, J.; Moreira, J. Agostinho

    2018-04-01

    This work reports the changes in structure and lattice dynamics induced by substituting the Jahn-Teller-active M n3 + ion by the Jahn-Teller-inactive F e3 + in TbM n1 -xF exO3 over the full composition range. The structural analysis reveals that the amplitude of the cooperative Jahn-Teller distortion decreases linearly from x =0 (pure TbMn O3 ) to x =0.5 , where it is completely suppressed. We then correlate this evolution with the behavior of the Raman modes across the solid solution. In particular, we show that the Raman modes associated with the rotation of octahedra, whose wave number is commonly considered to scale linearly with the tilt angles in orthorhombic Pnma perovskites, are also sensitive to the amplitude of the Jahn-Teller distortion.

  4. On the drought in the Balearic Islands during the hydrological year 2015-2016

    NASA Astrophysics Data System (ADS)

    Ramis, Climent; Romero, Romualdo; Homar, Víctor; Alonso, Sergio; Jansà, Agustí; Amengual, Arnau

    2017-12-01

    During the hydrological year 2015-2016 (September to August) a severe drought affected the Balearic Islands, with substantial consequences (alleviated partially by desalination plants) on water availability for consumption from reservoirs and aquifers and also on the vegetation cover. In particular, a plague of Xylella fastidiosa reached an alarming level for almond and olive trees. The expansion of this infestation could be attributed to, or at least favored by, the extreme drought. In this paper we analyze this anomalous episode in terms of the corresponding water balance in comparison with the balance obtained from long-term climatological data. It is shown that the drought was the result of a lack of winter precipitation, the lowest in 43 years, which led to a shortage of water storage in the soil. In several meteorological stations analyzed, evaporation was greater than precipitation during all the months of the year. In terms of attribution, it is found that during the 2015-2016 winter the atmospheric circulation over the North Atlantic was largely westerly and intense, with high values of the NAO index that were reflected in high pressures over the Iberian Peninsula and the western Mediterranean.

  5. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  6. Age determination of the glassy-winged sharpshooter, Homalodisca vitripennis, using wing pigmentation.

    PubMed

    Timmons, Chris; Hassell, Aaron; Lauziere, Isabelle; Bextine, Blake

    2011-01-01

    A red pigment is contained in the wing veins of the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). This insect is the main vector of the plant-pathogenic bacterium Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae), the causal agent of Pierce's disease of grapevines. Over the course of the H. vitripennis lifespan, the red pigment darkens and eventually becomes brown/black in color. These pigments are believed to be pheomelanin and eumelanin, respectively. The age of H. vitripennis can be determined by calculating the amount of red pigment found in the wings by analyzing high resolution wing photographs with image analysis software. In this study, a standard curve for the age determination of H. vitripennis was developed using laboratory-reared insects of known ages varying from 1 to 60 days. The impact of three environmental conditions on these readings was also investigated and found to have little effect on the age determination, and could be easily accounted for. Finally, field collected insects from several Central Texas vineyards were successfully analyzed for age determination suggesting that the annually reported influx of H. vitripennis was composed almost entirely of older insects.

  7. Free-Spinning-Tunnel Tests of a 1/24-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 317

    NASA Technical Reports Server (NTRS)

    Berman, Theodore

    1948-01-01

    An investigation of the spin and recovery characteristics of a scale model of the Grumman XF9F-2 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics of the model in the flight loading were determined. The investigation also included spin-recovery-parachute, pilot-escape, and rudder-pedal- . force tests. The recovery characteristics of the model were satisfactory for all configurations tested. Spins for the normal control configuration were oscillatory in roll and yaw. Deflecting the leading-edge flaps or the dive brakes did not change the spin and recovery characteristics of the model noticeably. A 10.0-foot tail parachute or a 6.0-foot wing-tip parachute (drag coefficient of 0.75) was found to be effective for recoveries from demonstration spins. The rudder forces in the spin appeared to be within the capabilities of the pilot.

  8. Lateral Stability and Control Measurements of a 0.0858-Scale Model of the Lockheed XF-104 Airplane at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Arabian, Donald D.; Schmeer, James W.

    1955-01-01

    An investigation of the lateral stability and control effectiveness of a 0.0858-scale model of the Lockheed XF-104 airplane has been conducted in the Langley 16-foot transonic tunnel. The model has a low aspect ratio, 3.4-percent-thick wing with negative dihedral. The horizontal tail is located on top of the vertical tail. The investigation was made through a Mach number range of 0.80 to 1.06 at sideslip angles of -5 deg. to 5 deg. and angles of attack from 0 deg. to 16 deg. The control effectiveness of the aileron, rudder, and yaw damper were determined through the Mach number and angle-of-attack range. The results of the investigation indicated that the directional stability derivative was stable and that positive effective dihedral existed throughout the lift-coefficient range and Mach number range tested. The total aileron effectiveness, which in general produced favorable yaw with rolling moment, remained fairly constant for lift coefficients up to about 0.8 for the Mach number range tested. Yawing-moment effectiveness of the rudder changed little through the Mach number range. However, the yaw damper effectiveness decreased about 30 percent at the intermediate test Mach numbers.

  9. Techniques for the Analysis of Expendable Bathythermograph (XBT) Data with Applications to the South-Western Pacific Ocean.

    DTIC Science & Technology

    1981-09-01

    F6 .O...4X,F5.2,5X,F5 .2,SX,F6.3,4X,F8.6,2X,F8.6,2X,F7.3, Z5X,F5.1,4X,F5.2,3X,F7.2,4X, F6 .3, 4X , F6 .4) 340 FORMAT( F6 .O,F5.2,F5.2,F6.3,F8.6,F8.6,F7.3, ZF5. 1...New York NY� 3 Data Courier Inc, Louisville Ky 40202 4 In Malaysia The Director, Defence Research Centre, Malaysia 5 In Australia Chief

  10. [Effect of grafting on rhizosphere soil environment and its relationship with disease resistance and yield of pepper.

    PubMed

    Duan, Xi; Bi, Huan Gai; Wei, You Ying; Li, Ting; Wang, Hong Tao; Ai, Xi Zhen

    2016-11-18

    We investigated the effect of grafting on the root rhizosphere soil microorganisms, physical properties, nutrient content, soil-borne disease and yield of pepper, using 'Weishi' (WS) and 'Buyeding' (BYD) as rootstocks, the cultivar pepper 'Xinfeng 2' (XF) as scion, and the own-root (XF/XF) pepper as the control. The results indicated that XF/WS and XF/BYD significantly increased the populations of fungi and actinomycetes and the percentage of actinomycetes. 60 days after transplanting, the activities of catalase (CAT) and peroxidase (POD) were much higher in root rhizosphere soil of grafted pepper. 90 days after transplanting, the activities of phosphatase, invertase, urease, and nitrate reductase (NR) were much higher in root rhizosphere soil of XF/WS. In addition, The XF/WS and XF/BYD also highly increased hydrocarbon compounds in soil extraction, slightly increased electric conductivity (EC) but lowered nitrogen, phosphorus and potassium contents in root rhizosphere soil. Higher pH in root rhizosphere soil was found in XF/WS but not in XF/BYD. These data indicated that grafting could optimize the rhizosphere soil environment of pepper and enhance the resistance of soil-borne diseases. The yields of XF/WS and XF/BYD were increased by 40.8% and 28.7%, respectively.

  11. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Certain hemipteran insects such as the glassy-winged sharpshooter, Homalodisca vitripennis, subsist entirely on xylem fluid, notwithstanding the poor nutrition of such food. Among many adaptations enabling xylem-feeding are aspects of the insect’s salivation that may also allow these insects to tra...

  12. Free-Spinning-Tunnel Tests of a 1/27-Scale Model of the Douglas XF3D-1 Airplane, TED No. NACA DE 312

    NASA Technical Reports Server (NTRS)

    Scher, Stanley H.

    1947-01-01

    Free-spinning-tunnel tests have been made on a 1/27-scale model of the Douglas XF3D-1 airplane to confirm a preliminary evaluation made of the airplane spin and recovery characteristics and previously reported. Recovery characteristics were satisfactory for erect and inverted spins when the model was in the clean condition. When the slow-down brakes were open, recoveries were slow. The pedal force necessary to reverse the airplane rudder during a spin will be within the physical capabilities of the pilot. A 10-foot-diameter parachute attached to the tail of the airplane (laid-out-flat diameter, drag coefficient 0.7) or a 4.5-foot-diameter parachute attached to the outboard wing tip will be satisfactory for emergency spin recovery from demonstration spins. If it becomes necessary for the crew to abandon the airplane during a spin, they should leave from the outboard side of the cockpit. The test results indicated spin and recovery characteristics generally similar to those indicated in the preliminary evaluation.

  13. High-Speed Wind-Tunnel Investigation of the Lateral Stability Characteristics of a 0.10-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE 301

    NASA Technical Reports Server (NTRS)

    Polhamus, Edward C.; King, Thomas J., Jr.

    1949-01-01

    An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the high-speed lateral and directional stability characteristics of a 0.10-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicate that static lateral and directional stability is present throughout the Mach number range investigated although in the Mach number range from 0.75 to 0.85 there is an appreciable decrease in rolling moment due to sideslip. Calculations of the dynamic stability indicate that according to current flying-quality requirements the damping of the lateral oscillation, although probably satisfactory for the sea-level condition, may not be satisfactory for the majority of the altitude conditions investigated

  14. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria.

    PubMed

    Ham, Jong Hyun

    2013-04-01

    Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens. © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  15. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part I - Basic Longitudinal Stability Characteristics, TED No. NACA DE308. Part 1; Basic Longitudinal Stability Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.; Kuhn, Richard E.; Goodson, Kenneth W.

    1947-01-01

    The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.

  16. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part IV - Aileron Characteristics TED No. NACA DE308. Part 4; Aileron Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Goodson, Kenneth W.; Myers, Boyd C., II

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The aileron characteristics of the complete model are presented in the present report with a very limited analysis of the results.

  17. Comparison of the toxicities, activities and chemical profiles of raw and processed Xanthii Fructus.

    PubMed

    Su, Tao; Cheng, Brian Chi-Yan; Fu, Xiu-Qiong; Li, Ting; Guo, Hui; Cao, Hui-Hui; Kwan, Hiu-Yee; Tse, Anfernee Kai-Wing; Yu, Hua; Cao, Hui; Yu, Zhi-Ling

    2016-01-22

    Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking (a processing method) can reduce the toxicity and enhance the efficacy of XF. Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method. SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular formulae and mass fragments, as well as literature data. Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical profiles. Further studies are warranted to establish the relationship between the alteration of chemical profiles and the

  18. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part III - Longitudinal-Control Characteristics TED No. NACA DE308. Part 3; Longitudinal-Control Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; King, Thomas J., Jr.

    1947-01-01

    Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.

  19. Investigation of the Spin and Recovery Characteristics of a 0.057-Scale Model of the Modified Chance Vought XF7U-1 Airplane. TED No. NACA DE 311

    NASA Technical Reports Server (NTRS)

    Berman, Theodore; Pumphrey, Norman E.

    1950-01-01

    An investigation has been conducted in the Langley 20-foot free-spinning tunnel to determine the spin and recovery characteristics of a 0.057-scale model of the modified Chance Vought XF7U-1 airplane. The primary change in the design from that previously tested was a revision of the twin vertical tails. Tests were also made to determine the effect of installation of external wing tanks. The results indicated that the revision in the vertical tails did not greatly alter the spin and recovery characteristics of the model and recovery by normal use of controls (fill rapid rudder reversal followed approximately one-half turn later by movement of the stick forward of neutral) was satisfactory. Adding the external wing tanks to cause the recovery characteristics to become critical and border on an unsatisfactory condition; however, it was shown that satisfactory recovery could be obtained by jettisoning the tanks, followed by normal recovery technique.

  20. Free-Spinning-Tunnel Tests of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Daughtridge, Lee T., Jr.

    1948-01-01

    An investigation of the spin and recovery characteristics of a 0.057-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley 20-foot free-spinning tunnel. The effects of control settings and movements on the erect and inverted spin and recovery characteristics were determined, as were also the effects of extending the wing slats, of center-of-gravity movement, and-of variation in the mass distribution. The investigation also included wing-tip spin-recovery-parachute tests, pilot-escape tests, and rudder-control-force tests. The investigation indicated that the spin and recovery characteristics of the airplane will be satisfactory for all conditions. It was found that a single 4.24-foot (full-scale) parachute when opened alone from the outboard wing tip or two 8.77-foot (full-scale) parachutes when opened simultaneously, one from each wing tip, would effect satisfactory emergency recoveries (the drag coefficients of the parachutes, based on the surface area of the parachute, were 0.83 and 0.70 for the 4.24- and 8.77-foot parachutes, respectively). The towline length in both cases was 25 feet (full scale). Tests results showed that, if the pilot should have to leave the airplane during a spin, he should jump from the outboard side (left side in a right spin) of the cockpit. The rudder-control force necessary for recovery from a spin was found to be rather high but appeared to be within the upper limits of a pilot's capabilities.

  1. Investigation of the Stability and Control Characteristics of a 1/10-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley Free-Flight Tunnel, TED No. NACA DE306

    NASA Technical Reports Server (NTRS)

    Draper, John W.; Hewes, Donald E.

    1948-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a stability and control investigation of a 1/10-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley free-flight tunnel. Results of force end flight tests to determine the power-off stability and control characteristics of the model with slats retracted and extended are presented herein. The longitudinal and lateral stability characteristics were satisfactory for both the slats retracted and extended conditions over the lift range up to the stall. With the slats retracted, the stall was fairly gentle but the model rolled off out of control. With the slats extended, control could be maintained at the stall so that the wings could be kept level even as the model dropped.

  2. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part II - Basic Lateral Stability Characteristics TED No. NACA DE308. Part 2; Basic Lateral Stability Charactistics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.; Goodson, Kenneth W.; Kuhn, Richard E.

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The basic lateral stability characteristics of the complete model with undeflected control surfaces are presented in the present report with a very limited analysis of the results.

  3. An EPG waveform library for sharpshooters and preliminary effects of applied voltage on behaviors controlling Xylella fastidiosa inoculation

    USDA-ARS?s Scientific Manuscript database

    Electropenetrography (EPG) waveforms represent electrical conductivity of fluids flowing through an insect’s mouthparts. Over the 50 years since its invention, EPG has undergone three major electronic transformations. The newest, third generation of electropenetrograph, the AC-DC EPG monitor, offers...

  4. A Transonic Wind-Tunnel Investigation of the Longitudinal Aerodynamic Characteristics of a Model of the Lockheed XF-104 Airplane

    NASA Technical Reports Server (NTRS)

    Hieser, Gerald; Reid, Charles F.

    1954-01-01

    The transonic longitudinal aerodynamic characteristics of a 0.0858-scale model of the Lockheed XF-104 airplane have been obtained from tests at the Langley 16-foot transonic tunnel. The results of the investigation provide some general information applicable to the transonic properties of thin, low-aspect-ratio, unswept wing configurations utilizing a high horizontal tail . The model employs a horizontal tail mounted at the top of the vertical tail and a wing with an aspect ratio of 2.5, a taper ratio of 0.385, and 3.4-percent-thick airfoil sections. The lift, drag, and static longitudinal pitching moment were measured at Mach numbers from 0.80 t o 1.09 and angles of attack from -2.5 deg to 22.5 deg. Some of the dynamic longitudinal stability properties of the airplane have been predicted from the test results. In addition, some visual flow studies on the wing surfaces obtained at Mach numbers of 0.80 and 1.00 are included. Results of the investigation show that the transonic rise in drag coefficient at zero lift is about 0.030. At high angles of attack, the model becomes longitudinally unstable at Mach numbers from 0.80 t o 0.90, whereas a reduction in static stability is experienced when very high angles of attack are reached at Mach numbers above 0.90. Longitudinal dynamic stability calculations show that the longitudinal control is good at angles of attack below the unstable break in the static pitching-moment curves, but a typical corrective control applied after the occurrence of neutral stability has little effect in averting pitch-up.

  5. High Variation in Pathogenicity of Genetically Closely Related Strains of Xanthomonas albilineans, the Sugarcane Leaf Scald Pathogen, in Guadeloupe.

    PubMed

    Champoiseau, P; Daugrois, J-H; Pieretti, I; Cociancich, S; Royer, M; Rott, P

    2006-10-01

    ABSTRACT Pathogenicity of 75 strains of Xanthomonas albilineans from Guadeloupe was assessed by inoculation of sugarcane cv. B69566, which is susceptible to leaf scald, and 19 of the strains were selected as representative of the variation in pathogenicity observed based on stalk colonization. In vitro production of albicidin varied among these 19 strains, but the restriction fragment length polymorphism pattern of their albicidin biosynthesis genes was identical. Similarly, no genomic variation was found among strains by pulsed-field gel electrophoresis. Some variation among strains was found by amplified fragment length polymorphism, but no relationship between this genetic variation and variation in pathogenicity was found. Only 3 (pilB, rpfA, and xpsE) of 40 genes involved in pathogenicity of bacterial species closely related to X. albilineans could be amplified by polymerase chain reaction from total genomic DNA of all nine strains tested of X. albilineans differing in pathogenicity in Guadeloupe. Nucleotide sequences of these genes were 100% identical among strains, and a phylogenetic study with these genes and housekeeping genes efp and ihfA suggested that X. albilineans is on an evolutionary road between the X. campestris group and Xylella fastidiosa, another vascular plant pathogen. Sequencing of the complete genome of Xanthomonas albilineans could be the next step in deciphering molecular mechanisms involved in pathogenicity of X. albilineans.

  6. Tunnel-structured Na 0.66[Mn 0.66Ti 0.34]O 2-xF x(x <0.1) cathode for high performance sodium-ion batteries

    DOE PAGES

    Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na; ...

    2018-03-13

    Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less

  7. Tunnel-structured Na 0.66[Mn 0.66Ti 0.34]O 2-xF x(x <0.1) cathode for high performance sodium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qin-Chao; Qiu, Qi-Qi; Xiao, Na

    Sodium-ion batteries (SIBs) are attracting significant research attentions for large-scale energy storage applications. Cathode material is the vital part of SIBs to determine the capacity and cycle performance. Here, a series of F-doped Na 0.66[Mn 0.66Ti 0.34]O 2-xF x (x < 0.1) cathodes with tunnel structure are designed and synthesized aiming to enlarge the sodium diffusion paths. The lattice parameters of unit cell are tuned successfully by adjusting F doping amount. Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 with the optimized stoichiometry exhibits a reversible capacity of 97 mAh g -1 and promising cycle performance (85 mAh g -1 is maintainedmore » at 2C after 1000 cycles) with extremely low voltage polarization. More significantly, Na 0.66[Mn 0.66Ti 0.34]O 1.94F 0.06 exhibits superior low temperature performance, owing to the much enhanced thermodynamics and kinetics benefited from F doping. In conclusion, this strategy may open new opportunities to design advanced intercalation-type cathode materials for sodium ion batteries, especially for low-temperature applications.« less

  8. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7-by 10-Foot Tunnel: TED No. DE308. Part 6; Estimated High-Speed Flying Qualities

    NASA Technical Reports Server (NTRS)

    Donlan, Charles J.; Kuhn, Richard E.

    1948-01-01

    An analysis of the estimated high-speed flying qualities of the Chance Vought XF7U-1 airplane in the Mach number range from 0.40 to 0.91 has been made, based on tests of an 0.08-scale model of this airplane in the Langley high-speed 7- by 10-foot wind tunnel. The analysis indicates longitudinal control-position instability at transonic speeds, but the accompanying trim changes are not large. Control-position maneuvering stability, however, is present for all speeds. Longitudinal lateral control appear adequate, but the damping of the short-period longitudinal and lateral oscillations at high altitudes is poor and may require artificial damping.

  9. Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: mechanism underlying its spasmolytic potential.

    PubMed

    Souza, Iara Leão Luna de; Correia, Ana Carolina de Carvalho; Araujo, Layanne Cabral da Cunha; Vasconcelos, Luiz Henrique César; Silva, Maria da Conceição Correia; Costa, Vicente Carlos de Oliveira; Tavares, Josean Fechine; Paredes-Gamero, Edgar Julian; Cavalcante, Fabiana de Andrade; Silva, Bagnólia Araújo da

    2015-09-16

    Xylopia frutescens Aubl. (embira, semente-de-embira or embira-vermelha), is used in folk medicine as antidiarrheal. The essential oil from its leaves (XF-EO) has been found to cause smooth muscle relaxation. Thus, the aim of this study was to investigate the spasmolytic action by which XF-EO acts on guinea pig ileum. The components of the XF-EO were identified by gas chromatography-mass spectrometry. Segments of guinea pig ileum were suspended in organ bath containing modified Krebs solution at 37 °C, bubbled with carbogen mixture under a resting tension of 1 g. Isotonic contractions were registered using kymographs and isometric contractions using force transducer coupled to an amplifier and computer. Fluorescence measurements were obtained with a microplate reader using Fluo-4. Forty-three constituents were identified in XF-EO, mostly mono- and sesquiterpenes. XF-EO has been found to cause relaxation on guinea pig ileum. The essential oil inhibited in a concentration-dependent manner both CCh- and histamine-induced phasic contractions, being more potent on histamine-induced contractions as well as antagonized histamine-induced cumulative contractions in a non-competitive antagonism profile. XF-EO relaxed in a concentration-dependent manner the ileum pre-contracted with KCl and histamine. Since the potency was smaller in organ pre-contracted with KCl, it was hypothesized that XF-OE would be acting as a K(+) channel positive modulator. In the presence of CsCl (non-selective K(+) channel blocker), the relaxant potency of XF-OE was not altered, indicating a non-participation of these channels. Moreover, XF-EO inhibited CaCl2-induced cumulative contractions in a depolarizing medium nominally without Ca(2+) and relaxed the ileum pre-contracted with S-(-)-Bay K8644 in a concentration-dependent manner, thus, was confirmed the inhibition of Ca(2+) influx through Cav1 by XF-EO. In cellular experiments, the viability of longitudinal layer myocytes from guinea pig ileum was

  10. Preliminary Results Obtained from Flight Test of a 1/7-Scale Rocket-Powered Model of the Grumman XF10F Airplane Configuration in the Swept-Wing Condition, TED No. NACA DE 354

    NASA Technical Reports Server (NTRS)

    Gardner, William N.

    1951-01-01

    A flight investigation of a 1/7-scale rocket-powered model of the XF10F Grumman XFl0F airplane in the swept-wing configuration has been made. The purpose of this test was to determine the static longitudinal stability, damping in pitch, and longitudinal control effectiveness of the airplane with the center of gravity at 20 percent of the wing mean aerodynamic chord. Only a small amount of data was obtained from the test because, immediately after booster separation at a Mach number of 0.88, the configuration was directionally unstable and diverged in sideslip. Simultaneous with the sideslip divergence, the model became longitudinally unstable at 3 degree angle of attack and -6 degree sideslip and diverged in pitch to a high angle of attack. During the pitch-up the free-floating horizontal tail became unstable at 5 degree angle of attack and the tail drifted against its positive deflection limit.

  11. Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.; Cocke, Bennie W., Jr.; Proterra, Anthony J.

    1946-01-01

    The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.

  12. Longitudinal Trim and Tumble Characteristics of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane, TED NO. NACA DE311

    NASA Technical Reports Server (NTRS)

    Bryant, Robert L.

    1948-01-01

    Based on results of longitudinal trim and tumble tests of a 0.057-scale model of the Chance Vought XF7U-1 airplane, the following conclusions regarding the trim and tumble characteristics of the airplane have been drawn: 1. The airplane will not trim at any unusual or uncontrolled angles of attack. 2. The airplane will not tumble with the center of gravity located forward of 24 percent of the mean aerodynamic chord. When the center of gravity is located at 24 percent of the mean aerodynamic chord and slats are extended and elevators are deflected full up, the airplane may tumble if given an external positive pitching moment. 3. The tumbling motion obtained will be readily terminated by deflecting the elevators full down so as to oppose the rotation. 4. The accelerations encountered during an established tumble may be dangerous to the pilot and, therefore, action should be taken to terminate a tumble immediately upon its inception. 5. Simultaneous opening of two wing-tip parachutes having diameters of 4 feet or larger and having drag coefficients of approximately 0.7 will effectively terminate the tumble. 6. Model results indicate that the pilot will not be struck by the airplane if it becomes necessary to leave the airplane during a tumble. The pilot may require aid from an ejection-seat arrangement.

  13. Analytical Methodology for Evaluation of Payoffs for Infrared Countermeasures and Suppression (EPICS)

    DTIC Science & Technology

    1975-03-01

    Xf ""NIW " V’OIO ’ Xf ""NIW At f,.,Nfw-Y,W0l0«X.(IC) V,(10 2,«), f""NtW äl MM^VSW^^ PWV * Xf<«>o.i>. v»"t’l ,R,OlO’ Tf’^ OlO’ ’f ’OlO ML, FtAK

  14. Seasonal abundance and spatio-temporal distribution of dominant xylem fluid-feeding hemiptera in vineyards of central Texas and surrounding habitats.

    PubMed

    Lauzière, Isabelle; Sheather, Simon; Mitchell, Forrest

    2008-08-01

    A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.

  15. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants

    PubMed Central

    Perilla-Henao, Laura M.; Casteel, Clare L.

    2016-01-01

    Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant–virus–vector interactions has flourished in recent years, plant–bacteria–vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant–bacteria–vector interactions, some common themes have emerged: (1) all known vector-borne bacteria share the ability to propagate in the plant and insect host; (2) particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; (3) all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and (4) vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and ‘Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector–plant–bacteria interactions. PMID:27555855

  16. The PDB database is a rich source of alpha-helical anti-microbial peptides to combat disease causing pathogens.

    PubMed

    Chakraborty, Sandeep; Phu, My; de Morais, Tâmara Prado; Nascimento, Rafael; Goulart, Luiz Ricardo; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya M

    2014-01-01

    The therapeutic potential of α-helical anti-microbial peptides (AH-AMP) to combat pathogens is fast gaining prominence. Based on recently published open access software for characterizing α-helical peptides (PAGAL), we elucidate a search methodology (SCALPEL) that leverages the massive structural data pre-existing in the PDB database to obtain AH-AMPs belonging to the host proteome. We provide in vitro validation of SCALPEL on plant pathogens ( Xylella fastidiosa, Xanthomonas arboricola and Liberibacter crescens) by identifying AH-AMPs that mirror the function and properties of cecropin B, a well-studied AH-AMP. The identified peptides include a linear AH-AMP present within the existing structure of phosphoenolpyruvate carboxylase (PPC20), and an AH-AMP mimicing the properties of the two α-helices of cecropin B from chitinase (CHITI25). The minimum inhibitory concentration of these peptides are comparable to that of cecropin B, while anionic peptides used as control failed to show any inhibitory effect on these pathogens. Substitute therapies in place of conventional chemotherapies using membrane permeabilizing peptides like these might also prove effective to target cancer cells. The use of native structures from the same organism could possibly ensure that administration of such peptides will be better tolerated and not elicit an adverse immune response. We suggest a similar approach to target Ebola epitopes, enumerated using PAGAL recently, by selecting suitable peptides from the human proteome, especially in wake of recent reports of cationic amphiphiles inhibiting virus entry and infection.

  17. The RpfCG two-component system negatively regulates the colonization of sugar cane stalks by Xanthomonas albilineans.

    PubMed

    Rott, Philippe; Fleites, Laura A; Mensi, Imène; Sheppard, Lauren; Daugrois, Jean-Heinrich; Dow, J Maxwell; Gabriel, Dean W

    2013-06-01

    The genome of Xanthomonas albilineans, the causal agent of sugar cane leaf scald, carries a gene cluster encoding a predicted quorum sensing system that is highly related to the diffusible signalling factor (DSF) systems of the plant pathogens Xylella fastidiosa and Xanthomonas campestris. In these latter pathogens, a cluster of regulation of pathogenicity factors (rpf) genes encodes the DSF system and is involved in control of various cellular processes. Mutation of Xanthomonas albilineans rpfF, encoding a predicted DSF synthase, in Florida strain XaFL07-1 resulted in a small reduction of disease severity (DS). Single-knockout mutations of rpfC and rpfG (encoding a predicted DSF sensor and regulator, respectively) had no effect on DS or swimming motility of the pathogen. However, capacity of the pathogen to cause disease was slightly reduced and swimming motility was severely affected when rpfG and rpfC were both deleted. Similar results were obtained when the entire rpfGCF region was deleted. Surprisingly, when the pathogen was mutated in rpfG or rpfC (single or double mutations) it was able to colonize sugar cane spatially more efficiently than the wild-type. Mutation in rpfF alone did not affect the degree of spatial invasion. We conclude that the DSF signal contributes to symptom expression but not to invasion of sugar cane stalks by Xanthomonas albilineans strain XaFL07-1, which is mainly controlled by the RpfCG two-component system.

  18. Urinary metabonomics study on toxicity biomarker discovery in rats treated with Xanthii Fructus.

    PubMed

    Lu, Fang; Cao, Min; Wu, Bin; Li, Xu-zhao; Liu, Hong-yu; Chen, Da-zhong; Liu, Shu-min

    2013-08-26

    Xanthii Fructus (XF) is commonly called "Cang-Erzi" in traditional Chinese medicine (TCM) and widely used for the treatment of sinusitis, headache, rheumatism, and skin itching. However, the clinical utilization of XF is relatively restricted owing to its toxicity. To discover the characteristic potential biomarkers in rats treated with XF by urinary metabonomics. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was applied in the study. The total ion chromatograms obtained from control and different dosage groups were distinguishable by a multivariate statistical analysis method. The greatest difference in metabolic profile was observed between high dosage group and control group, and the metabolic characters in rats treated with XF were perturbed in a dose-dependent manner. The metabolic changes in response for XF treatment were observed in urinary samples, which were revealed by orthogonal projection to latent structures discriminate analysis (OPLS-DA), and 10 metabolites could be served as the potential toxicity biomarkers. In addition, the mechanism associated with the damages of lipid per-oxidation and the metabolic disturbances of fatty acid oxidation were investigated. These results indicate that metabonomics analysis in urinary samples may be useful for predicting the toxicity induced by XF. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. High Speed Stability and Control Characteristics of a 0.17-Scale Model of the McDonnell XF2H-1 Airplane (TED No. NACA DE 318)

    NASA Technical Reports Server (NTRS)

    Axelson, John A.; Emerson, Horace F.

    1949-01-01

    High-speed wind-tunnel tests were conducted of two versions of a 0.17-scale model of the McDonnell XF2H-1 airplane to ascertain the high-speed stability and control characteristics and to study means for raising the high-speed buffet limit of the airplane, The results for the revised model, employing a thinner wing and tail than the original model, revealed a mild diving tendency from 0.75 to 0.80 Mach number, followed by a marked climbing tendency from 0.80 to 0.875 Mach number. The high-speed climbing tendency was caused principally by the pitching-moment characteristics of the wing. At 0.875 Mach number the results for the revised model indicated stick-fixed directional instability over a limited range of yaw angles, apparently caused by separated flow over the vertical tail. The test results indicate that the high-speed buffet limit of the airplane can probably be raised by reducing the thickness and changing the relative location of the horizontal and vertical tails, and by revising the inner portion of the wing to have a lower thickness-to-chord ratio and reduced trailing-edge angle. The addition of the wing-tip tanks to the revised model resulted in a forward shift in the neutral point below 0.82 Mach number.

  20. User’s Manual for Strategic Satellite System Terminal Segment Life Cycle Cost Model. Volume 2

    DTIC Science & Technology

    1981-03-01

    BASE TO/38X,15HDEPOT IN MONTHS,35X,F15.3/28X,55H + OSTC - ORDER AND SHIPPING TIME FROM A SATELLITE BASE/38X,26HT0 I +TS CIMP BASE IN MONTHS,24X,F15.3...COST OF PACKING AND SHIP +PING FROM A SATELLITE/38X,47HBASE TO ITS CIMP BASE IN $ PER NET WE +IGHT POUND,3X,F15.3/28X,54HCPPDC1) -COST OF PACKING AND

  1. Physical Simulation for Probabilistic Motion Tracking

    DTIC Science & Technology

    2008-01-01

    learn a low- dimensional embedding of the high-dimensional kinematic data and then attempt to solve the problem in this more man- ageable low...rotations and foot skate ). Such artifacts can be attributed to the general lack of physically plausible priors [2] (that can account for static and/or...temporal priors of the form p(xf+1|xf ) = N (xf + γf ,Σ) (where γf is scaled velocity learned or inferred), have also been proposed [13] and shown to

  2. Laboratory- and community-based health outcomes in people with transtibial amputation using crossover and energy-storing prosthetic feet: A randomized crossover trial

    PubMed Central

    Morgan, Sara J.; McDonald, Cody L.; Halsne, Elizabeth G.; Cheever, Sarah M.; Salem, Rana; Kramer, Patricia A.

    2018-01-01

    Contemporary prosthetic feet are generally optimized for either daily or high-level activities. Prosthesis users, therefore, often require multiple prostheses to participate in activities that span a range of mobility. Crossover feet (XF) are designed to increase the range of activities that can be performed with a single prosthesis. However, little evidence exists to guide clinical prescription of XF relative to traditional energy storing feet (ESF). The objective of this study was to assess the effects of XF and ESF on health outcomes in people with transtibial amputation. A randomized crossover study was conducted to assess changes in laboratory-based (endurance, perceived exertion, walking performance) and community-based (step activity and self-reported mobility, fatigue, balance confidence, activity restrictions, and satisfaction) outcomes. Twenty-seven participants were fit with XF and ESF prostheses with standardized sockets, interfaces, and suspensions. Participants were not blinded to the intervention, and wore each prosthesis for one month while their steps were counted with an activity monitor. After each accommodation period, participants returned for data collection. Endurance and perceived exertion were measured with the Six-Minute Walk Test and Borg-CR100, respectively. Walking performance was measured using an electronic walkway. Self-reported mobility, fatigue, balance confidence, activity restrictions, and satisfaction were measured with survey instruments. Participants also reported foot preferences upon conclusion of the study. Differences between feet were assessed with a crossover analysis. While using XF, users experienced improvements in most community-based outcomes, including mobility (p = .001), fatigue (p = .001), balance confidence (p = .005), activity restrictions (p = .002), and functional satisfaction (p < .001). Participants also exhibited longer sound side steps in XF compared to ESF (p < .001). Most participants (89%) reported an

  3. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase.

    PubMed

    Lopes, Hélio P; Gambarra-Soares, Thaiane; Elias, Carlos N; Siqueira, José F; Inojosa, Inês F J; Lopes, Weber S P; Vieira, Victor T L

    2013-04-01

    This study compared the mechanical properties of endodontic instruments made of conventional nickel-titanium (NiTi) wire (K(3) and Revo-S SU), M-Wire (ProFile Vortex), or NiTi alloy in R-phase (K(3)XF). The test instruments were subjected to mechanical tests to evaluate resistance to bending (flexibility), cyclic fatigue, and torsional load in clockwise rotation. Data were statistically evaluated by the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. In the bending resistance test, flexibility decreased in the following order: K(3)XF > Revo-S SU > ProFile Vortex > K(3). The ranking in the fatigue resistance test was the following: K(3)XF > K(3) > ProFile Vortex > Revo-S SU. In the torsional assay, the angular deflection at failure decreased in the following order: K(3)XF > Revo-S SU > K(3) > ProFile Vortex. For the maximum torque values, the ranking was K(3) > K(3)XF > ProFile Vortex > Revo-S SU. The results showed that the K(3)XF instrument, which is made of NiTi alloy in R-phase, had the overall best performance in terms of flexibility, angular deflection at failure, and cyclic fatigue resistance. In addition to the alloy from which the instrument is manufactured, the design and dimensions are important determinants of the mechanical performance of endodontic instruments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Alfalfa and pastures: sources of pests or generalist natural enemies?

    USDA-ARS?s Scientific Manuscript database

    Pierce’s disease of grapevine and almond leaf scorch disease are both caused by the bacterial pathogen Xyllela fastidiosa. In the Central Valley of California, the green sharpshooter is the most common vector of X. fastidiosa. As alfalfa fields and pastures are considered source habitats for green s...

  5. Effects of citrus and avocado irrigation and nitrogen-form soil amendment on host selection by adult Homalodisca vitripennis (Hemiptera: Cicadellidae).

    PubMed

    Nadel, H; Seligmann, R; Johnson, M W; Hagler, J R; Stenger, D C; Groves, R L

    2008-06-01

    Host plant water status is thought to influence dispersal of the xylophagous leafhopper Homalodisca vitripennis Germar, especially where plants are grown under high evaporative demand. Preference by adult H. vitripennis for plants grown under different water deficit and nitrogen form fertilization regimens was studied under laboratory conditions. Leafhopper abundance and ovipositional preference were studied on potted 'Washington navel' orange and 'Haas' avocado in cage choice tests, and feeding rate was estimated using excreta produced by insects confined on plants. A similar study compared responses to citrus treated with 1:1 and 26:1 ratios of fertigated nitrate-N to ammonium-N. The insects were more abundant, oviposited, and fed significantly more on surplus-irrigated plants than on plants under moderate continuous deficit irrigation except avocado feeding, which was nearly significant. Plants exposed to drought became less preferred after 3 and 7 d in avocado and citrus, respectively. Citrus xylem fluid tension at this point was estimated at 0.93 MPa. A corresponding pattern of decline in feeding rate was observed on citrus, but on avocado, feeding rate was low overall and not statistically different between treatments. No statistical differences in abundance, oviposition, or feeding were detected on citrus fertigated with 26:1 or 1:1 ratios of nitrate-N to ammonium-N. Feeding occurred diurnally on both plant species. Discussion is provided on the potential deployment of regulated deficit irrigation to manage H. vitripennis movement as part of a multitactic effort to minimize the risk of disease outbreaks from Xylella fastidiosa Wells et al. in southern California agriculture.

  6. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    NASA Astrophysics Data System (ADS)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  7. De novo transcriptome assemblies of four xylem sap-feeding insects

    PubMed Central

    Tassone, Erica E.; Cowden, Charles C.

    2017-01-01

    Abstract Background: Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Findings: Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91 384 for Cuerna arida to 106 998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60% for H. liturata to 82% for C. arizonana. Bench-marking universal single-copy orthologs analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. Conclusions: These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization. PMID:28327966

  8. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs)

    PubMed Central

    Ganassi, Sonia; Pistillo, Marco O.; Di Domenico, Carmela; De Cristofaro, Antonio; Di Palma, Antonella Marta

    2017-01-01

    The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae) is a commonly found vector of Xylella fastidiosa Wells et al. (1987) strain subspecies pauca associated with the “Olive Quick Decline Syndrome” in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG) responses of both sexes to 50 volatile organic compounds (VOCs) including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E)-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±)linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5—C6) elicited lower EAG amplitudes than compounds with higher carbon chain length (C9—C10) in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest. PMID:29287108

  9. Free-Spinning-Tunnel Tests of a 1/16-Scale Model of the Chance Vought XF5U-1 Airplane, TED No. NACA 2349

    NASA Technical Reports Server (NTRS)

    White, Richard P.

    1947-01-01

    Spin tests of a 1/16-scale model of the Chance Vought XF5U-1 airplane have been performed in the Langley 20-foot free-spinning tunnel. The effect of control position and movement upon the erect and inverted spin and recovery characteristics ae well as the effects of propellers, of stability flaps, and of various revisions to the design configuration have been determined for the normal fighter loading. The investigation also included spin recovery parachute, tumbling, and pilot-escape tests. For the original design configuration, with or without windmilling propellers, the recovery characteristics of the model were considered unsatisfactory. Increasing the maximum upward deflection of the ailavators from 45 deg to 65 deg resulted in greatly improved recovery characteristics. Dimensional revisions to the original airplane configuration, which satisfactorily improved the general spin and recovery characteristics of the model, consisted of: (1) a supplementary vertical tail 34 inches by 59 inches (full-scale) attached to a boom 80 inches aft of the trailing edge of the airplane in the plane of symmetry, (2) a large semispan undersurface spoiler placed along the airplane quarter-chord line and opened on the outboard side in a spin, or (3) two additional vertical tails 64 inches by 52 inches (full-scale) located at the tips of the ailavators. A satisfactory parachute arrangement for emergency spin recovery from demonstration spins was found to be an arrangement consisting of a 13.3-foot parachute attached by a 30-foot towline to the arresting gear mast on the airplane and opened simultaneously with an 8-foot parachute on the outboard end of the wing attached by a 3-foot towline. Tests indicated that pilot escape from a spin would be extremely hazardous unless the pilot is mechanically ejected from the cockpit. Model tumbling tests indicated that the airplane would not tumble.

  10. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    PubMed

    Nicholas, Dequina; Proctor, Elizabeth A; Raval, Forum M; Ip, Blanche C; Habib, Chloe; Ritou, Eleni; Grammatopoulos, Tom N; Steenkamp, Devin; Dooms, Hans; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2017-01-01

    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  11. Protection Relaying Scheme Based on Fault Reactance Operation Type

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi

    The theories of operation of existing relays are roughly divided into two types: one is the current differential types based on Kirchhoff's first law and the other is impedance types based on second law. We can apply the Kirchhoff's laws to strictly formulate fault phenomena, so the circuit equations are represented non linear simultaneous equations with variables fault point k and fault resistance Rf. This method has next two defect. 1) heavy computational burden for the iterative calculation on N-R method, 2) relay operator can not easily understand principle of numerical matrix operation. The new protection relay principles we proposed this paper focuses on the fact that the reactance component on fault point is almost zero. Two reactance Xf(S), Xf(R) on branch both ends are calculated by operation of solving linear equations. If signs of Xf(S) and Xf(R) are not same, it can be judged that the fault point exist in the branch. This reactance Xf corresponds to difference of branch reactance between actual fault point and imaginaly fault point. And so relay engineer can to understand fault location by concept of “distance". The simulation results using this new method indicates the highly precise estimation of fault locations compared with the inspected fault locations on operating transmission lines.

  12. Etiology of three recent diseases of citrus in São Paulo State: sudden death, variegated chlorosis and huanglongbing.

    PubMed

    Bové, Joseph Marie; Ayres, Antonio Juliano

    2007-01-01

    , citrus variegated chlorosis (CVC), was observed in 1987 in the Triangulo Mineiro of Minas Gerais State and the northern and north-eastern parts of SSP. By 2000, the disease affected already 34% of the 200 million sweet orange trees in SSP. By 2005, the percentage had increased to 43%, and CVC was present in all citrus growing regions of Brazil. Electron microscopy showed that xylem-limited bacteria were present in all symptomatic sweet orange leaves and fruit tissues tested, but not in similar materials from healthy, symptomless trees. Bacteria were consistently cultured from twigs of CVC-affected sweet orange trees but not from twigs of healthy trees. Serological analyses showed the CVC bacterium to be a strain of Xylella fastidiosa. The disease could be reproduced and Koch's postulates fulfilled, by mechanically inoculating a pure culture of X. fastidiosa isolate 8.1.b into sweet orange seedlings. The genome of a CVC strain of X. fastidiosa was sequenced in SSP in the frame of a project supported by FAPESP and Fundecitrus. X. fastidiosa is the first plant pathogenic bacterium, the genome of which has been sequenced. Until recently, America was free of huanglongbing (HLB), but in March 2004 and August 2005, symptoms of the disease were recognized, respectively in the State of São Paulo (SSP) and in Florida, USA. HLB was known in China since 1870 and in South Africa since 1928. Because of its destructiveness and its rapid spread by efficient psyllid insect-vectors, HLB is probably the most serious citrus disease. HLB is caused by a phloem sieve tube-restricted Gram negative bacterium, not yet available in culture. In the 1990s, the bacterium was characterized by molecular techniques as a member of the alpha proteobacteria designated Candidatus Liberibacter africanus for the disease in Africa, and Candidatus Liberibacter asiaticus for HLB in Asia. In SSP, Ca. L. asiaticus is also present, but most of the trees are infected with a new species, Candidatus Liberibacter

  13. Cross section and transverse single-spin asymmetry of η mesons in p↑+p collisions at √s =200 GeV at forward rapidity

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kofarago, M.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rowan, Z.; Rubin, J. G.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-10-01

    We present a measurement of the cross section and transverse single-spin asymmetry (AN) for η mesons at large pseudorapidity from √s =200 GeV p↑+p collisions. The measured cross section for 0.5xF) from 0.2<|xF|<0.7, as well as transverse momentum (pT) from 1.0xF is ⟨AN⟩=0.061±0.014. The results are consistent with prior transverse single-spin measurements of forward η and π0 mesons at various energies in overlapping xF ranges. Comparison of different particle species can help to determine the origin of the large observed asymmetries in p↑+p collisions.

  14. Clinical and Radiographic Evaluation of Procedural Errors during Preparation of Curved Root Canals with Hand and Rotary Instruments: A Randomized Clinical Study.

    PubMed

    Khanna, Rajesh; Handa, Aashish; Virk, Rupam Kaur; Ghai, Deepika; Handa, Rajni Sharma; Goel, Asim

    2017-01-01

    The process of cleaning and shaping the canal is not an easy goal to obtain, as canal curvature played a significant role during the instrumentation of the curved canals. The present in vivo study was conducted to evaluate procedural errors during the preparation of curved root canals using hand Nitiflex and rotary K3XF instruments. Procedural errors such as ledge formation, instrument separation, and perforation (apical, furcal, strip) were determined in sixty patients, divided into two groups. In Group I, thirty teeth in thirty patients were prepared using hand Nitiflex system, and in Group II, thirty teeth in thirty patients were prepared using K3XF rotary system. The evaluation was done clinically as well as radiographically. The results recorded from both groups were compiled and put to statistical analysis. Chi-square test was used to compare the procedural errors (instrument separation, ledge formation, and perforation). In the present study, both hand Nitiflex and rotary K3XF showed ledge formation and instrument separation. Although ledge formation and instrument separation by rotary K3XF file system was less as compared to hand Nitiflex. No perforation was seen in both the instrument groups. Canal curvature played a significant role during the instrumentation of the curved canals. Procedural errors such as ledge formation and instrument separation by rotary K3XF file system were less as compared to hand Nitiflex.

  15. Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfomusa hansenii as Desulfofaba hansenii comb. nov.

    PubMed

    Abildgaard, Lone; Ramsing, Niels Birger; Finster, Kai

    2004-03-01

    A rod-shaped, slightly curved sulfate reducer, designated strain P2(T), was isolated from the sulfate-methane transition zone of a marine sediment. Cells were motile by means of a single polar flagellum. The strain reduced sulfate, thiosulfate and sulfite to sulfide and used propionate, lactate and 1-propanol as electron donors. Strain P2(T) also grew by fermentation of lactate. Propionate was oxidized incompletely to acetate and CO(2). The DNA G+C content was 48.8 mol%. Sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P2(T) was related to the genera Desulfonema, Desulfococcus, Desulfosarcina, 'Desulfobotulus', Desulfofaba, Desulfomusa and Desulfofrigus. These genera include incomplete as well as complete oxidizers of substrates. Strain P2(T) shared important morphological and physiological traits with Desulfofaba gelida and Desulfomusa hansenii, including the ability to oxidize propionate incompletely to acetate. The 16S rRNA gene similarities of P2(T) to Desulfofaba gelida and Desulfomusa hansenii were respectively 92.9 and 91.5 %. Combining phenotypic and genotypic traits, we propose strain P2(T) to be a member of the genus Desulfofaba. The name Desulfofaba fastidiosa sp. nov. (type strain P2(T)=DSM 15249(T)=ATCC BAA-815(T)) is proposed, reflecting the limited number of substrates consumed by the strain. In addition, the reclassification of Desulfomusa hansenii as a member of the genus Desulfofaba, Desulfofaba hansenii comb. nov., is proposed. A common line of descent and a number of shared phenotypic traits support this reclassification.

  16. First report of pecan bacterial leaf scorch caused by Xylella fastidiosa in pecan (Carya illinoinensis) in Arizona, New Mexico, California, and Texas

    USDA-ARS?s Scientific Manuscript database

    Pecan bacterial leaf scorch (PBLS) is a chronic disease that can cause major yield losses in pecan orchards. In the 2015-16 growing seasons, symptoms consistent with PBLS were observed in commercial pecan cultivars in AZ, NM, CA and TX. Symptoms included tan to light brown necrotic lesions, which ...

  17. De novo transcriptome assemblies of four xylem sap-feeding insects.

    PubMed

    Tassone, Erica E; Cowden, Charles C; Castle, S J

    2017-03-01

    Spittle bugs and sharpshooters are well-known xylem sap-feeding insects and vectors of the phytopathogenic bacterium Xylella fastidiosa (Wells), a causal agent of Pierce's disease of grapevines and other crop diseases. Specialized feeding on nutrient-deficient xylem sap is relatively rare among insect herbivores, and only limited genomic and transcriptomic information has been generated for xylem-sap feeders. To develop a more comprehensive understanding of biochemical adaptations and symbiotic relationships that support survival on a nutritionally austere dietary source, transcriptome assemblies for three sharpshooter species and one spittlebug species were produced. Trinity-based de novo transcriptome assemblies were generated for all four xylem-sap feeders using raw sequencing data originating from whole-insect preps. Total transcripts for each species ranged from 91 384 for Cuerna arida to 106 998 for Homalodisca liturata with transcript totals for Graphocephala atropunctata and the spittlebug Clastoptera arizonana falling in between. The percentage of transcripts comprising complete open reading frames ranged from 60% for H. liturata to 82% for C. arizonana. Bench-marking universal single-copy orthologs analyses for each dataset indicated quality assemblies and a high degree of completeness for all four species. These four transcriptomes represent a significant expansion of data for insect herbivores that feed exclusively on xylem sap, a nutritionally deficient dietary source relative to other plant tissues and fluids. Comparison of transcriptome data with insect herbivores that utilize other dietary sources may illuminate fundamental differences in the biochemistry of dietary specialization. Published by Oxford University Press on behalf of GIGSCI 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Feeding and Development of the Glassy-Winged Sharpshooter, Homalodisca vitripennis, on Australian Native Plant Species and Implications for Australian Biosecurity

    PubMed Central

    Rathé, Anna A.; Pilkington, Leigh J.; Hoddle, Mark S.; Spohr, Lorraine J.; Daugherty, Matthew P.; Gurr, Geoff M.

    2014-01-01

    In any insect invasion the presence or absence of suitable food and oviposition hosts in the invaded range is a key factor determining establishment success. The glassy-winged sharpshooter, Homalodisca vitripennis, is an important insect vector of the xylem-limited bacterial plant pathogen, Xylella fastidiosa, which causes disease in numerous host plants including food and feedstock crops, ornamentals and weeds. Both the pathogen and the vector are native to the Americas and are considered to be highly invasive. Neither has been detected in Australia. Twelve Australian native plant species present in the USA were observed over two years for suitability as H. vitripennis feeding, oviposition and nymph development hosts. Hosts providing evidence of adult or nymph presence were Leptospermum laevigatum, Acacia cowleana, Eremophila divaricata, Eucalyptus wandoo, Hakea laurina, Melaleuca laterita and Swainsona galegifolia. An oviposition-suitability field study was conducted with citrus, a favoured oviposition host, as a positive control. Citrus and L. laevigatum, A. cowleana, B. ericifolia×B. spinulosa, C. pulchella, E. divaricata, E. wandoo, H. laurina, and S. galegifolia were found to be oviposition hosts. Egg parasitism by the mymarid parasitoid Gonatocerus ashmeadi was observed on all Australian plants. A number of Australian plants that may facilitate H. vitripennis invasion have been identified and categorised as ‘high risk’ due to their ability to support all three life stages (egg, nymph and adult) of the insect in the field (L. laevigatum, A. cowleana, E. divaricata, H. laurina, and S. galegifolia). The implications of these host status and natural enemy research findings are discussed and placed in an Australian invasion context. PMID:24614821

  19. Clinical and Radiographic Evaluation of Procedural Errors during Preparation of Curved Root Canals with Hand and Rotary Instruments: A Randomized Clinical Study

    PubMed Central

    Khanna, Rajesh; Handa, Aashish; Virk, Rupam Kaur; Ghai, Deepika; Handa, Rajni Sharma; Goel, Asim

    2017-01-01

    Background: The process of cleaning and shaping the canal is not an easy goal to obtain, as canal curvature played a significant role during the instrumentation of the curved canals. Aim: The present in vivo study was conducted to evaluate procedural errors during the preparation of curved root canals using hand Nitiflex and rotary K3XF instruments. Materials and Methods: Procedural errors such as ledge formation, instrument separation, and perforation (apical, furcal, strip) were determined in sixty patients, divided into two groups. In Group I, thirty teeth in thirty patients were prepared using hand Nitiflex system, and in Group II, thirty teeth in thirty patients were prepared using K3XF rotary system. The evaluation was done clinically as well as radiographically. The results recorded from both groups were compiled and put to statistical analysis. Statistical Analysis: Chi-square test was used to compare the procedural errors (instrument separation, ledge formation, and perforation). Results: In the present study, both hand Nitiflex and rotary K3XF showed ledge formation and instrument separation. Although ledge formation and instrument separation by rotary K3XF file system was less as compared to hand Nitiflex. No perforation was seen in both the instrument groups. Conclusion: Canal curvature played a significant role during the instrumentation of the curved canals. Procedural errors such as ledge formation and instrument separation by rotary K3XF file system were less as compared to hand Nitiflex. PMID:29042727

  20. Accurate coupled cluster reaction enthalpies and activation energies for X+H2 --> XH+H (X=F, OH, NH2, and CH3)

    NASA Astrophysics Data System (ADS)

    Kraka, Elfi; Gauss, Jürgen; Cremer, Dieter

    1993-10-01

    Coupled cluster calculations at the CCSD(T)/[5s4p3d/4s3p] and CCSD(T)/[5s4p3d2 f1g/4s3p2d] level of theory are reported for reactions X+H2→XH+H [X=F (1a), OH (1b), NH2 (1c), and CH3 (1d)] utilizing analytical energy gradients for geometry, frequency, charge distribution, and dipole moment calculations of reactants, transition states, and products. A careful analysis of vibrational corrections leads to reaction enthalpies at 300 K, which are within 0.04, 0.15, 0.62, and 0.89 kcal/mol of experimental values. For reaction (1a) a bent transition state and for reactions (1b) and (1c) transition states with a cis arrangement of the reactants are calculated. The cis forms of transition states (1b) and (1c) are energetically favored because of electrostatic interactions, in particular dipole-dipole attraction as is revealed by calculated charge distributions. For reactions (1a)-(1d), the CCSD(T)/[5s4p3d2 f1g/4s3p2d] activation energies at 300 K are 1.1, 5.4, 10.8, and 12.7 kcal/mol which differ by just 0.1, 1.4, 2.3, and 1.8 kcal/mol, respectively, from the corresponding experimental values of 1±0.1, 4±0.5, 8.5±0.5, and 10.9±0.5 kcal/mol. For reactions (1), this is the best agreement between experiment and theory that has been obtained from ab initio calculations not including any empirically based corrections. Agreement is achieved after considering basis set effects, basis set superposition errors, spin contamination, tunneling effect and, in particular, zero-point energies as well as temperature corrections. Net corrections for the four activation energies are -1.05, -0.2, 1.25, and 0.89 kcal/mol, which shows that for high accuracy calculations a direct comparison of classical barriers and activation energies is misleading.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.

    Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less

  2. Identifying the Molecular Origin of Global Warming

    NASA Technical Reports Server (NTRS)

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2009-01-01

    We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.

  3. Atomic Layer Deposition of Al–W–Fluoride on LiCoO 2 Cathodes: Comparison of Particle- and Electrode-Level Coatings

    DOE PAGES

    Park, Joong Sun; Mane, Anil U.; Elam, Jeffrey W.; ...

    2017-07-19

    Atomic layer deposition (ALD) of the well-known Al 2O 3 on a LiCoO 2 system is compared with that of a newly developed AlW xF y material. ALD coatings (~1 nm thick) of both materials are shown to be effective in improving cycle life through mitigation of surface-induced capacity losses. However, the behaviors of Al 2O 3 and AlW xF y are shown to be significantly different when coated directly on cathode particles versus deposition on a composite electrode composed of active materials, carbons, and binders. Electrochemical impedance spectroscopy, galvanostatic intermittent titration techniques, and four-point measurements suggest that electron transportmore » is more limited in LiCoO 2 particles coated with Al 2O 3 compared with that in particles coated with AlW xF y. Here, the results show that proper design/choice of coating materials (e.g., AlW xF y) can improve capacity retention without sacrificing electron transport and suggest new avenues for engineering electrode–electrolyte interfaces to enable high-voltage operation of lithium-ion batteries.« less

  4. Development of a microsecond X-ray protein footprinting facility at the Advanced Light Source.

    PubMed

    Gupta, Sayan; Celestre, Richard; Petzold, Christopher J; Chance, Mark R; Ralston, Corie

    2014-07-01

    X-ray footprinting (XF) is an important structural biology tool used to determine macromolecular conformations and dynamics of both nucleic acids and proteins in solution on a wide range of timescales. With the impending shut-down of the National Synchrotron Light Source, it is ever more important that this tool continues to be developed at other synchrotron facilities to accommodate XF users. Toward this end, a collaborative XF program has been initiated at the Advanced Light Source using the white-light bending-magnet beamlines 5.3.1 and 3.2.1. Accessibility of the microsecond time regime for protein footprinting is demonstrated at beamline 5.3.1 using the high flux density provided by a focusing mirror in combination with a micro-capillary flow cell. It is further reported that, by saturating samples with nitrous oxide, the radiolytic labeling efficiency is increased and the imprints of bound versus bulk water can be distinguished. These results both demonstrate the suitability of the Advanced Light Source as a second home for the XF experiment, and pave the way for obtaining high-quality structural data on complex protein samples and dynamics information on the microsecond timescale.

  5. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function

    PubMed Central

    Abud, Edsel M.; Lakatos, Anita; Karimzadeh, Alborz; Yeung, Stephen T.; Davtyan, Hayk; Fote, Gianna M.; Lau, Lydia; Weinger, Jason G.; Lane, Thomas E.; Inlay, Matthew A.; Poon, Wayne W.; Blurton-Jones, Mathew

    2016-01-01

    The innate immune system is strongly implicated in the pathogenesis of Alzheimer’s disease (AD). In contrast, the role of adaptive immunity in AD remains largely unknown. However, numerous clinical trials are testing vaccination strategies for AD, suggesting that T and B cells play a pivotal role in this disease. To test the hypothesis that adaptive immunity influences AD pathogenesis, we generated an immune-deficient AD mouse model that lacks T, B, and natural killer (NK) cells. The resulting “Rag-5xfAD” mice exhibit a greater than twofold increase in β-amyloid (Aβ) pathology. Gene expression analysis of the brain implicates altered innate and adaptive immune pathways, including changes in cytokine/chemokine signaling and decreased Ig-mediated processes. Neuroinflammation is also greatly exacerbated in Rag-5xfAD mice as indicated by a shift in microglial phenotype, increased cytokine production, and reduced phagocytic capacity. In contrast, immune-intact 5xfAD mice exhibit elevated levels of nonamyloid reactive IgGs in association with microglia, and treatment of Rag-5xfAD mice or microglial cells with preimmune IgG enhances Aβ clearance. Last, we performed bone marrow transplantation studies in Rag-5xfAD mice, revealing that replacement of these missing adaptive immune populations can dramatically reduce AD pathology. Taken together, these data strongly suggest that adaptive immune cell populations play an important role in restraining AD pathology. In contrast, depletion of B cells and their appropriate activation by T cells leads to a loss of adaptive–innate immunity cross talk and accelerated disease progression. PMID:26884167

  6. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part V - Wing-Alone Tests and Effect of Modifications to the Vertical Fins, Speed Brakes, and Fuselage TED No. NACA DE308. Part V; Wing-Alone Tests and Effect of Modifications to the Vertical Fins, Speed Brakes, and Fuselage, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kuhri, Richard E.; Myers, Boyd C., II

    1947-01-01

    Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The wing-alone tests and the effect of the various vertical-fin modifications, speed-brake modifications, and fuselage modifications on the aerodynamic characteristics in pitch and yaw are presented in the present paper with a limited analysis of the results. Also included are tuft studies of the flow for some of the modifications tested.

  7. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated Nickel-Titanium instruments.

    PubMed

    Zhao, D; Shen, Y; Peng, B; Haapasalo, M

    2016-10-01

    To compare the cyclic fatigue resistance of HyFlex CM, Twisted Files (TF), K3XF, Race, and K3, and evaluate the effect of autoclave sterilization on the cyclic fatigue resistance of these instruments both before and after the files were cycled. Five types of NiTi instruments with similar size 30, .06 taper were selected: HyFlex CM, TF, K3XF, Race and K3. Files were tested in a simulated canal with a curvature of 60° and a radius of 3 mm. The number of cycles to failure of each instrument was determined to evaluate cyclic fatigue resistance. Each type of instruments was randomly divided into four experimental groups: group 1 (n = 20), unsterilized instruments; group 2 (n = 20), pre-sterilized instruments subjected to 10 cycles of autoclave sterilization; group 3 (n = 20), instruments tested were sterilized at 25%, 50% and 75% of the mean cycles to failure as determined in group 1, and then cycled to failure; group 4 (n = 20), instruments cycled in the same manner as group 3 but without sterilization. The fracture surfaces of instruments were examined by scanning electron microscopy (SEM). HyFlex CM, TF and K3XF had significantly higher cyclic fatigue resistance than Race and K3 in the unsterilized group 1 (P < 0.05). Autoclave sterilization significantly increased the MCF of HyFlex CM and K3XF (P < 0.05) both before and after the files were cycled. SEM examination revealed a typical pattern of cyclic fatigue fracture in all instruments. HyFlex CM, TF and K3XF instruments composed of new thermal-treated alloy were more resistant to fatigue failure than Race and K3. Autoclaving extended the cyclic fatigue life of HyFlex CM and K3XF. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. Charmed hadron production in pp collision

    NASA Astrophysics Data System (ADS)

    Goswami, Umananda Dev

    2007-10-01

    We investigated the production of charmed hadrons ( D+, D-, D0, D, Λc+, Λ¯c-) in pp collisions as a function of √{s}, xF, p⊥2 and p⊥ in the framework of the QGSJET model. The study of charmed hadron production characteristics in pp collision is particularly important for cosmic ray physics in the context of atmospheric prompt lepton fluxes. Here our aim is to check the reliability of the QGSJET model to be used to study the production of charmed hadrons in cosmic ray hadronic interactions with air nuclei. Charmed hadroproduction cross sections or the charmed hadron average multiplicities in pp collisions are relatively very small. The maximum production of all charmed hadrons takes place with low values of xF, p⊥2, and p⊥ within a small range for all values of √{s} under study. Charmed hadroproduction cross sections as a function of xF and p⊥2 are compared with the LEBC-EHS and LEBC-MPS experiment data for D-meson production. The agreement is quite satisfactory for smaller values of p⊥2 (⩽2 (GeV/c) 2). There is an asymmetry in charmed hadroproduction in pp collision. For all xF, asymmetry is prominent in the low value of √{s}. There is a strong preference for producing Λc+ rather than Λ¯c-baryons, while that for producing D¯ rather than D-mesons for this range of √{s}. Asymmetry increases from zero to ±1 around xF = 0.3 for all values of √{s} and for all charmed hardron groups. The patterns of asymmetric production of different charmed hadrons with xF are approximately the same as that with √{s}. We compare our calculation with the data from Fermilab experiment E781 (SELEX) for Λc-baryon production. The agreement is quite good. The asymmetry of charmed hadroproduction with p⊥ does not follow any well defined pattern.

  9. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  10. Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions

    PubMed Central

    Mafra, Valéria; Kubo, Karen S.; Alves-Ferreira, Marcio; Ribeiro-Alves, Marcelo; Stuart, Rodrigo M.; Boava, Leonardo P.; Rodrigues, Carolina M.; Machado, Marcos A.

    2012-01-01

    Real-time reverse transcription PCR (RT-qPCR) has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus). We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family) and GAPC2 (GAPDH) was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin), TUB (tubulin) and CtP (cathepsin) were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein), GAPC2 and UPL7 (ubiquitin protein ligase 7) to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress. PMID:22347455

  11. Ohr plays a central role in bacterial responses against fatty acid hydroperoxides and peroxynitrite

    PubMed Central

    Alegria, Thiago G. P.; Hugo, Martín; Trujillo, Madia; de Oliveira, Marcos Antonio; Miyamoto, Sayuri; Queiroz, Raphael F.; Valadares, Napoleão Fonseca; Garratt, Richard C.; Radi, Rafael; Di Mascio, Paolo; Augusto, Ohara

    2017-01-01

    Organic hydroperoxide resistance (Ohr) enzymes are unique Cys-based, lipoyl-dependent peroxidases. Here, we investigated the involvement of Ohr in bacterial responses toward distinct hydroperoxides. In silico results indicated that fatty acid (but not cholesterol) hydroperoxides docked well into the active site of Ohr from Xylella fastidiosa and were efficiently reduced by the recombinant enzyme as assessed by a lipoamide-lipoamide dehydrogenase–coupled assay. Indeed, the rate constants between Ohr and several fatty acid hydroperoxides were in the 107–108 M−1⋅s−1 range as determined by a competition assay developed here. Reduction of peroxynitrite by Ohr was also determined to be in the order of 107 M−1⋅s−1 at pH 7.4 through two independent competition assays. A similar trend was observed when studying the sensitivities of a ∆ohr mutant of Pseudomonas aeruginosa toward different hydroperoxides. Fatty acid hydroperoxides, which are readily solubilized by bacterial surfactants, killed the ∆ohr strain most efficiently. In contrast, both wild-type and mutant strains deficient for peroxiredoxins and glutathione peroxidases were equally sensitive to fatty acid hydroperoxides. Ohr also appeared to play a central role in the peroxynitrite response, because the ∆ohr mutant was more sensitive than wild type to 3-morpholinosydnonimine hydrochloride (SIN-1 , a peroxynitrite generator). In the case of H2O2 insult, cells treated with 3-amino-1,2,4-triazole (a catalase inhibitor) were the most sensitive. Furthermore, fatty acid hydroperoxide and SIN-1 both induced Ohr expression in the wild-type strain. In conclusion, Ohr plays a central role in modulating the levels of fatty acid hydroperoxides and peroxynitrite, both of which are involved in host–pathogen interactions. PMID:28028230

  12. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    PubMed

    Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J

    2008-01-01

    Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or

  13. Asymmetry Studies in the Production of $$\\Lambda^0/\\bar \\Lambda^0$$, $$\\Xi^-/\\bar{\\Xi}^+$$ and $$\\Omega^-/\\bar{\\Omega}^+$$ Hyperons in 500 GeV/c $$\\pi^-$$ - Nucleon Interactions (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano Salinas, Carlos Javier

    Using data from fprmilab fixed-target experiment E791, we have measmed for the first time particle/antiparticle production asymmetries formore » $$\\Lambda^0 \\Xi^-$$ and $$\\Omega^-$$ hyperons in $$\\pi^-$$nucleon interactions at 500 GeV /c as joint functions of $$x_F$$ and $$p^2_{\\tau}$$ over the ranges $$-0.12 \\le x_F \\le 0.12$$ and $$0 \\le p^2_{\\tau} \\le 4 (GeV/c)^2$$. There is now direct evidence of a basic asymmetry, even at $$x_F$$ = 0.0, which may be due to associated production. In addition, there are leading-particle-type effects which are qualitativrly like what one would expect from rrcmnbination models or their alternatives. WP used the Dnal Parton Model (DPM) to cakulate the asymmetry for the $$\\Lambda^0$$ and compared with the Lund model (PYTHIA /JETSET) predictions and with om experimental results.« less

  14. A comparative evaluation of the increase in root canal surface area and canal transportation in curved root canals by three rotary systems: A cone-beam computed tomographic study

    PubMed Central

    Prasanthi, Nalam NVD; Rambabu, Tanikonda; Sajjan, Girija S; Varma, K Madhu; Satish, R Kalyan; Padmaja, M

    2016-01-01

    Aim: The aim of this study was to measure the increase in root canal surface area and canal transportation after biomechanical preparation at 1, 3, and 5 mm short of the apex with three different rotary systems in both continuous rotary and reciprocating rotary motions. Materials and Methods: Sixty freshly extracted human mandibular molars with mesial root canal curvatures between 20° and 30° were included in the study. Teeth were randomly distributed into three groups (n = 20). Biomechanical preparations were done in all the mesial canals. In Group 1, instrumentation was done with ProTaper universal rotary files, Group 2, with K3XF rotary files, and Group 3, with LSX rotary files. Each group was further subdivided into subgroups A and B (n = 10) where instrumentation was done by continuous rotary and reciprocating rotary techniques, respectively. Increase in root canal surface area and canal transportation was measured using the preoperative and postoperative cone-beam computed tomography scans. Statistical Analysis: The data were analyzed by one-way ANOVA followed by Tukey pairwise multiple comparison tests. Results: Increase in root canal surface area was significantly more (P < 0.05) in ProTaper and K3XF groups when compared to LSX group. Canal transportation was significantly more (P < 0.05) in ProTaper group when compared to K3XF and LSX groups. There was no significant difference (P > 0.05) in increase of root canal surface area and canal transportation between continuous rotary and reciprocating rotary techniques for ProTaper Universal, K3XF and LSX groups. Conclusion: LSX rotary system showed minimal increase of root canal surface area and minimal canal transportation when compared to ProTaper and K3XF rotary systems. PMID:27656062

  15. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    PubMed

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping.

  16. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells

    PubMed Central

    Nakagawa, Masato; Taniguchi, Yukimasa; Senda, Sho; Takizawa, Nanako; Ichisaka, Tomoko; Asano, Kanako; Morizane, Asuka; Doi, Daisuke; Takahashi, Jun; Nishizawa, Masatoshi; Yoshida, Yoshinori; Toyoda, Taro; Osafune, Kenji; Sekiguchi, Kiyotoshi; Yamanaka, Shinya

    2014-01-01

    In order to apply human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) to regenerative medicine, the cells should be produced under restricted conditions conforming to GMP guidelines. Since the conventional culture system has some issues that need to be addressed to achieve this goal, we developed a novel culture system. We found that recombinant laminin-511 E8 fragments are useful matrices for maintaining hESCs and hiPSCs when used in combination with a completely xeno-free (Xf) medium, StemFit™. Using this system, hESCs and hiPSCs can be easily and stably passaged by dissociating the cells into single cells for long periods, without any karyotype abnormalities. Human iPSCs could be generated under feeder-free (Ff) and Xf culture systems from human primary fibroblasts and blood cells, and they possessed differentiation abilities. These results indicate that hiPSCs can be generated and maintained under this novel Ff and Xf culture system. PMID:24399248

  17. Longitudinal Stability and Control Characteristics of a Semispan Model of the XF7U-1 Tailless Airplane at Transonic Speeds by the NACA Wing-Flow Method, TED No. NACA DE307

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Trant, James P., Jr.

    1947-01-01

    An investigation was made by the NACA wing-flow method to determine the longitudinal stability and control characteristics at transonic speeds of a semispan model of the XF7U-1 tailless airplane. The 25-percent chord line of the wing of the model was swept back 35 deg. The airfoil sections of the wing perpendicular to the 25-percent chord line were 12 percent thick. Measurements were made of the normal force and pitching moment through an angle-of-attack range from about -3 deg to 14 deg for several ailavator deflections at Mach numbers from 0.65 to about 1.08. The results of the tests indicated no adverse effects of compressibility up to a Mach number of at least 0.85 at low normal-force coefficients and small ailavator deflections. Up to a Mach number of 0.85, the neutral point at low normal-force coefficients was at about 25 percent of the mean aerodynamic chord and moved rearward irregularly to 41 or 42 percent with a further increase in Mach number to about 1.05. For deflections up to -8.0 percent, the ailavator was effective in changing the pitching moment except at Mach numbers from 0.93 to about 1.0 where ineffectiveness or reversal was indicated for deflections and normal-force coefficients. With -13.2 deg deflection at normal-force coefficients above about 0.3, reversal of ailavator effectiveness occurred at Mach numbers as low as 0.81. A nose-down trim change, which began at a Mach number of about 0.85, together with the loss in effectiveness of the ailavator, indicated that with increase in the Mach number from about 0.95 to 1.05 an abrupt ailavator movement of 5 deg or 6 deg first up and then down would be required to maintain level flight.

  18. The Effects of Horizontal-Tail Location and Wing Modifications on the High-Speed Stability and Control Characteristics of a 01.17-Scale Model of the McDonnell XF2H-1 Airplane (TED No, NACA DE336)

    NASA Technical Reports Server (NTRS)

    Emerson, Horace F.; Axelson, John A.

    1949-01-01

    An additional series of high-speed wind-tunnel tests of a modified 0.17-scale model of the McDonnell XF2H-1 airplane was conducted to evaluate the effects of a reduction in the thickness-to-chord ratios of the tail planes, the displacement of the horizontal tail relative to the vertical tail, and the extension of the trailing edge of the wing. Two tail-intersection fairings designed to improve the flow at the tail were also tested. The pitching-moment characteristics of the model were improved slightly by the use of the thinner tail sections. Rearward or rearward and downward displacements of the horizontal tail increased the critical Mach number at the tail intersection from 0.725 to a maximum of 0.80, but caused an excessive change in pitching-moment coefficient at the higher Mach numbers. Extending the trailing edge of the wing did not improve the static longitudinal-stability characteristics, but increased the pitching-down tendency between 0.725 and 0.825 Mach numbers prior to the pitching-up tendency. The extended wing did, however, increase the Mach numbers at which these tendencies occurred. The increase in the Mach numbers of divergence and the tuft studies indicate a probable increase in the buffet limit of the prototype airplane. No perceptible improvement of flow at the tail intersection was observed with the two fairings tested on the forward tail configuration.

  19. McDonald XP-85 Airplane in 40x80 foot Wind Tunnel.

    NASA Image and Video Library

    1948-04-08

    Front View of McDonald XP-85 Plan Model. Parasite Airplane designed to be carried in the B-36 bombay (never built) At the time it was the smallest Jet powered airplane. The McDonnell XF-85 Goblin was an American prototype fighter aircraft conceived during World War II by McDonnell Aircraft. It was intended to be deployed from the bomb bay of the giant Convair B-36 bomber as a parasite fighter. The XF-85's intended role was to defend bombers from hostile interceptor aircraft, a need demonstrated during World War II

  20. Strangeness production in deep-inelastic positron-proton scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Di Nezza, P.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Fahr, A. B.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieseer, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Hadig, T.; Haidt, D.; Haiduk, L.; Hampel, M.; Haynes, W. J.; Heinzelmann, G.; Henderson, R. C. M.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Lander, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Megliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, M.; Müller, M.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riech, V.; Riedlberger, J.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration

    1996-02-01

    Measurements of K0 meson and Λ baryon production in deep-inelastic positron-proton scattering (DIS) are presented in the kinematic range 10 < Q2 < 70 GeV 2 and 10 -4 < x < 10 -2. The measurements, obtained using the H1 detector at the HEPA collider, are discussed in the light of possible mechanisms for increased strangeness production at low Bjorken- x. Comparisons of the xF spectra, where xF is the fractional longitudinal momentum in the hadronic centre-of-mass frame, are made with results from electron-positron annihilation. The xF spectra and the K0 "seagull" plot are compared with previous DIS results. The mean K0 and Λ multiplicities are studied as a function of the centre-of-mass energy W and are observed to be consistent with a logarithmic increase with W when compared with previous measurements. A comparison of strangeness production in diffractive and non-diffractive DIS is made. An upper limit of 0.9 nb, at the 95% confidence level, is placed on the cross section for QCD instanton induced events.