Sample records for xylenol gel dosimetry

  1. Study of the absorption spectra of Fricke Xylenol Orange gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, Grazia; Artuso, Emanuele; Liosi, Giulia Maria

    2015-07-01

    A systematic study of the absorption spectra of Fricke Xylenol Orange gel dosimeters has been performed, in the wavelength range from 300 nm to 700 nm. The spectrum of Xylenol Orange (without ferrous sulphate solution) has been achieved, in order to subtract its contribution from the absorption spectra of the irradiated Fricke Xylenol Orange gel dosimeters. The absorbance due to ferric ions chelated by Xylenol Orange has been studied for various irradiation doses. Two absorbance peaks are visible, mainly at low doses: the first peak increases with the dose more slowly than the second one. This effect can explain themore » apparent threshold dose that was frequently evidenced. (authors)« less

  2. Integration of Fricke gel dosimetry with Ag nanoparticles for experimental dose enhancement determination in theranostics.

    PubMed

    Vedelago, J; Mattea, F; Valente, M

    2018-03-01

    The use and implementation of nanoparticles in medicine has grown exponentially in the last twenty years. Their main applications include drug delivery, theranostics, tissue engineering and magneto function. Dosimetry techniques can take advantage of inorganic nanoparticles properties and their combination with gel dosimetry techniques could be used as a first step for their later inclusion in radio-diagnostics or radiotherapy treatments. The present study presents preliminary results of properly synthesized and purified silver nanoparticles integration with Fricke gel dosimeters. Used nanoparticles presented mean sizes ranging from 2 to 20 nm, with a lognormal distribution. Xylenol orange concentration in Fricke gel dosimeter was adjust in order to allow sample's optical readout, accounting nanoparticles plasmon. Dose enhancement was assessed irradiating dosimeters setting X-ray beams energies below and above silver K-edge. Monte Carlo simulations were used to estimate the dose enhancement in the experiments and compare with the trend obtained in the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  4. Fricke-gel dosimeter: overview of Xylenol Orange chemical behavior

    NASA Astrophysics Data System (ADS)

    Liosi, G. M.; Dondi, D.; Vander Griend, D. A.; Lazzaroni, S.; D'Agostino, G.; Mariani, M.

    2017-11-01

    The complexation between Xylenol Orange (XO) and Fe3+ ions plays a key role in Fricke-gel dosimeters for the determination of the absorbed dose via UV-vis analysis. In this study, the effect of XO and the acidity of the solution on the complexation mechanism was investigated. Moreover, starting from the results of complexation titration and Equilibrium Restricted Factor Analysis, four XO-Fe3+ complexes were identified to contribute to the absorption spectra. Based on the acquired knowledge, a new [Fe3+] vs dose calibration method is proposed. The preliminary results show a significant improvement of the sensitivity and dose threshold with respect to the commonly used Abs vs dose calibration method.

  5. The effect of mixed dopants on the stability of Fricke gel dosimeters

    NASA Astrophysics Data System (ADS)

    Penev, K.; Mequanint, K.

    2013-06-01

    Auto-oxidation and fast diffusion in Fricke gels are major drawbacks to wide-spread application of these gels in 3D dosimetry. Aiming to limit both processes, we used mixed dopants: the ferric-specific ligand xylenol orange with a ferrous-specific ligand (1,10-phenanthroline) and/or a bi-functional cross-linking agent (glyoxal). Markedly improved auto-oxidation stability was observed in the xylenol orange and phenanthroline doped gel at the expense of increased background absorbance and faster diffusion. Addition of glyoxal limited the diffusion rate and led to a partial bleaching of the gel. It is conceivable that these two new compositions may find useful practical application.

  6. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  7. Can a commercial gel dosimetry system be used to verify stereotactic spinal radiotherapy treatment dose distributions?

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Asena, A.; Crowe, S. B.; Livingstone, A.; Papworth, D.; Smith, S.; Sutherland, B.; Sylvander, S.; Franich, R. D.; Trapp, J. V.

    2017-05-01

    This study investigated the use of the TruView xylenol-orange-based gel and VISTA optical CT scanner (both by Modus Medical Inc, London, Canada), for use in verifying the accuracy of planned dose distributions for hypo-fractionated (stereotactic) vertebral treatments. Gel measurements were carried out using three stereotactic vertebral treatments and compared with planned doses calculated using the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) as well as with film measurements made using Gafchromic EBT3 film (Ashland Inc, Covington, USA), to investigate the accuracy of the gel system. The gel was calibrated with reference to a moderate-dose gradient region in one of the gel samples. Generally, the gel measurements were able to approximate the close agreement between the doses calculated by the treatment planning system and the doses measured using film (which agreed with each other within 2%), despite lower resolution and bit depth. Poorer agreement was observed when the dose delivered to the gel exceeded the range of doses delivered in the calibration region. This commercial gel dosimetry system may be used to verify hypo-fractionated treatments of vertebral targets, although separate gel calibration measurements are recommended.

  8. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  9. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  10. Technical Note: Preliminary investigations into the use of a functionalised polymer to reduce diffusion in Fricke gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S. T., E-mail: s164.smith@qut.edu.au; Masters, K.-S.; Hosokawa, K.

    2015-12-15

    Purpose: A modification of the existing PVA-FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe{sup 3+} diffusion. Methods: The chelating agent, xylenol orange, was chemically bonded to the gelling agent, polyvinyl alcohol (PVA) to create xylenol orange functionalised PVA (XO-PVA). A gel was created from the XO-PVA (20% w/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM). Results: This resulted in an optical density dose sensitivity of 0.014 Gy{sup −1}, an auto-oxidation rate of 0.0005 h{sup −1}, and a diffusion rate of 0.129 mm{sup 2}more » h{sup −1}; an 8% reduction compared to the original PVA-FX gel, which in practical terms adds approximately 1 h to the time span between irradiation and accurate read-out. Conclusions: Because this initial method of chemically bonding xylenol orange to polyvinyl alcohol has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alcohol with xylenol orange must be developed for this system to gain clinical relevance.« less

  11. Three-dimensional dosimetry of small megavoltage radiation fields using radiochromic gels and optical CT scanning

    NASA Astrophysics Data System (ADS)

    Babic, Steven; McNiven, Andrea; Battista, Jerry; Jordan, Kevin

    2009-04-01

    The dosimetry of small fields as used in stereotactic radiotherapy, radiosurgery and intensity-modulated radiation therapy can be challenging and inaccurate due to partial volume averaging effects and possible disruption of charged particle equilibrium. Consequently, there exists a need for an integrating, tissue equivalent dosimeter with high spatial resolution to avoid perturbing the radiation beam and artificially broadening the measured beam penumbra. In this work, radiochromic ferrous xylenol-orange (FX) and leuco crystal violet (LCV) micelle gels were used to measure relative dose factors (RDFs), percent depth dose profiles and relative lateral beam profiles of 6 MV x-ray pencil beams of diameter 28.1, 9.8 and 4.9 mm. The pencil beams were produced via stereotactic collimators mounted on a Varian 2100 EX linear accelerator. The gels were read using optical computed tomography (CT). Data sets were compared quantitatively with dosimetric measurements made with radiographic (Kodak EDR2) and radiochromic (GAFChromic® EBT) film, respectively. Using a fast cone-beam optical CT scanner (Vista™), corrections for diffusion in the FX gel data yielded RDFs that were comparable to those obtained by minimally diffusing LCV gels. Considering EBT film-measured RDF data as reference, cone-beam CT-scanned LCV gel data, corrected for scattered stray light, were found to be in agreement within 0.5% and -0.6% for the 9.8 and 4.9 mm diameter fields, respectively. The validity of the scattered stray light correction was confirmed by general agreement with RDF data obtained from the same LCV gel read out with a laser CT scanner that is less prone to the acceptance of scattered stray light. Percent depth dose profiles and lateral beam profiles were found to agree within experimental error for the FX gel (corrected for diffusion), LCV gel (corrected for scattered stray light), and EBT and EDR2 films. The results from this study reveal that a three-dimensional dosimetry method

  12. Technical considerations for implementation of x-ray CT polymer gel dosimetry.

    PubMed

    Hilts, M; Jirasek, A; Duzenli, C

    2005-04-21

    Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.

  13. Dosimetry Evolution in Teletherapy: Polimer Gel

    NASA Astrophysics Data System (ADS)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  14. Introduction of a deformable x-ray CT polymer gel dosimetry system

    NASA Astrophysics Data System (ADS)

    Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.

    2018-04-01

    This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the

  15. NOTE: Investigating the potential of polymer gel dosimetry for interventional radiology: first results

    NASA Astrophysics Data System (ADS)

    Antoniou, P. E.; Bousbouras, P.; Sandaltzopoulos, R.; Kaldoudi, E.

    2008-04-01

    Complex interventional radiology (IR) procedures contribute an increasing percentage of the overall medical radiation exposure of the population making accurate dosimetry a challenge. Magnetic resonance (MR) based polymer gel dosimetry has been widely employed in complex dosimetric problems in radiotherapy. The aim of this note is to investigate the feasibility of normoxic gel dosimetry in IR. Dose response, energy dependence and dose rate dependence were investigated in irradiation set-ups relevant to IR for a particular normoxic gel, based on methacrylic acid (MAA) as the monomer and including tetrakis-hydroxy-methyl-phosphonium chloride (THPC) as antioxidant. The gel presents a linear dose response beyond a 25 cGy threshold. No significant energy dependence was observed in the useful range of interventional radiology (80-110 kVp). A linear correlation between the gel response and dose rate was observed in the range of dose rates relevant to IR (5-8 cGy min-1). These results demonstrate a reduction of gel sensitivity at very low dose rate levels. A possible explanation of this effect is suggested.

  16. Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations

    PubMed Central

    Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza

    2014-01-01

    Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829

  17. SU-F-BRA-11: An Experimental Commissioning Test of Brachytherapy MBDCA Dosimetry, Based On a Commercial Radiochromic Gel/optical CT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, E; Karaiskos, P; Zourari, K

    2015-06-15

    Purpose: To implement a 3D dose verification procedure of Model-Based Dose Calculation Algorithms (MBDCAs) for {sup 192}Ir HDR brachytherapy, based on a novel Ferrous Xylenol-orange gel (FXG) and optical CT read-out. Methods: The TruView gel was employed for absolute dosimetry in conjunction with cone-beam optical CT read-out with the VISTA scanner (both from Modus Medical Inc, London, ON, Canada). A multi-catheter skin flap was attached to a cylindrical PETE jar (d=9.6cm, h=16cm) filled with FXG, which served as both the dosimeter and the water equivalent phantom of bounded dimensions. X- ray CT image series of the jar with flap attachedmore » was imported to Oncentra Brachy v.4.5. A treatment plan consisting of 8 catheters and 56 dwell positions was generated, and Oncentra-ACE MBDCA as well as TG43 dose results were exported for further evaluation. The irradiation was carried out with a microSelecton v2 source. The FXG dose-response, measured via an electron irradiation of a second dosimeter from the same batch, was linear (R2>0.999) at least up to 12Gy. A MCNP6 input file was prepared from the DICOM-RT plan data using BrachyGuide to facilitate Monte Carlo (MC) simulation dosimetry in the actual experimental geometry. Agreement between experimental (reference) and calculated dose distributions was evaluated using the 3D gamma index (GI) method with criteria (5%-2mm applied locally) determined from uncertainty analysis. Results: The TG-43 GI failed, as expected, in the majority of voxels away from the flap (pass rate 59% for D>0.8Gy, corresponding to 10% of prescribed dose). ACE performed significantly better (corresponding pass rate 92%). The GI evaluation for the MC data (corresponding pass rate 97%) failed mainly at low dose points of increased uncertainty. Conclusion: FXG gel/optical CT is an efficient method for level-2 commissioning of brachytherapy MBDCAs. Target dosimetry is not affected from uncertainty introduced by TG43 assumptions in 192Ir skin

  18. MAGIC-f Gel in Nuclear Medicine Dosimetry: study in an external beam of Iodine-131

    NASA Astrophysics Data System (ADS)

    Schwarcke, M.; Marques, T.; Garrido, C.; Nicolucci, P.; Baffa, O.

    2010-11-01

    MAGIC-f gel applicability in Nuclear Medicine dosimetry was investigated by exposure to a 131I source. Calibration was made to provide known absorbed doses in different positions around the source. The absorbed dose in gel was compared with a Monte Carlo Simulation using PENELOPE code and a thermoluminescent dosimetry (TLD). Using MRI analysis for the gel a R2-dose sensitivity of 0.23 s-1Gy-1was obtained. The agreement between dose-distance curves obtained with Monte Carlo simulation and TLD was better than 97% and for MAGIC-f and TLD was better than 98%. The results show the potential of polymer gel for application in nuclear medicine where three dimensional dose distribution is demanded.

  19. Trends in gel dosimetry: Preliminary bibliometric overview of active growth areas, research trends and hot topics from Gore’s 1984 paper onwards

    NASA Astrophysics Data System (ADS)

    Baldock, C.

    2017-05-01

    John Gore’s seminal 1984 paper on gel dosimetry spawned a vibrant research field ranging from fundamental science through to clinical applications. A preliminary bibliometric study was undertaken of the gel dosimetry family of publications inspired by, and resulting from, Gore’s original 1984 paper to determine active growth areas, research trends and hot topics from Gore’s paper up to and including 2016. Themes and trends of the gel dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for all relevant papers from 1984 to 2016. Visualisation of similarities was used by way of the VOSviewer visualisation tool to generate cluster maps of gel dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics in gel dosimetry.

  20. Poster - Thur Eve - 69: Electron beam dosimetry in heterogeneous phantoms using the MAGIC normoxic polymer gel.

    PubMed

    Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A

    2012-07-01

    Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An

  1. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the

  2. Radiological properties of MAGIC normoxic polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Aljamal, M.; Zakaria, A.; Shamsuddin, S.

    2013-04-01

    For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.

  3. Feasibility of CBCT dosimetry for IMRT using a normoxic polymethacrylic-acid gel dosimeter

    NASA Astrophysics Data System (ADS)

    Bong, Ji Hye; Kwon, Soo-Il; Kim, Kum Bae; Kim, Mi Suk; Jung, Hai Jo; Ji, Young Hoon; Ko, In Ok; Park, Ji Ae; Kim, Kyeong Min

    2013-09-01

    The purpose of this study is to evaluate the availability of cone-beam computed tomography(CBCT) for gel dosimetry. The absorbed dose was analyzed by using intensity-modulated radiation therapy(IMRT) to irradiate several tumor shapes with a calculated dose and several tumor acquiring images with CBCT in order to verify the possibility of reading a dose on the polymer gel dosimeter by means of the CBCT image. The results were compared with those obtained using magnetic resonance imaging(MRI) and CT. The linear correlation coefficients at doses less than 10 Gy for the polymer gel dosimeter were 0.967, 0.933 and 0.985 for MRI, CT and CBCT, respectively. The dose profile was symmetric on the basis of the vertical axis in a circular shape, and the uniformity was 2.50% for the MRI and 8.73% for both the CT and the CBCT. In addition, the gradient in the MR image of the gel dosimeter irradiated in an H shape was 109.88 while the gradients of the CT and the CBCT were 71.95 and 14.62, respectively. Based on better image quality, the present study showed that CBCT dosimetry for IMRT could be restrictively performed using a normoxic polymethacrylic-acid gel dosimeter.

  4. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.

    PubMed

    Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood

    2016-01-01

    Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.

  5. Initial Characterization of a Gel Patch Dosimeter for In Vivo Dosimetry

    PubMed Central

    Matrosic, C; Culberson, W; Rosen, B; Madsen, E; Frank, G; Bednarz, B

    2016-01-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6%T normoxic polyacrylamide gel, was injected into 1-cm thick acrylic molds to create 1-cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose response of all three batches of gel was found to be linear within the range of 2–20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  6. Initial characterization of a gel patch dosimeter for in vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Matrosic, C.; Culberson, W.; Rosen, B.; Madsen, E.; Frank, G.; Bednarz, B.

    2016-05-01

    In vivo dosimetry is a greatly underutilized tool for patient safety in clinical external beam radiotherapy treatments, despite being recommended by several national and international organizations (AAPM, ICRU, IAEA, NACP). The reasons for this underutilization mostly relate to the feasibility and cost of in vivo dosimetry methods. Due to the increase in the number of beam angles and dose per fraction in modern treatments, there is a compelling need for a novel dosimeter that is robust and affordable while able to operate properly in these complex conditions. This work presents a gel patch dosimeter as a novel method of in vivo dosimetry. DEFGEL, a 6% T normoxic polyacrylamide gel, was injected into 1 cm thick acrylic molds to create 1 cm thick small cylindrical patch dosimeters. To evaluate the change in optical density due to radiation induced polymerization, dosimeters were scanned before and after irradiation using an in-house developed laser densitometer. The dose-responses of three separate batches of gel were evaluated and compared to check for linearity and repeatability. The response development time was evaluated to ensure that the patch dosimeter could be high throughput. Additionally, the potential of this system to be used as an in vivo dosimeter was tested with a clinically relevant end-to-end in vivo phantom test. All irradiations were performed with a Varian Clinac 21EX at the University of Wisconsin Medical Radiation Research Center (UWMRRC). The dose-response of all three batches of gel was found to be linear within the range of 2-20 Gy. At doses below 0.5 Gy the statistical uncertainties were prohibitively large to make quantitative assessments of the results. The three batches demonstrated good repeatability in the range of 2 Gy to up to 10 Gy, with only slight variations in response at higher doses. For low doses the dosimeter fully developed within an hour while at higher doses they fully developed within four hours. During the in vivo

  7. Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Hayashi, Shin-ichiro; Sakurai, Yoshinori; Uchida, Ryohei; Suzuki, Minoru; Usui, Shuji; Tominaga, Takahiro

    2015-01-01

    MAGAT gel dosimeter with boron is irradiated in Heavy Water Neutron Irradiation Facility (HWNIF) of Kyoto University Research Reactor (KUR). The cylindrical gel phantoms are exposed to neutron beams of three different energy spectra (thermal neutron rich, epithermal and fast neutron rich and the mixed modes) in air. Preliminary results corresponding to depth-dose responses are obtained as the transverse relaxation rate (R2=1/T2) from magnetic resonance imaging data. As the results MAGAT gel dosimeter has the higher sensitivity on thermal neutron than on epi-thermal and fast neutron, and the gel with boron showed an enhancement and a change in the depth-R2 response explicitly. From these results, it is suggested that MAGAT gel dosimeter can be an effective tool in BNCT dosimetry.

  8. Design and Construction of an Optical Computed Tomography Scanner for Polymer Gel Dosimetry Application

    PubMed Central

    Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid

    2014-01-01

    Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377

  9. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  10. Identification of oxidative coupling products of xylenols arising from laboratory-scale phytoremediation.

    PubMed

    Poerschmann, J; Schultze-Nobre, L; Ebert, R U; Górecki, T

    2015-01-01

    Oxidative coupling reactions take place during the passage of xylenols through a laboratory-scale helophyte-based constructed wetland system. Typical coupling product groups including tetramethyl-[1,1'-biphenyl] diols and tetramethyl diphenylether monools as stable organic intermediates could be identified by a combination of pre-chromatographic derivatization and GC/MS analysis. Structural assignment of individual analytes was performed by an increment system developed by Zenkevich to pre-calculate retention sequences. The most abundant analyte turned out to be 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diol, which can be formed by a combination of radicals based on 2,6-xylenol or by an attack of a 2,6-xylenol-based radical on 2,6-xylenol. Organic intermediates originating from oxidative coupling could also be identified in anaerobic constructed wetland systems. This finding suggested the presence of (at least partly) oxic conditions in the rhizosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. SU-E-T-145: MRI Gel Dosimetry Applied to Dose Profile Determination for 50kV X-Ray Tube.

    PubMed

    Schwarcke, M; Marques, T; Nicolucci, P; Filho, O Baffa

    2012-06-01

    The aim of this study was to use MRI gel dosimetry to determine the dose profile of 50kV MAGNUM® X-ray tube, MOXTEK Inc., in order to calibrate small solid dosimeters of alanine, tooth enamel and LiF-TLDs, commonly used in clinical quality assurance and datation dosimetry. MAGIC-f polymer gel was kept in two plastic containers of 100mL, avoiding attenuation of the primary beam trough the wall. Beam aberture of 3mm and dose rate of 16.5Gy/min were set, reproducing irradiation conditions of interest. The dose rate was assumed based on data of the vendor information of the tube and dose of 30Gy was delivered at the surface of the gel. MAGIC-f gel was irradiated at source-surface distances(SSD) of 0.1cm and 1.0cm. After 24hours of irradiation, gel was scanned in an Achieva® 3T Philips® MRI tomography using relaxometry sequence with 32 Echos, Time-to-Echo(TE) of 15.0ms, Time-to-Repetition(TR) of 6000ms and Field-of-View(FOV) of 0.5×0.5×2.0mm. Dose map at the central plain of irradiation was calculated from T2 relaxometry map. The gel dosimetry results evidenced a build-up depth of 0.13cm for SSD=0.1cm and no build-up was detected for SSD=1.0cm. However, the dose profile evidenced high gradient of dose in SSD=0.1, decreasing the dose from 100% to 30% in 1.4cm depth inside the gel; In turn, the dose distribution is homogeneous after 0.4cm deth for SSD=1.0cm. MRI gel dosimetry using MAGIC-f presented as feasible technique to determine dose profiles for kilovoltage x-rays tubes. The results evidenced that the calibration of small solid dosimeters can be performed using SSD of 1.0cm in the 50kV MAGNUM® X-ray tube using 0.4cm/g/cm 3 filter. This work was funded supported by CNPQ, CAPES and FAPESP. © 2012 American Association of Physicists in Medicine.

  12. SU-E-T-606: Performance of MR-Based 3D FXG Dosimetry for Preclinical Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, M; Jaffray, D; Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON

    Purpose: Technological advances have revolutionized preclinical radiation research to enable precise radiation delivery in preclinical models. Kilovoltage x-rays and complex geometries in preclinical radiation studies challenge conventional dosimetry methods. Previously developed gel-based dosimetry provides a viable means of accommodating complex geometries and accurately reporting dose at kV energies. This paper will describe the development and evaluation of gel-based ferrous xylenol-orange (FXG) dosimetry using a 7T preclinical imaging system. Methods: To confirm water equivalence, Zeff values were calculated for the FXG material, water and ICRU defined soft tissue. Proton T1 relaxivity response in FXG was measured using a preclinical 7T MRmore » and a small animal irradiator for a dose range of 1–22 Gy. FXG was contained in 50 ml centrifuge tubes and irradiated with a 225 kVp x-ray beam at a nominal dose rate of 2.3 Gy/min. Pre and post irradiation maps of the T1 relaxivity were collected using variable TR spin-echo imaging (TE 6.65 ms; TR 500, 750, 1000, 1500, 2000, 3000 and 5000 ms) with 2 mm thick slices, 0.325 mm/pixel, 3 averages and an acquisition time of 26 minutes. A linear fit to the change in relaxation rate (1/T1) for the delivered doses reported the gel sensitivity in units of ms{sup -1}Gy{sup -1}. Irradiation and imaging studies were repeated using three batches of gel over 72 hrs. Results: FXG has a Zeff of 3.8 for the 225 kVp spectrum used; differing from water and ICRU defined soft tissue by 0.5% and 2.5%, respectively. The average sensitivity for the FXG dosimeter was 31.5 ± 0.7 ms{sup -1}Gy{sup -1} (R{sup 2} = 0.9957) with a y-intercept of −29.4 ± 9.0 ms{sup -1}. Conclusion: Preliminary results for the FXG dosimeter properties, sensitivity, and dose linearity at preclinical energies is promising. Future work will explore anatomically relevant tissue inclusions to test MR performance. Student funding provided by The Terry Fox

  13. Initial experiments with gel-water: towards MRI-linac dosimetry and imaging.

    PubMed

    Alnaghy, Sarah J; Gargett, Maegan; Liney, Gary; Petasecca, Marco; Begg, Jarrad; Espinoza, Anthony; Newall, Matthew K; Duncan, Mitchell; Holloway, Lois; Lerch, Michael L F; Lazea, Mircea; Rosenfeld, Anatoly B; Metcalfe, Peter

    2016-12-01

    Tracking the position of a moving radiation detector in time and space during data acquisition can replicate 4D image-guided radiotherapy (4DIGRT). Magnetic resonance imaging (MRI)-linacs need MRI-visible detectors to achieve this, however, imaging solid phantoms is an issue. Hence, gel-water, a material that provides signal for MRI-visibility, and which will in future work, replace solid water for an MRI-linac 4DIGRT quality assurance tool, is discussed. MR and CT images of gel-water were acquired for visualisation and electron density verification. Characterisation of gel-water at 0 T was compared to Gammex-RMI solid water, using MagicPlate-512 (M512) and RMI Attix chamber; this included percentage depth dose, tissue-phantom ratio (TPR 20/10 ), tissue-maximum ratio (TMR), profiles, output factors, and a gamma analysis to investigate field penumbral differences. MR images of a non-powered detector in gel-water demonstrated detector visualisation. The CT-determined gel-water electron density agreed with the calculated value of 1.01. Gel-water depth dose data demonstrated a maximum deviation of 0.7% from solid water for M512 and 2.4% for the Attix chamber, and by 2.1% for TPR 20/10 and 1.0% for TMR. FWHM and output factor differences between materials were ≤0.3 and ≤1.4%. M512 data passed gamma analysis with 100% within 2%, 2 mm tolerance for multileaf collimator defined fields. Gel-water was shown to be tissue-equivalent for dosimetry and a feasible option to replace solid water.

  14. SU-F-T-565: Assessment of Dosimetric Accuracy for a 3D Gel-Based Dosimetry Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosen, B; Lam, K; Moran, J

    Purpose: To assess the 3D dosimetric accuracy when using a mail-in service for square and stereotactic fields in a clinical environment. Methods: The 3D dosimetry mail-in service (3DDaaS), offered by Modus QA (London, ON), was used to measure dose distributions from a 6 MV beam of a Varian Clinac. Plastic jars filled with radiosensitive ClearView™ gel were received, CT scanned (for registration and density information), irradiated, and then mailed back to the manufacturer for optical CT readout. Three square field irradiations (2×2, 4×4, and 10×10 cm{sup 2}) were performed with jars immobilized in a water tank, and a composite small-fieldmore » stereotactic delivery was performed using an in-air holder. Dosimetric properties of the gel were quantified within the 25–50 Gy dose range using 3D optical attenuation (OA) distributions provided by the manufacturer. OA was normalized to 100% at the position of isocenter, which received 40Gy. Percentage depth dose, profiles, and 3D gamma distributions (3%/1mm criteria) were calculated to quantify feasibility for relative dosimetry. Results: Mean CT-measured density in the central (3×3×3) cm{sup 3} gel region was 40 ± 3 HU, indicating good homogeneity and near-water-equivalence. Measured and calculated central axis doses agreed to within ±3% in the 25–50 Gy dose range. For the square field irradiations, dose profiles agreed to within 1mm. Gamma analysis of the composite irradiation yielded 99.8%, 91.4%, and 79.1% passing rates for regions receiving at least 10, 5, and 2 Gy, respectively, indicating feasibility for use in high-dose regions. Absolute response varied by up to 16% between jars, indicating limitations for absolute dosimetry under the mail-in conditions. Conclusion: 3DDaaS is a novel near-water-equivalent dosimetry system accurate to within 3% dose and 1mm 3D spatial resolution, and is straightforward to use in a clinical setting. Future investigations are warranted to improve dosimeter response in

  15. Laser microbeam CT scanning of dosimetry gels

    NASA Astrophysics Data System (ADS)

    Maryanski, Marek J.; Ranade, Manisha K.

    2001-06-01

    A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.

  16. Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry.

    PubMed

    Whitney, Heather M; Gochberg, Daniel F; Gore, John C

    2008-12-21

    The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.

  17. The application of polymer gel dosimeters to dosimetry for targeted radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gear, J. I.; Flux, G. D.; Charles-Edwards, E.; Partridge, M.; Cook, G.; Ott, R. J.

    2006-07-01

    irradiated gels. Curve fits to the calibration data followed a single exponential function. The correlation coefficients for internally and externally irradiated gels were 0.991 and 0.985, respectively. With the ability to accurately calibrate internally dosed polymer gels, this technology shows promise as a means to evaluate dosimetry methods, particularly in cases of non-uniform uptake of a radionuclide.

  18. SU-D-213-07: Initial Characterization of a Gel Patch Dosimeter for in Vivo Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matrosic, C; Culberson, W; Rosen, B

    Purpose: In vivo dosimetry, despite being the most direct method for monitoring the dose delivered during radiation therapy and being recommended by several national and international organizations (AAPM, ICRU, NACP), is underutilized in the clinic due to issues associated with dose sensitivity, feasibility, and cost. Given the increasing complexity of radiation therapy modern treatments, there is a compelling need for a robust, affordable in vivo dosimetry option. In this work we present the initial characterization of a novel gel patch in vivo dosimeter. Methods: DEFGEL (6%T) was used to make 1-cm thick small cylindrical patch dosimeters. The optical density ofmore » each dosimeter was read before and after irradiation by an in-house laser densitometer. The dosimeters were irradiated using a Varian Clinac EX linac. Three separate batches of gel patches were used to create dose response curves and evaluate repeatability. The development time of the dosimeter was also evaluated. Results: The dose response of the dosimeter was found to be linear from a range of approximately 1-Gy to 20-Gy, which is a larger window of linearity compared to other in vivo dosimeters. At doses below 1-Gy, the cumulative uncertainties were on the order of the measured data. When compared, the three batches demonstrated repeatability from 1-Gy to approximately 13-Gy, with some variation at higher doses. For doses of >8-Gy, the dosimeter reached full optical density after 4-hours, whereas low doses developed within an hour. Conclusion: Initial results indicate that the gel patch dosimeter is a reliable and simple way to measure a large range of doses, including high doses such as those delivered during hypofractionated treatments (e.g. SBRT or MR-guided radiotherapy). The simple fabrication method for the dosimeter and the use of a laser densitometer would allow for the dosimeter to used and read in-house, cheaply and easily.« less

  19. MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  20. 3D polymer gel dosimetry using a 3D (DESS) and a 2D MultiEcho SE (MESE) sequence

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos; Karolemeas, Kostantinos; Papadakis, Antonios E.; Zacharopoulou, Fotini; Papanikolaou, Nickolas; Gourtsoyiannis, Nicholas

    2006-12-01

    The utilization of 3D techniques in Magnetic Resonance Imaging data aquisition and post-processing analysis is a prerequisite especially when modern radiotherapy techniques (conformal RT, IMRT, Stereotactic RT) are to be used. The aim of this work is to compare a 3D Double Echo Steady State (DESS) and a 2D Multiple Echo Spin Echo (MESE) sequence in 3D MRI radiation dosimetry using two different MRI scanners and utilising N-VInylPyrrolidone (VIPAR) based polymer gels.

  1. On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing.

    PubMed

    Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2018-01-01

    To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. Detection of ultraviolet radiation using tissue equivalent radiochromic gel materials

    NASA Astrophysics Data System (ADS)

    Bero, M. A.; Abukassem, I.

    2009-05-01

    Ferrous Xylenol-orange Gelatin gel (FXG) is known to be sensitive to ionising radiation such as γ and X-rays. The effect of ionising radiation is to produce an increase in the absorption over a wide region of the visible spectrum, which is proportional to the absorbed dose. This study demonstrates that FXG gel is sensitive to ultraviolet radiation and therefore it could functions as UV detector. Short exposure to UV radiation produces linear increase in absorption measured at 550nm, however high doses of UV cause the ion indicator colour to fad away in a manner proportional to the incident UV energy. Light absorbance increase at the rate of 1.1% per minute of irradiation was monitored. The exposure level at which the detector has linear response is comparable to the natural summer UV radiation. Evaluating the UV ability to pass through tissue equivalent gel materials shows that most of the UV gets absorbed in the first 5mm of the gel materials, which demonstrate the damaging effects of this radiation type on human skin and eyes. It was concluded that FXG gel dosimeter has the potential to offer a simple, passive ultraviolet radiation detector with sensitivity suitable to measure and visualises the natural sunlight UV exposure directly by watching the materials colour changes.

  3. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: From basics to clinical applications

    PubMed Central

    Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N

    2017-01-01

    Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725

  4. MO-B-BRB-00: Three Dimensional Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  5. Cerium nanoparticle effect on sensitivity of Fricke gel dosimeter: Initial investigation

    NASA Astrophysics Data System (ADS)

    Ebenezer Suman Babu, S.; Peace Balasingh, S. Timothy; Benedicta Pearlin, R.; Rabi Raja Singh, I.; Ravindran, B. Paul

    2017-05-01

    Fricke gel dosimeters (FXGs) have been the preferred dosimeters because of its ease in preparation and water and tissue equivalency. Visible changes happen three dimensionally in the dosimeter as the ferrous (Fe2+) ions change into ferric (Fe3+) ions upon irradiation and the measure of this change can be correlated to the dose absorbed. Nanoparticles are promising entities that can improve the sensitivity of the gel dosimeter. Cerium Oxide nanoparticle was investigated for possible enhancement of absorbed dose in the FXG. Various concentrations of the nanoparticle based gel dosimeters were prepared and irradiated for a clinical dose range of 0-3 Gy in a telegamma unit. The optimal concentration of 0.1 mM nanoparticle incorporated in the FXG enhances the radiation sensitivity of the unmodified FXG taken as reference without modifying the background absorbance prior to irradiation. The gel recipe consisted of 5% (wt) gelatin, 50 mM Sulphuric acid, 0.05 mM Xylenol Orange, 0.5 mM Ferrous Ammonium Sulphate and 0.1 mM Cerium (IV) Oxide nanoparticle (< 25 nm particle size) and triple distilled water. The FXGs with nanoparticle showed linear dose response in the dose range tested.

  6. Polymer gel dosimeter with AQUAJOINT® as hydrogel matrix

    NASA Astrophysics Data System (ADS)

    Maeyama, Takuya; Ishida, Yasuhiro; Kudo, Yoshihiro; Fukasaku, Kazuaki; Ishikawa, Kenichi L.; Fukunishi, Nobuhisa

    2018-05-01

    We report a polymer gel dosimeter based on a new gel matrix (AQUAJOINT®) that is a thermo-irreversible hydrogel formed by mixing two types of water-based liquids at room temperature. Normoxic N-vinylpyrrolidone-based polymer gels were prepared with AQUAJOINT® instead of gelatin. This AQUAJOINT®-based gel dosimeter exhibits a 2.5-fold increase in sensitivity over a gelatin-based gel dosimeter and a linear dose-response in the dose range of 0-8 Gy. This gel has heat resistance in a jar and controlled gel properties such as viscoelastic and mechanical characters, which may be useful for deformable polymer gel dosimetry.

  7. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy

    NASA Astrophysics Data System (ADS)

    Pantelis, E.; Karlis, A. K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J. M.

    2004-08-01

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  8. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy.

    PubMed

    Pantelis, E; Karlis, A K; Kozicki, M; Papagiannis, P; Sakelliou, L; Rosiak, J M

    2004-08-07

    The water equivalence and stable relative energy response of polymer gel dosimeters are usually taken for granted in the relatively high x-ray energy range of external beam radiotherapy based on qualitative indices such as mass and electron density and effective atomic number. However, these favourable dosimetric characteristics are questionable in the energy range of interest to brachytherapy especially in the case of lower energy photon sources such as 103Pd and 125I that are currently utilized. In this work, six representative polymer gel formulations as well as the most commonly used experimental set-up of a LiF TLD detector-solid water phantom are discussed on the basis of mass attenuation and energy absorption coefficients calculated in the energy range of 10 keV-10 MeV with regard to their water equivalence as a phantom and detector material. The discussion is also supported by Monte Carlo simulation results. It is found that water equivalence of polymer gel dosimeters is sustained for photon energies down to about 60 keV and no corrections are needed for polymer gel dosimetry of 169Yb or 192Ir sources. For 125I and 103Pd sources, however, a correction that is source-distance dependent is required. Appropriate Monte Carlo results show that at the dosimetric reference distance of 1 cm from a source, these corrections are of the order of 3% for 125I and 2% for 103Pd. These have to be compared with corresponding corrections of up to 35% for 125I and 103Pd and up to 15% even for the 169Yb energies for the experimental set-up of the LiF TLD detector-solid water phantom.

  9. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

    PubMed Central

    Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463

  10. Diels-Alder Trapping of Photochemically Generated o-Xylenols: Application in the Synthesis of Novel Organic Molecules and Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2003-01-01

    Bis(o-xylenol) equivalents are useful synthetic intermediates in the construction of polymers and hydroxyl substituted organic molecules which can organize by hydrogen bonded self-assembly into unique supramolecular structures. These polymers and supramolecular materials have potential use as coatings and thin films in aerospace, electronic and biomedical applications.

  11. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  12. Section 9.1 new dosimeters. New dosimetry systems

    NASA Astrophysics Data System (ADS)

    McLaughlin, William L.

    During the past two years there have been significant advances in several forms of radiation measurement systems for radiation processing, covering dose ranges of 1-10 6 Gy. Calorimeters as reference standards for both ionizing photon and electron fields have become well-established. In addition to the older ceric-cerous dosimetry solution analyzed potentiometrically, new liquid-phase dosimeters include those analyzed by spectrophotometry, e.g., improved forms of acidic aqueous solutions of K-Ag dichromate and organic radiochromic dye solutions. It has recently been demonstrated that by using certain refined sugars, e.g., D-(-) ribose, optical rotation response in aqueous solutions can be enhanced for dosimetry at doses > 10 4 Gy. There has been expanded development, use, and formulation (rods, tablets, and thin films) of the amino acid, alanine, as a solid-phase dosimeter analyzed by either ESR spectrometry or by glutamine or alanine spectrophotometry of complexes with ferric ion in the presence of a sulfonphthalein dye (xylenol orange). New commercial types of radiochromic plastic dosimeters, e.g., GafChromic TM, Riso B3 TM, GAMMACHROME YR TM, Radix TM, and Gammex TM, have been introduced and applied in practice. Improvements and broader use of optical waveguide dosimeters, e.g., Opti-Chromic TM, have also been reported, especially in food irradiation applications. Several novel dyed plastic dosimeters are available in large quantities and they lose color due to irradiation. An example is a dyed cellulosic thin film (ATC type DY-42 TM) which can be measured spectrophotometrically or densitometrically up to doses as high as 10 6 Gy.

  13. MAGAT gel and EBT2 film‐based dosimetry for evaluating source plugging‐based treatment plan in Gamma Knife stereotactic radiosurgery

    PubMed Central

    Vivekanandhan, S.; Kale, S.S.; Rath, G.K.; Senthilkumaran, S.; Thulkar, S.; Subramani, V.; Laviraj, M.A.; Bisht, R.K.; Mahapatra, A.K.

    2012-01-01

    This work illustrates a procedure to assess the overall accuracy associated with Gamma Knife treatment planning using plugging. The main role of source plugging or blocking is to create dose falloff in the junction between a target and a critical structure. We report the use of MAGAT gel dosimeter for verification of an experimental treatment plan based on plugging. The polymer gel contained in a head‐sized glass container simulated all major aspects of the treatment process of Gamma Knife radiosurgery. The 3D dose distribution recorded in the gel dosimeter was read using a 1.5T MRI scanner. Scanning protocol was: CPMG pulse sequence with 8 equidistant echoes, TR=7 s, echo step=14 ms, pixel size=0.5 mm x 0.5 mm, and slice thickness of 2 mm. Using a calibration relationship between absorbed dose and spin‐spin relaxation rate (R2), we converted R2 images to dose images. Volumetric dose comparison between treatment planning system (TPS) and gel measurement was accomplished using an in‐house MATLAB‐based program. The isodose overlay of the measured and computed dose distribution on axial planes was in close agreement. Gamma index analysis of 3D data showed more than 94% voxel pass rate for different tolerance criteria of 3%/2 mm, 3%/1 mm and 2%/2 mm. Film dosimetry with GAFCHROMIC EBT 2 film was also performed to compare the results with the calculated TPS dose. Gamma index analysis of film measurement for the same tolerance criteria used for gel measurement evaluation showed more than 95% voxel pass rate. Verification of gamma plan calculated dose on account of shield is not part of acceptance testing of Leksell Gamma Knife (LGK). Through this study we accomplished a volumetric comparison of dose distributions measured with a polymer gel dosimeter and Leksell GammaPlan (LGP) calculations for plans using plugging. We propose gel dosimeter as a quality assurance (QA) tool for verification of plug‐based planning. PACS number: 87.53.Ly, 87.55.‐x, 87

  14. Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collura, Giorgio; Gallo, Salvatore; Tranchina, Luigi; Abbate, Boris Federico; Bartolotta, Antonio; d'Errico, Francesco; Marrale, Maurizio

    2018-01-01

    Fricke gel dosimeters produced with a matrix of Poly-vinyl alcohol (PVA) cross-linked with glutaraldehyde (GTA) were analyzed with magnetic resonance imaging (MRI). Previous studies based on spectrophotometry showed valuable dosimetric features of these gels in terms of X-ray sensitivity and diffusion of the ferric ions produced after irradiation. In this study, MRI was performed on the gels at 1.5 T with a clinical scanner in order to optimize the acquisition parameters and obtain high contrast between irradiated and non-irradiated samples. The PVA gels were found to offer good linearity in the range of 0-10 Gy and a stable signal for several hours after irradiation. The sensitivity was about 40% higher compared to gels produced with agarose as gelling agent. The effect of xylenol orange (XO) on the MRI signal was also investigated: gel dosimeters made without XO show higher sensitivity to x-rays than those made with XO. The dosimetric accuracy of the 3D gels was investigated by comparing their MRI response to percentage depth dose and transversal dose profile measurements made with an ionization chamber in a water phantom. The comparison of PVA-GTA gels with and without XO showed that the chelating agent reduces the MRI sensitivity of the gels. Depth-dose and transversal dose profiles acquired by PVA-GTA gels without XO are more accurate and consistent with the ionization chamber data. However, diffusion effects hinder accurate measurements in the steep dose gradient regions and they should be further reduced by modifying the gel matrix and/or by minimizing the delay between irradiation and imaging.

  15. The correction of time and temperature effects in MR-based 3D Fricke xylenol orange dosimetry.

    PubMed

    Welch, Mattea L; Jaffray, David A

    2017-04-21

    Previously developed MR-based three-dimensional (3D) Fricke-xylenol orange (FXG) dosimeters can provide end-to-end quality assurance and validation protocols for pre-clinical radiation platforms. FXG dosimeters quantify ionizing irradiation induced oxidation of Fe 2+ ions using pre- and post-irradiation MR imaging methods that detect changes in spin-lattice relaxation rates (R 1   =  [Formula: see text]) caused by irradiation induced oxidation of Fe 2+ . Chemical changes in MR-based FXG dosimeters that occur over time and with changes in temperature can decrease dosimetric accuracy if they are not properly characterized and corrected. This paper describes the characterization, development and utilization of an empirical model-based correction algorithm for time and temperature effects in the context of a pre-clinical irradiator and a 7 T pre-clinical MR imaging system. Time and temperature dependent changes of R 1 values were characterized using variable TR spin-echo imaging. R 1 -time and R 1 -temperature dependencies were fit using non-linear least squares fitting methods. Models were validated using leave-one-out cross-validation and resampling. Subsequently, a correction algorithm was developed that employed the previously fit empirical models to predict and reduce baseline R 1 shifts that occurred in the presence of time and temperature changes. The correction algorithm was tested on R 1 -dose response curves and 3D dose distributions delivered using a small animal irradiator at 225 kVp. The correction algorithm reduced baseline R 1 shifts from  -2.8  ×  10 -2 s -1 to 1.5  ×  10 -3 s -1 . In terms of absolute dosimetric performance as assessed with traceable standards, the correction algorithm reduced dose discrepancies from approximately 3% to approximately 0.5% (2.90  ±  2.08% to 0.20  ±  0.07%, and 2.68  ±  1.84% to 0.46  ±  0.37% for the 10  ×  10 and 8  ×  12 mm 2 fields

  16. TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz

    2017-07-01

    This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by  <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy  ×  cm)-1, a large linear dose range of  >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.

  17. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    NASA Astrophysics Data System (ADS)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  18. Fixed, object-specific intensity compensation for cone beam optical CT radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Hazarika, Rubin; Silveira, Matheus A.; Jordan, Kevin J.

    2018-03-01

    Optical cone beam computed tomography (CT) scanning of radiochromic gel dosimeters, using a CCD camera and a low stray light convergent source, provides fast, truly 3D radiation dosimetry with high accuracy. However, a key limiting factor in radiochromic gel dosimetry at large (⩾10 cm diameter) volumes is the initial attenuation of the dosimeters. It is not unusual to observe a 5–10×  difference in signal intensity through the dosimeter center versus through the surrounding medium in pre-irradiation images. Thus, all dosimetric information in a typical experiment is measured within the lower 10%–20% of the camera sensor’s range, and re-use of gels is often not possible due to a lack of transmission. To counteract this, in this note we describe a simple method to create source compensators by printing on transparent films. This technique, which is easily implemented and inexpensive, is an optical analogue to the bowtie filter in x-ray CT. We present transmission images and solution phantom reconstructions to demonstrate that (1) placing compensators beyond the focal zone of the imaging lens prevents high spatial frequency features of the printed films from generating reconstruction artifacts, and (2) object-specific compensation considerably reduces the range of intensities measured in projection images. This will improve the measurable dose range in optical CT dosimetry, and will enable imaging of larger gel volumes (∼15 cm diameter). Additionally, it should enable re-use of dosimeters by printing a new compensator for a second experiment.

  19. Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method.

    PubMed

    Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P

    2015-03-01

    Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.

  20. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  1. MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, L.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  2. Fundamentals of Polymer Gel Dosimeters

    NASA Astrophysics Data System (ADS)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  3. Availability of a containerless polymer gel detector and a gelatin container

    NASA Astrophysics Data System (ADS)

    Tominaga, Takahiro; Yoshioka, Munenori; Hayashi, Shin-ichiro; Usui, Shuji; Tada, Mitsutoshi

    2015-01-01

    We considered an availability of the polymer gel detector without container but with a plastic wrap under assumption of the low oxygen transmissivity of a sheet of plastic wrap. And a gelatin container was also examined for a gel detector. These samples can be made easily and this containerless polymer gel detector well works without any artifacts by means of wrapping with a thin plastic sheet. Nevertheless, there is still room for improvement on preventing oxygen contamination. Combination with a gelatin container and a polymer gel detector and/or Gafchromic films has a various potential for extension of 3D dosimetry.

  4. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images.

    PubMed

    Pedersen, T V; Olsen, D R; Skretting, A

    1997-08-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm2 h-1, at the cost of significantly lower Rl sensitivity. The addition of benzoic acid to the latter gel did not increase the Rl sensitivity.

  5. Dosimetry study of diagnostic X-ray using doped iodide normoxic polymer gels

    NASA Astrophysics Data System (ADS)

    Huang, Y. R.; Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Chu, C. H.; Hsieh, B. T.

    2014-11-01

    In radiotherapy, polymer gel dosimeters are used for three-dimensional (3D) dose distribution. However, the doses are within the Gy range. In this study, we attempted to develop a low-dose 3D dosimeter within the mGy range for diagnostic radiology. The effect of the iodinated compound was used as a dose enhancement sensitizer to enhance the dose sensitivity of normoxic polymer gel dosimeters. This study aims to use N-isopropylacrylamide(NIPAM)-based and methacrylic acid (MAGAT)-based gels to evaluate the potential dose enhancement sensitizer, as well as to compare two gels that may be suitable for measuring diagnostic radiation doses. The suitable formulation of NIPAM gel [5% (w/w) gelatin, 5% (w/w) NIPAM, 3% (w/w) N,N‧-methylenebisacrylamide (BIS), 5 mM tetrakis (hydroxymethyl) phosphonium chloride (THPC), and 87% (w/w) deionized distilled water] and MAGAT gel (4% MAA, 9% gelatin, 87% deionized water, and 10 mM THPC) were used and loaded with clinical iodinated contrast medium agent (Iobitridol, Xenetix® 350). Irradiation was conducted using X-ray computed tomography. The irradiation doses ranged from 0 mGy to 80 mGy. Optical computed tomography was the employed gel measurement system. The results indicate that the iodinated contrast agent yields a quantifiable dose enhancement ratio. The dose enhancement ratios of NIPAM and MAGAT gels are 3.35±0.6 and 1.36±0.3, respectively. The developed NIPAM gel in this study could be suitable for measuring diagnostic radiation doses.

  6. MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceberg, S.

    Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data

  7. Preliminary investigation of PAGAT polymer gel radionuclide dosimetry of Tc-99m

    NASA Astrophysics Data System (ADS)

    Braun, Kelly; Bailey, Dale; Hill, Brendan; Baldock, Clive

    2009-05-01

    PAGAT polymer gel was investigated as a suitable dosimeter materials for measuring absorbed dose from the unsealed source radionuclide Tc-99m. Differing amounts of Tc-99m over the range of 25-5000 MBq were introduced into a normoxic polymer gel mixture (PAGAT) in sealed nitrogen-filled P6 glass vials. After irradiation the gels were evaluated using MRI more than 48 hours after preparation to allow for radioactive decay. The dose delivered to the vial was also calculated empirically. R2 versus total activity curves were obtained over a number of experiments and these were used to evaluate the relationship between the amount of gel polymerization and the dose deposited by the radionuclide. A linear response up to 1000 MBq (corresponding to 20Gy) was displayed and was still behaving monotonically at 5000 MBq. Polymer gels offer the potential to measure radiation dose three-dimensionally using MRI.

  8. A reduction of diffusion in PVA Fricke hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, S. T.; Masters, K. S.; Hosokawa, K.; Blinco, J.; Crowe, S. B.; Kairn, T.; Trapp, J. V.

    2015-01-01

    A modification to the PVA-FX hydrogel whereby the chelating agent, xylenol orange, was partially bonded to the gelling agent, poly-vinyl alcohol, resulted in an 8% reduction in the post irradiation Fe3+ diffusion, adding approximately 1 hour to the useful timespan between irradiation and readout. This xylenol orange functionalised poly-vinyl alcohol hydrogel had an OD dose sensitivity of 0.014 Gy-1 and a diffusion rate of 0.133 mm2 h-1. As this partial bond yields only incremental improvement, it is proposed that more efficient methods of bonding xylenol orange to poly-vinyl alcohol be investigated to further reduce the diffusion in Fricke gels.

  9. High resolution MR based polymer dosimetry versus film densitometry: a systematic study based on the modulation transfer function approach.

    PubMed

    Berg, A; Pernkopf, M; Waldhäusl, C; Schmidt, W; Moser, E

    2004-09-07

    Precise methods of modem radiation therapy such as intensity modulated radiotherapy (IMRT), brachytherapy (BT) and high LET irradiation allow for high dose localization in volumes of a few mm3. However, most dosimetry methods-ionization chambers, TLD arrangements or silicon detectors, for example-are not capable of detecting sub-mm dose variations or do not allow for simple dose imaging. Magnetic resonance based polymer dosimetry (MRPD) appears to be well suited to three-dimensional high resolution relative dosimetry but the spatial resolution based on a systematic modulation transfer function (MTF) approach has not yet been investigated. We offer a theoretical construct for addressing the spatial resolution in different dose imaging systems, i.e. the dose modulation transfer function (DMTF) approach, an experimental realization of this concept with a phantom and quantitative comparisons between two dosimetric systems: polymer gel and film dosimetry. Polymer gel samples were irradiated by Co-60 photons through an absorber grid which is characterized by periodic structures of different spatial period (a), the smallest one at width of a/2 = 280 microm. The modulation in dose under the grid is visualized via calibrated, high resolution, parameter-selective (T2) and dose images based on multi-echo MR imaging. The DMTF is obtained from the modulation depth of the spin-spin relaxation time (T2) after calibration. Voxel sizes below 0.04 mm3 could be achieved, which are significantly smaller than those reported in MR based dose imaging on polymer gels elsewhere, using a powerful gradient system and a highly sensitive small birdcage resonator on a whole-body 3T MR scanner. Dose modulations at 22% of maximum dose amplitude could be observed at about 2 line pairs per mm. The polymer DMTF results are compared to those of a typical clinical film-scanner system. This study demonstrates that MR based gel dosimetry at 200 microm pixel resolution might even be superior, with

  10. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  11. Reviewing three dimensional dosimetry: basics and utilization as presented over 17 Years of DosGel and IC3Ddose

    NASA Astrophysics Data System (ADS)

    Schreiner, L. J.

    2017-05-01

    For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.

  12. Glycol stabilized magnetic nanoparticles for photocatalytic degradation of xylenol orange

    NASA Astrophysics Data System (ADS)

    Ullah, Ikram; Ali, Farman; Ali, Zarshad; Humayun, Muhammad; wahab, Zain Ul

    2018-05-01

    In this work, we have successfully prepared ZnFe2O4 magnetic nanoparticles as photocatalysts via co-precipitation method using triethylene glycol as a stabilizing agent. The resultant nanoparticles were annealed at 400 °C and then acid etched and surface functionalized with 3-(triethoxysilyl) propyl amine (APTES). Fourier transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) analysis were used to characterize these magnetic photocatalysts. XRD patterns revealed that the size of annealed and functionalized ZnFe2O4 nanoparticles falls in the range of 23.3 and 13.9 nm, respectively. The optical band gaps of the magnetic photocatalysts were calculated from UV–Visible absorption spectra using Tauc plots. The band gap of the ZnFe2O4 photocatalyst in acidic and basic medium was 2.47 and 2.7 eV, respectively. The performance of the magnetic photocatalysts was evaluated for xylenol orange (XO) degradation. The degradation rates of XO dye for the blank, annealed and functionalized photocatalysts at pH = 4 were 76%, 85%, and 90%, respectively. In addition, the influence of important parameters such as contact time, pH, catalyst, and dye dose were also investigated for all the three photocatalysts. The applied kinetics models demonstrated that the degradation followed pseudo 1st order.

  13. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  14. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  15. Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive

    2013-10-01

    Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the

  16. PEG spacer gel and adaptive planning vs single plan in external prostate radiotherapy—clinical dosimetry evaluation

    PubMed Central

    2015-01-01

    Objective: Spacer gel is used to reduce the rectal dose in prostate radiotherapy. It is injected to increase the distance between the prostate and rectum. During the course of external radiotherapy treatment, physiological changes in rectal volume exist. When using polyethylene glycol material, such as DuraSeal® (Covidien, Mansfield, MA), gel resorption also occurs. Together, these factors alter the original dose plan distribution. Methods: External dose planning and calculations were simulated using images acquired from 10 patients who were treated with brachytherapy and gel. The CT series was taken relative to gel injection: pre 1 day, post 1 day, post 1 month and post 2 months. Adaptive planning was compared with a single plan. Results: Adaptive planning shows better results compared with the single plan used in the total treatment course; however, the effect is minor. Conclusion: Gel usage is clearly favourable to rectal DVH. Using adaptive planning with gel improves rectal DVH but is not necessary according to this study. Advances in knowledge: Spacer gel is used in prostate radiotherapy to increase distance between the prostate and the rectum, thus reducing the rectal doses. During the treatment course, gel resorption exists which affects the rectal doses. The usefulness of adaptive planning to compensate this resorption effect has not been studied before. PMID:26370300

  17. SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanikolaou, P; Watts, L; Kirby, N

    2016-06-15

    Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less

  18. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardin, A; Avery, S; Ding, X

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a

  19. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  20. Poster – 13: Evaluation of an in-house CCD camera film dosimetry imaging system for small field deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, Michel; Alexander, Kevin; Olding, Tim

    Purpose: Radiochromic film dosimetry is a standard technique used in clinics to verify modern conformal radiation therapy delivery, and sometimes in research to validate other dosimeters. We are using film as a standard for comparison as we improve high-resolution three-dimensional gel systems for small field dosimetry; however, precise film dosimetry can be technically challenging. We report here measurements for fractionated stereotactic radiation therapy (FSRT) delivered using volumetric modulated arc therapy (VMAT) to investigate the accuracy and reproducibility of film measurements with a novel in-house readout system. We show that radiochromic film can accurately and reproducibly validate FSRT deliveries and alsomore » benchmark our gel dosimetry work. Methods: VMAT FSRT plans for metastases alone (PTV{sub MET}) and whole brain plus metastases (WB+PTV{sub MET}) were delivered onto a multi-configurational phantom with a sheet of EBT3 Gafchromic film inserted mid-plane. A dose of 400 cGy was prescribed to 4 small PTV{sub MET} structures in the phantom, while a WB structure was prescribed a dose of 200 cGy in the WB+PTV{sub MET} iterations. Doses generated from film readout with our in-house system were compared to treatment planned doses. Each delivery was repeated multiple times to assess reproducibility. Results and Conclusions: The reproducibility of film optical density readout was excellent throughout all experiments. Doses measured from the film agreed well with plans for the WB+PTV{sub MET} delivery. But, film doses for PTV{sub MET} only deliveries were significantly below planned doses. This discrepancy is due to stray/scattered light perturbations in our system during readout. Corrections schemes will be presented.« less

  1. Water-equivalence of gel dosimeters for radiology medical imaging.

    PubMed

    Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P

    2018-03-08

    International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  3. The polyGeVero® software for fast and easy computation of 3D radiotherapy dosimetry data

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr

    2015-01-01

    The polyGeVero® software package was elaborated for calculations of 3D dosimetry data such as the polymer gel dosimetry. It comprises four workspaces designed for: i) calculating calibrations, ii) storing calibrations in a database, iii) calculating dose distribution 3D cubes, iv) comparing two datasets e.g. a measured one with a 3D dosimetry with a calculated one with the aid of a treatment planning system. To accomplish calculations the software was equipped with a number of tools such as the brachytherapy isotopes database, brachytherapy dose versus distance calculation based on the line approximation approach, automatic spatial alignment of two 3D dose cubes for comparison purposes, 3D gamma index, 3D gamma angle, 3D dose difference, Pearson's coefficient, histograms calculations, isodoses superimposition for two datasets, and profiles calculations in any desired direction. This communication is to briefly present the main functions of the software and report on the speed of calculations performed by polyGeVero®.

  4. A preliminary study on the use of FX-Glycine gel and an in-house optical cone beam CT readout for IMRT and RapidArc verification

    NASA Astrophysics Data System (ADS)

    Ravindran, Paul B.; Ebenezer, Suman Babu S.; Winfred, Michael Raj; Amalan, S.

    2017-05-01

    The radiochromic FX gel with Optical CT readout has been investigated by several authors and has shown promising results for 3D dosimetry. One of the applications of the gel dosimeters is their use in 3D dose verification for IMRT and RapidArc quality assurance. Though polymer gel has been used successfully for clinical dose verification, the use of FX gel for clinical dose verification with optical cone beam CT needs further validation. In this work, we have used FX gel and an in- house optical readout system for gamma analysis between the dose matrices of measured dose distribution and a treatment planning system (TPS) calculated dose distribution for a few test cases.

  5. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A

  6. Investigation of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry with MSE MR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin

    2008-05-01

    A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.

  7. SU-E-T-675: Remote Dosimetry with a Novel PRESAGE Formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mein, S; Juang, T; Malcolm, J

    2015-06-15

    Purpose: 3D-gel dosimetry provides high-resolution treatment validation; however, scanners aren’t widely available. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote site for irradiation, then shipped back for scanning and analysis, affording a convenient service for treatment validation to institutions lacking the necessary equipment and resources. Previous works demonstrated the high-resolution performance and temporal stability of PRESAGE. Here the newest formulation is investigated for remote dosimetry use. Methods: A new formulation of PRESAGE was created with the aim of improved color stability post irradiation. Dose sensitivity was determined by irradiating cuvettes on a Varianmore » Linac (6MV) from 0–15Gy and measuring change in optical density at 633nm. Sensitivity readings were tracked over time in a temperature control study to determine long-term stability. A large volume study was performed to evaluate the accuracy for remote dosimetry. A 1kg dosimeter was pre-scanned, irradiated on-site with an 8Gy 4field box treatment, post-scanned and shipped to Princess Margaret Hospital for remote reading on an identical scanner. Results: Dose sensitivities ranged from 0.0194–0.0295 ΔOD/(Gy*cm)—similar to previous formulations. Post-irradiated cuvettes stored at 10°C retained 100% initial sensitivity over 5 days and 98.6% over 10 weeks while cuvettes stored at room temperature fell to 95.8% after 5 days and 37.4% after 10 weeks. The immediate and 5-day scans of the 4field box dosimeter data was reconstructed, registered to the corresponding eclipse dose-distribution, and compared with analytical tools in CERR. Immediate and 5-day scans looked visually similar. Line profiles revealed close agreement aside from a slight elevation in dose at the edge in the 5-day readout. Conclusion: The remote dosimetry formulation exhibits excellent temporal stability in small volumes. While immediate and 5-day readout scans of

  8. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    NASA Astrophysics Data System (ADS)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly

  9. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  10. Thermoluminescent dosimetry in veterinary diagnostic radiology.

    PubMed

    Hernández-Ruiz, L; Jimenez-Flores, Y; Rivera-Montalvo, T; Arias-Cisneros, L; Méndez-Aguilar, R E; Uribe-Izquierdo, P

    2012-12-01

    This paper presents the results of Environmental and Personnel Dosimetry made in a radiology area of a veterinary hospital. Dosimetry was realized using thermoluminescent (TL) materials. Environmental Dosimetry results show that areas closer to the X-ray equipment are safe. Personnel Dosimetry shows important measurements of daily workday in some persons near to the limit established by ICRP. TL results of radiation measurement suggest TLDs are good candidates as a dosimeter to radiation dosimetry in veterinary radiology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Quantitative imaging for clinical dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, Manuel; Flux, Glenn; Lassmann, Michael; Monsieurs, Myriam; Savolainen, Sauli; Strand, Sven-Erik

    2006-12-01

    Patient-specific dosimetry in nuclear medicine is now a legal requirement in many countries throughout the EU for targeted radionuclide therapy (TRT) applications. In order to achieve that goal, an increased level of accuracy in dosimetry procedures is needed. Current research in nuclear medicine dosimetry should not only aim at developing new methods to assess the delivered radiation absorbed dose at the patient level, but also to ensure that the proposed methods can be put into practice in a sufficient number of institutions. A unified dosimetry methodology is required for making clinical outcome comparisons possible.

  12. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek

    2011-12-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N, N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx. The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG.

  13. Characterising an aluminium oxide dosimetry system.

    PubMed

    Conheady, Clement F; Gagliardi, Frank M; Ackerly, Trevor

    2015-09-01

    In vivo dosimetry is recommended as a defence-in-depth strategy in radiotherapy treatments and is currently employed by clinics around the world. The characteristics of a new optically stimulated luminescence dosimetry system were investigated for the purpose of replacing an aging thermoluminescence dosimetry system for in vivo dosimetry. The stability of the system was not sufficient to satisfy commissioning requirements and therefore it has not been released into clinical service at this time.

  14. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    PubMed

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. FBX aqueous chemical dosimeter for measurement of virtual wedge profiles.

    PubMed

    Semwal, Manoj K; Bansal, Anil K; Thakur, Pradeep K; Vidyasagar, Pandit B

    2008-10-24

    We investigated the ferrous sulfate-benzoic acid-xylenol orange (FBX) aqueous chemical dosimeter for measurement of virtual (dynamic) wedge profiles on a linear accelerator. The layout for irradiation of the FBX-filled tubes mimicked a conventional linear detector array geometry. A comparison of the resulting measurements with film-measured profiles showed that, in the main beam region, the difference between the FBX system and the film system was within +/-2% and that, in the penumbra region, the difference varied from +/-1 mm to +/-2.5 mm in terms of positional equivalence, depending on the size of the dosimeter tubes. We thus believe that the energy-independent FBX dosimetry system can measure virtual wedge profiles with reasonable accuracy at reasonable cost. However, efficiency improvement is required before this dosimetry system can be accepted into routine practice.

  16. Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited.

    PubMed

    Xia, Wenfeng; Piras, Daniele; Heijblom, Michelle; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-07-01

    A popular phantom in photoacoustic imaging is poly(vinyl alcohol) (PVA) hydrogel fabricated by freezing and thawing (F-T) aqueous solutions of PVA. The material possesses acoustic and optical properties similar to those of tissue. Earlier work characterized PVA gels in small test specimens where temperature distributions during F-T are relatively homogeneous. In this work, in breast-sized samples we observed substantial temperature differences between the shallow regions and the interior during the F-T procedure. We investigated whether spatial variations were also present in the acoustic and optical properties. The speed of sound, acoustic attenuation, and optical reduced scattering coefficients were measured on specimens sampled at various locations in a large phantom. In general, the properties matched values quoted for breast tissue. But while acoustic properties were relatively homogeneous, the reduced scattering was substantially different at the surface compared with the interior. We correlated these variations with gel microstructure inspected using scanning electron microscopy. Interestingly, the phantom's reduced scattering spatial distribution matches the optical properties of the standard two-layer breast model used in x ray dosimetry. We conclude that large PVA samples prepared using the standard recipe make excellent breast tissue phantoms.

  17. Iron-based radiochromic systems for UV dosimetry applications

    NASA Astrophysics Data System (ADS)

    Lee, Hannah J.; Alqathami, Mamdooh; Blencowe, Anton; Ibbott, Geoffrey

    2018-01-01

    Phototherapy treatment using ultraviolet (UV) A and B light sources has long existed as a treatment option for various skin conditions. Quality control for phototherapy treatment recommended by the British Association of Dermatologists and British Photodermatology Group generally focused on instrumentation-based dosimetry measurements. The purpose of this study was to present an alternative, easily prepared dosimeter system for the measurement of UV dose and as a simple quality assurance technique for phototherapy treatments. Five different UVA-sensitive radiochromic dosimeter formulations were investigated and responded with a measurable and visible optical change both in solution and in gel form. Iron(III) reduction reaction formulations were found to be more sensitive to UVA compared to iron(II) oxidation formulations. One iron(III) reduction formulation was found to be especially promising due to its sensitivity to UVA dose, ease of production, and linear response up to a saturation point.

  18. The use of normoxic polymer gel for measuring dose distributions of 1, 4 and 30 mm cones

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Wu, J. F.; Chang, K. P.; Chu, C. H.; Wey, S. P.; Liu, H. L.; Tung, C. J.; Wu, S. W.; Chao, T. C.

    2014-11-01

    This study demonstrates the use of normoxic polymer gel for measuring dose distributions of small fields that lack lateral electronic equilibrium. Two different types of normoxic polymer gel, MAGAT and PAGAT, are studied in a larger field (10 cm×10 cm) and 1, 4 and 30 mm cones to obtain cone factors, dose profiles and percentage depth doses. These results were then compared to KODAK XV film measurements and BEAMnrc Monte Carlo simulations. The results show that the sensitivity of PAGAT gel is 0.090±0.074 s-1 Gy-1, which may not be suitable for small-field dosimetry with a 0.3 mm resolution scanned using a 3 T MR imager in a dose range lower than 2.5 Gy. There are good agreements between cone factors estimated using KODAK XV film and MAGAT gel. In a dose profile comparison, good dose agreement among MAGAT gel, XV film and MC simulation can be seen in the central area for a 30 mm cone. In penumbra, the distance to agreement is at most 1.2 mm (4 pixel), and less than 0.3 mm (1 pixel) for 4 and 1 mm cones. In a percentage depth dose comparison, there were good agreements between MAGAT and MC up to a depth of 8 cm. Possible factors for gel uncertainty such as MRI magnetic field inhomogeneity and temperature were also investigated.

  19. TU-F-201-00: Radiochromic Film Dosimetry Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  20. AFRRI Neutron Dosimetry and Radiobiology Conference

    DTIC Science & Technology

    1988-11-09

    Neutron Dosimetry and Radiobiology 8 - 9 November 1988 Sponsored by Defense Nuclear Agency ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE...neutron radiation is less amenable to amelioration by chemical radioprotectants and more difficult to assess by means of physical dosimetry . These...neutron dosimetry and radiobiology we have witnessed in the past several years,could not have been possible without the sustained efforts of many

  1. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  2. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  3. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  4. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  5. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b) Nuclear...

  6. The Latin American Biological Dosimetry Network (LBDNet).

    PubMed

    García, O; Di Giorgio, M; Radl, A; Taja, M R; Sapienza, C E; Deminge, M M; Fernández Rearte, J; Stuck Oliveira, M; Valdivia, P; Lamadrid, A I; González, J E; Romero, I; Mandina, T; Guerrero-Carbajal, C; ArceoMaldonado, C; Cortina Ramírez, G E; Espinoza, M; Martínez-López, W; Di Tomasso, M

    2016-09-01

    Biological Dosimetry is a necessary support for national radiation protection programmes and emergency response schemes. The Latin American Biological Dosimetry Network (LBDNet) was formally founded in 2007 to provide early biological dosimetry assistance in case of radiation emergencies in the Latin American Region. Here are presented the main topics considered in the foundational document of the network, which comprise: mission, partners, concept of operation, including the mechanism to request support for biological dosimetry assistance in the region, and the network capabilities. The process for network activation and the role of the coordinating laboratory during biological dosimetry emergency response is also presented. This information is preceded by historical remarks on biological dosimetry cooperation in Latin America. A summary of the main experimental and practical results already obtained by the LBDNet is also included. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Dosimetry in dentistry.

    PubMed

    Asha, M L; Chatterjee, Ingita; Patil, Preeti; Naveen, S

    2015-01-01

    The purpose of this paper was to review various dosimeters used in dentistry and the cumulative results of various studies done with various dosimeters. Several relevant PubMed indexed articles from 1999 to 2013 were electronically searched by typing "dosimeters", "dosimeters in dentistry", "properties of dosimeters", "thermoluminescent and optically stimulated dosimeters", "recent advancements in dosimetry in dentistry." The searches were limited to articles in English to prepare a concise review on dental dosimetry. Titles and abstracts were screened, and articles that fulfilled the criteria of use of dosimeters in dental applications were selected for a full-text reading. Article was divided into four groups: (1) Biological effects of radiation, (2) properties of dosimeters, (3) types of dosimeters and (4) results of various studies using different dosimeters. The present review on dosimetry based on various studies done with dosimeters revealed that, with the advent of radiographic technique the effective dose delivered is low. Therefore, selection of radiological technique plays an important role in dental dose delivery.

  8. Internal dosimetry technical basis manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophicalmore » discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.« less

  9. A study on the reproducibility and spatial uniformity of N-isopropylacrylamide polymer gel dosimetry using a commercial 10X fast optical-computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.

    2013-06-01

    This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.

  10. Nuclear accident dosimetry intercomparison studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, C.S.

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shieldedmore » spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.« less

  11. A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases.

    PubMed

    Ewing, Tom A; van Noord, Aster; Paul, Caroline E; van Berkel, Willem J H

    2018-01-14

    Vanillyl alcohol oxidase (VAO) and eugenol oxidase (EUGO) are flavin-dependent enzymes that catalyse the oxidation of para -substituted phenols. This makes them potentially interesting biocatalysts for the conversion of lignin-derived aromatic monomers to value-added compounds. To facilitate their biocatalytic exploitation, it is important to develop methods by which variants of the enzymes can be rapidly screened for increased activity towards substrates of interest. Here, we present the development of a screening assay for the substrate specificity of para -phenol oxidases based on the detection of hydrogen peroxide using the ferric-xylenol orange complex method. The assay was used to screen the activity of VAO and EUGO towards a set of twenty-four potential substrates. This led to the identification of 4-cyclopentylphenol as a new substrate of VAO and EUGO and 4-cyclohexylphenol as a new substrate of VAO. Screening of a small library of VAO and EUGO active-site variants for alterations in their substrate specificity led to the identification of a VAO variant (T457Q) with increased activity towards vanillyl alcohol (4-hydroxy-3-methoxybenzyl alcohol) and a EUGO variant (V436I) with increased activity towards chavicol (4-allylphenol) and 4-cyclopentylphenol. This assay provides a quick and efficient method to screen the substrate specificity of para -phenol oxidases, facilitating the enzyme engineering of known para- phenol oxidases and the evaluation of the substrate specificity of novel para -phenol oxidases.

  12. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  13. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  14. The work programme of EURADOS on internal and external dosimetry.

    PubMed

    Rühm, W; Bottollier-Depois, J F; Gilvin, P; Harrison, R; Knežević, Ž; Lopez, M A; Tanner, R; Vargas, A; Woda, C

    2018-01-01

    Since the early 1980s, the European Radiation Dosimetry Group (EURADOS) has been maintaining a network of institutions interested in the dosimetry of ionising radiation. As of 2017, this network includes more than 70 institutions (research centres, dosimetry services, university institutes, etc.), and the EURADOS database lists more than 500 scientists who contribute to the EURADOS mission, which is to promote research and technical development in dosimetry and its implementation into practice, and to contribute to harmonisation of dosimetry in Europe and its conformance with international practices. The EURADOS working programme is organised into eight working groups dealing with environmental, computational, internal, and retrospective dosimetry; dosimetry in medical imaging; dosimetry in radiotherapy; dosimetry in high-energy radiation fields; and harmonisation of individual monitoring. Results are published as freely available EURADOS reports and in the peer-reviewed scientific literature. Moreover, EURADOS organises winter schools and training courses on various aspects relevant for radiation dosimetry, and formulates the strategic research needs in dosimetry important for Europe. This paper gives an overview on the most important EURADOS activities. More details can be found at www.eurados.org .

  15. SU-F-T-434: Development of a Fan-Beam Optical Scanner Using CMOS Array for Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, E; Warmington, L; Watanabe, Y

    Purpose: To design and construct a second generation optical computed tomography (OCT) system using a fan-beam with a CMOS array detector for the 3D dosimetry with polymer gel and radiochromic solid dosimeters. The system was specifically designed for the small field dosimetry. Methods: The optical scanner used a fan-beam laser, which was produced from a collimated red laser beam (λ=620 nm) with a 15-degree laser-line generating lens. The fan-beam was sent through an index-matching bath which holds the sample stage and a sample. The emerging laser light was detected with a 2.54 cm-long CMOS array detector (512 elements). The samplemore » stage rotated through the full 360 degree projection angles at 0.9-degree increments. Each projection was normalized to the unirradiated sample at the projection angle to correct for imperfections in the dosimeter. A larger sample could be scanned by using a motorized mirror and linearly translating the CMOS detector. The height of the sample stage was varied for a full 3D scanning. The image acquisition and motor motion was controlled by a computer. The 3D image reconstruction was accomplished by a fan-beam reconstruction algorithm. All the software was developed inhouse with MATLAB. Results: The scanner was used on both PRESAGE and PAGAT gel dosimeters. Irreconcilable refraction errors were seen with PAGAT because the fan beam laser line refracted away from the detector when the field was highly varying in 3D. With PRESAGE, this type of error was not seen. Conclusion: We could acquire tomographic images of dose distributions by the new OCT system with both polymer gel and radiochromic solid dosimeters. Preliminary results showed that the system was more suited for radiochromic solid dosimeters since the radiochromic dosimeters exhibited minimal refraction and scattering errors. We are currently working on improving the image quality by thorough characterization of the OCT system.« less

  16. Monte Carlo simulations in radiotherapy dosimetry.

    PubMed

    Andreo, Pedro

    2018-06-27

    The use of the Monte Carlo (MC) method in radiotherapy dosimetry has increased almost exponentially in the last decades. Its widespread use in the field has converted this computer simulation technique in a common tool for reference and treatment planning dosimetry calculations. This work reviews the different MC calculations made on dosimetric quantities, like stopping-power ratios and perturbation correction factors required for reference ionization chamber dosimetry, as well as the fully realistic MC simulations currently available on clinical accelerators, detectors and patient treatment planning. Issues are raised that include the necessity for consistency in the data throughout the entire dosimetry chain in reference dosimetry, and how Bragg-Gray theory breaks down for small photon fields. Both aspects are less critical for MC treatment planning applications, but there are important constraints like tissue characterization and its patient-to-patient variability, which together with the conversion between dose-to-water and dose-to-tissue, are analysed in detail. Although these constraints are common to all methods and algorithms used in different types of treatment planning systems, they make uncertainties involved in MC treatment planning to still remain "uncertain".

  17. Homogeneity of gels and gel-derived glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1984-01-01

    The significance and implications of gel preparation procedures in controlling the homogeneity of multicomponent oxide gels are discussed. The role of physicochemical factors such as the structure and chemical reactivities of alkoxides, the formation of double-metal alkoxides, and the nature of solvent(s) are critically analyzed in the context of homogeneity of gels during gelation. Three procedures for preparing gels in the SiO2-B2O3-Na2O system are examined in the context of cation distribution. Light scattering results for glasses in the SiO2-B2O3-Na2O system prepared by both the gel technique and the conventional technique are examined.

  18. Transdermal delivery of paeonol using cubic gel and microemulsion gel

    PubMed Central

    Luo, Maofu; Shen, Qi; Chen, Jinjin

    2011-01-01

    Background The aim of this study was to develop new systems for transdermal delivery of paeonol, in particular microemulsion gel and cubic gel formulations. Methods Various microemulsion vehicles were prepared using isopropyl myristate as an oil phase, polyoxyethylated castor oil (Cremophor® EL) as a surfactant, and polyethylene glycol 400 as a cosurfactant. In the optimum microemulsion gel formulation, carbomer 940 was selected as the gel matrix, and consisted of 1% paeonol, 4% isopropyl myristate, 28% Cremophor EL/polyethylene glycol 400 (1:1), and 67% water. The cubic gel was prepared containing 3% paeonol, 30% water, and 67% glyceryl monooleate. Results A skin permeability test using excised rat skins indicated that both the cubic gel and microemulsion gel formulations had higher permeability than did the paeonol solution. An in vivo pharmacokinetic study done in rats showed that the relative bioavailability of the cubic gel and microemulsion gel was enhanced by about 1.51-fold and 1.28-fold, respectively, compared with orally administered paeonol suspension. Conclusion Both the cubic gel and microemulsion gel formulations are promising delivery systems to enhance the skin permeability of paeonol, in particular the cubic gel. PMID:21904450

  19. Cumulative irritation potential among metronidazole gel 1%, metronidazole gel 0.75%, and azelaic acid gel 15%.

    PubMed

    Colón, Luz E; Johnson, Lori A; Gottschalk, Ronald W

    2007-04-01

    Topical therapy for rosacea aims to reduce inflammatory lesions and decrease erythema but can carry side effects such as stinging, pruritus, and burning. Metronidazole and azelaic acid gel 15% are U.S. Food and Drug Administration-approved for the treatment of rosacea. The current study was conducted to assess the cumulative irritation potential of 2 formulations of metronidazole 0.75% gel and 1% gel--and azelaic acid gel 15% over 21 days (N=36). Results of this study demonstrated a significantly greater poten tial for irritation from azelaic acid compared with metronidazole gel 0.75% (P < .0001), which had significantly greater potential for irritation compared with metronidazole gel 1% (P = .0054). Metronidazole gel 1% had a similar profile to white petrolatum.

  20. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niroomand-Rad, A.

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to)more » external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.« less

  1. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  2. Hanford internal dosimetry program manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  3. Sixth international radiopharmaceutical dosimetry symposium: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.-Stelson, A.T.; Stabin, M.G.; Sparks, R.B.

    1999-01-01

    This conference was held May 7--10 in Gatlinburg, Tennessee. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on radiopharmaceutical dosimetry. Attention is focused on the following: quantitative analysis and treatment planning; cellular and small-scale dosimetry; dosimetric models; radiopharmaceutical kinetics and dosimetry; and animal models, extrapolation, and uncertainty.

  4. Temperature dosimetry using MR relaxation characteristics of poly(vinyl alcohol) cryogel (PVA-C).

    PubMed

    Lukas, L A; Surry, K J; Peters, T M

    2001-11-01

    Hyperthermic therapy is being used for a variety of medical treatments, such as tumor ablation and the enhancement of radiation therapy. Research in this area requires a tool to record the temperature distribution created by a heat source, similar to the dosimetry gels used in radiation therapy to record dose distribution. Poly(vinyl alcohol) cryogel (PVA-C) is presented as a material capable of recording temperature distributions between 45 and 70 degrees C, with less than a 1 degrees C error. An approximately linear, positive relationship between MR relaxation times and applied temperature is demonstrated, with a maximum of 16.3 ms/ degrees C change in T(1) and 10.2 ms/ degrees C in T(2) for a typical PVA-C gel. Applied heat reduces the amount of cross-linking in PVA-C, which is responsible for a predictable change in T(1) and T(2) times. Temperature distributions in PVA-C volumes may be determined by matching MR relaxation times across the volumes to calibration values produced in samples subjected to known temperatures. Factors such as thermotolerance, perfusion effects, and thermal conductivity of PVA-C are addressed for potentially extending this method to modeling thermal doses in tissue. Copyright 2001 Wiley-Liss, Inc.

  5. SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoisak, J; Dragojevic, I; Sutlief, S

    Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less

  6. 3D dosimetry by optical-CT scanning

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2006-12-01

    The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.

  7. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  8. Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca

    2015-07-01

    A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)

  9. Nonuniform Irradiation of the Canine Intestine. 2. Dosimetry

    DTIC Science & Technology

    1990-01-01

    irradiation is accurate assessment In vivo dosimetry was done using Harshaw (Solon, Ohio) TLD - 100 lith- of the injury after either accidental or... vivo TLD dosimetry system allowed measure- 5 and 6. The dose was determined from the median TLD ment of the °Co dose deposited in the canine small...provide replicate measurements. Two separate dosimetry tubes were deveoped (Fig. 1). The first contained 30 TLD cap- doses (1). Nevertheless, current

  10. Tolerability of clindamycin/tretinoin gel vs. tretinoin microsphere gel and adapalene gel.

    PubMed

    Leyden, James; Wortzman, Mitchell; Baldwin, Edward K

    2009-04-01

    Newer agents and formulations seek to improve the tolerability of topical retinoid therapy. Recently, a gel containing crystalline clindamycin 1.2% and tretinoin 0.025% (CLIN/RA) was approved by the U.S. Food and Drug Administration (FDA) for the treatment of treating mild-to-moderate acne. This single-center, randomized, evaluator-blind phase 1 study compared the tolerability of CLIN/RA to 0.1% tretinoin gel or 0.1% adapalene gel. Forty-five patients applied CLIN/RA once daily to one side of their face every day for 21 days. Patients were randomized to either tretinoin 0.1% (n = 23) or adapalene 0.1% (n = 22) on the contralateral side. A clinical evaluator assessed degree of erythema and scaling; patients provided subjective evaluations of burning, stinging, and itching. CLIN/RA was significantly better tolerated than was 0.1% tretinoin gel, as evidenced by significantly reduced erythema (P < 0.04), scaling (P < 0.03), itching (P < 0.02), burning (P < 0.03) and stinging (P < 0.04). A trend for greater erythema, scaling, and subjective discomfort for 0.1% adapalene gel compared to CLIN/RA was also evident.

  11. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  12. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter.

    PubMed

    Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve

    2007-11-21

    Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the

  13. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/more » TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best

  14. The physics of small megavoltage photon beam dosimetry.

    PubMed

    Andreo, Pedro

    2018-02-01

    The increased interest during recent years in the use of small megavoltage photon beams in advanced radiotherapy techniques has led to the development of dosimetry recommendations by different national and international organizations. Their requirement of data suitable for the different clinical options available, regarding treatment units and dosimetry equipment, has generated a considerable amount of research by the scientific community during the last decade. The multiple publications in the field have led not only to the availability of new invaluable data, but have also contributed substantially to an improved understanding of the physics of their dosimetry. This work provides an overview of the most important aspects that govern the physics of small megavoltage photon beam dosimetry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods.

    PubMed

    Vestad, Tor Arne; Malinen, Eirik; Olsen, Dag Rune; Hole, Eli Olaug; Sagstuen, Einar

    2004-10-21

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co gamma-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co gamma-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  16. Electron paramagnetic resonance (EPR) dosimetry using lithium formate in radiotherapy: comparison with thermoluminescence (TL) dosimetry using lithium fluoride rods

    NASA Astrophysics Data System (ADS)

    Vestad, Tor Arne; Malinen, Eirik; Rune Olsen, Dag; Olaug Hole, Eli; Sagstuen, Einar

    2004-10-01

    Solid-state radiation dosimetry by electron paramagnetic resonance (EPR) spectroscopy and thermoluminescence (TL) was utilized for the determination of absorbed doses in the range of 0.5-2.5 Gy. The dosimeter materials used were lithium formate and lithium fluoride (TLD-100 rods) for EPR dosimetry and TL dosimetry, respectively. 60Co ggr-rays and 4, 6, 10 and 15 MV x-rays were employed. The main objectives were to compare the variation in dosimeter reading of the respective dosimetry systems and to determine the photon energy dependence of the two dosimeter materials. The EPR dosimeter sensitivity was constant over the dose range in question, while the TL sensitivity increased by more than 5% from 0.5 to 2.5 Gy, thus displaying a supralinear dose response. The average relative standard deviation in the dosimeter reading per dose was 3.0% and 1.2% for the EPR and TL procedures, respectively. For EPR dosimeters, the relative standard deviation declined significantly from 4.3% to 1.1% over the dose range in question. The dose-to-water energy response for the megavoltage x-ray beams relative to 60Co ggr-rays was in the range of 0.990-0.979 and 0.984-0.962 for lithium formate and lithium fluoride, respectively. The results show that EPR dosimetry with lithium formate provides dose estimates with a precision comparable to that of TL dosimetry (using lithium fluoride) for doses above 2 Gy, and that lithium formate is slightly less dependent on megavoltage photon beam energy than lithium fluoride.

  17. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  18. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  19. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    PubMed

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  20. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  1. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases.

    PubMed

    Hänscheid, Heribert; Canzi, Cristina; Eschner, Wolfgang; Flux, Glenn; Luster, Markus; Strigari, Lidia; Lassmann, Michael

    2013-07-01

    The EANM Dosimetry Committee Series "Standard Operational Procedures for Pre-Therapeutic Dosimetry" (SOP) provides advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This particular SOP describes how to tailor the therapeutic activity to be administered for radioiodine therapy of benign thyroid diseases such as Graves' disease or hyperthyroidism. Pretherapeutic dosimetry is based on the assessment of the individual (131)I kinetics in the target tissue after the administration of a tracer activity. The present SOP makes proposals on the equipment to be used and guides the user through the measurements. Time schedules for the measurement of the fractional (131)I uptake in the diseased tissue are recommended and it is shown how to calculate from these datasets the therapeutic activity necessary to administer a predefined target dose in the subsequent therapy. Potential sources of error are pointed out and the inherent uncertainties of the procedures depending on the number of measurements are discussed. The theoretical background and the derivation of the listed equations from compartment models of the iodine kinetics are explained in a supplementary file published online only.

  2. The dose distribution of low dose rate Cs-137 in intracavitary brachytherapy: comparison of Monte Carlo simulation, treatment planning calculation and polymer gel measurement

    NASA Astrophysics Data System (ADS)

    Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.

    2004-12-01

    In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.

  3. Retrospective dosimetry analyses of reactor vessel cladding samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combinedmore » with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)« less

  4. The Gel Electrophoresis Markup Language (GelML) from the Proteomics Standards Initiative

    PubMed Central

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J. Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2011-01-01

    The Human Proteome Organisation’s Proteomics Standards Initiative (HUPO-PSI) has developed the GelML data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for mass spectrometry data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications. PMID:20677327

  5. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  6. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  7. Thermoluminescence Dosimetry (TLD) and its Application in Medical Physics

    NASA Astrophysics Data System (ADS)

    Azorín Nieto, Juan

    2004-09-01

    Radiation dosimetry is fundamental in Medical Physics, involving patients and phantom dosimetry. In both cases thermoluminescence dosimetry (TLD) is the most appropriate technique for measuring the absorbed dose. In this paper thermoluminescence phenomenon as well as the use of TLD in radiodiagnosis and radiotherapy for in vivo or in phantom measurements is discussed. Some results of measurements made in radiotherapy and radiodiagnosis using home made LiF:Mg,Cu,P+PTFE TLD are presented.

  8. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution

    PubMed Central

    Stellwagen, Nancy C.

    2009-01-01

    This review describes the electrophoresis of curved and normal DNA molecules in agarose gels, polyacrylamide gels and in free solution. These studies were undertaken to clarify why curved DNA molecules migrate anomalously slowly in polyacrylamide gels but not in agarose gels. Two milestone papers are cited, in which Ferguson plots were used to estimate the effective pore size of agarose and polyacrylamide gels. Subsequent studies on the effect of the electric field on agarose and polyacrylamide gel matrices, DNA interactions with the two gel matrices, and the effect of curvature on the free solution mobility of DNA are also described. The combined results suggest that the anomalously slow mobilities observed for curved DNA molecules in polyacrylamide gels are due primarily to preferential interactions of curved DNAs with the polyacrylamide gel matrix; the restrictive pore size of the matrix is of lesser importance. In free solution, DNA mobilities increase with increasing molecular mass until leveling off at a plateau value of (3.17 ± 0.01) × 10-4 cm2/Vs in 40 mM Tris-acetate-EDTA buffer at 20°C. Curved DNA molecules migrate anomalously slowly in free solution as well as in polyacrylamide gels, explaining why the Ferguson plots of curved and normal DNAs containing the same number of base pairs extrapolate to different mobilities at zero gel concentration. PMID:19517510

  9. Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy

    PubMed Central

    Bradley, David; Nisbet, Andrew

    2014-01-01

    The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier

  10. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  11. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy.

    PubMed

    Kim, Michele M; Penjweini, Rozhin; Gemmell, Nathan R; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S; Hadfield, Robert H; Wilson, Brian C; Zhu, Timothy C

    2016-12-06

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT-light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([³ O ₂])-to calculate the amount of reacted singlet oxygen ([¹ O ₂] rx ), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime ( τ Δ and τ t ), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [¹ O ₂] rx was compared to SOED-calculated [¹ O ₂] rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [¹ O ₂] rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula.

  12. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  13. The ENEA neutron personal dosimetry service.

    PubMed

    Morelli, B; Mariotti, F; Fantuzzi, E

    2006-01-01

    The ENEA Radiation Protection Institute has been operating the only neutron personal dosimetry service in Italy since the 1970s. Since the 1980s the service has been based on PADC (poly allyl diglycol carbonate) for fast neutron dosimetry, while thermal neutron dosimetry has been performed using thermoluminescence (TL) dosemeters. Since the service was started, a number of aspects have undergone evolution. The latest and most important changes are as follows: in 1998 a new PADC material was introduced in routine, since 2001 TL thermal dosimetry has been based on LiF(Mg,Cu,P) [GR-200] and (7)LiF(Mg,Cu,P) [GR-207] detectors and since 2003 a new image analysis reading system for the fast neutron dosemeters has been used. Herein an updated summary of how the service operates and performs today is presented. The approaches to calibration and traceability to estimate the quantity of H(p)(10) are mentioned. Results obtained at the performance test of dosimetric services in the EU member states and Switzerland sponsored by the European Commission and organised by Eurados in 1999 are reported. Last but not least, quality assurance (QA) procedures introduced in the routine operation to track the whole process of dose evaluation (i.e. plastic QA, acceptance test, test etching bath reproducibility and 'dummy customer' (blind test) for each issuing monitoring period) are presented and discussed.

  14. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  15. In vivo thermoluminescence dosimetry for total body irradiation.

    PubMed

    Palkosková, P; Hlavata, H; Dvorák, P; Novotný, J; Novotný, J

    2002-01-01

    An improvement in the clinical results obtained using total body irradiation (TBI) with photon beams requires precise TBI treatment planning, reproducible irradiation, precise in vivo dosimetry, accurate documentation and careful evaluation. In vivo dosimetry using LiF Harshaw TLD-100 chips was used during the TBI treatments performed in our department. The results of in vivo thermoluminescence dosimetry (TLD) show that using TLD measurements and interactive adjustment of some treatment parameters based on these measurements, like monitor unit calculations, lung shielding thickness and patient positioning, it is possible to achieve high precision in absorbed dose delivery (less than 0.5%) as well as in homogeneity of irradiation (less than 6%).

  16. RCT: Module 2.04, Dosimetry, Course 8769

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillmer, Kurt T.

    This course will introduce the types of instruments used to measure external and internal radiation to people. Dosimetry is the quantitative assessment of radiation received by the human body. Several types of dosimeters are used worldwide. This information is valuable to all radiological control personnel because dosimeters are the only direct method to measure and document personnel radiation exposure and ensure regulatory compliance with applicable limits. This course will cover dosimetry terms, Department of Energy (DOE) limits, Los Alamos National Laboratory (LANL) administrative guidelines, thermoluminescent dosimeters (TLDs), LANL dosimetry, and bioassay assessment methods. This course will prepare the student withmore » the skills necessary for radiological control technician (RCT) qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examination (TEST 27566) and providing in-thefield skills.« less

  17. CONFORMANCE IMPROVEMENT USING GELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall S. Seright

    2003-09-01

    This report describes work performed during the second year of the project, ''Conformance Improvement Using Gels.'' The project has two objectives. The first objective is to identify gel compositions and conditions that substantially reduce flow through fractures that allow direct channeling between wells, while leaving secondary fractures open so that high fluid injection and production rates can be maintained. The second objective is to optimize treatments in fractured production wells, where the gel must reduce permeability to water much more than that to oil. Pore-level images from X-ray computed microtomography were re-examined for Berea sandstone and porous polyethylene. This analysismore » suggests that oil penetration through gel-filled pores occurs by a gel-dehydration mechanism, rather than a gel-ripping mechanism. This finding helps to explain why aqueous gels can reduce permeability to water more than to oil. We analyzed a Cr(III)-acetate-HPAM gel treatment in a production well in the Arbuckle formation. The availability of accurate pressure data before, during, and after the treatment was critical for the analysis. After the gel treatment, water productivity was fairly constant at about 20% of the pre-treatment value. However, oil productivity was stimulated by a factor of 18 immediately after the treatment. During the six months after the treatment, oil productivity gradually decreased to approach the pre-treatment value. To explain this behavior, we proposed that the fracture area open to oil flow was increased substantially by the gel treatment, followed by a gradual closing of the fractures during subsequent production. For a conventional Cr(III)-acetate-HPAM gel, the delay between gelant preparation and injection into a fracture impacts the placement, leakoff, and permeability reduction behavior. Formulations placed as partially formed gels showed relatively low pressure gradients during placement, and yet substantially reduced the flow capacity

  18. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  19. Removal of xylenol orange from its aqueous solution using SDS self-microemulsifying systems: optimization by Box-Behnken statistical design.

    PubMed

    Shakeel, Faiyaz; Haq, Nazrul; Alanazi, Fars K; Alsarra, Ibrahim A

    2014-04-01

    The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid-liquid adsorption. The composition of SDS SMES was optimized by Box-Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid-liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid-liquid adsorption.

  20. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  1. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  2. Recent Progress in Electromagnetic Absorption and Dosimetry in Biological Systems.

    DTIC Science & Technology

    1978-12-21

    AEROSPACE M!DICAL RESEARCH LABORATORY NAVAL AIR STATION PENSACOLA, FLORIDA 32508 L4 oj6L I SUMMARY PAGE Ti9(PROSLEM Dosimetry , as a subset of research In...absonce of sound dosimetry design, lacks credibility. This study provides a usable orientation in present and future dosimetric technology through a...leading experiment; while at other times experimental results lead the way. Progress In absorption and dosimetry Is still urderway, and higher degrees

  3. Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy.

    PubMed

    Adinehvand, Karim; Rahatabad, Fereidoun Nowshiravan

    2018-06-01

    Calculation of 3D dose distribution during radiotherapy and nuclear medicine helps us for better treatment of sensitive organs such as ovaries and uterus. In this research, we investigate two groups of normoxic dosimeters based on meta-acrylic acid (MAGIC and MAGICAUG) and polyacrylamide (PAGATUG and PAGATAUG) for brachytherapy, nuclear medicine and Tele-therapy in their sensitive and critical role as organ dosimeters. These polymer gel dosimeters are compared with soft tissue while irradiated by different energy photons in therapeutic applications. This comparison has been simulated by Monte-Carlo based MCNPX code. ORNL phantom-Female has been used to model the critical organs of kidneys, ovaries and uterus. Right kidney is proposed to be the source of irradiation and another two organs are exposed to this irradiation. Effective atomic numbers of soft tissue, MAGIC, MAGICAUG, PAGATUG and PAGATAUG are 6.86, 7.07, 6.95, 7.28, and 7.07 respectively. Results show the polymer gel dosimeters are comparable to soft tissue for using in nuclear medicine and Tele-therapy. Differences between gel dosimeters and soft tissue are defined as the dose responses. This difference is less than 4.1%, 22.6% and 71.9% for Tele-therapy, nuclear medicine and brachytherapy respectively. The results approved that gel dosimeters are the best choice for ovaries and uterus in nuclear medicine and Tele-therapy respectively. Due to the slight difference between the effective atomic numbers of these polymer gel dosimeters and soft tissue, these polymer gels are not suitable for brachytherapy since the dependence of photon interaction to atomic number, for low energy brachytherapy, had been so effective. Also this dependence to atomic number, decrease for photoelectric and increase for Compton. Therefore polymer gel dosimeters are not a good alternative to soft tissue replacement in brachytherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  5. Optically stimulated luminescence (OSL) dosimetry in medicine.

    PubMed

    Yukihara, E G; McKeever, S W S

    2008-10-21

    This paper reviews fundamental and practical aspects of optically stimulated luminescence (OSL) dosimetry pertaining to applications in medicine, having particularly in mind new researchers and medical physicists interested in gaining familiarity with the field. A basic phenomenological model for OSL is presented and the key processes affecting the outcome of an OSL measurement are discussed. Practical aspects discussed include stimulation modalities (continuous-wave OSL, pulsed OSL and linear modulation OSL), basic experimental setup, available OSL readers, optical fiber systems and basic properties of available OSL dosimeters. Finally, results from the recent literature on applications of OSL in radiotherapy, radiodiagnostics and heavy charged particle dosimetry are discussed in light of the theoretical and practical framework presented in this review. Open questions and future challenges in OSL dosimetry are highlighted as a guide to the research needed to further advance the field.

  6. Relationship between student selection criteria and learner success for medical dosimetry students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Jamie, E-mail: jabaker@mdanderson.org; Tucker, Debra; Raynes, Edilberto

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees)more » and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.« less

  7. Dosimetry for Small and Nonstandard Fields

    NASA Astrophysics Data System (ADS)

    Junell, Stephanie L.

    The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition

  8. DRDC Ottawa Participation in the SILENE Accident Dosimetry Intercomparison Exercise. June 10-21, 2002

    DTIC Science & Technology

    2002-11-01

    of CaF2:Mn and A120 3 TLDs for gamma-ray dosimetry ). In addition, DRDC Ottawa has recently substantially expanded its efforts in radiation dosimetry ...use of any real- time electronic dosimeter. Foils have long been proposed and used for criticality dosimetry (as well as for general monitoring of...ray Dosimetry DRDC Ottawa offers a number (over five) of various thermoluminescence dosimetry ( TLD ) systems. The choice of any particular TLD depends

  9. Student Perceptions of an Online Medical Dosimetry Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenards, Nishele, E-mail: lenards.nish@uwlax.ed

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled studentsmore » in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.« less

  10. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    PubMed

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Multichannel film dosimetry with nonuniformity correction.

    PubMed

    Micke, Andre; Lewis, David F; Yu, Xiang

    2011-05-01

    A new method to evaluate radiochromic film dosimetry data scanned in multiple color channels is presented. This work was undertaken to demonstrate that the multichannel method is fundamentally superior to the traditional single channel method. The multichannel method allows for the separation and removal of the nondose-dependent portions of a film image leaving a residual image that is dependent only on absorbed dose. Radiochromic films were exposed to 10 x 10 cm radiation fields (Co-60 and 6 MV) at doses up to about 300 cGy. The films were scanned in red-blue-green (RGB) format on a flatbed color scanner and measured to build calibration tables relating the absorbed dose to the response of the film in each of the color channels. Film images were converted to dose maps using two methods. The first method used the response from a single color channel and the second method used the response from all three color channels. The multichannel method allows for the separation of the scanned signal into one part that is dose-dependent and another part that is dose-independent and enables the correction of a variety of disturbances in the digitized image including nonuniformities in the active coating on the radiochromic film as well as scanner related artifacts. The fundamental mathematics of the two methods is described and the dose maps calculated from film images using the two methods are compared and analyzed. The multichannel dosimetry method was shown to be an effective way to separate out non-dose-dependent abnormalities from radiochromic dosimetry film images. The process was shown to remove disturbances in the scanned images caused by nonhomogeneity of the radiochromic film and artifacts caused by the scanner and to improve the integrity of the dose information. Multichannel dosimetry also reduces random noise in the dose images and mitigates scanner-related artifacts such as lateral position dependence. In providing an ability to calculate dose maps from data in

  13. Absorbed dose to water based dosimetry versus air kerma based dosimetry for high-energy photon beams: an experimental study.

    PubMed

    Palmans, Hugo; Nafaa, Laila; De, Jans Jo; Gillis, Sofie; Hoornaert, Marie-Thérèse; Martens, Chantal; Piessens, Marleen; Thierens, Hubert; Van der Plaetsen, Ann; Vynckier, Stefaan

    2002-02-07

    In recent years, a change has been proposed from air kerma based reference dosimetry to absorbed dose based reference dosimetry for all radiotherapy beams of ionizing radiation. In this paper, a dosimetry study is presented in which absorbed dose based dosimetry using recently developed formalisms was compared with air kerma based dosimetry using older formalisms. Three ionization chambers of each of three different types were calibrated in terms of absorbed dose to water and air kerma and sent to five hospitals. There, reference dosimetry with all the chambers was performed in a total of eight high-energy clinical photon beams. The selected chamber types were the NE2571, the PTW-30004 and the Wellhöfer-FC65G (previously Wellhöfer-IC70). Having a graphite wall, they exhibit a stable volume and the presence of an aluminium electrode ensures the robustness of these chambers. The data were analysed with the most important recommendations for clinical dosimetry: IAEA TRS-398, AAPM TG-51, IAEA TRS-277, NCS report-2 (presently recommended in Belgium) and AAPM TG-21. The necessary conversion factors were taken from those protocols, or calculated using the data in the different protocols if data for a chamber type are lacking. Polarity corrections were within 0.1% for all chambers in all beams. Recombination corrections were consistent with theoretical predictions, did not vary within a chamber type and only slightly between different chamber types. The maximum chamber-to-chamber variations of the dose obtained with the different formalisms within the same chamber type were between 0.2% and 0.6% for the NE2571, between 0.2% and 0.6% for the PTW-30004 and 0.1% and 0.3% for the Wellhöfer-FC65G for the different beams. The absorbed dose results for the NE2571 and Wellhöfer-FC65G chambers were in good agreement for all beams and all formalisms. The PTW-30004 chambers gave a small but systematically higher result compared to the result for the NE2571 chambers (on the

  14. Internal structure analysis of particle-double network gels used in a gel organ replica

    NASA Astrophysics Data System (ADS)

    Abe, Mei; Arai, Masanori; Saito, Azusa; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In recent years, the fabrication of patient organ replicas using 3D printers has been attracting a great deal of attention in medical fields. However, the cost of these organ replicas is very high as it is necessary to employ very expensive 3D printers and printing materials. Here we present a new gel organ replica, of human kidney, fabricated with a conventional molding technique, using a particle-double network hydrogel (P-DN gel). The replica is transparent and has the feel of a real kidney. It is expected that gel organ replicas produced this way will be a useful tool for the education of trainee surgeons and clinical ultrasonography technologists. In addition to developing a gel organ replica, the internal structure of the P-DN gel used is also discussed. Because the P-DN gel has a complex structure comprised of two different types of network, it has not been possible to investigate them internally in detail. Gels have an inhomogeneous network structure. If it is able to get a more uniform structure, it is considered that this would lead to higher strength in the gel. In the present study we investigate the structure of P-DN gel, using the gel organ replica. We investigated the internal structure of P-DN gel using Scanning Microscopic Light Scattering (SMILS), a non-contacting and non-destructive.

  15. Radiation dosimetry for quality control of food preservation and disinfestation

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. L.; Miller, A.; Uribe, R. M.

    In the use of x and gamma rays and scanned electron beams to extend the shelf life of food by delay of sprouting and ripening, killing of microbes, and control of insect population, quality assurance is provided by standardized radiation dosimetry. By strategic placement of calibrated dosimeters that are sufficiently stable and reproducible, it is possible to monitor minimum and maximum radiation absorbed dose levels and dose uniformity for a given processed foodstuff. The dosimetry procedure is especially important in the commisioning of a process and in making adjustments of process parameters (e.g. conveyor speed) to meet changes that occur in product and source parameters (e.g. bulk density and radiation spectrum). Routine dosimetry methods and certain corrections of dosimetry data may be selected for the radiations used in typical food processes.

  16. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  17. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but

  18. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  19. Crystallization from Gels

    NASA Astrophysics Data System (ADS)

    Narayana Kalkura, S.; Natarajan, Subramanian

    Among the various crystallization techniques, crystallization in gels has found wide applications in the fields of biomineralization and macromolecular crystallization in addition to crystallizing materials having nonlinear optical, ferroelectric, ferromagnetic, and other properties. Furthermore, by using this method it is possible to grow single crystals with very high perfection that are difficult to grow by other techniques. The gel method of crystallization provides an ideal technique to study crystal deposition diseases, which could lead to better understanding of their etiology. This chapter focuses on crystallization in gels of compounds that are responsible for crystal deposition diseases. The introduction is followed by a description of the various gels used, the mechanism of gelling, and the fascinating phenomenon of Liesegang ring formation, along with various gel growth techniques. The importance and scope of study on crystal deposition diseases and the need for crystal growth experiments using gel media are stressed. The various crystal deposition diseases, viz. (1) urolithiasis, (2) gout or arthritis, (3) cholelithiasis and atherosclerosis, and (4) pancreatitis and details regarding the constituents of the crystal deposits responsible for the pathological mineralization are discussed. Brief accounts of the theories of the formation of urinary stones and gallstones and the role of trace elements in urinary stone formation are also given. The crystallization in gels of (1) the urinary stone constituents, viz. calcium oxalate, calcium phosphates, uric acid, cystine, etc., (2) the constituents of the gallstones, viz. cholesterol, calcium carbonate, etc., (3) the major constituent of the pancreatic calculi, viz., calcium carbonate, and (4) cholic acid, a steroidal hormone are presented. The effect of various organic and inorganic ions, trace elements, and extracts from cereals, herbs, and fruits on the crystallization of major urinary stone and gallstone

  20. Active DNA gels

    NASA Astrophysics Data System (ADS)

    Saleh, Omar A.; Fygenson, Deborah K.; Bertrand, Olivier J. N.; Park, Chang Young

    2013-02-01

    Research into the mechanics and fluctuations of living cells has revealed the key role played by the cytoskeleton, a gel of stiff filaments driven out of equilibrium by force-generating motor proteins. Inspired by the extraordinary mechanical functions that the cytoskeleton imparts to the cell, we sought to create an artificial gel with similar characteristics. We identified DNA, and DNA-based motor proteins, as functional counterparts to the constituents of the cytoskeleton. We used DNA selfassembly to create a gel, and characterized its fluctuations and mechanics both before and after activation by the motor. We found that certain aspects of the DNA gel quantitatively match those of cytoskeletal networks, indicating the universal features of motor-driven, non-equilibrium networks.

  1. Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance.

    PubMed

    Narayanasamy, Ganesh; Zalman, Travis; Ha, Chul S; Papanikolaou, Niko; Stathakis, Sotirios

    2015-05-08

    The purpose of this study is to evaluate the use of the Dosimetry Check system for patient-specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patient's CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose-volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques - step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system.

  2. Application of melanin-free ink as a new antioxidative gel enhancer in sardine surimi gel.

    PubMed

    Vate, Naveen Kumar; Benjakul, Soottawat; Agustini, Tri Winarni

    2015-08-30

    The squid ink that is discarded as waste during processing can be effectively utilised as a gel enhancer in surimi gels, especially those prepared from dark-fleshed fish which have poor gel properties. It also acts as an antioxidant, inhibiting lipid oxidation. This investigation aimed to study the effect of melanin-free ink (MFI) from splendid squid (Loligo formosana) on properties and oxidative stability of surimi gel from sardine (Sardinella albella). MFI (0-0.1 g kg(-1) surimi) increased the breaking force and deformation of sardine surimi gel in a dose-dependent manner (P < 0.05). The addition of MFI had no effect on whiteness of surimi gels (P > 0.05). The expressible moisture content of gels decreased as the levels of MFI increased (P < 0.05). Based on a microstructure study, gel added with MFI at a level of 0.08 g kg(-1) surimi was denser and finer than that of the control (without MFI). Surimi gels with MFI had lower peroxide values, thiobarbituric acid reactive substances, nonanal and 2-decenal. MFI could improve the properties of sardine surimi gel. Additionally, it was able to prevent lipid oxidation in surimi gels during refrigerated storage. © 2014 Society of Chemical Industry.

  3. [Sniffing Position and i-gel Rotation Approach for i-gel Insertion under General Anesthesia].

    PubMed

    Takahashi, Yoshihiro; Murashima, Koji; Kayashima, Kenji

    2016-04-01

    Insertion assistance techniques, such as the sniffing position (SP) and i-gel? rotation approach (RA), are recommended in the i-gel supraglottic airway device insertion manual. The usefulness of these techniques was evaluated, in this study, under general anesthesia. In 50 adult patients, the i-gel was inserted with the patient in the mild-SP with 5 degrees head extention at first attempt. When resistance was encountered during insertion or airway patency was not obtained after insertion, the i-gel was re-inserted with the patient in the full-SP with maximum head extention during second attempt. When re-insertion failed, the i-gel was inserted with the patient in the full-SP and by using the i-gel RA during third attempt. Airway patency was established in the mild-SP in 36 of 50 patients, in the full-SP in 11 of the remaining 14, and in the full-SP with the i-gel RA in the remaining 3. The average insertion time was 24.0 s during the first attempt, 22.2 s during the second, and 18.2 s during the third. No major complications were observed. Both the full-SP and the i-gel RA can be used for i-gel insertion.

  4. [Polymer Gel Dosimeter].

    PubMed

    Hayashi, Shin-Ichiro

    2017-01-01

    With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.

  5. SU-F-J-100: Standardized Biodistribution Template for Nuclear Medicine Dosimetry Collection and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesner, A; Poli, G; Beykan, S

    Purpose: As the field of Nuclear Medicine moves forward with efforts to integrate radiation dosimetry into clinical practice we can identify the challenge posed by the lack of standardized dose calculation methods and protocols. All personalized internal dosimetry is derived by projecting biodistribution measurements into dosimetry calculations. In an effort to standardize organization of data and its reporting, we have developed, as a sequel to the EANM recommendation of “Good Dosimetry Reporting”, a freely available biodistribution template, which can be used to create a common point of reference for dosimetry data. It can be disseminated, interpreted, and used for methodmore » development widely across the field. Methods: A generalized biodistribution template was built in a comma delineated format (.csv) to be completed by users performing biodistribution measurements. The template is available for free download. The download site includes instructions and other usage details on the template. Results: This is a new resource developed for the community. It is our hope that users will consider integrating it into their dosimetry operations. Having biodistribution data available and easily accessible for all patients processed is a strategy for organizing large amounts of information. It may enable users to create their own databases that can be analyzed for multiple aspects of dosimetry operations. Furthermore, it enables population data to easily be reprocessed using different dosimetry methodologies. With respect to dosimetry-related research and publications, the biodistribution template can be included as supplementary material, and will allow others in the community to better compare calculations and results achieved. Conclusion: As dosimetry in nuclear medicine become more routinely applied in clinical applications, we, as a field, need to develop the infrastructure for handling large amounts of data. Our organ level biodistribution template can be

  6. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  7. Implicit dosimetry of microorganism photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, Mindaugas; Kuliešienė, Neringa; Daugelavičius, Rimantas

    2017-12-01

    Photosensitization based antibacterial treatment is efficient against a broad range of pathogens but it utilizes suboptimal dosimetry with an explicit (and very broad range) determination of sensitizer concentration, light dose and fluence rates. In this study we verified the implicit dosimetry approach for pathogen photodynamic treatment, employing protoporphyrin IX (ppIX) photobleaching to assess the killing efficacy against Staphylococcus aureus and Candida albicans cells. The results show that there was an increased kill of S. aureus and C. albicans at higher degree of ppIX fluorescence decay. Therefore ppIX photobleaching can be incorporated into the PDI dose metric offering to predict the pathogen killing efficacy during photodynamic treatment.

  8. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.W.; Wu, C.F.; Goff, T.E.

    1993-12-31

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from amore » sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.« less

  9. Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture.

    PubMed

    Acuña-Argüelles, M E; Olguin-Lora, P; Razo-Flores, E

    2003-04-01

    A mixed culture aerobically metabolized phenol, cresol isomers (o-,m-,p-), 2-ethylphenol and xylenol isomers (2,5-DMP and 3,4-DMP) as the sole carbon and energy source. This culture had a high tolerance towards phenol with values of maximum degradation rate (Vmax) of 47 microM phenol mg-1 protein h-1 and inhibition substrate constant (Ki) of 10 mM. These kinetic parameters were considerably diminished and the toxicity increased with the alkylphenols. For example with 2,5-xylenol, Vmax and Ki values of 0.8 microM 2,5-xylenol mg-1 protein h-1 and 1.3 mM, respectively, were obtained. The cresols were 5-fold more toxic than phenol, whereas 2-ethylphenol and 3,4-xylenol were 11-fold more toxic, and 2,5-xylenol was 34-fold more toxic than phenol.

  10. Optimal processing for gel electrophoresis images: Applying Monte Carlo Tree Search in GelApp.

    PubMed

    Nguyen, Phi-Vu; Ghezal, Ali; Hsueh, Ya-Chih; Boudier, Thomas; Gan, Samuel Ken-En; Lee, Hwee Kuan

    2016-08-01

    In biomedical research, gel band size estimation in electrophoresis analysis is a routine process. To facilitate and automate this process, numerous software have been released, notably the GelApp mobile app. However, the band detection accuracy is limited due to a band detection algorithm that cannot adapt to the variations in input images. To address this, we used the Monte Carlo Tree Search with Upper Confidence Bound (MCTS-UCB) method to efficiently search for optimal image processing pipelines for the band detection task, thereby improving the segmentation algorithm. Incorporating this into GelApp, we report a significant enhancement of gel band detection accuracy by 55.9 ± 2.0% for protein polyacrylamide gels, and 35.9 ± 2.5% for DNA SYBR green agarose gels. This implementation is a proof-of-concept in demonstrating MCTS-UCB as a strategy to optimize general image segmentation. The improved version of GelApp-GelApp 2.0-is freely available on both Google Play Store (for Android platform), and Apple App Store (for iOS platform). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Automatic Extraction and Analysis of Dosimetry Data in Radiotherapy Plans].

    PubMed

    Song, Wei; Zhao, Di; Lu, Hong; Zhang, Biyun; Ma, Jun; Yu, Dahai

    To improve the efficiency and accuracy of extraction and analysis of dosimetry data in radiotherapy plans for a batch of patients. With the interface function provided in Matlab platform, a program was written to extract the dosimetry data exported from treatment planning system in DICOM RT format and exported the dose-volume data to an Excel file with the SPSS compatible format. This method was compared with manual operation for 14 gastric carcinoma patients to validate the efficiency and accuracy. The output Excel data were compatible with SPSS in format, the dosimetry data error for PTV dose interval of 90%-98%, PTV dose interval of 99%-106% and all OARs were -3.48E-5 ± 3.01E-5, -1.11E-3 ± 7.68E-4, -7.85E-5 ± 9.91E-5 respectively. Compared with manual operation, the time required was reduced from 5.3 h to 0.19 h and input error was reduced from 0.002 to 0. The automatic extraction of dosimetry data in DICOM RT format for batch patients, the SPSS compatible data exportation, quick analysis were achieved in this paper. The efficiency of clinical researches based on dosimetry data analysis of large number of patients will be improved with this methods.

  12. Direct Force Measurements on Neurofilaments: Gel Expanded to Gel Condensed Transition

    NASA Astrophysics Data System (ADS)

    Beck, R.; Deek, J.; Jones, J. B.; Safinya, C. R.

    2010-03-01

    Neurofilaments (NFs)--the major cytoskeletal constituent of axons in vertebrates, consist of three subunit proteins assembled to form filaments with protruding unstructured C-terminus sidearms. Liquid crystal gel networks of sidearm-mediated NF assemblies play a key role in the mechanical while disruptions of this network, due to over-accumulation or incorrect sidearm interactions, are a hallmark of motor neuron diseases. Using synchrotron SAXS [1,2] and microscopy techniques [1,3] we report a direct force measurement of reconstituted NF-gels under osmotic pressure (P), which revealed the role of subunit sidearms on structure and interaction of NFs. With increasing P, near physiological condition, the gels undergo an abrupt nonreversible gel expanded to gel condensed transition that indicates sidearm-mediated attractions between NFs. This attraction is consistent with an electrostatic model of interpenetrating chains.[4pt] [1] J.B. Jones, C.R. Safinya, Biophys. J. 95, 823 (2008);[0pt] [2] R. Beck et al., Nature Mat. (2009) in press;[0pt] [3] H. Hess et al. Langmuir 24, 8397 (2008)

  13. Green synthesis of silver nanoparticles aimed at improving theranostics

    NASA Astrophysics Data System (ADS)

    Vedelago, José; Gomez, Cesar G.; Valente, Mauro; Mattea, Facundo

    2018-05-01

    Nowadays, the combination of diagnosis and therapy, known as theranostics, is one of the keys for an optimal treatment for cancer diseases. Theranostics can be significantly improved by incorporating metallic nanoparticles that are specifically delivered and accumulated in cancerous tissue. In this context, precise knowledge about dosimetric effects in nanoparticle-infused tissues as well as the detection and processing of emerging radiation are extremely important issues. In the last years the first studies on theranostic nanomaterials in gel dosimetry have been presented but there is still a broad field of study to explore. Most of gel dosimetric materials are extremely sensible to modifications in their composition, the addition of enhancers, metallic or inorganic charges can alter their stability and dosimetric properties; therefore, thorough studies must be made before the incorporation of any type of modifier. In this work, the synthesis of metallic nanoparticles suitable for gel dosimetry for x-ray applications is presented. A green synthesis process of silver nanoparticles coated with porcine skin gelatin by thermal reduction of silver nitrate is presented. Nanoparticles were obtained and purified for their application in gel dosimetry. Also, nanoparticles size distribution, reaction yield and the preliminar application as theranostic agents were tested in Fricke gel dosimetry in the keV range. The obtained nanoparticles were successfully used in theranostic applications acting as fluorescent agents and dose enhancers in X-ray beam irradiation simultaneously.

  14. On-line separation and preconcentration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry.

    PubMed

    Ensafi, Ali A; Shiraz, A Zendegi

    2008-02-11

    Activated carbon loaded with xylenol orange in a mini-column was used for the highly selective separation and preconcentration of Pb(II) ions. An on-line system for enrichment and the determination of Pb(II) was carried out on flame atomic absorption spectrometry. The conditions of preconcentration and quantitative recovery of Pb(II) from diluted solution, such as pH of aqueous phase, amount of the sorbent, volume of the solutions and flow variables were studied as well as effect of potential interfering ions. Under the optimum conditions, Pb(II) in an aqueous sample was concentrated about 200-fold and the detection limit was 0.4 ng mL(-1) Pb(II). The adsorption capacity of the solid phase was 0.20mg of lead per one gram of the modified activated carbon. The modified activated carbon is stable for several treatments of sample solutions without the need for using any chemical reagent. The recovery of lead(II) from river water, waste water, tap water, and in the following reference materials: SRM 2711 Montana soil and GBW-07605 tea were obtained in the range of 97-104% by the proposed method.

  15. Timing considerations for preclinical MRgRT: effects of ion diffusion, SNR and imaging times on FXG gel calibration

    NASA Astrophysics Data System (ADS)

    Welch, M.; Foltz, W. D.; Jaffray, D. A.

    2015-01-01

    Sub-millimeter resolution images are required for gel dosimeters to be used in preclinical research, which is challenging for MR probed ferrous xylenol-orange (FXG) dosimeters due to ion diffusion and inadequate SNR. A preclinical 7 T MR, small animal irradiator and FXG dosimeters were used in all experiments. Ion diffusion was analyzed using high resolution (0.2 mm/pixel) T1 MR images collected every 5 minutes, post-irradiation, for an hour. Using Fick's second law, ion diffusion was approximated for the first hour post-irradiation. SNR, T1 map precision and calibration fit were determined for two MR protocols: (1) 10 minute acquisition, 0.35mm/pixel and 3mm slices, (2) 45 minute acquisition, 0. 25 mm/pixel and 2 mm slices. SNR and T1 map precision were calculated using a Monte Carlo simulation. Calibration curves were determined by plotting R1 relaxation rates versus depth dose data, and fitting a linear trend line. Ion diffusion was estimated as 0.003mm2 in the first hour post-irradiation. For protocols (1) and (2) respectively, Monte Carlo simulation predicted T1 precisions of 3% and 5% within individual voxels using experimental SNRs; the corresponding measured T1 precisions were 8% and 12%. The linear trend lines reported slopes of 27 ± 3 Gy*s (R2: 0.80 ± 0.04) and 27 ± 4 Gy*s (R2: 0.90 ± 0.04). Ion diffusion is negligible within the first hour post-irradiation, and an accurate and reproducible calibration can be achieved in a preclinical setting with sub-millimeter resolution.

  16. Polymer gel dosimeters for pretreatment radiotherapy verification using the three-dimensional gamma evaluation and pass rate maps.

    PubMed

    Hsieh, Ling-Ling; Shieh, Jiunn-I; Wei, Li-Ju; Wang, Yi-Chun; Cheng, Kai-Yuan; Shih, Cheng-Ting

    2017-05-01

    Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Free forming of the gel by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Okada, Koji; Tase, Taishi; Saito, Azusa; Makino, Masato; Gong, Jin; Kawakami, Masaru; Furukawa, Hidemitsu

    2015-04-01

    Gels, soft and wet materials, have unique properties such as material permeability, biocompatibility and low friction, which are hardly found in hard and dry materials. These superior characteristics of hydrogels promise to expand the medical applications. In recent years, the optical 3D gel printer named SWIM-ER (Soft and Wet Industrial - Easy Realizer) was developed by our team in order to fabricate tough gels with free form. We are aiming to create artificial blood vessel of the gel material by 3D gel printer. Artificial blood vessel is expected to be used for vascular surgery practice. The artificial blood vessel made by 3D gel printer can be create to free form on the basis of the biological data of the patient. Therefore, we believe it is possible to contribute to increasing the success rate and safety of vascular surgery by creating artificial blood vessel with 3D gel printer. The modeling method of SWIM-ER is as follow. Pregel solution is polymerized by one-point UV irradiation with optical fiber. The irradiation area is controlled by computer program, so that exact 3D free forming is realized. In this study, synthesis conditions are re-examined in order to improve the degree of freedom of fabrication. The dimensional accuracy in height direction is improved by increasing the cross linker concentration. We examined the relationship of resolution to the pitch and UV irradiation time in order to improve the modeling accuracy.

  18. Modelling and Dosimetry for Alpha-Particle Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.; Song, Hong

    2015-01-01

    As a consequence of the high potency and short range of alpha-particles, radiopharmaceutical therapy with alpha-particle emitting radionuclides is a promising treatment approach that is under active pre-clinical and clinical investigation. To understand and predict the biological effects of alpha-particle radiopharmaceuticals, dosimetry is required at the micro or multi-cellular scale level. At such a scale, highly non-uniform irradiation of the target volume may be expected and the utility of a single absorbed dose value to predict biological effects comes into question. It is not currently possible to measure the pharmacokinetic input required for micro scale dosimetry in humans. Accordingly, pre-clinical studies are required to provide the pharmacokinetic data for dosimetry calculations. The translation of animal data to the human requires a pharmacokinetic model that links macro- and micro-scale pharmacokinetics thereby enabling the extrapolation of micro-scale kinetics from macroscopic measurements. These considerations along with a discussion of the appropriate physical quantity and related units for alpha-particle radiopharmaceutical therapy are examined in this review. PMID:22201712

  19. Hanford Internal Dosimetry Project manual. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, andmore » guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.« less

  20. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  1. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-07

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  2. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  3. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  4. A survey of current in vivo radiotherapy dosimetry practice.

    PubMed

    Edwards, C R; Grieveson, M H; Mountford, P J; Rolfe, P

    1997-03-01

    A questionnaire was sent out to 57 radiotherapy physics departments in the United Kingdom to determine the type of dosemeters used for in vivo measurements inside and outside X-ray treatment fields, and whether any correction is made for energy dependence when the dose to critical organs outside the main beam is estimated. 44 responses were received. 11 centres used a semi-conductor for central axis dosimetry compared with only two centres which used thermoluminescent dosimetry (TLD). 37 centres carried out dosimetry measurements outside the main beam; 25 centres used TLD and 12 centres used a semi-conductor detector. Of the 16 centres measuring the dose at both sites. 11 used a semi-conductor for the central axis measurement, but only four of those 11 changed to TLD for critical organ dosimetry despite the latter's lower variation in energy response. None of the centres stated that they made a correction for the variation in detector energy response when making measurements outside the main beam, indicating a need for a more detailed evaluation of the energy response of these detectors and the energy spectra outside the main beam.

  5. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  6. Innovation and the future of advanced dosimetry: 2D to 5D

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2017-05-01

    Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.

  7. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  8. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    PubMed

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  9. EPR/PTFE dosimetry for test reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement ofmore » absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of

  10. Compatibility between weak gel and microorganisms in weak gel-assisted microbial enhanced oil recovery.

    PubMed

    Qi, Yi-Bin; Zheng, Cheng-Gang; Lv, Cheng-Yuan; Lun, Zeng-Min; Ma, Tao

    2018-03-20

    To investigate weak gel-assisted microbial flooding in Block Wang Long Zhuang in the Jiangsu Oilfield, the compatibility of weak gel and microbe was evaluated using laboratory experiments. Bacillus sp. W5 was isolated from the formation water in Block Wang Long Zhuang. The rate of oil degradation reached 178 mg/day, and the rate of viscosity reduction reached 75.3%. Strain W5 could produce lipopeptide with a yield of 1254 mg/L. Emulsified crude oil was dispersed in the microbial degradation system, and the average diameter of the emulsified oil particles was 18.54 μm. Bacillus sp. W5 did not affect the rheological properties of the weak gel, and the presence of the weak gel did not significantly affect bacterial reproduction (as indicated by an unchanged microbial biomass), emulsification (surface tension is 35.56 mN/m and average oil particles size is 21.38 μm), oil degradation (162 mg/day) and oil viscosity reduction (72.7%). Core-flooding experiments indicated oil recovery of 23.6% when both weak gel and Bacillus sp. W5 were injected into the system, 14.76% when only the weak gel was injected, and 9.78% with strain W5 was injected without the weak gel. The results demonstrate good compatibility between strains W5 and the weak gel and highlight the application potential of weak gel-assisted microbial flooding. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  12. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  13. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    PubMed

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P < 0.05) when analyzed immediately after cooling; however, gel chewiness, cohesiveness and firmness indicated by Kramer force benefited from 24 h at 4 °C gel setting when stored post-cooking. Gel-setting conditions had a greater (P < 0.05) effect on texture when directly analyzed and most changes occurred in no-set gels. There were significant (P < 0.05) changes between directly analyzed and post-cooking stored gels in texture and color, depending on the pre-cooking gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  14. High transparent shape memory gel

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu

    2014-03-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  15. Cumulative irritation potential of metronidazole gel compared to azelaic acid gel after repeated applications to healthy skin.

    PubMed

    Ziel, Kristin; Yelverton, Christopher B; Balkrishnan, Rajesh; Feldman, Steven R

    2005-01-01

    Metronidazole 0.75% gel and azelaic acid 15% gel are commonly used to treat rosacea. Irritation is a common side effect. To assess the cumulative irritation potential of metronidazole 0.75% gel and azelaic acid 15% gel. Metronidazole 0.75% gel, azelaic acid 15% gel, and a white petrolatum negative control were applied under occlusive conditions to the upper back of a total of 33 healthy subjects. There were twelve 24-hour applications (4 times a week) and three 72-hour applications on weekends during a 3-week period. Skin reactions (erythema score +/- other local reaction) were assessed within 15 to 30 minutes of removal of the products. The mean cumulative irritancy index of metronidazole 0.75% gel was significantly lower than that of azelaic acid 15% gel and not significantly higher than the negative control product. There was increasing cumulative irritancy with azelaic acid; no cumulative irritancy was seen for either metronidazole or white petrolatum. Metronidazole 0.75% gel is less irritating in sustained use than azelaic acid 15% gel.

  16. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    PubMed

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Edema and Seed Displacements Affect Intraoperative Permanent Prostate Brachytherapy Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westendorp, Hendrik, E-mail: r.westendorp@radiotherapiegroep.nl; Nuver, Tonnis T.; Department of Radiation Oncology, Radiotherapiegroep Behandellocatie Deventer, Deventer

    Purpose: We sought to identify the intraoperative displacement patterns of seeds and to evaluate the correlation of intraoperative dosimetry with day 30 for permanent prostate brachytherapy. Methods and Materials: We analyzed the data from 699 patients. Intraoperative dosimetry was acquired using transrectal ultrasonography (TRUS) and C-arm cone beam computed tomography (CBCT). Intraoperative dosimetry (minimal dose to 40%-95% of the volume [D{sub 40}-D{sub 95}]) was compared with the day 30 dosimetry for both modalities. An additional edema-compensating comparison was performed for D{sub 90}. Stranded seeds were linked between TRUS and CBCT using an automatic and fast linking procedure. Displacement patterns weremore » analyzed for each seed implantation location. Results: On average, an intraoperative (TRUS to CBCT) D{sub 90} decline of 10.6% ± 7.4% was observed. Intraoperative CBCT D{sub 90} showed a greater correlation (R{sup 2} = 0.33) with respect to Day 30 than did TRUS (R{sup 2} = 0.17). Compensating for edema, the correlation increased to 0.41 for CBCT and 0.38 for TRUS. The mean absolute intraoperative seed displacement was 3.9 ± 2.0 mm. The largest seed displacements were observed near the rectal wall. The central and posterior seeds showed less caudal displacement than lateral and anterior seeds. Seeds that were implanted closer to the base showed more divergence than seeds close to the apex. Conclusions: Intraoperative CBCT D{sub 90} showed a greater correlation with the day 30 dosimetry than intraoperative TRUS. Edema seemed to cause most of the systematic difference between the intraoperative and day 30 dosimetry. Seeds near the rectal wall showed the most displacement, comparing TRUS and CBCT, probably because of TRUS probe–induced prostate deformation.« less

  18. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.

    PubMed

    Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2015-06-28

    A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.

  19. Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.

    PubMed

    Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah

    2016-01-01

    The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.

  20. Sol-Gel Manufactured Energetic Materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  1. Sol-gel manufactured energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2003-12-23

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  2. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.

    2012-07-03

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  3. Thixotropic gel for vadose zone remediation

    DOEpatents

    Rhia, Brian D [Augusta, GA

    2011-03-01

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  4. Thixotropic gel for vadose zone remediation

    DOEpatents

    Riha, Brian D.; Looney, Brian B.

    2015-10-27

    A thixotropic gel suitable for use in subsurface bioremediation is provided along with a process of using the gel. The thixotropic gel provides a non-migrating injectable substrate that can provide below ground barrier properties. In addition, the gel components provide for a favorable environment in which certain contaminants are preferentially sequestered in the gel and subsequently remediated by either indigenous or introduced microorganisms.

  5. Meso-Decorated Switching-Knot Gels

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  6. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  7. Dosimetry analyses of the Ringhals 3 and 4 reactor pressure vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesza, J.A.; Fero, A.H.; Rouden, J.

    2011-07-01

    A comprehensive series of neutron dosimetry measurements consisting of surveillance capsules, reactor pressure vessel cladding samples, and ex-vessel neutron dosimetry has been analyzed and compared to the results of three-dimensional, cycle-specific neutron transport calculations for the Ringhals Unit 3 and Unit 4 reactors in Sweden. The comparisons show excellent agreement between calculations and measurements. The measurements also demonstrate that it is possible to perform retrospective dosimetry measurements using the {sup 93}Nb (n,n') {sup 93m}Nb reaction on samples of 18-8 austenitic stainless steel with only trace amounts of elemental niobium. (authors)

  8. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  9. Progress with the NCT international dosimetry exchange.

    PubMed

    Binns, P J; Riley, K J; Harling, O K; Auterinen, I; Marek, M; Kiger, W S

    2004-11-01

    The international collaboration that was organized to undertake a dosimetry exchange for purposes of combining clinical data from different facilities conducting neutron capture therapy has continued since its founding at the 9th ISNCT symposium in October 2000. The thrust towards accumulating physical dosimetry data for comparison between different participants has broadened to include facilities in Japan and the determination of spectral descriptions of different beams. Retrospective analysis of patient data from the Brookhaven Medical Research Reactor is also being considered for incorporation into this study to increase the pool of available data. Meanwhile the next essential phase of comparing measurements of visiting dosimetry groups with treatment plan calculations from the host institutes has commenced. Host centers from Petten, Finland and the Czech Republic in Europe and MIT in the USA have applied the regular calculations and clinical calibrations from their current clinical studies, to generate treatment plans in the large standard phantom used for measurements by visiting participants. These data have been exchanged between the participants and scaling factors to relate the separate dose components between the different institutes are being determined. Preliminary normalization of measured and calculated dosimetry for patients is nearing completion to enable the physical radiation doses that comprise a treatment prescription at a host institute to be directly related to the corresponding measured doses of a visiting group. This should serve as an impetus for the direct comparison of patient data although the clinical requirements for achieving this need to be clearly defined. This may necessitate more extensive comparisons of treatment planning calculations through the solution of test problems and clarification regarding the question of dose specification from treatment calculations in general.

  10. TH-A-204-00: Key Dosimetry Data - Impact of New ICRU Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV xrays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and

  11. TH-A-204-01: Part I - Key Data for Ionizing-Radiation Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S.

    The ICRU is currently finalizing a report on key data for radiation dosimetry. This multi-year review has resulted in a number of recommendations regarding “fundamental” data that are used in dosimetry related to radiation therapy. This educational session will explain the background for the ICRU committee’s work, the content and conclusions of the report and the impact on outputs, including NIST primary standards, ADCL calibration coefficients and clinical reference dosimetry. Parameters and beam modalities potentially affected by this report include: The mean excitation energy, I, for graphite, air, and water, The average energy required to create an ion pair inmore » dry air (commonly referred to as W/e), The uncertainty in the determination of air kerma in kV x-rays The absolute value of Co-60 and Cs-137 primary standards and the dissemination of calibration coefficients, The determination of air kerma strength for Ir-192 HDR brachytherapy sources Ion chamber kQ factors for linac MV beams Ion chamber kQ factors for proton beams. The changes in reference dosimetry that would result from adoption of the ICRU recommendations are of the order of 0.5% to 1%, an effect that will not impact clinical dose delivery but will be detectable in the clinical setting. This session will also outline how worldwide metrology is coordinated through the Convention of the Meter and therefore how the international dosimetry community will proceed with adopting these recommendations so that uniformity from country to country in reference dosimetry is maintained. Timelines and communications methods will also be discussed to ensure that users, such as clinical medical physicists, are not surprised when their chamber’s calibration coefficient apparently changes. Learning Objectives: Understand the background for the ICRU committee’s work on key dosimetry data. Understand the proposed changes to key data and the impacts on reference dosimetry. Understand the methodology and

  12. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  13. Errors introduced by dose scaling for relative dosimetry

    PubMed Central

    Watanabe, Yoichi; Hayashi, Naoki

    2012-01-01

    Some dosimeters require a relationship between detector signal and delivered dose. The relationship (characteristic curve or calibration equation) usually depends on the environment under which the dosimeters are manufactured or stored. To compensate for the difference in radiation response among different batches of dosimeters, the measured dose can be scaled by normalizing the measured dose to a specific dose. Such a procedure, often called “relative dosimetry”, allows us to skip the time‐consuming production of a calibration curve for each irradiation. In this study, the magnitudes of errors due to the dose scaling procedure were evaluated by using the characteristic curves of BANG3 polymer gel dosimeter, radiographic EDR2 films, and GAFCHROMIC EBT2 films. Several sets of calibration data were obtained for each type of dosimeters, and a calibration equation of one set of data was used to estimate doses of the other dosimeters from different batches. The scaled doses were then compared with expected doses, which were obtained by using the true calibration equation specific to each batch. In general, the magnitude of errors increased with increasing deviation of the dose scaling factor from unity. Also, the errors strongly depended on the difference in the shape of the true and reference calibration curves. For example, for the BANG3 polymer gel, of which the characteristic curve can be approximated with a linear equation, the error for a batch requiring a dose scaling factor of 0.87 was larger than the errors for other batches requiring smaller magnitudes of dose scaling, or scaling factors of 0.93 or 1.02. The characteristic curves of EDR2 and EBT2 films required nonlinear equations. With those dosimeters, errors larger than 5% were commonly observed in the dose ranges of below 50% and above 150% of the normalization dose. In conclusion, the dose scaling for relative dosimetry introduces large errors in the measured doses when a large dose scaling is

  14. Calibration of a mosfet detection system for 6-MV in vivo dosimetry.

    PubMed

    Scalchi, P; Francescon, P

    1998-03-01

    Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD

  15. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.

  16. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  17. Gels and gel-derived glasses in the system Na2O-B2O3-SiO2

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1983-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.

  18. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel: The effect of salt addition.

    PubMed

    Wang, Wenjie; Shen, Mingyue; Liu, Suchen; Jiang, Lian; Song, Qianqian; Xie, Jianhua

    2018-07-15

    Effect of different salt ions on the gel properties and microstructure of Mesona blumes polysaccharide (MBP)-soy protein isolates (SPI) mixed gels were investigated. Sodium and calcium ions were chosen to explore their effects on the rheological behavior and gel properties of MBP-SPI mixed gels were evaluated by using rheological, X-ray diffraction, protein solubility determination, and microstructure analysis. Results showed that the addition of salt ions change the crystalline state of gels system, the crystal of gel was enhanced at low ion concentrations (0.005-0.01 M). The two peaks of gel characteristic at 8.9° and 19.9° almost disappeared at high salt ions concentrations (0.015-0.02 M), and new crystallization peaks appeared at around 30° and 45°. The elasticity, viscosity, gel strength, water holding capacity, and thermal stability of gel were increased at low ion concentration. Results showed that the main interactions which promoted gel formation and maintain the three-dimensional structure of the gel were electrostatic interactions, hydrophobic interactions, and disulfide interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. ESR/Alanine gamma-dosimetry in the 10-30 Gy range.

    PubMed

    Fainstein, C; Winkler, E; Saravi, M

    2000-05-01

    We report Alanine Dosimeter preparation, procedures for using the ESR/Dosimetry method, and the resulting calibration curve for gamma-irradiation in the range from 10-30 Gy. We use calibration curve to measure the irradiation dose in gamma-irradiation of human blood, as required in Blood Transfusion Therapy. The ESR/Alanine results are compared against those obtained using the thermoluminescent dosimetry (TLD) method.

  20. Gel filtration of sialoglycoproteins.

    PubMed Central

    Alhadeff, J A

    1978-01-01

    The role of sialic acid in the gel-filtration behaviour of sialoglycoproteins was investigated by using the separated isoenzymes of purified human liver alpha-L-fucosidase and several other well-known sialic acid-containing glycoproteins (fetuin, alpha1-acid glycoprotein, thyroglobulin and bovine submaxillary mucin). For each glycoprotein studied, gel filtration of its desialylated derivative gave an apparent molecular weights much less than that expected just from removal of sialic acid. For the lower-molecular-weight glycoproteins (fetuin and alpha1-acid glyocprotein), gel filtration of the sialylated molecules led to apparent molecular weights much larger than the known values. The data indicate that gel filtration cannot be used for accurately determining the molecular weights of at least some sialoglycoproteins. Images Fig. 1. PMID:356853

  1. Safety and Effectiveness of BufferGel and 0.5% PRO2000 Gel for the Prevention of HIV Infection in Women

    PubMed Central

    Karim, Salim S Abdool; Richardson, Barbra A; Ramjee, Gita; Hoffman, Irving F; Chirenje, Zvavahera M; Taha, Taha; Kapina, Muzala; Maslankowski, Lisa; Coletti, Anne; Profy, Albert; Moench, Thomas R.; Piwowar-Manning, Estelle; Mâsse, Benoît; Hillier, Sharon L.; Soto-Torres, Lydia

    2011-01-01

    Objective To determine the safety and effectiveness of BufferGel and 0.5% PRO2000 microbicide gels for the prevention of male to female HIV transmission Design Phase II/IIb, randomized, placebo-controlled trial with three double-blinded gel arms and an open label no gel arm. Methods Study participants from Malawi, South Africa, Zambia, Zimbabwe and USA were instructed to apply study gel ≤1 hour before each sex act and safety, sexual behavior, pregnancy, gel adherence, acceptability, and HIV serostatus were assessed during follow-up. Results The 3101 enrolled women were followed for an average of 20.4 months with 93.6% retention and 81.1% self-reported gel adherence. Adverse event rates were similar in all study arms. HIV incidence rates in the 0.5% PRO2000 Gel, BufferGel, Placebo Gel and No Gel arms were 2.70, 4.14, 3.91 and 4.02 per 100 women-years, respectively. HIV incidence in the 0.5% PRO2000 Gel arm was lower than the Placebo Gel arm (Hazard Ratio (HR)=0.7; p=0.10) and the No Gel arm (HR=0.67; p=0.06). HIV incidence rates were similar in the BufferGel and both Placebo Gel (HR=1.10; p=0.63) and No Gel control arms (HR=1.05; p=0.78). HIV incidence was similar in the Placebo Gel and No Gel arms (HR=0.97; p=0.89). Conclusions 0.5% PRO2000 Gel demonstrated a modest 30% reduction in HIV acquisition in women. However, these results were not statistically significant and subsequent findings from the MDP 301 trial have confirmed that 0.5% PRO2000 has little or no protective effect. BufferGel did not alter the risk of HIV infection. Both products were safe. PMID:21330907

  2. Dapsone gel 5% in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer for the treatment of acne vulgaris: a 12-week, randomized, double-blind study.

    PubMed

    Fleischer, Alan B; Shalita, Alan; Eichenfield, Lawrence F; Abramovits, William; Lucky, Anne; Garrett, Steven

    2010-01-01

    To evaluate the safety and efficacy of dapsone gel 5% in the treatment of acne when used in combination with adapalene gel 0.1%, benzoyl peroxide gel 4% or moisturizer. This was a twelve-week, randomized, double-blind study. Patients aged 12 years and older (n=301) applied dapsone gel twice daily and were randomly assigned (1:1:1) to one of three additional treatments, applied once daily. By week 12, dapsone gel combined with any of the three additional treatments reduced the mean number of inflammatory lesions. However, the authors did not detect a significant difference in the reduction of inflammatory lesions when dapsone was used in combination with adapalene gel or with benzoyl peroxide gel compared to the dapsone plus moisturizer combination group (P=0.052 for both versus moisturizer combination). Patients treated with dapsone gel combined with adapalene showed a significantly better response in reduction in non-inflammatory and total acne lesion count than those who received the moisturizer combination. Local adverse reactions in all three treatment groups were minimal and generally mild in severity. Dapsone gel in combination with adapalene gel or benzoyl peroxide gel is safe and well tolerated for the treatment of acne vulgaris.

  3. Dosimetry quality audit of high energy photon beams in greek radiotherapy centers.

    PubMed

    Hourdakis, Constantine J; Boziari, A

    2008-04-01

    Dosimetry quality audits and intercomparisons in radiotherapy centers is a useful tool in order to enhance the confidence for an accurate therapy and to explore and dissolve discrepancies in dose delivery. This is the first national comprehensive study that has been carried out in Greece. During 2002--2006 the Greek Atomic Energy Commission performed a dosimetry quality audit of high energy external photon beams in all (23) Greek radiotherapy centers, where 31 linacs and 13 Co-60 teletherapy units were assessed in terms of their mechanical performance characteristics and relative and absolute dosimetry. The quality audit in dosimetry of external photon beams took place by means of on-site visits, where certain parameters of the photon beams were measured, calculated and assessed according to a specific protocol and the IAEA TRS 398 dosimetry code of practice. In each radiotherapy unit (Linac or Co-60), certain functional parameters were measured and the results were compared to tolerance values and limits. Doses in water under reference and non reference conditions were measured and compared to the stated values. Also, the treatment planning systems (TPS) were evaluated with respect to irradiation time calculations. The results of the mechanical tests, dosimetry measurements and TPS evaluation have been presented in this work and discussed in detail. This study showed that Co-60 units had worse performance mechanical characteristics than linacs. 28% of all irradiation units (23% of linacs and 42% of Co-60 units) exceeded the acceptance limit at least in one mechanical parameter. Dosimetry accuracy was much worse in Co60 units than in linacs. 61% of the Co60 units exhibited deviations outside +/-3% and 31% outside +/-5%. The relevant percentages for the linacs were 24% and 7% respectively. The results were grouped for each hospital and the sources of errors (functional and human) have been investigated and discussed in details. This quality audit proved to be a

  4. Characteristics of platelet gels combined with silk

    PubMed Central

    Pallotta, Isabella; Kluge, Jonathan A.; Moreau, Jodie; Calabrese, Rossella

    2014-01-01

    Platelet gel, a fibrin network containing activated platelets, is widely used in regenerative medicine due the capacity of platelet-derived growth factors to accelerate and direct healing processes. However, limitations to this approach include poor mechanical properties, relatively rapid degradation, and the lack of control of release of growth factors at the site of injection. These issues compromise the ability of platelet gels for sustained function in regenerative medicine. In the present study, a combination of platelet gels with silk fibroin gel was studied to address the above limitations. Mixing sonicated silk gels with platelet gels extended the release of growth factors without inhibiting gel forming ability. The released growth factors were biologically active and their delivery was modified further by manipulation of the charge of the silk protein. Moreover, the silk gel augmented both the rheological properties and compressive stiffness of the platelet gel, tuned by the silk concentration and/or silk/platelet gel ratio. Silk-platelet gel injections in nude rats supported enhanced cell infiltration and blood vessel formation representing a step towards new platelet gel formulations with enhanced therapeutic impact. PMID:24480538

  5. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  6. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for Pgel-condensed state at P>Pc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  7. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  8. Gamma response characterizations of optically stimulated luminescence (OSL) affects personal dosimetry

    NASA Astrophysics Data System (ADS)

    Monthonwattana, S.; Esor, J.; Rungseesumran, T.; Intang, A.

    2017-06-01

    Optically Stimulated Luminescence (OSL) is the current technique of personal dosimetry changed by Nuclear Technology Service Center instead of Thermoluminescence dosimetry (TLD) because OSL has more advantages, such as repeat reading and elimination of heating process. In this study, OSL was used to test the gamma response characterizations. Detailed OSL investigation on personal dosimetry was carried out in the dose range of 0.2 - 3.0 mSv. The batch homogeneity was 7.66%. R2 value of the linear regression was 0.9997. The difference ratio of angular dependence at ± 60° was 8.7%. Fading of the reading was about 3%.

  9. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Elliott, Jonathan T.; Kanick, Stephen C.; Davis, Scott C.; Samkoe, Kimberley S.; Maytin, Edward V.; Pereira, Stephen P.; Hasan, Tayyaba

    2016-04-01

    Photodynamic therapy (PDT) can be a highly complex treatment, with many parameters influencing treatment efficacy. The extent to which dosimetry is used to monitor and standardize treatment delivery varies widely, ranging from measurement of a single surrogate marker to comprehensive approaches that aim to measure or estimate as many relevant parameters as possible. Today, most clinical PDT treatments are still administered with little more than application of a prescribed drug dose and timed light delivery, and thus the role of patient-specific dosimetry has not reached widespread clinical adoption. This disconnect is at least partly due to the inherent conflict between the need to measure and understand multiple parameters in vivo in order to optimize treatment, and the need for expedience in the clinic and in the regulatory and commercialization process. Thus, a methodical approach to selecting primary dosimetry metrics is required at each stage of translation of a treatment procedure, moving from complex measurements to understand PDT mechanisms in pre-clinical and early phase I trials, towards the identification and application of essential dose-limiting and/or surrogate measurements in phase II/III trials. If successful, identifying the essential and/or reliable surrogate dosimetry measurements should help facilitate increased adoption of clinical PDT. In this paper, examples of essential dosimetry points and surrogate dosimetry tools that may be implemented in phase II/III trials are discussed. For example, the treatment efficacy as limited by light penetration in interstitial PDT may be predicted by the amount of contrast uptake in CT, and so this could be utilized as a surrogate dosimetry measurement to prescribe light doses based upon pre-treatment contrast. Success of clinical ALA-based skin lesion treatment is predicted almost uniquely by the explicit or implicit measurements of photosensitizer and photobleaching, yet the individualization of treatment

  10. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE PAGES

    Napier, B. A.

    2017-03-17

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  11. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B. A.

    The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

  12. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  13. EPR-dosimetry of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor

    2017-09-01

    This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.

  14. Sol-gel optics for biomeasurements

    NASA Astrophysics Data System (ADS)

    Lechna-Marczynska, Monika I.; Podbielska, Halina; Ulatowska-Jarza, Agnieszka; Holowacz, Iwona; Andrzejewski, Damian

    2001-10-01

    Sol-gel technique is a method for producing of glass-like materials without involving a melting process. Organic compounds such as alcoholates of silicon, sodium or calcium can be used. The irregular non-crystalline network forms a gel structure where the metallic atoms are bonded to oxygen atoms. Low-temperature treatment turns this gel into an inorganic glass-like structure. There are numbers of applications of these materials that can be produced in various forms and shapes. Here, silica based sol-gel bulks and thin films optodes for biomedical applications will be presented.

  15. Dosimetric impact of a change in breathing period on VMAT stereotactic ablative body radiotherapy

    NASA Astrophysics Data System (ADS)

    Olding, T.; Alexander, KM

    2017-05-01

    The dosimetric impact of a change in breathing period during treatment was assessed for a volumetric modulated arc therapy (VMAT) stereotactic ablative radiotherapy (SABR) lung plan optimized according to our centre’s planning protocol. Plan delivery was evaluated at three breathing rates ranging from 7 to 23 breaths-per-minute (BPM) against the planning anatomy (15 BPM) calculated dose. Dynamic ion chamber, EBT3 film and Fricke-xylenol orange-gelatin (FXG) gel measurements were acquired using a motion phantom with appropriate inserts for each dosimeter. The results show good agreement between measured and calculated plan dose within the internal gross tumour volume (IGTV) target.

  16. Antimicrobial efficacy of alcohol-based hand gels.

    PubMed

    Guilhermetti, M; Marques Wiirzler, L A; Castanheira Facio, B; da Silva Furlan, M; Campo Meschial, W; Bronharo Tognim, M C; Botelho Garcia, L; Luiz Cardoso, C

    2010-03-01

    In recent years, several commercial alcohol-based hand gels have appeared on the market to improve the hand-cleansing compliance of healthcare workers. Although the antimicrobial efficacy of these products has been reported in different countries, few studies have investigated this subject in Brazil. In this study, we assessed the antimicrobial efficacy of 12 alcohol-based hand gels produced in Brazil, containing 70% w/w or v/v ethyl alcohol as the active ingredient, according to the European Standard EN 1500 (EN 1500). The following alcohol gels were tested: Hand Gel, Voga Gel, Solumax Solugel, Doctor Clean, Rio Gel, Clear Gel, Sevengel, Hand CHC, Gel Bac, WBL-50 Gel, Sanigel and Soft Care Gel. In addition, 70% w/w ethyl alcohol and three alcohol-based hand rubs (Sterillium, Sterillium Gel, and Spitaderm), commonly used in Europe and effective according to EN 1500, were also tested. All the products tested, except for two, were approved by the EN 1500 test protocol with a 60s application. The results confirmed the antimicrobial efficacy of the majority of the alcohol gels produced in Brazil for hand hygiene of healthcare workers. Copyright 2009 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  17. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1989-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene gylcol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances were injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  18. Tissue simulating gel for medical research

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1991-01-01

    A tissue simulating gel and a method for preparing the tissue simulating gel are disclosed. The tissue simulating gel is prepared by a process using water, gelatin, ethylene glycol, and a cross-linking agent. In order to closely approximate the characteristics of the type of tissue being simulated, other material has been added to change the electrical, sound conducting, and wave scattering properties of the tissue simulating gel. The result of the entire process is a formulation that will not melt at the elevated temperatures involved in hyperthermia medical research. Furthermore, the tissue simulating gel will not support mold or bacterial growth, is of a sufficient mechanical strength to maintain a desired shape without a supporting shell, and is non-hardening and non-drying. Substances have been injected into the tissue simulating gel prior to the setting-up thereof just as they could be injected into actual tissue, and the tissue simulating gel is translucent so as to permit visual inspection of its interior. A polyurethane spray often used for coating circuit boards can be applied to the surface of the tissue simulating gel to give a texture similar to human skin, making the tissue simulating gel easier to handle and contributing to its longevity.

  19. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications.

  20. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78more » refs., 35 figs., 115 tabs.« less

  1. Technical basis for internal dosimetry at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64more » refs., 42 figs., 118 tabs.« less

  2. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Anthony; Lo, Anthony T., E-mail: tonyho22003@yahoo.com; Dieterich, Sonja

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculationmore » algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.« less

  3. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  4. Ophthalmic gels: Past, present and future.

    PubMed

    Al-Kinani, Ali A; Zidan, Ghada; Elsaid, Naba; Seyfoddin, Ali; Alani, Adam W G; Alany, Raid G

    2018-02-15

    Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  6. The effects of brushing on human enamel surface roughness after NaF gel and theobromine gel exposure

    NASA Astrophysics Data System (ADS)

    Mahardhika, A.; Noerdin, A.; Eriwati, Y. K.

    2017-08-01

    This study aimed to determine the effects of brushing on human enamel surface roughness after different exposure times of 200 mg/L theobromine gel (8, 16, and 32 minutes) and 2% NaF gel (16 minutes). Twenty-four human upper premolars were used and divided into four groups. Group 1 was exposed to 2% NaF gel for 16 minutes. In contrast, groups 2, 3, and 4 were exposed to 200 mg/L theobromine gel for 8 minutes, 16 minutes, and 32 minutes, and each group was then brushed for 9 minutes and 20 seconds. After the treatment, samples were tested using a surface roughness tester (Mitutoyo SJ 301, Japan). The Wilcoxon test showed significant changes (p < 0.05) in roughness values after exposure to the theobromine gel or NaF gel and after brushing for 9 minutes and 20 seconds. It can be concluded that exposure to 200 mg/L theobromine gel or 2% NaF gel can soften the enamel surface and then increase roughness after brushing.

  7. Spring-loaded polymeric gel actuators

    DOEpatents

    Shahinpoor, M.

    1995-02-14

    Spring-loaded electrically controllable polymeric gel actuators are disclosed. The polymeric gels can be polyvinyl alcohol, polyacrylic acid, or polyacrylamide, and are contained in an electrolytic solvent bath such as water plus acetone. The action of the gel is mechanically biased, allowing the expansive and contractile forces to be optimized for specific applications. 5 figs.

  8. Antibiotic-containing hyaluronic acid gel as an antibacterial carrier: Usefulness of sponge and film-formed HA gel in deep infection.

    PubMed

    Matsuno, Hiroaki; Yudoh, Kazuo; Hashimoto, Masamichi; Himeda, Yasukazu; Miyoshi, Teruzo; Yoshida, Kaoru; Kano, Syogo

    2006-03-01

    We have developed a novel bioabsorbable antibacterial carrier using hyaluronic acid (HA) gel for prevention and treatment of orthopedic infections. In this study, we investigated the in vivo antibacterial effects of two forms of this new material, an HA gel sponge and an HA gel film. A titanium cylinder was inserted into the intramedullary cavity of each rabbit femur, along with an HA gel sponge or HA gel film containing antibiotics. The HA gel sponge contained gentamycin, vancomycin, tobramycin, or minomycin. The HA gel film contained gentamycin or vancomycin. After 0, 7, and 14 days, the rabbit bone marrow was collected, and the antibacterial activity of the HA gel was determined by agar diffusion test. As a control, we used Septocoll, a commercially available antibacterial carrier. Both the HA gel sponge and HA gel film exhibited antibacterial activity. The present results indicate that HA gel containing antibiotics is a clinically useful bioabsorbable antibacterial carrier. Copyright 2006 Orthopaedic Research Society.

  9. Establishment of gel materials with different mechanical properties by 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Ota, Takafumi; Tase, Taishi; Okada, Koji; Saito, Azusa; Takamatsu, Kyuuichiro; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    A 3D printer is a device which can directly produce objects whose shape is the same as the original 3D digital data. Hydrogels have unique properties such as high water content, low frictional properties, biocompatibility, material permeability and high transparency, which are rare in hard and dry materials. These superior characteristics of gels promise useful medical applications. We have been working on the development of a 3D gel printer, SWIM-ER (Soft and Wet Industrial - Easy Realizer), which can make models of organs and artificial blood vessels with gel material. However, 3D printing has a problem: the mechanical properties of the printed object vary depending on printing conditions, and this matter was investigated with SWIM-ER. In the past, we found that mechanical properties of 3D gel objects depend on the deposition orientation in SWIM-ER. In this study, gels were printed with different laser scanning speeds. The mechanical properties of these gels were investigated by compression tests, water content measurements and SMILS (Scanning Microscopic Light Scattering).

  10. A multicentre 'end to end' dosimetry audit for cervix HDR brachytherapy treatment.

    PubMed

    Palmer, Antony L; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-02-01

    To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  12. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  13. SU-G-TeP2-03: Comparison of Standard Dosimetry Protocol in Japan and AAPM TG-51 Addendum in Order to Establish Optimal Dosimetry for FFF Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, T; Adachi, Y; Hayashi, N

    Purpose: Japan Standard Dosimetry of Absorbed dose to water in external beam radiotherapy (JSDP12) is widely used to measure radiation dose in radiotherapy. However, JSDP12 does not take flattening-filter-free (FFF) beam into consideration. In addition, JSDP12 applied TPR20,10 for dose quality index for photon beam. The purpose of this study is to compare JSDP12 with AAPM TG-51 addendum in order to establish optimal dosimetry procedure for FFF beam. Method: We evaluated the ion-recombination factor (ks) and the correction factor of radial beam profile (Prp) in FFF beam dosimetry. The ks was introduced by 2 voltages method and verified by Jaffe’smore » plot. The Prp was given by both film measurement and calculation of treatment planning system, and compared them. Next, we compared the dose quality indexes (kQ) between TPR20,10 method and PDD(10)x method. Finally we considered optimal dosimetry protocol for FFF photon beam using JSDP12 with referring TG-51 addendum protocols. The FFF photon beams of 6 MV (6X-FFF) and 10 MV (10X-FFF) from TrueBeam were investigated in this study. Results: The ks for 6X-FFF and 10X-FFF beams were 1.005 and 1.010, respectively. The Prp of 0.6 cc ionization chamber for 6X-FFF and 10X-FFF beams (Film, TPS) were (1.004, 1.008) and (1.005, 1.008), respectively. The kQ for 6X-FFF and 10X-FFF beams (JSDP12, TG-51 addendum) were (0.9950, 0.9947) and (0.9851, 0.9845), respectively. The most effective factor for uncertainty in FFF photon beam measurement was Prp for JSDP12 formalism. Total dosimetric differences between JSDP12 and TG-51 addendum for 6X-FFF and 10X-FFF were -0.47% and -0.73%, respectively. Conclusion: The total dosimetric difference between JSDP12 and TG-51 addendum was within 1%. The introduction of kQ given by JSDP is feasible for FFF photon beam dosimetry. However, we think Prp should be considered for optimal dosimetry procedure even if JSDP12 is used for FFF photon beam dosimetry.« less

  14. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  15. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    PubMed

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  16. GelScape: a web-based server for interactively annotating, manipulating, comparing and archiving 1D and 2D gel images.

    PubMed

    Young, Nelson; Chang, Zhan; Wishart, David S

    2004-04-12

    GelScape is a web-based tool that permits facile, interactive annotation, comparison, manipulation and storage of protein gel images. It uses Java applet-servlet technology to allow rapid, remote image handling and image processing in a platform-independent manner. It supports many of the features found in commercial, stand-alone gel analysis software including spot annotation, spot integration, gel warping, image resizing, HTML image mapping, image overlaying as well as the storage of gel image and gel annotation data in compliance with Federated Gel Database requirements.

  17. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  18. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  19. Gel polymer electrolytes for batteries

    DOEpatents

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  20. A practical three-dimensional dosimetry system for radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed

  1. Updating and extending the IRDF-2002 dosimetry library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been alsomore » evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form

  2. Halogen-bonding-triggered supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  3. Small field electron beam dosimetry using MOSFET detector

    PubMed Central

    Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K.

    2010-01-01

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth‐dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high‐sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm× 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also performed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ±1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam. PACS number: 87.55.Qr

  4. Small field electron beam dosimetry using MOSFET detector.

    PubMed

    Amin, Md Nurul; Heaton, Robert; Norrlinger, Bern; Islam, Mohammad K

    2010-10-04

    The dosimetry of very small electron fields can be challenging due to relative shifts in percent depth-dose curves, including the location of dmax, and lack of lateral electronic equilibrium in an ion chamber when placed in the beam. Conventionally a small parallel plate chamber or film is utilized to perform small field electron beam dosimetry. Since modern radiotherapy departments are becoming filmless in favor of electronic imaging, an alternate and readily available clinical dosimeter needs to be explored. We have studied the performance of MOSFET as a relative dosimeter in small field electron beams. The reproducibility, linearity and sensitivity of a high-sensitivity microMOSFET were investigated for clinical electron beams. In addition, the percent depth doses, output factors and profiles have been measured in a water tank with MOSFET and compared with those measured by an ion chamber for a range of field sizes from 1 cm diameter to 10 cm × 10 cm for 6, 12, 16 and 20 MeV beams. Similar comparative measurements were also per-formed with MOSFET and films in solid water phantom. The MOSFET sensitivity was found to be practically constant over the range of field sizes investigated. The dose response was found to be linear and reproducible (within ± 1% for 100 cGy). An excellent agreement was observed among the central axis depth dose curves measured using MOSFET, film and ion chamber. The output factors measured with MOSFET for small fields agreed to within 3% with those measured by film dosimetry. Overall results indicate that MOSFET can be utilized to perform dosimetry for small field electron beam.

  5. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  6. Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters (TLDs)

    DTIC Science & Technology

    2003-06-18

    Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...34Digital Mammography Breast Dosimetry Using Copper- Doped Lithium Fluoride (LiF:MCP) Thermoluminescent Dosimeters ( TLDs )" Author: LT John J. Tomon...Title of Thesis: " Digital Mammography Breast Dosimetry Using Copper-Doped Lithium Fluoride (LiF:MCP) Thermoluminescent

  7. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, Titania; Grant, Ryan; Adamovics, John

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements

  8. Radiation-induced damage analysed by luminescence methods in retrospective dosimetry and emergency response.

    PubMed

    Woda, Clemens; Bassinet, Céline; Trompier, François; Bortolin, Emanuela; Della Monaca, Sara; Fattibene, Paola

    2009-01-01

    The increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry. The properties of the materials are critically discussed with regard to the requirements for population triage. It is concluded that electronic components found within portable electronic devices, such as e.g. mobile phones, are at present the most promising material to function as a fortuitous dosimeter in an emergency response.

  9. SU-F-T-562: Validation of EPID-Based Dosimetry for FSRS Commissioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Y; Saleh, Z; Obcemea, C

    Purpose: The prevailing approach to frameless SRS (fSRS) small field dosimetry is Gafchromic film. Though providing continuous information, its intrinsic uncertainties in fabrication, response, scan, and calibration often make film dosimetry subject to different interpretations. In this study, we explored the feasibility of using EPID portal dosimetry as a viable alternative to film for small field dosimetry. Methods: Plans prescribed a dose of 21 Gy were created on a flat solid water phantom with Eclipse V11 and iPlan for small static square fields (1.0 to 3.0 cm). In addition, two clinical test plans were computed by employing iPlan on amore » CIRS Kesler head phantom for target dimensions of 1.2cm and 2.0cm. Corresponding portal dosimetry plans were computed using the Eclipse TPS and delivered on a Varian TrueBeam machine. EBT-XD film dosimetry was performed as a reference. The isocenter doses were measured using EPID, OSLD, stereotactic diode, and CC01 ion chamber. Results: EPID doses at the center of the square field were higher than Eclipse TPS predicted portal doses, with the mean difference being 2.42±0.65%. Doses measured by EBT-XD film, OSLD, stereotactic diode, and CC01 ion chamber revealed smaller differences (except OSLDs), with mean differences being 0.36±3.11%, 4.12±4.13%, 1.7±2.76%, 1.45±2.37% for Eclipse and −1.36±0.85%, 2.38±4.2%, −0.03±0.50%, −0.27±0.78% for iPlan. The profiles measured by EPID and EBT-XD film resembled TPS (Eclipse and iPlan) predicted ones within 3.0%. For the two clinical test plans, the EPID mean doses at the center of field were 2.66±0.68% and 2.33±0.32% higher than TPS predicted doses. Conclusion: We found that results obtained with EPID portal dosimetry were slightly higher (∼2%) than those obtained with EBT-XD film, diode, and CC01 ion chamber with the exception of OSLDs, but well within IROC tolerance (5.0%). Therefore, EPID has the potential to become a viable real-time alternative method to film

  10. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  11. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  12. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  13. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  14. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  15. In vivo dosimetry in external beam radiotherapy.

    PubMed

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-01

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20∕20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  16. Sol-gel derived copper-doped silica glass as a sensitive material for X-ray beam dosimetry

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Hamzaoui, Hicham El; Bouazaoui, Mohamed; Ouerdane, Youcef; Boukenter, Aziz; Girard, Sylvain; Marcandella, Claude; Duhamel, Olivier

    2016-01-01

    The light emission from a sol-gel-derived Cu-doped silica glass was studied under 10 keV X-ray irradiation using a fibered setup. Both radioluminescence (RL) and optically stimulated luminescence (OSL) were analyzed at different high dose rates up to 50 Gy/s and for different exposure times, yielding accumulated doses up to 50 kGy (in SiO2). Even if a darkening effect appears at this dose level, the material remains X-sensitive after exposure to several kGy. At low dose rate, the scintillation mechanisms are similar to photoluminescence, involving the Cu+ ions electronic levels, contrary to the nonlinear domain (for dose rates higher than 30 Gy/s). This RL, as well as the OSL, could be exploited in their linear domain to measure doses as high as 3 kGy. A thorough study of the OSL signal has shown that it must be employed with caution in order to take the fading phenomenon and the response dependency on stimulation source intensity into consideration.

  17. Embedding memories in colloidal gels though oscillatory shear

    NASA Astrophysics Data System (ADS)

    Schwen, Eric; Ramaswamay, Meera; Jan, Linda; Cheng, Chieh-Min; Cohen, Itai

    While gels are ubiquitous in applications from food products to filtration, their mechanical properties are usually determined by self-assembly. We use oscillatory shear to train colloidal gels, embedding memories of the training protocol in rheological responses such as the yield strain and the gel network structures. When our gels undergo shear, the particles are forced to rearrange until they organize into structures that can locally undergo reversible shear cycles. We utilize a high-speed confocal microscope and a shear cell to image a colloidal gel while simultaneously straining the gel and measuring its shear stresses. By comparing stroboscopic images of the gel, we quantify the decrease in particle rearrangement as the gel develops reversible structures. We analyze and construct a model for the rates at which different regions in the gel approach reversible configurations. Through characterizing the gel network, we determine the structural origins of these shear training memories in gels. These results may allow us to use shear training protocols to produce gels with controllable yield strains and to better understand changes in the microstructure and rheology of gels that undergo repeated shear through mixing or flowing. This research was supported in part by NSF CBET 1509308 and Xerox Corporation.

  18. Anthropomorphic Phantom Radiation Dosimetry at the NATO Standard Reference Point at Aberdeen Proving Ground,

    DTIC Science & Technology

    1987-04-01

    and would still be well under 10(C. .% % p., I V a- E p - -12 - IABLE 8 (a) TLD results for phantom dosimetry - all values shown are measured charge...SAI. Conclusions The current DREO dosimetry system-consisting of bubble, CR39 and TLD dosimeters - has proven capable of producing meaningful results at...MC FILE CoPy’ Defence nationale 00 ANTHROPOMORPHIC PHANTOM RADIATION DOSIMETRY AT THE NATO STANDARD OREFERENCE POINT AT ABERDEEN PROVING GROUND by T

  19. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  20. Flow of colloidal suspensions and gels

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  1. Silicone gel breast implants: science and testing.

    PubMed

    Kinney, Brian M; Jeffers, Lynn L C; Ratliff, Gregory E; Carlisle, Dan A

    2014-07-01

    Since the first generation of breast implants, major design innovations, including consistency of the gel, palpability and thickness of the shell, and barrier materials in the shell, have been introduced. Surgeons have not had metrics to assess and compare available implants. Research at independent laboratories included 4 tests: gel elasticity (the gel's ability to retain its shape), gel compression fracture (the resistance to permanent gel deformation), gel-shell peel (the integration of the gel with shell as a cohesive unit), and morphological analysis. Sientra's round High-Strength Cohesive (HSC) experienced the least gel elasticity (5.805 mm), whereas Allergan's round implants experienced the most (7.465 mm). Among shaped implants, Allergan 410 experienced the least gel elasticity (3.242 mm), whereas the Sientra HSC+ implant experienced the most (4.270 mm). Sientra's round (36.32 lbf) and shaped (44.16 lbf) implants demonstrated the highest resistance to gel fracture, with Allergan's implants demonstrating the least among round (23.06 lbf) implants and Mentor Contour Profile Gel (CPG) among shaped (30.45 lbf) implants. For the gel-shell peel test, Sientra's implant required over 26% greater force than Allergan's implant and over 35% greater force than Mentor's implant. Sientra's shaped implants required more than double the peel force than Allergan 410 (119% greater) and Mentor CPG (130% greater). Morphological results showed Sientra's implants preserved structural integrity (-1.10% change). The initial findings show that these implant characteristics are individual factors to be considered separately and are not necessarily correlative. Further study of implants using these and other testing techniques will help clinicians choose between implants.

  2. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    DOEpatents

    Martino, A.; Yamanaka, S.A.; Kawola, J.S.; Showalter, S.K.; Loy, D.A.

    1998-09-29

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis are disclosed. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5--10 nm in diameter with a monodisperse size distribution. 1 fig.

  3. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  4. Electrophoresis for genotyping: microtiter array diagonal gel electrophoresis on horizontal polyacrylamide gels, hydrolink, or agarose.

    PubMed

    Day, I N; Humphries, S E

    1994-11-01

    Electrophoresis of DNA has been performed traditionally in either an agarose or acrylamide gel matrix. Considerable effort has been directed to improved quality agaroses capable of high resolution, but for small fragments, such as those from polymerase chain reaction (PCR) and post-PCR digests, acrylamide still offers the highest resolution. Although agarose gels can easily be prepared in an open-faced format to gain the conveniences of horizontal electrophoresis, acrylamide does not polymerize in the presence of air and the usual configurations for gel preparation lead to electrophoresis in the vertical dimension. We describe here a very simple device and method to prepare and manipulate horizontal polyacrylamide gels (H-PAGE). In addition, the open-faced horizontal arrangement enables loading of arrays of wells. Since many procedures are undertaken in standard 96-well microtiter plates, we have also designed a device which preserves the exact configuration of the 8 x 12 array and enables electrophoresis in tracks following a 71.6 degrees diagonal between wells (MADGE, microtiter array diagonal gel electrophoresis), using either acrylamide or agarose. This eliminates almost all of the staff time taken in setup, loading, and recordkeeping and offers high resolution for genotyping pattern recognition. The nature and size of the gels allow direct stacking of gels in one tank, so that a tank used typically to analyze 30-60 samples can readily be used to analyze 1000-2000 samples. The gels would also enable robotic loading. Electrophoresis allows analysis of size and charge, parameters inaccessible to liquid-phase methods: thus, genotyping size patterns, variable length repeats, and haplotypes is possible, as well as adaptability to typing of point variations using protocols which create a difference detectable by electrophoresis.

  5. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  6. Dosimetry for photo-coagulation by the use of autofluorescence

    NASA Astrophysics Data System (ADS)

    Brodzinski, T.

    1989-01-01

    A basic problem when using lasers in medicine is that of dosimetry. The definition of the terms dose, effective value etc. will be dealt with in Chapter 2. This chapter is intended to give an insight into the problems of basic dosimetry and its technical realization within the field of photocoagulation, an established method used to treat the retina, or some skin diseases. Until now the coagulation process was assessed to be completed when the irradiated area became blanched. However in terms of dosimetry, it must be possible to predict or at least to monitor the biological effect using well-defined parameters for the laser or in achieving an objective measure for a feedback loop. In the case of coagulation, a prediction in this form is not possible. There are two ways of pro- ceeding further see Fig. 1. One can either determine the physical effect, i.e. temperature, by some kind of sensors, or even better, use some biological effect as a direct measure of the effective dose applied.

  7. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.

    PubMed

    Lohnes, Karen; Quebbemann, Neil R; Liu, Kate; Kobzeff, Fred; Loo, Joseph A; Ogorzalek Loo, Rachel R

    2016-07-15

    The virtual two-dimensional gel electrophoresis/mass spectrometry (virtual 2D gel/MS) technology combines the premier, high-resolution capabilities of 2D gel electrophoresis with the sensitivity and high mass accuracy of mass spectrometry (MS). Intact proteins separated by isoelectric focusing (IEF) gel electrophoresis are imaged from immobilized pH gradient (IPG) polyacrylamide gels (the first dimension of classic 2D-PAGE) by matrix-assisted laser desorption/ionization (MALDI) MS. Obtaining accurate intact masses from sub-picomole-level proteins embedded in 2D-PAGE gels or in IPG strips is desirable to elucidate how the protein of one spot identified as protein 'A' on a 2D gel differs from the protein of another spot identified as the same protein, whenever tryptic peptide maps fail to resolve the issue. This task, however, has been extremely challenging. Virtual 2D gel/MS provides access to these intact masses. Modifications to our matrix deposition procedure improve the reliability with which IPG gels can be prepared; the new procedure is described. Development of this MALDI MS imaging (MSI) method for high-throughput MS with integrated 'top-down' MS to elucidate protein isoforms from complex biological samples is described and it is demonstrated that a 4-cm IPG gel segment can now be imaged in approximately 5min. Gel-wide chemical and enzymatic methods with further interrogation by MALDI MS/MS provide identifications, sequence-related information, and post-translational/transcriptional modification information. The MSI-based virtual 2D gel/MS platform may potentially link the benefits of 'top-down' and 'bottom-up' proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Kinetics of shear-induced gel deswelling/solvent release.

    PubMed

    Zeo, Undina; Tarabukina, Elena; Budtova, Tatiana

    2005-11-02

    The kinetics of shear-induced deswelling of gel particles based on synthetic (sodium polyacrylate) and natural (alginate) polymers was studied by rheo-optical technique. A swollen spherical gel particle of 100+/-50 microm diameter was placed in silicone oil and the evolution of the gel size as a function of time and shear rate was monitored. Different aqueous polymer solutions were used as synthetic gel solvent: polyvinylpyrrolidone, hydroxypropyl cellulose and glucose-based polymer. The interfacial tension (gel solvent)/(silicone oil), gel degree of swelling, solvent quality and viscosity are the main parameters influencing the kinetics of shear-induced gel deswelling. The kinetics of gel volume loss was approximated by a modified Weibull equation.

  9. Fourth conference on radiation protection and dosimetry: Proceedings, program, and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casson, W.H.; Thein, C.M.; Bogard, J.S.

    This Conference is the fourth in a series of conferences organized by staff members of Oak Ridge National Laboratory in an effort to improve communication in the field of radiation protection and dosimetry. Scientists, regulators, managers, professionals, technologists, and vendors from the United States and countries around the world have taken advantage of this opportunity to meet with their contemporaries and peers in order to exchange information and ideas. The program includes over 100 papers in 9 sessions, plus an additional session for works in progress. Papers are presented in external dosimetry, internal dosimetry, radiation protection programs and assessments, developmentsmore » in instrumentation and materials, environmental and medical applications, and on topics related to standards, accreditation, and calibration. Individual papers are indexed separately on EDB.« less

  10. Prevention of postsurgical scars: comparsion of efficacy and convenience between silicone gel sheet and topical silicone gel.

    PubMed

    Kim, Sue-Min; Choi, Jung-Sik; Lee, Jung-Ho; Kim, Young-Jin; Jun, Young-Joon

    2014-11-01

    To date, few studies have compared the effectiveness of topical silicone gels versus that of silicone gel sheets in preventing scars. In this prospective study, we compared the efficacy and the convenience of use of the 2 products. We enrolled 30 patients who had undergone a surgical procedure 2 weeks to 3 months before joining the study. These participants were randomly assigned to 2 treatment arms: one for treatment with a silicone gel sheet, and the other for treatment with a topical silicone gel. Vancouver Scar Scale (VSS) scores were obtained for all patients; in addition, participants completed scoring patient questionnaires 1 and 3 months after treatment onset. Our results reveal not only that no significant difference in efficacy exists between the 2 products but also that topical silicone gels are more convenient to use. While previous studies have advocated for silicone gel sheets as first-line therapies in postoperative scar management, we maintain that similar effects can be expected with topical silicone gel. The authors recommend that, when clinicians have a choice of silicone-based products for scar prevention, they should focus on each patient's scar location, lifestyle, and willingness to undergo scar prevention treatment.

  11. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  12. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  13. Dynamics of a DNA Gel

    NASA Astrophysics Data System (ADS)

    Adhikari, Ramesh; Bhattacharya, Aniket; Dogariu, Aristide

    We study in silico the properties of a gel consisting of DNA strands (modeled as semi-flexible chains) and linkers of varying flexibility, length, and topology. These linkers are envisioned and modeled as active components with additional attributes so as to mimic properties of a synthetic DNA gel containing motor proteins. We use Brownian dynamics to directly obtain frequency dependent complex shear moduli of the gel. We further carry out force spectroscopy on these computer generated gels and study the relaxation properties as a function of the important parameters of the model, e.g., densities and relative ratios of the DNAs and the linkers, the average life time of a link, etc. Our studies are relevant for designing synthetic bio-materials for both materials and medical applications.

  14. K-Basin gel formation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1998-07-23

    A key part of the proposed waste treatment for K Basin sludge is the elimination of reactive uranium metal by dissolution in nitric acid (Fkirnent, 1998). It has been found (Delegard, 1998a) that upon nitric acid dissolution of the sludge, a gel sometimes forms. Gels are known to sometimes impair solid/liquid separation and/or material transfer. The purpose of the work reported here is to determine the cause(s) of the gel formation and to determine operating parameters for the sludge dissolution that avoid formation of gel. This work and related work were planned in (Fkunent, 1998), (Jewett, 1998) and (Beck, 1998a).more » This report describes the results of the tests in (Beck, 1998a) with non-radioactive surrogates.« less

  15. Large deformation of self-oscillating polymer gel

    NASA Astrophysics Data System (ADS)

    Maeda, Shingo; Kato, Terukazu; Otsuka, Yuji; Hosoya, Naoki; Cianchetti, Matteo; Laschi, Cecilia

    2016-01-01

    A self-oscillating gel is a system that generates an autonomous volume oscillation. This oscillation is powered by the chemical energy of the Belousov-Zhabotinsky (BZ) reaction, which demonstrates metal ion redox oscillation. A self-oscillating gel is composed of Poly-N -isopropylacrylamide (PNIPAAm) with a metal ion. In this study, we found that the displacement of the volume oscillation in a self-oscillating gel could be controlled by its being subjected to a prestraining process. We also revealed the driving mechanism of the self-oscillating gel from the point of view of thermodynamics. We observed that the polymer-solvent interaction parameter χ is altered by the redox changes to the metal ion incorporated in the self-oscillating gel. The prestraining process leads to changes in χ and changes in enthalpy and entropy when the self-oscillating gel is in a reduced and oxidized state. We found that nonprestrained gel samples oscillate in a poor solution (χ >0.5 ) and prestrained gel samples oscillate in a good solution (χ <0.5 ).

  16. Air density correction in ionization dosimetry.

    PubMed

    Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M

    2004-05-21

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.

  17. Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition

    PubMed Central

    Solis, Francisco J.; Vernon, Brent

    2009-01-01

    Doping of thermoreversible polymer gels with charged monomers provides a way to control phase separation and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and phase separation conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium phases when the system undergoes phase separation. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of phase equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct phase diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854

  18. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields.

    PubMed

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-21

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform's size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke's brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  19. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  20. Adhesive Properties of Polyacrylate Gels

    NASA Astrophysics Data System (ADS)

    Flanigan, Cynthia; Shull, Kenneth

    1998-03-01

    Soft, low-modulus gels provide an interesting opportunity to examine small adhesive interactions between two bodies in contact. As shown through dynamic rheological studies, our materials undergo a rapid gelation as they are cooled from a viscous liquid at elevated temperatures to a soft, elastic solid at room temperature. At low temperatures, the gels exhibit a linearly elastic response and display moduli close to 100Pa, thereby forming materials with great potential for quantifying weak adhesive interactions with a variety of bodies ranging from polymer surfaces to biological entities. Our current studies focus on investigating interfacial effects by performing axisymmetric adhesion tests with a model polyacrylate gel formed by diluting the copolymer poly(methyl methacrylate)-poly(n-butyl acrylate)-poly(methyl methacrylate) to a 5-15 percent solution in 2-ethyl hexanol, a selective solvent for the midblock. We have explored two different experimental geometries including a hemispherical rigid indenter of glass pressed into a gel layer of varying thicknesses, and a soft, gel cap in contact with a rigid polymer surface. By simultaneously measuring the applied load, displacement between the two bodies, and contact area during loading cycles, we are able to employ a linearly elastic fracture mechanics analysis to obtain estimates of the gel's modulus over a range of polymer concentrations, and G, the energy release rate.

  1. A reusable OSL-film for 2D radiotherapy dosimetry

    NASA Astrophysics Data System (ADS)

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-11-01

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film’s reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after ‘beam on’ or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min-1) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film’s measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after

  2. A reusable OSL-film for 2D radiotherapy dosimetry.

    PubMed

    Wouter, Crijns; Dirk, Vandenbroucke; Paul, Leblans; Tom, Depuydt

    2017-10-19

    Optical stimulated luminescence (OSL) combines reusability, sub-mm resolution, and a linear dose response in a single radiation detection technology. Such a combination is currently lacking in radiotherapy dosimetry. But OSL-films have a strong energy dependent response to keV photons due to a relative high effective atomic number (Z eff ). The current work studied the applicability of a 2D OSL-film with a reduced Z eff as (IMRT/VMAT) dosimeter. Based on their commercial OSL-film experience, Agfa Healthcare N.V. produced a new experimental OSL-film for RT dosimetry. This film had a lower effective atomic number compared to the films used in radiology. Typical 2D dosimeter requirements such as uniformity, dose response, signal stability with time, and angular dependence were evaluated. Additionally, the impact of a possible residual energy dependence was assessed for the infield as well as the out-of-field region of both static beams and standard intensity modulated patterns (chair and pyramid). The OSL-film's reusable nature allowed for a film specific absolute and linear calibration including a flood-field uniformity correction. The OSL-film was scanned with a CR-15X engine based reader using a strict timing (i.e. 4 min after 'beam on' or as soon as possible) to account for spontaneous recombination. The OSL-film had good basic response properties: non-uniformities  ⩽2.6%, a linear dose response (0-32 Gy), a linear signal decay (0.5% min -1 ) over the 20 min measured, and limited angular dependence  ⩽2.6%. Due to variations of the energy spectrum, larger dose differences were noted outside the central region of the homogenous phantom and outside both static and IMRT fields. However, the OSL-film's measured dose differences of the IMRT patterns were lower than those of Gafchromic EBT measurements ([-1.6%, 2.1%] versus [-2.9%, 3.6%]). The current OSL-film could be used as a reusable high resolution dosimeter with read-out immediately after irradiation

  3. Autologous Platelet-Poor Plasma Gel for Injection Laryngoplasty

    PubMed Central

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Chung, Phil-Sang

    2013-01-01

    Purpose To overcome the potential disadvantages of the use of foreign materials and autologous fat or collagen, we introduce here an autologous plasma gel for injection laryngoplasty. The purpose of this study was to present a new injection material, a plasma gel, and to discuss its clinical effectiveness. Materials and Methods From 2 mL of blood, the platelet poor serum layer was collected and heated at 100℃ for 12 min to form a plasma gel. The plasma gel was then injected into a targeted site; the safety and efficacy thereof were evaluated in 30 rats. We also conducted a phase I/II clinical study of plasma gel injection laryngoplasty in 11 unilateral vocal fold paralysis patients. Results The plasma gel was semi-solid and an easily injectable material. Of note, plasma gel maintains the same consistency for up to 1 year in a sealed bottle. However, exposure to room air causes the plasma gel to disappear within 1 month. In our animal study, the autologous plasma gel remained in situ for 6 months in animals with minimal inflammation. Clinical study showed that vocal cord palsy was well compensated for with the plasma gel in all patients at two months after injection with no significant complications. Jitter, shimmer, maximum, maximum phonation time (MPT) and mean voice handicap index (VHI) also improved significantly after plasma gel injection. However, because the injected plasma gel was gradually absorbed, 6 patients needed another injection, while the gel remained in place in 2 patients. Conclusion Injection laryngoplasty with autologous plasma gel may be a useful and safe treatment option for temporary vocal cord palsy. PMID:24142660

  4. Silicone Gel-Filled Breast Implants

    MedlinePlus

    ... and Medical Procedures Implants and Prosthetics Breast Implants Silicone Gel-Filled Breast Implants Share Tweet Linkedin Pin ... sharing options Linkedin Pin it Email Print Description: Silicone gel-filled breast implants have a silicone outer ...

  5. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  6. Cells on Gels: Cell Behavior at the Air-Gel Interface

    NASA Astrophysics Data System (ADS)

    O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas

    Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.

  7. Radiological properties of normoxic polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% highermore » than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.« less

  8. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    PubMed

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  9. Sol-gel layers for ceramic microsystems application

    NASA Astrophysics Data System (ADS)

    Czok, Mateusz; Golonka, Leszek

    2016-11-01

    This paper describes research on sol-gel solutions preparation process. Utilize of a sol-gel layers in the LTCC technology for reduction of surface roughness and influence on the ceramics properties is examined and described. The influence of sol-gel layer on possible sedimentation of dyes or biological substances in channels, mixers or chambers of ceramic microfluidic structures was investigated. Moreover, properties of sol-gel coated surfaces have been precisely examined and described. Finally, positive results of conducted experiments made it possible to design and manufacture a simple microfluidic ceramic structure, with embedded protective layer of sol-gel, for fluorescence measurements.

  10. Sol-gel processing to form doped sol-gel monoliths inside hollow core optical fiber and sol-gel core fiber devices made thereby

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C. (Inventor); Ott, Melanie N. (Inventor); Manuel, Michele V. (Inventor)

    2002-01-01

    A process of fabricating a fiber device includes providing a hollow core fiber, and forming a sol-gel material inside the hollow core fiber. The hollow core fiber is preferably an optical fiber, and the sol-gel material is doped with a dopant. Devices made in this manner includes a wide variety of sensors.

  11. 3D dosimetric validation of motion compensation concepts in radiotherapy using an anthropomorphic dynamic lung phantom

    NASA Astrophysics Data System (ADS)

    Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.

    2017-01-01

    In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated

  12. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Dong-Kyun; Volosin, Alex

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite materialmore » can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.« less

  13. Critical dosimetry measures and surrogate tools that can facilitate clinical success in PDT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Davis, Scott C.; Kanick, Stephen C.; Maytin, Edward V.; Pereira, Stephen P.; Palanisami, Akilan; Hasan, Tayyaba

    2016-03-01

    Photodynamic therapy can be a highly complex treatment with more than one parameter to control, or in some cases it is easily implemented with little control other than prescribed drug and light values. The role of measured dosimetry as related to clinical adoption has not been as successful as it could have been, and part of this may be from the conflicting goals of advocating for as many measurements as possible for accurate control, versus companies and clinical adopters advocating for as few measurements as possible, to keep it simple. An organized approach to dosimetry selection is required, which shifts from mechanistic measurements in pre-clinical and early phase I trials, towards just those essential dose limiting measurements and a focus on possible surrogate measures in phase II/III trials. This essential and surrogate approach to dosimetry should help successful adoption of clinical PDT if successful. The examples of essential dosimetry points and surrogate dosimetry tools which might be implemented in phase II and higher trials are discussed for solid tissue PDT with verteporfin and skin lesion treatment with aminolevulinc acid.

  14. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  15. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  16. Investigation of Preparation and Mechanisms of a Dispersed Particle Gel Formed from a Polymer Gel at Room Temperature

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei; You, Qing; Chen, Ang

    2013-01-01

    A dispersed particle gel (DPG) was successfully prepared from a polymer gel at room temperature. The polymer gel system, morphology, viscosity changes, size distribution, and zeta potential of DPG particles were investigated. The results showed that zirconium gel systems with different strengths can be cross-linked within 2.5 h at low temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) results showed that the particles were polygonal particles with nano-size distribution. According to the viscosity changes, the whole preparation process can be divided into two major stages: the bulk gel cross-linking reaction period and the DPG particle preparation period. A polymer gel with a 3-dimensional network was formed in the bulk gel cross-linking reaction period whereas shearing force and frictional force were the main driving forces for the preparation of DPG particles, and thus affected the morphology of DPG particles. High shearing force and frictional force reduced the particle size distribution, and then decreased the zeta potential (absolute value). The whole preparation process could be completed within 3 h at room temperature. It could be an efficient and energy-saving technology for preparation of DPG particles. PMID:24324817

  17. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  18. Benefits of online in vivo dosimetry for single-fraction total body irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, David J., E-mail: davideaton@nhs.net; Warry, Alison J.; Trimble, Rachel E.

    Use of a patient test dose before single-fraction total body irradiation (TBI) allows review of in vivo dosimetry and modification of the main treatment setup. However, use of computed tomography (CT) planning and online in vivo dosimetry may reduce the need for this additional step. Patients were treated using a supine CT-planned extended source-to-surface distance (SSD) technique with lead compensators and bolus. In vivo dosimetry was performed using thermoluminescent dosimeters (TLDs) and diodes at 10 representative anatomical locations, for both a 0.1-Gy test dose and the treatment dose. In total, 28 patients were treated between April 2007 and July 2013,more » with changes made in 10 cases (36%) following test dose results. Overall, 98.1% of measured in vivo treatment doses were within 10% of the prescribed dose, compared with 97.0% of test dose readings. Changes made following the test dose could have been applied during the single-fraction treatment itself, assuming that the dose was delivered in subportions and online in vivo dosimetry was available for all clinically important anatomical sites. This alleviates the need for a test dose, saving considerable time and resources.« less

  19. Thyroid cancer following scalp irradiation: a reanalysis accounting for uncertainty in dosimetry.

    PubMed

    Schafer, D W; Lubin, J H; Ron, E; Stovall, M; Carroll, R J

    2001-09-01

    In the 1940s and 1950s, over 20,000 children in Israel were treated for tinea capitis (scalp ringworm) by irradiation to induce epilation. Follow-up studies showed that the radiation exposure was associated with the development of malignant thyroid neoplasms. Despite this clear evidence of an effect, the magnitude of the dose-response relationship is much less clear because of probable errors in individual estimates of dose to the thyroid gland. Such errors have the potential to bias dose-response estimation, a potential that was not widely appreciated at the time of the original analyses. We revisit this issue, describing in detail how errors in dosimetry might occur, and we develop a new dose-response model that takes the uncertainties of the dosimetry into account. Our model for the uncertainty in dosimetry is a complex and new variant of the classical multiplicative Berkson error model, having components of classical multiplicative measurement error as well as missing data. Analysis of the tinea capitis data suggests that measurement error in the dosimetry has only a negligible effect on dose-response estimation and inference as well as on the modifying effect of age at exposure.

  20. The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Followill, D. S.; Molineu, H. A.; Lafratta, R.; Ibbott, G. S.

    2017-05-01

    The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H&N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program.

  1. Ionic liquid based multifunctional double network gel

    NASA Astrophysics Data System (ADS)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  2. Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1982-01-01

    The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.

  3. Pharmacokinetics of 2 dapivirine vaginal microbicide gels and their safety vs. Hydroxyethyl cellulose-based universal placebo gel.

    PubMed

    Nel, Annalene M; Smythe, Shanique C; Habibi, Sepideh; Kaptur, Paulina E; Romano, Joseph W

    2010-10-01

    Dapivirine, a nonnucleoside reverse transcriptase inhibitor, is in development as a microbicide for the protection of women against HIV infection. A randomized, double-blind, phase 1 trial was conducted in 36 healthy HIV-negative women to compare the pharmacokinetics of 2 dapivirine vaginal gel formulations (0.05% each) and their safety with the hydroxyethyl cellulose-based universal placebo gel. Gel was self-administered once daily for a total of 11 days. Blood and vaginal fluid samples were collected sequentially over 24 days for pharmacokinetic analysis. Safety was evaluated by pelvic examination, colposcopy, adverse events, and clinical laboratory assessments. Adverse event profiles were similar for the 3 gels. Most events were mild and not related to study gel. Headache and vaginal hemorrhage (any vaginal bleeding) were most common. Plasma concentrations of dapivirine did not exceed 1.1 ng/mL. Steady-state conditions were reached within approximately 10 days. Dapivirine concentrations in vaginal fluids were slightly higher for Gel 4789, but Cmax values on days 1 and 14 were not significantly different. Terminal half-life was 72-73 hours in plasma and 15-17 hours in vaginal fluids. Both formulations of dapivirine gel were safe and well tolerated. Dapivirine was delivered to the lower genital tract at concentrations at least 5 logs greater than in vitro inhibitory concentrations.

  4. 3-(Triethoxysilyl)propionitrile sol-gel coating.

    PubMed

    Li, Ying-Sing; Xiao, Yun; Wright, Paul B; Tran, Tuan

    2005-05-01

    3-(Triethoxysilyl)propionitrile (TESPN) sol-gel has been prepared under different conditions. It was employed for coating the surfaces of quartz and aluminum. Infrared (IR) and Raman spectra of TESPN and TESPN sol-gels have been recorded in the study of the sol-gel process. Transmission and reflection absorption IR (RAIR) spectra of TESPN sol-gel coated quartz and aluminum have also been collected for better understanding the film formation on the substrate surfaces. Spectra collected at different temperatures indicated that the silane film on quartz decomposes at 700 degrees C. Results from thermal gravimetric analysis (TGA) supported this result. Based on the group frequencies and the spectral behavior in different states, some vibrational modes were assigned to the observed bands. The anticorrosion behavior of the sol-gel coated aluminum in comparison with the uncoated metal was evaluated by measuring the potentiodynamic polarization and electrochemical impedance spectra (EIS).

  5. Structural studies of gels and gel-glasses in the SiO2-GeO2 system using vibrational spectroscopy

    NASA Technical Reports Server (NTRS)

    Mukherjee, Shyama P.; Sharma, Shiv K.

    1986-01-01

    GeO2 gel and gels in the SiO2-GeO2 system synthesized by the hydrolytic polycondensation of metal alkoxides have been studied by infrared and Raman spectroscopic techniques. The molecular structures, hydroxyl contents, and crystallinity of gels and gel-glasses in relation to the thermal history and GeO2 concentration were investigated. The binary compositions having up to 70 mol percent GeO2 were examined.

  6. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  7. A method to improve the effectiveness of diode in vivo dosimetry.

    PubMed

    Alecu, R; Alecu, M; Ochran, T G

    1998-05-01

    A routine diode in vivo dosimetry program based on a combination of entrance and exit dose measurements was clinically implemented in the radiation oncology department of Grace Hospital, Detroit, in January 1995. The delivered dose has been monitored by taking weekly measurements. The calibration of the diodes and the in vivo dosimetry protocol for this new, more effective type of dose verification is presented. The problems encountered within the program are discussed along with our solutions.

  8. On the use of unshielded cables in ionization chamber dosimetry for total-skin electron therapy.

    PubMed

    Chen, Z; Agostinelli, A; Nath, R

    1998-03-01

    The dosimetry of total-skin electron therapy (TSET) usually requires ionization chamber measurements in a large electron beam (up to 120 cm x 200 cm). Exposing the chamber's electric cable, its connector and part of the extension cable to the large electron beam will introduce unwanted electronic signals that may lead to inaccurate dosimetry results. While the best strategy to minimize the cable-induced electronic signal is to shield the cables and its connector from the primary electrons, as has been recommended by the AAPM Task Group Report 23 on TSET, cables without additional shielding are often used in TSET dosimetry measurements for logistic reasons, for example when an automatic scanning dosimetry is used. This paper systematically investigates the consequences and the acceptability of using an unshielded cable in ionization chamber dosimetry in a large TSET electron beam. In this paper, we separate cable-induced signals into two types. The type-I signal includes all charges induced which do not change sign upon switching the chamber polarity, and type II includes all those that do. The type-I signal is easily cancelled by the polarity averaging method. The type-II cable-induced signal is independent of the depth of the chamber in a phantom and its magnitude relative to the true signal determines the acceptability of a cable for use under unshielded conditions. Three different cables were evaluated in two different TSET beams in this investigation. For dosimetry near the depth of maximum buildup, the cable-induced dosimetry error was found to be less than 0.2% when the two-polarity averaging technique was applied. At greater depths, the relative dosimetry error was found to increase at a rate approximately equal to the inverse of the electron depth dose. Since the application of the two-polarity averaging technique requires a constant-irradiation condition, it was demonstrated than an additional error of up to 4% could be introduced if the unshielded cable

  9. Stabilized aqueous gels and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, B.L.

    1978-08-29

    New improved aqueous gels, and methods of using same in contacting subterranean formations, are provided. The gels are prepared by gelling an aqueous brine having incorporated therein a water-soluble cellulose ether such as a carboxymethylcellulose (CMC), and are rendered more stable to decomposition by incorporating a sulfoalkylated tannin stabilizing agent, such as a sulfomethylated quebracho (SMQ), in the gel during the preparation thereof.

  10. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  11. Thermostability of glucose oxidase in silica gel obtained by sol-gel method and in solution studied by fluorimetric method.

    PubMed

    Przybyt, Małgorzata; Miller, Ewa; Szreder, Tomasz

    2011-04-04

    The thermostability of glucose oxidase entrapped in silica gel obtained by sol-gel method was studied by thermostimulated fluorescence of FAD at pH 5 and 7 and compared with that of the native enzyme in the solution and at the presence of ethanol. The unfolding temperatures were found to be lower for the enzyme immobilised in gel as compared with the native enzyme but higher as for the enzyme at the presence of ethanol. In gel, the thermal denaturation of glucose oxidase is independent on pH while in solution the enzyme is more stable at pH 5. The investigation the enzyme in different environment by steady-state fluorescence of FAD and tryptophan, synchronous fluorescence and time-resolved fluorescence of tryptophan indicates that the state of the molecule (tertiary structure and molecular dynamics) is different in gel and in solution. The ethanol produced during gel precursor hydrolysis is not the main factor influencing the thermostability of the enzyme but more important are interactions of the protein with the gel lattice. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Multi-gel casting apparatus for vertical polyacrylamide gels with in-built solution flow system and liquid level detectors.

    PubMed

    Maurye, Praveen; Basu, Arpita; Bandyopadhyay, Tapas Kumar; Biswas, Jayanta Kumar; Mohanty, Bimal Prasana

    2017-08-01

    PAGE is the most widely used technique for the separation and biochemical analysis of biomolecules. The ever growing field of proteomics and genomics necessitates the analysis of many proteins and nucleic acid samples to understand further about the structure and function of cells. Simultaneous analysis of multiple protein samples often requires casting of many PAGE gels. Several variants of multi-gel casting/electrophoresis apparatuses are frequently used in research laboratories. Requirement of supplementary gels to match the growing demand for analyzing additional protein samples sometimes become a cause of concern. Available apparatuses are not amenable to and therefore, not recommended for any modification to accommodate additional gel casting units other than what is prescribed by the manufacturer. A novel apparatus is described here for casting multiple PAGE gels comprising four detachable components that provide enhanced practicability and performance of the apparatus. This newly modified apparatus promises to be a reliable source for making multiple gels in less time without hassle. Synchronized functioning of unique components broaden the possibilities of developing inexpensive, safe, and time-saving multi-gel casting apparatus. This apparatus can be easily fabricated and modified to accommodate desired number of gel casting units. The estimated cost (∼$300) for fabrication of the main apparatus is very competitive and effortless assembly procedure can be completed within ∼30 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Clinical application of the OneDose™ Patient Dosimetry System for total body irradiation

    NASA Astrophysics Data System (ADS)

    Best, S.; Ralston, A.; Suchowerska, N.

    2005-12-01

    The OneDose™ Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose™ dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose™ patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  14. Clinical application of the OneDose Patient Dosimetry System for total body irradiation.

    PubMed

    Best, S; Ralston, A; Suchowerska, N

    2005-12-21

    The OneDose Patient Dosimetry System (Sicel Technologies) is a new dosimeter based on metal oxide semiconductor field-effect transistor technology and designed for the in vivo measurement of patient dose during radiotherapy. In vivo dosimetry for total body irradiation (TBI) is challenging due to the extended treatment distance, low dose rates and beam spoilers. Phantom results confirm the suitability of the dosimeter for TBI in terms of inherent build-up, post-irradiation fading, accuracy, reproducibility, linearity and temperature dependence. Directional dependence is significant and should be taken into account. The OneDose dosimeters were also trialed in vivo for two TBI patients and the dose measured compared to conventional dosimeter measurements using an ionization chamber and thermoluminescent dosimeters (TLD), with agreement to within 2.2% and 3.9%, respectively. Phantom and patient results confirm that the OneDose patient dosimetry system is a practical and convenient alternative to TLDs for TBI in vivo dosimetry. For increased confidence in results with this dosimeter, we recommend that two dosimeters be used for each site of interest.

  15. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    NASA Astrophysics Data System (ADS)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  16. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    EPA Pesticide Factsheets

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  17. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA-Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological

  18. A Novel Technique for Performing Space Based Radiation Dosimetry Using DNA: Results from GRaDEx-I and the Design of GRaDEx-II

    NASA Technical Reports Server (NTRS)

    Ritter, Joe; Branly, R.; Theodorakis, C.; Bickham, J.; Swartz, C.; Friedfeld, R.; Ackerman, E.; Carruthers, C.; DiGirolamo, A.; Faranda, J.; hide

    1999-01-01

    Because of the large amounts of cosmic radiation in the space environment relative to that on earth, the effects of radiation on the physiology of astronauts is of major concern. Doses of radiation which can cause acute or chronic biological effects are to be avoided, therefore determination of the amount of radiation exposure encountered during space flight and assessment of its impact on biological systems is critical. Quantifying the radiation dosage and damage to biological systems, especially to humans during repetitive high altitude flight and during long duration space flight is important for several reasons. Radiation can cause altered biosynthesis and long term genotoxicity resulting in cancer and birth defects, etc. Radiation damage to biological systems depends in a complex way on incident radiation species and their energy spectra. Typically non-biological, i.e. film or electronic monitoring systems with narrow energy band sensitivity are used to perform dosimetry and then results are extrapolated to biological models. For this reason it may be desirable to perform radiation dosimetry by using biological molecules e.g. DNA or RNA strands as passive sensors. A lightweight genotoxicology experiment was constructed to determine the degree to which in-vitro naked DNA extracted from tissues of a variety of vertebrate organisms is damaged by exposure to radiation in a space environment. The DNA is assayed by means of agarose gel electrophoresis to determine damage such as strand breakage caused by high momentum particles and photons, and base oxidation caused by free radicals. The length distribution of DNA fragments is directly correlated with the radiation dose. It is hoped that a low mass, low cost, passive biological system to determine dose-response relationship (increase in strand breaks with increase in exposure) can be developed to perform radiation dosimetry in support of long duration space flight, and to predict negative effects on biological

  19. CHRIS: Hazardous Chemical Data

    DTIC Science & Technology

    1978-10-01

    CPLORD-O-TOLUICIfE FAST RED Z& BASE = ’-1-ITRCAMILINE FERMENTAITION ALCOH!OL - ETHYL ALCOHOL FERMENTATION AMYL ALCOHCL -ISCANYL ALCOJIGI FERMENTATION BUTYL...ACID ETHYLENEDIAMINE IETRACETIC ACID VIC-H-XYLENOL XYLENOL VIENNA GREEN COPPER ACETOARSE1ITE VILRATHANE 4300 -CIPHENYLETHAME01ISOCYANATE (MDIl VINEGAR

  20. Korean standard nuclear plant ex-vessel neutron dosimetry program Ulchin 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duo, J.I.; Chen, J.; Kulesza, J.A.

    2011-07-01

    A comprehensive ex-vessel neutron dosimetry (EVND) surveillance program has been deployed in 16 pressurized water reactors (PWR) in South Korea and EVND dosimetry sets have already been installed and analyzed in Westinghouse reactor designs. In this paper, the unique features of the design, training, and installation in the Korean standard nuclear plant (KSNP) Ulchin Unit 4 are presented. Ulchin Unit 4 Cycle 9 represents the first dosimetry analyzed from the EVND design deployed in KSNP plants: Yonggwang Units 3 through 6 and Ulchin Units 3 through 6. KSNP's cavity configuration precludes a conventional installation from the cavity floor. The solution,more » requiring the installation crew to access the cavity at an elevation of the active core, places a premium on rapid installation due to high area dose rates. Numerous geometrical features warranted the use of a detailed design in true 3D mechanical design software to control interferences. A full-size training mockup maximized the crew ability to correctly install the instrument in minimum time. The analysis of the first dosimetry set shows good agreements between measurement and calculation within the associated uncertainties. A complete EVND system has been successfully designed, installed, and analyzed for a KNSP plant. Current and future EVND analyses will continue supporting the successful operation of PWR units in South Korea. (authors)« less

  1. A comparison of two methods of in vivo dosimetry for a high energy neutron beam.

    PubMed

    Blake, S W; Bonnett, D E; Finch, J

    1990-06-01

    Two methods of in vivo dosimetry have been compared in a high energy neutron beam. These were activation dosimetry and thermoluminescence dosimetry (TLD). Their suitability was determined by comparison with estimates of total dose, obtained using a tissue equivalent ionization chamber. Measurements were made on the central axis and a profile of a 10 x 10 cm square field and also behind a shielding block in order to simulate conditions of clinical use. The TLD system was found to provide the best estimate of total dose.

  2. Patterns in shrinking gels

    NASA Astrophysics Data System (ADS)

    Matsuo, Eriko Sato; Tanaka, Toyoichi

    1992-08-01

    POLYMER gels can undergo a volume phase transition (either continuous or discontinuous) when an external condition, such as temperature or solvent composition, is altered1-3. During this transition, the volume may change by a factor of several thousand, and various patterns develop in the gel. The patterns arising from swelling and shrinking differ in both their appearance and their physical mechanisms. The mechanism for the formation and evolution of patterns on swelling gels has been established as being due to a single kind of mechanical instability4-7 in contrast, the shrinking patterns seem to be sensitive to both the initial and final states of the transition. Here we classify the various shrinking patterns in the form of a phase diagram, and explain the poly-morphism in terms of macroscopic phase separation.

  3. Catalytic control over supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Poolman, Jos M.; Maity, Chandan; Li, Feng; van der Mee, Lars; Minkenberg, Christophe B.; Mendes, Eduardo; van Esch, Jan H.; Eelkema, Rienk

    2013-05-01

    Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

  4. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  5. Structure of gels layers with cells

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  6. Development of gel materials with high transparency and mechanical strength for use with a 3D gel printer SWIM-ER

    NASA Astrophysics Data System (ADS)

    Tase, Taishi; Okada, Koji; Takamatsu, Kyuichiro; Saito, Azusa; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    Medical doctors use artificial blood vessels and organ models, which are usually made of plastic, to explain operations to students, or patients awaiting treatment. However, there are some problems such as the high cost of making the model and there is not a realistic feel because the model is hard. These problems can be solved using soft and wet material for instance gel. Gels are materials with unique properties such as transparency, biocompatibility, and low friction. In recent years, high strength gel has been developed and is expected to be applied in medical fields in the future. Artificial models of gel can be produced by 3D gel printers. Our group has been developing a 3D gel printer with 1mm precision in printing, but the shape, size and mechanical strength are not sufficient for medical models. In this study, we overcome these problems and make a gel model which is transparent, mechanically strong with a fine shape. The strength and molding accuracy is improved by changing and preparing the cross linker and ultraviolet absorber. We conducted mechanical and molding tests to confirm that the gel material properties improved.

  7. Comparison of intraoperative dosimetric implant representation with postimplant dosimetry in patients receiving prostate brachytherapy.

    PubMed

    Stone, Nelson N; Hong, Suzanne; Lo, Yeh-Chi; Howard, Victor; Stock, Richard G

    2003-01-01

    To compare the results of intraoperative dosimetry with those of CT-based postimplant dosimetry in patients undergoing prostate seed implantation. Seventy-seven patients with T1-T3 prostate cancer received an ultrasound-guided permanent seed implant (36 received (125)I, 7 (103)Pd, and 34 a partial (103)Pd implant plus external beam radiation therapy). The implantation was augmented with an intraoperative dosimetric planning system. After the peripheral needles were placed, 5-mm axial images were acquired into the treatment planning system. Soft tissue structures (prostate, urethra, and rectum) were contoured, and exact needle positions were registered. Seeds were placed with an applicator, and their positions were entered into the planning system. The dose distributions for the implant were calculated after interior needle and seed placement. Postimplant dosimetry was performed 1 month later on the basis of CT imaging. Prostate and urethral doses were compared, by using paired t tests, for the real-time dosimetry in the operating room (OR) and the postimplant dosimetry. The mean preimplant prostate volume was 39.8 cm(3), the postneedle planning volume was 41.5 cm(3) (p<0.001), and the 1-month CT volume was 43.6 cm(3) (p<0.001). The mean difference between the OR dose received by 90% of the prostate (D(90)) and the CT D(90) was 3.4% (95% confidence interval, 2.5-6.6%; p=0.034). The mean dose to 30% of the urethra was 120% of prescription in the OR and 138% on CT. The mean difference was 18% (95% confidence interval, 13-24%; p<0.001). Although small differences exist between the OR and CT dosimetry results, these data suggest that this intraoperative implant dosimetric representation system provides a close match to the actual delivered doses. These data support the use of this system to modify the implant during surgery to achieve more consistent dosimetry results.

  8. Overview of physical dosimetry methods for triage application integrated in the new European network RENEB.

    PubMed

    Trompier, François; Burbidge, Christopher; Bassinet, Céline; Baumann, Marion; Bortolin, Emanuela; De Angelis, Cinzia; Eakins, Jonathan; Della Monaca, Sara; Fattibene, Paola; Quattrini, Maria Cristina; Tanner, Rick; Wieser, Albrecht; Woda, Clemens

    2017-01-01

    In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.

  9. Advances in Inhalation Dosimetry Models and Methods for Occupational Risk Assessment and Exposure Limit Derivation

    PubMed Central

    Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.

    2015-01-01

    The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218

  10. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  11. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  12. Dosimetry audits and intercomparisons in radiotherapy: A Malaysian profile

    NASA Astrophysics Data System (ADS)

    M. Noor, Noramaliza; Nisbet, A.; Hussein, M.; Chu S, Sarene; Kadni, T.; Abdullah, N.; Bradley, D. A.

    2017-11-01

    Quality audits and intercomparisons are important in ensuring control of processes in any system of endeavour. Present interest is in control of dosimetry in teletherapy, there being a need to assess the extent to which there is consistent radiation dose delivery to the patient. In this study we review significant factors that impact upon radiotherapy dosimetry, focusing upon the example situation of radiotherapy delivery in Malaysia, examining existing literature in support of such efforts. A number of recommendations are made to provide for increased quality assurance and control. In addition to this study, the first level of intercomparison audit i.e. measuring beam output under reference conditions at eight selected Malaysian radiotherapy centres is checked; use being made of 9 μm core diameter Ge-doped silica fibres (Ge-9 μm). The results of Malaysian Secondary Standard Dosimetry Laboratory (SSDL) participation in the IAEA/WHO TLD postal dose audit services during the period between 2011 and 2015 will also been discussed. In conclusion, following review of the development of dosimetry audits and the conduct of one such exercise in Malaysia, it is apparent that regular periodic radiotherapy audits and intercomparison programmes should be strongly supported and implemented worldwide. The programmes to-date demonstrate these to be a good indicator of errors and of consistency between centres. A total of ei+ght beams have been checked in eight Malaysian radiotherapy centres. One out of the eight beams checked produced an unacceptable deviation; this was found to be due to unfamiliarity with the irradiation procedures. Prior to a repeat measurement, the mean ratio of measured to quoted dose was found to be 0.99 with standard deviation of 3%. Subsequent to the repeat measurement, the mean distribution was 1.00, and the standard deviation was 1.3%.

  13. Efficacy and safety of once-daily metronidazole 1% gel compared with twice-daily azelaic acid 15% gel in the treatment of rosacea.

    PubMed

    Wolf, John E; Kerrouche, Nabil; Arsonnaud, Stephanie

    2006-04-01

    Rosacea is an inflammatory dermatologic disorder characterized by the presence of facial erythema, visible blood vessels, papules, and pustules. The National Rosacea Society has established a classification system that identifies 4 distinct rosacea subtypes based on clinical presentation: erythematotelangiectatic, papulopustular, phymatous, and ocular. The goal of topical therapy for rosacea is to reduce inflammatory lesion counts; decrease intensity of erythema; and reduce symptoms such as stinging, burning, and pruritus. Metronidazole and azelaic acid are thought to reduce the inflammation associated with rosacea by inhibiting the production of reactive oxygen species produced by neutrophils. Both metronidazole 1% gel and azelaic acid 15% gel recently have been approved for the treatment of rosacea. The current study was conducted to compare the once-daily application of metronidazole 1% gel with twice-daily applications of azelaic acid 15% gel for the treatment of patients with moderate rosacea (N=160). Both treatments showed similar reductions in inflammatory lesion counts (77% for metronidazole 1% gel and 80% for azelaic acid 15% gel) and high success rates in both global severity (53.7% vs 56.4% for metronidazole 1% gel and azelaic acid 15% gel, respectively) and erythema (42.7% vs 42.3% for metronidazole 1% gel and azelaic acid 15% gel, respectively). On average, the efficacy (including reduction in erythema) of the once-daily application of metronidazole 1% gel and twice-daily applications of azelaic acid 15% gel were similar.

  14. Patient dose analysis in total body irradiation through in vivo dosimetry.

    PubMed

    Ganapathy, K; Kurup, P G G; Murali, V; Muthukumaran, M; Bhuvaneshwari, N; Velmurugan, J

    2012-10-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol.

  15. Patient dose analysis in total body irradiation through in vivo dosimetry

    PubMed Central

    Ganapathy, K.; Kurup, P. G. G.; Murali, V.; Muthukumaran, M.; Bhuvaneshwari, N.; Velmurugan, J.

    2012-01-01

    Total body irradiation (TBI) is a special radiotherapy technique, administered prior to bone marrow transplantation. Due to the complex nature of the treatment setup, in vivo dosimetry for TBI is mandatory to ensure proper delivery of the intended radiation dose throughout the body. Lithium fluoride (LiF) TLD-100 chips are used for the TBI in vivo dosimetry. Results obtained from the in vivo dosimetry of 20 patients are analyzed. Results obtained from forehead, abdomen, pelvis, and mediastinum showed a similar pattern with the average measured dose from 96 to 97% of the prescription dose. Extremities and chest received a dose greater than the prescription dose in many instances (more than 20% of measurements). Homogeneous dose delivery to the whole body is checked by calculating the mean dose with standard deviation for each fraction. Reasons for the difference between prescription dose and measured dose for each site are discussed. Dose homogeneity within ±10% is achieved using our in-house TBI protocol. PMID:23293453

  16. Novel royal jelly proteins identified by gel-based and gel-free proteomics.

    PubMed

    Han, Bin; Li, Chenxi; Zhang, Lan; Fang, Yu; Feng, Mao; Li, Jianke

    2011-09-28

    Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.

  17. FERRET-SAND II physics-dosimetry analysis for N Reactor Pressure Tubes 2954, 3053 and 1165 using a WIMS calculated input spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.; Kellogg, L.S.; Matsumoto, W.Y.

    1988-05-01

    This report is in response to a request from Westinghouse Hanford Company (WHC) that the PNL National Dosimetry Center (NDC) perform physics-dosimetry analyses (E > MeV) for N Reactor Pressure Tubes 2954 and 3053. As a result of these analyses, and recommendations for additional studies, two physics-dosimetry re-evaluations for Pressure Tube 1165 were also accomplished. The primary objective of Pacific Northwest Laboratories' (PNL) National Dosimetry Center (NDC) physics-dosimetry work for N Reactor was to provide FERRET-SAND II physics-dosimetry results to assist in the assessment of neutron radiation-induced changes in the physical and mechanical properties of N Reactor pressure tubes. 15more » refs., 6 figs., 5 tabs.« less

  18. Strengths and Weaknesses of a Planar Whole-Body Method of 153Sm Dosimetry for Patients with Metastatic Osteosarcoma and Comparison with Three-Dimensional Dosimetry

    PubMed Central

    Plyku, Donika; Loeb, David M.; Prideaux, Andrew R.; Baechler, Sébastien; Wahl, Richard L.; Sgouros, George

    2015-01-01

    Abstract Purpose: Dosimetric accuracy depends directly upon the accuracy of the activity measurements in tumors and organs. The authors present the methods and results of a retrospective tumor dosimetry analysis in 14 patients with a total of 28 tumors treated with high activities of 153Sm-ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) for therapy of metastatic osteosarcoma using planar images and compare the results with three-dimensional dosimetry. Materials and Methods: Analysis of phantom data provided a complete set of parameters for dosimetric calculations, including buildup factor, attenuation coefficient, and camera dead-time compensation. The latter was obtained using a previously developed methodology that accounts for the relative motion of the camera and patient during whole-body (WB) imaging. Tumor activity values calculated from the anterior and posterior views of WB planar images of patients treated with 153Sm-EDTMP for pediatric osteosarcoma were compared with the geometric mean value. The mean activities were integrated over time and tumor-absorbed doses were calculated using the software package OLINDA/EXM. Results: The authors found that it was necessary to employ the dead-time correction algorithm to prevent measured tumor activity half-lives from often exceeding the physical decay half-life of 153Sm. Measured half-lives so long are unquestionably in error. Tumor-absorbed doses varied between 0.0022 and 0.27 cGy/MBq with an average of 0.065 cGy/MBq; however, a comparison with absorbed dose values derived from a three-dimensional analysis for the same tumors showed no correlation; moreover, the ratio of three-dimensional absorbed dose value to planar absorbed dose value was 2.19. From the anterior and posterior activity comparisons, the order of clinical uncertainty for activity and dose calculations from WB planar images, with the present methodology, is hypothesized to be about 70%. Conclusion: The dosimetric results from clinical

  19. Photo-induced locomotion of chemo-responsive polymer gels

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna C.

    2009-03-01

    The need to translate chemical energy into a mechanical response, a characteristic of many biological processes, has motivated the study of stimuli-responsive polymer gels. Recently, it has been shown experimentally that by coupling the mechanical properties of the gel with the Belousov-Zhabotinsky (BZ) reaction it is possible to induce self-sustained oscillations in the gel. One of the means for controlling these chemical oscillations is using light as an external stimulus. To study the effect of light on the mechanical behavior of the gel, we use our recently developed a 3D gel lattice spring model (gLSM) which couples the BZ reaction kinetics to the gel dynamics. In this model, the polymer-solvent interactions were taken into account by adding a coupling term to the Flory-Huggins free energy. By virtue of this coupling term, the swelling---de-swelling behavior of the gel was captured in 3D. In order to include the effect of the polymer on the reaction kinetics, the Oregonator model for the photo-sensitive BZ reaction was also modified. Using gLSM model, we probed the effect of non-uniform light irradiation on the gel dynamics. We were able to manipulate the direction and velocity of locomotion of the gel using light as a control parameter. This ability to control the movement of the gel can be utilized in a variety of applications, ranging from bio-actuators to controlled drug release systems.

  20. Sol-gel derived sorbents

    DOEpatents

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  1. Radiotherapy dosimetry using a commercial OSL system.

    PubMed

    Viamonte, A; da Rosa, L A R; Buckley, L A; Cherpak, A; Cygler, J E

    2008-04-01

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  2. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  3. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  4. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  5. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  6. Sample collection system for gel electrophoresis

    DOEpatents

    Olivares, Jose A.; Stark, Peter C.; Dunbar, John M.; Hill, Karen K.; Kuske, Cheryl R.; Roybal, Gustavo

    2004-09-21

    An automatic sample collection system for use with an electrophoretic slab gel system is presented. The collection system can be used with a slab gel have one or more lanes. A detector is used to detect particle bands on the slab gel within a detection zone. Such detectors may use a laser to excite fluorescently labeled particles. The fluorescent light emitted from the excited particles is transmitted to low-level light detection electronics. Upon the detection of a particle of interest within the detection zone, a syringe pump is activated, sending a stream of buffer solution across the lane of the slab gel. The buffer solution collects the sample of interest and carries it through a collection port into a sample collection vial.

  7. Outdoor weathering of sol-gel-treated wood

    Treesearch

    Mandla A Tshabalala; Ryan Libert; Nancy Ross Sutherland

    2009-01-01

    Outdoor weathering of wood specimens treated with sol-gel formulations based on methyltrimethoxysilane (MTMOS), hexadecyltrimethoxysilane (HDTMOS), and ferric-zirconia-titania (Fe-Zr-Ti) sol was evaluated. The sol-gel process allowed deposition of a thin film of hybrid inorganic-organic networks (gel) in the wood cell wall that resulted in improved outdoor weathering...

  8. Development, validation, and implementation of a patient-specific Monte Carlo 3D internal dosimetry platform

    NASA Astrophysics Data System (ADS)

    Besemer, Abigail E.

    Targeted radionuclide therapy is emerging as an attractive treatment option for a broad spectrum of tumor types because it has the potential to simultaneously eradicate both the primary tumor site as well as the metastatic disease throughout the body. Patient-specific absorbed dose calculations for radionuclide therapies are important for reducing the risk of normal tissue complications and optimizing tumor response. However, the only FDA approved software for internal dosimetry calculates doses based on the MIRD methodology which estimates mean organ doses using activity-to-dose scaling factors tabulated from standard phantom geometries. Despite the improved dosimetric accuracy afforded by direct Monte Carlo dosimetry methods these methods are not widely used in routine clinical practice because of the complexity of implementation, lack of relevant standard protocols, and longer dose calculation times. The main goal of this work was to develop a Monte Carlo internal dosimetry platform in order to (1) calculate patient-specific voxelized dose distributions in a clinically feasible time frame, (2) examine and quantify the dosimetric impact of various parameters and methodologies used in 3D internal dosimetry methods, and (3) develop a multi-criteria treatment planning optimization framework for multi-radiopharmaceutical combination therapies. This platform utilizes serial PET/CT or SPECT/CT images to calculate voxelized 3D internal dose distributions with the Monte Carlo code Geant4. Dosimetry can be computed for any diagnostic or therapeutic radiopharmaceutical and for both pre-clinical and clinical applications. In this work, the platform's dosimetry calculations were successfully validated against previously published reference doses values calculated in standard phantoms for a variety of radionuclides, over a wide range of photon and electron energies, and for many different organs and tumor sizes. Retrospective dosimetry was also calculated for various pre

  9. Structural Properties of Silk Electro-Gels

    NASA Astrophysics Data System (ADS)

    Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.

    2013-03-01

    The interest in Bombyx Mori silk emerges from its biocompatibility and its structural superiority to synthetic polymers. Our particular interest lies in understanding the capabilities of silk electro-gels because of their reversibility and tunable adhesion. We create an electro-gel by applying a DC electric potential across a reconstituted silk fibroin solution derived directly from Bombyx Mori cocoons. This process leads to the intermolecular self-assembly of fibroin proteins into a weak gel. In this talk we will present our results on the effects of applied shear on electro-gels. We quantify the structural properties while dynamically imaging shear induced fiber formation; known as fibrillogenesis. It is observed that the mechanical properties and microstructure of these materials are highly dependent on shear history. We will also discuss the role of surface modification, through micro-patterning, on the observed gel structure. Our results provide an understanding of both the viscoelastiticity and microstucture of reconstituted silks that are being utilized as tissue scaffolds. This work is supported by a grant from the AFOSR FA9550-07-1-0130.

  10. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartzsch, Stefan, E-mail: stefan.bartzsch@icr.ac.uk; Oelfke, Uwe; Lott, Johanna

    2015-07-15

    Purpose: Microbeam radiation therapy (MRT) is a still preclinical tumor therapy approach that uses arrays of a few tens of micrometer wide parallel beams separated by a few 100 μm. The production, measurement, and planning of such radiation fields are a challenge up to now. Here, the authors investigate the feasibility of radiochromic film dosimetry in combination with a microscopic readout as a tool to validate peak and valley doses in MRT, which is an important requirement for a future clinical application of the therapy. Methods: Gafchromic{sup ®} HD-810 and HD-V2 films are exposed to MRT fields at the biomedicalmore » beamline ID17 of the European Synchrotron Radiation Facility (ESRF) and are afterward scanned with a microscope. The measured dose is compared with Monte Carlo calculations. Image analysis tools and film handling protocols are developed that allow accurate and reproducible dosimetry. The performance of HD-810 and HD-V2 films is compared and a detailed analysis of the resolution, noise, and energy dependence is carried out. Measurement uncertainties are identified and analyzed. Results: The dose was measured with a resolution of 5 × 1000 μm{sup 2} and an accuracy of 5% in the peak and between 10% and 15% in the valley region. As main causes for dosimetry uncertainties, statistical noise, film inhomogeneities, and calibration errors were identified. Calibration errors strongly increase at low doses and exceeded 3% for doses below 50 and 70 Gy for HD-V2 and HD-810 films, respectively. While the grain size of both film types is approximately 2 μm, the statistical noise in HD-V2 is much higher than in HD-810 films. However, HD-810 films show a higher energy dependence at low photon energies. Conclusions: Both film types are appropriate for dosimetry in MRT and the microscope is superior to the microdensitometer used before at the ESRF with respect to resolution and reproducibility. However, a very careful analysis of the image data is required

  11. Ionic liquids gels: Soft materials for environmental remediation.

    PubMed

    Marullo, Salvatore; Rizzo, Carla; Dintcheva, Nadka T; Giannici, Francesco; D'Anna, Francesca

    2018-05-01

    Nanostructured sorbents and, in particular, supramolecular gels are emerging as efficient materials for the removal of toxic contaminants from water, like industrial dyes. It is also known that ionic liquids can dissolve significant amounts of dyes. Consequently, supramolecular ionic liquids gels could be highly efficient sorbents for dyes removal. This would also contribute to overcome the drawbacks associated with dye removal by liquid-liquid extraction with neat ionic liquids which would require large volumes of extractant and a more difficult separation of the phases. Herein we employed novel supramolecular ionic liquid gels based on diimidazolium salts bearing naturally occurring or biomass derived anions, to adsorb cationic and anionic dyes from wastewaters. We also carried out a detailed investigation of thermal, structural, morphological and rheological features of our gels to identify which of them are key in designing better sorbents for environmental remediation. The most effective gels showed fast and thorough removal of cationic dyes like Rhodamine B. These gels could also be reused up to 20 times without any loss in removal efficiency. Overall, our ionic gels outperform most of gel-based sorbents systems so far reported in literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    PubMed

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  13. Chemomechanical synchronization in heterogeneous self-oscillating gels

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Balazs, Anna C.

    2008-04-01

    Using computational modeling, we introduce patches of self-oscillating gels undergoing the Belousov-Zhabotinsky (BZ) reaction into a nonreactive polymer network and thereby demonstrate how these BZ gels can be harnessed to impart remarkable functionality to the entire system. By first focusing on two adjacent patches of BZ gels, we show that the patches’ oscillations can become synchronized in phase or out of phase, with the oscillation frequency depending on the synchronization mode and the spatial separation between these domains. We then apply these results to an array of five adjacent BZ patches and by varying the distance between these pieces, we dramatically alter the dynamical behavior of the patterned gel. For example, the sample can be made to exhibit a unidirectional traveling wave or display a concerted expansion and contraction, properties that are valuable for creating gel-based devices, such as micropumps and microactuators. The findings point to a “modular” design approach, which can impart different functionality simply by arranging identical pieces of BZ gels into distinct spatial arrangements within a polymer matrix.

  14. [The application of non-annealing thermoluminescent dosimetry (TLD)].

    PubMed

    Wu, J M; Chen, C S; Lan, R H

    1993-06-01

    Conventional use of Thermoluminescence (TL) in radiation dosimetry is very time-consuming. It requires repeating the procedures of preheating and annealing. In an attempt to simplify these procedures, we conducted an experiment of non-annealing TL dosimetry. This article reports the experiment's results. We adopted Lithium Fluoride (LiF) chip (TLD-100) in polystyrene under the exposure of Co-60, and the result was taken by HAR-SHAW-4000 TL reading system. The TL response was analyzed, including linearity, reproducibility and fading test. Because non-annealing TL response was greatly influenced by residual electron, TLD calibration curves were separated into two parts: (1) high dose region (HDR, 50-1500 cGy); (2) low dose region (LDR, 0-50 cGy). When TL dosimeters were exposed to a single high does (about 500 cGy), the HDR could be reproduced within 3% and fit a good linearity. For LDR, we had to give up the tail of glow curve in the high temperature region. We could then get good linearity and reproducibility. Furthermore, fading of non-annealing was apparently larger than annealing. We could control the fading of non-annealing was apparently larger than annealing. We could control the fading influence within 1% by taking the TL reading one hour after exposure. On the other hand, a combination of photon and electron exposure was also performed by non-annealing TL dosimetry. The results were compatible with Co-60 exposure in the same system.

  15. Adapalene gel 0.1% is better tolerated than tretinoin gel 0.025% among healthy volunteers of various ethnic origins.

    PubMed

    Goh, Chee Leok; Tang, Mark B Y; Briantais, Philippe; Kaoukhov, Alexandre; Soto, Pascale

    2009-01-01

    The efficacious acne treatment adapalene gel 0.1% is significantly less irritating than tretinoin of various concentrations and formulations, according to several clinical studies conducted predominantly in Caucasian patients. To confirm the lower irritation potential of adapalene gel 0.1% compared to tretinoin gel 0.025% among volunteers of various ethnic origins and to explore the difference in the irritant susceptibility among ethnic groups. The study was a single-centre, randomized, investigator-masked and intra-individual comparison. Healthy volunteers applied adapalene and tretinoin daily to the face for 21 days and to the forearms for 4 days, and were then evaluated for the level of irritation. The irritation potential of adapalene gel 0.1% was significantly lower than that of tretinoin gel 0.025% in all tolerability assessments, irrespective of the volunteers' ethnic origins. The between-treatment differences were similar among various ethnic groups. Statistically significant but small inter-ethnicity differences were observed in the evaluation of facial signs, with Caucasians being less susceptible than Chinese, Asian Indians and Malays. Adapalene gel 0.1% was significantly better tolerated than tretinoin gel 0.025% among various ethnic groups. The patients' ethnic origins had no impact on the difference between adapalene and tretinoin treatments in terms of tolerability.

  16. Dosimetry applications in GATE Monte Carlo toolkit.

    PubMed

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. The Tolerability Profile of Clindamycin 1%/Benzoyl Peroxide 5% Gel vs. Adapalene 0.1%/Benzoyl Peroxide 2.5% Gel for Facial Acne

    PubMed Central

    Cirigliano, Marcela; Gwazdauskas, Jennifer A; Gonzalez, Pablo

    2012-01-01

    Objective: To compare the first two weeks of tolerability of clindamycin/benzoyl peroxide gel versus adapalene/benzoyl peroxide gel followed by six weeks of open-label clindamycin/benzoyl peroxide gel therapy in subjects with mild-to-moderate acne who participated in two eight-week, identically designed, clinical studies. Methods: Using a split-face method, patients received both clindamycin/benzoyl peroxide gel and adapalene/benzoyl peroxide gel once daily for two weeks (allocation to the right or left side of the face was randomized) in an investigator-blinded fashion. Patients then went on to receive a further six weeks of open-label, full-face clindamycin/benzoyl peroxide gel. The primary outcome was to compare signs and symptoms of tolerability during the first two weeks of treatment using an investigator-assessed 4-point rating scale. Secondary endpoints included assessment of acne severity (Investigator Static Global Assessment and lesion counts), quality of life, product acceptability/preference, and patient assessments of tolerability and safety. Results: Of the 76 subjects enrolled in the two studies, 72 completed them. Overall both products were well tolerated, but mean scores for erythema, dryness, and peeling were significantly higher with adapalene/benzoyl peroxide gel than with clindamycin/benzoyl peroxide gel at both Weeks 1 and 2 (p<0.03). Patients also rated clindamycin/benzoyl peroxide gel significantly more tolerable than adapalene/benzoyl peroxide gel for redness, dryness, burning, itching, and scaling at Weeks 1 and 2 (p 0.0073). Mean Investigator Static Global Assessment score improved with both products during the first two weeks of treatment and continued to show significant improvement versus baseline when treatment with clindamycin/benzoyl peroxide gel was continued for a further six weeks (p<0.001 at Week 8). Lesion counts improved throughout the study with significant reductions from baseline occurring at Weeks 5 and 8 (p<0.0001 for

  18. Kinetic resolution of racemic mixtures in gel media

    NASA Astrophysics Data System (ADS)

    Petrova, Rositza Iordanova

    The goal of this research was to investigate the effect of chiral gels on the chiral crystal nucleation and growth and assess the gels' potential as media for kinetic separation of racemic mixtures. The morphologies of asparagine monohydrate and sodium bromate crystals grown in different gel media were examined in order to discern the effect of gel structure and density on the relative growth rates of those materials. Different crystal habits were observed when the gel chemical composition, density and solute concentration were varied. These studies showed that the physical properties of the gel, such as gel density and pore size, as well as its chemical composition affect the crystal habit. The method of kinetic resolution in gel media was first applied to sodium chlorate, which is achiral in solution but crystallizes in a chiral space group. Crystallization in agarose gels yielded an enantiomorphic bias, the direction and magnitude of which could be affected by changing the temperature or by the addition of an achiral cosolvent. Aqueous gels at 6°C produced crystalline mixtures enriched with the d-enantiomorph, while crystallization under MeOH diffusion favored l-crystals. Optimized conditions yielded e.e. of 53% of l-enantiomorph. The method was next applied to the organic molecular crystals of asparagine monohydrate and threonine. Asparagine monohydrate growth in aqueous agarose and iota-carrageenan gels produced crystal mixtures enriched with D-enantiomer. The degree of resolution was higher when the total amount of asparagine crystallized was low. The success of the resolution depends strongly on the concentrations of solute and the geling substance. Growth from agarose gels yielded e.e. of 44% under optimized conditions. The same method was applied to the resolution of Thr, albeit with modest success. In an effort to improve the resolution of asparagine monohydrate, agarose was synthetically modified by esterifying its side chains with homochiral asparagyl

  19. Caffeine-catalyzed gels.

    PubMed

    DiCiccio, Angela M; Lee, Young-Ah Lucy; Glettig, Dean L; Walton, Elizabeth S E; de la Serna, Eva L; Montgomery, Veronica A; Grant, Tyler M; Langer, Robert; Traverso, Giovanni

    2018-07-01

    Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  1. Comparison of the cumulative irritation potential of adapalene gel and cream with that of erythromycin/tretinoin solution and gel and erythromycin/isotretinoin gel.

    PubMed

    Queille-Roussel, C; Poncet, M; Mesaros, S; Clucas, A; Baker, M; Soloff, A M

    2001-02-01

    Adapalene is a naphthoic acid derivative with retinoid activity that is effective in the treatment of mild to moderate acne vulgaris. This study assessed the cumulative irritation potential of adapalene gel (0.1%) and adapalene cream (0.1%) compared with that of erythromycin (4%)/tretinoin (0.025%) solution, erythromycin (4%)/tretinoin (0.025%) gel, erythromycin (2%)/isotretinoin (0.05%) gel, and white petrolatum (negative control). This was a single-center, randomized, controlled, investigator-blinded, intraindividual comparison study in healthy subjects with normal skin. The cumulative irritation assay (patch test) was used to assess the potential for irritation (including erythema) of the treatments. Each subject received all study treatments, randomly applied under occlusion (patch), to sites on either side of the midline on the mid-thoracic area of the back. All patches were applied to the same sites throughout the study, unless the degree of reaction to the treatment or adhesive necessitated removal. For 3 weeks, each test material was applied daily, Monday through Friday, for approximately 24 hours; the Friday patches were left in place over the weekend for approximately 72 hours. All 36 subjects (26 men, 10 women; age, 18-49 years [mean, 30 years]) completed the study. In the course of the study, all subjects had > or =1 application discontinued prematurely on > or =1 site due to intolerance. There were no discontinuations with white petrolatum. All erythromycin/tretinoin gel patches were discontinued at day 10; 35 of 36 erythromycin/isotretinoin gel patches were discontinued at day 9; and 35 of 36 erythromycin/tretinoin solution patches were discontinued at day 11 or day 17. The adapalene products, although slightly more irritating (mean cumulative irritation index, 0.25-1) than white petrolatum, were significantly less irritating than the erythromycin/tretinoin and erythromycin/isotretinoin products (P < 0.01). Adapalene gel and cream were well tolerated

  2. Crystallization of steroids in gels

    NASA Astrophysics Data System (ADS)

    Kalkura, S. Narayana; Devanarayanan, S.

    1991-03-01

    The crystal growth and characterization of certain steriods, viz., cholesterol, cholesteryl acetate, β-sitosterol, progesterone and testosterone, in a silica gel medium is discussed. The present study shows that the single test tube diffusion method can be used to grow crystals of steroids in a silica gel medium by the reduction of steroid solubility.

  3. Structure of chitosan gels mineralized by sorption

    NASA Astrophysics Data System (ADS)

    Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.

    2015-10-01

    The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.

  4. Topical adapalene gel 0.1% vs. isotretinoin gel 0.05% in the treatment of acne vulgaris: a randomized open-label clinical trial.

    PubMed

    Ioannides, D; Rigopoulos, D; Katsambas, A

    2002-09-01

    Topical application of isotretinoin and adapalene has proved effective in treating acne vulgaris. Both drugs demonstrate therapeutic advantages and less irritancy over tretinoin, the most widely used treatment for acne. They both act as retinoid agonists, but differ in their affinity profile for nuclear and cytosolic retinoic acid receptors. To compare the efficacy and tolerability of adapalene gel 0.1% and isotretinoin gel 0.05% in the treatment of acne vulgaris of the face, in a randomized open-label clinical trial. Eighty patients were enrolled and were instructed to apply adapalene gel 0.1% or isotretinoin gel 0.05% once daily over a 12-week treatment period. Efficacy determination included noninflammatory and inflammatory lesion counts by the investigator and global evaluation of improvement. Cutaneous tolerance was assessed by determining erythema, scaling and burning with pruritus. Adapalene and isotretinoin gels were highly effective in treating facial acne. Adapalene gel produced greater reductions in noninflammatory and inflammatory lesion counts than did isotretinoin gel, but differences between treatments were not statistically significant. Adapalene gel was significantly better tolerated than isotretinoin gel during the whole treatment period. The two gels studied demonstrated comparable efficacy. When adapalene and isotretinoin were compared, significantly lower skin irritation was noted with adapalene, indicating that adapalene may begin a new era of treatment with low-irritant retinoids.

  5. Solid state TL detectors for in vivo dosimetry in brachytherapy.

    PubMed

    Gambarini, G; Borroni, M; Grisotto, S; Maucione, A; Cerrotta, A; Fallai, C; Carrara, M

    2012-12-01

    In vivo dosimetry provides information about the actual dose delivered to the patient treated with radiotherapy and can be adopted within a routinary treatment quality assurance protocol. Aim of this study was to evaluate the feasibility of performing in vivo rectal dosimetry by placing thermoluminescence detectors directly on the transrectal ultrasound probe adopted for on-line treatment planning of high dose rate brachytherapy boosts of prostate cancer patients. A suitable protocol for TLD calibration has been set up. In vivo measurements resulted to be in good agreement with the calculated doses, showing that the proposed method is feasible and returns accurate results. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. [Overdentures covering natural roots. The use of chlorhexidine gel].

    PubMed

    Hendrikx, M J; Kramer, J E; de Baat, C

    2000-03-01

    To prevent caries and periodontal disease in overdenture abutment teeth, daily application of chlorhexidine gel is recommended. In order to get insight into the use of the gel, 29 overdenture wearing patients were interviewed. In addition the patients were requested to show the use of the gel. It was concluded that at any time the patients were instructed about the use of the gel. Nevertheless, a majority of the patients did not use the gel daily and in accordance with the instructions given. Application of the gel in the abutment depressions of the overdenture appeared to be a heavy task.

  7. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  8. Active, motor-driven mechanics in a DNA gel.

    PubMed

    Bertrand, Olivier J N; Fygenson, Deborah Kuchnir; Saleh, Omar A

    2012-10-23

    Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g., actin) that are acted upon by motor proteins (e.g., myosin). Here, we describe the synthesis and characterization of an active gel using noncytoskeletal components. We use methods of base-pair-templated DNA self assembly to create a hybrid DNA gel containing stiff tubes and flexible linkers. We then activate the gel by adding the motor FtsK50C, a construct derived from the bacterial protein FtsK that, in vitro, has a strong and processive DNA contraction activity. The motors stiffen the gel and create stochastic contractile events that affect the positions of attached beads. We quantify the fluctuations of the beads and show that they are comparable both to measurements of cytoskeletal systems and to theoretical predictions for active gels. Thus, we present a DNA-based active gel whose behavior highlights the universal aspects of nonequilibrium, motor-driven networks.

  9. Measuring Dilution of Microbicide Gels with Optical Imaging

    PubMed Central

    Drake, Tyler K.; Shah, Tejen; Peters, Jennifer J.; Wax, Adam; Katz, David F.

    2013-01-01

    We present a novel approach for measuring topical microbicide gel dilution using optical imaging. The approach compares gel thickness measurements from fluorimetry and multiplexed low coherence interferometry in order to calculate dilution of a gel. As a microbicide gel becomes diluted at fixed thickness, its mLCI thickness measurement remains constant, while the fluorimetry signal decreases in intensity. The difference between the two measurements is related to the extent of gel dilution. These two optical modalities are implemented in a single endoscopic instrument that enables simultaneous data collection. A preliminary validation study was performed with in vitro placebo gel measurements taken in a controlled test socket. It was found that change in slope of the regression line between fluorimetry and mLCI based measurements indicates dilution. A dilution calibration curve was then generated by repeating the test socket measurements with serial dilutions of placebo gel with vaginal fluid simulant. This methodology can provide valuable dilution information on candidate microbicide products, which could substantially enhance our understanding of their in vivo functioning. PMID:24340006

  10. Structural colored gels for tunable soft photonic crystals.

    PubMed

    Harun-Ur-Rashid, Mohammad; Seki, Takahiro; Takeoka, Yukikazu

    2009-01-01

    A periodically ordered interconnecting porous structure can be embodied in chemical gels by using closest-packed colloidal crystals as templates. The interconnecting porosity not only provides a quick response but also endows the porous gels with structural color arising from coherent Bragg optical diffraction. The structural colors revealed by porous gels can be regulated by several techniques, and thus, it is feasible to obtain desirable, smart, soft materials. A well-known thermosensitive monomer, N-isopropylacrylamide (NIPA), and other minor monomers were used to fabricate various structural colored gels. The selection of minor monomers depended on the targeted properties. This review focuses on the synthesis of templates, structural colored porous gels, and the applications of structural colored gel as smart soft materials for tunable photonic crystals. (c) 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  11. Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.

    PubMed

    Kron, T

    1995-03-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).

  12. A comparison of 15% azelaic acid gel and 0.75% metronidazole gel in the topical treatment of papulopustular rosacea: results of a randomized trial.

    PubMed

    Elewski, Boni E; Fleischer, Alan B; Pariser, David M

    2003-11-01

    To compare the efficacy and safety of a novel formulation of 15% azelaic acid gel (Finacea; Berlex Laboratories, Inc, Montville, NJ) with 0.75% metronidazole gel (MetroGel; Galderma Laboratories LP, Fort Worth, Tex) as topical therapy for moderate, papulopustular facial rosacea. Multicenter, double-blind, randomized, parallel-group study. Thirteen US centers. A total of 251 patients with papulopustular rosacea with persistent erythema and telangiectasia. Patients were randomized to receive azelaic acid gel or metronidazole gel twice daily for 15 weeks. Nominal and percent change in inflammatory lesion count, change in erythema and telangiectasia severity ratings, investigator's global assessment of rosacea, and investigator's and patient's overall improvement ratings. Azelaic acid gel was superior to metronidazole gel in reduction of mean nominal lesion count (-12.9 vs -10.7, respectively) (P =.003) and mean percent decrease in inflammatory lesions (-72.7% vs -55.8%, respectively) (P<.001). With respect to erythema severity, 56% of azelaic acid gel-treated patients were rated improved vs 42% of metronidazole gel-treated patients (P =.02). The effectiveness of metronidazole gel on these variables seemed to plateau after week 8, whereas azelaic acid gel demonstrated progressive improvement through week 15. Neither treatment had a clinically appreciable effect on telangiectasia. Both the investigator's global assessment (P =.02) and overall assessment of improvement (P =.005) showed a significant therapeutic advantage for azelaic acid gel. Azelaic acid gel also scored higher on the patient's overall assessment of efficacy. Both treatments were rated as having high cosmetic acceptability. No serious or systemic treatment-related adverse events were reported in either group. Use of 15% azelaic acid gel twice daily for 15 weeks demonstrated significant superiority over using 0.75% metronidazole gel in improving principal signs of rosacea (inflammatory lesions and

  13. Method of making ionic liquid mediated sol-gel sorbents

    DOEpatents

    Malik, Abdul; Shearrow, Anne M.

    2017-01-31

    Ionic liquid (IL)-mediated sol-gel hybrid organic-inorganic materials present enormous potential for effective use in analytical microextraction. One obstacle to materializing this prospect arises from high viscosity of ILs significantly slowing down sol-gel reactions. A method was developed which provides phosphonium-based, pyridinium-based, and imidazolium-based IL-mediated advanced sol-gel organic-inorganic hybrid materials for capillary microextraction. Scanning electron microscopy results demonstrate that ILs can serve as porogenic agents in sol-gel reactions. IL-mediated sol-gel coatings prepared with silanol-terminated polymers provided up to 28 times higher extractions compared to analogous sol-gel coatings prepared without any IL in the sol solution. This study shows that IL-generated porous morphology alone is not enough to provide effective extraction media: careful choice of the organic polymer and the precursor with close sol-gel reactivity must be made to ensure effective chemical bonding of the organic polymer to the created sol-gel material to be able to provide the desired sorbent characteristics.

  14. Procedure to prepare transparent silica gels

    NASA Technical Reports Server (NTRS)

    Barber, Patrick G. (Inventor); Simpson, Norman R. (Inventor)

    1987-01-01

    This invention relates to the production of silica gels and in particular to a process for the preparation of silica gels which can be used as a crystal growth medium that simulates the convectionless environment of space to produce structurally perfect crystals. Modern utilizations of substances in electronics, such as radio transmitters and high frequency microphones, often require single crystals with controlled purity and structural perfection. The near convectionless environment of silica gel suppresses nucleation, thereby reducing the competitive nature of crystal growth. This competition limits the size and perfection of the crystal; and it is obviously desirable to suppress nucleation until, ideally, only one crystal grows in a predetermined location. A silica gel is not a completely convectionless environment like outer space, but is the closest known environment to that of outer space that can be created on Earth.

  15. Experimental active and passive dosimetry systems for the NASA Skylab program

    NASA Technical Reports Server (NTRS)

    Schneider, M. F.; Janni, J. F.; Ainsworth, G. C.

    1972-01-01

    Active and passive dosimetry instrumentation to measure absorbed dose, charged particle spectra, and linear energy transfer spectra inside the command module and orbital workshop on the Skylab program were developed and tested. The active dosimetry system consists of one integral unit employing both a tissue equivalent ionization chamber and silicon solid state detectors. The instrument measures dose rates from 0.2 millirad/hour to 25 rads/hour, linear energy transfer spectra from 2.8 to 42.4 Kev/micron, and the proton and alpha particle energy spectra from 0.5 to 75 Mev. The active dosimeter is equipped with a portable radiation sensor for use in astronaut on-body and spacecraft shielding surveys during passage of the Skylab through significant space radiations. Data are transmitted in real time or are recorded by onboard spacecraft tape recorder for rapid evaluation of the radiation levels. The passive dosimetry systems consist of twelve (12) hard-mounted assemblies, each containing a variety of passive radiation sensors which are recoverable at the end of the mission for analysis.

  16. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2011-05-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.

  17. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    NASA Astrophysics Data System (ADS)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  18. Chiromagnetic nanoparticles and gels

    NASA Astrophysics Data System (ADS)

    Yeom, Jihyeon; Santos, Uallisson S.; Chekini, Mahshid; Cha, Minjeong; de Moura, André F.; Kotov, Nicholas A.

    2018-01-01

    Chiral inorganic nanostructures have high circular dichroism, but real-time control of their optical activity has so far been achieved only by irreversible chemical changes. Field modulation is a far more desirable path to chiroptical devices. We hypothesized that magnetic field modulation can be attained for chiral nanostructures with large contributions of the magnetic transition dipole moments to polarization rotation. We found that dispersions and gels of paramagnetic Co3O4 nanoparticles with chiral distortions of the crystal lattices exhibited chiroptical activity in the visible range that was 10 times as strong as that of nonparamagnetic nanoparticles of comparable size. Transparency of the nanoparticle gels to circularly polarized light beams in the ultraviolet range was reversibly modulated by magnetic fields. These phenomena were also observed for other nanoscale metal oxides with lattice distortions from imprinted amino acids and other chiral ligands. The large family of chiral ceramic nanostructures and gels can be pivotal for new technologies and knowledge at the nexus of chirality and magnetism.

  19. Gel electrolytes and electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least onemore » polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.« less

  20. Critical behavior of modulus of gel

    NASA Astrophysics Data System (ADS)

    Tokita, Masayuki; Niki, Ryoya; Hikichi, Kunio

    1985-09-01

    The critical behavior of the shear modulus of casein gel is studied. The shear modulus of casein gel scales with the conductivity exponent in the immediate vicinity of the sol-gel transition point. The asymptotic behavior of the modulus in the region far above the transition point is governed by a different exponent which is much larger than the conductivity exponent. These results are explainable by the crossover behavior of the percolation process. This study shows that the gelation of the casein micelle solution is a realization of the percolation process.

  1. Polymer architecture of magnetic gels: a review

    NASA Astrophysics Data System (ADS)

    Weeber, Rudolf; Hermes, Melissa; Schmidt, Annette M.; Holm, Christian

    2018-02-01

    In this review article, we provide an introduction to ferrogels, i.e. polymeric gels with embedded magnetic particles. Due to the interplay between magnetic and elastic properties of these materials, they are promising candidates for engineering and biomedical applications such as actuation and controlled drug release. Particular emphasis will be put on the polymer architecture of magnetic gels since it controls the degrees of freedom of the magnetic particles in the gel, and it is important for the particle-polymer coupling determining the mechanisms available for the gel deformation in magnetic fields. We report on the different polymer architectures that have been realized so far, and provide an overview of synthesis strategies and experimental techniques for the characterization of these materials. We further focus on theoretical and simulational studies carried out on magnetic gels, and highlight their contributions towards understanding the influence of the gels’ polymer architecture.

  2. Protocol for emergency EPR dosimetry in fingernails

    USDA-ARS?s Scientific Manuscript database

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  3. Epidemic models for phase transitions: application to a physical gel

    NASA Astrophysics Data System (ADS)

    Bilge, A. H.; Pekcan, O.; Kara, S.; Ogrenci, A. S.

    2017-09-01

    Carrageenan gels are characterized by reversible sol-gel and gel-sol transitions under cooling and heating processes and these transitions are approximated by generalized logistic growth curves. We express the transitions of carrageenan-water system, as a representative of reversible physical gels, in terms of a modified Susceptible-Infected-Susceptible epidemic model, as opposed to the Susceptible-Infected-Removed model used to represent the (irreversible) chemical gel formation in the previous work. We locate the gel point Tc of sol-gel and gel-sol transitions and we find that, for the sol-gel transition (cooling), Tc > Tsg (transition temperature), i.e. Tc is earlier in time for all carrageenan contents and moves forward in time and gets closer to Tsg as the carrageenan content increases. For the gel-sol transition (heating), Tc is relatively closer to Tgs; it is greater than Tgs, i.e. later in time for low carrageenan contents and moves backward as carrageenan content increases.

  4. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  5. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  6. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  7. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  8. Effects of water on fingernail electron paramagnetic resonance dosimetry.

    PubMed

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-09-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation-these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  9. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  10. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOEpatents

    Zhang, Jian-Shi; Giometti, Carol S.; Tollaksen, Sandra L.

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  11. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less

  12. Pharmacokinetic Studies of Gel System Containing Ibuprofen Solid Nanoparticles.

    PubMed

    Nagai, Noriaki; Tanino, Tadatoshi; Ito, Yoshimasa

    2016-12-01

    In the therapy of rheumatoid arthritis, ibuprofen (IBU) is widely used; however, it has been limited the clinical use by its systemic side effect, such as gastrointestinal lesions. Therefore, we prepared topical gel ointment used IBU solid nanoparticles (IBU nano -gel formulation). In addition, we demonstrated their anti-inflammatory effect by using arthritis model rat (adjuvant-induced arthritis rat, AA rat). The gel formulations were prepared using additives (Carbopol 934, 2-hydroxypropyl-β-cyclodextrin and methylcellulose) and bead mill-method. The IBU particle size in the IBU nano -gel formulation was 208 nm. The increase in inflammation of the hind feet of AA rats was attenuated by the treatment with the IBU nano -gel formulation, and preventive effect was higher than that of a gel formulation containing IBUmicroparticles (IBU micro -gel formulation, mean particle size 85.4 μm); the accumulation and permeability through the skin of IBU from the IBU nano -gel formulation were significantly larger in comparison with the IBU micro -gel formulation. Further, no gastrointestinal lesions were observed in AA rats following the repetitive administration of the 5% IBU nano -gel formulation (0.30 g) for 42 days (once a day). These results suggest that the dermal application of IBU-nanoparticles provide effective and efficient therapy that spares patients from unwanted side effects.

  13. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Evans, Owen R (Inventor); Deshpande, Kiranmayi (Inventor); Dong, Wenting (Inventor)

    2017-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  14. Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels

    NASA Technical Reports Server (NTRS)

    Deshpande, Kiranmayi (Inventor); Evans, Owen R. (Inventor); Dong, Wenting (Inventor)

    2015-01-01

    Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.

  15. Criticality accident dosimetry systems: an international intercomparison at the SILENE reactor in 2002.

    PubMed

    Médioni, R; Asselineau, B; Verrey, B; Trompier, F; Itié, C; Texier, C; Muller, H; Pelcot, G; Clairand, I; Jacquet, X; Pochat, J L

    2004-01-01

    In criticality accident dosimetry and more generally for high dose measurements, special techniques are used to measure separately the gamma ray and neutron components of the dose. To improve these techniques and to check their dosimetry systems (physical and/or biological), a total of 60 laboratories from 29 countries (America, Europe, Asia) participated in an international intercomparaison, which took place in France from 9 to 21 June 2002, at the SILENE reactor in Valduc and at a pure gamma source in Fontenay-aux-Roses. This intercomparison was jointly organised by the IRSN and the CEA with the help of the NEA/OCDE and was partly supported by the European Communities. This paper describes the aim of this intercomparison, the techniques used by the participants and the two radiation sources and their characteristics. The experimental arrangements of the dosemeters for the irradiations in free air or on phantoms are given. Then the dosimetric quantities measured and reported by the participants are summarised, analysed and compared with the reference values. The present paper concerns only the physical dosimetry and essentially experiments performed on the SILENE facility. The results obtained with the biological dosimetry are published in two other papers of this issue.

  16. Effect of contrast media on megavoltage photon beam dosimetry.

    PubMed

    Rankine, Ashley W; Lanzon, Peter J; Spry, Nigel A

    2008-01-01

    The purpose of this study was to quantify changes in photon beam dosimetry caused by using contrast media during computed tomography (CT) simulation and determine if the resulting changes are clinically significant. The effect of contrast on dosimetry was first examined for a single 6-MV photon beam incident on a plane phantom with a structure of varying electron densities (rho(e)) and thickness. Patient studies were then undertaken in which CT data sets were collected with and without contrast for 6 typical patients. Three patients received IV contrast (Optiray-240) only and 3 received IV plus oral (Gastrograffin) contrast. Each patient was planned using conformal multifield techniques in accordance with the department standards. Two methods were used to compare the effect of contrast on dosimetry for each patient. The phantom analysis showed that the change in dose at the isocenter for a single 10 x 10 cm2 6-MV photon beam traversing 10 cm of a contrast-enhanced structure with rho(e) 1.22 was 7.0% (1.22 was the highest average rho(e) observed in the patient data). As a result of using contrast, increases in rho(e) were observed in structures for the 6 patients studied. Consequently, when using contrast-enhanced CT data for multifield planning, increases in dose at the isocenter and in critical structures were observed up to 2.1% and 2.5%, respectively. Planning on contrast-enhanced CT images may result in an increase in dose of up to 2.1% at the isocenter, which would generally be regarded as clinically insignificant. If, however, a critical organ is in close proximity to the planning target volume (PTV) and is planned to receive its maximum allowable dose, planning on contrast-enhanced CT images may result in that organ receiving dose beyond the recommended tolerance. In these instances, pre-contrast CT data should be used for dosimetry.

  17. Structural investigations of sol-gel derived silicate gels using Eu 3+ ion-probe luminescence

    NASA Astrophysics Data System (ADS)

    Secu, C. E.; Predoi, D.; Secu, M.; Cernea, M.; Aldica, G.

    2009-09-01

    Undoped and Eu 3+-doped CaF 2-SiO 2 gels were prepared by the sol-gel method and their optical properties have been studied. The UV-VIS-NIR absorption and photoluminescence spectra have shown the bands typical for the Eu 3+ ions transitions. When the Eu-doped gel is annealed at temperatures up to 800 °C (i.e. above the CaF 2 crystallisation peak at ˜460 °C) the photoluminescence spectra intensity increase, the 590 nm (5D→7F) and 620 nm (5D→7F) luminescence bands become comparable and a structuring of the 620 nm band is observed. The phonon sidebands peaks associated with the 5F→7D transition of the Eu 3+ ion were observed at around 1000 and 620 cm -1 and have been assigned to the Si-O and Ca-O bonds, respectively. A phonon sideband signal in the range of 300-400 cm -1 was attributed to Ca-F bonds in the precipitated CaF 2 phase. From the optical absorption, photoluminescence and phonon sidebands spectra we have concluded that in the gels annealed at 800 °C, the Eu 3+ ions are incorporated into the silica network and in the precipitated CaF 2 phase.

  18. Tunable Gas Sensing Gels by Cooperative Assembly

    PubMed Central

    Hussain, Abid; Semeano, Ana T. S.; Palma, Susana I. C. J.; Pina, Ana S.; Almeida, José; Medrado, Bárbara F.; Pádua, Ana C. C. S.; Carvalho, Ana L.; Dionísio, Madalena; Li, Rosamaria W. C.; Gamboa, Hugo; Ulijn, Rein V.; Gruber, Jonas; Roque, Ana C. A.

    2017-01-01

    The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels’ structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli. PMID:28747856

  19. Viscoplastic fracture transition of a biopolymer gel.

    PubMed

    Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P

    2018-06-13

    Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.

  20. Data on DNA gel sample load, gel electrophoresis, PCR and cost analysis.

    PubMed

    Kuhn, Ramona; Böllmann, Jörg; Krahl, Kathrin; Bryant, Isaac Mbir; Martienssen, Marion

    2018-02-01

    The data presented in this article provide supporting information to the related research article "Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples" (Kuhn et al., 2017) [1]. In that article, we compared the suitability of ten selected DNA extraction methods based on DNA quality, purity, quantity and applicability to universal PCR. Here we provide the data on the specific DNA gel sample load, all unreported gel images of crude DNA and PCR results, and the complete cost analysis for all tested extraction procedures and in addition two commercial DNA extraction kits for soil and water.

  1. A theory for fracture of polymeric gels

    NASA Astrophysics Data System (ADS)

    Mao, Yunwei; Anand, Lallit

    2018-06-01

    A polymeric gel is a cross-linked polymer network swollen with a solvent. If the concentration of the solvent or the deformation is increased to substantial levels, especially in the presence of flaws, then the gel may rupture. Although various theoretical aspects of coupling of fluid permeation with large deformation of polymeric gels are reasonably well-understood and modeled in the literature, the understanding and modeling of the effects of fluid diffusion on the damage and fracture of polymeric gels is still in its infancy. In this paper we formulate a thermodynamically-consistent theory for fracture of polymeric gels - a theory which accounts for the coupled effects of fluid diffusion, large deformations, damage, and also the gradient effects of damage. The particular constitutive equations for fracture of a gel proposed in our paper, contain two essential new ingredients: (i) Our constitutive equation for the change in free energy of a polymer network accounts for not only changes in the entropy, but also changes in the internal energy due the stretching of the Kuhn segments of the polymer chains in the network. (ii) The damage and failure of the polymer network is taken to occur by chain-scission, a process which is driven by the changes in the internal energy of the stretched polymer chains in the network, and not directly by changes in the configurational entropy of the polymer chains. The theory developed in this paper is numerically implemented in an open-source finite element code MOOSE, by writing our own application. Using this simulation capability we report on our study of the fracture of a polymeric gel, and some interesting phenomena which show the importance of the diffusion of the fluid on fracture response of the gel are highlighted.

  2. Gadolinium-loaded gel scintillators for neutron and antineutrino detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riddle, Catherine Lynn; Akers, Douglas William; Demmer, Ricky Lynn

    A gadolinium (Gd) loaded scintillation gel (Gd-ScintGel) compound allows for neutron and gamma-ray detection. The unique gel scintillator encompasses some of the best features of both liquid and solid scintillators, yet without many of the disadvantages associated therewith. Preferably, the gel scintillator is a water soluble Gd-DTPA compound and water soluble fluorophores such as: CdSe/ZnS (or ZnS) quantum dot (Q-dot) nanoparticles, coumarin derivatives 7-hydroxy-4-methylcoumarin, 7-hydroxy-4-methylcoumarin-3-acetic acid, 7-hydroxycoumarin-3-carboxylic acid, and Alexa Fluor 350 as well as a carbostyril compound, carbostyril 124 in a stable water-based gel, such as methylcellulose or polyacrylamide polymers. The Gd-loaded ScintGel allows for a homogenious distribution ofmore » the Gd-DTPA and the fluorophores, and yields clean fluorescent emission peaks. A moderator, such as deuterium or a water-based clear polymer, can be incorporated in the Gd-ScintGel. The gel scintillators can be used in compact detectors, including neutron and antineutrino detectors.« less

  3. Capillary fracture of soft gels.

    PubMed

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  4. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  5. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  6. Self-Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments.

    PubMed

    Shi, Pujiang; Kim, Yang-Hee; Mousa, Mohamed; Sanchez, Roxanna Ramnarine; Oreffo, Richard O C; Dawson, Jonathan I

    2018-06-17

    Laponite nanoparticles have attracted attention in the tissue engineering field for their protein interactions, gel-forming properties, and, more recently, osteogenic bioactivity. Despite growing interest in the osteogenic properties of Laponite, the application of Laponite colloidal gels to host the osteogenic differentiation of responsive stem cell populations remains unexplored. Here, the potential to harness the gel-forming properties of Laponite to generate injectable bioactive microenvironments for osteogenesis is demonstrated. A diffusion/dialysis gelation method allows the rapid formation of stable transparent gels from injectable, thixotropic Laponite suspensions in physiological fluids. Upon contact with buffered saline or blood serum, nanoporous gel networks exhibiting, respectively, fivefold and tenfold increases in gel stiffness are formed due to the reorganization of nanoparticle interactions. Laponite diffusion gels are explored as osteogenic microenvironments for skeletal stem cell containing populations. Laponite films support cell adhesion, proliferation, and differentiation of human bone marrow stromal cells in 2D. Laponite gel encapsulation significantly enhances osteogenic protein expression compared with 3D pellet culture controls. In both 2D and 3D conditions, cell associated mineralization is strongly enhanced. This study demonstrates that Laponite diffusion gels offer considerable potential as biologically active and clinically relevant bone tissue engineering scaffolds. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Probabilistic Reverse dOsimetry Estimating Exposure Distribution (PROcEED)

    EPA Pesticide Factsheets

    PROcEED is a web-based application used to conduct probabilistic reverse dosimetry calculations.The tool is used for estimating a distribution of exposure concentrations likely to have produced biomarker concentrations measured in a population.

  8. Antioxidant effect of green tea on polymer gel dosimeter

    NASA Astrophysics Data System (ADS)

    Samuel, E. J. J.; Sathiyaraj, P.; Deena, T.; Kumar, D. S.

    2015-01-01

    Extract from Green Tea (GTE) acts as an antioxidant in acrylamide based polymer gel dosimeter. In this work, PAGAT gel was used for investigation of antioxidant effect of GTE.PAGAT was called PAGTEG (Polyacrylamide green tea extract gel dosimeter) after adding GTE. Free radicals in water cause pre polymerization of polymer gel before irradiation. Polyphenols from GTE are highly effective to absorb the free radicals in water. THPC is used as an antioxidant in polymer gel dosimeter but here we were replaced it by GTE and investigated its effect by spectrophotometer. GTE added PAGAT samples response was lower compared to THPC added sample. To increase the sensitivity of the PAGTEG, sugar was added. This study confirmed that THPC was a good antioxidant for polymer gel dosimeter. However, GTE also can be used as an antioxidant in polymer gel if use less quantity (GTE) and add sugar as sensitivity enhancer.

  9. Sillica Gel-Amine from Geothermal Sludge

    NASA Astrophysics Data System (ADS)

    Muljani, S.; Pujiastuti, C.; Wicaksono, P.; Lutfianingrum, R.

    2018-01-01

    Silica Gel-Amine (SGA) has been made from geothermal sludge by grafting amine method. Sodium silicate solution is prepared by extracted geothermal sludge powder using sodium hidroxide solution then acidification in the range of pH 5 - 9 by using tartaric acid 1N. The grafting process uses 1 ml of ammonia solution and 10 ml of toluene at a rate of 0.1 ml min-1 accompanied by a reflux process. The amine grafting is done in two methods. The first method is grafting amine in silicate solution and the second method is grafting amine in washed gel. Product SGA was confirmed by FTIR, TGA-DTG and BET characterization. The results show that the pH affects the amount of amine that is grafted onto silica gel. Differences in grafting method affect the size of the pore and surface area. SGA product prepared by grafting washed gel at pH 8 have pore diameter of 12.06 nm, surface area of 173.44 m2g-1, and mass of decomposed amine compound 0.4 mg. In the presence of amine groups on the silica gel surface, these adsorbents may be able to selectively adsorb CO2 gas from natural gas.

  10. Sol-gel chemistry by ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-02-07

    Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solventmore » is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.« less

  11. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    NASA Astrophysics Data System (ADS)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  12. Some rheological properties of sodium caseinate-starch gels.

    PubMed

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  13. SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manger, R; Pawlicki, T; Kim, G

    2015-06-15

    Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed tomore » determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.« less

  14. Gel phase in hydrated calcium dipicolinate

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-11-01

    The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.

  15. Implementation of an intraoperative electron radiotherapy in vivo dosimetry program.

    PubMed

    López-Tarjuelo, Juan; Morillo-Macías, Virginia; Bouché-Babiloni, Ana; Boldó-Roda, Enrique; Lozoya-Albacar, Rafael; Ferrer-Albiach, Carlos

    2016-03-15

    Intraoperative electron radiotherapy (IOERT) is a highly selective radiotherapy technique which aims to treat restricted anatomic volumes during oncological surgery and is now the subject of intense re-evaluation. In vivo dosimetry has been recommended for IOERT and has been identified as a risk-reduction intervention in the context of an IOERT risk analysis. Despite reports of fruitful experiences, information about in vivo dosimetry in intraoperative radiotherapy is somewhat scarce. Therefore, the aim of this paper is to report our experience in developing a program of in vivo dosimetry for IOERT, from both multidisciplinary and practical approaches, in a consistent patient series. We also report several current weaknesses. Reinforced TN-502RDM-H mobile metal oxide semiconductor field effect transistors (MOSFETs) and Gafchromic MD-55-2 films were used as a redundant in vivo treatment verification system with an Elekta Precise fixed linear accelerator for calibrations and treatments. In vivo dosimetry was performed in 45 patients in cases involving primary tumors or relapses. The most frequent primary tumors were breast (37 %) and colorectal (29 %), and local recurrences among relapses was 83 %. We made 50 attempts to measure with MOSFETs and 48 attempts to measure with films in the treatment zones. The surgical team placed both detectors with supervision from the radiation oncologist and following their instructions. The program was considered an overall success by the different professionals involved. The absorbed doses measured with MOSFETs and films were 93.8 ± 6.7 % and 97.9 ± 9.0 % (mean ± SD) respectively using a scale in which 90 % is the prescribed dose and 100 % is the maximum absorbed dose delivered by the beam. However, in 10 % of cases we experienced dosimetric problems due to detector misalignment, a situation which might be avoided with additional checks. The useful MOSFET lifetime length and the film sterilization procedure should also be

  16. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazififard, Mohammad, E-mail: nazifi@kashanu.ac.ir; Mahmoudieh, Afshin; Suh, Kune Y.

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty.more » Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.« less

  17. PCR amplification on microarrays of gel immobilized oligonucleotides

    DOEpatents

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  18. Soft and wet actuator developed with responsible high-strength gels

    NASA Astrophysics Data System (ADS)

    Harada, S.; Hidema, R.; Furukawa, H.

    2012-04-01

    Novel high-strength gels, named double network gels (DN gels), show a smart response to altering external electric field. It was reported that a plate shape of the DN gel bends toward a positive electrode direction when a static (DC) electric field is applied. Based on this previous result, it has been tried to develop a novel soft and wet actuator, which will be used as an automatically bulging button for cellar phones, or similar small devices. First, a bending experiment of a hung plate-shape DN gel was done, and its electric field response was confirmed. Second, the response of a lying plate-shape DN gels was confirmed in order to check the bulging phenomena. The edge of three plate-shape gels that was arranged radially on a plane surface was lifted 2mm by applying DC 8V. This system is a first step to make a gels button. However the critical problem is that electrolysis occurs simultaneously under electric field. Then, the water sweep out from gels, and gels is shrinking; They cause the separation between aluminum foil working as electrode and gels. That is why, a flexible electrode should be made by gels completely attached to the gels. As a third step, a push button is tried to make by a shape memory gels (SMG). The Young's modulus of the SMG is dramatically changed by temperature. This change in the modulus is applied to control the input-acceptable state and input-not-acceptable states of the button. A novel push button is proposed as a trial, and its user-friendliness is checked by changing the size of the button. The button is deformed by pushing and is back to original shape due to the property of shape memory. We believe the mechanism of this button will be applied to develop new devices especially for visually impaired persons.

  19. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  20. Radiation accident dosimetry on plastics by EPR spectrometry.

    PubMed

    Trompier, F; Bassinet, C; Clairand, I

    2010-02-01

    In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.

  1. The Sol-Gel-Xerogel Transition

    DTIC Science & Technology

    1993-11-01

    basic pH. Bioactive sol-gel glasses obtained by a surface adsorption of trypsin to a readymade xerogel were also completley * L...presence of siloxane chains and hydrophobic methyl groups an easy film deposition on glass sheets can be obtained. Rhodamine 6G and Coumarin 4 were...Research Proposal was prepared (early 1989) have witnessed a tremendous, almost explosive, progress in the field of organically doped sol-gel glasses

  2. A nephron-based model of the kidneys for macro-to-micro α-particle dosimetry

    NASA Astrophysics Data System (ADS)

    Hobbs, Robert F.; Song, Hong; Huso, David L.; Sundel, Margaret H.; Sgouros, George

    2012-07-01

    Targeted α-particle therapy is a promising treatment modality for cancer. Due to the short path-length of α-particles, the potential efficacy and toxicity of these agents is best evaluated by microscale dosimetry calculations instead of whole-organ, absorbed fraction-based dosimetry. Yet time-integrated activity (TIA), the necessary input for dosimetry, can still only be quantified reliably at the organ or macroscopic level. We describe a nephron- and cellular-based kidney dosimetry model for α-particle radiopharmaceutical therapy, more suited to the short range and high linear energy transfer of α-particle emitters, which takes as input kidney or cortex TIA and through a macro to micro model-based methodology assigns TIA to micro-level kidney substructures. We apply a geometrical model to provide nephron-level S-values for a range of isotopes allowing for pre-clinical and clinical applications according to the medical internal radiation dosimetry (MIRD) schema. We assume that the relationship between whole-organ TIA and TIA apportioned to microscale substructures as measured in an appropriate pre-clinical mammalian model also applies to the human. In both, the pre-clinical and the human model, microscale substructures are described as a collection of simple geometrical shapes akin to those used in the Cristy-Eckerman phantoms for normal organs. Anatomical parameters are taken from the literature for a human model, while murine parameters are measured ex vivo. The murine histological slides also provide the data for volume of occupancy of the different compartments of the nephron in the kidney: glomerulus versus proximal tubule versus distal tubule. Monte Carlo simulations are run with activity placed in the different nephron compartments for several α-particle emitters currently under investigation in radiopharmaceutical therapy. The S-values were calculated for the α-emitters and their descendants between the different nephron compartments for both the

  3. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.

    PubMed

    Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas

    2014-03-01

    (64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision

  4. Creating Reconfigurable Materials Using ``Colonies'' of Oscillating Polymer Gels

    NASA Astrophysics Data System (ADS)

    Deb, Debabrata; Dayal, Pratyush; Kuksenok, Olga; Balazs, Anna

    2013-03-01

    Species ranging from single-cell organisms to social insects can undergo auto-chemotaxis, where the entities move towards a chemo-attractant that they themselves emit. This mode of signaling allows the organisms to form large-scale structures. Using computational modeling, we show that millimeter-sized polymer gels can display similar auto-chemotaxis. In particular, we demonstrate that gels undergoing the self-oscillating Belousov-Zhabotinsky (BZ) reaction not only respond to a chemical signal from the surrounding solution, but also emit this signal and thus, multiple gel pieces can spontaneously self-aggregate. We focus on the collective behavior of ``colonies'' of BZ gels and show that communication between the individual pieces critically depends on all the neighboring gels. We isolate the conditions at which the BZ gels can undergo a type of self-recombining: if a larger gel is cut into distinct pieces that are moved relatively far apart, then their auto-chemotactic behavior drives them to move and autonomously recombine into a structure resembling the original, uncut sample. These findings reveal that the BZ gels can be used as autonomously moving building blocks to construct multiple structures and thus, provide a new route for creating dynamically reconfigurable materials.

  5. Stable Liquid Jets Bouncing off Soft Gels

    NASA Astrophysics Data System (ADS)

    Daniel, Dan; Yao, Xi; Aizenberg, Joanna

    2018-01-01

    A liquid jet can stably bounce off a sufficiently soft gel by following the contour of the dimple created upon impact. This new phenomenon is insensitive to the wetting properties of the gels and was observed for different liquids over a wide range of surface tensions, γ =24 -72 mN /m . In contrast, other jet rebound phenomena are typically sensitive to γ : only a high γ jet rebounds off a hard solid (e.g. superhydrophobic surface) and only a low γ jet bounces off a liquid bath. This is because an air layer must be stabilized between the two interfaces. For a soft gel, no air layer is necessary and the jet rebound remains stable even when there is direct liquid-gel contact.

  6. WE-H-207A-07: Image-Based Versus Atlas-Based Internal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallahpoor, M; Abbasi, M; Parach, A

    Purpose: Monte Carlo (MC) simulation is known as the gold standard method for internal dosimetry. It requires radionuclide distribution from PET or SPECT and body structure from CT for accurate dose calculation. The manual or semi-automatic segmentation of organs from CT images is a major obstacle. The aim of this study is to compare the dosimetry results based on patient’s own CT and a digital humanoid phantom as an atlas with pre-specified organs. Methods: SPECT-CT images of a 50 year old woman who underwent bone pain palliation with Samarium-153 EDTMP for osseous metastases from breast cancer were used. The anatomicalmore » date and attenuation map were extracted from SPECT/CT and three XCAT digital phantoms with different BMIs (i.e. matched (38.8) and unmatched (35.5 and 36.7) with patient’s BMI that was 38.3). Segmentation of patient’s organs in CT image was performed using itk-SNAP software. GATE MC Simulator was used for dose calculation. Specific absorbed fractions (SAFs) and S-values were calculated for the segmented organs. Results: The differences between SAFs and S-values are high using different anatomical data and range from −13% to 39% for SAF values and −109% to 79% for S-values in different organs. In the spine, the clinically important target organ for Samarium Therapy, the differences in the S-values and SAF values are higher between XCAT phantom and CT when the phantom with identical BMI is employed (53.8% relative difference in S-value and 26.8% difference in SAF). However, the whole body dose values were the same between the calculations based on the CT and XCAT with different BMIs. Conclusion: The results indicated that atlas-based dosimetry using XCAT phantom even with matched BMI for patient leads to considerable errors as compared to image-based dosimetry that uses the patient’s own CT Patient-specific dosimetry using CT image is essential for accurate results.« less

  7. Air core detectors for Cerenkov-free scintillation dosimetry of brachytherapy β-sources.

    PubMed

    Eichmann, Marion; Thomann, Benedikt

    2017-09-01

    Plastic scintillation detectors are used for dosimetry in small radiation fields with high dose gradients, e.g., provided by β-emitting sources like 106 Ru/ 106 Rh eye plaques. A drawback is a background signal caused by Cerenkov radiation generated by electrons passing the optical fibers (light guides) of this dosimetry system. Common approaches to correct for the Cerenkov signal are influenced by uncertainties resulting from detector positioning and calibration procedures. A different approach to avoid any correction procedure is to suppress the Cerenkov signal by replacing the solid core optical fiber with an air core light guide, previously shown for external beam therapy. In this study, the air core concept is modified and applied to the requirements of dosimetry in brachytherapy, proving its usability for measuring water energy doses in small radiation fields. Three air core detectors with different air core lengths are constructed and their performance in dosimetry for brachytherapy β-sources is compared with a standard two-fiber system, which uses a second fiber for Cerenkov correction. The detector systems are calibrated with a 90 Sr/ 90 Y secondary standard and tested for their angular dependence as well as their performance in depth dose measurements of 106 Ru/ 106 Rh sources. The signal loss relative to the standard detector increases with increasing air core length to a maximum value of 58.3%. At the same time, however, the percentage amount of Cerenkov light in the total signal is reduced from at least 12.1% to a value below 1.1%. There is a linear correlation between induced dose and measured signal current. The air core detectors determine the dose rates for 106 Ru/ 106 Rh sources without any form of correction for the Cerenkov signal. The air core detectors show advantages over the standard two-fiber system especially when measuring in radiation fields with high dose gradients. They can be used as simple one-fiber systems and allow for an almost

  8. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  9. Agarose gel electrophoresis for the separation of DNA fragments.

    PubMed

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  10. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  11. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, M. S.

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al{sub 2}O{sub 3}:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties,more » instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.« less

  12. Gamma-ray dosimetry measurements of the Little Boy replica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  13. Starbursts and Wispy Drops : Surfactants Spreading on Gel Substrates

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Shomeek; Daniels, Karen; Behringer, Robert

    2005-11-01

    We report a phase diagram for a novel instability seen in drops of nonionic surfactant solution (Triton X-305) spreading on viscoelastic agar gel substrate . This system allows us to examine the effect of varying the effective fluidity/stiffness of aqueous substrates. The morphology is strongly affected by the substrate fluidity, ranging from spreading starbursts of arms on weak gels, to wispy drops on intermediate strength gels, to circular drops on stiff gels. We analyze the dynamics of spreading in the starburst phase, where the arm length grows as t ^3/4 at early times, independent of the gel strength and surfactant concentration. The number of arms is proportional to the surfactant concentration and inversely proportional to the gel strength. Ongoing work is exploring the effects of changing the drop volume.

  14. Meso-decorated self-healing gels: network structure and properties

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu

    2013-04-01

    Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.

  15. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a...

  16. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a...

  17. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4900 Support gel. (a...

  18. SU-F-T-421: Dosimetry Change During Radiotherapy and Dosimetry Difference for Rigid and Deformed Registration in the Mid-Thoracic Esophageal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, C; Liu, T; Chen, J

    Purpose: This study aimed to analyze dosimetry changes during radiotherapy for the mid-thoracic esophageal carcinoma, and investigate dosimetry difference between rigid and deformed registration. Methods: Twelve patients with primary middle thoracic esophageal carcinoma were selected randomly. Based on first CT scanning of each patient, plans-o were generated by experience physicists. After 20 fractions treatment, the corresponding plans-re were created with second CT scanning. And then, these two CT images were rigid and deformed registration respectively, and the dose was accumulated plan-o with plan-re. The dosimetry variation of these plans (plan-o: with 30 fractions, plan-rig: the accumulated dose with rigid registrationmore » and plan-def: the accumulated dose with deformed registration) were evaluated by paired T-test. Results: The V20 value of total lung were 32.68%, 30.3% and 29.71% for plan-o, plan-rig and plan-def respectively. The mean dose of total lung was 17.19 Gy, 16.67 Gy and 16.51 Gy for plan-o plan-rig and plan-def respectively. There were significant differences between plan-o and plan-rig or plan-def for both V20 and mean dose of total lung (with p= 0.003, p= 0.000 for V20 and p=0.008, p= 0.000 for mean dose respectively). There was no significant difference between plan-rig and plan-def (with p=0.118 for V20 and p=0.384 for mean dose). The max dose of spinal-cord was 41.95 Gy, 41.48 Gy and 41.4 Gy for plan-o, plan-rig and plan-def respectively. There were no significant differences for the max dose of spinal-cord between these plans. Conclusion: The target volume changes and anatomic position displacement of mid-thoracic esophageal carcinoma should not be neglected in clinics. These changes would cause overdose in normal tissue. Therefore, it is necessary to have another CT scanning and re-plan during the mid-thoracic esophageal carcinoma radiotherapy. And the dosimetry difference between rigid and deformed fusions was not found in this

  19. Microstructure and rheology of thermoreversible nanoparticle gels.

    PubMed

    Ramakrishnan, S; Zukoski, C F

    2006-08-29

    Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.

  20. Copolymers For Capillary Gel Electrophoresis

    DOEpatents

    Liu, Changsheng; Li, Qingbo

    2005-08-09

    This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.

  1. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    PubMed

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  2. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Janis, Abram D. (Inventor); Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  3. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  4. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  5. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly (Inventor); Janis, Abram D. (Inventor); Stuart, Katherine A. (Inventor)

    2017-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  6. White-light-emitting supramolecular gels.

    PubMed

    Praveen, Vakayil K; Ranjith, Choorikkat; Armaroli, Nicola

    2014-01-07

    Let there be light, let it be white: Recent developments in the use of chromophore-based gels as scaffolds for the assembly of white-light-emitting soft materials have been significant. The main advantage of this approach lies in the facile accommodation of selected luminescent components within the gel. Excitation-energy-transfer processes between these components ultimately generate the desired light output. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  8. Using Greener Gels to Explore Rheology

    ERIC Educational Resources Information Center

    Garrett, Brendan; Matharu, Avtar S.; Hurst, Glenn A.

    2017-01-01

    A laboratory experiment was developed to investigate the rheological properties of a green calcium-cross-linked alginate gel as an alternative to the traditional borax-cross-linked poly(vinyl alcohol) gel. As borax is suspected of damaging fertility and the unborn child, a safe, green alternative is necessary. The rheological properties of a…

  9. Verification of an on line in vivo semiconductor dosimetry system for TBI with two TLD procedures.

    PubMed

    Sánchez-Doblado, F; Terrón, J A; Sánchez-Nieto, B; Arráns, R; Errazquin, L; Biggs, D; Lee, C; Núñez, L; Delgado, A; Muñiz, J L

    1995-01-01

    This work presents the verification of an on line in vivo dosimetry system based on semiconductors. Software and hardware has been designed to convert the diode signal into absorbed dose. Final verification was made in the form of an intercomparison with two independent thermoluminiscent (TLD) dosimetry systems, under TBI conditions.

  10. Maize arabinoxylan gels as protein delivery matrices.

    PubMed

    Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa

    2009-04-08

    The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  11. DNA gel electrophoresis: the reptation model(s).

    PubMed

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  12. Transfer printing of thermoreversible ion gels for flexible electronics.

    PubMed

    Lee, Keun Hyung; Zhang, Sipei; Gu, Yuanyan; Lodge, Timothy P; Frisbie, C Daniel

    2013-10-09

    Thermally assisted transfer printing was employed to pattern thin films of high capacitance ion gels on polyimide, poly(ethylene terephthalate), and SiO2 substrates. The ion gels consisted of 20 wt % block copolymer poly(styrene-b-ethylene oxide-b-styrene and 80 wt % ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)amide. Patterning resolution was on the order of 10 μm. Importantly, ion gels containing the block polymer with short PS end blocks (3.4 kg/mol) could be transfer-printed because of thermoreversible gelation that enabled intimate gel-substrate contact at 100 °C, while gels with long PS blocks (11 kg/mol) were not printable at the same temperature due to poor wetting contact between the gel and substrates. By using printed ion gels as high-capacitance gate insulators, electrolyte-gated thin-film transistors were fabricated that operated at low voltages (<1 V) with high on/off current ratios (∼10(5)). Statistical analysis of carrier mobility, turn-on voltage, and on/off ratio for an array of printed transistors demonstrated the excellent reproducibility of the printing technique. The results show that transfer printing is an attractive route to pattern high-capacitance ion gels for flexible thin-film devices.

  13. Brief reports: regional anesthesia needles can introduce ultrasound gel into tissues.

    PubMed

    Belavy, David

    2010-09-01

    Anesthesiologists may insert needles through ultrasound gel when performing ultrasound-guided regional anesthesia. In this study, it was determined whether needles carry gel into tissues. Ultrasound gel dyed blue was applied to pork rashers. Tuohy and short-bevel needles were passed through the gel and pork. The needles were then assessed for the presence of ultrasound gel. All needles, including those with stylets, carried gel and tissue within the lumen. Ultrasound gel may be injected around (and perhaps in) nerves during regional anesthesia procedures. Studies are needed to determine the implications of this practice.

  14. Chemotaxis of active, self-oscillating polymer gels in solution

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Bhattacharya, Amitabh; Kuksenok, Olga; Balazs, Anna C.

    2012-02-01

    Fighting, fleeing and feeding are hallmarks of all living things; all these activities require some degree of mobility. Herein, we undertake the first computational study of self-oscillating polymer gels and show that this system can ``communicate'' to undergo a biomimetic, collective response to small-scale chemical changes. In this study we harness unique properties of polymer gels that undergo oscillatory Belousov-Zhabotinsky (BZ) reaction. The activator for the reaction is generated within these BZ cilia and diffuses between the neighboring gels. In order to simulate the dynamics of the BZ gels in surrounding fluid we have developed a nonlinear hybrid 3D model which captures the elasto-dynamics of polymer gel and diffusive exchange of BZ reagents between the gel and the fluid. We illustrate that multiple BZ gels in solution exhibit a distinct form of chemotaxis, moving towards the highest activator concentration in the solution. Similar ability to sense and move in response to chemical gradients constitutes a vital function in simple organisms, enabling them to find food and flee from poisons.

  15. One plunge or two?--hand disinfection with alcohol gel.

    PubMed

    Macdonald, Duncan J M; Mckillop, Elisabeth C A; Trotter, Sylvia; Gray, Alastair J R

    2006-04-01

    To compare health care workers' hand surface coverage using two different volumes of alcohol gel for hand disinfection. and methods. A total of 84 members of staff in our hospital were studied. Subjects were asked to disinfect their hands with alcohol gel containing a clear fluorescent substance. Performance was assessed by using UV light to identify areas which had been missed, and the total surface area missed was calculated. A total of 42 subjects received 3.5 ml of alcohol gel, and 42 age-, sex-, and job-matched subjects received 1.75 ml of alcohol gel. Significantly less area was missed when hand disinfecting with double the volume of alcohol gel; 1.23 versus 6.35% surface area was missed (P < 0.001). Doubling the volume of alcohol gel used for hand disinfection significantly improves the efficiency of coverage of the hands with alcohol gel. This may result in lower bacterial count on the hands and may reduce the spread of nosocomial infections including that of methicillin-resistant Staphylococcus aureus.

  16. Gel-forming reagents and uses thereof for preparing microarrays

    DOEpatents

    Golova, Julia; Chernov, Boris; Perov, Alexander

    2010-11-09

    New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.

  17. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...) Identification. A support gel for clinical use is a device that consists of an agar or agarose preparation that...

  18. 21 CFR 866.4900 - Support gel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Support gel. 866.4900 Section 866.4900 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES...) Identification. A support gel for clinical use is a device that consists of an agar or agarose preparation that...

  19. International Intercomparison Exercise for Nuclear Accident Dosimetry at the DAF Using GODIVA-IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickman, David; Hudson, Becka

    The Nuclear Criticality Safety Program operated under the direction of Dr. Jerry McKamy completed the first NNSA Nuclear Accident Dosimetry exercise on May 27, 2016. Participants in the exercise were from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), Savanah River Site (SRS), Pacific Northwest National Laboratory (PNNL), US Navy, the Atomic Weapons Establishment (United Kingdom) under the auspices of JOWOG 30, and the Institute for Radiological Protection and Nuclear Safety (France) by special invitation and NCSP memorandum of understanding. This exercise was the culmination of a series of Integral Experiment Requests (IER) thatmore » included the establishment of the Nuclear Criticality Experimental Research Center, (NCERC) the startup of the Godiva Reactor (IER-194), the establishment of a the Nuclear Accident Dosimetry Laboratory (NAD LAB) in Mercury, NV, and the determination of reference dosimetry values for the mixed neutron and photon radiation field of Godiva within NCERC.« less

  20. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    PubMed

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in dosimetry. When this network is fully operational, it will be the first of its kind in Canada able to respond to radiological/nuclear emergencies by providing triage quality biological dosimetry for a large number of samples. This network represents an alternate expansion of existing international emergency biological dosimetry cytogenetic networks.